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'HIGHER-ORDER DIFFERENTIAL EQUATIONS
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A Ch u- 13, we analysed the methods of solving the first-order differential equations -
th mathematical as well as economic. We have told that the first order differential equations
the d?watwe or differential having the highest power 1. But there also exist differential
ons of higher order, which we simply call n th order.

r The general form of linear differentia equation of n th-order is presented as:
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= 'f_':'.--"' order equation, because the n th derivative (the first term on the left) is the highest
B m"“_“l“lhun. It is linear because all the derivatives as well as the dependent variable,
#pear only in the first degree. Again the term in the form of multiplication of y and its

(%) Occurs. Moreover, this differential equation is furmished with constant-
\. : h a's) and a constant term (b).

- 9%60nd—Order Linear Differential Equations With Constant Coefficients

o Constant Terms.

¢ most notable higher—order differential equation is Second-order dlﬂ'amulill
- “\eeordingly, a second-order differential equation is the one in whiFh highest .y A
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ling the time path is concerned with solving the second—order different
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integral is : ‘ I where a, # 0. It is proved as: Le
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| ﬁk = = k = ™ . Accordingly, y, = k = Y
‘- mm Y, given the differential equation:  y” (1) - 6y’ (1) + 5y (t) =

--_'_" ,=-6,2,=5 and b= Th -—=*—"=3.
Phs - a 5. Thus yp = o~ = s
mple 2 ;wam Y, of the equation: y" (t) +y' (t) -2y = — 10.
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