Chapter 1

Programming is best regarded as

the process of creating works of literature,
which are meant to be read.

—Donald E. Knuth

Elementary C++ Programming

A program s a sequence of instructions that can be executed by a computer. Every program is
written in some programming language. C++ (pronounced “ see-plus-plus’) is one of the most
powerful programming languages available. It gives the programmer the power to write
efficient, structured, object-oriented programs.

1.1 GETTING STARTED

To write and run C++ programs, you need to have atext editor and a C++ compiler installed
on your computer. A text editor is a software system that allows you to create and edit text files
on your computer. Programmers use text editors to write programs in a programming language
such as C++. A compiler isa software system that translates programs i nto the machine language
(called binary code) that the computer’s operating system can then run. That translation process
is caled compiling the program. A C++ compiler compiles C++ programs into machine
language.

If your computer is running a version of the Microsoft Windows operating system (e.g.,
Windows 98 or Windows 2000), then it already has two text editors. WordPad and Notepad.
These can be started from the Start key. In Windows 98, they are listed under Accessories.

Windows does not come with a built-in C++ compiler. So unless someone has installed a C++
compiler on the machine you are using, you will have to do that yourself. If you are using a
Windows computer that is maintained by someone else (e.g., an Information Services depart-
ment at your school or company), you may find a C++ compiler aready installed. Use the Start
key to look under Programs for Borland C++Builder, Metrowerks CodeWarrior, Microsoft Visual
C++, or any other program with “C++” in its name. If you have to buy your own C++ compiler,
browse the Web for inexpensive versions of any of the compilers mentioned above. These are
usually referred to as IDEs (Integrated Development Environments) because they include their
own specialized text editors and debuggers.

If your computer is running a proprietary version of the UNIX operating system on a worksta-
tion (e.g., Sun Solaris on a SPARCstation), it may already have a C++ compiler installed. An
easy way to find out is to create the program shown in Example 1.1 on page 2, nameit hello.c,
and then try to compile it with the command

CC hello

The Free Software Foundation has a suite of UNIX software, named “GNU” software that can
be downloaded for free from

http://www.gnu.org/software/software.html

1

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

2 ELEMENTARY C++ PROGRAMMING [CHAP. 1

Use their GCC package which includes a C++ compiler and their Emacs editor. For DOS
systems, use their DIJGPP which includes a C++ compiler.

1.2 SOME SIMPLE PROGRAMS

Now you have a text editor for writing C++ programs and a C++ compiler for compiling
them. If you are using an IDE such as Borland C++Builder on a PC, then you can compile and
run your programs by clicking on the appropriate buttons. Other systems may require you to use
the command line to run your programs. In that case, you do so by entering the file name as a
command. For example, if your source codeisin afile named hello.cpp, type

hello
at the command line to run the program after it has been compiled.

When writing C++ programs, remember that C++ is case-sensitive. That means that main ()
isdifferent from main (). The safest policy isto type everything in lower-case except when you
have a compelling reason to capitalize something.

EXAMPLE 1.1 The“Héello, World” Program

This program simply prints “Hello, World!”:
#include <iostream>
int main()
{ std::cout << "Hello, World!\n";
}

The first line of this source code is a preprocessor directive that tells the C++ compiler where to find
the definition of the std: : cout object that is used on the third line. The identifier iostream is the
name of afilein the andard C++ Library. Every C++ program that has standard input and output must
include this preprocessor directive. Note the required punctuation: the pound sign # is required to
indicate that the word “include” is a preprocessor directive; the angle brackets < > are required to
indicate that the word “iostream” (which stands for “input/output stream”) is the name of a Standard
C++ Library file. The expression <iostreams iscalled astandard header.

The second line is also required in every C++ program. It tells where the program begins. The identi-
fier main is the name of a function, called the main function of the program. Every C++ program must
have one and only onemain () function. The required parentheses that follow the word “main” indicate
that it isafunction. The keyword int isthe name of adata typein C++. It stands for “integer”. It is used
here to indicate the return type for themain () function. When the program has finished running, it can
return an integer value to the operating system to signal some resulting status.

The last two lines constitute the actual body of the program. A program body is a sequence of program
statements enclosed in braces { }. In this example thereis only one statement:

std::cout << "Hello, World!\n";

It saysto send thestring "Hello, World!\n" to the standard output streamobject std: :cout.
Thesinglesymbol << representsthe C++ output operator. When this statement executes, the characters
enclosed in quotation marks " " are sent to the standard output device which is usually the computer
screen. The last two characters \n represent the newline character. When the output device encounters
that character, it advances to the beginning of the next line of text on the screen. Finally, note that every
program statement must end with a semicolon (;).

Notice how the program in Example 1.1 is formatted in four lines of source code. That format-
ting makes the code easier for humans to read. The C++ compiler ignores such formatting. It

CHAP. 1] ELEMENTARY C++ PROGRAMMING 3

reads the program the same as if it were written all on oneling, like this:
#include <iostream>
int main() {std::cout<<"Hello, World!\n";}

Blank spaces are ignored by the compiler except where needed to separate identifiers, asin
int main

Note that the preprocessor directive must precede the program on a separate line.

EXAMPLE 1.2 Another “Hello, World” Program

This program has the same output as that in Example 1.1:
#include <iostream>
using namespace std;
int main()
{ // prints "Hello, World!":
cout << "Hello, World!\n";
return 0;
}
The second line
using namespace std;
tellsthe C++ compiler to apply the prefix std:: toresolve namesthat need prefixes. It allows usto use
cout inplace of std: :cout. Thismakeslarger programs easier to read.
Thefourth line
{ // prints "Hello, World!™"
includesthe comment “prints "Hello, World!"”.A commentinaprogram isastring of characters
that the preprocessor removes before the compiler compiles the programs. It is included to add explana-
tions for human readers. In C++, any text that follows the double slash symbol //, up to the end of the
ling, isa comment. You can a so use C style comments, like this:
{ /* prints "Hello, World!" */
A C style comment (introduced by the programming language named “C") is any string of characters
between the symbol /* and the symbol */. These comments can run over several lines.
The sixth line
return O;
isoptional for the main () functionin Standard C++. We include it here only because some compilers
expect it to be included as the last line of the main () function.

A namespace is a named group of definitions. When objects that are defined within a
namespace are used outside of that namespace, either their names must be prefixed with the
name of the namespace or they must be in a block that is preceded by a using namespace
statement. Namespaces make it possible for a program to use different objects with the same
name, just as different people can have the same name. The cout object is defined within a
namespace named std (for “standard”) inthe <iostreams> header file.

Throughout the rest of this book, every program is assumed to begin with the two lines

#include <iostream>
using namespace std;
These two required lines will be omitted in the examples. We will also omit the line
return O;
from the main () function. Be sure also to include this line if you are using a compiler (such as
Microsoft Visual C++) that expects it.

4 ELEMENTARY C++ PROGRAMMING [CHAP. 1

1.3 THE OUTPUT OPERATOR

The symbol << iscalled the output operator in C++. (It is aso called the put operator or the
stream insertion operator.) It inserts values into the output stream that is named on its left. We
usually usethe cout output stream, which ordinarily refers to the computer screen. So the state-
ment

cout << 66;
would display the number 66 on the screen.

An operator is something that performs an action on one or more objects. The output operator
<< performs the action of sending the value of the expression listed on its right to the output
stream listed on its left. Since the direction of this action appears to be from right to left, the
symbol << was chosen to represent it. It should remind you of an arrow pointing to the | eft.

The cout object is called a*“stream” because output sent to it flows like a stream. If several
things are inserted into the cout stream, they fall in line, one after the other as they are dropped
into the stream, like leaves falling from atree into a natural stream of water. The values that are
inserted into the cout stream are displayed on the screen in that order.

EXAMPLE 1.3 Yet Another “Hello, World” Program

This program has the same output as that in Example 1.1:
int main()
{ // prints "Hello, World!":
cout << "Hel" << "lo, Wo" << "rld!" << endl;

}
The output operator is used four times here, dropping the four objects "Hel", "1o, Wo", "rld!", and
endl into the output stream. The first three are strings that are concatenated together (i.e., strung
end-to-end) to form the single string "Hello, World!". The fourth object is the stream manipulator
object end1 (meaning “end of line"). It does the same as appending the endline character '\n' tothe
string itself: it sends the print cursor to the beginning of the next line. It also “flushes’ the output buffer.

1.4 CHARACTERSAND LITERALS

The three objects "Hel", "1o, won, and "r1d!" in Example 1.3 are called string literals.
Each literal consists of a sequence of characters delimited by quotation marks.

A character is an elementary symbol used collectively to form meaningful writing. English
writers use the standard Latin alphabet of 26 lower case letters and 26 upper case letters along
with the 10 Hindu-Arabic numerals and a collection of punctuation marks. Characters are stored
in computers as integers. A character set code is a table that lists the integer value for each
character in the set. The most common character set code in use at the end of the millennium is
the ASCII Code, shown in Appendix A. The acronym (pronounced “as-key”) stands for Ameri-
can Standard Code for Information Interchange.

The newline character '\n' is one of the nonprinting characters. It is a single character
formed using the backslash \ and the letter n. There are several other characters formed thisway,
including the horizontal tab character '\t ' and the alert character ' \a'. The backslash is aso
used to denote the two printing characters that could not otherwise be used within a string literal :
the quote character \ " and the backslash character itself \\.

CHAP. 1] ELEMENTARY C++ PROGRAMMING 5

Characters can be used in a program statement as part of a string literal, or as individual
objects. When used individually, they must appear as character constants. A character constant is
acharacter enclosed in single quotes. Asindividual objects, character constants can be output the
same way string literals are.

EXAMPLE 1.4 A Fourth Version of the“Hello, World” Program

This program has the same output as that in Example 1.1:
int main()
{ // prints "Hello, World!":
cout << "Hello, W" << 'o' << "rld" << '"!' << '\n';

}
This shows that the output operator can process characters as well as string literals. The three individua
characters 'o', "1 ', and '\n' are concatenated into the output the same was as the two string literals
"Hello, W"and "rld".

EXAMPLE 1.5 Inserting Numeric Literalsinto the Standard Output Stream

int main()
{ // prints "The Millennium ends Dec 31 2000.":
cout << "The Millennium ends Dec " << 3 << 1 << ' ' << 2000 << endl;

}

When numeric literals like 3 and 2000 are passed to the output stream they are automatically
converted to string literals and concatenated the same way as characters. Note that the blank character
(*) must be passed explicitly to avoid having the digits run together.

1.5 VARIABLES AND THEIR DECLARATIONS

A variableis asymbol that represents a storage location in the computer’s memory. The infor-
mation that is stored in that location is called the value of the variable. One common way for a
variable to obtain avalue is by an assignment. This has the syntax

variable = expression;
First the expression isevaluated and then the resulting value is assigned to the variable. The
equals sign “=" isthe assignment operator in C++.

EXAMPLE 1.6 Using Integer Variables

In this example, the integer 44 is assigned to the variable m, and the value of the expression m + 33
is assigned to the variable n:
int main ()
{ // prints "m = 44 and n = 77":
int m, n;

m = 44; // assigns the value 44 to the variable m
cout << "m = " << m;

n=m+ 33; // assigns the value 77 to the variable n
cout << " and n = " << n << endl;

}
The output from the program is shown in the shaded panel at the top of the next page.

6 ELEMENTARY C++ PROGRAMMING [CHAP. 1

m = 44 and n = 77

We can view the variablesm and n like this; m n
The variable named m is like amailbox. Its name int int

m is like the address on a mailbox, its value 44 is like the contents of a mailbox, and itstype int islikea
legal classification of mailboxes that stipulates what may be placed inside it. The type int meansthat the
variable holds only integer values.

Note in this example that both m and n are declared on the same line. Any number of variables can be
declared together thisway if they have the same type.

Every variable in a C++ program must be declared beforeit is used. The syntax is
specifier type name initializer;
where specifier is an optiona keyword such as const (see Section 1.8), type is one of the
C++ datatypes such as int, name is the name of the variable, and initializer isan optional
initialization clause such as =44 (see Section 1.7).

The purpose of a declaration is to introduce a name to the program; i.e., to explain to the
compiler what the name means. The type tells the compiler what range of values the variable
may have and what operations can be performed on the variable.

The location of the declaration within the program determines the scope of the variable: the
part of the program where the variable may be used. In general, the scope of a variable extends
from its point of declaration to the end of the immediate block in which it is declared or which it
controls.

1.6 PROGRAM TOKENS

A computer program is a sequence of elements called tokens. These tokens include keywords
such as int, identifiers such as main, punctuation symbols such as {, and operators such as <«<.
When you compile your program, the compiler scans the text in your source code, parsing it into
tokens. If it finds something unexpected or doesn’t find something that was expected, then it
aborts the compilation and issues error messages. For example, if you forget to append the
semicolon that is required at the end of each statement, then the message will report the missing
semicolon. Some syntax errors such as a missing second quotation mark or a missing closing
brace may not be described explicitly; instead, the compiler will indicate only that it found
something wrong near that location in your program.

EXAMPLE 1.7 A Program’s Tokens

int main()
{ // prints "n = 44":
int n=44;
cout << "n = " << n << endl;
}
The output is
n = 44
This source code has 19 tokens: “int”, “main”, “ (", *)”, “{", “int”, “n”", “=", “44",“;", “cout”,
‘e Mrno= T e ", << "endl”, 7, and “ } 7. Note that the compiler ignores the comment
symbol // and thetext that followsit on the second line.

CHAP. 1] ELEMENTARY C++ PROGRAMMING 7

EXAMPLE 1.8 An Erroneous Program

Thisis the same program as above except that the required semicolon on the third line is missing:
int main()
{ // THIS SOURCE CODE HAS AN ERROR:
int n=44
cout << "n = " << n << endl;
}
One compiler issued the following error message:
Error : ;' expected
Testing.cpp line 4 cout << "n = " << n << endl;
This compiler underlines the token where it finds the error. In this case, that is the “cout” token at the
beginning of the fourth line. The missing token was not detected until the next token was encountered.

1.7 INITIALIZING VARIABLES

In most cases it iswiseto initialize variables where they are declared.
EXAMPLE 1.9 Initializing Variables

This program contains one variable that is not initialized and one that is initialized.
int main()
{ // prints "m = ?? and n = 44":
int m; // BAD: m is not initialized
int n=44;

cout << "m = " << m << " and n = " << n << endl;

}
m = ?? and n = 44

The output is shown in the shaded box.

Thiscompiler handles uninitialized variablesin a specia way. It givesthem aspecial value that appears
as »? when printed. Other compilers may simply leave “garbage’ in the variable, producing output like
this:

m = -2107339024 and n = 44

In larger programs, uninitialized variables can cause troublesome errors.

1.8 OBJECTS, VARIABLES, AND CONSTANTS

An object is a contiguous region of memory that has an address, a size, a type, and a value.
The address of an object is the memory address of its first byte. The size of an object is simply
the number of bytesthat it occupiesin memory. The value of an object isthe constant determined
by the actual bits stored in its memory location and by the object’s type which prescribes how
those bits are to be interpreted.

For example, with GNU C++ on a UNIX workstation, the object n defined by

int n = 22;
has the memory address ox3fffcde, the size 4, thetype int, and the value 22. (The memory
address is a hexadecimal number. See Appendix G.)

8 ELEMENTARY C++ PROGRAMMING [CHAP. 1

The type of an object is determined by the programmer. The value of an object may also be
determined by the programmer at compile time, or it may be determined at run-time. The size of
an object is determined by the compiler. For example, in GNU C++ an int hassize 4, whilein
Borland C++ its size is 2. The address of an object is determined by the computer’s operating
system at run-time.

Some objects do not have names. A variable is an object that has a name. The object defined
aboveisavariable withname ‘n’.

The word “variable’ is used to suggest that the object’s value can be changed. An object
whose value cannot be changed is called a constant. Constants are declared by preceding its type
specifier with the keyword const, like this:

const int N = 22;
Constants must be initialized when they are declared.

EXAMPLE 1.10 The const Specifier

This program illustrates constant definitions;

int main()

{ // defines constants; has no output:
const char BEEP = '\b';
const int MAXINT = 2147483647;
const int N = MAXINT/2;
const float KM_PER MI = 1.60934;
const double PI = 3.14159265358979323846;

}

Constants are usually defined for values like rt that will be used more than once in a program
but not changed.

It is customary to use al capital letters in constant identifiers to distinguish them from other
kinds of identifiers. A good compiler will replace each constant symbol with its numeric value.

1.9 THE INPUT OPERATOR

In C++, input isalmost as simple as output. The input operator >> (also called the get opera-
tor or the extraction operator) works like the output operator <<.

EXAMPLE 1.11 Usingthelnput Operator

int main ()
{ // tests the input of integers, floats, and characters:
int m, n;
cout << "Enter two integers: ";
cin >> m >> n;
cout << "m = " << m<< ", n =" << n << endl;
double x, vy, z;
cout << "Enter three decimal numbers: ";
cin >> x >> y >> z;
cout << "x = " << x << ", vy =" <<y << ", z =" << z << endl;
char cl, c2, c3, c4;
cout << "Enter four characters: ";

CHAP. 1] ELEMENTARY C++ PROGRAMMING 9

cin >> ¢l >> c2 >> ¢3 >> c4;
cout << "cl = " << cl << ", c2 =" << Cc2 << ", c3 =" << C3
<< ", c4 = " << c4 << endl;

Enter two integers: 22 44
m = 22, n = 44
Enter three decimal numbers: 2.2 4.4 6.6
X = 2.2, y=4.4, z = 6.6
Enter four characters: ABCD
cl = A, ¢c2 =B, ¢c3 =C, c4 =D
The input is shown in boldface in the output pand.

Review Questions

1.1 Describe the two waysto include commentsin a C++ program.
1.2 What iswrong with this program?
#include <iostream>
int main ()
{ // prints "Hello, World!":
cout << "Hello, World!\n"
}
1.3 What iswrong with the following C-style comment?
cout << "Hello, /* change? */ World.\n";
14 What'swrong with this program:
#include <iostreams;
int main
{ // prints "n = 22":
n = 22;
cout << "n = << n << endl;

}
15 What does adeclaration do?

1.6 What isthe purpose of the preprocessing directive:
#include <iostream>

1.7 What isthe shortest possible C++ program?

1.8 Where does the name*C++" come from?

19 What'swrong with these declarations:

int first = 22, last = 99, new = 44, old = 66;

1.10 In each of the following, assume that m hasthe value5 and n has the value 2 before the
statement executes. Tell what the valuesof m and n will be after each of the following
statements executes:
am *= n++;

b.m += --n;

1.11 Evauate each of the following expressions, assuming in each case that m has the value 25
and n hasthevalue7:
am-8 -n
b.m = n = 3

m%n

. m¥n++

m$++n

“~ D o0

++m - n--

10

112

113

114

1.15
1.16
117
1.18
1.19
1.20

11
12

13

14

15
16

17

1.8

19

1.10

ELEMENTARY C++ PROGRAMMING [CHAP. 1

Parse the following program, identifying all the keywords, identifiers, operators, literals,
punctuation, and comments:
int main()
{ int n;
cin >> n;
n *= 3; // multiply n by 3
cout << "n=" << n << endl;

}

Identify and correct the error in each of the following:
a. cout >> count;
b. int double=44;
How do the following two statements differ:
char ch = 'A';
char ch = 65;
What code could you execute to find the character whose ASCII code is 100?
What does “floating-point” mean, and why isit called that?
What is numeric overflow?
How isinteger overflow different from floating-point overflow?
What is arun-time error? Give examples of two different kinds of run-time errors.
What is a compile-time error? Give examples of two different kinds of compile-time errors.

Problems

Write four different C++ statements, each subtracting 1 from the integer variable n.
Write ablock of C++ code that has the same effect as the statement

100 + m++;

without using the post-increment operator.

Write ablock of C++ code that has the same effect as the statement

100 + ++m;

without using the pre-increment operator.

Write a single C++ statement that subtracts the sum of x and y from =z
increments .

Write asingle C++ statement that decrementsthe variable n and then addsit to total.
Write a program that prints the first sentence of the Gettysburg Address (or your favorite
guotation).

Write a program that prints the block letter “B” in a7 x 6 grid of stars like this:

*kkk*k

n =

n =

and then

* *
* *
*kkk*k

* *
* *

*kkk*k

Write and run a program that prints the first letter of your last name as a block letter in a
7x 7 grid of stars.

Write and run a program that shows what happens when each of the following ten “escape
sequences’ isprinted: \a, \b, \n, \r, \t, \v, \', \", \\, \>.

Write and run a program that prints the sum, difference, product, quotient, and remainder of
two integers. Initialize the integers with the values 60 and 7.

CHAP. 1] ELEMENTARY C++ PROGRAMMING 11

111

112
113
114

11

12
13
14
15

16

17
18

19

1.10

111

112

113

114

Write and run a program that prints the sum, difference, product, quotient, and remainder of
two integersthat are input interactively.

Write and run atest program that shows how your system handles uninitialized variables.
Write and run a program that causes negative overflow of avariable of type short.

Write and run a program that demonstrates round-off error by executing the following steps.
(2) initialize a variable a of type £1oat with the value 666666; (2) initialize a variable b of
type float with the value 1-1/a; (3) initialize a variable c of type f1oat with the value
1/b - 1;(4)initiadlizeavariable d of type £1oat withthevalue1/c + 1; (5) print all four
variables. Show algebraically that d = a even though the computed value of d # a. Thisis
caused by round-off error.

Answersto Review Questions

One way is to use the standard C style comment

/* like this */
The other way isto use the standard C++ style comment

// like this
Thefirst begins with a slash-star and ends with a star-slash. The second begins with a double-slash and
ends at the end of the line.
The semicolon is missing from the last statement.
Everything between the double quotes will be printed, including the intended comment.
There are four errors. the precompiler directive on the first line should not end with a semicolon, the
parentheses are missing from main (), n isnot declared, and the quotation mark on the last line has
no closing quotation mark.
A declaration tells the compiler the name and type of the variable being declared. It also may be ini-
tialized in the declaration.
It includes contents of the header file iostream into the source code. This includes declarations
needed for input and output; e.g., the output operator <<.
int main() { }
The name refers to the C language and its increment operator ++. The name suggests that C++ isan
advance over C.
The only thing wrong with these declarationsisthat new isakeyword. Keywords are reserved and
cannot be used for names of variables. See Appendix B for alist of the 62 keywordsin C++.

. mwill be 10 and n will be 3.

. mwill be6 and n will be 1.
m - 8 - n evauatesto(25-8)-7=17-7=10
m = n = 3 evauatesto3
m - 8 - n evauatesto(25-8)-7=17-7=10
m = n = 3 evauatesto3

m$n evaluatesto 25%7 = 4

. m¥n++ evaluatesto 25%(7++) = 25%7 =4

m%++n evaluatesto 25%(++7) = 25%8 = 1

++m - n-- evauaesto (++25) - (7--)=26-7=19

Thekeywordls int. Theidentifiersaremain, n, cin, cout, and endl. Theoperatorsare (), >>,
*=,and <<.Theliteralsare 3 and "n=". The punctuation symbolsare {, ;,and }.Thecomment
iS“// multiply n by 3".

a. The output object cout requires the output operator <<. It should be cout << count;

b. Theword double isakeywordin C++; it cannot be used as avariable name. Use: int d=44;

~PoOoTpTpOT

12

1.15

1.16
117

1.18

1.19

1.20

121

11

12
13
14

15
16

17

ELEMENTARY C++ PROGRAMMING [CHAP. 1

Both statements have the same effect: they declare ch to beachar and initiaize it with the value 65.
Since thisisthe ASCII codefor 'A', that character constant can also be used to initialize ch to 65.
cout << "char(100) = " << char(100) << endl;

The term “floating-point” is used to describe the way decima numbers (rational numbers) are stored
in acomputer. The name refers to the way that a rational number like 386501.294 can be represented
in the form 3.86501294x10° by letting the decimal point “float” to the left 5 places.

Numeric overflow occurs in acomputer program when the size of a numeric variable gets too big for
its type. For example, on most computers values variables of type short cannot exceed 32,767, so if
avariable of that type has the value 32,767 and is then incremented (or increased by any arithmetic
operation), overflow will occur.

When integer overflow occurs the value of the offending variable will “wrap around” to negative val-
ues, producing erroneous results. When floating-point overflow occurs, the value of the offending
variable will be set to the constant inf representing infinity.

A run-time error is an error that occurs when a program is running. Numeric overflow and division by
zero are examples of run-time errors.

A compile-time error is an error that occurs when a program is being compiled. Examples: syntax
errors such as omitting a required semicolon, using an undeclared variable, using a keyword for the
name of avariable.

Solutions to Problems

Four different statements, each subtracting 1 from the integer variable n:
an=n-1;

b.n -= 1;

C. --n;

d n--;
n = 100 + m;
++m;
++m;
n = 100 + m;
z -= (X + y++);
total += --n;

int main()

{ // prints the first sentence of the Gettysburg Address
cout << "\tFourscore and seven years ago our fathers\n";
cout << "brought forth upon this continent a new nation,\n";
cout << "conceived in liberty, and dedicated to the\n";
cout << "proposition that all men are created equal.\n";

) Fourscore and seven years ago our fathers
brought forth upon this continent a new nation,
conceived in liberty, and dedicated to the
proposition that all men are created equal.

int main ()

{ // prints "B" as a block letter

cout << "E*Ek*kEN o endl;
cout << "* *" << endl;
cout << "* *" << endl;
cout << "E*Ek*kEN o endl;
cout << "* *" << endl;

cout << "* *" << endl;

w

CHAP. 1] ELEMENTARY C++ PROGRAMMING 1

cout << "F*kkkkn" o endl;

18 int main()
{ // prints "W" as a block letter

cout << "* *" << endl;
cout << " * *" << endl;
cout << " ¥ *" << endl;
cout << " * * *" << endl;
cout << " * * % *" << endl;

cout << " * ok * *" << endl;

cout << " * *" << endl;

1.9 int main()
{ // prints escape sequences

cout << "Prints \"\\nXXYY\": " << "\nXXYY" << endl;
COUL << Momm o m oo oo " << endl;
cout << "Prints \"\\nXX\\bYY\": " << "\nXX\bYY" << endl;
COUL << Momm o m oo oo " << endl;
cout << "Prints \"\\n\\tXX\\tYY\": " << "\n\tXX\tYY" << endl;
COUL << Momm o m oo oo e " << endl;
cout << "Prints the \'\\a\' character: " << '\a' << endl;
COUL << Momm o m oo " << endl;
cout << "Prints the \'\\r\' character: " << '\r' << endl;
COUL << Momm o m o m o " << endl;
cout << "Prints the \'\\v\' character: " << '"\v' << endl;
COUL << Momm o m o oo " << endl;
cout << "Prints the \'\\?\' character: " << '"\?' << endl;

COUL << Momm o m oo oo " << endl;

14 ELEMENTARY C++ PROGRAMMING [CHAP. 1

1.10 int main()
{ // prints the results of arithmetic operators
int m = 60, n = 7;

cout << "The integers are " << m << " and " << n << endl;
cout << "Their sum is " << (m + n) << endl;
cout << "Their difference is " << (m - n) << endl;
cout << "Their product is " << (m * n) << endl;
cout << "Their quotient is " << (m / n) << endl;
cout << "Their remainder is " << (m % n) << endl;

111 int main()
{ // prints the results of arithmetic operators
int m, n;
cout << "Enter two integers: ";
cin >> m >> n;

cout << "The integers are " << m << " and " << n << endl;
cout << "Their sum is " << (m + n) << endl;
cout << "Their difference is " << (m - n) << endl;
cout << "Their product is " << (m * n) << endl;
cout << "Their quotient is " << (m / n) << endl;
cout << "Their remainder is " << (m % n) << endl;

1.12 int main()
{ // prints the values of uninitialized variables
bool b; // not initialized

cout << "b = " << b << endl;

char ¢; // not initialized

cout << "¢ = [" << ¢ << "]" << endl;
int m; // not initialized

cout << "m = " << m << endl;

int n; // not initialized

cout << "n = " << n << endl;

long nn; // not initialized

CHAP. 1] ELEMENTARY C++ PROGRAMMING 1

(@)

cout << "nn = " << nn << endl;
float x; // not initialized
cout << "x = " << X << endl;
double y; // not initialized
cout << "y = " << y << endl;

1.13 int main()
{ // prints the values an overflowing negative short int
short m=0;

cout << "m = " << m << endl;
m -= 10000; // m should be -10,000
cout << "m = " << m << endl;
m -= 10000; // m should be -20,000
cout << "m = " << m << endl;
m -= 10000; // m should be -30,000
cout << "m = " << m << endl;
m -= 10000; // m should be -40,000
cout << "m = " << m << endl;

1.14 int main()
{ float a = 666666; // = a = 666666

float b = 1 - 1/a; // = (a-1)/a = 666665/666666
float ¢ = 1/b - 1; // = 1/(a-1) = 1/666665
float d = 1/c + 1; // = a = 666666 != 671089
cout << "a = " << a << endl;
cout << "b = " << b << endl;
cout << "¢ = " << Cc << endl;

cout << "d = " << d << endl;

Chapter 2

Fundamental Types

2.1 NUMERIC DATA TYPES

In science there are two kinds of numbers. whole numbers (e.g., 666) and decimal numbers
(e.g., 3.14159). Whole numbers, including O and negative whole numbers, are called integers.
Decimal numbers, including negative decimal numbers and all integers, are called rational num-
bers because they can always be expressed as ratios of whole numbers (i.e., fractions). Mathe-
matics also uses irrational real numbers (e.g., ~/2 and xt), but these must be approximated with
rational numbers to be used in computers.

Integers are used for counting; rational
numbers are used for measuring. Integers
are meant to be exact; rational numbers are

meant to be approximate. When we say Fundamental Types

there are 12 people on the jury, we mean ——Integral Types

exactly 12, and anyone can count them to ——Boolean Type

verify the statement. But when we say the bool

tree is 12 meters high, we mean approxi- 7Enumera2z1lyp&s

matc_aly 12.0 meters, ar_1d someone else_me_ly _ Character Types

be just as accurate in saying that it is | char

12.01385 meters high. ——unsigned char
This philosophical dichotomy is reflected L wchar_t

in computers by the different ways in which ——Integer Types

these two fundamentally different kinds of [short

numbers are stored and manipulated. Those int

differences are embodied in the two kinds of 71:1:?9“ 4 short

numeric types common to all programming _ unsigned int

languages. integral types and floating-point | unsigned long

types. The term “floating-point” refers to | Floating-point Types

the scientific notation that is used for ratio- —float

nal numbers. For example, 1234.56789 can —double

also be represented as 1.23456789 x 10, and —long double

0.00098765 as 9.8765x 10-*. These dterna-

tives are obtained by letting the decimal

point “float” among the digits and using the exponent on 10 to count how many places it has
floated to the left or right.

Standard C++ has 14 different fundamental types: 11 integral types and 3 floating-point types.
These are outlined in the diagram shown above. The integral types include the boolean type
bool, enumeration types defined with the enum keyword, three character types, and six explicit
integer types. The three floating-point types are float, double, and long double. The most
frequently used fundamental types are bool, char, int, and double.

16

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

CHAP. 2] FUNDAMENTAL TYPES 17

2.2 THE BOOLEAN TYPE

A boolean type is an integra type whose variables can have only two values. false and
true. These values are stored as the integers 0 and 1. The boolean type in Standard C++ is
named bool.

EXAMPLE 2.1 Boolean Variables

int main()
{ // prints the value of a boolean variable:
bool flag=false;

cout << "flag = " << flag << endl;
flag = true;
cout << "flag = " << flag << endl;
}
flag = 0
flag = 1

Note that the value false isprinted as the integer 0 and the value true is printed astheinteger 1.
2.3 ENUMERATION TYPES

In addition to the predefined types such as int and char, C++ alowsyou to define your own
special data types. This can be done in several ways, the most powerful of which use classes as
described in Chapter 11. We consider here a much simpler kind of user-defined type.

An enumeration typeis an integral type that is defined by the user with the syntax

enum typename { enumerator-list };
Here enum is a C++ keyword, typename stands for an identifier that names the type being
defined, and enumerator-1ist standsfor alist of names for integer constants. For example, the
following defines the enumeration type semester, specifying the three possible values that a
variable of that type can have

enum Semester {FALL, SPRING, SUMMER};
We can then declare variables of thistype:

Semester sl, s2;
and we can use those variables and those type values as we would with predefined types:

sl = SPRING;

s2 = FALL;

if (sl == s2) cout << "Same semester." << endl;

The actual values defined in the enumerator-list are caled enumerators. In fact, they are
ordinary integer constants. For example, the enumerators FALL, SPRING, and SUMMER that are
defined for the semester type above could have been defined like this:

const int FALL=0;

const int WINTER=1;

const int SUMMER=2;
ThevaluesO, 1, ... are assigned automatically when the type is defined. These default values can
be overridden in the enumerator-1ist:

enum Coin {PENNY=1, NICKEL=5, DIME=10, QUARTER=25};
If integer values are assigned to only some of the enumerators, then the ones that follow are
given consecutive values. For example,

18 FUNDAMENTAL TYPES [CHAP. 2

enum Month {JAN=1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV
DEC};
will assign the numbers 1 through 12 to the twelve months.
Since enumerators are simply integer constants, it is legal to have severa different enumera-
tors with the same value:
enum Answer {NO = 0, FALSE=0, YES = 1, TRUE=1, OK = 1};
Thiswould allow the code
int answer;
cin >> answer;

if (answer == YES) cout << "You said it was o.k." << endl;
to work as expected. If the value of the variable answer is 1, then the condition will be true and
the output will occur. Note that since the integer value 1 always means “true”’ in a condition, this
selection statement could also be written
if (answer) cout << "You said it was o.k." << endl;
Notice the conspicuous use of capitalization here. Most programmers usually follow these
conventions for capitalizing their identifiers:
1. Use only upper-case letters in names of constants.
2. Capitalize the first letter of each name in user-defined types.
3. Use all lower-case letters everywhere else.
These rules make it easier to distinguish the names of constants, types, and variables, especialy
in large programs. Rule 2 also helps distinguish standard C++ types like float and string
from user-defined types like coin and Month.
Enumeration types are usually defined to make code more self-documenting; i.e., easier for
humans to understand. Here are a few more typical examples:
enum Sex {FEMALE, MALE};
enum Day {SUN, MON, TUE, WED, THU, FRI, SAT};
enum Radix {BIN=2, OCT=8, DEC=10, HEX=16};
enum Color {RED, ORANGE, YELLOW, GREEN, BLUE, VIOLET};
enum Rank {TWO=2, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN,
JACK, QUEEN, KING, ACE};
enum Suit {CLUBS, DIAMONDS, HEARTS, SPADES};
enum Roman {I=1, V=5, X=10, L=50, C=100, D=500, M=1000};
Definitions like these can help make your code more readable. But enumerations should not be
overused. Each enumerator in an enumerator list defines a new identifier. For example, the
definition of roman above defines the seven identifiers 1, v, x, 1, ¢, D, and M as specific integer
constants, so these letters could not be used for any other purpose within the scope of their
definition.
Note that enumerators must be valid identifiers. So for example, this definition would not be
valid
enum Grade {F, D, C-, C, C+, B-, B, B+, A-, A}; // ERRONEOUS
because the characters '+ and ' - ' cannot be used in identifiers. Also, the definitions for Month
and rRadix shown above could not both be in the same scope because they both define the
symbol ocT.
Enumerations can a so be anonymousin C++:
enum {I=1, V=5, X=10, L=50, C=100, D=500, M=1000};
Thisisjust aconvenient way to define integer constants.

CHAP. 2] FUNDAMENTAL TYPES 19

2.4 CHARACTER TYPES

A character typeis an integral type whose variables represent characters like the letter 'a' or
the digit ' s'. Character literals are delimited by the apostrophe (). Like all integral type values,
character values are stored as integers.

EXAMPLE 2.2 Character Variables

int main ()
{ // prints the character and its internally stored integer value:
char c='A';

cout << "¢ = " << c << ", int(c) = " << int(c) << endl;
C=Itll.
cout << "¢ = " << c << ", int(c) = " << int(c) << endl;
c='\t'; // the tab character
cout << "¢ = " << ¢ << ", int(c) = " << int(c) << endl;
c="'1";
cout << "¢ = " << c << ", int(c) = " << int(c) << endl;
c = A, int(c) = 65
c = t, int(c) = 116
c = , int(c) = 9
e = N, st (E) = Bl

Since character values are used for input and output, they appear in their character form instead of their
integral form: the character 'A' isprinted as the letter “A”, not as the integer 65 which is its interna
representation. The type cast operator int () isused here to reveal the corresponding integral value.
These are the characters’ ASCII codes. (See Appendix A.)

2.5 INTEGER TYPES Fundamental Types
L nte?iTypes
There are 6 integer types in Standard C++: Integer Types
——short

These types actually have several names. For int
example, short isaso named short int,and | long
int isasonamed signed int. —unsigned short

You can determine the numerical ranges of —unsigned int
the integer types on your system by running the ——unsigned long

program in the following example.
EXAMPLE 2.3 Integer Type Ranges

This program prints the numeric ranges of the 6 integer typesin C++:

#include <iostream>

#include <climits> // defines the constants SHRT MIN, etc.

using namespace std;

int main()

{ // prints some of the constants stored in the <climits> header:
cout << "minimum short = " << SHRT MIN << endl;
cout << "maximum short = " << SHRT MAX << endl;

20 FUNDAMENTAL TYPES [CHAP. 2

cout << "maximum unsigned short = 0" << endl;
cout << "maximum unsigned short = " << USHRT MAX << endl;
cout << "minimum int = " << INT_MIN << endl;
cout << "maximum int = " << INT MAX << endl;
cout << "minimum unsigned int = 0" << endl;
cout << "maximum unsigned int = " << UINT MAX << endl;
cout << "minimum long= " << LONG MIN << endl;
cout << "maximum long= " << LONG MAX << endl;
cout << "minimum unsigned long = 0" << endl;
cout << "maximum unsigned long = " << ULONG MAX << endl;
}
minimum short = -32768
maximum short = 32767
maximum unsigned short = 0
maximum unsigned short = 65535

minimum int = -2147483648

maximum int = 2147483647

minimum unsigned int= 0

maximum unsigned int= 4294967295
minimum long = -2147483648
maximum long = 2147483647

minimum unsigned long 0

maximum unsigned long 4294967295

The header file <climits> defines the constants SHRT MIN, SHRT MAX, USHRT_ MIN, €tC.
These are the limits on the range of valuesthat avariable of the indicated type can have. For example, the
output shows that variables of type int can have valuesin the range —2,147,483,648 to 2,147,483,647 on
this computer.

On this computer, the three signed integer types have the same range as their corresponding unquali-
fied integer type. For example, signed short int isthesameas short int. Thistellsusthat the
signed integer types are redundant on this computer.

The output also reveals that the range of the int type (—2,147,483,648 to 2,147,483,647) isthe same as
that of the long int type, and that the range of the unsigned int type (0to 4,294,967,295) isthe
same asthat of the unsigned long int type. Thistellsusthat the 1ong integer types are redundant
on this computer.

The output from Example 2.3 shows that on this computer (a Pentium Il PC running the Win-
dows 98 operating system and the CodeWarrior 3.2 C++ compiler), the six integer types have the
following ranges:

short: —32,768t0 32,767, (28 values = 1 byte)
int: —2,147,483,648 t0 2,147,483,647; (22 values = 4 bytes)
long: —2,147,483,648 t0 2,147,483,647; (22 values = 4 bytes)
unsigned short: 0 to 65,535; (28 values= 1 byte)
unsigned int: 010 4,294,967,295; (22 values = 4 bytes)
unsigned long: 010 4,294,967,295; (22 values = 4 bytes)

Notethat 1ong isthesameas int and unsigned long isthesame as unsigned int.

The unsigned integer types are used for bit strings. A bit string isa string of Os and 1s asis
stored in the computer’s random access memory (RAM) or on disk. Of course, everything stored
in a computer, in RAM or on disk, is stored as Os and 1s. But all other types of data are format-
ted; i.e., interpreted as something such as a signed integer or a string of characters.

CHAP. 2] FUNDAMENTAL TYPES 21

2.6 ARITHMETIC OPERATORS

Computers were invented to perform numerical calculations. Like most programming
languages, C++ performsits numerical calculations by means of the five arithmetic operators +,
) *1 /1 and 5.

EXAMPLE 2.4 Integer Arithmetic

This example illustrates how the arithmetic operators work.
int main()

{ // tests operators +, -, *, /, and %:
int m=54;
int n=20;
cout << "m = " << m << " and n = " << n << endl;
cout << "m+n = " << m+n << endl; // 54+20 = 74
cout << "m-n = " << m-n << endl; // 54-20 = 34
cout << "m*n = " << m*n << endl; // 54*20 = 1080
cout << "m/n = " << m/n << endl; // 54/20 = 2
cout << "m%n = " << m%n << endl; // 54%20 = 14

m+n = 74
m-n = 34
m*n = 1080
m/n = 2
mn = 14

Note that integer division results in another integer: 54/20 = 2, not 2.7.

The last two operators used in Example 2.4 are the division operator / and the modulus oper-
ator s (also caled the remainder operator). The modulus operator results in the remainder from
the division. Thus, 54520 = 14 because 14 is the remainder after 54 is divided by 20.

2.7 THE INCREMENT AND DECREMENT OPERATORS

The values of integral objects can be incremented and decremented with the ++ and --
operators, respectively. Each of these operators has two versions: a “pre” version and a “post”
version. The “pre” version performs the operation (either adding 1 or subtracting 1) on the object
before the resulting value is used in its surrounding context. The “post” version performs the
operation after the object’s current value has been used.

EXAMPLE 2.5 Applying the Pre-increment and Post-increment Operators

int main()
{ // shows the difference between m++ and ++m:
int m, n;
m = 44;
n = ++m; // the pre-increment operator is applied to m
cout << "m = " << m<< ", n =" << n << endl;

22 FUNDAMENTAL TYPES [CHAP. 2

m = 44;
n = m++; // the post-increment operator is applied to m
cout << "m = " << m<< ", n =" << n << endl;

m = 45, n = 45

m = 45, n = 44
Theline
n = ++m; // the pre-increment operator is applied to m
increments m to 45 and then assigns that value to n. So both variables have the same value 45 when the
next output line executes.
Theline
n = m++; // the post-increment operator is applied to m
increments m to 45 only after it has assigned the value of m to n. So n has the value 44 when the next out-
put line executes.

2.8 COMPOSITE ASSIGNMENT OPERATORS

The standard assignment operator in C++ is the equals sign =. In addition to this operator,
C++ also includes the following composite assignment operators. +=, -=, *=, /=, and s-.
When applied to a variable on the left, each applies the indicated arithmetic operation to it using
the value of the expression on the right.

EXAMPLE 2.6 Applying Composite Arithmetic Assignment Operators

int main ()

{ // tests arithmetic assignment operators:

int n=22;

cout << "n = " << n << endl;

n+=9; // adds 9 to n

cout << "After n 4= 9, n = " << n << endl;
n -=5; // subtracts 5 from n

cout << "After n -= 5, n = " << n << endl;

n *= 2; // multiplies n by 3

cout << "After n *= 2, n = " << n << endl;
n /= 3; // divides n by 9
cout << "After n /= 3, n = " << n << endl;
n %= 7; // reduces n to the remainder from dividing by 4
cout << "After n %= 7, n = " << n << endl;

n = 22

After n += 9, n = 31

After n -= 5, n = 26

After n *= 2, n = 52

After n /= 3, n = 17

After n %= 7, n = 3

~

CHAP. 2] FUNDAMENTAL TYPES 23

2.9 FLOATING-POINT TYPES

C++ supports three real number types. float, double, and long double. On Most systems,
double USestwice as many bytesas float. Typically, £1oat Uses4 bytes, double uses 8 bytes,
and long double Uses 8, 10, 12, or 16 bytes.

Types that are used for real numbers are called “floating-point” types because of the way they
are stored internaly in the computer. On most systems, a number like 123.45 isfirst converted to
binary form:

123.45=1111011.01110011, x 27
Then the point is “floated” so that al the bits are on its right. In this example, the floating-point
form is obtained by floating the point 7 bits to the left, producing a mantissa 2’ times smaller. So
the original number is

123.45=0.111101101110011, x 27
This number would be represented internally by storing the mantissa111101101110011 and the
exponent 7 separately. For a 32-bit £10at type, the mantissa is stored in a 23-bit segment and the
exponent in an 8-bit segment, leaving 1 bit for the sign of the number. For a 64-bit doub1le type,
the mantissais stored in a 52-bit segment and the exponent in an 11-bit segment.

EXAMPLE 2.7 Floating-Point Arithmetic

This program is nearly the same as the one in Example 2.4. The important difference is that these
variables are declared to have the floating-point type double instead of the integer type int.
int main()
{ // tests the floating-point operators +, -, *, and /:
double x=54.0;
double y=20.0;

cout << "x = " << x << " and y = " << y << endl;
cout << "x+y = " << x+y << endl; // 54.0+20.0 = 74.0
cout << "x-y = " << x-y << endl; // 54.0-20.0 = 34.0
cout << "x*y = " << x*y << endl; // 54.0%*20.0 = 1080.0
cout << "x/y = " << x/y << endl; // 54.0/20.0 = 2.7

}

x = 55 and y = 20

xX+y = 75

x-y = 35

x*y = 1100

xX/y = 2.7

Unlike integer division, floating-point division does not truncate the result: 54.0/20.0 = 2.7.

The next example can be used on any computer to determine how many bytes it uses for each
type. The program uses the sizeof operator which returnsthe sizein bytes of the type specified.

EXAMPLE 2.8 Usingthe sizeof Operator

This program tells you how much space each of the 12 fundamental types uses:
int main ()
{ // prints the storage sizes of the fundamental types:
cout << "Number of bytes used:\n";

24

cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout

}

Number

<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<

<<

of

unsigned short:

FUNDAMENTAL TYPES

"\t char: "
"\t short: "
"\t int: "
"\t long: "

"\t unsigned char: "
"\tunsigned short: "
"\t wunsigned int: "

"\t unsigned long: "
"\t signed char: "
"\t float: "
"\t double: "

"\t long double: "

bytes used:
char:
short:
int:
long:
unsigned char:

unsigned int:
unsigned long:
signed char:
float:

double:

long double:

IS T < S N O O N O

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

[CHAP. 2

sizeof (char) << endl;

sizeof (short) << endl;

sizeof (int) << endl;

sizeof (long) << endl;

sizeof (unsigned char) << endl;
sizeof (unsigned short) << endl;
sizeof (unsigned int) << endl;
sizeof (unsigned long) << endl;
sizeof (signed char) << endl;
sizeof (float) << endl;

sizeof (double) << endl;

sizeof (long double) << endl;

The output below shows the sizesfor atypical UNIX workstation. On this machine, int and long are
equivaent, unsigned int andunsigned long areequivaent, and double and long double are
equivaent. In other words, ‘long’ is no different from ‘regular’ on this computer.

The next program can be used to investigate floating-point types on any computer system. It
reads the values of various constants from the <cfloat> header file. To accessit, the program
must include the preprocessor directive:

#include <cfloats>
Thisislikethe #include <iostreams> directive that we always include in order to use the
cin and cout objects.

EXAMPLE 2.9 Reading from the <cfloat> Header File

This program tells you the precision and magnitude range that the £1oat type has on your system:

#include <cfloat>
#include <iostream>

using namespace std;
int main ()
{ // prints the storage sizes of the fundamental types:
int fbits = 8*sizeof (float);
"float uses " << fbits << " bits:\n\t"
FLT MANT DIG - 1 << " bits for its mantissa,\n\t "
fbits - FLT MANT DIG << " bits for its exponent,\n\t "
1 << " bit for its sign\n"

cout

<<

<<

<<

<<

<<

" to obtain:

// defines the FLT constants
// defines the FLT constants

// each byte contains 8 bits

<< FLT DIG <<

" gig. digits\n"

CHAP. 2] FUNDAMENTAL TYPES 25

<< " with minimum value: " << FLT MIN << endl
<< " and maximum value: " << FLT MAX << endl;

float uses 32 bits:
23 bits for its mantissa,
8 bits for its exponent,
1 bit for its sign
to obtain: 6 sig. digits
with minimum value: 1.17549e-38
and maximum value: 3.40282e+38

The constants FLT MANT DIG, FLT DIG, FLT MIN, and FLT MAX are defined in the <cfloat>
header file.

This output is from a UNIX workstation. It shows that the 32 bits it uses to store a float are
partitioned into 3 parts: 23 bits for the mantissa, 8 bits for the exponent, and 1 bit for the sign. The 23-bit
mantissa produces a floating-point value with 6 significant digits, and the 8-bit exponent yieldsarangein
magnitude from about 10-%" to about 3 x 10%. i.e,,

0.0000000000000000000000000000000000001 < || < 300,000,000,000,000,000,000,000,000,000,000,000,000
for any variable x declared to have type £1oat.

All floating-point arithmetic is done in double precision. So the only time you should use
float instead of double iS When you are storing large quantities of real numbers and are con-
cerned about storage space or access time.

2.10 TYPE CONVERSIONS

We saw in Chapter 1 how one integer type can be converted automatically to another. C++
also converts integral types into floating point types when they are expected. For example,
int n = 22;
float x = 3.14159;

X += n; // the value 22 is automatically converted to 22.0
cout << X - 2 << endl; // value 2 is automatically converted to 2.0
Converting from integer to float like this is what one would expect and is usually taken for

granted. But converting from afloating point type to an integral type is not automatic.
In generdl, if T isonetype and v is avalue of another type, then the expression

T (v)
converts v to type T. This is called type casting. For example, if expr is a floating-point
expression and n isa variable of type int, then

n = int (expr) ;
converts the value of expr to type int and assigns it to n. The effect is to remove the real
number’s fractional part, leaving only its whole number part to be assigned to n. For example,
2.71828 would be converted to 2. Note that this is truncating, not rounding.

EXAMPLE 2.10 Simple Type Casting

Thisprogram castsadouble vaueinto int value:
int main ()
{ // casts a double value as an int:
double v = 1234.56789;
int n = int(v);

26 FUNDAMENTAL TYPES [CHAP. 2

cout << "v = " << v<< ", n =" << n << endl;

}

v = 1234.57, n = 1234
The double vaue 1234.56789 isconverted to the int value 1234.

When one typeisto be converted to a“higher” type, the type case operator is not needed. This
is called type promotion. Here's a simple example of promotion from char al the way up to
double:

EXAMPLE 2.11 Promotion of Types
Thisprogram promotesa char toa short toan int toa float toa double:

int main ()
{ // prints promoted vales of 65 from char to double:

char c='A'; cout << " <char ¢ = " << ¢ << endl;
short k=c; cout << " short k = " << k << endl;
int m=k; cout << " int m = " << m << endl;
long n=m; cout << " long n = " << n << endl;
float x=m; cout << " float x = " << X << endl;
double y=x; cout << "double y = " << y << endl;

char ¢ = A
short k = 65
int m = 65
long n = 65
float x = 65
double y = 65

Theinteger value of the character 'A' isits ASCII code 65. Thisvaueis converted asachar inc, a
short ink, an int inm, and a long in n. The value is then converted to the floating point value 65.0
and stored asa float inx and asadouble iny. Naticethat cout printstheinteger ¢ asacharacter, and
that it prints the real numbers x and y as integers because their fractional parts are 0.

Because it is so easy to convert between integer types and real typesin C++, it is easy to forget
the distinction between them. In general, integers are used for counting discrete things, while
reals are used for measuring on a continuous scale. This means that integer values are exact,
while real values are approximate.

Note that type casting and promotion convert the type of the value of a variable or expression,
but it does not change the type of the variable itself.

In the C programming language, the syntax for casting v astype T is (T) v. C++ inherits
thisform also, sowecould havedone n = int(v) a n = (int) w

2.11 NUMERIC OVERFLOW

On most computersthe 1ong int type allows 4,294,967,296 different values. That’s alot of
values, but it's till finite. Computers are finite, so the range of any type must also be finite. But
in mathematics there are infinitely many integers. Consequently, computers are manifestly prone
to error when their numeric values become too large. That kind of error is called numeric
overflow.

CHAP. 2]

FUNDAMENTAL TYPES

EXAMPLE 2.12 Integer Overflow

This program repeatedly multipliesn by 1000 until it overflows.
int main ()

{

BB B~

n

// prints n until it overflows:

int n=1000;
cout << "n =
n *= 1000;
cout << "n =
n *= 1000;
cout << "n =
n *= 1000;
cout << "n =

1000
1000000
1000000000
-727379968

//

//

//

<< n << endl;
multiplies n by 1000
<< n << endl;
multiplies n by 1000
<< n << endl;
multiplies n by 1000
<< n << endl;

27

This shows that the computer that ran this program cannot multiply 1,000,000,000 by 1000 correctly.

EXAMPLE 2.13 Floating-point Overflow

Thisprogram is similar to the one in Example 2.12. It repeatedly squares x until it overflows.

int main ()

{

b At

X

// prints x until it overflows:

float x=1000.0;

cout << "x =

<< X << endl;

X *= x; // multiplies n by itself; i.e.,

cout << "x =

<< X << endl;

X *= x; // multiplies n by itself; i.e.,

cout << "x =

<< X << endl;

X *= x; // multiplies n by itself; i.e.,

cout << "x =

<< X << endl;

X *= x; // multiplies n by itself; i.e.,

cout << "x =

1000
le+06
le+12
le+24
inf

<< X << endl;

it

it

it

it

squares

squares

squares

squares

This shows that, starting with x = 1000, this computer cannot square x correctly more than three times.
The last output is the special symbol inf which stands for “infinity.”

Note the difference between integer overflow and floating-point overflow. The last output in
Example 2.12 is the negative integer —727,379,968 instead of the correct value of
1,000,000,000,000 = 10*. The last output in Example 2.13 is the infinity symbol inf instead of
the correct value of 10%. Integer overflow “wraps around” to negative integers. Floating-point
overflow “sinks’ into the abstract notion of infinity.

28 FUNDAMENTAL TYPES [CHAP. 2

2.12 ROUND-OFF ERROR

Round-off error is another kind of error that often occurs when computers do arithmetic on
rational numbers. For example, the number 1/3 might be stored as 0.333333, which is not exactly
equal to 1/3. The difference is called round-off error. In some cases, these errors can cause
serious problems.

EXAMPLE 2.14 Round-off Error
This program does some simple arithmetic to illustrate roundoff error:

int main()
{ // illustrates round-off error::

double x = 1000/3.0;cout << "x = " << X << endl; // x = 1000/3
double vy = x - 333.0;cout << "y = " << y << endl; // y = 1/3
double z = 3*y - 1.0;cout << "z = " << z << endl; // z = 3(1/3) -1
if (z == 0) cout << "z == 0.\n";
else cout << "z does not equal 0.\n"; // z =0

i = 333.333

y = 0.333333

Z = -5.68434e-14

z does not equal 0.

In exact arithmetic, the variables would have the values x = 333 1/3, y = 1/3, and z= 0. But 1/3 cannot
be represented exactly as a floating-point value. The inaccuracy is reflected in the residue value for z.

Example 2.14 illustrates an inherent problem with using floating-point types within condi-
tional tests of equality. Thetest (z == o) will fail evenif z isvery nearly zero, whichislikely
to happen when z should algebraically be zero. So it is better to avoid tests for equality with
floating-point types.

The next exampl e shows that round-off error can be difficult to recognize.

EXAMPLE 2.15 Hidden Round-off Error

This program implements the quadratic formula to solve quadratic equations.
#include <cmath> // defines the sqgrt() function
#include <iostream>
using namespace std;
int main()

{ // implements the quadratic formula
float a, b, c;
cout << "Enter the coefficients of a quadratic equation:" << endl;
cout << "\ta: ";
cin >> a;
cout << "\tb: ";
cin >> b;
cout << "\tc: ";
cin >> c;
cout << "The equation is: " << a << "*x*x + " << b

<< "*x + " << Cc << " = 0" << endl;

CHAP. 2] FUNDAMENTAL TYPES 29

float d = b*b - 4*a*c; // discriminant

float sqgrtd = sqgrt(d);

float x1 = (-b + sqgrtd)/(2*a);

float x2 = (-b - sqgrtd)/(2*a);

cout << "The solutions are:" << endl;

cout << "\txl = " << x1 << endl;

cout << "\tx2 = " << x2 << endl;

cout << "Check:" << endl;

cout << "\ta*x1l*xl + b*xl + ¢ = " << a*x1*x1l + b*xl + ¢ << endl;
cout << "\ta*x2*x2 + b*x2 + ¢ = " << a*x2*x2 + b*x2 + ¢ << endl;

}

The quadratic formula requires computing the square root ./b2 —4ac. Thisis done on the line
float sqgrtd = sqgrt(d);
which calls the square root function sgrt () defined in the header file <cmaths. Thelast two lines of
the program check the solutions by substituting them back into the origina quadratic equation. If the
resulting expression on the left evaluates to 0 then the solutions are correct.
Thisrun solves the equation 2x? + 1x — 3 = 0 correctly:

But this run attempts to solve the equation x? + 10000000000x + 1 = 0 and fails:

Thefirst solution, x, = 0, is obviously incorrect: the resulting quadratic expression ax,? + bx, + ¢ evaluates
to 1instread of 0. The second solution, x, = —1e10 = —-10,000,000,000 is even worse. The correct solutions
are x; = —0.00000 00000 99999 99999 99999 99519 and x, = 9,999,999,999.99999 99999.

Numeric overflow and round-off errors are examples of run-time errors, which are errors that
occur while the program is running. Such errors are more serious than compile-time errors such
as neglecting to declare a variable or forgetting a semicolon because they are usually harder to
detect and locate. Compile-time errors are caught by the compiler, which usually gives a pretty
good report on where they are. But run-time errors are detected only when the user notices that
the results are incorrect. Even if the program crashes, it still may be difficult to find where the
problem isin the program.

30 FUNDAMENTAL TYPES [CHAP. 2

EXAMPLE 2.16 Other Kinds of Run-TimeErrors

Here are two more runs of the quadratic formula program in Example 2.15:

The quadratic equation 1x? + 2x + 3 = 0 has no real solution because the discriminant b? — 4ac is negative.
When the program runs, the square root function sqrt (d) failsbecause d < 0. It returns the symbolic
constant nan which stands for “not a number.” Then every subsequent numeric operation that uses this
constant results in the same value. That’s why the check values come out asnan at the end of the run.

Thisrun attempts to solve the equation 0x? + 2x + 5 = 0. That equation has the solution x = 2.5. But the
quadratic formulafails because a = 0:

Notice that x, comes out as nan, but x, comesout as -inf. The symbol inf stands for “infinity.”
That’s what you get when you divide a nonzero number by zero. The quadratic formula computes X, as

—b-yJb’-4ac _ =(2)- J(2)2=40)(5) _ _-2-2 _ -4
2a 2(0) 0 0
which becomes -inf. But it computesx, as

—b+./b2—4ac _ —(2)+(2°-40)(5) _ =2+2 _ 0

2a - 2(0)) 0

X, =
which becomes nan.
The three symbols inf, -inf, and nan are numeric constants. The usual humeric operators

can be applied to them, although the results are usually useless. For example, you can multiply
nan by any number, but the result will still be nan.

2.13 THE E-FORMAT FOR FLOATING-POINT VALUES

When input or output, floating-point values may be specified in either of two formats: fixed-
point and scientific. The output in Example 2.16 illustrates both: 333.333 has fixed-point
format, and -5.68434e-14 has scientific format.

CHAP. 2] FUNDAMENTAL TYPES 31

In scientific format, the letter e stands for “exponent on 10.” So e-14 means 104, and thus
-5.68434e-14 means —5.68434 x 1074 = —0.0000000000000568434. Obviously, the scientific
format is more efficient for very small or very large numbers.

Floating-point values with magnitude in the range 0.1 to 999,999 will normally be printed in
fixed-point format; all otherswill be printed in scientific format.

EXAMPLE 2.17 Scientific Format
This program shows how floating-point values may be input in scientific format:

int main()
{ // prints double values in scientific e-format:

double x;
cout << "Enter float: "; «cin >> X;
cout << "Its reciprocal is: " << 1/x << endl;

Enter float: 234.567e89
Its reciprocal is: 4.26317e-92

You can use either e or in the scientific format.
2.14 SCOPE

The scope of an identifier is that part of the program where it can be used. For example,
variables cannot be used before they are declared, so their scopes begin where they are declared.
Thisisillustrated by the next example.

EXAMPLE 2.18 Scope of Variables

int main()
{ // illustrates the scope of variables:
x = 11; // ERROR: this is not in the scope of x
int x;
{ x = 22; // OK: this is in the scope of x
y = 33; // ERROR: this is not in the scope of y
int vy;

X = 44; // OK: this is in the scope of x
y = 55; // OK: this is in the scope of y
}
X = 66; // OK: this is in the scope of x
y = 77; // ERROR: this is not in the scope of y

}

The scope of x extends from the point where it is declared to the end of main (). The scope of v
extends from the point whereit is declared to the end of the internal block within whichit is declared.

A program may have several objects with the same name as long as their scopes are nested or
disjoint. Thisisillustrated by the next example.

32

FUNDAMENTAL TYPES [CHAP. 2

EXAMPLE 2.19 Nested and Parallel Scopes

int x = 11; // this x is global

int main ()
{ // illustrates the nested and parallel scopes:
int x = 22;
{ // begin scope of internal block
int x = 33;

cout << "In block inside main(): x = " << X << endl;

} // end scope of internal block

cout << "In main(): x = " << X << endl;

cout << "In main(): ::x = " << ::X << endl;

// end scope of main/()

In block inside main(): x = 33
In main(): x = 22
In main(): ::x = 11

There are three different objects named x in this program. The x that isinitialized with the value 11 is
aglobal variable, so its scope extends throughout the file. The x that is initialized with the value 22 has
scope limited to main (). Since thisis nested within the scope of the first %, it hides the first x within
main (). The x that is initialized with the value 33 has scope limited to the internal block within
main (), soit hides both the first and the second x within that block.

The last line in the program uses the scope resolution operator :: to access the global x that is
otherwise hidden in main ().

21
22

23

24
25

2.6

Review Questions

Write asingle C++ statement that prints "Too many" if the variable count exceeds 100.
Wheat iswrong with the following code:
a. cin << count;
b.if x < y min = x
else min = y;
What iswrong with this code:
cout << "Enter n: ";
cin >> n;
if (n < 0)
cout << "That is negative. Try again." << endl;
cin >> n;
else
cout << "o.k. n = " << n << endl;
What is the difference between a reserved word and a standard identifier?
What iswrong with this code:
enum Semester {FALL, SPRING, SUMMER};
enum Season {SPRING, SUMMER, FALL, WINTER};
What iswrong with this code:
enum Friends {"Jerry", "Henry", "W.D."};

CHAP. 2] FUNDAMENTAL TYPES 33

21

22

23

24

21
22

2.3

24

25
26

21

Problems

Write and run a program like the one in Example 2.2 on page 19 that prints the ASCII codes
for only the 10 upper case and lower case vowels. Use Appendix A to check your output.
Modify the program in Example 2.15 on page 28 so that it uses type double instead of
float. Then see how much better it performs on the input that illustrated round-off error.
Write and run a program to find which, if any, arithmetic operations can be applied to a vari-
able that will change its value from any of the three numeric constants inf, -inf, and nan
to something else.

Write a program that convertsinches to centimeters. For example, if the user enters 16.9 for a
length in inches, the output would be 42.926 cm. (Oneinch equals 2.54 centimeters.)

Answersto Review Questions

if (count > 100) cout << "Too many";

a. Either cout should be usedin place of cin, or the extraction operator >> should be used in
place of theinsertion operator <«<.

b. Parentheses arerequired around the condition x < vy, and asemicolonisrequired at the end of the
if clause beforethe else.

There is more than one statement between the if clause and the else clause. They need to be

made into a compound statement by enclosing them in braces { }.

A reserved word is a keyword in a programming language that serves to mark the structure of a state-

ment. For example, thekeywords if and else arereserved words. A standard identifier isakey-

word that defines atype. Among the 63 keywordsin C++, if, else,and while aresome of the

reserved words, and char, int,and float aresome of the standard identifiers.

Thesecond enum definition attemptsto redefine the constants SPRING, SUMMER, and FALL.

Enumerators must be valid identifiers. String literalslike "Jerry" and "Henry" are not identifiers.

Solutions to Problems

int main()
{ // prints the ASCII codes of the vowels

cout << "int('A') = " << int('A') << endl;
cout << "int('E') = " << int('E') << endl;
cout << "int('I') = " << int('I') << endl;
cout << "int('O') = " << int('0') << endl;
cout << "int ('U') = " << int('U') << endl;
cout << "int('a') = " << int('a') << endl;
cout << "int('e') = " << int('e') << endl;
cout << "int('i') = " << int('i') << endl;
cout << "int('o') = " << int('o') << endl;
cout << "int('u') = " << int('u') << endl;

}

int ('A') = 65

int ('E') = 69

int('I') = 73

int ('0') = 79

int ('U') = 85

2.2

FUNDAMENTAL TYPES

[CHAP. 2

int main ()
{ // implements the quadratic formula

double a, b, c;

cout << "Enter the coefficients:" << endl;

cout << "\ta: ";

cin >> a;

cout << "\tb: ";

cin >> b;

cout << "\tc: ";

cin >> c;

cout << "The equation is: " << a << "*x*x + " << b
<< "*X + " << Cc << " = 0" << endl;

double d = b*b - 4*ax*c;
double sqgrtd = sqgrt(d) ;
double x1 = (-b + sqgrtd)/(2*a);

double x2 = (-b - sqgrtd)/(2*a);

cout << "The solutions are:" << endl;
cout << "\txl = " << x1 << endl;

cout << "\tx2 = " << x2 << endl;

cout << "Check:" << endl;
cout << "\ta*xl*xl + b*x1l + ¢
cout << "\ta*x2*x2 + b*x2 + c

" << a*x1l*x1l + b*x1 + c << endl;
" << a*x2*x2 + b*x2 + c << endl;

2.3 Thefollowing program changes the value of x from inf to -inf and vice versa. But no arithmetic
operation will change the value of avariable once it becomesnan.
int main ()
{ // changes the value of x after it becomes inf:
float x=1e30;

cout << "x= " << X << endl;
X *= X;

cout << "x= " << X << endl;
X *= -1.0;

cout << "x= " << X << endl;
X *= -1.0;

cout << "x= " << X << endl;

——

CHAP. 2] FUNDAMENTAL TYPES 35

24 Weusetwo variables of type float

int main ()

{ // converts inches to centimeters:
float inches, cm;
cout << "Enter length in inches: ";
cin >> inches;
cm = 2.54*inches;
cout << inches << " inches = " << cm << " centimeters.\n";

SR S e

Chapter 3

Selection

The programs in the first two chapters al have sequential execution: each statement in the
program executes once, and they are executed in the same order that they are listed. This chapter
shows how to use selection statements for more flexible programs. It also describes the various
integral types that are available in C++.

3.1 THE if STATEMENT

The if statement alows conditional execution. Its syntax is
if (condition) statement;
where condition IS an integral expression and statement is any executable statement. The
statement will be executed only if the value of the integral expression is nonzero. Notice the
required parentheses around the condition.

EXAMPLE 3.1 Testing for Divisibility

This program tests if one positive integer is not divisible by another:
int main ()
{ int n, d;
cout << "Enter two positive integers: ";
cin >> n >> d;
if (n%d) cout << n << " is not divisible by " << d << endl;

}

On the first run, we enter 66 and 7:
Enter two positive integers: 66 7
66 is not divisible by 7

The value 66%7 is computed to be 3. Since that integral value is not zero, the expression is interpreted as
atrue condition and consequently the divisibility message is printed.
On the second run, we enter 56 and 7:
Enter two positive integers: 56 7
The value 56%?7 is computed to be 0, which is interpreted to mean “false,” so the divisibility message is
not printed.

In C++, whenever an integral expression is used as a condition, the value 0 means “false” and
all other values mean “true.”

The program in Example 3.1 is inadequate because it provides no affirmative information
whenn isdivisible by d. That fault can be remedied withan if..else Statement.

3.2 THE if..else STATEMENT

The if..else Statement causes one of two aternative statements to execute depending upon
whether the condition istrue. Itssyntax is

36

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

CHAP. 3] SELECTION 37

if (condition) statementl;

else statement2;
where condition is an integral expression and statement1 and statement2 are executable
statements. If the value of the condition is nonzero then statement1 will execute; otherwise
statement2 Will execute.

EXAMPLE 3.2 Testing for Divisibility Again

This program is the same as the program in Example 3.1 except that the i £ statement has been replaced
byan if..else statement:
int main()
{ int n, d;
cout << "Enter two positive integers: ";
cin >> n >> d;
if (n%d) cout << n << " is not divisible by " << d << endl;
else cout << n << " is divisible by " << d << endl;
}
Now when we enter 56 and 7, we get an affirmative response:
Enter two positive integers: 56 7
56 is divisible by 7
Since 56%7 is zero, the expression isinterpreted as being afalse condition and consequently the statement
after the else is executed.

Notethat the if..else isonly one statement, even though it requires two semicolons.
3.3 KEYWORDS

A keyword in a programming language is a word that is already defined and is reserved for a
unique purpose in programs written in that language. Standard C++ now has 74 keywords:

and and _eq asm auto bitand
bitor bool break case catch
char class compl const const_ cast
continue default delete do double
dynamic_cast else enum explicit export
extern dfalse float for friend
goto if inline int long
mutable namespace new not not eq
operator or or_eq private protected
public register reinterpret cast return short
signed sizeof static static_cast struct
switch template this throw true

try typedef typeid typename using
union unsigned virtual void volatile
wchar t while xXor xor eq

38 SELECTION [CHAP. 3

Keywords like if and else are found in nearly every programming language. Other
keywords such as dynamic_cast are unique to C++. The 74 keywords of C++ include all 32 of
the keywords of the C language.

There are two kinds of keywords: reserved words and standard identifiers. A reserved word is
a keyword that serves as a structure marker, used to define the syntax of the language. The
keywords if and else are reserved words. A standard identifier is a keyword that names a
specific element of the language. The keywords bool and int are standard identifiers because
they are names of standard typesin C++.

See Appendix B for more information on the C++ keywords.

3.4 COMPARISON OPERATORS

The six comparison operators are
X <Yy // x is less than y

X >y // x 1s greater than y

X <= Y // x 1s less than or equal to y

X >=y // x 1s greater than or equal to y
X ==y // x is equal to y

Xx l=vy // x 1s not equal to y

These can be used to compare the values of expressions of any ordina type. The resulting
integral expression is interpreted as a condition that is either false or true according to whether
the value of the expression is zero. For example, the expression 7«8 < 6*9 evaluatesto zero,
which means that the condition is fal se.

EXAMPLE 3.3 The Minimum of Two Integers

This program prints the minimum of the two integers entered:

int main()

{ int m, n;
cout << "Enter two integers: ";
cin >> m >> n;
if (m < n) cout << m << " is the minimum." << endl;
else cout << n << " is the minimum." << endl;

}

Enter two integers: 77 55

55 ig the minimum.

Note that in C++ the single equal sign “=" is the assignment operator, and the double equal
sign “==" isthe equality operator:
X = 33; // assigns the value 33 to x
X == 33; // evaluates to 0 (for false) unless 33 is the value of x

This distinction is critically important.
EXAMPLE 3.4 A Common Programming Error

This program is erroneous:
int main()
{ int n;
cout << "Enter an integer: ";

CHAP. 3] SELECTION 39

cin >> n;
if (n = 22) cout << n << " = 22" << endl; // LOGICAL ERROR!
else cout << n << " = 22" << endl;

}

Enter an integer: 77

22 = 22
Theexpression n = 22 assignsthe value 22 to n, changing it from its previous value of 77. But the
expression n = 22 itsef is an integral expression that evaluates to 22 after it executes. Thus the

condition (n = 22) isinterpreted asbeing true, because only 0 yields false, so the statement before the
else executes. Theline should have been written as
if (n == 22) cout << n << " = 22" << endl; // CORRECT

The error illustrated in Example 3.4 is caled alogical error. This is the worst kind of error.
Compile-time errors (e.g., omitting a semicolon) are caught by the compiler. Run-time errors
(e.g., dividing by zero) are caught by the operating system. But no such help exists for catching
logical errors.

EXAMPLE 3.5 The Minimum of ThreeIntegers

This program is similar to the one in Example 3.3 except that it appliesto three integers:
int main()
{ int n1, n2, n3;
cout << "Enter three integers: ";
cin >> nl >> n2 >> n3;

int min=nl; // now min <= nl

if (n2 < min) min = n2; // now min <= nl and min <= n2

if (n3 < min) min = n3; // now min <= nl, min <= n2, and min <= n3
cout << "Their minimum is " << min << endl;

énter two integers: 77 33 55
Their minimum is 33
The three comments track the progress of the program: min is initialized to equal n1, so it is the
minimum of the set {n1}. After the first 1£ statement executes, min is equal to either n1 or n2,
whichever issmaller, so it isthe minimum of the set {n1, n2}. Thelast i f statement changes the value of
min to n3 only if n3 islessthan the current value of min which is the minimum of the set {n1, n2}. So
in either case, min becomes the minimum of the set {n1, n2, n3}.

3.5 STATEMENT BLOCKS

A statement block is a sequence of statements enclosed by braces { }, likethis:
{ int temp=x; x = y; y = temp; }
In C++ programs, a statement block can be used anywhere that a single statement can be used.

EXAMPLE 3.6 A Statement Block within an if Statement

This program inputs two integers and then outputs them in increasing order:
int main()
{ int %, v;
cout << "Enter two integers: ";
cin >> x >> y;

40 SELECTION [CHAP. 3

if (x > y) { int temp=x; x = y; y = temp; } // swap x and y
cout << x << " <= " << y << endl;

}

Enter two integers: 66 44
44 <= 66
The three statements within the statement block sort the values of x and y into increasing order by

swapping them if they are out of order. Such an interchange requires three separate steps along with the
temporary storage location named temp here. The program either should execute all three statements or
it should execute none of them. That alternative is accomplished by combining the three statements into
the statement block.

Note that the variable temp isdeclared inside the block. That makesit local to the block; i.e., it only
exists during the execution of the block. If the conditionisfalse(i.e., x < y), then temp will never exist.
Thisillustrates the recommended practice of localizing objects so that they are created only when needed.

Note that a C++ program itself is a statement block preceded by int main().

Recall (Section 1.5 on page 5) that the scope of avariableis that part of a program where the
variable can be used. It extends from the point where the variable is declared to the end of the
block which that declaration controls. So a block can be used to limit the scope of a variable,
thereby allowing the same name to be used for different variablesin different parts of a program.

EXAMPLE 3.7 Using Blocksto Limit Scope

This program uses the same name n for three different variables:
int main()
{ int n=44;
cout << "n = " << n << endl;
{ int n; // scope extends over 4 lines
cout << "Enter an integer: ";
cin >> n;

cout << "n = " << n << endl;
{ cout << "n = " << n << endl; // the n that was declared first
{ int n; // scope extends over 2 lines

cout << "n = << n << endl;

}

cout << "n = " << n << endl; // the n that was declared first
}
n = 44
Enter an integer: 77
n = 77
n = 44
n = 4251897
n = 44

This program has three internal blocks. The first block declares a new n which exists only within that
block and overrides the previous variable n. So the original n retains its value of 44 when thisn is given
the input value 77. The second block does not redeclare n, so the scope of the origina n includes this
block. Thus the third output is the original value 44. The third block is like the first block: it declares a
new n which overrides the original n. But this third block does not initialize its local n, so the fourth
output is a garbage value (4251897). Finally, since the scope of each redeclared n extends only to the
block where it is declared, the last line of the program isin the scope of the original n, so it prints 44.

CHAP. 3] SELECTION 41

3.6 COMPOUND CONDITIONS

Conditionssuchasn ¢ dandx >= y can be combined to form compound conditions. Thisis
done using the logical operators s& (and), | | (or), and ¢ (not). They are defined by

p && q evaluates to true if and only if both p and g evaluate to true
p || q evaluatesto falseif and only if both p and g evaluate to false
Ip evaluates to true if and only if p evaluatesto false

Forexample, (n ¥ d || x >= y) will befalseifandonlyifn % diszeroand xislessthany.
The definitions of the three logical operators are usualy given by the truth tables below.

P|Qq|p && g pla|p || a p|!p
T 1T T T 1T T T F
T F F T F T F | T
F | T F F | T T
F F F F F F

These show, for example, that if p istrue and q is false, then the expressionp && g will befalse
and the expressionp || g will betrue.

The next example solves the same problem that Example 3.5 on page 39 solved, except that it
uses compound conditions.

EXAMPLE 3.8 Using Compound Conditions

This program has the same effect as the one in Example 3.5 on page 39. This version uses compound
conditions to find the minimum of three integers:
int main()
{ int n1, n2, n3;
cout << "Enter three integers: ";
cin >> nl >> n2 >> n3;

if (nl <= n2 && nl <= n3) cout << "Their minimum is " << nl <<endl;
if (n2 <= nl && n2 <= n3) cout << "Their minimum is " << n2 <<endl;
if (n3 <= nl && n3 <= n2) cout << "Their minimum is " << n3 <<endl;

}

Enter two integers: 77 33 55
Their minimum is 33

Note that Example 3.8 is no improvement over Example 3.5. Its purpose was ssmply to illus-
trate the use of compound conditions.
Here is another example using a compound condition:

EXAMPLE 3.9 User-Friendly Input

This program allows the user to input either a“Y” or a“y” for “yes’:
int main ()
{ char ans;
cout << "Are you enrolled (y/n): ";
cin >> ans;
if (ams == 'Y' || ans == 'y') cout << "You are enrolled.\n";
else cout << "You are not enrolled.\n";

42 SELECTION [CHAP. 3

Are you enrolled (y|n): N
You are not enrolled.

It prompts the user for an answer, suggesting aresponse of either y or n. But then it accepts any charac-
ter and concludes that the user meant “no” unless either ay or ay isinput.

3.7 SHORT-CIRCUITING

Compound conditions that use && and | | will not even evaluate the second operand of the
condition unless necessary. Thisis called short-circuiting. As the truth tables show, the condition
p && g Will befaseif p isfase. Inthat casethereis no need to evaluate q. Similarly if p istrue
then there is no need to evaluate g to determinethat p || g istrue. In both cases the value of
the condition is known as soon as the first operand is eval uated.

EXAMPLE 3.10 Short-Circuiting

This program tests integer divisibility:
int main ()
{ int n, d;
cout << "Enter two positive integers: ";
cin >> n >> d;
if (d !'= 0 && n%d == 0) cout << d << " divides " << n << endl;
else cout << d << " does not divide " << n << endl;
}
Inthisrun, d ispositiveand n%d iszero, so the compound conditionis true:
Enter two positive integers: 300 6
6 divides 300
Inthisrun, d ispositive but n%d isnot zero, so the compound condition is false:
Enter two positive integers: 300 7
7 does not divide 300
In this run,d is zero, so the compound condition isimmediately determined to be false without evaluat-
ing the second expression “n%d == 0”:
Enter two positive integers: 300 0
0 does not divide 300
This short-circuiting prevents the program from crashing because when 4 is zero the expression n%d
cannot be evaluated.

3.8 BOOLEAN EXPRESSIONS

A boolean expression is a condition that is either true or false. In the previous example the
expressions d > 0, n¥d == 0,and (d > 0 && n%d == 0) areboolean expressions. Aswe
have seen, boolean expressions evaluate to integer values. The value 0 means “false” and every
nonzero value means “true.”

Since all nonzero integer values are interpreted as meaning “true,” boolean expressions are
often disguised. For example, the statement

if (n) cout << "n is not zero";
will print n is not zero precisely when n is not zero because that is when the boolean
expression (n) isinterpreted as “true’. Hereisamore realistic example:

CHAP. 3] SELECTION 43

if (n%d) cout << "n is not a multiple of d";
The output statement will execute precisely when n%d is not zero, and that happens precisely
when d does not divide n evenly, because n%d is the remainder from the integer division.
The fact that bool ean expressions have integer values can lead to some surprising anomaliesin
C++.

EXAMPLE 3.11 Another Logical Error

This program is erroneous:
int main()
{ int n1, n2, n3;
cout << "Enter three integers: ";
cin >> nl >> n2 >> n3;
if (nl >= n2 >= n3) cout << "max = xX"; // LOGICAL ERROR!

}

Enter an integer: 0 0 1
max = 0
The source of this error is the fact that bool ean expressions have numeric values. Since the expression
(n1 >= n2 >= n3) isevaluated from lefttoright, thefirst part n1 >= n2 evaluatesto “true’ since
0>= 0. But “true” is stored as the numeric value 1. That value is then compared to the value of n3 which
is adso 1, so the complete expression evaluates to “true’ even though it is really fase! (0 is not the
maximum of 0, 0, and 1.)
The problem here is that the erroneous line is syntactically correct, so the compiler cannot catch the
error. Nor can the operating system. This is another logical error, comparable to that in the program in
Example 3.4 on page 38.

The moral from Example 3.11 is to remember that boolean expressions have numeric values,
so compound conditions can be tricky.

3.9 NESTED SELECTION STATEMENTS

Like compound statements, selection statements can be used wherever any other statement
can be used. So a selection statement can be used within another selection statement. This is
called nesting statements.

EXAMPLE 3.12 Nesting Selection Satements

This program has the same effect as the one in Example 3.10 on page 42:
int main ()
{ int n, d;
cout << "Enter two positive integers: ";
cin >> n >> d;

if (4 !'= 0)
if (n%d == 0) cout << d << " divides " << n << endl;
else cout << d << " does not divide " << n << endl;
else cout << d << " does not divide " << n << endl;

}

Thesecond if..else statement is nested withinthe if clause of thefirst if..else statement. So
thesecond if..else statement will execute only when d is not zero.

44 SELECTION [CHAP. 3

Note that the " does not divide " statement has to be used twice here. The first one, nested
within the i £ clause of the first if..else Statement, executes when d isnot zero and nsd is zero.
The second one executes when d is zero.

When if..else Statements are nested, the compiler uses the following rule to parse the
compound statement:

Match each e1se with the last unmatched i£.
Using thisrule, the compiler can easily decipher code asinscrutable asthis:

if (a > 0) if (b > 0) ++a; else if (c > 0) // BAD CODING STYLE
if (a < 4) ++b; else if (b < 4) ++c; else --a; // BAD CODING STYLE
else if (¢ < 4) --b; else --c; else a = 0; // BAD CODING STYLE
To make this readable for humansit should be written either like this:
if (a > 0)
if (b > 0) ++a;
else

if (¢ > 0)
if (a < 4) ++b;

else
if (b < 4) ++c;
else --a;
else
if (¢ < 4) --b;
else --c;
else a = 0;

or likethis:
if (a > 0)
if (b > 0) ++a;
else if (¢ > 0)
if (a < 4) ++b;
else if (b < 4) ++c;
else --a;
else if (¢ < 4) --b;
else --c;
else a = 0;
This second rendering aligns the else if pairs when they form parallel alternatives. (See
Section 3.10 on page 46.)

EXAMPLE 3.13 Using Nested Selection Satements

This program has the same effect as those in Example 3.5 on page 39 and Example 3.8 on page 41.
Thisversion usesnested if..else statementsto find the minimum of threeintegers:
int main ()
{ int n1, n2, n3;
cout << "Enter three integers: "
cin >> nl >> n2 >> n3;
if (nl < n2)
if (nl < n3) cout << "Their minimum is " << nl << endl;
else cout << "Their minimum is " << n3 << endl;
else // nl >= n2
if (n2 < n3) cout << "Their minimum is " << n2 << endl;

CHAP. 3] SELECTION 45

else cout << "Their minimum is " << n3 << endl;

}

Enter three integers: 77 33 55
Their minimum is 33

In thisrun, the first condition (n1 < n2) isfalse, and thethird condition (n2 < n3) istrue soit
reports that n2 isthe minimum.

This program is more efficient than the one in Example 3.8 on page 41 because on any run it
will evaluate only two simple conditions instead of three compound conditions. Nevertheless, it
should be considered inferior because its logic is more complicated. In the trade-off between
efficiency and simplicity, it is usually best to choose simplicity.

EXAMPLE 3.14 A Guessing Game

This program finds a number that the user selectsfrom 1 to 8:
int main ()

{ cout << "Pick a number from 1 to 8." << endl;
char answer;
cout << "Is it less than 5? (y|n): "; cin >> answer;
if (answer == 'y') // 1 <=n <= 4
{ cout << "Is it less than 3? (y|n): "; cin >> answer;
if (answer == 'y') // 1 <= n <= 2
{ cout << "Is it less than 2? (y|n): "; cin >> answer;
if (answer == 'y') cout << "Your number is 1." << endl;
else cout << "Your number is 2." << endl;
}
else // 3 <=n <= 4
{ cout << "Is it less than 47? (y|n): ", ¢cin >> answer;
if (answer == 'y') cout << "Your number is 3." << endl;
else cout << "Your number is 4." << endl;
}
}
else // 5 <= n <= 8
{ cout << "Is it less than 77 (y|n): ", ¢cin >> answer;
if (answer == 'y') // 5 <= n <= 6
{ cout << "Is it less than 67? (y|n): ", ¢cin >> answer;
if (answer == 'y') cout << "Your number is 5." << endl;
else cout << "Your number is 6." << endl;
}
else // 7 <= n <= 8
{ cout << "Is it less than 87 (y|n): ", ¢cin >> answer;
if (answer == 'y') cout << "Your number is 7." << endl;
else cout << "Your number is 8." << endl;
}
}

}
By repeatedly subdividing the problem, it can discover any one of the 8 numbers by asking only three
guestions. In this run, the user’s number is 6.

46 SELECTION [CHAP. 3

Pick a number from 1 to 8.

Is it less than 5? (y|n): n
Is it less than 7? (y|n): y
Is it less than 6? (y|n): n

Your number is 6.

The algorithm used in Example 3.14 is called the binary search. It can be implemented more
simply. (See Example 6.14 on page 135.)

3.10 THE else if CONSTRUCT

Nested if..else Statements are often used to test a sequence of parallel alternatives, where
only the e1se clauses contain further nesting. In that case, the resulting compound statement is
usually formatted by lining up the else if phrasesto emphasize the paralel nature of the
logic.

EXAMPLE 3.15 Usingthe el1se if Construct for Parallel Alternatives
This program requests the user’s language and then prints a greeting in that language:

int main ()

{ char language;

cout << "Engl., Fren., Ger., Ital., or Rus.? (e|f|g|i|r): ";
cin >> language;

if (language == 'e') cout << "Welcome to ProjectEuclid.";

else if (language == 'f') cout << "Bon jour, ProjectEuclid.";
else if (language == 'g') cout << "Guten tag, ProjectEuclid.";
else if (language == 'i') cout << "Bon giorno, ProjectEuclid.";
else if (language == 'r') cout << "Dobre utre, ProjectEuclid.";

else cout << "Sorry; we don't speak your language.";

éngl., Fren., Ger., Ital., or Rus.? (e|f|g|i|r): i
Bon giorno, ProjectEuclid.
Thisprogram uses nested if..else statementsto select from thefive given alternatives.
Asordinary nested if..else statements, the code could also be formatted as
if (language == 'e') cout << "Welcome to ProjectEuclid.";
else
if (language == 'f') cout << "Bon jour, ProjectEuclid.";
else
if (language == 'g') cout << "Guten tag, ProjectEuclid.";
else
if (language == 'i') cout << "Bon giorno, ProjectEuclid.";
else
if (language == 'r') cout << "Dobre utre, ProjectEuclid.";
else cout << "Sorry; we don't speak your language.";
But the given format is preferred because it displays the parallel nature of the logic more clearly. It aso
requires less indenting.

CHAP. 3] SELECTION 47

EXAMPLE 3.16 Usingthe el1se if Construct to Select a Range of Scores

This program converts atest score into its equivalent letter grade:
int main()
{ int score;
cout << "Enter your test score: "; cin >> score;
if (score > 100) cout << "Error: that score is out of range.";
else if (score >= 90) cout << "Your grade is an A." << endl;

else if (score >= 80) cout << "Your grade is a B." << endl;
else if (score >= 70) cout << "Your grade is a C." << endl;
else if (score >= 60) cout << "Your grade is a D." << endl;
else if (score >= 0) cout << "Your grade is an F." << endl;

else cout << "Error: that score is out of range.";

}

Enter your test score: 83
Your grade is a B.
The variable score is tested through a cascade of selection statements, continuing until either one of
the conditions isfound to be true, or the last e1se isreached.

3.11 THE switch STATEMENT

The switch statement can be used instead of the else if construct to implement a
sequence of paralel aternatives. Its syntax is
switch (expression)
{ case constantl: statementListl;
case constant2: statementList2;
case constant3: statementList3;

case constantN: statementListN;
default: statementListO;
}

This evaluates the expression and then looks for its value among the case constants. If the
value is found among the constants listed, then the statements in the corresponding
statementList are executed. Otherwise if there is a default (which is optional), then the
program branches to its statementList. The expression must evaluate to an integral type
(see Section 2.1 on page 16) and the constantsmust be integral constants.

EXAMPLE 3.17 Using a switch Statement to Select a Range of Scores

This program has the same effect as the one in Example 3.16:
int main()
{ int score;
cout << "Enter your test score: "; cin >> score;
switch (score/10)
{ case 10:
case 9: cout << "Your grade is an A." << endl; break;
case 8: cout << "Your grade is a B." << endl; break;
case 7: cout << "Your grade is a C." << endl; break;

48 SELECTION [CHAP. 3

case 6: cout << "Your grade is a D." << endl; break;
case 5
case 4:
case 3:
case 2
case 1
case O
default

}

cout << "Goodbye." << endl;

}

Enter your test score: 83
Your grade is a B.
Goodbye.

First the program divides the score by 10 to reduce the range of values to 0—10. So in the test run, the
score 83 reduces to the value 8, the program execution branchesto case 8, and prints the output shown.
Then the break statement causes the program execution to branch to the first statement after the switch
block. That statement prints “Goodbye.”.

Note that scores in the ranges 101 to 109 and -9 to -1 produce incorrect results. (See Problem 3.14.)

cout << "Your grade is an F." << endl; break;
cout << "Error: score is out of range.\n";

It is normal to put abreak statement at the end of each case clause in a switch statement.
Without it, the program execution will not branch directly out of the switch block after it fin-
ishes executing its case statement sequence. Instead, it will continue within the switch block,
executing the statements in the next case sequence. This (usually) unintended consequence is
called afall through.

EXAMPLE 3.18 An Erroneous Fall-through in a switch Statement

This program was intended to have the same effect as the one in Example 3.17. But with no break
statements, the program execution falls through all the case statements it encounters:
int main()
{ int score;
cout << "Enter your test score: "; cin >> score;
switch (score/10)
{ case 10:
case 9: cout << "Your grade is an A." << endl; // LOGICAL ERROR

case 8: cout << "Your grade is a B." << endl; // LOGICAL ERROR
case 7: cout << "Your grade is a C." << endl; // LOGICAL ERROR
case 6: cout << "Your grade is a D." << endl; // LOGICAL ERROR
case 5
case 4:
case 3:
case 2
case 1
case 0: cout << "Your grade is an F." << endl; // LOGICAL ERROR
default: cout << "Error: score is out of range.\n";

}

cout << "Goodbye." << endl;

}

Enter your test score: 83
Your grade is a B.
Your grade is a C.

CHAP. 3] SELECTION 49

Your grade is a D.
Your grade is an F.
Error: score is out of range.
Goodbye.
After branching to case 8, and printing “Your grade is a B.”, the program execution goes

right onto case 7 and prints “Your grade is a C.” Sincethe break statements have been
removed, it keeps falling through, al the way down to the default clause, executing each of the cout
statements along the way.

3.12 THE CONDITIONAL EXPRESSION OPERATOR

C++ provides a special operator that often can be used in place of the if...else Statement.
It is called the conditional expression operator. It usesthe ? and the : symbolsin this syntax:
condition ? expressionl : expression2
It isaternary operator; i.e., it combines three operands to produce a value. That resulting value
is either the value of expressioni or the value of expressionz, depending upon the boolean
value of the condition. For example, the assignment
min = (X<y ? x : y);
would assign the minimum of x and y to min, because if the condition x<y is true, the
expression (x<y ? x : y) evauatesto x; otherwiseit evaluatesto y.
Conditional expression statements should be used sparingly: only when the condition and both
expressions are very simple.

EXAMPLE 3.19 FindingtheMinimum Again

This program has the same effect as the program in Example 3.3 on page 38:
int main()
{ int m, n;
cout << "Enter two integers: ";
cin >> m >> n;
cout << (m<n ? m : n) << " ig the minimum." << endl;

}

The conditional expression (m<n ? m : n) evauatestomif m<n, andton otherwise.

Review Questions

3.1 Writeasingle C++ statement that prints "Too many" if the variable count exceeds 100.
3.2 What iswrong with the following code:
a. cin << count;
b.if x < y min = x
else min = y;
3.3 What iswrong with this code:
cout << "Enter n: ";
cin >> n;
if (n < 0)
cout << "That is negative. Try again." << endl;
cin >> n;

50 SELECTION [CHAP. 3

else
cout << "o.k. n = " << n << endl;
34 What isthe difference between areserved word and a standard identifier?
3.5 State whether each of the following istrue or false. If false, tell why.
a !(p || q) isthesameas 'p || !g
b. 111p isthesameas 'p
C.p & q || r isthesameas p && (q ||)
3.6 Construct atruth table for each of the following boolean expressions, showing its truth value
(Oor 1) for all 4 combinations of truth values of its operands p and q.
a'p || g
b. pssq || !'p&&lq
C. (p|]a) && ! (p&&q)
3.7 Usetruth tables to determine whether the two boolean expressions in each of the following

are equivaent.

a !(p && q) and !p && !g

b. 11p and p

C!p || gadp || !qg

dp & (g & r) and (p && g) && r
ep || (g&& r) ad (p || q) && r

3.8 What is short-circuiting and how isit helpful?
3.9 What iswrong with this code:

if (x = 0) cout << x << " = 0\n";
else cout << x << " != 0\n";
3.10 What iswrong with this code:
if (x <y < z) cout << x << " < " <<y << " < " << z << endl;

3.11 Construct alogica expression to represent each of the following conditions:
a. score isgreater than or equal to 80 but less than 90;
b. answeriseither 'N' or 'n';
C. n iseven but not 8;
d. chisacapita letter.
3.12 Construct alogica expression to represent each of the following conditions:
a. n isbetween 0 and 7 but not equal to 3;
b. n isbetween 0 and 7 but not even;
c. nisdivisible by 3 but not by 30;
d. ch isalowercase or uppercase | etter.
3.13 What iswrong with this code:
if (x == 0)
if (y == 0) cout << "x and y are both zero." << endl;
else cout << "x is not zero." << endl;
3.14 What isthe difference between the following two statements:
if (n > 2) { if (n < 6) cout << "OK"; } else cout << "NG";
if (n > 2) { if (n < 6) cout << "OK"; else cout << "NG"; }
3.15 What isa*“fal-through?
3.16 How isthe following expression evaluated?
(x <y ? -1 : (x==y 2?20 : 1));
3.17 Write a single C++ statement that uses the conditional expression operator to assign the
absolute valueof x to absx.

CHAP. 3] SELECTION 51

3.18

31

3.2

3.3

34

35

3.6

3.7

3.8

39

3.10
311
3.12

3.13

3.14

31

Write asingle C++ statement that prints“too many” if the variable count exceeds 100, using
a. an if statement;
b. the conditional expression operator.

Problems

Modify the program in Example 3.1 on page 36 so that it prints aresponse only if n isdivisi-
ble by 4.

Modify the program in Example 3.5 on page 39 so that it prints the minimum of four input
integers.

Modify the program in Example 3.5 on page 39 so that it prints the median of three input
integers.

Modify the program in Example 3.6 on page 39 so that it has the same effect without using a
statement block.

Predict the output from the program in Example 3.7 on page 40 after removing the declara-
tion on the fifth line of the program. Then run that program to check your prediction.

Write and run a program that reads the user’s age and then prints “You are a child.” if the
age < 18, “You are an adult.” if 18 < age < 65, and “You are asenior citizen.” if age> 65.
Write and run a program that reads two integers and then uses the conditional expression
operator to print either “multiple”’ or “not” according to whether one of the integersisamul-
tiple of the other.

Write and run a program that simulates a simple calculator. It reads two integers and a char-
acter. If the character isa +, the sum is printed; if itisa -, the difference is printed; if itisa *,
the product is printed; if it is a /, the quotient is printed; and if it is a %, the remainder is
printed. Use a switch statement.

Write and run a program that plays the game of “Rock, paper, scissors.” In this game, two
players simultaneoudy say (or display a hand symbol representing) either “rock,” “paper,” or
“scissors.” The winner is the one whose choice dominates the other. The rules are: paper
dominates (wraps) rock, rock dominates (breaks) scissors, and scissors dominate (cut) paper.
Use enumerated types for the choices and for the results.

Modify the solution to Problem 3.9 by using a switch statement.

Modify the solution to Problem 3.10 by using conditiona expressions where appropriate.
Write and test a program that solves quadratic equations. A quadratic equation is an equation
of the form ax?2 + bx + ¢ = 0, where a, b, and ¢ are given coefficients and x is the unknown.
The coefficients are real number inputs, so they should be declared of type float or
double. Since quadratic equations typicaly have two solutions, use x1 and x2 for the
solutions to be output. These should be declared of type double to avoid inaccuracies from
round-off error. (See Example 2.15 on page 28.)

Write and run a program that reads a six-digit integer and prints the sum of its six digits. Use
the quotient operator / and the remainder operator ¢ to extract the digits from the integer.
For example, if n isthe integer 876,543, then n/1000%10 isitsthousandsdigit 6.

Correct Example 3.17 on page 47 so that it produces the correct response for all inputs.

Answersto Review Questions

if (count > 100) cout << "Too many";

52

32

3.3

34

35

3.6

37

SELECTION

[CHAP. 3

a. Either cout should be used in place of cin, or the extraction operator >> should be used in

place of theinsertion operator <«<.
b. Parentheses are required around the condition x < y, and asemicolon isrequired at the end of the

if clause beforethe else.
There is more than one statement between the if clause andthe else clause. They need to be
made into acompound statement by enclosing them in braces { }.
A reserved word is akeyword in a programming language that serves to mark the structure of a state-
ment. For example, thekeywords if and else arereserved words. A standard identifier isakey-
word that defines atype. Among the 63 keywordsin C++, if, else,and while aresome of the
reserved words, and char, int,and float aresome of the standard identifiers.

a !(p || q) isnotthesameas !p || !q;forexample, if p istrueand g isfase, thefirst
expression will be false but the second expression will be true. The correct equivaent to the
expression ! (p || q) istheexpression !p && !q.

b. 111p isthesameas !p.

C.p &« g || r isnotthesameas p && (g || r);forexample if p isfaseand r istrue,
the first expression will be true, but the second expression will befase: p && q || r isthe
sameas (p && q) ||

Truth tables for boolean expressions:
plal!p || al |p|a|pssq || !pesla| |p|a]| (p|la) && !(p&&q)
T T T T T T T T F
T|F F T|F F T|F T
F| T T F| T F F| T T
F|F T F|F T F|F F

a. These two boolean expressions are not equivalent:
plagl ! (p&&q) plal!p && !g
T | T F T | T T
T|F T T|F T
F| T T F| T T
F|F T F|F F

b. These two boolean expressions are equivalent:

p | !'pp p p
T T T T
F| F F| F

¢. These two boolean expressions are not equivalent:

plal'p Il al plalp || !a
T[T T T[T T
T | F F T | F T
F|T T F|T F
F|F T F|F T

d. These two boolean expressions are equivalent:

p &&

(g&&r)

(p&&q)

&& ¥

e e e e B = e B R o)
e e I B e e e B YO

MR A" AR

e e B e ey B s e B

e e e e B = e B R o)
mmHAammAdAQ
MM HRAa AR

e e B e ey B s e B

CHAP. 3] SELECTION 53

3.8

39

3.10

311

3.12

3.13

3.14

e. These two boolean expressions are not equivalent:

) && T

H
N
=)
Q

p || (g&&r)

I R R W W L)
I W R R I I o)
CRE RS R R
GRS I W
R R I W L)
I W R R I I o)
CRE RS R R
SIS R R

The term “short-circuiting” is used to describe the way C++ evaluates compound logical expressions
like (x > 2 || v > 5) and (x > 2 && y > 5).If x isgreater than 2 inthefirst expres-
sion, then y will not be evaluated. If x islessthan or equal to 2 in the second expression, then y
will not be evaluated. In these cases only the first part of the compound expression is evaluated
because that val ue alone determines the truth value of the compound expression.

The programmer probably intended to test the condition (x == 0). But by using assignment opera-
tor “=" instead of the equality operator “==" the result will be radicaly different from what was
intended. For example, if x hasthevalue22 priortothe if statement, thenthe if statement will
changethe value of x to 0. Moreover, the assignment expression (x = 0) will beevaluated to 0
which means “false,” sothe else part of the selection statement will execute, reporting that x is
not zero!

The programmer probably intended to test the condition (x < y && y < z). Thecodeaswritten
will compile and run, but not as intended. For example, if the prior valuesof x, y,and z are 44, 66,
and 22, respectively, then the algebraic condition “x <y < Z’ isfalse. But as written, the code will be
evaluated from left toright, as (x < y) < z. Firstthecondition x < y will be evaluated as
“true.” But this has the numeric value 1, so the expression (x < y) isevauated to 1. Then the
combined expression (x < y) < z isevauatedas (1) <66 whichisalso true. So the output state-
ment will execute, erroneously reporting that 44 < 66 < 22.

a. (score >= 80 && score < 90)

b. (answer == 'N' || answer == 'n')

C. (n%2 == 0 && n != 8)

d. (ch >= 'A'" && ch <= 'Z'")

a (n >0 & n < 7 & n != 3)

b. (n >0 & n < 7 & n%2 != 0)

C. ((ch >= 'A'" && ch <= 'Z') || (ch »>= 'a' && ch <= 'z'))

The programmer clearly intended for the second output "x is not zero." to be printedif the
first condition (x == 0) isfalse, regardless of the second condition (y == 0). Thatis, the

else wasintended to be matched with thefirst if. Butthe“else matching” rule causesit to be
matched with the second condition, which means that the output "x is not zero." will be
printed only when x iszeroand y isnot zero. The“else matching” rule can be overridden with
braces:

if (x == 0)

{ 1f (y == 0) cout << "x and y are both zero." << endl;
}

else cout << "x isg not zero." << endl;

Now the else will be matched with thefirst if, theway the programmer had intended it to be.
Inthefirst statement, the else ismatched withthefirst if.Inthe second statement, the else is
matched with thesecond if. If n< 2, thefirst statement will print NG while the second statement wil |
do nothing. If 2 < n < 6, both statements will print OK. If n > 6, the first statement will do nothing
while the second statement will print NG. Note that this code is difficult to read becauseit does not fol-
low standard indentation conventions. The first statement should be written

54

3.15

3.16

3.17
3.18

31

32

3.3

SELECTION [CHAP. 3

if (n > 2)
{ 1f (n < 6) cout << "OK";
}
else cout << "NG";
The braces are needed hereto overridethe“else matching” rule. This else isintended to match
thefirst if. The second statement should be written
if (n > 2)
if (n < 6) cout << "OK";
else cout << "NG";
Here the braces are not needed because the else isintended to be matched with the second 1if.
A “fall through” ina switch statementisacasethat doesnotincludea break statement, thereby
causing control to continue right on to the next case statement.

This expression evaluatesto—1if x < vy, itevaluatesto0if x == vy, andit evaluatestolif x >
Y.
absx = (x>0 ? X : -X);

a. if (count > 100) cout << "too many";
b. cout << (count > 100 ? "too many" : "");

Solutions to Problems

This version of Example 3.1 on page 36 prints a response only when nn isdivisible by d:
int main ()
{ int n, d;
cout << "Enter two positive integers: ";
cin >> n >> d;
if (n%d == 0) cout << n << " is divisible by " << d << endl;
}
Enter two positive integers: 56 7
56 is divisible by 7
This version of Example 3.5 on page 39 prints the minimum of four input integers:
int main ()
{ int nl, n2, n3, n4;
cout << "Enter four integers: ";
cin >> nl >> n2 >> n3 >> n4;

int min=nl; // now min <= nl

if (n2 < min) min = n2; // now min <= nl, n2

if (n3 < min) min = n3; // now min <= nl, n2, n3

if (n4 < min) min = n4; // now min <= nl, n2, n3, n4
cout << "Their minimum is " << min << endl;

}
Enter four integers: 44 88 22 66
Their minimum is 22
This program finds the median of three input integers:
int main()
{ int n1, n2, n3;
cout << "Enter three integers: ";
cin >> nl >> n2 >> n3;
cout << "Their median is ";
if (nl1 < n2)
if (n2 < n3) cout << n2; // nl < n2 < n3

&)

CHAP. 3] SELECTION 5

else if (nl < n3) cout << n3; // nl < n3 <= n2
else cout << nl; // n3 <= nl < n2
else if (nl < n3) cout << nl; // n2 <= nl < n3
else if (n2 < n3) cout << n2; // n2 < n3 <= nl
else cout << n3; // n3 <= n2 <= nl

3.4 Thisprogram has the same effect as the one in Example 3.6 on page 39:
int main ()
{ int x, v;
cout << "Enter two integers: ";
cin >> x >> y;
if (x > y) cout << y << " <= " << x << endl;
else cout << x << " <= " << y << endl;

|

3.5 Maodification of the program in Example 3.7 on page 40:
int main ()
{ int n=44;
cout << "n = " << n << endl;
{ cout << "Enter an integer: ";
cin >> n;

cout << "n = " << n << endl;
1
{ cout << "n = " << n << endl;
1
{ int n;

cout << "n = " << n << endl;
!
cout << "n = " << n << endl;

3.6 Hereweusedthe else if construct because the three outcomes depend upon age beingin one
of three disjoint intervals:

int main ()

{ int age;
cout << "Enter your age: ";
cin >> age;
if (age < 18) cout << "You are a child.\n";
else if (age < 65) cout << "You are an adult.\n";
else cout << "you are a senior citizen.\n";

|

SELECTION [CHAP. 3

If control reaches the second condition (age < 65), thenthefirst condition must be false so in fact
18 < age < 65. Similarly, if control reaches the second e1se, then both conditions must be false so in

fact age > 65.

Aninteger m is a multiple of an integer n if the remainder from the integer division of m by n is0. So
the compound condition m $ n == 0 || n % m == 0 testswhether either isamultiple of the
other:

int main()
{ int m, n;
cin >> m >> n;
cout << (m $n==0 || n%m==0 ? "multiple" : "not") << endl;
}
30 4
not
30 5
multiple
The value of the conditional expression will be either "multiple" or "not", according to whether
the compound condition is true. So sending the complete conditional expression to the output stream
produces the desired result.
The character representing the operation should be the control variable for the switch statement:
int main()
{ int %, v;
char op;
cout << "Enter two integers: ";
cin >> x >> y;
cout << "Enter an operator: ";
cin >> op;
switch (op)

{ case '+': cout << x + y << endl; break;
case '-': cout << x - y << endl; Dbreak;
case '*': cout << x * y << endl; Dbreak;
case '/': cout << x / y << endl; break;
case '%': cout << x % y << endl; Dbreak;

}

}

Enter two integers: 30 13
Enter an operator: %
4
In each of the five cases, we ssimply print the value of the corresponding arithmetic operation and then

break.
First define the two enum types Choice and Result. Then declare variables choicel,
choice2, and result of thesetypes, and use an integer n to get the required input and assign it to
them:
enum Choice {ROCK, PAPER, SCISSORS};
enum Winner {PLAYER1, PLAYER2, TIE};
int main ()
{ int n;
Choice choicel, choice2;
Winner winner;
cout << "Chooge rock (0), paper (1), or scissors (2):" << endl;
cout << "Player #1: ";
cin >> n;
choicel = Choice(n) ;

CHAP. 3] SELECTION 5

\‘

cout << "Player #2: ";
cin >> n;

choice2 = Choice(n) ;
if (choicel == choice2) winner = TIE;
else if (choicel == ROCK)
if (choice2 == PAPER) winner = PLAYER2;
else winner = PLAYER1;
else if (choicel == PAPER)
if (choice2 == SCISSORS) winner = PLAYER2;
else winner = PLAYER1;
else // (choicel == SCISSORS)
if (choice2 == ROCK) winner = PLAYER2;
else winner = PLAYER1;
if (winner == TIE) cout << "\tYou tied.\n";
else if (winner == PLAYER1) cout << "\tPlayer #1 wins." <<endl;
else cout << "\tPlayer #2 wins." << endl;

Through aseriesof nested if statements, we are able to cover al the possihilities.
3.10 Using aswitch statement:
enum Winner {PLAYER1, PLAYER2, TIE};
int main ()
{ int choicel, choice2;

Winner winner;

cout << "Choose rock (0), paper (1), or scissors (2):" << endl;

cout << "Player #1: ";

cin >> choicel;

cout << "Player #2: ";

cin >> choice2;

gswitch (choice2 - choicel)

{ case o0:
winner
break;

case -1:
case 2:
winner
break;
case -2:
case 1:
winner

TIE;

PLAYER1;

PLAYER2;

58 SELECTION [CHAP. 3

if (winner == TIE) cout << "\tYou tied.\n";
else if (winner == PLAYER1) cout << "\tPlayer #1 wins." << endl;
else cout << "\tPlayer #2 wins." << endl;

}

3.11 Using aswitch statement and conditional expressions:

enum Winner {PLAYER1, PLAYER2, TIE};

int main()

{ int choicel, choice2;
cout << "Choose rock (0), paper (1), or scissors (2):" << endl;
cout << "Player #1: ";
cin >> choicel;
cout << "Player #2: ";
cin >> choice2;

int n = (choicel - choice2 + 3) % 3;
Winner winner = (n==0 ? TIE : (n==1?PLAYER1:PLAYER2)) ;
if (winner == TIE) cout << "\tYou tied.\n";
else if (winner == PLAYER1) cout << "\tPlayer #1 wins." << endl;
else cout << "\tPlayer #2 wins." << endl;
}
3.12 The solution(s) to the quadratic equation is given by the quadratic formula:
w= = b+ /b%2-4ac
2a

But thiswill not apply if aiszero, so that condition must be checked separately. The formula aso fails
to work (for real numbers) if the expression under the square root is negative. That expression b? +
4ac is called the discriminant of the quadratic. We define that as the separate variable d and check its

sign.
#include <iostream>
#include <cmath> // defines the sqgrt() function

int main ()
{ // solves the equation a*x*x + b*x + c == 0:
float a, b, c;
cout << "Enter coefficients of quadratic equation: ";

cin >> a >> b >> ¢;

if (a == 0)
{ cout << "This is not a quadratic equation: a == 0\n";
return O;
}
cout << "The equation is: " << a << "x™2 + " << b
<< "X + " << c << " = 0\n";
double d, x1, x2;
d = b*b - 4*a*c; // the discriminant
if (d < 0)

{ cout << "This equation has no real solutions: d < 0\n";
return O;

}

X1 = (-b + sqgrt(d))/(2*a);

X2 = (-b - sqgrt(d))/(2*a);

cout << "The solutions are: " << X1 << ", " << x2 << endl;

CHAP. 3]

SELECTION

5

[{e]

Note how we use the return statement inside the selection statements to terminate the program if
either a is zero or 4 is negative. The aternative would have been to use an else clauseineach if

statement.

3.13 Thisprogram prints the sum of the digits of the given integer:

int main ()
{ int n, sum;

cout << "Enter a six-digit integer:

cin >> n;

n.
7

sum = n%10 + n/10%10 + n/100%10 + n/1000%10 + n/10000%10
+ n/100000;
cout << "The sum of the digits of " << n << " is " << sum <<endl;

|

3.14 A corrected version of Example 3.17 on page 47:

int main ()

{ // reports the user's grade for a given test score:

int score;

cout << "Enter your test score:

cin >> score;

if (score > 100 || score < 0)
cout << "Error:

else

7

that score is out

switch (score/10)

{ case 10:

case 9:
case 8:
case 7:
case 6:
default:

}

cout << "Goodbye."

cout
cout
cout
cout
cout

<< "Your
<< "Your
<< "Your
<< "Your
<< "Your

<< endl;

grade
grade
grade
grade
grade

is
is
is
is
is

of range.\n";

an A.\n";
a B.\n";
a Cc.\n";
a D.\n";
an F.\n";

break;
break;
break;
break;
break;

Chapter 4

Ilteration

Iteration is the repetition of a statement or block of statements in a program. C++ has three
iteration statements: the while statement, the do..while statement, and the for statement.
Iteration statements are also called loops because of their cyclic nature.

4.1 THE while STATEMENT

The syntax for the while statementis
while (condition) statement;
where condition is an integral expression and statement IS any executable statement. If the
value of the expression is zero (meaning “false”) then the statement isignored and program
execution immediately jJumps to the next statement that follows the while statement. If the value
of the expression isnonzero (meaning “true”) then the statement is executed repeatedly until
the expression evaluatesto zero. Note that the condi t i on must be enclosed by parentheses.

EXAMPLE 4.1 Usingawhile Loop to Computea Sum of Consecutive | ntegers

This program computesthesum 1+ 2 + 3 + --- + n, for an input integer n:
int main ()
{ int n, i=1;
cout << "Enter a positive integer: ";
cin >> n;
long sum=0;
while (i <= n)
sum += i++;
cout << "The sum of the first " << n << " integers is " << sum;

}

This program uses three local variables: n, i, and sum. Each time the while loop
iterates, 1 isincremented and then added to sum. The loop stopswhen 1 = n, son isthelast
value added to sum. The trace at right shows the values of i and sum on each iteration after
the user input 8 for n. The output for thisrunis

Enter a positive integer: 8
The sum of the first 8 integers is 36
The program computed 1 +2+3+4+5+6+ 7+ 8= 36.

On the second run the user inputs 100 for n, so the while loop iterated 100 times to

computethesum 1+ 2+ 3+ -+ + 98 + 99 + 100 = 5050:

Enter a positive integer: 100
The sum of the first 100 integers is 5050

W JO0O Ul WNERE O
'_I
o

Note that the statement inside the loop isindented. This convention makes the program’s logic
easier to follow, especially in large programs.

60

Copyright 2000 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

CHAP. 4] ITERATION 61

EXAMPLE 4.2 Usingawhile Loop to Compute a Sum of Reciprocals

This program computes the sum of reciprocalss =1+ 1/2 + 1/3 + --- + 1/n, where n is the smallest
integer for whichn > s:
int main()
{ int bound;
cout << "Enter a positive integer: ";

cin >> bound; i sum
double sum=0.0; 0l 0.00000

int i=0; 1] 1.00000
while (sum < bound) 2| 1.50000

sum += 1.0/++1i; 3] 1.83333

cout << "The sum of the first " << i 4| 2.08333

<< " reciprocals is " << sum << endl; 51 2.28333

} 6| 2.45000
With input 3 for n, this run computes 1 + 1/2 + 1/3 + -+ + 1/11 = 3.01988: ; ; : 523:2
Enter a positive integer: 3 9 2:82897
The sum of the first 11 reciprocals is 3.01988 10| 2.92897
The trace of this run is shown at right. The sum does not exceed 3 until the 11th 11| 3.01988

iteration.
EXAMPLE 4.3 Usingawhile Loop to Repeat a Computation

This program prints the square root of each number input by the user. It usesawhile loop to allow any
number of computationsin a single run of the program:
int main ()
{ double x;
cout << "Enter a positive number: ";
cin >> X;
while (x > 0)
{ cout << "sgrt(" << x << ") = " << sqgrt(x) << endl;
cout << "Enter another positive number (or 0 to quit): ";
cin >> X;
}
}

Enter a positive number: 49

sqgrt (49) = 7

Enter another positive number (or 0 to quit): 3.14159
sqgrt (3.14159) = 1.77245

Enter another positive number (or 0 to quit): 100000
sqgrt (100000) = 316.228

Enter another positive number (or 0 to quit): 0

The condition (x > 0) in Example 4.3 uses the variable x to control the loop. Its value is
changed inside the loop by means of an input statement. A variable that is used thisway is called
aloop control variable.

62 ITERATION [CHAP. 4

4.2 TERMINATING A LOOP

We have aready seen how the break statement is used to control the switch statement. (See
Example 3.17 on page 47.) The break Statement is also used to control loops.

EXAMPLE 4.4 Using abreak Statement to Terminate a Loop

This program has the same effect as the one in Example 4.1 on page 60:

int main ()

{ int n, i=1;
cout << "Enter a positive integer: ";
cin >> n;
long sum=0;
while (true)
{ if (i > n) break; // terminates the loop immediately

sum += i++;

}

cout << "The sum of the first " << n << " integers is " << sum;

}

Enter a positive integer: 100
The sum of the first 100 integers is 5050

This runs the same as in Example 4.1: as soon as the value of i reaches n, the loop terminates and the
output statement at the end of the program executes.

Note that the control condition on the while loop itself is true, which means continue forever. This
isthe standard way to code awhile loop when it is being controlled from within.

One advantage of using abreak Statement inside aloop is that it causes the loop to terminate
immediately, without having to finish executing the remaining statements in the loop block.

EXAMPLE 4.5 The Fibonacci Numbers

The Fibonacci numbersF, F,, F,, F,, ... are defined recursively by the equations
F,=1
Fn = Fn—1+Fn—2
For example, letting n = 2 in the third equation yields

F,=F, ,+F, ,=F, +F,=0+1=1 n|F,
Similarly, withn= 3, ol o
F,=F, ,+F, ,=F,+F =1+1=2 1| 1
and withn =4,

F,=F,,+F, ,=F,+F,=2+1=3 21t
The first ten Fibonacci numbers are shown in the table at right. 302
This program prints all the Fibonacci numbers up to an input limit: 41 3
int main() 5| 5
{ long bound; 6| 8
cout << "Enter a positive integer: "; 7113
cin >> bound; el 21

cout << "Fibonacci numbers < " << bound << ":\nO, 1";
long f0=0, f1=1; o135

CHAP. 4] ITERATION 63

while (true)
{ long £2 = f0 + f1;
if (£2 > bound) break; // terminates the loop immediately

cout << ", " << f2;
fo = f1;
f1 = £2;

}
}

Enter a positive integer: 1000
Fibonacci numbers < 1000:
o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987
This while loop contains a block of five statements. When the condition (£2 > bound) is
evaluated to be true, the break statement executes, terminating the loop immediately, without executing
the last three statementsin that iteration.
Note the use of the newline character \n inthestring ":\no, 1".Thisprintsthecolon : atthe
end of the current line, and then prints 0, 1 at the beginning of the next line.

EXAMPLE 4.6 Usingthe exit(0) Function

The exit () function provides another way to terminate a loop. When it executes, it terminates the
program itself:

int main ()

{ long bound;
cout << "Enter a positive integer: ";
cin >> bound;
cout << "Fibonacci numbers < " << bound << ":\nO, 1";
long £0=0, f1=1;
while (true)
{ long £2 = f0 + f1;

if (£2 > bound) exit(0); // terminates the program immediately
cout << ", " << f2;

fo = f1;

f1 = £2;

}
}

Enter a positive integer: 1000
Fibonacci numbers < 1000:
o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987
Since this program has no statements following its loop, terminating the loop is the same as terminating
the program. So this program runs the same as the one in Example 4.5.

The program in Example 4.6 illustrates one way to break out of an infinite loop. The next

example shows how to abort an infinite loop. But the preferred method is to use a break state-
ment, asillustrated in Example 4.20 on page 71.

EXAMPLE 4.7 Aborting Infinite L oop

Without some termination mechanism, the loop will run forever. To abort its execution after it starts,
press <Ctrl>+C (i.e., hold the Ctrl key down and press the C key on your keyboard):

64 ITERATION [CHAP. 4

int main()
{ long bound;
cout << "Enter a positive integer: ";
cin >> bound;
cout << "Fibonacci numbers < " << bound << ":\nO, 1";
long £0=0, f1=1;
while (true) // ERROR: INFINITE LOOP! (Press <Ctrl>+C.)
{ long £2 = £0 + £f1;
cout << ", " << f2;
fo = f1;
f1 = £2;
}
}

Enter a positive integer: 1000

Fibonacci numbers < 1000:

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597

81, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 5

040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817,

63245986, 102334155, 165580141, 267914296, 433494437, 701408733, 11349
Since this program has no statements following its loop, terminating the loop is the same as terminat-

ing the program. So this program runs the same as the one in Example 4.5.

4.3 THE do..while STATEMENT

The syntax for the do. .while Statement is
do statement while (condition);
where condition IS an integral expression and statement iS any executable statement. It
repeatedly executes the statement and then evaluates the condition until that condition
evaluatesto false.

The do. .while statement works the same as the while statement except that its condition is
evaluated at the end of the loop instead of at the beginning. This meansthat any control variables
can be defined within the loop instead of before it. It also means that a do. . .while loop will
always iterate at least once, regardless of the value of its control condition.

EXAMPLE 4.8 Usingado. .while Loop to Compute a Sum of Consecutive Integers

This program has the same effect as the one in Example 4.1 on page 60:

int main ()

{ int n, 1i=0;
cout << "Enter a positive integer: ";
cin >> n;
long sum=0;
do

sum += i++;

while (i <= n);
cout << "The sum of the first " << n << " integers is " << sum;

CHAP. 4] ITERATION 65

EXAMPLE 4.9 The Factorial Numbers

The factorial numbers 0!, 1!, 2!, 3!, --- are defined recursively by the equations

o =1
n! n(n-1)

For example, letting n = 1 in the second equation yields

n| n!

1 =1((1-1)1)=1(0) =1(1) =1 ol 1

Similarly, withn=2: 1 1
21 =2(2-)H =21 =2(1) =2 20 2

and with n = 3: 3] 6
31=3((3-1)!)=32)=3(2)=6 é éé

The first seven factorial numbers are shown in the table at right. ¢l 720

This program prints all the factorial numbers up to an input limit:
int main ()
{ long bound;
cout << "Enter a positive integer: ";
cin >> bound;

cout << "Factorial numbers < " << bound << ":\nl, 1";
long f=1, i=1;
do
{ £ *= ++1;
cout << ", " << f;

}

while (f < bound) ;

}

Enter a positive integer: 1000000
Factorial numbers < 1000000:
i, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880

Thedo. .while loop iterates until its control condition (f < bound) isfase.
4.4 THE for STATEMENT

The syntax for the for statement is
for (initialization; condition; update) statement;

where initialization, condition, and update are optional expressions, and statement iS
any executable statement. Thethree-part (initialization; condition; update) controls
the loop. The initialization expression is used to declare and/or initialize control
variable(s) for the loop; it is evaluated first, before any iteration occurs. The condition
expression is used to determine whether the loop should continue iterating; it is evaluated
immediately after the initiaization; if it is true, the statement is executed. The update
expression is used to update the control variable(s); it is evaluated after the statement is
executed. So the sequence of eventsthat generate the iteration are:

1. evaluate the initialization €Xpression;

2. if the value of the condition expression is false, terminate the loop;

3. execute the statement;

4. evaluate the update expression;

5. repeat steps 2—4.

66 ITERATION [CHAP. 4

EXAMPLE 4.10 Using a for Loop to Compute a Sum of Consecutive I ntegers

This program has the same effect as the one in Example 4.1 on page 60:
int main()
{ int n;
cout << "Enter a positive integer: ";
cin >> n;
long sum=0;
for (int i=1l; i <= n; i++)
sum += 1i;
cout << "The sum of the first " << n << " integers is " << sum;
}
Here, the initialization expression is int i=1, the condition expressionisi <= n, and the update
expression is i++. Note that these same expressions are used in the programs in Example 4.1 on page 60,
Example 4.4 on page 62, and Example 4.8 on page 64.

In Standard C++, when aloop control variable is declared within a for loop, as i isin Exam-
ple 4.10, its scope is limited to that for loop. That means that it cannot be used outside that for
loop. It a'so means that the same name can be used for different variables outside that £or loop.

EXAMPLE 4.11 Reusing for Loop Control Variable Names

This program has the same effect as the one in Example 4.1 on page 60:
int main()
{ int n;
cout << "Enter a positive integer: ";
cin >> n;
long sum=0;
for (int i=1; i < n/2; i++) // the scope of this i is this loop
sum += i;
for (int i=n/2; i <= n; i++) // the scope of this i is this loop
sum += 1i;
cout << "The sum of the first " << n << " integers is "
<< sum << endl;
}

The two for loops in this program do the same computations as the single £ox loop in the program in
Example 4.10. They simply split the job in two, doing thefirst n/2 accumulationsin thefirst loop and the
rest in the second. Each loop independently declares its own control variable 1.

Warning: Most pre-Standard C++ compilers extend the scope of a for loop’s control variable
past the end of the loop.

EXAMPLE 4.12 The Factorial Numbers Again

This program has the same effect as the one in Example 4.9 on page 65:
int main ()
{ long bound;
cout << "Enter a positive integer: ";
cin >> bound;

CHAP. 4] ITERATION 67

cout << "Factorial numbers that are <= " << bound << ":\nl, 1";
long f=1;
for (int i=2; f <= bound; i++)
{ f *= i;
cout << ", " << f;
}

}

Enter a positive integer: 1000000
Factorial numbers < 1000000:
1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880
This for loop program has the same effect as the do. .while loop program because it executes the
same instructions. After initializing £ to 1, both programs initialize i to 2 and then repeat the following
five instructions: print £, multiply £ by i, increment i, check the condition (f <= bound), and
terminate the loop if the condition isfalse.

The for statement is quite flexible, as the following examples demonstrate.
EXAMPLE 4.13 Using a Descending for L oop

This program prints the first ten positive integersin reverse order:
int main ()
{ for (int i=10; i > 0; i--)
cout << " " << 1i;
}

10 987654321
EXAMPLE 4.14 Using a for Loop with a Step Greater than One

This program determines whether an input number is prime:
int main ()
{ long n;
cout << "Enter a positive integer: ";
cin >> n;

if (n < 2) cout << n << " is not prime." << endl;
else 1f (n < 4) cout << n << " is prime." << endl;
else if (n%2 == 0) cout << n << " = 2*" << n/2 << endl;
else
{ for (int d=3; d <= n/2; d += 2)
if (n%d == 0)
{ cout << n << " =" << d << "*" << n/d << endl;
exit (0) ;
}
cout << n << " is prime." << endl;

Vi
}
Enter a positive integer: 101
101 is prime.
Enter a positive integer: 975313579
975313579 = 17*57371387
Note that this for loop uses an increment of 2 on its control variablei.

68 ITERATION [CHAP. 4

EXAMPLE 4.15 Using a Sentinel to Control a for L oop

This program finds the maximum of a sequence of input numbers:
int main()
{ int n, max;
cout << "Enter positive integers (0 to quit): ";
cin >> n;
for (max = n; n > 0;)
{ if (n > max) max = n;
cin >> n;
}
cout << "max = " << max << endl;
}
Enter positive integers (0 to quit): 44 77 55 22 99 33 11 66 88 0
max = 99
This for loop is controlled by the input variable n; it continues until n < 0. When an input variable
controls aloop thisway, it is called a sentinel.
Note the control mechanism (max = n; n > 0;) inthisfor loop. Itsupdate partismissing, and
itsinitialization max = n hasno declaration. The variable max has to be declared before the for loop
because it is used outside of its block, in the last output statement in the program.

EXAMPLE 4.16 UsingaLoop Invariant to Provethat a for Loop isCorrect

This program finds the minimum of a sequence of input numbers. It is similar to the program in
Example 4.15:
int main ()
{ int n, min;
cout << "Enter positive integers (0 to quit): ";
cin >> n;
for (min = n; n > 0;)
{ 1f (n < min) min = n;
// INVARIANT: min <= n for all n, and min equals one of the n
cin >> n;

}

cout << "min = " << min << endl;

}

Enter positive integers (0 to quit): 44 77 55 22 99 33 11 66 88 0
min = 11
The full-line comment inside the block of the for loop is called aloop invariant. It states a condition

that has two characteristic properties: (1) it istrue at that point on every iteration of the loop; (2) the fact
that it is true when the loop terminates proves that the loop performs correctly. In this case, the condition
min <= n for all n isalwaystrue becausethe preceding if statement resetsthe value of min if the
last input value of n was less than the previous value of min. And the condition that min equals one
of the n isawaystrue becausemin isinitialized to the first n and the only place where min changes
its value iswhen it is assigned to a new input value of n. Finally, the fact that the condition is true when
the loop terminates means that min is the minimum of all the input numbers. And that outcome is
precisely the objective of the for loop.

CHAP. 4] ITERATION 69

EXAMPLE 4.17 Morethan One Control Variablein a for L oop

The for loop in this program uses two control variables:

int main ()
{ for (int m=95, n=11; m%n > 0; m -= 3, n++)
cout << m << "%" << n << " = " << m%n << endl;

The two control variables m and n are declared and initialized in the control mechanism of this for
loop. Then m is decremented by 3 and n is incremented on each iteration of the loop, generating the
sequence of (m,n) pairs (95,11), (92,12), (89,13), (86,14), (83,15), (80,16). The loop terminates with the
pair (80,16) because 16 divides 80.

EXAMPLE 4.18 Nesting for L oops

This program prints a multiplication table:
#include <iomanip> // defines setw()
#include <iostream> // defines cout
using namespace std;
int main ()
{ for (int x=1; x <= 12; =x++)
{ for (int y=1; y <= 12; y++)
cout << setw(4) << x*y;

cout << endl;

}
}

Each iteration of the outer x loop prints one row of the multiplication table. For example, on the first
iteration when x = 1, the inner y loop iterates 12 times, printing 1*y for each value of v from 1 to 12.
And then on the second iteration of the outer x loop when x = 2, theinner y loop iterates 12 times again,
this time printing 2+*y for each value of y from 1 to 12. Note that the separate cout << endl
statement must be inside the outer loop and outside the inner loop in order to produce exactly one line for
each iteration of the outer loop.

This program uses the stream manipulator setw to set the width of the output field for each integer
printed. The expression setw(4) meansto “set the output field width to 4 columns” for the next output.

70 ITERATION [CHAP. 4

Thisaligns the outputs into a readable table of 12 columns of right-justified integers. Stream manipulators
aredefinedinthe <iomanips> header, so this program had to include the directive

#include <iomanip>
in addition toincluding the <iostream> header.

EXAMPLE 4.19 Testing a L oop Invariant
This program computes and prints the discrete binary logarithm of an input number (the greatest

integer < the base 2 logarithm of the number). It tests its loop invariant by printing the relevant values on
each iteration:

#include <cmaths> // defines pow() and log()
#include <iostream> // defines cin and cout
#include <iomanip> // defines setw()

using namespace std;

int main()
{ long n;
cout << "Enter a positive integer: ";
cin >> n;
int d=0; // the discrete binary logarithm of n
double p2d=1; // =

for (int i=n; i > 1; /= , d++)
{ // INVARIANT: 2°d <= n/i < 2*2"d
p2d=pow(2,d); // = 274
cout << setw(2) << p2d << " <= " << setw(2) << n/i
<< " < " << setw(2) << 2*p2d << endl;
}
p2d=pow(2,d); // = 2"d
cout << setw(2) << p2d << " <= " << setw(2) << n
<< " < " << setw(2) << 2*p2d << endl;
cout << " The discrete binary logarithm of " << n
<< " is " << d << endl;
double lgn = log(n)/log(2); // base 2 logarithm of n
cout << "The continuous binary logarithm of " << n
<< " is " << lgn << endl;
}
Enter a positive integer: 63
1 <= 1< 2
2 <= 2 < 4
4 <= 4 < 8
8 <= 9 < 16
16 <= 21 < 32

32 <= 63 < 64
The discrete binary logarithm of 63 is 5
The continuous binary logarithm of 63 is 5.97728
The discrete binary logarithm is computed to be the number of times the input number can be divided
by 2 before reaching 1. So the for loopinitializes i to n and then divides 1 by 2 once on each iteration.
The counter ¢ counts the number of iterations. So when the loop terminates, ¢ contains the value of the
discrete binary logarithm of n.
In addition to using the setw () function that is defined inthe <iomanip> header, this program
also usesthe log () functionthat isdefinedinthe <cmaths> header. That function returns the natural

CHAP. 4] ITERATION 71

(base €) logarithm of n: 1og(n) =log,n = Inn. It is used in the expression log(n)/log(2) to
compute the binary (base 2) logarithm of n: log, n = Ign = (Inn)/(In2). The printed results compare the
discrete binary logarithm with the continuous binary logarithm. The former is equal to the latter truncated
downward to its nearest integer (the floor of the number).

Theloop invariant in thisexampleisthe condition 2*d <= n/i < 2*27d (i.e,29<n/i <2.29).Itis
tested by printing the values of the three expressions p2d, n, and 2*p2d, where the quantity p2d is
computed with the power function pow () thatisdefined inthe <cmaths header.

We can prove that this for loop will always compute the discrete binary logarithm correctly. When it
starts,d=0andi=n,s020=2°=1,n/i=n/n=1, and 2.2¢ = 2.1= 2; thus 2¢ < n/i < 2.29. On each iteration,
dincrementsand i is halved, so n/i is doubled. Thus the condition 2¢ < n/i < 2.29 remainsinvariant; i.e,, it
istrue initially and it remains true throughout the life of the loop. When the loop terminates, i = 1, so the
condition becomes 2¢ < n/1 < 2-29, whichis equivaent to 2¢ < n < 2#1, The logarithm of this expressionis
d=1g(2% <lIgn<lIg(2*t) = d+1, so d is greatest integer < Ign.

4.5 THE break STATEMENT

We have already seen the break statement used in the switch Statement. It is also used in
loops. When it executes, it terminates the loop, “breaking out” of the iteration at that point.

EXAMPLE 4.20 Using abreak Statement to Terminate a L oop

This program has the same effect as the one in Example 4.1 on page 60. It uses abreak statement to
control the loop:

int main ()

{ int n, i=1;
cout << "Enter a positive integer: ";
cin >> n;
long sum=0;
while (true)
{ if (i > n) break;

sum += i++;

}

cout << "The sum of the first " << n << " integers is " << sum;

}

Enter a positive integer: 8
The sum of the first 8 integers is 36
Aslongas (i <= n), theloop will continue, just asin Example 4.1. Butassoonas i > n, the
break statement executes, immediately terminating the loop.

Thebreak statement provides extraflexibility in the control of loops. Normally awhile loop,
ado..while lOOp, Or a £or loop will terminate only at the beginning or at the end of the com-
plete sequence of statements in the loop’s block. But the break statement can be placed any-
where among the other statements within aloop, so it can be used to terminate aloop anywhere
from within the loop’s block. Thisisillustrated by the following example.

EXAMPLE 4.21 Controlling Input with a Sentinel

This program reads a sequence of positive integers, terminated by 0, and prints their average:

72 ITERATION [CHAP. 4

int main ()
{ int n, count=0, sum=0;
cout << "Enter positive integers (0 to quit):" << endl;
for (;;) // "forever"
{ cout << "\t" << count + 1 << ": ";
cin >> n;
if (n <= 0) break;
++count;
sum += n;
}
cout << "The average of those " << count << " positive numbers is "

<< float (sum) /count << endl;

}
Enter positive integers (0 to quit):
1: 4
2: 7
3: 1
4: 5
5: 2
6: 0

The average of those 5 positive numbers is 3.8

When 0 is input, the break executes, immediately terminating the for loop and transferring
execution to the final output statement. Without the break statement, the ++count statement would
have to be put in a conditional, or count would have to be decremented outside the loop or initialized to
-1.

Note that all three parts of the for loop’s control mechanism are empty: for (; ;). Thisconstructis
pronounced “forever.” Without the break, this would be an infinite loop.

When used within nested loops, the break statement applies only to the loop to which it
directly belongs; outer loops will continue, unaffected by the break. Thisisillustrated by the fol-
lowing example.

EXAMPLE 4.22 Using abreak Statement with Nested L oops

Since multiplication is commutative (e.g., 3x4 = 4x3), multiplication tables are often presented with
the numbers above the main diagonal omitted. This program modifies that of Example 4.18 on page 69 to
print a triangular multiplication table:

int main ()
{ for (int x=1; x <= 12; X++)
{ for (int y=1; y <= 12; y++)
if (y > x) break;
else cout << setw(4) << x*y;
cout << endl;

CHAP. 4] ITERATION 73

When y > x, the execution of the inner y loop terminates and the next iteration of the outer x loop
begins. For example, when x = 3, they loop iterates 3 times (withy =1, 2, 3), printing 3 6 9. Then
on its4th iteration, the condition (y > x) istrue, sothebreak statement executes, transferring control
immediately to the cout << endl statement (which is outside of the inner v loop). Then the outer x
loop beginsits 4th iteration with x = 4.

4.6 THE continue STATEMENT

Thebreak statement skipsthe rest of the statements in the loop’s block, jumping immediately
to the next statement outside of theloop. The continue statement issimilar. It also skipsthe rest
of the statements in the loop’s block, but instead of terminating the loop, it transfers execution to
the next iteration of the loop. It continues the loop after skipping the remaining statementsin its
current iteration.

EXAMPLE 4.23 Using continue and break Statements

Thislittle program illustrates the cont inue and break Statements:

int main ()
{ int n;
for (;;)
{ cout << "Enter int: "; cin >> n;
if (n%2 == 0) continue;
if (n%3 == 0) break;
cout << "\tBottom of loop.\n";
!
cout << "\tOutside of loop.\n";
!

When n hasthe value 7, both i £ conditions are false and control reaches the bottom of the loop. When
n has the value 4, the first i £ condition istrue (4 is amultiple of 2), so control skips over the rest of the
statements in the loop and jumps immediately to the top of the loop again to continue with its next
iteration. When n hasthevalue 9, thefirst i £ conditionis false (9 isnot amultiple of 2) but the second i £
condition istrue (9 isamultiple of 3), so control breaks out of the loop and jumps immediately to the first
statement that follows the loop.

74 ITERATION [CHAP. 4

4.7 THE goto STATEMENT

Thebreak statement, the continue statement, and the switch statement each cause the pro-
gram control to branch to a location other than where it normally would go. The destination of
the branch is determined by the context: break goes to the next statement outside the loop, con-
tinue goes to the loop’s continue condition, and switch goes to the correct case constant. All
three of these statements are called jump statements because they cause the control of the pro-
gram to “jump over” other statements.

The goto statement is another kind of jump statement. Its destination is specified by a label
within the statement.

A label issimply an identifier followed by a colon placed in front of a statement. L abels work
like the case statementsinside a switch statement: they specify the destination of the jump.

Example 4.22 illustrated how a break normally behaves within nested loops. execution
breaks out of only the innermost 1oop that contains the break statement. Breaking out of several
or all of theloopsin anest requires a goto statement, as the next example illustrates.

EXAMPLE 4.24 Using a goto Statement to Break Out of a Nest of L oops

int main()
{ const int N=5;
for (int i=0; i<N; i++)
{ for (int j=0; Jj<N; j++)
{ for (int k=0; k<N; k++)
if (i+j+k>N) goto esc;
else cout << i+j+k << " ";
cout << "* ",

}

esc: cout << "." << endl; // inside the i loop, outside the j loop
}

}

01234 * 12345 * 2 345 .

1 23 45 * 2 3 45

2 3 4 5

3 4 5

4 5

When the goto is reached inside the innermost k loop, program execution jumps out to the labeled
output statement at the bottom of the outermost i loop. Since that is the last statement in the i loop, the i
loop will go on to its next iteration after executing that statement.

When i and § are 0, the k loop iterates 5 times, printing 0 1 2 3 4 followed by astar *. Then
increments to 1 and the k loop iterates 5 times again, printing 1 2 3 4 5 followed by astar *. Then
increments to 2 and the k loop iterates 4 times, printing 2 3 4 5. But then on the next iteration of the k
loop, i =0, § =2,and k = 4, s0 i+3j+k = 6, causing the goto statement to execute for the first time. So
execute jumps immediately to the labeled output statement, printing a dot and advancing to the next line.
Note that both the k loop and the § loop are aborted before finishing all their iterations.

Now i = 1 and themiddle j loop beginsiterating again with § = 0. The k loop iterates 5 times, printing
1 2 3 4 5 followedby astar *. Then j incrementsto 1 and the k loop iterates 4 times, printing 2 3
4 5. But then on the next iteration of thek loop, 1 =1, § =2, and k =3, S0 i +j+k = 6, causing the goto
statement to execute for the second time. Again execution jumps immediately to the labeled output
statement, printing a dot and advancing to the next line.

CHAP. 4] ITERATION 75

On the subsequent three iterations of the outer i loop, the inner k loop never completes its iterations
because 1 +5 +4 is always greater than 5 (because i is greater than 2). So no more stars are printed.

Note that the labeled output statement could be placed inside any of the loops or even outside of all of
them. In the latter case, the goto statement would terminate all three of the loops in the nest.

Also note how the label ed statement is indented. The convention is to shift it to the left one indentation
level to make it morevisible. If it were not alabeled statement, it would be indented as

}

cout << "." << endl;
instead of
esc: cout << "." << endl;

}

Example 4.24 illustrates one way to break out of a nest of loops. Another method is to use a
flag. A flag is aboolean variable that is initialized to false and then later set to true to signal
an exceptional event; normal program execution is interrupted when the flag becomes true. This
isillustrated by the following example.

EXAMPLE 4.25 Using a Flag to Break Out of a Nest of L oops

This program has the same output as that in Example 4.24;
int main()
{ const int N=5;
bool done=false;
for (int i=0; i<N; i++)
{ for (int j=0; j<N && !done; j++)
{ for (int k=0; k<N && !done; k++)
if (i+j+k>N) done = true;
else cout << i+j+k << " ";
cout << "* ",
}
cout << "." << endl; // inside the i loop, outside the j loop
done = false;

}
}
When the done flag becomes true, both the innermost k loop and the middle 5 loop will terminate, and
the outer i loop will finish its current iteration by printing the dot, advancing to the beginning of the next
line, and resetting the done flag to false. Then it startsits next iteration, the same as in Example 4.24.

4.8 GENERATING PSEUDO-RANDOM NUMBERS

One of the most important applications of computers is the simulation of real-world systems.
Most high-tech research and development is heavily dependent upon this technique for studying
how systems work without actually having to interact with them directly.

Simulation requires the computer generation of random numbers to model the uncertainty of
the real world. Of course, computers cannot actually generate truly random numbers because
computers are deterministic: given the same input, the same computer will always produce the

76 ITERATION [CHAP. 4

same output. But it is possible to generate numbers that appear to be randomly generated; i.e.,
numbers that are uniformly distributed within a given interval and for which there is no discern-
ible pattern. Such numbers are called pseudo-random numbers.

The Standard C header file <cstdlibs defines the function rand() which generates
pseudo-random integers in the range O to RaND_MaX, which is a constant that is also defined in
<cstdlibs. Eachtimethe rand () functioniscalled, it generates another unsigned integer in
this range.

EXAMPLE 4.26 Generating Pseudo-Random Numbers

Thisprogram usesthe rand () function to generate pseudo-random numbers:
#include <cstdlibs> // defines the rand() function and RAND MAX const
#include <iostreams>
using namespace std;

int main ()
{ // prints pseudo-random numbers:
for (int 1 = 0; 1 < 8; 1i++)

cout << rand() << endl;
cout << "RAND MAX = " << RAND MAX << endl;

}

On each run, the computer generates 8 unsigned integers that are uniformly distributed in the
interval O to RAND MaX, which is 2,147,483,647 on this computer. Unfortunately each run produces the
same sequence of numbers. Thisis because they are generated from the same “seed.”

Each pseudo-random number is generated from the previousy generated pseudo-random
number by applying a special “number crunching” function that is defined internally. The first
pseudo-random number is generated from an internally defined variable, called the seed for the
sequence. By default, this seed isinitialized by the computer to be the same value every time the
program is run. To overcome this violation of pseudo-randomness, we can use the srand ()
function to select our own seed.

CHAP. 4] ITERATION 7

\‘

EXAMPLE 4.27 Settingthe Seed Interactively

This program is the same as the one in Example 4.26 except that it allows the pseudo-random number
generator’s seed to be set interactively:
#include <cstdlibs> // defines the rand() and srand() functions
#include <iostreams>
using namespace std;

int main ()

{ // prints pseudo-random numbers:
unsigned seed;
cout << "Enter seed: ";

cin >> seed;
srand (seed) ; // initializes the seed
for (int 1 = 0; 1 < 8; 1i++)

cout << rand() << endl;

Theline srand(seed) assignsthe value of the variable seed to the interna “seed” used by the
rand () function to initialize the sequence of pseudo-random numbers that it generates. Different seeds
produce different results.

Note that the seed value 12345 used in the third run of the program is the first number generated by
rand () inthefirst run. Consequently the first through seventh numbers generated in the third run are the
same as the second through eighth numbers generated in the first run. Also note that the sequence
generated in the second run is the same as the one produced in Example 4.26. This suggests that, on this
computer, the default seed valueis 1.

78 ITERATION [CHAP. 4

The problem of having to enter a seed valueinteractively can be overcome by using the com-
puter's system clock. The system clock keeps track of the current time in seconds. The
time () function defined in the header file <ctimes> returnsthe current time as an unsigned
integer. Thisthen can be used as the seed for the rand () function.

EXAMPLE 4.28 Setting the Seed from the System Clock

This program is the same as the one in Example 4.27 except that it sets the pseudo-random number
generator’s seed from the system clock.
Note: if your compiler does not recognize the <ctime> header, then use the pre-standard
<time.h> header instead.
#include <cstdlibs> // defines the rand() and srand() functions

#include <ctimes> // defines the time() function

#include <iostreams>

//#include <time.h> // use this if <ctime> is not recognized

using namespace std;

int main ()

{ // prints pseudo-random numbers:
unsigned seed = time (NULL) ; // uses the system clock
cout << "seed = " << seed << endl;
srand (seed) ; // initializes the seed
for (int 1 = 0; 1 < 8; 1i++)

cout << rand() << endl;

}

Here are two runs using a UNIX workstation running a M otorola processor:

On thefirst run, the time () function returns the integer 808,148,157 which is used to “seed” the ran-
dom number generator. The second run is done 3 seconds later, so the time () function returnstheinte-
ger 808,148,160 which generates a completely different sequence.

Here are two runs using a Windows PC running an Intel processor:

In many simulation programs, one needs to generate random integers that are uniformly dis-
tributed in a given range. The next example illustrates how to do that.

CHAP. 4] ITERATION 79

EXAMPLE 4.29 Generating Pseudo-Random Numbersin Given Range

This program is the same as the one in Example 4.28 except that the pseudo-random numbers that it
generates are restricted to given range:
#include <cstdlibs>

#include <ctimes> // defines the time() function
#include <iostream>
//#include <time.h> // use this if <ctime> is not recognized
using namespace std;
int main ()
{ // prints pseudo-random numbers:
unsigned seed = time (NULL) ; // uses the system clock
cout << "seed = " << seed << endl;
srand (seed) ; // initializes the seed

int min, max;
cout << "Enter minimum and maximum: ";

cin >> min >> max; // lowest and highest numbers
int range = max - min + 1; // number of numbers in range
for (int 1 = 0; 1 < 20; i++)

{ int r = rand()/100%range + min;
cout << ¥ << " ";

}

cout << endl;

}

Here are two runs:

The first run generates 20 integers uniformly distributed between 1 and 100. The second run generates
20 integers uniformly distributed between 22 and 66.

80 ITERATION [CHAP. 4

In the for loop, we divide rand () by 100 first to strip way the two right-most digits of the random
number. This is to compensate for the problem that this particular random number generator has of
producing numbers that alternate odd and even. Then rand () /100%range producesrandom numbers
intherange 0 to range-1,and rand()/100%range + min producesrandom numbersin the range
min t0O max.

Review Questions

41 What happensin awhile loop if the control condition isfalse (i.e., zero) initially?
4.2 When should the control variablein a £or loop be declared before the loop (instead of within
its control mechanism)?
4.3 How doesthe break statement provide better control of |oops?
4.4 What isthe minimum number of iterations that
a. awhileloop could make?
b. ado. .while loop could make?
45 What iswrong with the following loop:
while (n <= 100)
sum += n*n;
4.6 If sisacompound statement, and e1, e2, and e3 are expressions, then what is the difference
between the program fragment:
for (el; e2; e3)
s;

and the fragment:
el;
while (e2)
{ s;
e3;

}
4.7 What iswrong with the following program:

int main ()
{ const double PI;

int n;
PI = 3.14159265358979;
n = 22;

}

4.8 Whatisan“infiniteloop,” and how can it be useful ?
4.9 How can aloop be structured so that it terminates with a statement in the middle of its block?
4.10 Why should tests for equality with floating-point variables be avoided?

Problems

41 Tracethe following code fragment, showing the value of each variable each time it changes:
float x = 4.15;
for (int i=0; i < 3; i++)

X *= 2;

CHAP. 4] ITERATION 81

4.2

43

4.4

45

4.6

4.7

4.8

49

4.10

411

412

413

414

Assumingthat e isan expressionand s isastatement, convert each of the following for
loopsinto an equivalent while loop:
a.for(;e)s
b. for (; ; e) s
Convert thefollowing for loopintoa while loop:

for (int i=1; i <= n; i++)

cout << i*i << " ";

Describe the output from this program:

int main ()

{ for (int 1 = 0; 1 < 8; i++)
if (i%2 == 0) cout << 1 + 1 << "\t";
else if (i%3 == 0) cout << 1*1 << "\t";
else if (i%5 == 0) cout << 2*1 - 1 << "\t";
else cout << 1 << "\t";

}

Describe the output from this program:
int main()
{ for (int 1=0; i < 8; i++)

{ 1f (i%2 == 0) cout << i + 1 << endl;
else if (i%3 == 0) continue;
else if (i%5 == 0) break;

cout << "End of program.\n";

}

cout << "End of program.\n";

}
Ina32-bit £loat type, 23 hitsare used to store the mantissa and 8 bits are used to store the
exponent.
a. How many significant digits of precision does the 32-bit float typeyield?
b. What is the range of magnitude for the 32-bit float type?
Write and run a program that uses awhile loop to compute and prints the sum of a given
number of squares. For example, if 5 isinput, then the program will print 55, which equal's 12
+ 22+ P+ 42+,
Write and run a program that uses a for loop to compute and prints the sum of a given num-
ber of squares.
Write and run a program that uses a do. .while loOp to compute and prints the sum of a
given number of squares.
Write and run a program that directly implements the quotient operator / and the remainder
operator % for thedivision of positive integers.
Write and run a program that reverses the digits of a given positive integer. (See Problem
3.13 on page 51.)
Apply the Babylonian Algorithm to compute the sgquare root of 2. This algorithm (so called
because it was used by the ancient Babylonians) computes ./2 by repeatedly replacing one
estimate x with the closer estimate (x + 2/x)/2. Note that this is simply the average of x and
2/X.
Write a program to find the integer square root of a given number. That is the largest integer
whose square is less than or equal to the given number.
Implement the Euclidean Algorithm for finding the greatest common divisor of two given
positive integers. This algorithm transforms a pair of positive integers (m, n) into apair (d, 0)
by repeatedly dividing the larger integer by the smaller integer and replacing the larger with

82

41

4.2

43

4.4

45
4.6

4.7
4.8

49

4.10

ITERATION [CHAP. 4

the remainder. When the remainder is O, the other integer in the pair will be the greatest com-
mon divisor of the original pair (and of all the intermediate pairs). For example, if mis 532
and nis 112, then the Euclidean Algorithm reduces the pair (532,112) to (28,0) by

(532,112) — (112,84) — (84,28) — (28,0).

So 28 is the greatest common divisor of 532 and 112. This result can be verified from the
facts that 532 = 28-19 and 112 = 28-8. The reason that the Euclidean Algorithm works is that
each pair in the sequence has the same set of divisors, which are precisely the factors of the
greatest common divisor. In the example above, that common set of divisorsis{1, 2, 4, 7, 14,
28} . The reason that this set of divisorsisinvariant under the reduction processis that when
m=n-q + r, anumber isacommon divisor of mand n if and only if it isa common divisor of
nandr.

Answersto Review Questions

If the control condition of awhile loopisinitialy false, then theloop is skipped atogether; the state-
ment(s) inside the loop are not executed at al.

The control variable in a £or loop has to be declared before the loop (instead of within its control
mechanism) if it is used outside of the loop’s statement block, as in Example 4.14 on page 67.

Thebreak statement provides better control of loops by alowing immediate termination of the loop
after any statement within its block. Without a break statement, the loop can terminate only at the
beginning or at the end of the block.

a. The minimum number of iterationsthat awhile loop could makeisO.
b. The minimum number of iterationsthat ado. .while loop could makeis 1.
That is an infinite loop because the value of its control variable n does not change.

There is no difference between the effects of those two program fragments, unless s isabreak state-
ment or s is a compound statement (i.e., a block) that contains abreak statement or a continue
statement. For example, this for statement will iterate 4 times and then terminate normally:

for (i = 0; 1 < 4; i++)
if (i == 2) continue;
but thiswhile statement will be an infinite loop:
i = 0;
while (i < 4)
{ if (i == 2) continue;
i++;
}

The constant PI isnot initialized. Every constant must beinitialized at its declaration.

Aninfiniteloop is one that continues without control; it can be stopped only by a branching statement
within the loop (such as abreak or goto statement) or by aborting the program (e.g., with Ctrl+C).
Infinite loops are useful if they are stopped with branching statements.

A loop can be terminated by a statement in the middle of its block by using abreak or agoto state-
ment.

Floating-point variables suffer from round-off error. After undergoing arithmetic transformations,
exact values may not be what would be expected. So atest suchas (y == x) may not work cor-
rectly.

CHAP. 4] ITERATION 83

41

42

43

4.4

45

4.6

4.7

48

Solutions to Problems

First, x isinitialized to 4.15 and i isinitialized to 0. Then x is doubled three times by the three itera-

tions of the £or loop.

The equivalent while loopsare:

a. while (e) s;

b. while (true) { s; e; },assumingthat s containsnobreak or continue Statements.

The equivalent while loopis:
int i=1;
while (i <= n)

{ cout << i*i << " ";
i++;
}

The output is
1 1 3 9 5 9 7 7

The output is
End of program.

End of program.
3
End of program.
5
End of program.
End of program.

a. The 23 bits hold the 2nd through 24th bit of the mantissa. Thefirst bit must bea 1, soit is not stored.
Thus 24 bits are represented. These 24 bits can hold 22 numbers. And 224 = 16,777,216, which has
7 digits with full range, so 7 complete digits can be represented. But the last digit is in doubt
because of rounding. Thus, the 32-bit £loat typeyields6 significant digits of precision.

b. The 8 bits that the 32-hit float type uses for its exponent can hold 28 = 256 different numbers.
Two of these are reserved for indicating underflow and overflow, leaving 254 numbers for expo-
nents. So an exponent can range from —126 to +127, yielding a magnitude range of 27126 =
1.175494 x 1078 to 2127 = 1.70141 x 10%,

This program uses awhile loop to compute the sum of the first n squares, where n isinput:
int main()

{ int n;
cout << "Enter a positive integer: ";
cin >> n;
int sum=0, i=0;
while (i++ < n)
sum += i*i;
cout << "The sum of the first " << n << " squares is "
<< sum << endl;
}

Enter a positive integer: 6
The sum of the first 6 squares is 91
This program uses a £or loop to compute the sum of the first n squares, where nisinput:
int main ()
{ int n;
cout << "Enter a positive integer: ";
cin >> n;
int sum=0;
for (int i=1; i <= n; i++)

84 ITERATION [CHAP. 4

sum += i*i;
cout << "The sum of the first " << n << " squares is "
<< sum << endl;

|

49 Thisprogramusesado. .while loop to compute the sum of the first n squares, where nisinput:
int main ()
{ int n;
cout << "Enter a positive integer: ";
cin >> n;
int sum=0, i=1;

do

{ sum += i*i;

while (i++ < n);

cout << "The sum of the first " << n << " squares is "

<< sum << endl;

|

4.10 This program directly implements the quotient operator / and the remainder operator % for the
division of positive integers. The algorithm used here, applied to the fraction n/d, repeatedly sub-
tractsthe d from the n until n islessthan d. At that point, the value of n will be the remainder, and
the number g of iterations required to reach it will be the quotient:

int main ()

{ int n, 4, q, r;
cout << "Enter numerator: ";
cin >> n;
cout << "Enter denominator: ";

cin >> d;
for (g = 0, ¥ = n; r >= d; g++)
r -= d;
cout << n << "/ " <<d<< " =" << g << endl;
cout << n << " % " << d << " =" << r << endl;
cout << "(" << g << ") (" << d << ") + (" << << ") ="

<< n << endl;

Thisruniterated 4 times: 30—-7=23,23-7=16,16—-7=9, and 9 -7 = 2. So the quotient is 4, and
the remainder is 2. Note that this relationship must always be true for integer division:
(quotient) (denominator) + (remainder) = numerator
411 Thetrick hereisto strip off the digits one at atime from the given integer and “accumulate” them in
reverse in another integer:
int main ()
{ longm, d, n = 0;
cout << "Enter a positive integer: ";
cin >> m;

CHAP. 4] ITERATION 85

412

4.13

while (m > 0)

{d=m¢% 10; // d will be the right-most digit of m
m /= 10; // then remove that digit from m
n = 10*n + d; // and append that digit to n

}

cout << "The reverse is " << n << endl;

}

Enter a positive integer: 123456
The reverse is 654321
In this run, m begins with the value 123,456. In the first iteration of the loop, d is assigned the digit 6,
m isreduced to 12,345, and n isincreased to 6. On the second iteration, d is assigned the digit 5, m is
reduced to 1,234, and n isincreased to 65. On the third iteration, d is assighed the digit 4, m is reduced
to 123, and n isincreased to 654. This continues until, on the sixth iteration, d is assigned the digit 1,
misreduced to 0, and n isincreased to 654,321.
Thisimplements the Babylonian Algorithm:
#include <cmath> // defines the fabs() function
#include <iostreams>
using namespace std;
int main()
{ const double TOLERANCE
double x = 2.0;
while (fabs(x*x - 2.0) > TOLERANCE)
{ cout << x << endl;

5e-8;

X = (x + 2.0/x)/2.0; // average of x and 2/x
}
cout << "x = " << X << ", x*x = " << X*X << endl;
}

2
1.5
1.41667
1.41422

X = 1.41421, x*x = 2
We use a“tolerance” of 5e-8 (=0.00000005) to ensure accuracy to 7 decimal places. The fabs ()
function (for “floating-point absolute value’), defined inthe <cmath> header file, returns the abso-
lute val ue of the expression passed to it. So theloop continuesuntil x*x iswithin the given tolerance
of 2.
This program finds the integer square root of a given number. This method uses an “ exhaustive” algo-
rithm to find all the positive integers whose square is less than or equal to the given number:
int main()
{ float x;
cout << "Enter a positive number: ";
cin >> X;
int n = 1;
while (n*n <= x)
++1n;
cout << "The integer square root of " << x << " ig "
<< n-1 << endl;
}
Enter a positive number: 1234.56
The integer square root of 1234.56 is 35

86 ITERATION [CHAP. 4

It startswith n=1 and continuesto increment n until n*n > x. When the £or |oop terminates, n
isthe smallest integer whose squareis greater than x, s0 n-1 istheinteger square root of x. Note the
use of the null statement in the for loop. Everything that needs to be donein the loop is done within
the control parts of the loop. But the semicolon is still necessary at the end of the loop.
414 Thisimplements the Euclidean Algorithm:
int main ()
{ int m, n, r;
cout << "Enter two positive integers: ";
cin >> m >> n;

if (m < n) { int temp = m; m = n; n = temp; } // make m >= n
cout << "The g.c.d. of " << m << " and " << n << " is ";
while (n > 0)
{r=m¢%n;
m = n;
ns=r;
}

cout << m << endl;

}

Enter two positive integers: 532 112
The g.c.d. of 532 and 112 is 28

