
1

Chapter 1

Programming is best regarded as
the process of creating works of literature,

which are meant to be read.
—Donald E. Knuth

Elementary C++ Programming

A program is a sequence of instructions that can be executed by a computer. Every program is
written in some programming language. C++ (pronounced “see-plus-plus”) is one of the most
powerful programming languages available. It gives the programmer the power to write
efficient, structured, object-oriented programs.

1.1 GETTING STARTED

To write and run C++ programs, you need to have a text editor and a C++ compiler installed
on your computer. A text editor is a software system that allows you to create and edit text files
on your computer. Programmers use text editors to write programs in a programming language
such as C++. A compiler is a software system that translates programs into the machine language
(called binary code) that the computer’s operating system can then run. That translation process
is called compiling the program. A C++ compiler compiles C++ programs into machine
language.

If your computer is running a version of the Microsoft Windows operating system (e.g.,
Windows 98 or Windows 2000), then it already has two text editors: WordPad and Notepad.
These can be started from the Start key. In Windows 98, they are listed under Accessories.

Windows does not come with a built-in C++ compiler. So unless someone has installed a C++
compiler on the machine you are using, you will have to do that yourself. If you are using a
Windows computer that is maintained by someone else (e.g., an Information Services depart-
ment at your school or company), you may find a C++ compiler already installed. Use the Start
key to look under Programs for Borland C++Builder, Metrowerks CodeWarrior, Microsoft Visual
C++, or any other program with “C++” in its name. If you have to buy your own C++ compiler,
browse the Web for inexpensive versions of any of the compilers mentioned above. These are
usually referred to as IDEs (Integrated Development Environments) because they include their
own specialized text editors and debuggers.

If your computer is running a proprietary version of the UNIX operating system on a worksta-
tion (e.g., Sun Solaris on a SPARCstation), it may already have a C++ compiler installed. An
easy way to find out is to create the program shown in Example 1.1 on page 2, name it hello.C,
and then try to compile it with the command

CC hello

The Free Software Foundation has a suite of UNIX software, named “GNU” software that can
be downloaded for free from

http://www.gnu.org/software/software.html

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

2 ELEMENTARY C++ PROGRAMMING [CHAP. 1

Use their GCC package which includes a C++ compiler and their Emacs editor. For DOS
systems, use their DJGPP which includes a C++ compiler.

1.2 SOME SIMPLE PROGRAMS

Now you have a text editor for writing C++ programs and a C++ compiler for compiling
them. If you are using an IDE such as Borland C++Builder on a PC, then you can compile and
run your programs by clicking on the appropriate buttons. Other systems may require you to use
the command line to run your programs. In that case, you do so by entering the file name as a
command. For example, if your source code is in a file named hello.cpp, type

hello

at the command line to run the program after it has been compiled.
When writing C++ programs, remember that C++ is case-sensitive. That means that main()

is different from Main(). The safest policy is to type everything in lower-case except when you
have a compelling reason to capitalize something.

EXAMPLE 1.1 The “Hello, World” Program

This program simply prints “Hello, World!”:
#include <iostream>
int main()
{ std::cout << "Hello, World!\n";
}

The first line of this source code is a preprocessor directive that tells the C++ compiler where to find
the definition of the std::cout object that is used on the third line. The identifier iostream is the
name of a file in the Standard C++ Library. Every C++ program that has standard input and output must
include this preprocessor directive. Note the required punctuation: the pound sign # is required to
indicate that the word “include” is a preprocessor directive; the angle brackets < > are required to
indicate that the word “iostream” (which stands for “input/output stream”) is the name of a Standard
C++ Library file. The expression <iostream> is called a standard header.

The second line is also required in every C++ program. It tells where the program begins. The identi-
fier main is the name of a function, called the main function of the program. Every C++ program must
have one and only one main() function. The required parentheses that follow the word “main” indicate
that it is a function. The keyword int is the name of a data type in C++. It stands for “integer”. It is used
here to indicate the return type for the main() function. When the program has finished running, it can
return an integer value to the operating system to signal some resulting status.

The last two lines constitute the actual body of the program. A program body is a sequence of program
statements enclosed in braces { }. In this example there is only one statement:

std::cout << "Hello, World!\n";
It says to send the string "Hello, World!\n" to the standard output stream object std::cout.

The single symbol << represents the C++ output operator. When this statement executes, the characters
enclosed in quotation marks " " are sent to the standard output device which is usually the computer
screen. The last two characters \n represent the newline character. When the output device encounters
that character, it advances to the beginning of the next line of text on the screen. Finally, note that every
program statement must end with a semicolon (;).

Notice how the program in Example 1.1 is formatted in four lines of source code. That format-
ting makes the code easier for humans to read. The C++ compiler ignores such formatting. It

CHAP. 1] ELEMENTARY C++ PROGRAMMING 3

reads the program the same as if it were written all on one line, like this:
#include <iostream>
int main(){std::cout<<"Hello, World!\n";}

Blank spaces are ignored by the compiler except where needed to separate identifiers, as in
int main

Note that the preprocessor directive must precede the program on a separate line.

EXAMPLE 1.2 Another “Hello, World” Program

This program has the same output as that in Example 1.1:
#include <iostream>
using namespace std;
int main()
{ // prints "Hello, World!":

cout << "Hello, World!\n";
return 0;

}
The second line

using namespace std;
tells the C++ compiler to apply the prefix std:: to resolve names that need prefixes. It allows us to use
cout in place of std::cout. This makes larger programs easier to read.

The fourth line
{ // prints "Hello, World!"

includes the comment “prints "Hello, World!"”. A comment in a program is a string of characters
that the preprocessor removes before the compiler compiles the programs. It is included to add explana-
tions for human readers. In C++, any text that follows the double slash symbol //, up to the end of the
line, is a comment. You can also use C style comments, like this:

{ /* prints "Hello, World!" */
A C style comment (introduced by the programming language named “C”) is any string of characters
between the symbol /* and the symbol */. These comments can run over several lines.

The sixth line
return 0;

is optional for the main() function in Standard C++. We include it here only because some compilers
expect it to be included as the last line of the main() function.

A namespace is a named group of definitions. When objects that are defined within a
namespace are used outside of that namespace, either their names must be prefixed with the
name of the namespace or they must be in a block that is preceded by a using namespace

statement. Namespaces make it possible for a program to use different objects with the same
name, just as different people can have the same name. The cout object is defined within a
namespace named std (for “standard”) in the <iostream> header file.

Throughout the rest of this book, every program is assumed to begin with the two lines
#include <iostream>
using namespace std;

These two required lines will be omitted in the examples. We will also omit the line
return 0;

from the main() function. Be sure also to include this line if you are using a compiler (such as
Microsoft Visual C++) that expects it.

4 ELEMENTARY C++ PROGRAMMING [CHAP. 1

1.3 THE OUTPUT OPERATOR

The symbol << is called the output operator in C++. (It is also called the put operator or the
stream insertion operator.) It inserts values into the output stream that is named on its left. We
usually use the cout output stream, which ordinarily refers to the computer screen. So the state-
ment

cout << 66;

would display the number 66 on the screen.
An operator is something that performs an action on one or more objects. The output operator

<< performs the action of sending the value of the expression listed on its right to the output
stream listed on its left. Since the direction of this action appears to be from right to left, the
symbol << was chosen to represent it. It should remind you of an arrow pointing to the left.

The cout object is called a “stream” because output sent to it flows like a stream. If several
things are inserted into the cout stream, they fall in line, one after the other as they are dropped
into the stream, like leaves falling from a tree into a natural stream of water. The values that are
inserted into the cout stream are displayed on the screen in that order.

EXAMPLE 1.3 Yet Another “Hello, World” Program

This program has the same output as that in Example 1.1:
int main()
{ // prints "Hello, World!":

cout << "Hel" << "lo, Wo" << "rld!" << endl;
}

The output operator is used four times here, dropping the four objects "Hel", "lo, Wo", "rld!", and
endl into the output stream. The first three are strings that are concatenated together (i.e., strung
end-to-end) to form the single string "Hello, World!". The fourth object is the stream manipulator
object endl (meaning “end of line”). It does the same as appending the endline character '\n' to the
string itself: it sends the print cursor to the beginning of the next line. It also “flushes” the output buffer.

1.4 CHARACTERS AND LITERALS

The three objects "Hel", "lo, Wo", and "rld!" in Example 1.3 are called string literals.
Each literal consists of a sequence of characters delimited by quotation marks.

A character is an elementary symbol used collectively to form meaningful writing. English
writers use the standard Latin alphabet of 26 lower case letters and 26 upper case letters along
with the 10 Hindu-Arabic numerals and a collection of punctuation marks. Characters are stored
in computers as integers. A character set code is a table that lists the integer value for each
character in the set. The most common character set code in use at the end of the millennium is
the ASCII Code, shown in Appendix A. The acronym (pronounced “as-key”) stands for Ameri-
can Standard Code for Information Interchange.

The newline character '\n' is one of the nonprinting characters. It is a single character
formed using the backslash \ and the letter n. There are several other characters formed this way,
including the horizontal tab character '\t' and the alert character '\a'. The backslash is also
used to denote the two printing characters that could not otherwise be used within a string literal:
the quote character \" and the backslash character itself \\.

CHAP. 1] ELEMENTARY C++ PROGRAMMING 5

Characters can be used in a program statement as part of a string literal, or as individual
objects. When used individually, they must appear as character constants. A character constant is
a character enclosed in single quotes. As individual objects, character constants can be output the
same way string literals are.

EXAMPLE 1.4 A Fourth Version of the “Hello, World” Program

This program has the same output as that in Example 1.1:
int main()
{ // prints "Hello, World!":

cout << "Hello, W" << 'o' << "rld" << '!' << '\n';
}

This shows that the output operator can process characters as well as string literals. The three individual
characters 'o', '!', and '\n' are concatenated into the output the same was as the two string literals
"Hello, W" and "rld".

EXAMPLE 1.5 Inserting Numeric Literals into the Standard Output Stream

int main()
{ // prints "The Millennium ends Dec 31 2000.":

cout << "The Millennium ends Dec " << 3 << 1 << ' ' << 2000 << endl;
}

When numeric literals like 3 and 2000 are passed to the output stream they are automatically
converted to string literals and concatenated the same way as characters. Note that the blank character
(' ') must be passed explicitly to avoid having the digits run together.

1.5 VARIABLES AND THEIR DECLARATIONS

A variable is a symbol that represents a storage location in the computer’s memory. The infor-
mation that is stored in that location is called the value of the variable. One common way for a
variable to obtain a value is by an assignment. This has the syntax

variable = expression;

First the expression is evaluated and then the resulting value is assigned to the variable. The
equals sign “=” is the assignment operator in C++.

EXAMPLE 1.6 Using Integer Variables

In this example, the integer 44 is assigned to the variable m, and the value of the expression m + 33
is assigned to the variable n:

int main()
{ // prints "m = 44 and n = 77":

int m, n;
m = 44; // assigns the value 44 to the variable m
cout << "m = " << m;
n = m + 33; // assigns the value 77 to the variable n
cout << " and n = " << n << endl;

}
The output from the program is shown in the shaded panel at the top of the next page.

6 ELEMENTARY C++ PROGRAMMING [CHAP. 1

We can view the variables m and n like this:
The variable named m is like a mailbox. Its name
m is like the address on a mailbox, its value 44 is like the contents of a mailbox, and its type int is like a
legal classification of mailboxes that stipulates what may be placed inside it. The type int means that the
variable holds only integer values.

Note in this example that both m and n are declared on the same line. Any number of variables can be
declared together this way if they have the same type.

Every variable in a C++ program must be declared before it is used. The syntax is
specifier type name initializer;

where specifier is an optional keyword such as const (see Section 1.8), type is one of the
C++ data types such as int, name is the name of the variable, and initializer is an optional
initialization clause such as =44 (see Section 1.7).

The purpose of a declaration is to introduce a name to the program; i.e., to explain to the
compiler what the name means. The type tells the compiler what range of values the variable
may have and what operations can be performed on the variable.

The location of the declaration within the program determines the scope of the variable: the
part of the program where the variable may be used. In general, the scope of a variable extends
from its point of declaration to the end of the immediate block in which it is declared or which it
controls.

1.6 PROGRAM TOKENS

A computer program is a sequence of elements called tokens. These tokens include keywords
such as int, identifiers such as main, punctuation symbols such as {, and operators such as <<.
When you compile your program, the compiler scans the text in your source code, parsing it into
tokens. If it finds something unexpected or doesn’t find something that was expected, then it
aborts the compilation and issues error messages. For example, if you forget to append the
semicolon that is required at the end of each statement, then the message will report the missing
semicolon. Some syntax errors such as a missing second quotation mark or a missing closing
brace may not be described explicitly; instead, the compiler will indicate only that it found
something wrong near that location in your program.

EXAMPLE 1.7 A Program’s Tokens

int main()
{ // prints "n = 44":

int n=44;
cout << "n = " << n << endl;

}
The output is

This source code has 19 tokens: “int”, “main”, “(”, “)”, “{”, “int”, “n”, “=”, “44”, “;”, “cout”,
“<<”, “"n = "”, “<<”, “n”, “<<”, “endl”, “;”, and “}”. Note that the compiler ignores the comment
symbol // and the text that follows it on the second line.

m = 44 and n = 77

44m
int

77n
int

n = 44

CHAP. 1] ELEMENTARY C++ PROGRAMMING 7

EXAMPLE 1.8 An Erroneous Program

This is the same program as above except that the required semicolon on the third line is missing:
int main()
{ // THIS SOURCE CODE HAS AN ERROR:

int n=44
cout << "n = " << n << endl;

}
One compiler issued the following error message:

Error : ';' expected
Testing.cpp line 4 cout << "n = " << n << endl;

This compiler underlines the token where it finds the error. In this case, that is the “cout” token at the
beginning of the fourth line. The missing token was not detected until the next token was encountered.

1.7 INITIALIZING VARIABLES

In most cases it is wise to initialize variables where they are declared.

EXAMPLE 1.9 Initializing Variables

This program contains one variable that is not initialized and one that is initialized.
int main()
{ // prints "m = ?? and n = 44":

int m; // BAD: m is not initialized
int n=44;
cout << "m = " << m << " and n = " << n << endl;

}

The output is shown in the shaded box.
This compiler handles uninitialized variables in a special way. It gives them a special value that appears

as ?? when printed. Other compilers may simply leave “garbage” in the variable, producing output like
this:

In larger programs, uninitialized variables can cause troublesome errors.

1.8 OBJECTS, VARIABLES, AND CONSTANTS

An object is a contiguous region of memory that has an address, a size, a type, and a value.
The address of an object is the memory address of its first byte. The size of an object is simply
the number of bytes that it occupies in memory. The value of an object is the constant determined
by the actual bits stored in its memory location and by the object’s type which prescribes how
those bits are to be interpreted.

For example, with GNU C++ on a UNIX workstation, the object n defined by
int n = 22;

has the memory address 0x3fffcd6, the size 4, the type int, and the value 22. (The memory
address is a hexadecimal number. See Appendix G.)

m = ?? and n = 44

m = -2107339024 and n = 44

8 ELEMENTARY C++ PROGRAMMING [CHAP. 1

The type of an object is determined by the programmer. The value of an object may also be
determined by the programmer at compile time, or it may be determined at run-time. The size of
an object is determined by the compiler. For example, in GNU C++ an int has size 4, while in
Borland C++ its size is 2. The address of an object is determined by the computer’s operating
system at run-time.

Some objects do not have names. A variable is an object that has a name. The object defined
above is a variable with name ‘n’.

The word “variable” is used to suggest that the object’s value can be changed. An object
whose value cannot be changed is called a constant. Constants are declared by preceding its type
specifier with the keyword const, like this:

const int N = 22;
Constants must be initialized when they are declared.

EXAMPLE 1.10 The const Specifier

This program illustrates constant definitions:
int main()
{ // defines constants; has no output:

const char BEEP = '\b';
const int MAXINT = 2147483647;
const int N = MAXINT/2;
const float KM_PER_MI = 1.60934;
const double PI = 3.14159265358979323846;

}

Constants are usually defined for values like π that will be used more than once in a program
but not changed.

It is customary to use all capital letters in constant identifiers to distinguish them from other
kinds of identifiers. A good compiler will replace each constant symbol with its numeric value.

1.9 THE INPUT OPERATOR

In C++, input is almost as simple as output. The input operator >> (also called the get opera-
tor or the extraction operator) works like the output operator <<.

EXAMPLE 1.11 Using the Input Operator

int main()
{ // tests the input of integers, floats, and characters:

int m, n;
cout << "Enter two integers: ";
cin >> m >> n;
cout << "m = " << m << ", n = " << n << endl;
double x, y, z;
cout << "Enter three decimal numbers: ";
cin >> x >> y >> z;
cout << "x = " << x << ", y = " << y << ", z = " << z << endl;
char c1, c2, c3, c4;
cout << "Enter four characters: ";

CHAP. 1] ELEMENTARY C++ PROGRAMMING 9

cin >> c1 >> c2 >> c3 >> c4;
cout << "c1 = " << c1 << ", c2 = " << c2 << ", c3 = " << c3

<< ", c4 = " << c4 << endl;
}

The input is shown in boldface in the output panel.

Review Questions

1.1 Describe the two ways to include comments in a C++ program.
1.2 What is wrong with this program?

#include <iostream>
int main()
{ // prints "Hello, World!":

cout << "Hello, World!\n"
}

1.3 What is wrong with the following C-style comment?
cout << "Hello, /* change? */ World.\n";

1.4 What’s wrong with this program:
#include <iostream>;
int main
{ // prints "n = 22":

n = 22;
cout << "n = << n << endl;

}
1.5 What does a declaration do?
1.6 What is the purpose of the preprocessing directive:

#include <iostream>
1.7 What is the shortest possible C++ program?
1.8 Where does the name “C++” come from?
1.9 What’s wrong with these declarations:

int first = 22, last = 99, new = 44, old = 66;
1.10 In each of the following, assume that m has the value 5 and n has the value 2 before the

statement executes. Tell what the values of m and n will be after each of the following
statements executes:
a. m *= n++;
b. m += --n;

1.11 Evaluate each of the following expressions, assuming in each case that m has the value 25
and n has the value 7:
a. m - 8 - n
b. m = n = 3
c. m%n
d. m%n++
e. m%++n
f. ++m - n--

Enter two integers: 22 44
m = 22, n = 44
Enter three decimal numbers: 2.2 4.4 6.6
x = 2.2, y = 4.4, z = 6.6
Enter four characters: ABCD
c1 = A, c2 = B, c3 = C, c4 = D

10 ELEMENTARY C++ PROGRAMMING [CHAP. 1

1.12 Parse the following program, identifying all the keywords, identifiers, operators, literals,
punctuation, and comments:

int main()
{ int n;

cin >> n;
n *= 3; // multiply n by 3
cout << "n=" << n << endl;

}
1.13 Identify and correct the error in each of the following:

a. cout >> count;

b. int double=44;

1.14 How do the following two statements differ:
char ch = 'A';
char ch = 65;

1.15 What code could you execute to find the character whose ASCII code is 100?
1.16 What does “floating-point” mean, and why is it called that?
1.17 What is numeric overflow?
1.18 How is integer overflow different from floating-point overflow?
1.19 What is a run-time error? Give examples of two different kinds of run-time errors.
1.20 What is a compile-time error? Give examples of two different kinds of compile-time errors.

Problems

1.1 Write four different C++ statements, each subtracting 1 from the integer variable n.
1.2 Write a block of C++ code that has the same effect as the statement

n = 100 + m++;

without using the post-increment operator.
1.3 Write a block of C++ code that has the same effect as the statement

n = 100 + ++m;

without using the pre-increment operator.
1.4 Write a single C++ statement that subtracts the sum of x and y from z and then

increments y.
1.5 Write a single C++ statement that decrements the variable n and then adds it to total.
1.6 Write a program that prints the first sentence of the Gettysburg Address (or your favorite

quotation).
1.7 Write a program that prints the block letter “B” in a 7 × 6 grid of stars like this:

* *
* *

* *
* *

1.8 Write and run a program that prints the first letter of your last name as a block letter in a
7 × 7 grid of stars.

1.9 Write and run a program that shows what happens when each of the following ten “escape
sequences” is printed: \a, \b, \n, \r, \t, \v, \', \", \\, \?.

1.10 Write and run a program that prints the sum, difference, product, quotient, and remainder of
two integers. Initialize the integers with the values 60 and 7.

CHAP. 1] ELEMENTARY C++ PROGRAMMING 11

1.11 Write and run a program that prints the sum, difference, product, quotient, and remainder of
two integers that are input interactively.

1.12 Write and run a test program that shows how your system handles uninitialized variables.
1.13 Write and run a program that causes negative overflow of a variable of type short.
1.14 Write and run a program that demonstrates round-off error by executing the following steps:

(1) initialize a variable a of type float with the value 666666; (2) initialize a variable b of
type float with the value 1-1/a; (3) initialize a variable c of type float with the value
1/b - 1; (4) initialize a variable d of type float with the value 1/c + 1; (5) print all four
variables. Show algebraically that d = a even though the computed value of d ≠ a. This is
caused by round-off error.

Answers to Review Questions

1.1 One way is to use the standard C style comment
/* like this */

The other way is to use the standard C++ style comment
// like this

The first begins with a slash-star and ends with a star-slash. The second begins with a double-slash and
ends at the end of the line.

1.2 The semicolon is missing from the last statement.
1.3 Everything between the double quotes will be printed, including the intended comment.
1.4 There are four errors: the precompiler directive on the first line should not end with a semicolon, the

parentheses are missing from main(), n is not declared, and the quotation mark on the last line has
no closing quotation mark.

1.5 A declaration tells the compiler the name and type of the variable being declared. It also may be ini-
tialized in the declaration.

1.6 It includes contents of the header file iostream into the source code. This includes declarations
needed for input and output; e.g., the output operator <<.

1.7 int main() { }
1.8 The name refers to the C language and its increment operator ++. The name suggests that C++ is an

advance over C.
1.9 The only thing wrong with these declarations is that new is a keyword. Keywords are reserved and

cannot be used for names of variables. See Appendix B for a list of the 62 keywords in C++.
1.10 a. m will be 10 and n will be 3.

b. m will be 6 and n will be 1.
1.11 a. m - 8 - n evaluates to (25 - 8) - 7 = 17 - 7 = 10

b. m = n = 3 evaluates to 3
1.12 a. m - 8 - n evaluates to (25 - 8) - 7 = 17 - 7 = 10

b. m = n = 3 evaluates to 3
c. m%n evaluates to 25%7 = 4
d. m%n++ evaluates to 25%(7++) = 25%7 = 4
e. m%++n evaluates to 25%(++7) = 25%8 = 1
f. ++m - n-- evaluates to (++25) - (7--) = 26 - 7 = 19

1.13 The keyword is int. The identifiers are main, n, cin, cout, and endl. The operators are (), >>,
*=, and <<. The literals are 3 and "n=". The punctuation symbols are {, ;, and }. The comment
is “// multiply n by 3”.

1.14 a. The output object cout requires the output operator <<. It should be cout << count;
b. The word double is a keyword in C++; it cannot be used as a variable name. Use: int d=44;

12 ELEMENTARY C++ PROGRAMMING [CHAP. 1

1.15 Both statements have the same effect: they declare ch to be a char and initialize it with the value 65.
Since this is the ASCII code for 'A', that character constant can also be used to initialize ch to 65.

1.16 cout << "char(100) = " << char(100) << endl;
1.17 The term “floating-point” is used to describe the way decimal numbers (rational numbers) are stored

in a computer. The name refers to the way that a rational number like 386501.294 can be represented
in the form 3.86501294×105 by letting the decimal point “float” to the left 5 places.

1.18 Numeric overflow occurs in a computer program when the size of a numeric variable gets too big for
its type. For example, on most computers values variables of type short cannot exceed 32,767, so if
a variable of that type has the value 32,767 and is then incremented (or increased by any arithmetic
operation), overflow will occur.

1.19 When integer overflow occurs the value of the offending variable will “wrap around” to negative val-
ues, producing erroneous results. When floating-point overflow occurs, the value of the offending
variable will be set to the constant inf representing infinity.

1.20 A run-time error is an error that occurs when a program is running. Numeric overflow and division by
zero are examples of run-time errors.

1.21 A compile-time error is an error that occurs when a program is being compiled. Examples: syntax
errors such as omitting a required semicolon, using an undeclared variable, using a keyword for the
name of a variable.

Solutions to Problems

1.1 Four different statements, each subtracting 1 from the integer variable n:
a. n = n - 1;
b. n -= 1;
c. --n;
d. n--;

1.2 n = 100 + m;
++m;

1.3 ++m;
n = 100 + m;

1.4 z -= (x + y++);
1.5 total += --n;
1.6 int main()

{ // prints the first sentence of the Gettysburg Address
cout << "\tFourscore and seven years ago our fathers\n";
cout << "brought forth upon this continent a new nation,\n";
cout << "conceived in liberty, and dedicated to the\n";
cout << "proposition that all men are created equal.\n";

}

1.7 int main()
{ // prints "B" as a block letter

cout << "*****" << endl;
cout << "* *" << endl;
cout << "* *" << endl;
cout << "*****" << endl;
cout << "* *" << endl;
cout << "* *" << endl;

Fourscore and seven years ago our fathers
brought forth upon this continent a new nation,
conceived in liberty, and dedicated to the
proposition that all men are created equal.

CHAP. 1] ELEMENTARY C++ PROGRAMMING 13

cout << "*****" << endl;
}

1.8 int main()
{ // prints "W" as a block letter

cout << "* *" << endl;
cout << " * *" << endl;
cout << " * *" << endl;
cout << " * * *" << endl;
cout << " * * * *" << endl;
cout << " * * * *" << endl;
cout << " * *" << endl;

}

1.9 int main()
{ // prints escape sequences

cout << "Prints \"\\nXXYY\": " << "\nXXYY" << endl;
cout << "--" << endl;
cout << "Prints \"\\nXX\\bYY\": " << "\nXX\bYY" << endl;
cout << "--" << endl;
cout << "Prints \"\\n\\tXX\\tYY\": " << "\n\tXX\tYY" << endl;
cout << "--" << endl;
cout << "Prints the \'\\a\' character: " << '\a' << endl;
cout << "--" << endl;
cout << "Prints the \'\\r\' character: " << '\r' << endl;
cout << "--" << endl;
cout << "Prints the \'\\v\' character: " << '\v' << endl;
cout << "--" << endl;
cout << "Prints the \'\\?\' character: " << '\?' << endl;
cout << "--" << endl;

}

* *
* *

* *
* *

* *
* *
* *
* * *
* * * *
* * * *
* *

Prints the '\v' character:
--
Prints the '\?' character: ?
--
Prints "\nXXYY":
XXYY
--
Prints "\nXX\bYY":
XYY
--
Prints "\n\tXX\tYY":

14 ELEMENTARY C++ PROGRAMMING [CHAP. 1

1.10 int main()
{ // prints the results of arithmetic operators

int m = 60, n = 7;
cout << "The integers are " << m << " and " << n << endl;
cout << "Their sum is " << (m + n) << endl;
cout << "Their difference is " << (m - n) << endl;
cout << "Their product is " << (m * n) << endl;
cout << "Their quotient is " << (m / n) << endl;
cout << "Their remainder is " << (m % n) << endl;

}

1.11 int main()
{ // prints the results of arithmetic operators

int m, n;
cout << "Enter two integers: ";
cin >> m >> n;
cout << "The integers are " << m << " and " << n << endl;
cout << "Their sum is " << (m + n) << endl;
cout << "Their difference is " << (m - n) << endl;
cout << "Their product is " << (m * n) << endl;
cout << "Their quotient is " << (m / n) << endl;
cout << "Their remainder is " << (m % n) << endl;

}

1.12 int main()
{ // prints the values of uninitialized variables

bool b; // not initialized
cout << "b = " << b << endl;
char c; // not initialized
cout << "c = [" << c << "]" << endl;
int m; // not initialized
cout << "m = " << m << endl;
int n; // not initialized
cout << "n = " << n << endl;
long nn; // not initialized

XX YY
--
Prints the '\a' character:
--
Prints the '\r' character:
--

The integers are 60 and 7
Their sum is 67
Their difference is 53
Their product is 420
Their quotient is 8
Their remainder is 4

Enter two integers: 60 7
The integers are 60 and 7
Their sum is 67
Their difference is 53
Their product is 420
Their quotient is 8
Their remainder is 4

CHAP. 1] ELEMENTARY C++ PROGRAMMING 15

cout << "nn = " << nn << endl;
float x; // not initialized
cout << "x = " << x << endl;
double y; // not initialized
cout << "y = " << y << endl;

}

1.13 int main()
{ // prints the values an overflowing negative short int

short m=0;
cout << "m = " << m << endl;
m -= 10000; // m should be -10,000
cout << "m = " << m << endl;
m -= 10000; // m should be -20,000
cout << "m = " << m << endl;
m -= 10000; // m should be -30,000
cout << "m = " << m << endl;
m -= 10000; // m should be -40,000
cout << "m = " << m << endl;

}

1.14 int main()
{ float a = 666666; // = a = 666666

float b = 1 - 1/a; // = (a-1)/a = 666665/666666
float c = 1/b - 1; // = 1/(a-1) = 1/666665
float d = 1/c + 1; // = a = 666666 != 671089
cout << "a = " << a << endl;
cout << "b = " << b << endl;
cout << "c = " << c << endl;
cout << "d = " << d << endl;

}

b = 0
c =
m = 4296913
n = 4296716
nn = 4296794
x = 6.02438e-39
y = 9.7869e-307

m = 0
m = -10000
m = -20000
m = -30000
m = 25536

a = 666666
b = 0.999999
c = 1.49012e-06
d = 671089

16

Chapter 2

Fundamental Types

2.1 NUMERIC DATA TYPES

In science there are two kinds of numbers: whole numbers (e.g., 666) and decimal numbers
(e.g., 3.14159). Whole numbers, including 0 and negative whole numbers, are called integers.
Decimal numbers, including negative decimal numbers and all integers, are called rational num-
bers because they can always be expressed as ratios of whole numbers (i.e., fractions). Mathe-
matics also uses irrational real numbers (e.g., and π), but these must be approximated with
rational numbers to be used in computers.

Integers are used for counting; rational
numbers are used for measuring. Integers
are meant to be exact; rational numbers are
meant to be approximate. When we say
there are 12 people on the jury, we mean
exactly 12, and anyone can count them to
verify the statement. But when we say the
tree is 12 meters high, we mean approxi-
mately 12.0 meters, and someone else may
be just as accurate in saying that it is
12.01385 meters high.

This philosophical dichotomy is reflected
in computers by the different ways in which
these two fundamentally different kinds of
numbers are stored and manipulated. Those
differences are embodied in the two kinds of
numeric types common to all programming
languages: integral types and floating-point
types. The term “floating-point” refers to
the scientific notation that is used for ratio-
nal numbers. For example, 1234.56789 can
also be represented as 1.23456789 × 103, and
0.00098765 as 9.8765 × 10–4. These alterna-
tives are obtained by letting the decimal
point “float” among the digits and using the exponent on 10 to count how many places it has
floated to the left or right.

Standard C++ has 14 different fundamental types: 11 integral types and 3 floating-point types.
These are outlined in the diagram shown above. The integral types include the boolean type
bool, enumeration types defined with the enum keyword, three character types, and six explicit
integer types. The three floating-point types are float, double, and long double. The most
frequently used fundamental types are bool, char, int, and double.

2

Fundamental Types

double

Integral Types

Floating-point Types

Boolean Type

Character Types
char

float

long double

wchar_t

bool

unsigned char

Integer Types
short

unsigned short
long
int

Enumeration Types
enum

unsigned int
unsigned long

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

CHAP. 2] FUNDAMENTAL TYPES 17

2.2 THE BOOLEAN TYPE

A boolean type is an integral type whose variables can have only two values: false and
true. These values are stored as the integers 0 and 1. The boolean type in Standard C++ is
named bool.

EXAMPLE 2.1 Boolean Variables

int main()
{ // prints the value of a boolean variable:

bool flag=false;
cout << "flag = " << flag << endl;
flag = true;
cout << "flag = " << flag << endl;

}

Note that the value false is printed as the integer 0 and the value true is printed as the integer 1.

2.3 ENUMERATION TYPES

In addition to the predefined types such as int and char, C++ allows you to define your own
special data types. This can be done in several ways, the most powerful of which use classes as
described in Chapter 11. We consider here a much simpler kind of user-defined type.

An enumeration type is an integral type that is defined by the user with the syntax
enum typename { enumerator-list };

Here enum is a C++ keyword, typename stands for an identifier that names the type being
defined, and enumerator-list stands for a list of names for integer constants. For example, the
following defines the enumeration type Semester, specifying the three possible values that a
variable of that type can have

enum Semester {FALL, SPRING, SUMMER};
We can then declare variables of this type:

Semester s1, s2;
and we can use those variables and those type values as we would with predefined types:

s1 = SPRING;
s2 = FALL;
if (s1 == s2) cout << "Same semester." << endl;

The actual values defined in the enumerator-list are called enumerators. In fact, they are
ordinary integer constants. For example, the enumerators FALL, SPRING, and SUMMER that are
defined for the Semester type above could have been defined like this:

const int FALL=0;
const int WINTER=1;
const int SUMMER=2;

The values 0, 1, … are assigned automatically when the type is defined. These default values can
be overridden in the enumerator-list:

enum Coin {PENNY=1, NICKEL=5, DIME=10, QUARTER=25};

If integer values are assigned to only some of the enumerators, then the ones that follow are
given consecutive values. For example,

flag = 0
flag = 1

18 FUNDAMENTAL TYPES [CHAP. 2

enum Month {JAN=1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV
DEC};

will assign the numbers 1 through 12 to the twelve months.
Since enumerators are simply integer constants, it is legal to have several different enumera-

tors with the same value:
enum Answer {NO = 0, FALSE=0, YES = 1, TRUE=1, OK = 1};

This would allow the code
int answer;
cin >> answer;

:
:

if (answer == YES) cout << "You said it was o.k." << endl;

to work as expected. If the value of the variable answer is 1, then the condition will be true and
the output will occur. Note that since the integer value 1 always means “true” in a condition, this
selection statement could also be written

if (answer) cout << "You said it was o.k." << endl;

Notice the conspicuous use of capitalization here. Most programmers usually follow these
conventions for capitalizing their identifiers:

1. Use only upper-case letters in names of constants.
2. Capitalize the first letter of each name in user-defined types.
3. Use all lower-case letters everywhere else.

These rules make it easier to distinguish the names of constants, types, and variables, especially
in large programs. Rule 2 also helps distinguish standard C++ types like float and string

from user-defined types like Coin and Month.
Enumeration types are usually defined to make code more self-documenting; i.e., easier for

humans to understand. Here are a few more typical examples:
enum Sex {FEMALE, MALE};
enum Day {SUN, MON, TUE, WED, THU, FRI, SAT};
enum Radix {BIN=2, OCT=8, DEC=10, HEX=16};
enum Color {RED, ORANGE, YELLOW, GREEN, BLUE, VIOLET};
enum Rank {TWO=2, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN,

JACK, QUEEN, KING, ACE};
enum Suit {CLUBS, DIAMONDS, HEARTS, SPADES};
enum Roman {I=1, V=5, X=10, L=50, C=100, D=500, M=1000};

Definitions like these can help make your code more readable. But enumerations should not be
overused. Each enumerator in an enumerator list defines a new identifier. For example, the
definition of Roman above defines the seven identifiers I, V, X, L, C, D, and M as specific integer
constants, so these letters could not be used for any other purpose within the scope of their
definition.

Note that enumerators must be valid identifiers. So for example, this definition would not be
valid

enum Grade {F, D, C-, C, C+, B-, B, B+, A-, A}; // ERRONEOUS

because the characters '+' and '-' cannot be used in identifiers. Also, the definitions for Month
and Radix shown above could not both be in the same scope because they both define the
symbol OCT.

Enumerations can also be anonymous in C++:
enum {I=1, V=5, X=10, L=50, C=100, D=500, M=1000};

This is just a convenient way to define integer constants.

CHAP. 2] FUNDAMENTAL TYPES 19

2.4 CHARACTER TYPES

A character type is an integral type whose variables represent characters like the letter 'A' or
the digit '8'. Character literals are delimited by the apostrophe ('). Like all integral type values,
character values are stored as integers.

EXAMPLE 2.2 Character Variables

int main()
{ // prints the character and its internally stored integer value:

char c='A';
cout << "c = " << c << ", int(c) = " << int(c) << endl;
c='t';
cout << "c = " << c << ", int(c) = " << int(c) << endl;
c='\t'; // the tab character
cout << "c = " << c << ", int(c) = " << int(c) << endl;
c='!';
cout << "c = " << c << ", int(c) = " << int(c) << endl;

}

Since character values are used for input and output, they appear in their character form instead of their
integral form: the character 'A' is printed as the letter “A”, not as the integer 65 which is its internal
representation. The type cast operator int() is used here to reveal the corresponding integral value.
These are the characters’ ASCII codes. (See Appendix A.)

2.5 INTEGER TYPES

There are 6 integer types in Standard C++:
These types actually have several names. For
example, short is also named short int, and
int is also named signed int.

You can determine the numerical ranges of
the integer types on your system by running the
program in the following example.

EXAMPLE 2.3 Integer Type Ranges

This program prints the numeric ranges of the 6 integer types in C++:
#include <iostream>
#include <climits> // defines the constants SHRT_MIN, etc.
using namespace std;
int main()
{ // prints some of the constants stored in the <climits> header:

cout << "minimum short = " << SHRT_MIN << endl;
cout << "maximum short = " << SHRT_MAX << endl;

c = A, int(c) = 65
c = t, int(c) = 116
c = , int(c) = 9
c = !, int(c) = 33

Fundamental Types
Integral Types

Integer Types
short

unsigned short
long
int

unsigned int
unsigned long

20 FUNDAMENTAL TYPES [CHAP. 2

cout << "maximum unsigned short = 0" << endl;
cout << "maximum unsigned short = " << USHRT_MAX << endl;
cout << "minimum int = " << INT_MIN << endl;
cout << "maximum int = " << INT_MAX << endl;
cout << "minimum unsigned int = 0" << endl;
cout << "maximum unsigned int = " << UINT_MAX << endl;
cout << "minimum long= " << LONG_MIN << endl;
cout << "maximum long= " << LONG_MAX << endl;
cout << "minimum unsigned long = 0" << endl;
cout << "maximum unsigned long = " << ULONG_MAX << endl;

}

The header file <climits> defines the constants SHRT_MIN, SHRT_MAX, USHRT_MIN, etc.
These are the limits on the range of values that a variable of the indicated type can have. For example, the
output shows that variables of type int can have values in the range –2,147,483,648 to 2,147,483,647 on
this computer.

On this computer, the three signed integer types have the same range as their corresponding unquali-
fied integer type. For example, signed short int is the same as short int. This tells us that the
signed integer types are redundant on this computer.

The output also reveals that the range of the int type (–2,147,483,648 to 2,147,483,647) is the same as
that of the long int type, and that the range of the unsigned int type (0 to 4,294,967,295) is the
same as that of the unsigned long int type. This tells us that the long integer types are redundant
on this computer.

The output from Example 2.3 shows that on this computer (a Pentium II PC running the Win-
dows 98 operating system and the CodeWarrior 3.2 C++ compiler), the six integer types have the
following ranges:

short: –32,768 to 32,767; (28 values� 1 byte)
int: –2,147,483,648 to 2,147,483,647; (232 values� 4 bytes)
long: –2,147,483,648 to 2,147,483,647; (232 values� 4 bytes)
unsigned short: 0 to 65,535; (28 values� 1 byte)
unsigned int: 0 to 4,294,967,295; (232 values� 4 bytes)
unsigned long: 0 to 4,294,967,295; (232 values� 4 bytes)

Note that long is the same as int and unsigned long is the same as unsigned int.
The unsigned integer types are used for bit strings. A bit string is a string of 0s and 1s as is

stored in the computer’s random access memory (RAM) or on disk. Of course, everything stored
in a computer, in RAM or on disk, is stored as 0s and 1s. But all other types of data are format-
ted; i.e., interpreted as something such as a signed integer or a string of characters.

minimum short = -32768
maximum short = 32767
maximum unsigned short = 0
maximum unsigned short = 65535
minimum int = -2147483648
maximum int = 2147483647
minimum unsigned int= 0
maximum unsigned int= 4294967295
minimum long = -2147483648
maximum long = 2147483647
minimum unsigned long = 0
maximum unsigned long = 4294967295

CHAP. 2] FUNDAMENTAL TYPES 21

2.6 ARITHMETIC OPERATORS

Computers were invented to perform numerical calculations. Like most programming
languages, C++ performs its numerical calculations by means of the five arithmetic operators +,
–, *, /, and %.

EXAMPLE 2.4 Integer Arithmetic

This example illustrates how the arithmetic operators work.
int main()
{ // tests operators +, -, *, /, and %:

int m=54;
int n=20;
cout << "m = " << m << " and n = " << n << endl;
cout << "m+n = " << m+n << endl; // 54+20 = 74
cout << "m-n = " << m-n << endl; // 54-20 = 34
cout << "m*n = " << m*n << endl; // 54*20 = 1080
cout << "m/n = " << m/n << endl; // 54/20 = 2
cout << "m%n = " << m%n << endl; // 54%20 = 14

}

Note that integer division results in another integer: 54/20 = 2, not 2.7.

The last two operators used in Example 2.4 are the division operator / and the modulus oper-
ator % (also called the remainder operator). The modulus operator results in the remainder from
the division. Thus, 54%20 = 14 because 14 is the remainder after 54 is divided by 20.

2.7 THE INCREMENT AND DECREMENT OPERATORS

The values of integral objects can be incremented and decremented with the ++ and --

operators, respectively. Each of these operators has two versions: a “pre” version and a “post”
version. The “pre” version performs the operation (either adding 1 or subtracting 1) on the object
before the resulting value is used in its surrounding context. The “post” version performs the
operation after the object’s current value has been used.

EXAMPLE 2.5 Applying the Pre-increment and Post-increment Operators

int main()
{ // shows the difference between m++ and ++m:

int m, n;
m = 44;
n = ++m; // the pre-increment operator is applied to m
cout << "m = " << m << ", n = " << n << endl;

m = 54 and n = 20
m+n = 74
m-n = 34
m*n = 1080
m/n = 2
m%n = 14

22 FUNDAMENTAL TYPES [CHAP. 2

m = 44;

n = m++; // the post-increment operator is applied to m

cout << "m = " << m << ", n = " << n << endl;

}

The line

n = ++m; // the pre-increment operator is applied to m

increments m to 45 and then assigns that value to n. So both variables have the same value 45 when the
next output line executes.

The line

n = m++; // the post-increment operator is applied to m

increments m to 45 only after it has assigned the value of m to n. So n has the value 44 when the next out-
put line executes.

2.8 COMPOSITE ASSIGNMENT OPERATORS

The standard assignment operator in C++ is the equals sign =. In addition to this operator,
C++ also includes the following composite assignment operators: +=, -=, *=, /=, and %=.
When applied to a variable on the left, each applies the indicated arithmetic operation to it using
the value of the expression on the right.

EXAMPLE 2.6 Applying Composite Arithmetic Assignment Operators

int main()

{ // tests arithmetic assignment operators:

int n=22;

cout << "n = " << n << endl;

n += 9; // adds 9 to n

cout << "After n += 9, n = " << n << endl;

n -= 5; // subtracts 5 from n

cout << "After n -= 5, n = " << n << endl;

n *= 2; // multiplies n by 3

cout << "After n *= 2, n = " << n << endl;

n /= 3; // divides n by 9

cout << "After n /= 3, n = " << n << endl;

n %= 7; // reduces n to the remainder from dividing by 4

cout << "After n %= 7, n = " << n << endl;

}

m = 45, n = 45
m = 45, n = 44

n = 22
After n += 9, n = 31
After n -= 5, n = 26
After n *= 2, n = 52
After n /= 3, n = 17
After n %= 7, n = 3

CHAP. 2] FUNDAMENTAL TYPES 23

2.9 FLOATING-POINT TYPES

C++ supports three real number types: float, double, and long double. On most systems,
double uses twice as many bytes as float. Typically, float uses 4 bytes, double uses 8 bytes,
and long double uses 8, 10, 12, or 16 bytes.

Types that are used for real numbers are called “floating-point” types because of the way they
are stored internally in the computer. On most systems, a number like 123.45 is first converted to
binary form:

123.45 = 1111011.011100112 × 27

Then the point is “floated” so that all the bits are on its right. In this example, the floating-point
form is obtained by floating the point 7 bits to the left, producing a mantissa 27 times smaller. So
the original number is

123.45 = 0.1111011011100112 × 27

This number would be represented internally by storing the mantissa 111101101110011 and the
exponent 7 separately. For a 32-bit float type, the mantissa is stored in a 23-bit segment and the
exponent in an 8-bit segment, leaving 1 bit for the sign of the number. For a 64-bit double type,
the mantissa is stored in a 52-bit segment and the exponent in an 11-bit segment.

EXAMPLE 2.7 Floating-Point Arithmetic

This program is nearly the same as the one in Example 2.4. The important difference is that these
variables are declared to have the floating-point type double instead of the integer type int.

int main()
{ // tests the floating-point operators +, -, *, and /:

double x=54.0;
double y=20.0;
cout << "x = " << x << " and y = " << y << endl;
cout << "x+y = " << x+y << endl; // 54.0+20.0 = 74.0
cout << "x-y = " << x-y << endl; // 54.0-20.0 = 34.0
cout << "x*y = " << x*y << endl; // 54.0*20.0 = 1080.0
cout << "x/y = " << x/y << endl; // 54.0/20.0 = 2.7

}

Unlike integer division, floating-point division does not truncate the result: 54.0/20.0 = 2.7.

The next example can be used on any computer to determine how many bytes it uses for each
type. The program uses the sizeof operator which returns the size in bytes of the type specified.

EXAMPLE 2.8 Using the sizeof Operator

This program tells you how much space each of the 12 fundamental types uses:
int main()
{ // prints the storage sizes of the fundamental types:

cout << "Number of bytes used:\n";

x = 55 and y = 20
x+y = 75
x-y = 35
x*y = 1100
x/y = 2.7

24 FUNDAMENTAL TYPES [CHAP. 2

cout << "\t char: " << sizeof(char) << endl;
cout << "\t short: " << sizeof(short) << endl;
cout << "\t int: " << sizeof(int) << endl;
cout << "\t long: " << sizeof(long) << endl;
cout << "\t unsigned char: " << sizeof(unsigned char) << endl;
cout << "\tunsigned short: " << sizeof(unsigned short) << endl;
cout << "\t unsigned int: " << sizeof(unsigned int) << endl;
cout << "\t unsigned long: " << sizeof(unsigned long) << endl;
cout << "\t signed char: " << sizeof(signed char) << endl;
cout << "\t float: " << sizeof(float) << endl;
cout << "\t double: " << sizeof(double) << endl;
cout << "\t long double: " << sizeof(long double) << endl;

}

The output below shows the sizes for a typical UNIX workstation. On this machine, int and long are
equivalent, unsigned int and unsigned long are equivalent, and double and long double are
equivalent. In other words, ‘long’ is no different from ‘regular’ on this computer.

The next program can be used to investigate floating-point types on any computer system. It
reads the values of various constants from the <cfloat> header file. To access it, the program
must include the preprocessor directive:

#include <cfloat>

This is like the #include <iostream> directive that we always include in order to use the
cin and cout objects.

EXAMPLE 2.9 Reading from the <cfloat> Header File

This program tells you the precision and magnitude range that the float type has on your system:
#include <cfloat> // defines the FLT constants
#include <iostream> // defines the FLT constants
using namespace std;
int main()
{ // prints the storage sizes of the fundamental types:

int fbits = 8*sizeof(float); // each byte contains 8 bits
cout << "float uses " << fbits << " bits:\n\t"

<< FLT_MANT_DIG - 1 << " bits for its mantissa,\n\t "
<< fbits - FLT_MANT_DIG << " bits for its exponent,\n\t "
<< 1 << " bit for its sign\n"
<< " to obtain: " << FLT_DIG << " sig. digits\n"

Number of bytes used:
char: 1

short: 2
int: 4

long: 4
unsigned char: 1

unsigned short: 2
unsigned int: 4

unsigned long: 4
signed char: 1

float: 4
double: 8

long double: 8

CHAP. 2] FUNDAMENTAL TYPES 25

<< " with minimum value: " << FLT_MIN << endl
<< " and maximum value: " << FLT_MAX << endl;

}

The constants FLT_MANT_DIG, FLT_DIG, FLT_MIN, and FLT_MAX are defined in the <cfloat>
header file.

This output is from a UNIX workstation. It shows that the 32 bits it uses to store a float are
partitioned into 3 parts: 23 bits for the mantissa, 8 bits for the exponent, and 1 bit for the sign. The 23-bit
mantissa produces a floating-point value with 6 significant digits, and the 8-bit exponent yields a range in
magnitude from about 10–37 to about 3 × 1038. i.e.,

0.0000000000000000000000000000000000001 < |x | < 300,000,000,000,000,000,000,000,000,000,000,000,000
for any variable x declared to have type float.

All floating-point arithmetic is done in double precision. So the only time you should use
float instead of double is when you are storing large quantities of real numbers and are con-
cerned about storage space or access time.

2.10 TYPE CONVERSIONS

We saw in Chapter 1 how one integer type can be converted automatically to another. C++
also converts integral types into floating point types when they are expected. For example,

int n = 22;
float x = 3.14159;
x += n; // the value 22 is automatically converted to 22.0
cout << x - 2 << endl; // value 2 is automatically converted to 2.0

Converting from integer to float like this is what one would expect and is usually taken for
granted. But converting from a floating point type to an integral type is not automatic.

In general, if T is one type and v is a value of another type, then the expression
T(v)

converts v to type T. This is called type casting. For example, if expr is a floating-point
expression and n is a variable of type int, then

n = int(expr);

converts the value of expr to type int and assigns it to n. The effect is to remove the real
number’s fractional part, leaving only its whole number part to be assigned to n. For example,
2.71828 would be converted to 2. Note that this is truncating, not rounding.

EXAMPLE 2.10 Simple Type Casting

This program casts a double value into int value:
int main()
{ // casts a double value as an int:

double v = 1234.56789;
int n = int(v);

float uses 32 bits:
23 bits for its mantissa,
8 bits for its exponent,
1 bit for its sign
to obtain: 6 sig. digits

with minimum value: 1.17549e-38
and maximum value: 3.40282e+38

26 FUNDAMENTAL TYPES [CHAP. 2

cout << "v = " << v << ", n = " << n << endl;
}

The double value 1234.56789 is converted to the int value 1234.

When one type is to be converted to a “higher” type, the type case operator is not needed. This
is called type promotion. Here’s a simple example of promotion from char all the way up to
double:

EXAMPLE 2.11 Promotion of Types

This program promotes a char to a short to an int to a float to a double:
int main()
{ // prints promoted vales of 65 from char to double:

char c='A'; cout << " char c = " << c << endl;
short k=c; cout << " short k = " << k << endl;
int m=k; cout << " int m = " << m << endl;
long n=m; cout << " long n = " << n << endl;
float x=m; cout << " float x = " << x << endl;
double y=x; cout << "double y = " << y << endl;

}

The integer value of the character 'A' is its ASCII code 65. This value is converted as a char in c, a
short in k, an int in m, and a long in n. The value is then converted to the floating point value 65.0
and stored as a float in x and as a double in y. Notice that cout prints the integer c as a character, and
that it prints the real numbers x and y as integers because their fractional parts are 0.

Because it is so easy to convert between integer types and real types in C++, it is easy to forget
the distinction between them. In general, integers are used for counting discrete things, while
reals are used for measuring on a continuous scale. This means that integer values are exact,
while real values are approximate.

Note that type casting and promotion convert the type of the value of a variable or expression,
but it does not change the type of the variable itself.

In the C programming language, the syntax for casting v as type T is (T) v. C++ inherits
this form also, so we could have done n = int(v) as n = (int) v.

2.11 NUMERIC OVERFLOW

On most computers the long int type allows 4,294,967,296 different values. That’s a lot of
values, but it’s still finite. Computers are finite, so the range of any type must also be finite. But
in mathematics there are infinitely many integers. Consequently, computers are manifestly prone
to error when their numeric values become too large. That kind of error is called numeric
overflow.

v = 1234.57, n = 1234

char c = A
short k = 65

int m = 65
long n = 65

float x = 65
double y = 65

CHAP. 2] FUNDAMENTAL TYPES 27

EXAMPLE 2.12 Integer Overflow

This program repeatedly multiplies n by 1000 until it overflows.
int main()
{ // prints n until it overflows:

int n=1000;
cout << "n = " << n << endl;
n *= 1000; // multiplies n by 1000
cout << "n = " << n << endl;
n *= 1000; // multiplies n by 1000
cout << "n = " << n << endl;
n *= 1000; // multiplies n by 1000
cout << "n = " << n << endl;

}

This shows that the computer that ran this program cannot multiply 1,000,000,000 by 1000 correctly.

EXAMPLE 2.13 Floating-point Overflow

This program is similar to the one in Example 2.12. It repeatedly squares x until it overflows.
int main()
{ // prints x until it overflows:

float x=1000.0;
cout << "x = " << x << endl;
x *= x; // multiplies n by itself; i.e., it squares x
cout << "x = " << x << endl;
x *= x; // multiplies n by itself; i.e., it squares x
cout << "x = " << x << endl;
x *= x; // multiplies n by itself; i.e., it squares x
cout << "x = " << x << endl;
x *= x; // multiplies n by itself; i.e., it squares x
cout << "x = " << x << endl;

}

This shows that, starting with x = 1000, this computer cannot square x correctly more than three times.
The last output is the special symbol inf which stands for “infinity.”

Note the difference between integer overflow and floating-point overflow. The last output in
Example 2.12 is the negative integer –727,379,968 instead of the correct value of
1,000,000,000,000 = 1012. The last output in Example 2.13 is the infinity symbol inf instead of
the correct value of 1048. Integer overflow “wraps around” to negative integers. Floating-point
overflow “sinks” into the abstract notion of infinity.

n = 1000
n = 1000000
n = 1000000000
n = -727379968

x = 1000
x = 1e+06
x = 1e+12
x = 1e+24
x = inf

28 FUNDAMENTAL TYPES [CHAP. 2

2.12 ROUND-OFF ERROR

Round-off error is another kind of error that often occurs when computers do arithmetic on
rational numbers. For example, the number 1/3 might be stored as 0.333333, which is not exactly
equal to 1/3. The difference is called round-off error. In some cases, these errors can cause
serious problems.

EXAMPLE 2.14 Round-off Error

This program does some simple arithmetic to illustrate roundoff error:
int main()
{ // illustrates round-off error::

double x = 1000/3.0;cout << "x = " << x << endl; // x = 1000/3
double y = x - 333.0;cout << "y = " << y << endl; // y = 1/3
double z = 3*y - 1.0;cout << "z = " << z << endl; // z = 3(1/3) - 1
if (z == 0) cout << "z == 0.\n";
else cout << "z does not equal 0.\n"; // z != 0

}

In exact arithmetic, the variables would have the values x = 333 1/3, y = 1/3, and z = 0. But 1/3 cannot
be represented exactly as a floating-point value. The inaccuracy is reflected in the residue value for z.

Example 2.14 illustrates an inherent problem with using floating-point types within condi-
tional tests of equality. The test (z == 0) will fail even if z is very nearly zero, which is likely
to happen when z should algebraically be zero. So it is better to avoid tests for equality with
floating-point types.

The next example shows that round-off error can be difficult to recognize.

EXAMPLE 2.15 Hidden Round-off Error

This program implements the quadratic formula to solve quadratic equations.
#include <cmath> // defines the sqrt() function
#include <iostream>
using namespace std;
int main()
{ // implements the quadratic formula

float a, b, c;
cout << "Enter the coefficients of a quadratic equation:" << endl;
cout << "\ta: ";
cin >> a;
cout << "\tb: ";
cin >> b;
cout << "\tc: ";
cin >> c;
cout << "The equation is: " << a << "*x*x + " << b

<< "*x + " << c << " = 0" << endl;

x = 333.333
y = 0.333333
z = -5.68434e-14
z does not equal 0.

CHAP. 2] FUNDAMENTAL TYPES 29

float d = b*b - 4*a*c; // discriminant
float sqrtd = sqrt(d);
float x1 = (-b + sqrtd)/(2*a);
float x2 = (-b - sqrtd)/(2*a);
cout << "The solutions are:" << endl;
cout << "\tx1 = " << x1 << endl;
cout << "\tx2 = " << x2 << endl;
cout << "Check:" << endl;
cout << "\ta*x1*x1 + b*x1 + c = " << a*x1*x1 + b*x1 + c << endl;
cout << "\ta*x2*x2 + b*x2 + c = " << a*x2*x2 + b*x2 + c << endl;

}
The quadratic formula requires computing the square root . This is done on the line

float sqrtd = sqrt(d);
which calls the square root function sqrt() defined in the header file <cmath>. The last two lines of
the program check the solutions by substituting them back into the original quadratic equation. If the
resulting expression on the left evaluates to 0 then the solutions are correct.

This run solves the equation 2x2 + 1x – 3 = 0 correctly:

But this run attempts to solve the equation x2 + 10000000000x + 1 = 0 and fails:

The first solution, x1 = 0, is obviously incorrect: the resulting quadratic expression ax1
2 + bx1 + c evaluates

to 1 instread of 0. The second solution, x2 = –1e10 = –10,000,000,000 is even worse. The correct solutions
are x1 = –0.00000 00000 99999 99999 99999 99519 and x2 = 9,999,999,999.99999 99999.

Numeric overflow and round-off errors are examples of run-time errors, which are errors that
occur while the program is running. Such errors are more serious than compile-time errors such
as neglecting to declare a variable or forgetting a semicolon because they are usually harder to
detect and locate. Compile-time errors are caught by the compiler, which usually gives a pretty
good report on where they are. But run-time errors are detected only when the user notices that
the results are incorrect. Even if the program crashes, it still may be difficult to find where the
problem is in the program.

b2 4ac–

Enter the coefficients of a quadratic equation:
a: 2
b: 1
c: -3

The equation is: 2*x*x + 1*x + -3 = 0
The solutions are:

x1 = 1
x2 = -1.5

Check:
a*x1*x1 + b*x1 + c = 0
a*x2*x2 + b*x2 + c = 0

Enter the coefficients of a quadratic equation:
a: 1
b: 1e10
c: 1

The equation is: 1*x*x + 1e10*x + 1 = 0
The solutions are:

x1 = 0
x2 = -1e10

Check:
a*x1*x1 + b*x1 + c = 1
a*x2*x2 + b*x2 + c = 1

30 FUNDAMENTAL TYPES [CHAP. 2

EXAMPLE 2.16 Other Kinds of Run-Time Errors

Here are two more runs of the quadratic formula program in Example 2.15:

The quadratic equation 1x2 + 2x + 3 = 0 has no real solution because the discriminant b2 – 4ac is negative.
When the program runs, the square root function sqrt(d) fails because d < 0. It returns the symbolic
constant nan which stands for “not a number.” Then every subsequent numeric operation that uses this
constant results in the same value. That’s why the check values come out as nan at the end of the run.

This run attempts to solve the equation 0x2 + 2x + 5 = 0. That equation has the solution x = 2.5. But the
quadratic formula fails because a = 0:

Notice that x1 comes out as nan, but x2 comes out as -inf. The symbol inf stands for “infinity.”
That’s what you get when you divide a nonzero number by zero. The quadratic formula computes x2 as

which becomes -inf. But it computes x1 as

which becomes nan.

The three symbols inf, -inf, and nan are numeric constants. The usual numeric operators
can be applied to them, although the results are usually useless. For example, you can multiply
nan by any number, but the result will still be nan.

2.13 THE E-FORMAT FOR FLOATING-POINT VALUES

When input or output, floating-point values may be specified in either of two formats: fixed-
point and scientific. The output in Example 2.16 illustrates both: 333.333 has fixed-point
format, and -5.68434e–14 has scientific format.

Enter the coefficients of a quadratic equation:
a: 1
b: 2
c: 3

The equation is: 1*x*x + 2*x + 3 = 0
The solutions are:

x1 = nan
x2 = nan

Check:
a*x1*x1 + b*x1 + c = nan
a*x2*x2 + b*x2 + c = nan

Enter the coefficients of a quadratic equation:
a: 0
b: 2
c: 5

The equation is: 0*x*x + 2*x + 5 = 0
The solutions are:

x1 = nan
x2 = -inf

Check:
a*x1*x1 + b*x1 + c = nan
a*x2*x2 + b*x2 + c = nan

x2
b– b2 4ac––

2a
-------------------------------------- 2()– 2()2

4 0() 5()––
2 0()

-- 2– 2–

0
--------------- 4–

0
------= = = =

x1
b– b2 4ac–+

2a
------------------------------------- 2()– 2()2 4 0() 5()–+

2 0()
--- 2– 2+

0
--------------- 0

0
---= = = =

CHAP. 2] FUNDAMENTAL TYPES 31

In scientific format, the letter e stands for “exponent on 10.” So e-14 means 10–14, and thus
-5.68434e-14 means –5.68434 × 10–14 = –0.0000000000000568434. Obviously, the scientific
format is more efficient for very small or very large numbers.

Floating-point values with magnitude in the range 0.1 to 999,999 will normally be printed in
fixed-point format; all others will be printed in scientific format.

EXAMPLE 2.17 Scientific Format

This program shows how floating-point values may be input in scientific format:
int main()

{ // prints double values in scientific e-format:

double x;

cout << "Enter float: "; cin >> x;

cout << "Its reciprocal is: " << 1/x << endl;

}

You can use either e or E in the scientific format.

2.14 SCOPE

The scope of an identifier is that part of the program where it can be used. For example,
variables cannot be used before they are declared, so their scopes begin where they are declared.
This is illustrated by the next example.

EXAMPLE 2.18 Scope of Variables

int main()

{ // illustrates the scope of variables:

x = 11; // ERROR: this is not in the scope of x

int x;

{ x = 22; // OK: this is in the scope of x

y = 33; // ERROR: this is not in the scope of y

int y;

x = 44; // OK: this is in the scope of x

y = 55; // OK: this is in the scope of y

}

x = 66; // OK: this is in the scope of x

y = 77; // ERROR: this is not in the scope of y

}

The scope of x extends from the point where it is declared to the end of main(). The scope of y
extends from the point where it is declared to the end of the internal block within which it is declared.

A program may have several objects with the same name as long as their scopes are nested or
disjoint. This is illustrated by the next example.

Enter float: 234.567e89
Its reciprocal is: 4.26317e-92

32 FUNDAMENTAL TYPES [CHAP. 2

EXAMPLE 2.19 Nested and Parallel Scopes

int x = 11; // this x is global

int main()

{ // illustrates the nested and parallel scopes:

int x = 22;

{ // begin scope of internal block

int x = 33;

cout << "In block inside main(): x = " << x << endl;

} // end scope of internal block

cout << "In main(): x = " << x << endl;

cout << "In main(): ::x = " << ::x << endl;

} // end scope of main()

There are three different objects named x in this program. The x that is initialized with the value 11 is
a global variable, so its scope extends throughout the file. The x that is initialized with the value 22 has
scope limited to main(). Since this is nested within the scope of the first x, it hides the first x within
main(). The x that is initialized with the value 33 has scope limited to the internal block within
main(), so it hides both the first and the second x within that block.

The last line in the program uses the scope resolution operator :: to access the global x that is
otherwise hidden in main().

Review Questions

2.1 Write a single C++ statement that prints "Too many" if the variable count exceeds 100.
2.2 What is wrong with the following code:

a. cin << count;

b. if x < y min = x

else min = y;

2.3 What is wrong with this code:
cout << "Enter n: ";
cin >> n;
if (n < 0)

cout << "That is negative. Try again." << endl;
cin >> n;

else
cout << "o.k. n = " << n << endl;

2.4 What is the difference between a reserved word and a standard identifier?
2.5 What is wrong with this code:

enum Semester {FALL, SPRING, SUMMER};

enum Season {SPRING, SUMMER, FALL, WINTER};

2.6 What is wrong with this code:
enum Friends {"Jerry", "Henry", "W.D."};

In block inside main(): x = 33
In main(): x = 22
In main(): ::x = 11

CHAP. 2] FUNDAMENTAL TYPES 33

Problems

2.1 Write and run a program like the one in Example 2.2 on page 19 that prints the ASCII codes
for only the 10 upper case and lower case vowels. Use Appendix A to check your output.

2.2 Modify the program in Example 2.15 on page 28 so that it uses type double instead of
float. Then see how much better it performs on the input that illustrated round-off error.

2.3 Write and run a program to find which, if any, arithmetic operations can be applied to a vari-
able that will change its value from any of the three numeric constants inf, -inf, and nan
to something else.

2.4 Write a program that converts inches to centimeters. For example, if the user enters 16.9 for a
length in inches, the output would be 42.926 cm. (One inch equals 2.54 centimeters.)

Answers to Review Questions

2.1 if (count > 100) cout << "Too many";
2.2 a. Either cout should be used in place of cin, or the extraction operator >> should be used in

place of the insertion operator <<.
b. Parentheses are required around the condition x < y, and a semicolon is required at the end of the

if clause before the else.
2.3 There is more than one statement between the if clause and the else clause. They need to be

made into a compound statement by enclosing them in braces { }.
2.4 A reserved word is a keyword in a programming language that serves to mark the structure of a state-

ment. For example, the keywords if and else are reserved words. A standard identifier is a key-
word that defines a type. Among the 63 keywords in C++, if, else, and while are some of the
reserved words, and char, int, and float are some of the standard identifiers.

2.5 The second enum definition attempts to redefine the constants SPRING, SUMMER, and FALL.
2.6 Enumerators must be valid identifiers. String literals like "Jerry" and "Henry" are not identifiers.

Solutions to Problems

2.1 int main()
{ // prints the ASCII codes of the vowels

cout << "int('A') = " << int('A') << endl;
cout << "int('E') = " << int('E') << endl;
cout << "int('I') = " << int('I') << endl;
cout << "int('O') = " << int('O') << endl;
cout << "int('U') = " << int('U') << endl;
cout << "int('a') = " << int('a') << endl;
cout << "int('e') = " << int('e') << endl;
cout << "int('i') = " << int('i') << endl;
cout << "int('o') = " << int('o') << endl;
cout << "int('u') = " << int('u') << endl;

}

int('A') = 65
int('E') = 69
int('I') = 73
int('O') = 79
int('U') = 85

34 FUNDAMENTAL TYPES [CHAP. 2

2.2 int main()
{ // implements the quadratic formula

double a, b, c;
cout << "Enter the coefficients:" << endl;
cout << "\ta: ";
cin >> a;
cout << "\tb: ";
cin >> b;
cout << "\tc: ";
cin >> c;
cout << "The equation is: " << a << "*x*x + " << b

<< "*x + " << c << " = 0" << endl;
double d = b*b - 4*a*c;
double sqrtd = sqrt(d);
double x1 = (-b + sqrtd)/(2*a);
double x2 = (-b - sqrtd)/(2*a);
cout << "The solutions are:" << endl;
cout << "\tx1 = " << x1 << endl;
cout << "\tx2 = " << x2 << endl;
cout << "Check:" << endl;
cout << "\ta*x1*x1 + b*x1 + c = " << a*x1*x1 + b*x1 + c << endl;
cout << "\ta*x2*x2 + b*x2 + c = " << a*x2*x2 + b*x2 + c << endl;

}

2.3 The following program changes the value of x from inf to -inf and vice versa. But no arithmetic
operation will change the value of a variable once it becomes nan.

int main()
{ // changes the value of x after it becomes inf:

float x=1e30;
cout << "x= " << x << endl;
x *= x;
cout << "x= " << x << endl;
x *= -1.0;
cout << "x= " << x << endl;
x *= -1.0;
cout << "x= " << x << endl;

}

int('a') = 97
int('e') = 101
int('i') = 105
int('o') = 111
int('u') = 117

Enter the coefficients of a quadratic equation:
a: 2
b: 8.001
c: 8.002

The equation is: 2*x*x + 8.001*x + 8.002 = 0
The solutions are:

x1 = -2
x2 = -2.0005

Check:
a*x1*x1 + b*x1 + c = 0
a*x2*x2 + b*x2 + c = 0

CHAP. 2] FUNDAMENTAL TYPES 35

2.4 We use two variables of type float
int main()
{ // converts inches to centimeters:

float inches, cm;
cout << "Enter length in inches: ";
cin >> inches;
cm = 2.54*inches;
cout << inches << " inches = " << cm << " centimeters.\n";

}

x= 1e+30
x= inf
x= -inf
x= inf

Enter length in inches: 16.9
16.9 inches = 42.926 centimeters.

36

Chapter 3

Selection

The programs in the first two chapters all have sequential execution: each statement in the
program executes once, and they are executed in the same order that they are listed. This chapter
shows how to use selection statements for more flexible programs. It also describes the various
integral types that are available in C++.

3.1 THE if STATEMENT

The if statement allows conditional execution. Its syntax is
if (condition) statement;

where condition is an integral expression and statement is any executable statement. The
statement will be executed only if the value of the integral expression is nonzero. Notice the
required parentheses around the condition.

EXAMPLE 3.1 Testing for Divisibility

This program tests if one positive integer is not divisible by another:
int main()
{ int n, d;

cout << "Enter two positive integers: ";
cin >> n >> d;
if (n%d) cout << n << " is not divisible by " << d << endl;

}
On the first run, we enter 66 and 7:

The value 66%7 is computed to be 3. Since that integral value is not zero, the expression is interpreted as
a true condition and consequently the divisibility message is printed.

On the second run, we enter 56 and 7:

The value 56%7 is computed to be 0, which is interpreted to mean “false,” so the divisibility message is
not printed.

In C++, whenever an integral expression is used as a condition, the value 0 means “false” and
all other values mean “true.”

The program in Example 3.1 is inadequate because it provides no affirmative information
when n is divisible by d. That fault can be remedied with an if..else statement.

3.2 THE if..else STATEMENT

The if..else statement causes one of two alternative statements to execute depending upon
whether the condition is true. Its syntax is

Enter two positive integers: 66 7
66 is not divisible by 7

Enter two positive integers: 56 7

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

CHAP. 3] SELECTION 37

if (condition) statement1;
else statement2;

where condition is an integral expression and statement1 and statement2 are executable
statements. If the value of the condition is nonzero then statement1 will execute; otherwise
statement2 will execute.

EXAMPLE 3.2 Testing for Divisibility Again

This program is the same as the program in Example 3.1 except that the if statement has been replaced
by an if..else statement:

int main()
{ int n, d;

cout << "Enter two positive integers: ";
cin >> n >> d;
if (n%d) cout << n << " is not divisible by " << d << endl;
else cout << n << " is divisible by " << d << endl;

}
Now when we enter 56 and 7, we get an affirmative response:

Since 56%7 is zero, the expression is interpreted as being a false condition and consequently the statement
after the else is executed.

Note that the if..else is only one statement, even though it requires two semicolons.

3.3 KEYWORDS

A keyword in a programming language is a word that is already defined and is reserved for a
unique purpose in programs written in that language. Standard C++ now has 74 keywords:

and and_eq asm auto bitand

bitor bool break case catch

char class compl const const_cast

continue default delete do double

dynamic_cast else enum explicit export

extern dfalse float for friend

goto if inline int long

mutable namespace new not not_eq

operator or or_eq private protected

public register reinterpret_cast return short

signed sizeof static static_cast struct

switch template this throw true

try typedef typeid typename using

union unsigned virtual void volatile

wchar_t while xor xor_eq

Enter two positive integers: 56 7
56 is divisible by 7

38 SELECTION [CHAP. 3

Keywords like if and else are found in nearly every programming language. Other
keywords such as dynamic_cast are unique to C++. The 74 keywords of C++ include all 32 of
the keywords of the C language.

There are two kinds of keywords: reserved words and standard identifiers. A reserved word is
a keyword that serves as a structure marker, used to define the syntax of the language. The
keywords if and else are reserved words. A standard identifier is a keyword that names a
specific element of the language. The keywords bool and int are standard identifiers because
they are names of standard types in C++.

See Appendix B for more information on the C++ keywords.

3.4 COMPARISON OPERATORS

The six comparison operators are
x < y // x is less than y
x > y // x is greater than y
x <= y // x is less than or equal to y
x >= y // x is greater than or equal to y
x == y // x is equal to y
x != y // x is not equal to y

These can be used to compare the values of expressions of any ordinal type. The resulting
integral expression is interpreted as a condition that is either false or true according to whether
the value of the expression is zero. For example, the expression 7*8 < 6*9 evaluates to zero,
which means that the condition is false.

EXAMPLE 3.3 The Minimum of Two Integers

This program prints the minimum of the two integers entered:
int main()
{ int m, n;

cout << "Enter two integers: ";
cin >> m >> n;
if (m < n) cout << m << " is the minimum." << endl;
else cout << n << " is the minimum." << endl;

}

Note that in C++ the single equal sign “=” is the assignment operator, and the double equal
sign “==” is the equality operator:

x = 33; // assigns the value 33 to x
x == 33; // evaluates to 0 (for false) unless 33 is the value of x

This distinction is critically important.

EXAMPLE 3.4 A Common Programming Error

This program is erroneous:
int main()
{ int n;

cout << "Enter an integer: ";

Enter two integers: 77 55
55 is the minimum.

CHAP. 3] SELECTION 39

cin >> n;
if (n = 22) cout << n << " = 22" << endl; // LOGICAL ERROR!
else cout << n << " != 22" << endl;

}

The expression n = 22 assigns the value 22 to n, changing it from its previous value of 77. But the
expression n = 22 itself is an integral expression that evaluates to 22 after it executes. Thus the
condition (n = 22) is interpreted as being true, because only 0 yields false, so the statement before the
else executes. The line should have been written as

if (n == 22) cout << n << " = 22" << endl; // CORRECT

The error illustrated in Example 3.4 is called a logical error. This is the worst kind of error.
Compile-time errors (e.g., omitting a semicolon) are caught by the compiler. Run-time errors
(e.g., dividing by zero) are caught by the operating system. But no such help exists for catching
logical errors.

EXAMPLE 3.5 The Minimum of Three Integers

This program is similar to the one in Example 3.3 except that it applies to three integers:
int main()
{ int n1, n2, n3;

cout << "Enter three integers: ";
cin >> n1 >> n2 >> n3;
int min=n1; // now min <= n1
if (n2 < min) min = n2; // now min <= n1 and min <= n2
if (n3 < min) min = n3; // now min <= n1, min <= n2, and min <= n3
cout << "Their minimum is " << min << endl;

}

The three comments track the progress of the program: min is initialized to equal n1, so it is the
minimum of the set {n1}. After the first if statement executes, min is equal to either n1 or n2,
whichever is smaller, so it is the minimum of the set {n1, n2}. The last if statement changes the value of
min to n3 only if n3 is less than the current value of min which is the minimum of the set {n1, n2}. So
in either case, min becomes the minimum of the set {n1, n2, n3}.

3.5 STATEMENT BLOCKS

A statement block is a sequence of statements enclosed by braces { }, like this:
{ int temp=x; x = y; y = temp; }

In C++ programs, a statement block can be used anywhere that a single statement can be used.

EXAMPLE 3.6 A Statement Block within an if Statement

This program inputs two integers and then outputs them in increasing order:
int main()
{ int x, y;

cout << "Enter two integers: ";
cin >> x >> y;

Enter an integer: 77
22 = 22

Enter two integers: 77 33 55
Their minimum is 33

40 SELECTION [CHAP. 3

if (x > y) { int temp=x; x = y; y = temp; } // swap x and y
cout << x << " <= " << y << endl;

}

The three statements within the statement block sort the values of x and y into increasing order by
swapping them if they are out of order. Such an interchange requires three separate steps along with the
temporary storage location named temp here. The program either should execute all three statements or
it should execute none of them. That alternative is accomplished by combining the three statements into
the statement block.

Note that the variable temp is declared inside the block. That makes it local to the block; i.e., it only
exists during the execution of the block. If the condition is false (i.e., x ≤ y), then temp will never exist.
This illustrates the recommended practice of localizing objects so that they are created only when needed.

Note that a C++ program itself is a statement block preceded by int main().
Recall (Section 1.5 on page 5) that the scope of a variable is that part of a program where the

variable can be used. It extends from the point where the variable is declared to the end of the
block which that declaration controls. So a block can be used to limit the scope of a variable,
thereby allowing the same name to be used for different variables in different parts of a program.

EXAMPLE 3.7 Using Blocks to Limit Scope

This program uses the same name n for three different variables:
int main()
{ int n=44;

cout << "n = " << n << endl;
{ int n; // scope extends over 4 lines

cout << "Enter an integer: ";
cin >> n;
cout << "n = " << n << endl;

}
{ cout << "n = " << n << endl; // the n that was declared first
}
{ int n; // scope extends over 2 lines

cout << "n = " << n << endl;
}
cout << "n = " << n << endl; // the n that was declared first

}

This program has three internal blocks. The first block declares a new n which exists only within that
block and overrides the previous variable n. So the original n retains its value of 44 when this n is given
the input value 77. The second block does not redeclare n, so the scope of the original n includes this
block. Thus the third output is the original value 44. The third block is like the first block: it declares a
new n which overrides the original n. But this third block does not initialize its local n, so the fourth
output is a garbage value (4251897). Finally, since the scope of each redeclared n extends only to the
block where it is declared, the last line of the program is in the scope of the original n, so it prints 44.

Enter two integers: 66 44
44 <= 66

n = 44
Enter an integer: 77
n = 77
n = 44
n = 4251897
n = 44

CHAP. 3] SELECTION 41

3.6 COMPOUND CONDITIONS

Conditions such as n % d and x >= y can be combined to form compound conditions. This is
done using the logical operators && (and), || (or), and ! (not). They are defined by

p && q evaluates to true if and only if both p and q evaluate to true
p || q evaluates to false if and only if both p and q evaluate to false
!p evaluates to true if and only if p evaluates to false

For example, (n % d || x >= y) will be false if and only if n % d is zero and x is less than y.
The definitions of the three logical operators are usually given by the truth tables below.

These show, for example, that if p is true and q is false, then the expression p && q will be false
and the expression p || q will be true.

The next example solves the same problem that Example 3.5 on page 39 solved, except that it
uses compound conditions.

EXAMPLE 3.8 Using Compound Conditions

This program has the same effect as the one in Example 3.5 on page 39. This version uses compound
conditions to find the minimum of three integers:

int main()
{ int n1, n2, n3;

cout << "Enter three integers: ";
cin >> n1 >> n2 >> n3;
if (n1 <= n2 && n1 <= n3) cout << "Their minimum is " << n1 <<endl;
if (n2 <= n1 && n2 <= n3) cout << "Their minimum is " << n2 <<endl;
if (n3 <= n1 && n3 <= n2) cout << "Their minimum is " << n3 <<endl;

}

Note that Example 3.8 is no improvement over Example 3.5. Its purpose was simply to illus-
trate the use of compound conditions.

Here is another example using a compound condition:

EXAMPLE 3.9 User-Friendly Input

This program allows the user to input either a “Y” or a “y” for “yes”:
int main()
{ char ans;

cout << "Are you enrolled (y/n): ";
cin >> ans;
if (ans == 'Y' || ans == 'y') cout << "You are enrolled.\n";
else cout << "You are not enrolled.\n";

}

p q p && q
T T T
T F F
F T F
F F F

p q p || q
T T T
T F T
F T T
F F F

p !p
T F
F T

Enter two integers: 77 33 55
Their minimum is 33

42 SELECTION [CHAP. 3

It prompts the user for an answer, suggesting a response of either y or n. But then it accepts any charac-
ter and concludes that the user meant “no” unless either a Y or a y is input.

3.7 SHORT-CIRCUITING

Compound conditions that use && and || will not even evaluate the second operand of the
condition unless necessary. This is called short-circuiting. As the truth tables show, the condition
p && q will be false if p is false. In that case there is no need to evaluate q. Similarly if p is true
then there is no need to evaluate q to determine that p || q is true. In both cases the value of
the condition is known as soon as the first operand is evaluated.

EXAMPLE 3.10 Short-Circuiting

This program tests integer divisibility:
int main()
{ int n, d;

cout << "Enter two positive integers: ";
cin >> n >> d;
if (d != 0 && n%d == 0) cout << d << " divides " << n << endl;
else cout << d << " does not divide " << n << endl;

}
In this run,d is positive and n%d is zero, so the compound condition is true:

In this run, d is positive but n%d is not zero, so the compound condition is false:

In this run,d is zero, so the compound condition is immediately determined to be false without evaluat-
ing the second expression “n%d == 0”:

This short-circuiting prevents the program from crashing because when d is zero the expression n%d
cannot be evaluated.

3.8 BOOLEAN EXPRESSIONS

A boolean expression is a condition that is either true or false. In the previous example the
expressions d > 0, n%d == 0, and (d > 0 && n%d == 0) are boolean expressions. As we
have seen, boolean expressions evaluate to integer values. The value 0 means “false” and every
nonzero value means “true.”

Since all nonzero integer values are interpreted as meaning “true,” boolean expressions are
often disguised. For example, the statement

if (n) cout << "n is not zero";

will print n is not zero precisely when n is not zero because that is when the boolean
expression (n) is interpreted as “true”. Here is a more realistic example:

Are you enrolled (y|n): N
You are not enrolled.

Enter two positive integers: 300 6
6 divides 300

Enter two positive integers: 300 7
7 does not divide 300

Enter two positive integers: 300 0
0 does not divide 300

CHAP. 3] SELECTION 43

if (n%d) cout << "n is not a multiple of d";
The output statement will execute precisely when n%d is not zero, and that happens precisely
when d does not divide n evenly, because n%d is the remainder from the integer division.

The fact that boolean expressions have integer values can lead to some surprising anomalies in
C++.

EXAMPLE 3.11 Another Logical Error

This program is erroneous:
int main()
{ int n1, n2, n3;

cout << "Enter three integers: ";
cin >> n1 >> n2 >> n3;
if (n1 >= n2 >= n3) cout << "max = x"; // LOGICAL ERROR!

}

The source of this error is the fact that boolean expressions have numeric values. Since the expression
(n1 >= n2 >= n3) is evaluated from left to right, the first part n1 >= n2 evaluates to “true” since
0 >= 0. But “true” is stored as the numeric value 1. That value is then compared to the value of n3 which
is also 1, so the complete expression evaluates to “true” even though it is really false! (0 is not the
maximum of 0, 0, and 1.)

The problem here is that the erroneous line is syntactically correct, so the compiler cannot catch the
error. Nor can the operating system. This is another logical error, comparable to that in the program in
Example 3.4 on page 38.

The moral from Example 3.11 is to remember that boolean expressions have numeric values,
so compound conditions can be tricky.

3.9 NESTED SELECTION STATEMENTS

Like compound statements, selection statements can be used wherever any other statement
can be used. So a selection statement can be used within another selection statement. This is
called nesting statements.

EXAMPLE 3.12 Nesting Selection Statements

This program has the same effect as the one in Example 3.10 on page 42:
int main()
{ int n, d;

cout << "Enter two positive integers: ";
cin >> n >> d;
if (d != 0)

if (n%d == 0) cout << d << " divides " << n << endl;
else cout << d << " does not divide " << n << endl;

else cout << d << " does not divide " << n << endl;
}

The second if..else statement is nested within the if clause of the first if..else statement. So
the second if..else statement will execute only when d is not zero.

Enter an integer: 0 0 1
max = 0

44 SELECTION [CHAP. 3

Note that the " does not divide " statement has to be used twice here. The first one, nested
within the if clause of the first if..else statement, executes when d is not zero and n%d is zero.
The second one executes when d is zero.

When if..else statements are nested, the compiler uses the following rule to parse the
compound statement:

Match each else with the last unmatched if.

Using this rule, the compiler can easily decipher code as inscrutable as this:
if (a > 0) if (b > 0) ++a; else if (c > 0) // BAD CODING STYLE
if (a < 4) ++b; else if (b < 4) ++c; else --a; // BAD CODING STYLE
else if (c < 4) --b; else --c; else a = 0; // BAD CODING STYLE

To make this readable for humans it should be written either like this:
if (a > 0)

if (b > 0) ++a;
else

if (c > 0)
if (a < 4) ++b;
else

if (b < 4) ++c;
else --a;

else
if (c < 4) --b;
else --c;

else a = 0;

or like this:
if (a > 0)

if (b > 0) ++a;
else if (c > 0)

if (a < 4) ++b;
else if (b < 4) ++c;
else --a;

else if (c < 4) --b;
else --c;

else a = 0;
This second rendering aligns the else if pairs when they form parallel alternatives. (See
Section 3.10 on page 46.)

EXAMPLE 3.13 Using Nested Selection Statements

This program has the same effect as those in Example 3.5 on page 39 and Example 3.8 on page 41.
This version uses nested if..else statements to find the minimum of three integers:

int main()
{ int n1, n2, n3;

cout << "Enter three integers: ";
cin >> n1 >> n2 >> n3;
if (n1 < n2)

if (n1 < n3) cout << "Their minimum is " << n1 << endl;
else cout << "Their minimum is " << n3 << endl;

else // n1 >= n2
if (n2 < n3) cout << "Their minimum is " << n2 << endl;

CHAP. 3] SELECTION 45

else cout << "Their minimum is " << n3 << endl;
}

In this run, the first condition (n1 < n2) is false, and the third condition (n2 < n3) is true, so it
reports that n2 is the minimum.

This program is more efficient than the one in Example 3.8 on page 41 because on any run it
will evaluate only two simple conditions instead of three compound conditions. Nevertheless, it
should be considered inferior because its logic is more complicated. In the trade-off between
efficiency and simplicity, it is usually best to choose simplicity.

EXAMPLE 3.14 A Guessing Game

This program finds a number that the user selects from 1 to 8:
int main()

{ cout << "Pick a number from 1 to 8." << endl;
char answer;
cout << "Is it less than 5? (y|n): "; cin >> answer;
if (answer == 'y') // 1 <= n <= 4
{ cout << "Is it less than 3? (y|n): "; cin >> answer;

if (answer == 'y') // 1 <= n <= 2
{ cout << "Is it less than 2? (y|n): "; cin >> answer;

if (answer == 'y') cout << "Your number is 1." << endl;

else cout << "Your number is 2." << endl;
}
else // 3 <= n <= 4
{ cout << "Is it less than 4? (y|n): "; cin >> answer;

if (answer == 'y') cout << "Your number is 3." << endl;
else cout << "Your number is 4." << endl;

}
}
else // 5 <= n <= 8

{ cout << "Is it less than 7? (y|n): "; cin >> answer;
if (answer == 'y') // 5 <= n <= 6
{ cout << "Is it less than 6? (y|n): "; cin >> answer;

if (answer == 'y') cout << "Your number is 5." << endl;
else cout << "Your number is 6." << endl;

}
else // 7 <= n <= 8
{ cout << "Is it less than 8? (y|n): "; cin >> answer;

if (answer == 'y') cout << "Your number is 7." << endl;

else cout << "Your number is 8." << endl;
}

}
}

By repeatedly subdividing the problem, it can discover any one of the 8 numbers by asking only three
questions. In this run, the user’s number is 6.

Enter three integers: 77 33 55
Their minimum is 33

46 SELECTION [CHAP. 3

The algorithm used in Example 3.14 is called the binary search. It can be implemented more
simply. (See Example 6.14 on page 135.)

3.10 THE else if CONSTRUCT

Nested if..else statements are often used to test a sequence of parallel alternatives, where
only the else clauses contain further nesting. In that case, the resulting compound statement is
usually formatted by lining up the else if phrases to emphasize the parallel nature of the
logic.

EXAMPLE 3.15 Using the else if Construct for Parallel Alternatives

This program requests the user’s language and then prints a greeting in that language:
int main()

{ char language;

cout << "Engl., Fren., Ger., Ital., or Rus.? (e|f|g|i|r): ";

cin >> language;

if (language == 'e') cout << "Welcome to ProjectEuclid.";

else if (language == 'f') cout << "Bon jour, ProjectEuclid.";

else if (language == 'g') cout << "Guten tag, ProjectEuclid.";

else if (language == 'i') cout << "Bon giorno, ProjectEuclid.";

else if (language == 'r') cout << "Dobre utre, ProjectEuclid.";

else cout << "Sorry; we don't speak your language.";

}

This program uses nested if..else statements to select from the five given alternatives.
As ordinary nested if..else statements, the code could also be formatted as

if (language == 'e') cout << "Welcome to ProjectEuclid.";

else

if (language == 'f') cout << "Bon jour, ProjectEuclid.";

else

if (language == 'g') cout << "Guten tag, ProjectEuclid.";

else

if (language == 'i') cout << "Bon giorno, ProjectEuclid.";

else

if (language == 'r') cout << "Dobre utre, ProjectEuclid.";

else cout << "Sorry; we don't speak your language.";

But the given format is preferred because it displays the parallel nature of the logic more clearly. It also
requires less indenting.

Pick a number from 1 to 8.
Is it less than 5? (y|n): n
Is it less than 7? (y|n): y
Is it less than 6? (y|n): n
Your number is 6.

Engl., Fren., Ger., Ital., or Rus.? (e|f|g|i|r): i
Bon giorno, ProjectEuclid.

CHAP. 3] SELECTION 47

EXAMPLE 3.16 Using the else if Construct to Select a Range of Scores

This program converts a test score into its equivalent letter grade:
int main()
{ int score;

cout << "Enter your test score: "; cin >> score;
if (score > 100) cout << "Error: that score is out of range.";
else if (score >= 90) cout << "Your grade is an A." << endl;
else if (score >= 80) cout << "Your grade is a B." << endl;
else if (score >= 70) cout << "Your grade is a C." << endl;
else if (score >= 60) cout << "Your grade is a D." << endl;
else if (score >= 0) cout << "Your grade is an F." << endl;
else cout << "Error: that score is out of range.";

}

The variable score is tested through a cascade of selection statements, continuing until either one of
the conditions is found to be true, or the last else is reached.

3.11 THE switch STATEMENT

The switch statement can be used instead of the else if construct to implement a
sequence of parallel alternatives. Its syntax is

switch (expression)
{ case constant1: statementList1;

case constant2: statementList2;
case constant3: statementList3;

:
:

case constantN: statementListN;
default: statementList0;

}

This evaluates the expression and then looks for its value among the case constants. If the
value is found among the constants listed, then the statements in the corresponding
statementList are executed. Otherwise if there is a default (which is optional), then the
program branches to its statementList. The expression must evaluate to an integral type
(see Section 2.1 on page 16) and the constants must be integral constants.

EXAMPLE 3.17 Using a switch Statement to Select a Range of Scores

This program has the same effect as the one in Example 3.16:
int main()
{ int score;

cout << "Enter your test score: "; cin >> score;
switch (score/10)
{ case 10:

case 9: cout << "Your grade is an A." << endl; break;
case 8: cout << "Your grade is a B." << endl; break;
case 7: cout << "Your grade is a C." << endl; break;

Enter your test score: 83
Your grade is a B.

48 SELECTION [CHAP. 3

case 6: cout << "Your grade is a D." << endl; break;
case 5:
case 4:
case 3:
case 2:
case 1:
case 0: cout << "Your grade is an F." << endl; break;
default: cout << "Error: score is out of range.\n";

}
cout << "Goodbye." << endl;

}

First the program divides the score by 10 to reduce the range of values to 0–10. So in the test run, the
score 83 reduces to the value 8, the program execution branches to case 8, and prints the output shown.
Then the break statement causes the program execution to branch to the first statement after the switch
block. That statement prints “Goodbye.”.

Note that scores in the ranges 101 to 109 and -9 to -1 produce incorrect results. (See Problem 3.14.)

It is normal to put a break statement at the end of each case clause in a switch statement.
Without it, the program execution will not branch directly out of the switch block after it fin-
ishes executing its case statement sequence. Instead, it will continue within the switch block,
executing the statements in the next case sequence. This (usually) unintended consequence is
called a fall through.

EXAMPLE 3.18 An Erroneous Fall-through in a switch Statement

This program was intended to have the same effect as the one in Example 3.17. But with no break
statements, the program execution falls through all the case statements it encounters:

int main()
{ int score;

cout << "Enter your test score: "; cin >> score;
switch (score/10)
{ case 10:

case 9: cout << "Your grade is an A." << endl; // LOGICAL ERROR
case 8: cout << "Your grade is a B." << endl; // LOGICAL ERROR
case 7: cout << "Your grade is a C." << endl; // LOGICAL ERROR
case 6: cout << "Your grade is a D." << endl; // LOGICAL ERROR
case 5:
case 4:
case 3:
case 2:
case 1:
case 0: cout << "Your grade is an F." << endl; // LOGICAL ERROR
default: cout << "Error: score is out of range.\n";

}
cout << "Goodbye." << endl;

}

Enter your test score: 83
Your grade is a B.
Goodbye.

Enter your test score: 83
Your grade is a B.
Your grade is a C.

CHAP. 3] SELECTION 49

After branching to case 8, and printing “Your grade is a B.”, the program execution goes
right on to case 7 and prints “Your grade is a C.” Since the break statements have been
removed, it keeps falling through, all the way down to the default clause, executing each of the cout
statements along the way.

3.12 THE CONDITIONAL EXPRESSION OPERATOR

C++ provides a special operator that often can be used in place of the if...else statement.
It is called the conditional expression operator. It uses the ? and the : symbols in this syntax:

condition ? expression1 : expression2

It is a ternary operator; i.e., it combines three operands to produce a value. That resulting value
is either the value of expression1 or the value of expression2, depending upon the boolean
value of the condition. For example, the assignment

min = (x<y ? x : y);

would assign the minimum of x and y to min, because if the condition x<y is true, the
expression (x<y ? x : y) evaluates to x; otherwise it evaluates to y.

Conditional expression statements should be used sparingly: only when the condition and both
expressions are very simple.

EXAMPLE 3.19 Finding the Minimum Again

This program has the same effect as the program in Example 3.3 on page 38:
int main()
{ int m, n;

cout << "Enter two integers: ";
cin >> m >> n;
cout << (m<n ? m : n) << " is the minimum." << endl;

}
The conditional expression (m<n ? m : n) evaluates to m if m<n, and to n otherwise.

Review Questions

3.1 Write a single C++ statement that prints "Too many" if the variable count exceeds 100.
3.2 What is wrong with the following code:

a. cin << count;

b. if x < y min = x
else min = y;

3.3 What is wrong with this code:
cout << "Enter n: ";
cin >> n;
if (n < 0)

cout << "That is negative. Try again." << endl;
cin >> n;

Your grade is a D.
Your grade is an F.
Error: score is out of range.
Goodbye.

50 SELECTION [CHAP. 3

else
cout << "o.k. n = " << n << endl;

3.4 What is the difference between a reserved word and a standard identifier?
3.5 State whether each of the following is true or false. If false, tell why.

a. !(p || q) is the same as !p || !q

b. !!!p is the same as !p

c. p && q || r is the same as p && (q || r)

3.6 Construct a truth table for each of the following boolean expressions, showing its truth value
(0 or 1) for all 4 combinations of truth values of its operands p and q.
a. !p || q

b. p&&q || !p&&!q

c. (p||q) && !(p&&q)

3.7 Use truth tables to determine whether the two boolean expressions in each of the following
are equivalent.
a. !(p && q) and !p && !q

b. !!p and p

c. !p || q and p || !q

d. p && (q && r) and (p && q) && r

e. p || (q && r) and (p || q) && r

3.8 What is short-circuiting and how is it helpful?
3.9 What is wrong with this code:

if (x = 0) cout << x << " = 0\n";
else cout << x << " != 0\n";

3.10 What is wrong with this code:
if (x < y < z) cout << x << " < " << y << " < " << z << endl;

3.11 Construct a logical expression to represent each of the following conditions:
a. score is greater than or equal to 80 but less than 90;
b. answer is either 'N' or 'n';
c. n is even but not 8;
d. ch is a capital letter.

3.12 Construct a logical expression to represent each of the following conditions:
a. n is between 0 and 7 but not equal to 3;
b. n is between 0 and 7 but not even;
c. n is divisible by 3 but not by 30;
d. ch is a lowercase or uppercase letter.

3.13 What is wrong with this code:
if (x == 0)

if (y == 0) cout << "x and y are both zero." << endl;
else cout << "x is not zero." << endl;

3.14 What is the difference between the following two statements:
if (n > 2) { if (n < 6) cout << "OK"; } else cout << "NG";
if (n > 2) { if (n < 6) cout << "OK"; else cout << "NG"; }

3.15 What is a “fall-through?
3.16 How is the following expression evaluated?

(x < y ? -1 : (x == y ? 0 : 1));

3.17 Write a single C++ statement that uses the conditional expression operator to assign the
absolute value of x to absx.

CHAP. 3] SELECTION 51

3.18 Write a single C++ statement that prints “too many” if the variable count exceeds 100, using
a. an if statement;
b. the conditional expression operator.

Problems

3.1 Modify the program in Example 3.1 on page 36 so that it prints a response only if n is divisi-
ble by d.

3.2 Modify the program in Example 3.5 on page 39 so that it prints the minimum of four input
integers.

3.3 Modify the program in Example 3.5 on page 39 so that it prints the median of three input
integers.

3.4 Modify the program in Example 3.6 on page 39 so that it has the same effect without using a
statement block.

3.5 Predict the output from the program in Example 3.7 on page 40 after removing the declara-
tion on the fifth line of the program. Then run that program to check your prediction.

3.6 Write and run a program that reads the user’s age and then prints “You are a child.” if the
age < 18, “You are an adult.” if 18 ≤ age < 65, and “You are a senior citizen.” if age ≥ 65.

3.7 Write and run a program that reads two integers and then uses the conditional expression
operator to print either “multiple” or “not” according to whether one of the integers is a mul-
tiple of the other.

3.8 Write and run a program that simulates a simple calculator. It reads two integers and a char-
acter. If the character is a +, the sum is printed; if it is a -, the difference is printed; if it is a *,
the product is printed; if it is a /, the quotient is printed; and if it is a %, the remainder is
printed. Use a switch statement.

3.9 Write and run a program that plays the game of “Rock, paper, scissors.” In this game, two
players simultaneously say (or display a hand symbol representing) either “rock,” “paper,” or
“scissors.” The winner is the one whose choice dominates the other. The rules are: paper
dominates (wraps) rock, rock dominates (breaks) scissors, and scissors dominate (cut) paper.
Use enumerated types for the choices and for the results.

3.10 Modify the solution to Problem 3.9 by using a switch statement.
3.11 Modify the solution to Problem 3.10 by using conditional expressions where appropriate.
3.12 Write and test a program that solves quadratic equations. A quadratic equation is an equation

of the form ax2 + bx + c = 0, where a, b, and c are given coefficients and x is the unknown.
The coefficients are real number inputs, so they should be declared of type float or
double. Since quadratic equations typically have two solutions, use x1 and x2 for the
solutions to be output. These should be declared of type double to avoid inaccuracies from
round-off error. (See Example 2.15 on page 28.)

3.13 Write and run a program that reads a six-digit integer and prints the sum of its six digits. Use
the quotient operator / and the remainder operator % to extract the digits from the integer.
For example, if n is the integer 876,543, then n/1000%10 is its thousands digit 6.

3.14 Correct Example 3.17 on page 47 so that it produces the correct response for all inputs.

Answers to Review Questions

3.1 if (count > 100) cout << "Too many";

52 SELECTION [CHAP. 3

3.2 a. Either cout should be used in place of cin, or the extraction operator >> should be used in
place of the insertion operator <<.

b. Parentheses are required around the condition x < y, and a semicolon is required at the end of the
if clause before the else.

3.3 There is more than one statement between the if clause and the else clause. They need to be
made into a compound statement by enclosing them in braces { }.

3.4 A reserved word is a keyword in a programming language that serves to mark the structure of a state-
ment. For example, the keywords if and else are reserved words. A standard identifier is a key-
word that defines a type. Among the 63 keywords in C++, if, else, and while are some of the
reserved words, and char, int, and float are some of the standard identifiers.

3.5 a. !(p || q) is not the same as !p || !q; for example, if p is true and q is false, the first
expression will be false but the second expression will be true. The correct equivalent to the
expression !(p || q) is the expression !p && !q.

b. !!!p is the same as !p.
c. p && q || r is not the same as p && (q || r); for example, if p is false and r is true,

the first expression will be true, but the second expression will be false: p && q || r is the
same as (p && q) || r.

3.6 Truth tables for boolean expressions:

3.7 a. These two boolean expressions are not equivalent:

b. These two boolean expressions are equivalent:

c. These two boolean expressions are not equivalent:

d. These two boolean expressions are equivalent:

p q !p || q
T T T
T F F
F T T
F F T

p q p&&q || !p&&!q
T T T
T F F
F T F
F F T

p q (p||q) && !(p&&q)
T T F
T F T
F T T
F F F

p q !(p&&q)
T T F
T F T
F T T
F F T

p q !p && !q
T T T
T F T
F T T
F F F

p !pp
T T
F F

p p
T T
F F

p q !p || q
T T T
T F F
F T T
F F T

p q p || !q
T T T
T F T
F T F
F F T

p q r p && (q&&r)
T T T T
T T F F
T F T F
T F F F
F T T F
F T F F
F F T F
F F F F

p q r (p&&q) && r
T T T T
T T F F
T F T F
T F F F
F T T F
F T F F
F F T F
F F F F

CHAP. 3] SELECTION 53

e. These two boolean expressions are not equivalent:

3.8 The term “short-circuiting” is used to describe the way C++ evaluates compound logical expressions
like (x > 2 || y > 5) and (x > 2 && y > 5). If x is greater than 2 in the first expres-
sion, then y will not be evaluated. If x is less than or equal to 2 in the second expression, then y
will not be evaluated. In these cases only the first part of the compound expression is evaluated
because that value alone determines the truth value of the compound expression.

3.9 The programmer probably intended to test the condition (x == 0). But by using assignment opera-
tor “=” instead of the equality operator “==” the result will be radically different from what was
intended. For example, if x has the value 22 prior to the if statement, then the if statement will
change the value of x to 0. Moreover, the assignment expression (x = 0) will be evaluated to 0
which means “false,” so the else part of the selection statement will execute, reporting that x is
not zero!

3.10 The programmer probably intended to test the condition (x < y && y < z). The code as written
will compile and run, but not as intended. For example, if the prior values of x, y, and z are 44, 66,
and 22, respectively, then the algebraic condition “x < y < z” is false. But as written, the code will be
evaluated from left to right, as (x < y) < z. First the condition x < y will be evaluated as
“true.” But this has the numeric value 1, so the expression (x < y) is evaluated to 1. Then the
combined expression (x < y) < z is evaluated as (1) < 66 which is also true. So the output state-
ment will execute, erroneously reporting that 44 < 66 < 22.

3.11 a. (score >= 80 && score < 90)
b. (answer == 'N' || answer == 'n')
c. (n%2 == 0 && n != 8)
d. (ch >= 'A' && ch <= 'Z')

3.12 a. (n > 0 && n < 7 && n != 3)
b. (n > 0 && n < 7 && n%2 != 0)
c. ((ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z'))

3.13 The programmer clearly intended for the second output "x is not zero." to be printed if the
first condition (x == 0) is false, regardless of the second condition (y == 0). That is, the
else was intended to be matched with the first if. But the “else matching” rule causes it to be
matched with the second condition, which means that the output "x is not zero." will be
printed only when x is zero and y is not zero. The “else matching” rule can be overridden with
braces:

if (x == 0)
{ if (y == 0) cout << "x and y are both zero." << endl;
}
else cout << "x is not zero." << endl;

Now the else will be matched with the first if, the way the programmer had intended it to be.
3.14 In the first statement, the else is matched with the first if. In the second statement, the else is

matched with the second if. If n ≤ 2, the first statement will print NG while the second statement will
do nothing. If 2 < n < 6, both statements will print OK. If n ≥ 6, the first statement will do nothing
while the second statement will print NG. Note that this code is difficult to read because it does not fol-
low standard indentation conventions. The first statement should be written

p q r p || (q&&r)
T T T T
T T F T
T F T T
T F F T
F T T T
F T F F
F F T F
F F F F

p q r (p||q) && r
T T T T
T T F F
T F T T
T F F F
F T T T
F T F F
F F T F
F F F F

54 SELECTION [CHAP. 3

if (n > 2)
{ if (n < 6) cout << "OK";
}
else cout << "NG";

The braces are needed here to override the “else matching” rule. This else is intended to match
the first if. The second statement should be written

if (n > 2)
if (n < 6) cout << "OK";
else cout << "NG";

Here the braces are not needed because the else is intended to be matched with the second if.
3.15 A “fall through” in a switch statement is a case that does not include a break statement, thereby

causing control to continue right on to the next case statement.
3.16 This expression evaluates to –1 if x < y, it evaluates to 0 if x == y, and it evaluates to 1 if x >

y.
3.17 absx = (x>0 ? x : -x);
3.18 a. if (count > 100) cout << "too many";

b. cout << (count > 100 ? "too many" : "");

Solutions to Problems

3.1 This version of Example 3.1 on page 36 prints a response only when n is divisible by d:
int main()
{ int n, d;

cout << "Enter two positive integers: ";
cin >> n >> d;
if (n%d == 0) cout << n << " is divisible by " << d << endl;

}

3.2 This version of Example 3.5 on page 39 prints the minimum of four input integers:
int main()
{ int n1, n2, n3, n4;

cout << "Enter four integers: ";
cin >> n1 >> n2 >> n3 >> n4;
int min=n1; // now min <= n1
if (n2 < min) min = n2; // now min <= n1, n2
if (n3 < min) min = n3; // now min <= n1, n2, n3
if (n4 < min) min = n4; // now min <= n1, n2, n3, n4
cout << "Their minimum is " << min << endl;

}

3.3 This program finds the median of three input integers:
int main()
{ int n1, n2, n3;

cout << "Enter three integers: ";
cin >> n1 >> n2 >> n3;
cout << "Their median is ";
if (n1 < n2)

if (n2 < n3) cout << n2; // n1 < n2 < n3

Enter two positive integers: 56 7
56 is divisible by 7

Enter four integers: 44 88 22 66
Their minimum is 22

CHAP. 3] SELECTION 55

else if (n1 < n3) cout << n3; // n1 < n3 <= n2
else cout << n1; // n3 <= n1 < n2

else if (n1 < n3) cout << n1; // n2 <= n1 < n3
else if (n2 < n3) cout << n2; // n2 < n3 <= n1
else cout << n3; // n3 <= n2 <= n1

}

3.4 This program has the same effect as the one in Example 3.6 on page 39:
int main()
{ int x, y;

cout << "Enter two integers: ";
cin >> x >> y;
if (x > y) cout << y << " <= " << x << endl;
else cout << x << " <= " << y << endl;

}

3.5 Modification of the program in Example 3.7 on page 40:
int main()
{ int n=44;

cout << "n = " << n << endl;
{ cout << "Enter an integer: ";

cin >> n;
cout << "n = " << n << endl;

}
{ cout << "n = " << n << endl;
}
{ int n;

cout << "n = " << n << endl;
}
cout << "n = " << n << endl;

}

3.6 Here we used the else if construct because the three outcomes depend upon age being in one
of three disjoint intervals:

int main()
{ int age;

cout << "Enter your age: ";
cin >> age;
if (age < 18) cout << "You are a child.\n";
else if (age < 65) cout << "You are an adult.\n";
else cout << "you are a senior citizen.\n";

}

Enter three integers: 44 88 22
Their median is 44

Enter two integers: 66 44
44 <= 6

n = 44
Enter an integer: 77
n = 77
n = 77
n = 4251897
n = 77

Enter your age: 44
You are an adult.

56 SELECTION [CHAP. 3

If control reaches the second condition (age < 65), then the first condition must be false so in fact
18 ≤ age < 65. Similarly, if control reaches the second else, then both conditions must be false so in
fact age ≥ 65.

3.7 An integer m is a multiple of an integer n if the remainder from the integer division of m by n is 0. So
the compound condition m % n == 0 || n % m == 0 tests whether either is a multiple of the
other:

int main()
{ int m, n;

cin >> m >> n;
cout << (m % n == 0 || n % m == 0 ? "multiple" : "not") << endl;

}

The value of the conditional expression will be either "multiple" or "not", according to whether
the compound condition is true. So sending the complete conditional expression to the output stream
produces the desired result.

3.8 The character representing the operation should be the control variable for the switch statement:
int main()
{ int x, y;

char op;
cout << "Enter two integers: ";
cin >> x >> y;
cout << "Enter an operator: ";
cin >> op;
switch (op)
{ case '+': cout << x + y << endl; break;

case '-': cout << x - y << endl; break;
case '*': cout << x * y << endl; break;
case '/': cout << x / y << endl; break;
case '%': cout << x % y << endl; break;

}
}

In each of the five cases, we simply print the value of the corresponding arithmetic operation and then
break.

3.9 First define the two enum types Choice and Result. Then declare variables choice1,
choice2, and result of these types, and use an integer n to get the required input and assign it to
them:

enum Choice {ROCK, PAPER, SCISSORS};
enum Winner {PLAYER1, PLAYER2, TIE};
int main()
{ int n;

Choice choice1, choice2;
Winner winner;
cout << "Choose rock (0), paper (1), or scissors (2):" << endl;
cout << "Player #1: ";
cin >> n;
choice1 = Choice(n);

30 4
not

30 5
multiple

Enter two integers: 30 13
Enter an operator: %
4

CHAP. 3] SELECTION 57

cout << "Player #2: ";
cin >> n;
choice2 = Choice(n);
if (choice1 == choice2) winner = TIE;
else if (choice1 == ROCK)

if (choice2 == PAPER) winner = PLAYER2;
else winner = PLAYER1;

else if (choice1 == PAPER)
if (choice2 == SCISSORS) winner = PLAYER2;
else winner = PLAYER1;

else // (choice1 == SCISSORS)
if (choice2 == ROCK) winner = PLAYER2;
else winner = PLAYER1;

if (winner == TIE) cout << "\tYou tied.\n";
else if (winner == PLAYER1) cout << "\tPlayer #1 wins." <<endl;
else cout << "\tPlayer #2 wins." << endl;

}

Through a series of nested if statements, we are able to cover all the possibilities.
3.10 Using a switch statement:

enum Winner {PLAYER1, PLAYER2, TIE};
int main()
{ int choice1, choice2;

Winner winner;
cout << "Choose rock (0), paper (1), or scissors (2):" << endl;
cout << "Player #1: ";
cin >> choice1;
cout << "Player #2: ";
cin >> choice2;
switch (choice2 - choice1)
{ case 0:

winner = TIE;
break;

case -1:
case 2:

winner = PLAYER1;
break;

case -2:
case 1:

winner = PLAYER2;
}

Choose rock (0), paper (1), or scissors (2):
Player #1: 1
Player #2: 1

You tied.

Choose rock (0), paper (1), or scissors (2):
Player #1: 2
Player #2: 1

Player #1 wins.

Choose rock (0), paper (1), or scissors (2):
Player #1: 2
Player #2: 0

Player #2 wins.

58 SELECTION [CHAP. 3

if (winner == TIE) cout << "\tYou tied.\n";
else if (winner == PLAYER1) cout << "\tPlayer #1 wins." << endl;
else cout << "\tPlayer #2 wins." << endl;

}
3.11 Using a switch statement and conditional expressions:

enum Winner {PLAYER1, PLAYER2, TIE};
int main()
{ int choice1, choice2;

cout << "Choose rock (0), paper (1), or scissors (2):" << endl;
cout << "Player #1: ";
cin >> choice1;
cout << "Player #2: ";
cin >> choice2;
int n = (choice1 - choice2 + 3) % 3;
Winner winner = (n==0 ? TIE : (n==1?PLAYER1:PLAYER2));
if (winner == TIE) cout << "\tYou tied.\n";
else if (winner == PLAYER1) cout << "\tPlayer #1 wins." << endl;
else cout << "\tPlayer #2 wins." << endl;

}
3.12 The solution(s) to the quadratic equation is given by the quadratic formula:

But this will not apply if a is zero, so that condition must be checked separately. The formula also fails
to work (for real numbers) if the expression under the square root is negative. That expression b2 +
4ac is called the discriminant of the quadratic. We define that as the separate variable d and check its
sign.

#include <iostream>
#include <cmath> // defines the sqrt() function
int main()
{ // solves the equation a*x*x + b*x + c == 0:

float a, b, c;
cout << "Enter coefficients of quadratic equation: ";
cin >> a >> b >> c;
if (a == 0)
{ cout << "This is not a quadratic equation: a == 0\n";

return 0;
}
cout << "The equation is: " << a << "x^2 + " << b

<< "x + " << c << " = 0\n";
double d, x1, x2;
d = b*b - 4*a*c; // the discriminant
if (d < 0)
{ cout << "This equation has no real solutions: d < 0\n";

return 0;
}
x1 = (-b + sqrt(d))/(2*a);
x2 = (-b - sqrt(d))/(2*a);
cout << "The solutions are: " << x1 << ", " << x2 << endl;

}

x
b– b2 4ac–±

2a
--------------------------------------=

CHAP. 3] SELECTION 59

Note how we use the return statement inside the selection statements to terminate the program if
either a is zero or d is negative. The alternative would have been to use an else clause in each if
statement.

3.13 This program prints the sum of the digits of the given integer:
int main()
{ int n, sum;

cout << "Enter a six-digit integer: ";
cin >> n;
sum = n%10 + n/10%10 + n/100%10 + n/1000%10 + n/10000%10

+ n/100000;
cout << "The sum of the digits of " << n << " is " << sum <<endl;

}

3.14 A corrected version of Example 3.17 on page 47:
int main()
{ // reports the user's grade for a given test score:

int score;
cout << "Enter your test score: ";
cin >> score;
if (score > 100 || score < 0)

cout << "Error: that score is out of range.\n";
else

switch (score/10)
{ case 10:

case 9: cout << "Your grade is an A.\n"; break;
case 8: cout << "Your grade is a B.\n"; break;
case 7: cout << "Your grade is a C.\n"; break;
case 6: cout << "Your grade is a D.\n"; break;
default: cout << "Your grade is an F.\n"; break;

}
cout << "Goodbye." << endl;

}

Enter coefficients of quadratic equation: 2 1 -6
The equation is: 2x^2 + 1x + -6 = 0
The solutions are: 1.5, -2

Enter coefficients of quadratic equation: 1 4 5
The equation is: 1x^2 + 4x + 5 = 0
This equation has no real solutions: d < 0

Enter coefficients of quadratic equation: 0 4 5
This is not a quadratic equation: a == 0

Enter a six-digit integer: 876543
The sum of the digits of 876543 is 33

Enter your test score: 103
Error: that score is out of range.
Goodbye.

Enter your test score: 93
Your grade is an A.
Goodbye.

Enter your test score: -3
Error: that score is out of range.
Goodbye.

60

Chapter 4

Iteration

Iteration is the repetition of a statement or block of statements in a program. C++ has three
iteration statements: the while statement, the do..while statement, and the for statement.
Iteration statements are also called loops because of their cyclic nature.

4.1 THE while STATEMENT

The syntax for the while statement is
while (condition) statement;

where condition is an integral expression and statement is any executable statement. If the
value of the expression is zero (meaning “false”) then the statement is ignored and program
execution immediately jumps to the next statement that follows the while statement. If the value
of the expression is nonzero (meaning “true”) then the statement is executed repeatedly until
the expression evaluates to zero. Note that the condition must be enclosed by parentheses.

EXAMPLE 4.1 Using a while Loop to Compute a Sum of Consecutive Integers

This program computes the sum 1 + 2 + 3 + ⋅⋅⋅ + n, for an input integer n:
int main()
{ int n, i=1;

cout << "Enter a positive integer: ";
cin >> n;
long sum=0;
while (i <= n)

sum += i++;
cout << "The sum of the first " << n << " integers is " << sum;

}
This program uses three local variables: n, i, and sum. Each time the while loop

iterates, i is incremented and then added to sum. The loop stops when i = n, so n is the last
value added to sum. The trace at right shows the values of i and sum on each iteration after
the user input 8 for n. The output for this run is

The program computed 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36.
On the second run the user inputs 100 for n, so the while loop iterated 100 times to

compute the sum 1 + 2 + 3 + ⋅⋅⋅ + 98 + 99 + 100 = 5050:

Note that the statement inside the loop is indented. This convention makes the program’s logic
easier to follow, especially in large programs.

i sum
0 0
1 1
2 3
3 6
4 10
5 15
6 21
7 28
8 36

Enter a positive integer: 8
The sum of the first 8 integers is 36

Enter a positive integer: 100
The sum of the first 100 integers is 5050

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

CHAP. 4] ITERATION 61

EXAMPLE 4.2 Using a while Loop to Compute a Sum of Reciprocals

This program computes the sum of reciprocals s = 1 + 1/2 + 1/3 + ⋅⋅⋅ + 1/n, where n is the smallest
integer for which n ≥ s:

int main()
{ int bound;

cout << "Enter a positive integer: ";
cin >> bound;
double sum=0.0;
int i=0;
while (sum < bound)

sum += 1.0/++i;
cout << "The sum of the first " << i

<< " reciprocals is " << sum << endl;
}

With input 3 for n, this run computes 1 + 1/2 + 1/3 + ⋅⋅⋅ + 1/11 = 3.01988:

The trace of this run is shown at right. The sum does not exceed 3 until the 11th
iteration.

EXAMPLE 4.3 Using a while Loop to Repeat a Computation

This program prints the square root of each number input by the user. It uses a while loop to allow any
number of computations in a single run of the program:

int main()
{ double x;

cout << "Enter a positive number: ";
cin >> x;
while (x > 0)
{ cout << "sqrt(" << x << ") = " << sqrt(x) << endl;

cout << "Enter another positive number (or 0 to quit): ";
cin >> x;

}
}

The condition (x > 0) in Example 4.3 uses the variable x to control the loop. Its value is
changed inside the loop by means of an input statement. A variable that is used this way is called
a loop control variable.

i sum
0 0.00000
1 1.00000
2 1.50000
3 1.83333
4 2.08333
5 2.28333
6 2.45000
7 2.59286
8 2.71786
9 2.82897

10 2.92897
11 3.01988

Enter a positive integer: 3
The sum of the first 11 reciprocals is 3.01988

Enter a positive number: 49
sqrt(49) = 7
Enter another positive number (or 0 to quit): 3.14159
sqrt(3.14159) = 1.77245
Enter another positive number (or 0 to quit): 100000
sqrt(100000) = 316.228
Enter another positive number (or 0 to quit): 0

62 ITERATION [CHAP. 4

4.2 TERMINATING A LOOP

We have already seen how the break statement is used to control the switch statement. (See
Example 3.17 on page 47.) The break statement is also used to control loops.

EXAMPLE 4.4 Using a break Statement to Terminate a Loop

This program has the same effect as the one in Example 4.1 on page 60:
int main()
{ int n, i=1;

cout << "Enter a positive integer: ";
cin >> n;
long sum=0;
while (true)
{ if (i > n) break; // terminates the loop immediately

sum += i++;
}
cout << "The sum of the first " << n << " integers is " << sum;

}

This runs the same as in Example 4.1: as soon as the value of i reaches n, the loop terminates and the
output statement at the end of the program executes.

Note that the control condition on the while loop itself is true, which means continue forever. This
is the standard way to code a while loop when it is being controlled from within.

One advantage of using a break statement inside a loop is that it causes the loop to terminate
immediately, without having to finish executing the remaining statements in the loop block.

EXAMPLE 4.5 The Fibonacci Numbers

The Fibonacci numbers F0 , F1, F2 , F3, ... are defined recursively by the equations

For example, letting n = 2 in the third equation yields
F2 = F2–1 + F2–2 = F1 + F0 = 0 + 1 = 1

Similarly, with n = 3,
F3 = F3–1 + F3–2 = F2 + F1 = 1 + 1 = 2

and with n = 4,
F4 = F4–1 + F4–2 = F3 + F2 = 2 + 1 = 3

The first ten Fibonacci numbers are shown in the table at right.
This program prints all the Fibonacci numbers up to an input limit:

int main()
{ long bound;

cout << "Enter a positive integer: ";
cin >> bound;
cout << "Fibonacci numbers < " << bound << ":\n0, 1";
long f0=0, f1=1;

Enter a positive integer: 100
The sum of the first 100 integers is 5050

F0 0=
F1 1=
Fn Fn 1– Fn 2–+=�

�
�
�
�

n Fn

0 0

1 1

2 1

3 2

4 3

5 5

6 8

7 13

8 21

9 35

CHAP. 4] ITERATION 63

while (true)
{ long f2 = f0 + f1;

if (f2 > bound) break; // terminates the loop immediately
cout << ", " << f2;
f0 = f1;
f1 = f2;

}
}

This while loop contains a block of five statements. When the condition (f2 > bound) is
evaluated to be true, the break statement executes, terminating the loop immediately, without executing
the last three statements in that iteration.

Note the use of the newline character \n in the string ":\n0, 1". This prints the colon : at the
end of the current line, and then prints 0, 1 at the beginning of the next line.

EXAMPLE 4.6 Using the exit(0) Function

The exit() function provides another way to terminate a loop. When it executes, it terminates the
program itself:

int main()
{ long bound;

cout << "Enter a positive integer: ";
cin >> bound;
cout << "Fibonacci numbers < " << bound << ":\n0, 1";
long f0=0, f1=1;
while (true)
{ long f2 = f0 + f1;

if (f2 > bound) exit(0); // terminates the program immediately
cout << ", " << f2;
f0 = f1;
f1 = f2;

}
}

Since this program has no statements following its loop, terminating the loop is the same as terminating
the program. So this program runs the same as the one in Example 4.5.

The program in Example 4.6 illustrates one way to break out of an infinite loop. The next
example shows how to abort an infinite loop. But the preferred method is to use a break state-
ment, as illustrated in Example 4.20 on page 71.

EXAMPLE 4.7 Aborting Infinite Loop

Without some termination mechanism, the loop will run forever. To abort its execution after it starts,
press <Ctrl>+C (i.e., hold the Ctrl key down and press the C key on your keyboard):

Enter a positive integer: 1000
Fibonacci numbers < 1000:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

Enter a positive integer: 1000
Fibonacci numbers < 1000:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

64 ITERATION [CHAP. 4

int main()
{ long bound;

cout << "Enter a positive integer: ";
cin >> bound;
cout << "Fibonacci numbers < " << bound << ":\n0, 1";
long f0=0, f1=1;
while (true) // ERROR: INFINITE LOOP! (Press <Ctrl>+C.)

{ long f2 = f0 + f1;
cout << ", " << f2;
f0 = f1;
f1 = f2;

}
}

Since this program has no statements following its loop, terminating the loop is the same as terminat-
ing the program. So this program runs the same as the one in Example 4.5.

4.3 THE do..while STATEMENT

The syntax for the do..while statement is
do statement while (condition);

where condition is an integral expression and statement is any executable statement. It
repeatedly executes the statement and then evaluates the condition until that condition
evaluates to false.

The do..while statement works the same as the while statement except that its condition is
evaluated at the end of the loop instead of at the beginning. This means that any control variables
can be defined within the loop instead of before it. It also means that a do...while loop will
always iterate at least once, regardless of the value of its control condition.

EXAMPLE 4.8 Using a do..while Loop to Compute a Sum of Consecutive Integers

This program has the same effect as the one in Example 4.1 on page 60:
int main()
{ int n, i=0;

cout << "Enter a positive integer: ";
cin >> n;
long sum=0;
do

sum += i++;
while (i <= n);
cout << "The sum of the first " << n << " integers is " << sum;

}

Enter a positive integer: 1000
Fibonacci numbers < 1000:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597
81, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 5
040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817,
63245986, 102334155, 165580141, 267914296, 433494437, 701408733, 11349

CHAP. 4] ITERATION 65

EXAMPLE 4.9 The Factorial Numbers

The factorial numbers 0!, 1!, 2!, 3!, ⋅⋅⋅ are defined recursively by the equations

For example, letting n = 1 in the second equation yields
1! = 1((1–1)!) = 1(0!) = 1(1) = 1

Similarly, with n = 2:
2! = 2((2–1)!) = 2(1!) = 2(1) = 2

and with n = 3:
3! = 3((3–1)!) = 3(2!) = 3(2) = 6

The first seven factorial numbers are shown in the table at right.
This program prints all the factorial numbers up to an input limit:

int main()
{ long bound;

cout << "Enter a positive integer: ";
cin >> bound;
cout << "Factorial numbers < " << bound << ":\n1, 1";
long f=1, i=1;
do
{ f *= ++i;

cout << ", " << f;
}
while (f < bound);

}

The do..while loop iterates until its control condition (f < bound) is false.

4.4 THE for STATEMENT

The syntax for the for statement is
for (initialization; condition; update) statement;

where initialization, condition, and update are optional expressions, and statement is
any executable statement. The three-part (initialization; condition; update) controls
the loop. The initialization expression is used to declare and/or initialize control
variable(s) for the loop; it is evaluated first, before any iteration occurs. The condition

expression is used to determine whether the loop should continue iterating; it is evaluated
immediately after the initialization; if it is true, the statement is executed. The update

expression is used to update the control variable(s); it is evaluated after the statement is
executed. So the sequence of events that generate the iteration are:

1. evaluate the initialization expression;
2. if the value of the condition expression is false, terminate the loop;
3. execute the statement;
4. evaluate the update expression;
5. repeat steps 2–4.

0! 1=

n! n n 1–()=�
�
�

n n!
0 1
1 1
2 2
3 6
4 24
5 120
6 720

Enter a positive integer: 1000000
Factorial numbers < 1000000:
1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880

66 ITERATION [CHAP. 4

EXAMPLE 4.10 Using a for Loop to Compute a Sum of Consecutive Integers

This program has the same effect as the one in Example 4.1 on page 60:
int main()
{ int n;

cout << "Enter a positive integer: ";
cin >> n;
long sum=0;
for (int i=1; i <= n; i++)

sum += i;
cout << "The sum of the first " << n << " integers is " << sum;

}
Here, the initialization expression is int i=1, the condition expression is i <= n, and the update

expression is i++. Note that these same expressions are used in the programs in Example 4.1 on page 60,
Example 4.4 on page 62, and Example 4.8 on page 64.

In Standard C++, when a loop control variable is declared within a for loop, as i is in Exam-
ple 4.10, its scope is limited to that for loop. That means that it cannot be used outside that for
loop. It also means that the same name can be used for different variables outside that for loop.

EXAMPLE 4.11 Reusing for Loop Control Variable Names

This program has the same effect as the one in Example 4.1 on page 60:
int main()
{ int n;

cout << "Enter a positive integer: ";
cin >> n;
long sum=0;
for (int i=1; i < n/2; i++) // the scope of this i is this loop

sum += i;
for (int i=n/2; i <= n; i++) // the scope of this i is this loop

sum += i;
cout << "The sum of the first " << n << " integers is "

<< sum << endl;
}

The two for loops in this program do the same computations as the single for loop in the program in
Example 4.10. They simply split the job in two, doing the first n/2 accumulations in the first loop and the
rest in the second. Each loop independently declares its own control variable i.

Warning: Most pre-Standard C++ compilers extend the scope of a for loop’s control variable
past the end of the loop.

EXAMPLE 4.12 The Factorial Numbers Again

This program has the same effect as the one in Example 4.9 on page 65:
int main()
{ long bound;

cout << "Enter a positive integer: ";
cin >> bound;

CHAP. 4] ITERATION 67

cout << "Factorial numbers that are <= " << bound << ":\n1, 1";
long f=1;
for (int i=2; f <= bound; i++)
{ f *= i;

cout << ", " << f;
}

}

This for loop program has the same effect as the do..while loop program because it executes the
same instructions. After initializing f to 1, both programs initialize i to 2 and then repeat the following
five instructions: print f, multiply f by i, increment i, check the condition (f <= bound), and
terminate the loop if the condition is false.

The for statement is quite flexible, as the following examples demonstrate.

EXAMPLE 4.13 Using a Descending for Loop

This program prints the first ten positive integers in reverse order:
int main()
{ for (int i=10; i > 0; i--)

cout << " " << i;
}

EXAMPLE 4.14 Using a for Loop with a Step Greater than One

This program determines whether an input number is prime:
int main()
{ long n;

cout << "Enter a positive integer: ";
cin >> n;
if (n < 2) cout << n << " is not prime." << endl;
else if (n < 4) cout << n << " is prime." << endl;
else if (n%2 == 0) cout << n << " = 2*" << n/2 << endl;
else
{ for (int d=3; d <= n/2; d += 2)

if (n%d == 0)
{ cout << n << " = " << d << "*" << n/d << endl;

exit(0);
}

cout << n << " is prime." << endl;
};

}

Note that this for loop uses an increment of 2 on its control variable i.

Enter a positive integer: 1000000
Factorial numbers < 1000000:
1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880

10 9 8 7 6 5 4 3 2 1

Enter a positive integer: 101
101 is prime.

Enter a positive integer: 975313579
975313579 = 17*57371387

68 ITERATION [CHAP. 4

EXAMPLE 4.15 Using a Sentinel to Control a for Loop

This program finds the maximum of a sequence of input numbers:
int main()

{ int n, max;

cout << "Enter positive integers (0 to quit): ";

cin >> n;

for (max = n; n > 0;)

{ if (n > max) max = n;

cin >> n;

}

cout << "max = " << max << endl;

}

This for loop is controlled by the input variable n; it continues until n ≤ 0. When an input variable
controls a loop this way, it is called a sentinel.

Note the control mechanism (max = n; n > 0;) in this for loop. Its update part is missing, and
its initialization max = n has no declaration. The variable max has to be declared before the for loop
because it is used outside of its block, in the last output statement in the program.

EXAMPLE 4.16 Using a Loop Invariant to Prove that a for Loop is Correct

This program finds the minimum of a sequence of input numbers. It is similar to the program in
Example 4.15:

int main()

{ int n, min;

cout << "Enter positive integers (0 to quit): ";

cin >> n;

for (min = n; n > 0;)

{ if (n < min) min = n;

// INVARIANT: min <= n for all n, and min equals one of the n

cin >> n;

}

cout << "min = " << min << endl;

}

The full-line comment inside the block of the for loop is called a loop invariant. It states a condition
that has two characteristic properties: (1) it is true at that point on every iteration of the loop; (2) the fact
that it is true when the loop terminates proves that the loop performs correctly. In this case, the condition
min <= n for all n is always true because the preceding if statement resets the value of min if the
last input value of n was less than the previous value of min. And the condition that min equals one
of the n is always true because min is initialized to the first n and the only place where min changes
its value is when it is assigned to a new input value of n. Finally, the fact that the condition is true when
the loop terminates means that min is the minimum of all the input numbers. And that outcome is
precisely the objective of the for loop.

Enter positive integers (0 to quit): 44 77 55 22 99 33 11 66 88 0
max = 99

Enter positive integers (0 to quit): 44 77 55 22 99 33 11 66 88 0
min = 11

CHAP. 4] ITERATION 69

EXAMPLE 4.17 More than One Control Variable in a for Loop

The for loop in this program uses two control variables:
int main()
{ for (int m=95, n=11; m%n > 0; m -= 3, n++)

cout << m << "%" << n << " = " << m%n << endl;
}

The two control variables m and n are declared and initialized in the control mechanism of this for
loop. Then m is decremented by 3 and n is incremented on each iteration of the loop, generating the
sequence of (m,n) pairs (95,11), (92,12), (89,13), (86,14), (83,15), (80,16). The loop terminates with the
pair (80,16) because 16 divides 80.

EXAMPLE 4.18 Nesting for Loops

This program prints a multiplication table:
#include <iomanip> // defines setw()
#include <iostream> // defines cout
using namespace std;
int main()

{ for (int x=1; x <= 12; x++)

{ for (int y=1; y <= 12; y++)

cout << setw(4) << x*y;
cout << endl;

}
}

Each iteration of the outer x loop prints one row of the multiplication table. For example, on the first
iteration when x = 1, the inner y loop iterates 12 times, printing 1*y for each value of y from 1 to 12.
And then on the second iteration of the outer x loop when x = 2, the inner y loop iterates 12 times again,
this time printing 2*y for each value of y from 1 to 12. Note that the separate cout << endl
statement must be inside the outer loop and outside the inner loop in order to produce exactly one line for
each iteration of the outer loop.

This program uses the stream manipulator setw to set the width of the output field for each integer
printed. The expression setw(4) means to “set the output field width to 4 columns” for the next output.

95%11 = 7
92%12 = 8
89%13 = 11
86%14 = 2
83%15 = 8

1 2 3 4 5 6 7 8 9 10 11 12
2 4 6 8 10 12 14 16 18 20 22 24
3 6 9 12 15 18 21 24 27 30 33 36
4 8 12 16 20 24 28 32 36 40 44 48
5 10 15 20 25 30 35 40 45 50 55 60
6 12 18 24 30 36 42 48 54 60 66 72
7 14 21 28 35 42 49 56 63 70 77 84
8 16 24 32 40 48 56 64 72 80 88 96
9 18 27 36 45 54 63 72 81 90 99 108

10 20 30 40 50 60 70 80 90 100 110 120
11 22 33 44 55 66 77 88 99 110 121 132
12 24 36 48 60 72 84 96 108 120 132 144

70 ITERATION [CHAP. 4

This aligns the outputs into a readable table of 12 columns of right-justified integers. Stream manipulators
are defined in the <iomanip> header, so this program had to include the directive

#include <iomanip>
in addition to including the <iostream> header.

EXAMPLE 4.19 Testing a Loop Invariant

This program computes and prints the discrete binary logarithm of an input number (the greatest
integer ≤ the base 2 logarithm of the number). It tests its loop invariant by printing the relevant values on
each iteration:

#include <cmath> // defines pow() and log()
#include <iostream> // defines cin and cout
#include <iomanip> // defines setw()
using namespace std;

int main()
{ long n;

cout << "Enter a positive integer: ";
cin >> n;
int d=0; // the discrete binary logarithm of n
double p2d=1; // = 2^d
for (int i=n; i > 1; i /= 2, d++)
{ // INVARIANT: 2^d <= n/i < 2*2^d

p2d=pow(2,d); // = 2^d
cout << setw(2) << p2d << " <= " << setw(2) << n/i

<< " < " << setw(2) << 2*p2d << endl;
}
p2d=pow(2,d); // = 2^d
cout << setw(2) << p2d << " <= " << setw(2) << n

<< " < " << setw(2) << 2*p2d << endl;
cout << " The discrete binary logarithm of " << n

<< " is " << d << endl;
double lgn = log(n)/log(2); // base 2 logarithm of n
cout << "The continuous binary logarithm of " << n

<< " is " << lgn << endl;
}

The discrete binary logarithm is computed to be the number of times the input number can be divided
by 2 before reaching 1. So the for loop initializes i to n and then divides i by 2 once on each iteration.
The counter c counts the number of iterations. So when the loop terminates, c contains the value of the
discrete binary logarithm of n.

In addition to using the setw() function that is defined in the <iomanip> header, this program
also uses the log() function that is defined in the <cmath> header. That function returns the natural

Enter a positive integer: 63
1 <= 1 < 2
2 <= 2 < 4
4 <= 4 < 8
8 <= 9 < 16

16 <= 21 < 32
32 <= 63 < 64

The discrete binary logarithm of 63 is 5
The continuous binary logarithm of 63 is 5.97728

CHAP. 4] ITERATION 71

(base e) logarithm of n: log(n) = log e n = lnn. It is used in the expression log(n)/log(2) to
compute the binary (base 2) logarithm of n: log 2 n = lg n = (lnn)/(ln2). The printed results compare the
discrete binary logarithm with the continuous binary logarithm. The former is equal to the latter truncated
downward to its nearest integer (the floor of the number).

The loop invariant in this example is the condition 2^d <= n/i < 2*2^d (i.e., 2d ≤ n/i < 2⋅2d). It is
tested by printing the values of the three expressions p2d, n, and 2*p2d, where the quantity p2d is
computed with the power function pow() that is defined in the <cmath> header.

We can prove that this for loop will always compute the discrete binary logarithm correctly. When it
starts, d = 0 and i = n, so 2d = 20 = 1, n/i = n/n = 1, and 2⋅2d = 2⋅1= 2; thus 2d ≤ n/i < 2⋅2d. On each iteration,
d increments and i is halved, so n/i is doubled. Thus the condition 2d ≤ n/i < 2⋅2d remains invariant; i.e., it
is true initially and it remains true throughout the life of the loop. When the loop terminates, i = 1, so the
condition becomes 2d ≤ n/1 < 2⋅2d, which is equivalent to 2d ≤ n < 2d+1. The logarithm of this expression is
d = lg(2d) ≤ lgn < lg(2d+1) = d+1, so d is greatest integer ≤ lgn.

4.5 THE break STATEMENT

We have already seen the break statement used in the switch statement. It is also used in
loops. When it executes, it terminates the loop, “breaking out” of the iteration at that point.

EXAMPLE 4.20 Using a break Statement to Terminate a Loop

This program has the same effect as the one in Example 4.1 on page 60. It uses a break statement to
control the loop:

int main()
{ int n, i=1;

cout << "Enter a positive integer: ";
cin >> n;
long sum=0;
while (true)
{ if (i > n) break;

sum += i++;
}
cout << "The sum of the first " << n << " integers is " << sum;

}

As long as (i <= n), the loop will continue, just as in Example 4.1. But as soon as i > n, the
break statement executes, immediately terminating the loop.

The break statement provides extra flexibility in the control of loops. Normally a while loop,
a do..while loop, or a for loop will terminate only at the beginning or at the end of the com-
plete sequence of statements in the loop’s block. But the break statement can be placed any-
where among the other statements within a loop, so it can be used to terminate a loop anywhere
from within the loop’s block. This is illustrated by the following example.

EXAMPLE 4.21 Controlling Input with a Sentinel

This program reads a sequence of positive integers, terminated by 0, and prints their average:

Enter a positive integer: 8
The sum of the first 8 integers is 36

72 ITERATION [CHAP. 4

int main()

{ int n, count=0, sum=0;

cout << "Enter positive integers (0 to quit):" << endl;

for (;;) // "forever"

{ cout << "\t" << count + 1 << ": ";

cin >> n;

if (n <= 0) break;

++count;

sum += n;

}

cout << "The average of those " << count << " positive numbers is "

<< float(sum)/count << endl;

}

When 0 is input, the break executes, immediately terminating the for loop and transferring
execution to the final output statement. Without the break statement, the ++count statement would
have to be put in a conditional, or count would have to be decremented outside the loop or initialized to
–1.

Note that all three parts of the for loop’s control mechanism are empty: for (;;). This construct is
pronounced “forever.” Without the break, this would be an infinite loop.

When used within nested loops, the break statement applies only to the loop to which it
directly belongs; outer loops will continue, unaffected by the break. This is illustrated by the fol-
lowing example.

EXAMPLE 4.22 Using a break Statement with Nested Loops

Since multiplication is commutative (e.g., 3×4 = 4×3), multiplication tables are often presented with
the numbers above the main diagonal omitted. This program modifies that of Example 4.18 on page 69 to
print a triangular multiplication table:

int main()

{ for (int x=1; x <= 12; x++)

{ for (int y=1; y <= 12; y++)

if (y > x) break;

else cout << setw(4) << x*y;

cout << endl;

}

}

Enter positive integers (0 to quit):
1: 4
2: 7
3: 1
4: 5
5: 2
6: 0

The average of those 5 positive numbers is 3.8

CHAP. 4] ITERATION 73

When y > x, the execution of the inner y loop terminates and the next iteration of the outer x loop
begins. For example, when x = 3, the y loop iterates 3 times (with y = 1, 2, 3), printing 3 6 9. Then
on its 4th iteration, the condition (y > x) is true, so the break statement executes, transferring control
immediately to the cout << endl statement (which is outside of the inner y loop). Then the outer x
loop begins its 4th iteration with x = 4.

4.6 THE continue STATEMENT

The break statement skips the rest of the statements in the loop’s block, jumping immediately
to the next statement outside of the loop. The continue statement is similar. It also skips the rest
of the statements in the loop’s block, but instead of terminating the loop, it transfers execution to
the next iteration of the loop. It continues the loop after skipping the remaining statements in its
current iteration.

EXAMPLE 4.23 Using continue and break Statements

This little program illustrates the continue and break statements:
int main()
{ int n;

for (;;)
{ cout << "Enter int: "; cin >> n;

if (n%2 == 0) continue;
if (n%3 == 0) break;
cout << "\tBottom of loop.\n";

}
cout << "\tOutside of loop.\n";

}

When n has the value 7, both if conditions are false and control reaches the bottom of the loop. When
n has the value 4, the first if condition is true (4 is a multiple of 2), so control skips over the rest of the
statements in the loop and jumps immediately to the top of the loop again to continue with its next
iteration. When n has the value 9, the first if condition is false (9 is not a multiple of 2) but the second if
condition is true (9 is a multiple of 3), so control breaks out of the loop and jumps immediately to the first
statement that follows the loop.

1
2 4
3 6 9
4 8 12 16
5 10 15 20 25
6 12 18 24 30 36
7 14 21 28 35 42 49
8 16 24 32 40 48 56 64
9 18 27 36 45 54 63 72 81

10 20 30 40 50 60 70 80 90 100
11 22 33 44 55 66 77 88 99 110 121
12 24 36 48 60 72 84 96 108 120 132 144

Enter int: 7
Bottom of loop.

Enter int: 4
Enter int: 9

Outside of loop.

74 ITERATION [CHAP. 4

4.7 THE goto STATEMENT

The break statement, the continue statement, and the switch statement each cause the pro-
gram control to branch to a location other than where it normally would go. The destination of
the branch is determined by the context: break goes to the next statement outside the loop, con-
tinue goes to the loop’s continue condition, and switch goes to the correct case constant. All
three of these statements are called jump statements because they cause the control of the pro-
gram to “jump over” other statements.

The goto statement is another kind of jump statement. Its destination is specified by a label
within the statement.

A label is simply an identifier followed by a colon placed in front of a statement. Labels work
like the case statements inside a switch statement: they specify the destination of the jump.

Example 4.22 illustrated how a break normally behaves within nested loops: execution
breaks out of only the innermost loop that contains the break statement. Breaking out of several
or all of the loops in a nest requires a goto statement, as the next example illustrates.

EXAMPLE 4.24 Using a goto Statement to Break Out of a Nest of Loops

int main()
{ const int N=5;

for (int i=0; i<N; i++)
{ for (int j=0; j<N; j++)

{ for (int k=0; k<N; k++)
if (i+j+k>N) goto esc;
else cout << i+j+k << " ";

cout << "* ";
}

esc: cout << "." << endl; // inside the i loop, outside the j loop
}

}

When the goto is reached inside the innermost k loop, program execution jumps out to the labeled
output statement at the bottom of the outermost i loop. Since that is the last statement in the i loop, the i
loop will go on to its next iteration after executing that statement.

When i and j are 0, the k loop iterates 5 times, printing 0 1 2 3 4 followed by a star *. Then j
increments to 1 and the k loop iterates 5 times again, printing 1 2 3 4 5 followed by a star *. Then j
increments to 2 and the k loop iterates 4 times, printing 2 3 4 5. But then on the next iteration of the k
loop, i = 0, j = 2, and k = 4, so i+j+k = 6, causing the goto statement to execute for the first time. So
execute jumps immediately to the labeled output statement, printing a dot and advancing to the next line.
Note that both the k loop and the j loop are aborted before finishing all their iterations.

Now i = 1 and the middle j loop begins iterating again with j = 0. The k loop iterates 5 times, printing
1 2 3 4 5 followed by a star *. Then j increments to 1 and the k loop iterates 4 times, printing 2 3
4 5. But then on the next iteration of the k loop, i = 1, j = 2, and k = 3, so i+j+k = 6, causing the goto
statement to execute for the second time. Again execution jumps immediately to the labeled output
statement, printing a dot and advancing to the next line.

0 1 2 3 4 * 1 2 3 4 5 * 2 3 4 5 .
1 2 3 4 5 * 2 3 4 5 .
2 3 4 5 .
3 4 5 .
4 5 .

CHAP. 4] ITERATION 75

On the subsequent three iterations of the outer i loop, the inner k loop never completes its iterations
because i+j+4 is always greater than 5 (because i is greater than 2). So no more stars are printed.

Note that the labeled output statement could be placed inside any of the loops or even outside of all of
them. In the latter case, the goto statement would terminate all three of the loops in the nest.

Also note how the labeled statement is indented. The convention is to shift it to the left one indentation
level to make it more visible. If it were not a labeled statement, it would be indented as

}
cout << "." << endl;

}
instead of

}
esc: cout << "." << endl;
}

Example 4.24 illustrates one way to break out of a nest of loops. Another method is to use a
flag. A flag is a boolean variable that is initialized to false and then later set to true to signal
an exceptional event; normal program execution is interrupted when the flag becomes true. This
is illustrated by the following example.

EXAMPLE 4.25 Using a Flag to Break Out of a Nest of Loops

This program has the same output as that in Example 4.24:
int main()
{ const int N=5;

bool done=false;
for (int i=0; i<N; i++)
{ for (int j=0; j<N && !done; j++)

{ for (int k=0; k<N && !done; k++)
if (i+j+k>N) done = true;
else cout << i+j+k << " ";

cout << "* ";
}
cout << "." << endl; // inside the i loop, outside the j loop
done = false;

}
}

When the done flag becomes true, both the innermost k loop and the middle j loop will terminate, and
the outer i loop will finish its current iteration by printing the dot, advancing to the beginning of the next
line, and resetting the done flag to false. Then it starts its next iteration, the same as in Example 4.24.

4.8 GENERATING PSEUDO-RANDOM NUMBERS

One of the most important applications of computers is the simulation of real-world systems.
Most high-tech research and development is heavily dependent upon this technique for studying
how systems work without actually having to interact with them directly.

Simulation requires the computer generation of random numbers to model the uncertainty of
the real world. Of course, computers cannot actually generate truly random numbers because
computers are deterministic: given the same input, the same computer will always produce the

76 ITERATION [CHAP. 4

same output. But it is possible to generate numbers that appear to be randomly generated; i.e.,
numbers that are uniformly distributed within a given interval and for which there is no discern-
ible pattern. Such numbers are called pseudo-random numbers.

The Standard C header file <cstdlib> defines the function rand() which generates
pseudo-random integers in the range 0 to RAND_MAX, which is a constant that is also defined in
<cstdlib>. Each time the rand() function is called, it generates another unsigned integer in
this range.

EXAMPLE 4.26 Generating Pseudo-Random Numbers

This program uses the rand() function to generate pseudo-random numbers:
#include <cstdlib> // defines the rand() function and RAND_MAX const

#include <iostream>

using namespace std;

int main()

{ // prints pseudo-random numbers:

for (int i = 0; i < 8; i++)

cout << rand() << endl;

cout << "RAND_MAX = " << RAND_MAX << endl;

}

On each run, the computer generates 8 unsigned integers that are uniformly distributed in the
interval 0 to RAND_MAX, which is 2,147,483,647 on this computer. Unfortunately each run produces the
same sequence of numbers. This is because they are generated from the same “seed.”

Each pseudo-random number is generated from the previously generated pseudo-random
number by applying a special “number crunching” function that is defined internally. The first
pseudo-random number is generated from an internally defined variable, called the seed for the
sequence. By default, this seed is initialized by the computer to be the same value every time the
program is run. To overcome this violation of pseudo-randomness, we can use the srand()

function to select our own seed.

1103527590
377401575
662824084
1147902781
2035015474
368800899
1508029952
486256185
RAND_MAX = 2147483647

1103527590
377401575
662824084
1147902781
2035015474
368800899
1508029952
486256185
RAND_MAX = 2147483647

CHAP. 4] ITERATION 77

EXAMPLE 4.27 Setting the Seed Interactively

This program is the same as the one in Example 4.26 except that it allows the pseudo-random number
generator’s seed to be set interactively:

#include <cstdlib> // defines the rand() and srand() functions
#include <iostream>
using namespace std;

int main()
{ // prints pseudo-random numbers:

unsigned seed;
cout << "Enter seed: ";
cin >> seed;
srand(seed); // initializes the seed
for (int i = 0; i < 8; i++)

cout << rand() << endl;
}

The line srand(seed) assigns the value of the variable seed to the internal “seed” used by the
rand() function to initialize the sequence of pseudo-random numbers that it generates. Different seeds
produce different results.

Note that the seed value 12345 used in the third run of the program is the first number generated by
rand() in the first run. Consequently the first through seventh numbers generated in the third run are the
same as the second through eighth numbers generated in the first run. Also note that the sequence
generated in the second run is the same as the one produced in Example 4.26. This suggests that, on this
computer, the default seed value is 1.

Enter seed: 0
12345
1406932606
654583775
1449466924
229283573
1109335178
1051550459
1293799192

Enter seed: 1
1103527590
377401575
662824084
1147902781
2035015474
368800899
1508029952
486256185

Enter seed: 12345
1406932606
654583775
1449466924
229283573
1109335178
1051550459
1293799192
794471793

78 ITERATION [CHAP. 4

The problem of having to enter a seed value interactively can be overcome by using the com-
puter’s system clock. The system clock keeps track of the current time in seconds. The
time() function defined in the header file <ctime> returns the current time as an unsigned

integer. This then can be used as the seed for the rand() function.

EXAMPLE 4.28 Setting the Seed from the System Clock

This program is the same as the one in Example 4.27 except that it sets the pseudo-random number
generator’s seed from the system clock.

Note: if your compiler does not recognize the <ctime> header, then use the pre-standard
<time.h> header instead.

#include <cstdlib> // defines the rand() and srand() functions
#include <ctime> // defines the time() function
#include <iostream>
//#include <time.h> // use this if <ctime> is not recognized
using namespace std;
int main()
{ // prints pseudo-random numbers:

unsigned seed = time(NULL); // uses the system clock
cout << "seed = " << seed << endl;
srand(seed); // initializes the seed
for (int i = 0; i < 8; i++)

cout << rand() << endl;
}

Here are two runs using a UNIX workstation running a Motorola processor:

On the first run, the time() function returns the integer 808,148,157 which is used to “seed” the ran-
dom number generator. The second run is done 3 seconds later, so the time() function returns the inte-
ger 808,148,160 which generates a completely different sequence.

Here are two runs using a Windows PC running an Intel processor:

In many simulation programs, one needs to generate random integers that are uniformly dis-
tributed in a given range. The next example illustrates how to do that.

seed = 808148157
1877361330
352899587
1443923328
1857423289
200398846
1379699551
1622702508
715548277

seed = 808148160
892939769
1559273790
1468644255
952730860
1322627253
1305580362
844657339
440402904

CHAP. 4] ITERATION 79

EXAMPLE 4.29 Generating Pseudo-Random Numbers in Given Range

This program is the same as the one in Example 4.28 except that the pseudo-random numbers that it
generates are restricted to given range:

#include <cstdlib>
#include <ctime> // defines the time() function
#include <iostream>
//#include <time.h> // use this if <ctime> is not recognized
using namespace std;
int main()
{ // prints pseudo-random numbers:

unsigned seed = time(NULL); // uses the system clock
cout << "seed = " << seed << endl;
srand(seed); // initializes the seed
int min, max;
cout << "Enter minimum and maximum: ";
cin >> min >> max; // lowest and highest numbers
int range = max - min + 1; // number of numbers in range
for (int i = 0; i < 20; i++)
{ int r = rand()/100%range + min;

cout << r << " ";
}
cout << endl;

}
Here are two runs:

The first run generates 20 integers uniformly distributed between 1 and 100. The second run generates
20 integers uniformly distributed between 22 and 66.

seed = 943364015
2948
15841
72
25506
30808
29709
13115
2527

seed = 943364119
17427
20464
13149
5702
12766
1424
16612
31746

seed = 808237677
Enter minimum and maximum: 1 100
85 57 1 10 5 73 81 43 46 42 17 44 48 9 3 74 41 4 30 68

seed = 808238101
Enter minimum and maximum: 22 66
63 29 56 22 53 57 39 56 43 36 62 30 41 57 26 61 59 26 28

80 ITERATION [CHAP. 4

In the for loop, we divide rand() by 100 first to strip way the two right-most digits of the random
number. This is to compensate for the problem that this particular random number generator has of
producing numbers that alternate odd and even. Then rand()/100%range produces random numbers
in the range 0 to range-1, and rand()/100%range + min produces random numbers in the range
min to max.

Review Questions

4.1 What happens in a while loop if the control condition is false (i.e., zero) initially?
4.2 When should the control variable in a for loop be declared before the loop (instead of within

its control mechanism)?
4.3 How does the break statement provide better control of loops?
4.4 What is the minimum number of iterations that

a. a while loop could make?
b. a do..while loop could make?

4.5 What is wrong with the following loop:
while (n <= 100)
sum += n*n;

4.6 If s is a compound statement, and e1, e2, and e3 are expressions, then what is the difference
between the program fragment:

for (e1; e2; e3)
s;

and the fragment:
e1;
while (e2)
{ s;

e3;
}

4.7 What is wrong with the following program:
int main()
{ const double PI;

int n;

PI = 3.14159265358979;
n = 22;

}

4.8 What is an “infinite loop,” and how can it be useful?
4.9 How can a loop be structured so that it terminates with a statement in the middle of its block?
4.10 Why should tests for equality with floating-point variables be avoided?

Problems

4.1 Trace the following code fragment, showing the value of each variable each time it changes:
float x = 4.15;

for (int i=0; i < 3; i++)
x *= 2;

CHAP. 4] ITERATION 81

4.2 Assuming that e is an expression and s is a statement, convert each of the following for

loops into an equivalent while loop:
a. for (; e;) s
b. for (; ; e) s

4.3 Convert the following for loop into a while loop:
for (int i=1; i <= n; i++)

cout << i*i << " ";
4.4 Describe the output from this program:

int main()
{ for (int i = 0; i < 8; i++)

if (i%2 == 0) cout << i + 1 << "\t";
else if (i%3 == 0) cout << i*i << "\t";
else if (i%5 == 0) cout << 2*i - 1 << "\t";
else cout << i << "\t";

}
4.5 Describe the output from this program:

int main()
{ for (int i=0; i < 8; i++)

{ if (i%2 == 0) cout << i + 1 << endl;
else if (i%3 == 0) continue;
else if (i%5 == 0) break;
cout << "End of program.\n";

}
cout << "End of program.\n";

}
4.6 In a 32-bit float type, 23 bits are used to store the mantissa and 8 bits are used to store the

exponent.
a. How many significant digits of precision does the 32-bit float type yield?
b. What is the range of magnitude for the 32-bit float type?

4.7 Write and run a program that uses a while loop to compute and prints the sum of a given
number of squares. For example, if 5 is input, then the program will print 55, which equals 12

+ 22 + 32 + 42 + 52.
4.8 Write and run a program that uses a for loop to compute and prints the sum of a given num-

ber of squares.
4.9 Write and run a program that uses a do..while loop to compute and prints the sum of a

given number of squares.
4.10 Write and run a program that directly implements the quotient operator / and the remainder

operator % for the division of positive integers.
4.11 Write and run a program that reverses the digits of a given positive integer. (See Problem

3.13 on page 51.)
4.12 Apply the Babylonian Algorithm to compute the square root of 2. This algorithm (so called

because it was used by the ancient Babylonians) computes by repeatedly replacing one
estimate x with the closer estimate (x + 2/x)/2. Note that this is simply the average of x and
2/x.

4.13 Write a program to find the integer square root of a given number. That is the largest integer
whose square is less than or equal to the given number.

4.14 Implement the Euclidean Algorithm for finding the greatest common divisor of two given
positive integers. This algorithm transforms a pair of positive integers (m, n) into a pair (d, 0)
by repeatedly dividing the larger integer by the smaller integer and replacing the larger with

2

82 ITERATION [CHAP. 4

the remainder. When the remainder is 0, the other integer in the pair will be the greatest com-
mon divisor of the original pair (and of all the intermediate pairs). For example, if m is 532
and n is 112, then the Euclidean Algorithm reduces the pair (532,112) to (28,0) by

(532,112) → (112,84) → (84,28) → (28,0).

So 28 is the greatest common divisor of 532 and 112. This result can be verified from the
facts that 532 = 28·19 and 112 = 28·8. The reason that the Euclidean Algorithm works is that
each pair in the sequence has the same set of divisors, which are precisely the factors of the
greatest common divisor. In the example above, that common set of divisors is {1, 2, 4, 7, 14,
28}. The reason that this set of divisors is invariant under the reduction process is that when
m = n·q + r, a number is a common divisor of m and n if and only if it is a common divisor of
n and r.

Answers to Review Questions

4.1 If the control condition of a while loop is initially false, then the loop is skipped altogether; the state-
ment(s) inside the loop are not executed at all.

4.2 The control variable in a for loop has to be declared before the loop (instead of within its control
mechanism) if it is used outside of the loop’s statement block, as in Example 4.14 on page 67.

4.3 The break statement provides better control of loops by allowing immediate termination of the loop
after any statement within its block. Without a break statement, the loop can terminate only at the
beginning or at the end of the block.

4.4 a. The minimum number of iterations that a while loop could make is 0.

b. The minimum number of iterations that a do..while loop could make is 1.

4.5 That is an infinite loop because the value of its control variable n does not change.

4.6 There is no difference between the effects of those two program fragments, unless s is a break state-
ment or s is a compound statement (i.e., a block) that contains a break statement or a continue
statement. For example, this for statement will iterate 4 times and then terminate normally:

for (i = 0; i < 4; i++)

if (i == 2) continue;

but this while statement will be an infinite loop:

i = 0;

while (i < 4)

{ if (i == 2) continue;

i++;

}

4.7 The constant PI is not initialized. Every constant must be initialized at its declaration.

4.8 An infinite loop is one that continues without control; it can be stopped only by a branching statement
within the loop (such as a break or goto statement) or by aborting the program (e.g., with Ctrl+C).
Infinite loops are useful if they are stopped with branching statements.

4.9 A loop can be terminated by a statement in the middle of its block by using a break or a goto state-
ment.

4.10 Floating-point variables suffer from round-off error. After undergoing arithmetic transformations,
exact values may not be what would be expected. So a test such as (y == x) may not work cor-
rectly.

CHAP. 4] ITERATION 83

Solutions to Problems

4.1 First, x is initialized to 4.15 and i is initialized to 0. Then x is doubled three times by the three itera-
tions of the for loop.

4.2 The equivalent while loops are:
a. while (e) s;
b. while (true) { s; e; }, assuming that s contains no break or continue statements.

4.3 The equivalent while loop is:
int i=1;
while (i <= n)
{ cout << i*i << " ";

i++;
}

4.4 The output is
1 1 3 9 5 9 7 7

4.5 The output is
End of program.
End of program.
3
End of program.
5
End of program.
End of program.

4.6 a. The 23 bits hold the 2nd through 24th bit of the mantissa. The first bit must be a 1, so it is not stored.
Thus 24 bits are represented. These 24 bits can hold 224 numbers. And 224 = 16,777,216, which has
7 digits with full range, so 7 complete digits can be represented. But the last digit is in doubt
because of rounding. Thus, the 32-bit float type yields 6 significant digits of precision.

b. The 8 bits that the 32-bit float type uses for its exponent can hold 28 = 256 different numbers.
Two of these are reserved for indicating underflow and overflow, leaving 254 numbers for expo-
nents. So an exponent can range from –126 to +127, yielding a magnitude range of 2–126 =
1.175494 × 10–38 to 2127 = 1.70141 × 1038.

4.7 This program uses a while loop to compute the sum of the first n squares, where n is input:
int main()
{ int n;

cout << "Enter a positive integer: ";
cin >> n;
int sum=0, i=0;
while (i++ < n)

sum += i*i;
cout << "The sum of the first " << n << " squares is "

<< sum << endl;
}

4.8 This program uses a for loop to compute the sum of the first n squares, where n is input:
int main()
{ int n;

cout << "Enter a positive integer: ";
cin >> n;
int sum=0;
for (int i=1; i <= n; i++)

Enter a positive integer: 6
The sum of the first 6 squares is 91

84 ITERATION [CHAP. 4

sum += i*i;
cout << "The sum of the first " << n << " squares is "

<< sum << endl;
}

4.9 This program uses a do..while loop to compute the sum of the first n squares, where n is input:
int main()
{ int n;

cout << "Enter a positive integer: ";
cin >> n;
int sum=0, i=1;
do
{ sum += i*i;
}
while (i++ < n);
cout << "The sum of the first " << n << " squares is "

<< sum << endl;
}

4.10 This program directly implements the quotient operator / and the remainder operator % for the
division of positive integers. The algorithm used here, applied to the fraction n/d, repeatedly sub-
tracts the d from the n until n is less than d. At that point, the value of n will be the remainder, and
the number q of iterations required to reach it will be the quotient:

int main()
{ int n, d, q, r;

cout << "Enter numerator: ";
cin >> n;
cout << "Enter denominator: ";
cin >> d;
for (q = 0, r = n; r >= d; q++)

r -= d;
cout << n << " / " << d << " = " << q << endl;
cout << n << " % " << d << " = " << r << endl;
cout << "(" << q << ")(" << d << ") + (" << r << ") = "

<< n << endl;
}

This run iterated 4 times: 30 – 7 = 23, 23 – 7 = 16, 16 – 7 = 9, and 9 – 7 = 2. So the quotient is 4, and
the remainder is 2. Note that this relationship must always be true for integer division:

(quotient)(denominator) + (remainder) = numerator
4.11 The trick here is to strip off the digits one at a time from the given integer and “accumulate” them in

reverse in another integer:
int main()
{ long m, d, n = 0;

cout << "Enter a positive integer: ";
cin >> m;

Enter a positive integer: 6
The sum of the first 6 squares is 91

Enter a positive integer: 6
The sum of the first 6 squares is 91

Enter numerator: 30
Enter denominator: 7
30 / 7 = 4
30 % 7 = 2
(4)(7) + (2) = 30

CHAP. 4] ITERATION 85

while (m > 0)
{ d = m % 10; // d will be the right-most digit of m

m /= 10; // then remove that digit from m
n = 10*n + d; // and append that digit to n

}
cout << "The reverse is " << n << endl;

}

In this run, m begins with the value 123,456. In the first iteration of the loop, d is assigned the digit 6,
m is reduced to 12,345, and n is increased to 6. On the second iteration, d is assigned the digit 5, m is
reduced to 1,234, and n is increased to 65. On the third iteration, d is assigned the digit 4, m is reduced
to 123, and n is increased to 654. This continues until, on the sixth iteration, d is assigned the digit 1,
m is reduced to 0, and n is increased to 654,321.

4.12 This implements the Babylonian Algorithm:
#include <cmath> // defines the fabs() function
#include <iostream>
using namespace std;
int main()
{ const double TOLERANCE = 5e-8;

double x = 2.0;
while (fabs(x*x - 2.0) > TOLERANCE)
{ cout << x << endl;

x = (x + 2.0/x)/2.0; // average of x and 2/x
}
cout << "x = " << x << ", x*x = " << x*x << endl;

}

We use a “tolerance” of 5e-8 (= 0.00000005) to ensure accuracy to 7 decimal places. The fabs()
function (for “floating-point absolute value”), defined in the <cmath> header file, returns the abso-
lute value of the expression passed to it. So the loop continues until x*x is within the given tolerance
of 2.

4.13 This program finds the integer square root of a given number. This method uses an “exhaustive” algo-
rithm to find all the positive integers whose square is less than or equal to the given number:

int main()
{ float x;

cout << "Enter a positive number: ";
cin >> x;
int n = 1;
while (n*n <= x)

++n;
cout << "The integer square root of " << x << " is "

<< n-1 << endl;
}

Enter a positive integer: 123456
The reverse is 654321

2
1.5
1.41667
1.41422
x = 1.41421, x*x = 2

Enter a positive number: 1234.56
The integer square root of 1234.56 is 35

86 ITERATION [CHAP. 4

It starts with n=1 and continues to increment n until n*n > x. When the for loop terminates, n
is the smallest integer whose square is greater than x, so n-1 is the integer square root of x. Note the
use of the null statement in the for loop. Everything that needs to be done in the loop is done within
the control parts of the loop. But the semicolon is still necessary at the end of the loop.

4.14 This implements the Euclidean Algorithm:
int main()
{ int m, n, r;

cout << "Enter two positive integers: ";
cin >> m >> n;
if (m < n) { int temp = m; m = n; n = temp; } // make m >= n
cout << "The g.c.d. of " << m << " and " << n << " is ";
while (n > 0)
{ r = m % n;

m = n;
n = r;

}
cout << m << endl;

}
Enter two positive integers: 532 112
The g.c.d. of 532 and 112 is 28

