https://stat9943.blogspot.com

# Contents 

## CHAPTER 11

## MULTIPLE

 REGRESSION AND CORRELIATION
## https://stat9943.blogspot.com MULTIPLE REGRESSION AND CORRELATION

## INTRODUCTION

The technique of simple regression which involves one dependent variable and one independent sle is often inadequate in most real-world situations where a variable depends upon two or more endent variables or regressors. For example, the yield of a crop depends upon the fertility of the fertilizer applied, rainfall, quality of seed, etc. Likewise, the systolic blood pressure of a person ds upon one's weight, age, etc. In such cases, the technique of simple regression may be expanded iude several independent variables. A regression which involves two or more independent variables ed a multiple regression. Thus, in case of multiple linear
regression where $k$ independent variables influence the dependent variable $Y$, the general format of del is

$$
Y_{i}=\alpha+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\ldots+\beta_{k} X_{k i}+\varepsilon_{i},(i=1,2, \ldots, n)
$$

$\varepsilon_{i}$ 's are the randomerrors,
$\alpha$ and $\beta_{i}$ 's are the unknown population parameters, $\alpha$ is the intercept and $\beta_{1}, \beta_{2}, \ldots, \beta_{k}$ are the regression coefficients for variables $X_{1}, X_{2}, \ldots, X_{\mathrm{k}}$ respectively,
$X_{1 \mathrm{i}}, X_{2 \mathrm{i}}, \ldots, X_{\mathrm{ki}}$ are the fixed values of $k$ independent variables, the first of the two subscripts attached to each regressor denotes the variable and the second fers to the observation number,

We assume that

1) $E\left(\varepsilon_{i}\right)=0$ for all $i$. This implies that for given valaes of $X_{i}^{\prime}$ 's,

$$
E\left(Y_{t}\right)=\operatorname{of}^{D_{1}} X_{11}+\beta_{2} X_{2 i}+\ldots+\beta_{k} X_{k} \text {. }
$$

2) $\operatorname{Var}\left(\varepsilon_{i}\right)=E\left(\varepsilon_{i}{ }^{2}\right)=\sigma^{2}$ for all $i$, i.e. the Qariance of error terms is constant.
$E\left(\varepsilon_{1}, \varepsilon_{j}\right)=0$ for all $i \neq j$, i.e. errortetms are independent of each other.
$E\left(X, \varepsilon_{i}\right)=0$ for all regressors $\varepsilon$ and each $X$ variable are independent.
$\varepsilon_{i}^{\prime}$ 's are normally distributed with a mean of zero and a constant variance $\sigma^{2}$.
We assume further in a multiple regression model that there exists no exact linear relationship between any two of the regressors.

The corresponding regression equation estimated from sample data then takes the following form

$$
\hat{Y}_{i}=a+b_{1} X_{11}+b_{2} X_{2 i}+\ldots+b_{k} X_{k}
$$

$a$ and $b_{i}$ 's are the least-squares estimates of the population parameters $\alpha$ and $\beta_{i}$ 's. The parameters or their estimates $b_{i}$ 's are called the partial regression co-efficients as $\beta_{i}$ or its estimate $2, \ldots, k)$ measures the change in the mean value of $Y$ for a unit change in $X_{i}$, while all other ables remain unchanged.

## MULTIPLE LINEAR REGRESSION WITH TWO REGRESSORS

For two independent variables $X_{1}$ and $X_{2}$, the predicting equation for an individual $Y$ value is

$$
Y_{i}=\alpha+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\varepsilon_{i},
$$

## https://stat994\%. plogspolt.com

and the estimated multiple linear regression based on sample data is

$$
\hat{Y}=a+b_{1} X_{4 i}+b_{2} X_{2 i}
$$

for a set of $n$ observations, each of which is a number triple $\left(X_{\mathrm{i}}, X_{2 \mathrm{i}}, Y_{\mathrm{i}}\right)$. The error or residual in ea is given as

$$
e_{i}=Y_{i}-\hat{Y}_{i}=Y_{i}-\left(a+b_{1} X_{1 i}+b_{2} X_{2 i}\right)
$$

Using the least-squares criterion, we determine those values of $a, b_{1}$ and $b_{2}$ which will minimize of squared residual, $\sum e_{i}^{2}$. To minimize $\sum e_{i}^{2}$, we find $\frac{\partial \sum e_{i}^{2}}{\partial a}, \frac{\partial \Sigma e_{i}^{2}}{\partial b_{1}}$ and $\frac{\partial \sum e_{i}^{2}}{\partial b_{2}}$ and set equal Thus

$$
\begin{aligned}
& \frac{\partial \sum e_{i}^{2}}{\partial a}=-2 \sum\left[Y_{i}-\left(a+b_{1} X_{1 i}+b_{2} X_{2 i}\right)\right]=0 \\
& \frac{\partial \sum e_{i}^{2}}{\partial b_{1}}=-2 \sum X_{11}\left[Y_{i}-\left(a+b_{1} X_{1 i}+b_{2} X_{2 i}\right)\right]=0 \\
& \frac{\partial \sum e_{i}^{2}}{\partial b_{2}}=-2 \sum X_{2 i}\left[Y_{1}-\left(a+b_{1} X_{1 i}+b_{2} X_{2}\right)\right] \in 0
\end{aligned}
$$

Simplifying, we get the following three normal equations,

$$
\begin{aligned}
\Sigma Y & =n a+b_{1} \sum X_{1}+b_{2} \sum \\
\sum X_{1} Y & =a \sum X_{1}+b_{1} \sum X_{1}^{2} \theta_{2} \sum X_{1} X_{2}, \\
\sum X_{2} Y & =a \sum X_{2}+b X_{1} X_{2}+b_{2} \sum X_{2}^{2}
\end{aligned}
$$

The values of $a, b_{1}$ and $b_{2}$ determined by solving these three normal equations simela and are substituted into

$$
\hat{Y}=a+b \hat{V}_{1}^{0}+b_{2} X_{2}
$$

to obtain the estimated rrultiple linear egression equation.
Example 11.1 A statistician wants to predict the incomes of restaurants, using two variables; the number of restaurant employees and restaurant floor area. He collected the follo

| Income <br> $(\mathbf{0 0 0})$ | Floor area <br> $(\mathbf{0 0 0}$ sq. ft$)$ <br> $\boldsymbol{Y}$ | Number of <br> employees <br> $\boldsymbol{X}$ |
| :---: | :---: | :---: |
| 30 | 10 | 15 |
| 22 | 5 | 8 |
| 16 | 10 | 12 |
| 7 | 3 | 7 |
| 14 | 2 | 10 |

Calculate the estimated multiple linear regression equation (i.e. $\hat{Y}=a+b_{1} X_{1}+b_{2} X_{2}$ ) for the above

The estimated multiple linear regression equation is

$$
\hat{Y}=a+b_{1} X_{1}+b_{2} X_{2}
$$

$a, b_{1}$ and $b_{2}$ are the least squares estimates of $\alpha, \beta_{1}$ and $\beta_{2}$. The three normal equations are:

$$
\begin{aligned}
\sum Y & =n a+b_{1} \sum X_{1}+b_{2} \sum X_{2} \\
\sum X_{1} Y & =a \sum X_{1}+b_{1} \Sigma X_{1}^{2}+b_{2} \sum X_{1} X_{2} \\
\sum X_{2} Y & =a \sum X_{2}+b_{1} \sum X_{1} X_{2}+b_{2} \sum X_{2}^{2}
\end{aligned}
$$

The calculations needed to find $a, b_{\mathrm{L}}$ and $b_{2}$ are showing in the following table:

| $\boldsymbol{Y}$ | $\boldsymbol{X}_{1}$ | $X_{2}$ | $X_{1}^{2}$ | $X_{2}^{2}$ | $X_{l} X_{2}$ | $X_{I} \boldsymbol{Y}$ | $\boldsymbol{X}_{2} \boldsymbol{Y}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 30 | 10 | 15 | 100 | 225 | 150 | 300 | 450 |
| 22 | 5 | 8 | 25 | 64 | 40 | 110 | 176 |
| 16 | 10 | 12 | 100 | 144 | 120 | 160 | 192 |
| 7 | 3 | 7 | 9 | 49 | 24 | 21 | 49 |
| 14 | 2 | 10 | 4 | 100 | 20 | 28 | 140 |
| 89 | 30 | 52 | 238 | 582 | 351 | 619 | 1007 |

Substituting the sums in the normal equations we get

$$
\begin{aligned}
& 5 a+30 b_{1}+52 b_{2}=89 \\
& 30 a+238 b_{1}+351 b_{2}=515 \\
& 52 a+351 b_{1}+582 b_{2}=1007
\end{aligned}
$$

Solving them simultaneousl l KWe obtain

$$
a=-1.33, b_{1}=0.38 \text { and } b_{2}=1.62
$$

Hence the desired estimated multiple linear regression is

$$
\hat{Y}=-1.33+0.38 X_{1}+1.62 X_{2} .
$$

11.2.1 Expression of Multiple Linear Regression in Deviation Form. The computational scedure is considerably simplified by working with the deviations from the respective means of the rables. With two independent variables, the estimated multiple regression equation is

$$
\hat{Y}_{l}=a+b_{1} X_{11}+b_{2} X_{2 i}, \quad(i=1,2, \ldots, n)
$$

As the regression equation goes through the point of means, we have

$$
\hat{Y}=a+b_{1} \bar{X}_{1}+b_{2} \bar{X}_{2}
$$

Subtracting, we get

$$
\hat{y}_{1}=b_{1} x_{11}+b_{2} x_{21},
$$

where

$$
\hat{y}_{i}=\hat{Y}_{i}-\bar{Y}, x_{1 i}=X_{1 i}-\bar{X}_{1} \text { and } x_{2 i}=X_{2 i}-\bar{X}_{2} .
$$

Then

$$
\begin{aligned}
& e_{i}=y_{i}-\hat{y}_{i}=y_{i}-b_{1} x_{1 i}-b_{2} x_{2 i} \text {, and } \\
& \Sigma e_{i}^{2}=\Sigma\left(y_{i}-b_{1} x_{1 i}-b_{2} x_{2 i}\right)^{2} .
\end{aligned}
$$

Differentiating $\sum e_{i}^{2}$ partially w.r.t $b_{1}$ and $b_{2}$, and equating to zero, we get

$$
\begin{aligned}
& \frac{\partial \sum e_{i}^{2}}{\partial b_{1}}=-2 \sum x_{11}\left(y_{i}-b_{1} x_{11}-b_{2} x_{2 i}\right)=0 \\
& \frac{\partial \sum e_{i}^{2}}{\partial b_{2}}=-2 \sum x_{21}\left(y_{i}-b_{1} x_{11}-b_{2} x_{2 i}\right)=0
\end{aligned}
$$

which yield, on simplification, the following two normal egrations:

$$
\begin{aligned}
& \sum x_{1} y=b_{1} \sum x_{1}^{2}+b_{2} \sum x_{1} x_{2}, \\
& \sum x_{2} y=b_{1} \sum x_{1} x_{2}+b_{2} \sum x_{2}^{2},
\end{aligned}
$$

where the subscript $i$ is dropped for convenierce in printing.
Solving these two equations simetreously, we get

$$
\begin{aligned}
& b_{1}=\frac{\left(\sum x_{1} y\right)\left(\sum x^{2}\right)^{2}\left(\sum x_{2} y\right)\left(\sum x_{1} x_{2}\right)}{\left(\sum x_{2}^{2}\right)}, \text { and } \\
& b_{2}=\frac{\left(\sum x_{2}^{2}\right)-\left(\sum x_{1} x_{2}\right)^{2}}{\left(\sum x_{1}^{2}\right)\left(\sum x_{2}^{2}\right)-\left(\sum x_{1} x_{2}\right)^{2}} .
\end{aligned}
$$

Then $a$, the constant, is determined by

$$
a=\bar{Y}-b_{1} \bar{X}_{1}+\dot{b}_{2} \bar{X}_{2} .
$$

This is an alternative approach to solving the normal equations directly.
Example 11.2 Compute the estimated multiple linear regression $\hat{Y}=a+b_{1} X_{1}+b_{2} X_{2}$ fir $=$ in Example 11.1, using the multiple regression in the deviation form.

In Example 11.1, we found that

$$
\begin{aligned}
& \Sigma Y=89, \Sigma X_{1}=30, \Sigma X_{2}=52, \Sigma X_{1}^{2}=238, \Sigma X_{2}^{2}=582, \\
& \Sigma X_{1} X_{2}=351, \Sigma X_{1} Y=619, \Sigma X_{2} Y=1007 \text { and } n=5 .
\end{aligned}
$$

Now we first calculate

$$
\begin{aligned}
& \sum x_{1}^{2}=\sum X_{1}^{2}-\frac{\left(\sum X_{1}\right)^{2}}{n}=238-\frac{(30)^{2}}{5}=58, \\
& \sum x_{2}^{2}=\sum X_{2}^{2}-\frac{\left(\sum X_{2}\right)^{2}}{n}=582-\frac{(52)^{2}}{5}=41.2, \\
& \sum x_{1} x_{2}=\sum X_{1} X_{2}-\frac{\left(\sum X_{1}\right)\left(\sum X_{2}\right)}{n}=351-\frac{(30)(52)}{5}=39, \\
& \sum x_{1} y=\sum X_{1} Y-\frac{\left(\sum X_{1}\right)\left(\sum Y\right)}{n}=619-\frac{(30)(89)}{5}=85, \\
& \sum x_{2} y=\sum X_{2} Y-\frac{\left(\sum X_{2}\right)\left(\sum Y\right)}{n}=1007-\frac{(52)(89)}{5}=81.4,
\end{aligned}
$$

Next, we compute the regression co-efficients and constant as follows:

$$
\begin{aligned}
b_{1} & =\frac{\left(\sum x_{1} y\right)\left(\sum x_{2}^{2}\right)-\left(\sum x_{2} y\right)\left(\sum x_{1} x_{2}\right)}{\left(\sum x_{1}^{2}\right)\left(\sum x_{2}^{2}\right)-\left(\sum x_{1} x_{2}\right)^{2}} \\
& =\frac{(85)(41.2)-(81.4)(39)}{(58)(41.2)-(39)^{2}}=\frac{327.4}{868.6}=0.38, \\
b_{2} & =\frac{\left(\sum x_{2} y\right)\left(\sum x_{1}^{2}\right)-\left(\sum x_{1} y\right)\left(\sum x_{1} x_{2}\right)}{\left(\sum x_{1}^{2}\right)\left(\sum x_{2}^{2}\right)-\left(\sum x_{1} x_{2}\right)^{2}} \\
& =\frac{(81.4)(58)-(85)(39)}{(58)(41.2)-(39)^{2}}=\frac{14(86)}{}=1.62,
\end{aligned}
$$

and

$$
\begin{aligned}
a & =\bar{Y}-b_{1} \bar{X}_{1}+b_{2} \bar{X}_{2} \\
& =17.8-(0.38)(1.62)(10.4)=-1.33
\end{aligned}
$$

Hence the desired multiple Mnear regression equation is

$$
\hat{Y}=-1.33^{\circ}+0.38 X_{1}+1.62 X_{2} .
$$

It is to be noted that we have exactly the same results as previously.
11.2.2 Standard Error of Estimate. The standard error of estimate is the standard deviation of ple regression. It measures the dispersion of $Y$ values about the population multiple regression on. For a multiple regression with two independent variables $X_{1}$ and $X_{2}$, it is denoted symbolically where the subscripts indicate that $Y$ is regressed against two independent variables $X_{1}$ and $X_{2}$. ally, the value of $\sigma_{Y 12}$ is not known, it is therefore estimated from sample data.
anple standard error of estimate (unbiased estimate), denoted by $s_{\gamma, 12}$ is given by

$$
s_{Y: 12}=\sqrt{\frac{\Sigma(Y-\hat{Y})^{2}}{n-3}}
$$

but it can be computed more readily by using the following relations:

$$
\begin{aligned}
\Sigma(Y-\hat{Y})^{2} & =\Sigma\left[Y-\left(a+b_{1} X_{1}+b_{2} X_{2}\right)\right]^{2} \\
& =\Sigma Y^{2}-a \Sigma Y-b_{1} \Sigma X_{1} Y-b_{2} \Sigma X_{2} Y
\end{aligned}
$$

A larger value of $s_{Y, 12}$ means that the multiple regression equation is of little use in estimation $=$ prediction.
11.2.3 Co-efficient of Multiple Determination and Multiple Correlation. The co-efficies multiple determination, which measures as in the case of simple regression, the proportion of variabil the values of the dependent variable $Y$ explained by its linear relation with the independent variable defined by the ratio of the variation in $Y$ explained by the regression equation to the total variation. $F$ multiple regression with two regressors $X_{1}$ and $X_{2}$, the co-efficient of multiple determination is densymbolically by $R_{Y, 12}^{2}$ and is computed by

$$
R_{Y .12}^{2}=\frac{\Sigma(\hat{Y}-\bar{Y})^{2}}{\Sigma(Y-\bar{Y})^{2}}
$$

where $\hat{Y}=a+b_{1} X_{1}+b_{2} X_{2}$, but it can be readily computed by using fire relation

$$
\Sigma(\hat{Y}-\bar{Y})^{2}=a \Sigma Y+b_{1} \Sigma X_{1} Y+b_{2} \Sigma X_{2} Y-\left(\Sigma V^{2}\right)^{2} / n
$$

The co-efficient of multiple determination lies between 0 and 1 , and has same meaning as in linear regression.

The positive square root of the co-efficrent of multiple determination, i.e. $\sqrt{R_{Y, 12}^{2}}$ is called $=$ co-efficient of multiple correlation. $R_{Y, 10}$ Heasures the degree of association between $Y$ and bots $=$ regressors $X_{1}$ and $X_{2}$ combined, and is abyarys taken to be positive.

Example 11.3 Compute the stendard error of estimate, co-efficient of multiple determination e coefficient of multiple correlation for the data in Example 11.1.

For the data in Example 1, we found from the regression calculation, that

$$
\begin{aligned}
& \sum Y=89, \sum Y^{2}=1885, n=5, a=-1.33 \\
& \begin{aligned}
\sum X_{1} Y & =619, \sum X_{2} Y=1007, b_{1}=0.38, b_{2}=1.62 \\
s_{Y, 12} & =\sqrt{\frac{\sum Y^{2}-a \sum Y-b_{1} \sum X_{1} Y-b_{2} \sum X_{2} Y}{n-3}} \\
& =\sqrt{\frac{1885-(-1.33)(89)-(0.38)(619)-(1.62)(1007)}{5-3}} \\
& =\sqrt{\frac{136.81}{2}}=\sqrt{68.405}=8.27
\end{aligned}
\end{aligned}
$$

which is the standard deviation of the multiple regression.

## https://stat9943.blogspot.com

The coefficient of multiple determination is

$$
\begin{aligned}
R_{Y, 12}^{2} & =\frac{\sum(\hat{Y}-\bar{Y})^{2}}{\sum(Y-\bar{Y})^{2}} \\
& =\frac{a \sum Y+b_{1} \sum X_{1} Y+b_{2} \sum X_{2} Y-\left(\sum Y\right)^{2} / n}{\sum Y^{2}-\left(\sum Y\right)^{2} / n} \\
& =\frac{(-1.33)(89)+(0.38)(619)+(1.62)(1007)-(89)^{2} / 5}{1885-(89)^{2} / 5} \\
& =\frac{163.99}{300.80}=0.55
\end{aligned}
$$

This means that $55 \%$ of the variability in income is explained by its linear relationship with floor and the number of employees.
The co-efficient of multiple correlation, $R_{Y, 12}$ is

$$
R_{Y .12}=\sqrt{0.55}=0.74
$$

11.2.4 Subscript Notation. For the purposes of genelization and change of variables, it is enient to adopt a notation due to $G$. Udny Yule ( $1871-\mathcal{S}^{(Q Q}$ ). This notation involves subscripts. For ple, the individual $Y$ value in case of the multiple lineay regression with two independent variables, is

$$
Y_{i}=\alpha+\beta_{1} X_{1}+\beta_{2} X_{2 i}+\varepsilon_{i}
$$

Using Yule's notation, this can be writtgetis

$$
X_{11}=\beta_{123}+\beta_{123} X_{21}+\left.\beta_{d}\right|_{2} X_{31}+\varepsilon_{i}
$$

=e the variables are numbered $k$ and 3 by the use of subscripts. The subscripted number 1 denotes tependent variable, 2 and 3 d $\$ 0$ ote the independent variables $X_{2}$ and $X_{3}$ respectively, and $\beta_{1.23}$ is the $=$ of $X_{1}$ when $X_{2}$ and $X_{3}$ are both equal to zero.

There are three subscripts attached to each parameter. The subscripts preceding the point are called ry subscripts and those following the point are known as secondary subscripts. The dependent mle is always indicated by the first primary subscripts, while the second primary subscript indicates ariable to which the $\beta$ co-efficient is attached. The secondary subscript(s) indicates which other be(s) has been included in the regression equation. The secondary subscript, if more than one, may criten in any order.
The advantage of this notation is that it indicates the number of variables involved in the regression ion and also shows which is the dependent variable and which are the independent variables.
The estimated multiple regression equation of $X_{1}$ on $X_{2}$ and $X_{3}$ is

$$
\hat{X}_{1}=b_{1,23}+b_{123} X_{2}+b_{132} X_{3} .
$$

It should be noted that in general $b_{12,3}$ is different from $b_{13,2}$.
Allowing a change of variables, the estimated regression equation of $X_{2}$ on $X_{1}$ and $X_{3}$ is given by

$$
\hat{X}_{2}=b_{2,13}+b_{23.1} X_{3}+b_{21.3} X_{1} .
$$

Similarly, the estimated regression equation of $X_{3}$ on $X_{1}$ and $X_{2}$ is

$$
X_{3}=b_{3,12}+b_{312} X_{1}+b_{321} X_{2} .
$$

If the two variables, measured from their means, be $x_{1}$ and $x_{2}$ then the two simple regran equations of $x_{1}$ on $x_{2}$ and of $x_{2}$ and $x_{1}$ are

$$
x_{1}=b_{12} x_{2} \text { and } x_{2}=b_{21} x_{1}
$$

The residuals may be expressed as

$$
x_{1.2}=x_{1}-b_{12} x_{2} \text { and } x_{2,1}=x_{2}-b_{21} x_{1} .
$$

If $x_{1}, x_{2}$ and $x_{3}$ are three variables, measured from their respective means, then the $=$ regression equation of $x_{1}$ on $x_{2}$ and $x_{3}$ is

$$
x_{1}=b_{12.3 x_{2}}+b_{13.2} x_{3}
$$

and its residual is expressed by

$$
x_{1,23}=x_{1}-b_{12.3} x_{2}-b_{13.2} x_{3}
$$

The two normal equations may be written as

$$
\sum x_{2} x_{1,23}=0 \text { and } \sum x_{3} x_{1,23}=0 .
$$

11.2.5 Properties of Residuals. The residyass or errors have the following properties:

1. "The sum of the products of correpponding values of a variable and a residual is zero, the subscript of the variable is incyided among the secondary subscripts of the residual
Let the regression equation (indeyration form) of $x_{1}$ on $x_{2}$ and $x_{3}$ be

$$
x_{1}=b_{12.3} x_{2}+b_{122} .013 .
$$

Then the two normal equations for determining the $b$ 's are

$$
\sum x_{2} x_{123} \omega=\sum x_{3} x_{123},
$$


Similarly, the normal equations for the regression of $x_{2}$ on $x_{1}$ and $x_{3}$ and of $x_{3}$ on $x_{1}$ and $x_{2}=$

$$
\begin{aligned}
& \sum x_{1} x_{2.13}=0=\sum x_{3} x_{213}, \\
& \sum x_{1} x_{3.12}=0=\sum x_{2} x_{3,12} .
\end{aligned}
$$

2. The sum of the products (or covariance) of two residuals remains unchanged by omite $=$ one residual any or all of secondary subscripts which are common to both".

Let the residual defined as $x_{1,2}=x_{1}-b_{12} x_{2}$ be considered.

- Then $\sum x_{1,2} x_{1,23}=\sum x_{1,23}\left(x_{1}-b_{12} x_{2}\right)$.

$$
=\sum x_{1} x_{1.23}-b_{12} \sum x_{2} x_{1.23}
$$

The second term vanishes as $\sum x_{2} x_{1,23}=0$
Then $\sum x_{122} x_{1,23}=\sum x_{1} x_{123}$

$$
\text { Again } \begin{aligned}
\sum x_{1,2} x_{123} & =\sum x_{123}\left(x_{1}-b_{123} x_{2}-b_{132} x_{3}\right) \\
& =\sum x_{1} x_{123}-b_{123} \sum x_{2} x_{1,23}-b_{132} \sum x_{3} x_{1.23}
\end{aligned}
$$

Here again the second and third terms vanish due to their being normal equations.
Hence $\sum x_{1,2} x_{1,23}=\sum x_{1} x_{1,23}$.
3. "The sum of the products (or covariance) of two residuals is zero provided all the subscripts of one residual are included among the secondary subscripts of the second."
Let us consider the residuals defined by $x_{3,2}$ and $x_{1,23}$.
Then $\sum x_{3,2} x_{1,23}=\sum x_{32}\left(x_{1}-b_{123} x_{2}-b_{13,2} x_{3}\right)$
But this vanishes because of normal equation and property 1.
Similarly, $\sum x_{2,3} x_{1,23}=0$.
11.2.6 Multiple Regression in terms of Linear Corretation Coefficients. The multiple yression equation of a variable, say $X_{1}$, on other variables, say $X_{3}$ and $X_{3}$, can be sometimes expressed in $\boxed{ } \mathrm{s}$ of $r_{12}, r_{13}$ and $r_{23}$, the linear correlation coefficients. Thosample regression equation (in deviation
-n) of $x_{1}$ on $x_{2}$ and $x_{3}$ is given by

$$
x_{1}=b_{12.2 . x_{2}}+b_{13.2} x_{3}
$$

The two normal equations are obtained as

$$
\begin{aligned}
& \sum x_{1} x_{2}=b_{123} \sum x_{2}^{2}+b_{132} \sum x 9 \% \\
& \left.\sum x_{1} x_{3}=b_{123} \sum x_{2} x_{3}\right)+b_{13,2} \sum x_{3}^{2}
\end{aligned}
$$

Let $S_{i}^{2}$ be the variance of let $r_{i j}$ be the linear correlation co-efficient between $x_{i}$ and $x_{j}$. Then ssing the normal equations in terms of variances and linear correlation co-efficient, we get

$$
\begin{aligned}
& n r_{12} S_{1} S_{2}=n b_{123} S_{2}^{2}+n b_{132} r_{23} S_{2} S_{3} \\
& n r_{13} S_{1} S_{3}=n b_{123} r_{23} S_{2} S_{3}+n b_{132} S_{3}^{2}
\end{aligned}
$$

Simplification gives

$$
\begin{aligned}
& r_{12} S_{1}=b_{123} S_{2}+b_{132} r_{23} S_{3}, \text { and } \\
& r_{13} S_{1}=b_{123} r_{23} S_{2}+b_{132} S_{3}
\end{aligned}
$$

Solving these equations simultaneously for $b$ 's, we get

$$
b_{123}=\frac{S_{1}}{S_{2}}\left(\frac{r_{12}-r_{13} r_{23}}{1-r_{23}^{2}}\right) \text {, and }
$$

$$
b_{13.2}=\frac{S_{1}}{S_{3}}\left(\frac{r_{13}-r_{12} r_{23}}{1-r_{23}^{2}}\right)
$$

Substituting these values in the regression equation, we obtain

$$
x_{1}=\left(\frac{S_{1}}{S_{2}}\right)\left(\frac{r_{12}-r_{13} r_{23}}{1-r_{23}^{2}}\right) x_{2}+\left(\frac{S_{1}}{S_{3}}\right)\left(\frac{r_{13}-r_{12} r_{23}}{1-r_{23}^{2}}\right) x_{3}
$$

Or dividing both sides of the equation by $S_{1}$, we get

$$
\frac{x_{1}}{S_{1}}=\left(\frac{r_{12}-r_{13} r_{23}}{1-r_{23}^{2}}\right)\left(\frac{x_{2}}{S_{2}}\right)+\left(\frac{r_{13}-r_{12} r_{23}}{1-r_{23}^{2}}\right)\left(\frac{x_{3}}{S_{3}}\right)
$$

as the multiple regression of $x_{1}$ on $x_{2}$ and $x_{3}$ in terms of standard deviations and the linear corte co-efficients of the variables involved. Similarly, the other two multiple regression equations of $x_{2}=$ and $x_{3}$ and of $x_{3}$ on $x_{1}$ and $x_{2}$ are obtained as

$$
\begin{aligned}
& \frac{x_{2}}{S_{2}}=\left(\frac{r_{12}-r_{13} r_{23}}{1-r_{13}^{2}}\right)\left(\frac{x_{1}}{S_{1}}\right)+\left(\frac{r_{23}-r_{12} r_{13}}{1-r_{23}^{2}}\right)\left(\frac{x_{3}}{S_{3}}\right), \text { and } \\
& \frac{x_{3}}{S_{3}}=\left(\frac{r_{13}-r_{12} r_{23}}{1-r_{12}^{2}}\right)\left(\frac{x_{1}}{S_{1}}\right)+\left(\frac{r_{23}-r_{12} r_{13}}{1-r_{12}^{2}}\right)\left(\frac{x_{2}}{S_{2}}\right)
\end{aligned}
$$

To obtain the regression equations in terms oforiginal values, we replace $x_{1}$ by $X_{1}-\bar{X}_{1}, A_{5}=\overline{7}$ $X_{2}-\bar{X}_{2}$, and $x_{3}$ by $X_{3}-\bar{X}_{3}$ respectively.

### 11.3 MULTIPLE CORRELATIONGO-EFFICIENT

(The co-efficient of multiple cosen measures the degree of relationship between a variable its estimate from the regression equation. In other words, it is a product moment correlation betw $=$ variable, say $x_{1}$, and its value esciplated by the regression equation $x_{1}=b_{12.3} x_{2}+b_{13.2} x_{3}$. The co-efficie multiple correlation between $x_{1}$ and the variables $x_{2}$ and $x_{3}$ combined, is denoted symbolically by $R_{12}=$

Let us denote the estimated value of $x_{1}$ by $\hat{x}_{1}$. Then by definition,

$$
R_{1,23}=\frac{\operatorname{Cov}\left(x_{1}, \hat{x}_{1}\right)}{\sqrt{\operatorname{Var}\left(x_{1}\right) \operatorname{Var}\left(\hat{x}_{1}\right)}}=\frac{\sum x_{1} \hat{x}_{1}}{\sqrt{\sum x_{1}^{2} \sum\left(\hat{x}_{1}\right)^{2}}}
$$

Now $\sum x_{1} \hat{x}_{1}=\sum x_{1}\left(x_{1}-x_{1.23}\right)$

$$
\left(\because x_{1}=x_{1}-x_{123}\right)
$$

$$
=\sum x_{1}^{2}-\sum x_{1} x_{1.23}
$$

$$
=\sum x_{1}^{2}-\sum x_{1.23} x_{1.23} \quad\left(\because \sum x_{1} x_{1.23}=\sum x_{1.23} x_{1.23}\right)
$$

$$
=n\left(S_{1}^{2}-S_{1.23}^{2}\right)
$$

where $S_{1.23}^{2}$ is the sample variance of residuals.
Also $\quad \sum\left(\hat{x}_{1}\right)^{2}=\Sigma\left(x_{1}-x_{1.23}\right)^{2}$

$$
\begin{aligned}
& =\sum x_{1}^{2}+\sum x_{1.23}^{2}-2 \sum x_{1} x_{1.23} \\
& =\sum x_{1}^{2}+\sum x_{1.23}^{2}-2 \sum x_{1.23}^{2} \quad\left(\because \sum x_{1} x_{1.23}=\sum x_{1.23} x_{1,23}\right) \\
& =\sum x_{1}^{2}-\sum x_{1.23}^{2}=n\left(S_{1}^{2}-S_{1.23}^{2}\right),
\end{aligned}
$$

ad $\quad \sum x_{1}^{2}=n S_{1}^{2}$
Scbstituting these values in the formula, we get

$$
R_{1,23}=\frac{S_{1}^{2}-S_{1.23}^{2}}{S_{1} \sqrt{S_{1}^{2}-S_{123}^{2}}}=\left(1-\frac{S_{1.23}^{2}}{S_{1}^{2}}\right)^{1 / 2}
$$

Şuaring, we get $R_{1.23}^{2}=1-\frac{S_{123}^{2}}{S_{1}^{2}}$.
The quantity $S_{123}^{2}$. can be expressed in terms of the simple correlation co-efficients between the pairs of te variables as below:

$$
\begin{aligned}
S_{1.23}^{2} & =\frac{1}{n} \sum x_{123}^{2}=\frac{1}{n} \sum\left(x_{1}-b_{123} x_{2}-b_{1}\right. \\
& =\frac{1}{n} \sum x_{1}\left(x_{1}-b_{123} x_{2}-b_{1}\right. \\
& \left.=\frac{1}{n} \sum x_{1}^{2}-b_{123}\right)+2 x_{1} x_{2}-b_{132} \frac{1}{n} \sum x_{1} x_{3} \\
& =S_{1}^{2}-2 S_{1} S_{2} r_{12}-b_{13.2} S_{1} S_{3} r_{13}
\end{aligned}
$$

(second property of residuals)

Substituting the values of $b_{12.3}$ and $b_{13.2}$ in terms of simple correlation co-efficient and simplifying, = get

$$
S_{1.23}^{2}=S_{1}^{2}\left(\frac{1-r_{12}^{2}-r_{13}^{2}-r_{23}^{2}+2 r_{12} r_{23} r_{13}}{1-r_{23}^{2}}\right)
$$

Hence $\quad R_{1.23}^{2}=1-\frac{S_{1}^{2}\left(1-r_{12}^{2}-r_{13}^{2}-r_{23}^{2}+2 r_{12} r_{23} r_{13}\right)}{S_{1}^{2}\left(1-r_{23}^{2}\right)}$

$$
=\frac{r_{12}^{2}+r_{13}^{2}-2 r_{12} r_{23} r_{13}}{1-r_{23}^{2}} \text {, so that }
$$

$$
R_{1.23}=\sqrt{\frac{r_{12}^{2}+r_{13}^{2}-2 r_{12} r_{23} r_{13}}{1-r_{23}^{2}}}
$$

## https://stat9943.blogspot.com

It should be noted that $R_{1,23}$ is niecessarily positive or zero as the term $\sum x_{1} \hat{x}_{1}$ being equal to $\Sigma(\tilde{x}$ cannot be negative. If $R_{1.23}=1$, the $S_{123}^{2}=0$, i.e. all the residuals $x_{1.23}$ are zero; the observed $=$ estimated values of $x_{1}$ coincide. The multiple correlation in this case, is called perfect, indicating a line relationship between the variables.

Similarly, by the change of variables, we get

$$
\begin{aligned}
& R_{2,31}=\sqrt{\frac{r_{23}^{2}+r_{21}^{2}-2 r_{12} r_{23} r_{13}}{1-r_{31}^{2}}} \text {, and } \\
& R_{3,12}=\sqrt{\frac{r_{31}^{2}+r_{32}^{2}-2 r_{12} r_{23} r_{31}}{1-r_{12}^{2}}},
\end{aligned}
$$

Example 11.4 An instructor of mathematics wished to determine the relationship of grades final examination to grades on two quizzes given during the semester. Calling $X_{1}, X_{2}$ and $X_{3}$ the grade a student on the first quiz, second quiz and final examination respectively, he made the follow= computations for a total of 120 students.

$$
\begin{array}{lll}
\bar{X}_{1}=6.8 & S_{1}=1.0 & r_{12}=0.60 \\
\bar{X}_{2}=7.0 & S_{2}=0.8 & r_{13}=0.70 \\
\bar{X}_{3}=74 & S_{3}=9.0 & r_{23}=0.65
\end{array}
$$

a) Find the least-squares regression equationdo $X_{3}$ on $X_{1}$ and $X_{2}$.
b) Estimate the final grades of two studentstwho scored respectively (1) 9 and 7 , and (2) $4=$ on the two quizzes.
c) Compute $R_{3.12}$.
a) Since the standard deviatikg and linear correlation co-efficients are given, therefor 1 estimated regression equation of $X_{3}$ on $X_{1}$ and $X_{2}$ is

$$
\frac{X_{3}-\bar{X}_{3}}{S_{3}}=\left(\frac{r_{13}-r_{23}^{2}}{r_{12}^{2}}\right)\left(\frac{X_{1}-\bar{X}_{1}}{S_{1}}\right)+\left(\frac{r_{23}-r_{12} r_{13}}{1-r_{12}^{2}}\right)\left(\frac{x_{2}-\bar{X}_{2}}{S_{2}}\right)
$$

Now $\quad \frac{r_{13}-r_{12} r_{23}}{1-r_{12}^{2}}=\frac{0.70-(0.60)(0.65)}{1-(0.60)^{2}}=\frac{0.31}{0.64}$, and

$$
\frac{r_{23}-r_{12} r_{13}}{1-r_{12}^{2}}=\frac{0.65-(0.60)(0.70)}{1-(0.60)^{2}}=\frac{0.23}{0.64} .
$$

Substituting these values, we get

$$
\begin{aligned}
\frac{X_{3}-74}{9.0} & =\left(\frac{0.31}{0.64}\right)\left(\frac{X_{1}-6.8}{1.0}\right)+\left(\frac{0.23}{0.64}\right)\left(\frac{X_{2}-7.0}{0.8}\right) \\
X_{3}-74 & =4.36\left(X_{1}-6.8\right)+4.04\left(X_{2}-7.0\right) \\
& =4.36 X_{1}-29.648+4.04 X_{2}-28.28
\end{aligned}
$$

## https：／／stat9943．blogspot．com

$$
X_{3}=16.07+4.36 X_{1}+4.04 X_{2}
$$

a the desired least squares regression equation of $X_{3}$ on $X_{1}$ and $X_{2}$ ．
b）Student 1：When $X_{1}=9$ and $X_{2}=7$ ，we get

$$
\hat{X}_{3}=16.07+4.36(9)+4.04(7)=83.59=84
$$

Student 2：When $X_{1}=4$ and $X_{2}=8$ ，we get

$$
\hat{X}_{3}=16.07+4.36(4)+4.04(8)=65.83=66
$$

c）The co－efficient of multiple correlation $R_{3.12}$ is

$$
\begin{aligned}
R_{3.12} & =\sqrt{\frac{r_{31}^{2}+r_{32}^{2}-2 r_{12}^{1} r_{2 r_{13}}}{1-r_{12}^{2}}}, \\
& =\sqrt{\frac{(0.70)^{2}+(0.65)^{2}-2(0.60)(0.65)(0.70)}{1-(0.60)^{2}}} \\
& =\sqrt{\frac{0.3665}{0.64}}=\sqrt{0.5727}=0.757 .
\end{aligned}
$$

## 4 PARTIAL CORRELATION

A partial correlation measures the degree of dingat relationship between any two variables in a ivariable problem under the condition that ant eommon relationship or influence with all other ables（or some of them）has been removed getated differently，if there are three variables $X_{1}, X_{2}$ and ten the correlation between $X_{1}$ and $X_{2}$ afteremoving the linear effect of $X_{3}$ from $X_{1}$ and from $X_{2}$ ，is partial correlation．The sample co－effgeient of partial correlation measuring the strength of the sonship（correlation）between $X_{1}$ and $X_{2}$ ，when the influence of $X_{3}$ has been removed，is demoted tholically by $r_{123}$ ．By removing t⿴囗十⿱夂口刂 influence，we mean subtracting the fitted regression $\hat{X}_{1}$ from the fved values $X_{1}$ obtaining the eridual－a part of $X_{1}$ not explained by $X_{3}$ ．
To derive the co－efficient of partial correlation $r_{123}$ ，we use the variables $x_{1}, x_{2}$ and $x_{3}$ which are tions from their means．The linear regression of $x_{1}$ on $x_{3}$ and of $x_{2}$ on $x_{3}$ are $x_{1}=b_{13} x_{3}$ and $x_{2}=b_{23} x_{3}$ ． eoving the linear effect of $x_{3}$ from $x_{1}$ and from $x_{2}$ and denoting the residuals by $x_{133}$ and $x_{2,3}$ ，we get

$$
x_{1,3}=x_{1}-b_{13} x_{3} \text {, and } x_{23}=x_{2}-b_{23} x_{3} \text {. }
$$

These residuals may be written as

$$
x_{13}=x_{1}-r_{13} \frac{S_{1}}{S_{3}} x_{3}, \text { and } x_{23}=x_{2}-r_{23} \frac{S_{2}}{S_{3}} x_{3} \text {. }
$$

Now the co－efficient of partial correlation is the product moment correlation co－efficient between als $x_{1,3}$ and $x_{2,3}$ ．Thus by definition

$$
r_{123}=\frac{\sum x_{13} x_{23}}{\sqrt{\sum x_{13}^{2} \sum x_{23}^{2}}}
$$

Now $\sum x_{13} x_{23}=\sum\left[x_{1}-r_{13} \frac{S_{1}}{S_{3}} x_{3}\right]\left[x_{2}-r_{23} \frac{S_{2}}{S_{3}} x_{3}\right]$

$$
\begin{aligned}
& =\sum\left[x_{1} x_{2}-r_{23} \frac{S_{2}}{S_{3}} x_{1} x_{3}-r_{13} \frac{S_{1}}{S_{3}} x_{2} x_{3}+r_{13} r_{23} \frac{S_{1} S_{2}}{S_{3}^{2}} x_{3}^{2}\right] \\
& =\sum x_{1} x_{2}-r_{23} \frac{S_{2}}{S_{3}} \sum x_{1} x_{3}-r_{13} \frac{S_{1}}{S_{3}} \sum x_{2} x_{3}+r_{13} r_{23} \frac{S_{1} S_{2}}{S_{3}^{2}} \sum x_{3}^{2} \\
& =n\left[r_{12} S_{1} S_{2}-r_{23} r_{13} S_{1} S_{2}-r_{13} r_{23} S_{1} S_{2}+r_{13} r_{23} S_{1} S_{2}\right] \\
& =n S_{1} S_{2}\left(r_{12}-r_{13} r_{23}\right)
\end{aligned}
$$

And

$$
\begin{aligned}
\sum x_{13}^{2} & =\sum\left[x_{1}-r_{13} \frac{S_{1}}{S_{3}} x_{3}\right]^{2} \\
& =\sum x_{1}^{2}+r_{13}^{2} \frac{S_{1}^{2}}{S_{3}^{2}} \sum x_{3}^{2}-2 r_{13} \frac{S_{1}}{S_{3}} \sum x_{1} x_{3} \\
& =n\left[S_{1}^{2}+r_{13}^{2} S_{1}^{2}-2 r_{13}^{2} S_{1}^{2}\right] \\
& =n S_{1}^{2}\left(1-r_{13}^{2}\right) .
\end{aligned}
$$

Similarly, $\Sigma x_{2.3}^{2}=n S_{2}^{2}\left(1-r_{23}^{2}\right)$.
Substituting these values in the formula, weqbain

$$
\begin{aligned}
& r_{123}=\frac{S_{1} S_{2}\left(r_{12} Y_{13} r_{23}\right)}{S_{1} S_{2} \sqrt{\left(g-r_{13}^{2}\right)\left(1-r_{23}^{2}\right)}} \\
& V_{12 \cdot 3}=\frac{1 r_{12}-r_{13} r_{23}}{\sqrt{\left(1-r_{13}^{2}\right)\left(1-r_{23}^{2}\right)}}
\end{aligned}
$$

Alternatively. The partial correlation co-efficient between $x_{1}$ and $x_{2}$ when the influence been eliminated, is also defined as the geometric mean of the regression co-efficient $b_{12,3}$ and $b$ two partial regression lines of $x_{1}$ on $x_{2}$ and of $x_{2}$ on $x_{1}$ respectively, i.e.

$$
\begin{aligned}
r_{12.3} & =\sqrt{b_{12.3} \times b_{21.3}} \\
& =\sqrt{\frac{S_{1}}{S_{2}}\left(\frac{r_{12}-r_{13} r_{23}}{1-r_{23}^{2}}\right) \cdot \frac{S_{2}}{S_{1}}\left(\frac{r_{12}-r_{13} r_{23}}{1-r_{13}^{2}}\right)} \\
& =\frac{r_{12}-r_{13} r_{23}}{\sqrt{1-r_{13}^{2}} \sqrt{1-r_{23}^{2}}} \quad\left(r_{12.3} \text { has the same sign as } b_{12.3} \text { and } b_{21.3}\right)
\end{aligned}
$$

In a similar way, we can prove that

$$
r_{13.2}=\frac{r_{13}-r_{12} r_{23}}{\sqrt{1-r_{12}^{2}} \sqrt{1-r_{23}^{2}}}, \text { and } r_{23,1}=\frac{r_{23}-r_{12} r_{13}}{\sqrt{1-r_{12}^{2}} \sqrt{1-r_{13}^{2}}}
$$

Example 11.5 From the following data, determine the linear regression equations of $X_{1}$ on $X_{3}$ and 16 on $X_{3}$.

| $X_{1}$ | 7 | 12 | 14 | 17 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $X_{2}$ | 4 | 7 | 8 | 9 | 12 |
| $X_{3}$ | 1 | 2 | 4 | 5 | 8 |

Find the deviations of observed values of $X_{1}$ from the regression, viz. $X_{1.3}$. Repeat the same for $X_{2}$, obtain $X_{2,3}$. Determine the simple correlation co-efficient between the two sets of deviations $X_{1,3}$ and (P.U., B.A./B.Sc. 1977)

The estimated simple regression equation of $X_{1}$ on $X_{3}$ is

$$
\hat{X}_{1}=b_{13}+b_{13} X_{3}
$$

$$
b_{13}=\frac{n \sum X_{1} X_{3}-\left(\sum X_{1}\right)\left(\sum X_{3}\right)}{n \sum X_{3}^{2}-\left(\sum X_{3}\right)^{2}} \text { and } b_{1.3}=\bar{X}_{1}-b_{13}
$$

The estimated simple regression equation of $X_{2}, n_{0} X_{3}$ is

$$
\begin{gathered}
\hat{X}_{2}=b_{23}+b_{23} X_{3}, \\
b_{23}=\frac{n \sum X_{2} X_{3}-\left(\sum X_{2}\right)\left(\sum X_{3}\right)}{n \sum X_{3}^{2}-\left(\sum X_{3}\right)^{2}}
\end{gathered}
$$

zoumputations needed to find the $b$ 's are given in the table below:

| $X_{1}$ | $X_{2}$ | $X_{3}$ | $X_{1} X_{3}$ | $X_{2} X_{3}$ | $X_{3}^{2}$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 7 | 4 | 1 | 7 | 4 | 1 |
| 12 | 7 | 2 | 24 | 14 | 4 |
| 14 | 8 | 4 | 56 | 32 | 16 |
| 17 | 9 | 5 | 85 | 45 | 25 |
| 20 | 12 | 8 | 160 | 96 | 64 |
| 70 | 40 | 20 | 332 | 191 | 110 |

$$
\bar{X}_{1}=\frac{\sum X_{1}}{n}=\frac{70}{5}=14, \bar{X}_{2}=\frac{\sum X_{2}}{n}=\frac{40}{5}=8 \text { and } \bar{X}_{3}=4
$$

## https://stat9943.blogspot.com

And the regression co-efficient are obtained as

$$
\begin{aligned}
& b_{13}=\frac{(5)(332)-(70)(20)}{(5)(110)-(20)^{2}}=\frac{260}{150}=1.73, \\
& b_{1.3}=14-(1.73)(4)=7.08, \\
& b_{23}=\frac{(5)(191)-(40)(20)}{(5)(110)-(20)^{2}}=\frac{155}{150}=1.03, \text { and } \\
& b_{2.3}=8-(1.03)(4)=3.88 .
\end{aligned}
$$

Hence the desired regression equations are

$$
\hat{X}_{1}=7.08+1.73 X_{3} \text { and } \hat{X}_{2}=3.88+1.03 X_{3}
$$

Next, we compute the residuals $X_{1.3}=X_{1}-7.08-1.73 X_{3}$ and $X_{2.3}=X_{2}-3.88-1.03 X_{3}$, and the s correlation between them. The necessary computations are given in the following table:

| $X_{1}$ | $X_{2}$ | $X_{3}$ | $X_{1.3}$ | $X_{2.3}$ | $X_{1.3} X_{2.3}$ | $X_{1.3}^{2}$ | $X_{23}^{2}$ |
| ---: | ---: | ---: | :---: | :---: | :---: | :---: | :--- |
| 7 | 4 | 1 | -1.81 | -0.91 | 1.047 | 3.2761 | 0.8281 |
| 12 | 7 | 2 | 1.46 | 1.06 | $\$ .5476$ | 2.1316 | 1.1236 |
| 14 | 8 | 4 | 0 | 0 | 0 | 0 | 0 |
| 17 | 9 | 5 | 1.27 | 3.03 | 0.0381 | 1.6129 | 0.0009 |
| 20 | 12 | 8 | -0.92 | -0.12 | 0.1104 | 0.8464 | 0.0144 |
| 70 | 40 | 20 | 0 | 0 | 3.2670 | 7.8670 | 1.9670 |

Hence the co-efficient of concelation between $X_{1.3}$ and $X_{2.3}$, which is the co-efficient of mex correlation between $X_{1}$ and $X_{2}$ wherl the influence of $X_{3}$ has been removed, is obtained as

$$
\begin{aligned}
r_{123} & =\frac{\sum X_{1,3} X_{23}}{\sqrt{\sum X_{1,3}^{2} \sum X_{23}^{2}}} \quad\left(\because \sum X_{1,3}=\sum X_{23}=0\right) \\
& =\frac{3.2670}{\sqrt{(7.8670)(1.9670)}}=\frac{3.2670}{3.9340}=0.83
\end{aligned}
$$

Example 11.6 Given $r_{12}=0.492, r_{13}=0.927$ and $r_{23}=0.758$, find all the partial con-co-efficients.

We have $r_{12.3}=\frac{r_{12}-r_{13} r_{23}}{\sqrt{1-r_{13}^{2}} \sqrt{1-r_{23}^{2}}}=\frac{0.492-(0.927)(0.758)}{\sqrt{1-(0.927)^{2}} \sqrt{1-(0.758)^{2}}}$

$$
=\frac{-0.2107}{\sqrt{0.1407 \times 0.4254}}=-0.86
$$

## https://stat9943.blogspot.com

$$
\begin{aligned}
r_{23.1} & =\frac{r_{23}-r_{21} r_{31}}{\sqrt{1-r_{21}^{2}} \sqrt{1-r_{31}^{2}}}=\frac{0.758-(0.492)(0.927)}{\sqrt{1-(0.492)^{2}} \sqrt{1-(0.927)^{2}}} \\
& =\frac{0.302}{\sqrt{0.7579 \times 0.1407}}=0.92 ; \text { and } \\
r_{31.2} & =\frac{r_{31}-r_{32} r_{12}}{\sqrt{1-r_{32}^{2}} \sqrt{1-r_{12}^{2}}}=\frac{0.927-(0.758)(0.492)}{\sqrt{1-(0.758)^{2}} \sqrt{1-(0.492)^{2}}} \\
& =\frac{0.5541}{\sqrt{0.4254 \times 0.7579}}=0.98
\end{aligned}
$$

Irample 11.7 Show that if $x_{3}=a x_{1}+b x_{2}$, the three partial correlations are numerically equal to ${ }_{122}$ having the sign of $a, r_{32.1}$, the sign of $b$ and $r_{12.3}$, the opposite sign of $a / b$.
2 the multiple regression equation $x_{3}=a x_{1}+b x_{2}$, we treat $x_{3}$ as dependent and $x_{1}$ and $x_{2}$ as bent variables. Let the three variables be measured from their respective means.
iquaring and summing over all values, we get

$$
\begin{aligned}
\sum x_{3}^{2} & =a^{2} \sum x_{1}^{2}+b^{2} \sum x_{2}^{2} \quad \text { (the product } \\
& =n\left(a^{2} S_{1}^{2}+b^{2} S_{2}^{2}\right)
\end{aligned}
$$

ltiplying the given equation by $x_{1}$ and summing, we have

$$
\begin{aligned}
\sum x_{1} x_{3} & =a \sum x_{1}^{2} \\
& =n a S_{1}^{2}
\end{aligned}
$$

Now

$$
\begin{aligned}
r_{31} & =\frac{\sum x_{1} x_{3}}{\sqrt{\sum x_{1}^{2} \sum x_{3}^{2}}}=\frac{a S_{1}^{2}}{\sqrt{S_{1}^{2}\left(a^{2} S_{1}^{2}+b^{2} S_{2}^{2}\right)}} \\
& =\frac{a S_{1}}{\sqrt{a^{2} S_{1}^{2}+b^{2} S_{2}^{2}}}=\frac{a S_{1}}{w}, \text { where } w^{2}=a^{2} S_{1}^{2}+b^{2} S_{2}^{2} .
\end{aligned}
$$

imilarly, $r_{23}=\frac{b S_{2}}{w}$ and $r_{12}=0$
Ence $r_{13,2}=\frac{r_{13}-r_{12} r_{32}}{\sqrt{\left(1-r_{12}^{2}\right)\left(1-r_{32}^{2}\right)}}=\frac{\frac{a S_{1}}{w}-0}{\sqrt{(I-0)\left(1-\frac{b^{2} S_{2}^{2}}{w^{2}}\right)}}$

$$
=\frac{a}{+\sqrt{a^{2}}}= \pm 1, \text { according as } a \text { is }+\mathrm{ve} \text { or }-\mathrm{ve}
$$

## https://stat9943.blogspot.com

In other words, $r_{13.2}$ has the sign of $a$.

Again

$$
\begin{aligned}
r_{123} & =\frac{r_{12}-r_{13} r_{23}}{\sqrt{\left(1-r_{13}^{2}\right)\left(1-r_{23}^{2}\right)}}=\frac{0-\frac{a S_{1}}{w} \cdot \frac{b S_{2}}{w}}{\sqrt{\left(1-\frac{a^{2} S_{1}^{2}}{w^{2}}\right)\left(1-\frac{b^{2} S_{2}^{2}}{w^{2}}\right)}} \\
& =\frac{-a b S_{1} S_{2}}{\sqrt{a^{2} b^{2} S_{1}^{2} S_{2}^{2}}}=\frac{-a b}{+\sqrt{a^{2} b^{2}}}
\end{aligned}
$$

$\because \quad a^{2} b^{2}$ is always positive, therefore, $\sqrt{a^{2} b^{2}}$ is always positive.
Now $a b$ may be positive or negative.
Thus $r_{12,3}$ has the sign opposite to $a b$ or $\frac{a}{b}$.
Similarly, $r_{321}=\frac{r_{23}-r_{31} r_{21}}{\sqrt{\left(1-r_{31}^{2}\right)\left(1-r_{21}^{2}\right)}}$

$$
I_{321}=\frac{\frac{b S_{2}}{w}-0}{\sqrt{\left(1-\frac{a^{2} S_{1}^{2}}{w^{2}}\right)(b-)^{-}}}
$$

$$
=\frac{b}{\sqrt{6}} 5+1 \text {, according as } b \text { is }+\mathrm{ve} \text { or }-\mathrm{ve} \text {. }
$$

Hence the result.
11.4.1 Relationship between Multiple and Partial Correlation Co-efficients correlation co-efficients can be connected with the various partial correlation co-efficients. we have shown earlier that

$$
1-R_{13}^{2}=\frac{S_{123}^{2}}{S_{1}^{2}}
$$

where

$$
\begin{aligned}
n S_{1,3}^{2} & =\sum x_{1.3}=\sum x_{12} x_{123} \quad \text { (second property of residuals) } \\
& =\sum x_{1.2}\left(x_{1}-b_{12,3} x_{2}-\dot{b}_{13,2} x_{3}\right) \quad \text { because of the properties of residuals. } \\
& =\sum x_{12}^{2}-b_{i 32} \sum x_{12} x_{3,2} \quad \text {. } \\
& =\sum x_{1.2}^{2}\left[1-b_{132} \frac{\sum x_{1,2} x_{3.2}}{\sum x_{12}^{2}}\right] \quad . \\
& =n S_{1.2}^{2}\left[1-b_{13.2} b_{31.2}\right]=n S_{1.2}^{2}\left(1-r_{13.2}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
S_{123}^{2} & =S_{1.2}^{2}\left(1-r_{13,2}^{2}\right) \\
& =S_{1}^{2}\left(1-r_{12}^{2}\right)\left(1-r_{13,2}^{2}\right)
\end{aligned}
$$

$$
1-R_{1.23}^{2}=\left(1-r_{12}^{2}\right)\left(1-r_{13.2}^{2}\right)
$$

-ling in the same way, we can find

$$
\left.1-R_{1.234}^{2}=\left(1-r_{12}^{2}\right)\left(1-r_{13.2}^{2}\right)\left(1-r_{14.23}^{2}\right) .\right]
$$

## CURVILINEAR REGRESSION

Sometimes a scatter diagram indicates that the relationship between the two variables will be more zely described by a non-linear regression line. When this occurs, either we may transform one or
f the variables so that the transformed data appear approximately linear or we may use a
mial equation. In the former case, the estimating equation may be an exponential or a logarithmic In the latter case, the estimating equation may be

$$
\hat{Y}=a+b X+c X^{2},
$$

$=b$ and $c$ are the least-squares estimates of the population parameters in

$$
E(Y)=\alpha+\beta X+\gamma X^{2} .
$$

Tey are determined from the following set of normal equatons:

$$
\begin{array}{ll}
\Sigma Y & =n a+b \Sigma X+c \sum X^{2} \\
\Sigma X Y & =a \sum X+b \sum X^{2}+c \Sigma X^{3} \\
\Sigma X^{2} Y & \left.=a \sum X^{2}+b \sum X^{3}+c\right)
\end{array}
$$

Is quadratic equation may also be ohdifged into a multiple linear form

$$
\hat{X}_{1}=a_{1.23}+b_{12.3} X \dot{b}_{13.2} X_{3},
$$

$\hat{X}_{1}=\hat{Y}, a_{123}=a, b_{123}=b_{1}, b_{132}=c, X_{2}=X$ and $X_{3}=X^{2}$. A number of other curvilinear ree available. The co-efficient of determination and standard error of estimate can be obtained tame way as in the case of linear regressions.

## EXERCISES

## ITIVE

'True' or 'False'. If the statement is not true then replace the underlined words with words $\Rightarrow$ ke the statement true:

- partial correlation coefficient measures the degree of relationship between a variable and its simate from the regression line.
ii) A multiple correlation coefficient measures the degree of linear relationship between 2 variables in a multivariable problem when the influence with all other variables removed.
iii) The multiple correlation coefficient is the square of the coefficient of multiple determint
iv) The multiple correlation coefficient $\mathrm{R}^{2}$ will be negative in sign when all of the two correlation coefficients are negative in sign.
v) The regression sum of squares in case of multiple regression is the explained variation.
vi) For a multiple regression analysis, if $\Sigma(Y-\bar{Y})^{2}=50$ and $\Sigma(Y-\hat{Y})^{2}=20$, then the coefficient of determination $\mathrm{R}^{2}$ is equal to 0.70 .
vii) The standard error of estimate in multiple regression has $\mathrm{n}-\mathrm{k}$ degrees of freedom.
viii) The standard error of estimate is a measure of scatter of the observations about the line.
ix) The regression coefficients are the other name for multipletegression coefficients.
x) In a multiple regression the addition of new variableswill always reduce the standert estimate.
b) MULTIPLE CHOICE QUESTIONS
i) The range of multiple correlation cosfacient is
a) -1 to +1
b) 0 to :
(b) 0 to 1
d) none of above
ii) The range of chat correlation coefficient is
a) 0 to 1
(b) -1 to +1
c) 0 to $+\infty$
d) -1 to 0
iii) If the multiple correlation coefficient $\mathrm{R}_{3.12}=1$, then it implies a
(a) perfeobirelationship
b) high relationship
c) weak linear relationship
d) perfect linear relationship


## 

iv) In the regression analysis, the explained variation of the dependent variable Y is given by
a) $\Sigma(Y-\bar{Y})^{2}$
b) $\Sigma(Y-\hat{Y})^{2}$
c) $\Sigma(\hat{Y}-\bar{Y})^{2}$
d) $\sum(Y-\hat{Y})$
v) Which of the following is not a standard deviation?
a) Standard error of the slope coefficient
b) Mean square errors
c) Standard error of estimator
d) Standard deviation of the Y variable
vi) The coefficient of determination in multiple regression is given by
a) $R_{Y, 13}^{2}=1-(S S T / S S E)$
b) $R_{Y, 13}^{2}=1-(S S R / S S T)$
c) $R_{Y, 13}^{2}=1-(S S E / S S R)$
d) $R_{Y, 13}^{2}=1-(S S E / S S T)$
via) The slope $b_{1}$ in the multiple regression equation $\theta a+b_{1} X_{1}+b_{2} X_{2}$ measures
a) the amount of variation in $\hat{Y}$ explaine by $X_{1}$
b) the change in $\hat{Y}$ per unit change $D_{1} X_{1}$
c) the change in $\hat{Y}$ per unit changern $X_{1}$, holding $X_{2}$ constant
d) the change in $\hat{Y}$ per unit dhange in $X_{2}$, holding $X_{1}$ constant

The predicted value of $1 \operatorname{Pr} \mathrm{X}_{1}=1, \mathrm{X}_{2}=5$, and $\mathrm{X}_{3}=10$ by using the regression line

$$
\hat{Y}=30-10 X_{1}+18 X_{2}-7.5 X_{3} \text { is }
$$

a) 45
b) 15
c) 35
d) 50
x) Which of the following statements remains always true?
a) The coefficient of multiple determination will increase when new variables are added
b) The coefficient of multiple determination will decrease when new variables are added
c) The adjusted coefficient of multiple determination will not decrease when new variables are added
d) Both a and cabove
x) Which of the following relationship holds?
a) $r_{13.2}=\sqrt{b_{12.3} \times b_{21.3}}$
b) $r_{13.2}=\sqrt{b_{13.2} \times b_{31.2}}$
c) $r_{13.2}=\sqrt{b_{23.1} \times b_{32.1}}$
d) All of above

## SUBJECTIVE

11.1 a) What is a multiple regression? Explain the basic differences between simple regression ant multiple regression.
b) What is meant by the co-efficient of multiple determination and multiple correlation?
c) Explain the assumptions underlying a multiple linear regression model.
11.2 Carryout the necessary computations to obtain the least-squares estimates of the parameters in $t=$ multiple regression model $Y=\alpha+\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon$, given

(B.Z.U., M.A. Econ. 196
11.3 Given the data

a) Calculate the estimated cęgression equation, (i.e. $\hat{Y}=a+b_{1} X_{1}+b_{2} X_{2}$ ) for the above data.
ab) State the meaning ofthe partial regression co-efficients $b_{1}$ and $b_{2}$.
(B.Z.U., M.A. Econ.
11.4 Given the following data

| $X_{1}$ | 1 | 4 | 1 | 3 | 2 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| $X_{2}$ | 1 | 8 | 3 | 5 | 6 | 10 |
| $X_{3}$ | 2 | 8 | 1 | 7 | 4 | 6 |

a) Find the least-squares regression line wbere $X_{1}$ is the dependent variable and $X_{2}$ and $X_{0}=$ independent variables
*b) Calculate the standard error of estimate, $s_{1.23}$.
c) Calculate the co-efficient of multiple determination and multiple correlation and interpoes= result.

The following table shows the corresponding values of three variables $X_{1}, X_{2}$ and $X_{3}$.

| $X_{1}$ | 3 | 5 | 6 | 8 | 12 | 14 |
| ---: | ---: | ---: | :---: | :---: | :---: | :---: |
| $X_{2}$ | 16 | 10 | 7 | 4 | 3 | 2 |
| $X_{3}$ | 90 | 72 | 54 | 42 | 30 | 12 |

a) Find the regression equation of $X_{3}$ on $X_{1}$ and $X_{2}$.

b) Estimate $X_{3}$ when $X_{1}=10$ and $X_{2}=6$.
c) Compute $R_{3.12}$ and $s_{3.12}$.
(I.U., M.Sc. 1991)

The following data were collected to determine a suitable regression equation relating the length of an infant, $Y(\mathrm{~cm})$, to age, $X_{1}$ (days), and weight at birth, $X_{2}(\mathrm{~kg})$ :

| $Y$ | 57.5 | 52.8 | 61.3 | 67.0 | 53.5 | 62.7 | 56.2 | 68.5 | 69.2 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $X_{1}$ | 78 | 69 | 77 | 88 | 67 | 80 | 74 | 94 | 102 |
| $X_{2}$ | 2.75 | 2.15 | 4.41 | 5.52 | 3.21 | 4.32 | 2.31 | 4.30 | 3.71 |



Fit a least-squares regression equation of the form

$$
\hat{Y}=a+b_{1} X_{1}+b_{2} X_{2}
$$

Predict the average length of infants who are 75 dayedd and weighed 3.15 kg at birth.
Calculate the standard error of estimate $s_{\mathrm{Y} .12}$.
Define the multiple correlation co-efficiena and prove that

$$
R_{123}^{2}=\frac{r_{12}^{2}+r_{13}^{2}-2 r_{12} r_{23} r_{31}}{1-r_{23}^{2}} .
$$

Calculate the multiple correder co-efficient $R_{1.23}$ of $X_{1}$ on $X_{2}$ and $X_{3}$ from the following data:

| $X_{1}$ | 4 | 3 | 2 | 4 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $X_{2}$ | 2 | 5 | 3 | 2 | 1 | 4 | 5 |
| $X_{3}$ | 8 | 10 | 13 | 5 | 17 | 16 | 20 |


(P.U., B.A. (Hons.) Part-I, 1969)

The following data represent concomitant values of three variables.

| $X_{1}$ | 32 | 18 | 52 | 16 | 42 | 48 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $X_{2}$ | 3 | 2 | 5 | 1 | 4 | 6 |
| $X_{3}$ | 2 | 4 | 2 | 5 | 3 | 9 |



Calculate all the multiple correlation coefficients, working out the usual simple correlation co-efficients.
(B.Z.U., M.A. Econ. 1991)
b) Given $\bar{X}_{1}=20, S_{1}=1.0, \quad r_{12}=-0.20$,

$$
\begin{array}{lll}
\bar{X}_{2}=36, & S_{2}=2.0, & r_{13}=0.40, \\
\bar{X}_{3}=12, & S_{3}=1.5, & r_{23}=0.50
\end{array}
$$

Find the regression equation of $X_{3}$ on $X_{1}$ and $X_{2}$.
(P.U., B.A./B.Sc. 19
11.9 a) Distinguish between the simple and the multiple correlation co-efficients.
b) If $b_{i j}$ is the regression co-efficient of $X_{i}$ on $X_{j}$, then calculate the multiple correlas co-efficient of $X_{2}$ with $X_{1}$ and $X_{3}$, where

$$
\begin{align*}
& b_{12}=0.75, b_{13}=0.58, b_{21}=0.88, \\
& b_{23}=0.53, b_{31}=1.68, \text { and } b_{32}=1.30 .
\end{align*}
$$

c) Three variables have in pairs simple correlation coefficients: $r_{12}=0.60 ; r_{13}=$ $r_{23}=0.65$. Find the multiple correlation coefficient $R_{2,13}$ of $X_{2}$ on $X_{1}$ and $X_{3}$.
(P.U., B.A./B.Sc.
11.10 a) Three variable have in pairs simple correlation coefficients given by

$$
r_{12}=0.8, r_{13}=-0.7, r_{23}=-0.9 .
$$

Find the multiple correlation co-efficient $R_{1.23}$ of $X X_{0 n} X_{2}$ and $X_{3}$.
(P.U., B.A./B.Sc
b) Calculate the multiple correlation co-efficien $\mathcal{K}_{2.13}$ and the partial correlation co-efficit= from the values given below:

$$
\begin{aligned}
& b_{12}=-0.1, b_{21}=-0.4, b_{13}=0.25^{\circ} \\
& b_{31}=0.6, b_{23}=0.67, b_{3}=0.38
\end{aligned}
$$

(P.U., B.A./B.Sc
11.11 a) Explain what is meant by paptal correlation. Establish a formula for the co-efficient of correlation.
b) From the following diga, determine the linear regression equations of $X_{1}$ on $X_{3}$ and $X_{2}$

| $X_{1}$ | 5 | 9 | 7 | 10 | 12 | 8 | 6 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $X_{2}$ | 10 | 12 | 8 | 9 | 11 | 7 | 5 | 8 |
| $X_{3}$ | 2 | 6 | 4 | 5 | 7 | 6 | 4 | 6 |

Find the deviations of observed values of $X_{1}$ from the regression equation, viz. $X_{13}$ the same for $X_{2}$, i.e. obtain $X_{23}$. Determine the simple correlation co-efficient bets two sets of deviations $X_{1,3}$ and $X_{2,3}$.
11.12 The following means, standard deviations and correlations are found for
$X_{1}=$ Seed-hay crops in cwts. per acre,
$X_{2}=$ Spring rainfall in inches,
$X_{3}=$ Accumulated temperature above $42^{\circ} \mathrm{F}$ in spring in a certain district in England der years.

$$
\begin{array}{ll}
\bar{X}_{1}=28.02, & S_{1}=4.42, \quad r_{12}=0.80 \\
\bar{X}_{2}=4.91, & S_{2}=1.10, \quad r_{13}=-0.40 \\
\bar{X}_{3}=594, & S_{3}=85, \quad r_{23}=-0.56
\end{array}
$$

Find the partial correlation and the regression equation for hay-crop on spring rainfall and accumulated temperature.
(P.U., B.A./B.Sc. 1974)
11.13 The following values represent sample values of 450 college students in which the three variables represent marks obtained $\left(X_{1}\right)$, general intelligence scores $\left(X_{2}\right)$ and hours of study $\left(X_{3}\right)$. Find the regression equation for estimating marks obtained. Find all three partial correlations and interpret them in the light of the corresponding simple correlations.

$$
\begin{align*}
& \bar{X}_{1}=18.5, \quad S_{1}=11.2, \quad r_{12}=0.60, \\
& \bar{X}_{2}=100.6, \quad S_{2}=15.8, \quad r_{13}=0.32, \\
& \bar{X}_{3}=24, \quad S_{3}=6.0, \quad r_{23}=0.35 . \tag{P.U.,M.A.Stat.,1960}
\end{align*}
$$

11.14 a) Prove that a variable and a residual are uncorrelated i6 the subscript of the variable is included among the secondary subscripts of the residual.
b) Given the equations of the three regression planes as

$$
\begin{aligned}
& x_{1}=0.41 x_{2}+0.23 x_{3}, \\
& x_{2}=0.96 x_{1}-0.025 x_{3}, \\
& x_{3}=1.04 x_{1}-0.05 x_{2},
\end{aligned}
$$

Calculate the partial correlation le--fficients. Do we have sufficient data to determine the correlation co-efficients $r_{23}, r_{21} g_{g u d} r_{12}$ ?
(P.U., B.A. (Hons.) Part-I, 1970)

15 a) If $\left.X_{1}=a+b_{12.3} X_{2}+b_{13,2}\right)_{3}$ and $X_{3}=d+b_{32,1} X_{2}+b_{31.2} X_{1}$ are the regression equations of $X_{1}$ on $X_{2}$ and $X_{3}$, and of ${ }^{\circ}$ on $X_{2}$ and $X_{1}$ respectively, prove that $r_{132}^{2}=b_{13} \times b_{11,}$.
b) Is it possible to aboin the following from a set of data?
(i) $r_{12}=0.6, r_{23}=0.8, r_{31}=-0.5$.
(ii) $r_{23}=0.7, r_{13}=-0.4, r_{12}=0.6$.
(iii) $r_{21}=0.01, r_{13}=0.66, r_{23}=-0.70$.

16 If $X_{1}, X_{2}$ and $X_{3}$ are three correlated variables, where $S_{1}=1, S_{2}=1.3, S_{3}=1.9$ and $r_{12}=0.370$, $r_{13}=-0.641$, and $r_{23}=-0.736$, find $r_{13.2}$. If $X_{4}=X_{1}+X_{2}$, obtain $r_{42}, r_{43}$ and $r_{43.2}$. Verify that the two partial correlation co-efficients are equal and explain this result.
(M.Sc. Stat., P.U., 1972, I.U., 1990, 92, 94)
a) Differentiate between multiple correlation and partial correlation.
b) If $R_{1,23}=1$, prove that (i) $R_{2.13}=1$ and (ii) $R_{3,12}=1$.
c) If $R_{1.23}=0$, does it necessarily follow that $R_{2.13}=0$ ?
d) If $r_{12}=r_{23}=r_{13}=r \neq 1$, then show that $R_{1.23}=R_{2.13}=R_{3.12}=\frac{r \sqrt{2}}{\sqrt{1+r}}$. Discuss the case when $r=1$.
(B.Sc. Eng. 1976)
11.18 a) Show that if $r_{12}$ is zero, $r_{12.3}$ will not be zero unless one at least of $r_{13}$ and $r_{23}$ is zero.
b) If the relation $a X_{1}+b X_{2}+c X_{3}=0$ holds true for all sets of values of $X_{1}, X_{2}$ and $X_{3}$, find out the three partial correlation co-efficients.
11.19 Show that the correlation co-efficient between the residuals $x_{1.23}$ and $x_{2.13}$ is equal and opposite to that between $x_{1.3}$ and $x_{2,3}$.
(P.U., M.A. 1963)

Solution. The co-efficient of correlation between $x_{1.23}$ and $x_{2.13}$ is given by

$$
\begin{aligned}
& \frac{\operatorname{Cov}\left(x_{1,23}, x_{2,13}\right)}{\sqrt{\operatorname{Var}\left(x_{1,23}\right) \operatorname{Var}\left(x_{2,13}\right)}}=\frac{1}{n} \cdot \frac{\sum x_{1.23} x_{2.13}}{S_{1.23} S_{2,13}} \\
& =\frac{1}{n} \cdot \frac{\sum x_{2.13}\left(x_{1}-b_{12.3} x_{2}-b_{13,2} x_{3}\right)}{S_{1.23} S_{2.13}} \\
& =\frac{1}{n} \cdot \frac{0-b_{123} \sum x_{2.13}^{2}-0}{S_{1.23} S_{2.12}}=\frac{b_{12.3} S_{2.13}}{S_{1.23}}
\end{aligned}
$$

Substituting the values of $S_{1.23}$ and $S_{2.13}$ and simplifying,

$$
\text { Corr. }=-b_{12.3}\left\{\frac{S_{2} \sqrt{1-r_{23}^{2}}}{S_{1} \sqrt{1-r_{13}^{2}}}\right\}=-b_{12.3} \frac{S_{2.3}}{S_{1.3}}
$$

Again the co-efficient of correlation between $x_{1.3}$ and $x_{2.3}$ is

$$
\frac{\operatorname{Cov}\left(x_{1.3}, x_{2.3}\right)}{\sqrt{\operatorname{Var}\left(x_{1.3}\right) \operatorname{Var}\left(x_{23}\right)}}=\frac{1}{n} \cdot \frac{\left.\sum x\right) \cdot \frac{1}{1} x_{23}}{S_{1.3}}=b_{12.3} \frac{S_{23}}{S_{1.3}}
$$

Hence the result.
11.20 Using the method of least-squares, fit a quadratic model $Y=\alpha+\beta_{1} X+\beta_{2} X^{2}+\varepsilon$ to the follow= data:

| $X$ | -2 | -1 | 0 | 1 | 2 |
| :---: | ---: | ---: | ---: | ---: | :---: |
| $Y$ | 0.4 | 1.3 | 2.2 | 2.5 | 3.0 |

Also calculate the standard error of estimate.
https://stat9943.blogspot.com
Contents

## CHAPTER 12

## CURVE FITJING BY

 LEAST, SQUARES
## https://stat9943.blogspot.com CURVE FITTING BY LEAST SQUARES

## 21 INTRODUCTION

Let us suppose that we wish to approximate (describe) a certain type of function that best expresses $\geq$ association that exists between variables. A scatter plot of the set of values of the variables makes it essible to visualize a smooth curve that effectively approximates the given data set. A more useful way represent this sort of approximating curve is by means of an equation or a formula. A term applied to $=$ process of determining the equation and/or estimating the parameters appearing in the equation of proximating curve, is commonly called curve fitting.

It is relevant to point out that the relationship between the variables may be functional or pessional. In functional relationship, a variable $Y$ has a true value corresponding to each possible value another variable $X$, i.e there is no question of random variation in the values of $Y$, and we make no poabilistic assumptions in this respect. In this chapter, we shall limit our discussion to some functional tionships, i.e. problems of approximation and not of regression (already discussed earlier). Such trionships which are common in the natural sciences may be linear or non-linear.

## APPROXIMATING CURVES AND THE PRINCIPLE OFLLEAST SQUARES

The data sets encountered in practice greatly vary in nature, $\mathrm{t}_{\mathrm{Q}} \mathrm{is}$ therefore necessary to decide ch type of approximating curve and equation should be useareor this purpose, some of many anon types of approximating curves and their equations are given below:
zight line or linear curve, zbola of second degree or quadratic curve, zabola of third degree or cubic curve,

$$
Y=a+\delta
$$

$$
Y=a+b X+c X^{2}
$$

$$
y=a+b X+c X^{2}+d X^{3}
$$

monential curve,
-metric or power curve, perbola,
on.
these equations, $Y$ is the degendent variable and $X$, the independent variable. In some situations, rer, the variables $X$ and $Y$ dan be reversed.
We may approximate a given set of data by drawing a free hand curve, covering most of the points
But it is clear that different individuals would draw different curves according to their personal
ent. Therefore this procedure of fitting a curve is not satisfactory.
The principle of least squares is applicable to curve fitting where the purpose is simply one of ting (or approximation) of a set of observations. Accordingly, we choose to determine the values of
rameters in the equations of approximating curves so as to make the sum of squares of residuals a
um. A residual has been defined as the difference between the observed value and the
ponding value of the approximating curve.
12.2.1 Fitting a Straight Line. A straight line is the simplest type of approximating curve and its on is written as

$$
Y=a+b X
$$

$=$ the values of $a$ and $b$ are to be determined.
Given $n$ pairs of observations $\left[\left(X_{i}, Y_{i}\right), i=1,2, \ldots, \mathrm{n}\right]$ to which we wish to fit a straight line. We ine the values of $a$ and $b$ by the principle of least squares, which calls for the minimization of $S$,

## https://stat9943.blogspot.com

the sum of squares of the differences between the actual $Y_{i}$ values and the corresponding values proser by $a+b X_{i}$. That is we minimize

$$
S=\sum_{i=1}^{n}\left(Y_{i}-a-b X_{i}\right)^{2}
$$

To do so, we need to solve the two equations $\frac{\partial S}{\partial a}=0$ and $\frac{\partial S}{\partial b}=0$.
That is

$$
\begin{aligned}
& \frac{\partial S}{\partial a}=2 \Sigma(Y-a-b X)(-1)=0, \text { and } \\
& \frac{\partial S}{\partial b}=2 \Sigma(Y-a-b X)(-X)=0
\end{aligned}
$$

which on simplification become

$$
\begin{aligned}
& \sum Y=n a+\dot{b} \Sigma X \\
& \Sigma X Y=a \sum X+b \Sigma X^{2} .
\end{aligned}
$$

Solving these two normal equations simultaneously, we

$$
b=\frac{n \sum X Y-\sum X \sum Y}{n \sum X^{2}-\left(\sum X\right)^{2}} \text { and } a=\bar{Y}-
$$

The value of $a$ indicates that the least squares linepasses through the means of observation $(\bar{X}, \bar{X}$
It should be noted that, when the origin is believed to lie on the curve, the straight line $m=\pi$ is simply $Y=b X$ and the sum of squared (riglations to be minimized is

$$
S=\Sigma(Y-b X)^{2}
$$

For a minimum value of $S, \frac{\partial S}{2}$, nust be zero, that is

$$
\frac{\partial S}{\partial b}=2 \Sigma(Y-\partial Q)(-X)=0, \text { which gives } \Sigma X Y=b \Sigma X^{2}
$$

as the normal equation and whence $b=\frac{\sum X Y}{\sum X^{2}}$.
The sum of squares of residuals for a straight line is

$$
\begin{aligned}
S & =\Sigma(Y-a-b X)^{2} \\
& =\Sigma[Y(Y-a-b X)]=\Sigma Y^{2}-a \sum Y-b \sum X Y .
\end{aligned}
$$

Example 12.1 Fit a straight line by the method of least squares to the following data:

| $X$ | 1 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $Y$ | 3 | 4 | 6 | 9 | 10 |

Also find the sum of squares of residuals.

## https://stat9943.blogspot.com

## CURVE FITTING BY LEAST SQUARES

Let the equation of the straight line to be fitted to the data, be $Y=a+b X$, where $a$ and $b$ are to be saluated.

The normal equations for determining $a$ and $b$ are

$$
\begin{aligned}
& \sum Y=n a+b \sum X, \\
& \sum X Y=a \sum X+b \sum X^{2}
\end{aligned}
$$

We now calculate $\Sigma X, \Sigma X^{2}, \Sigma Y$ and $\Sigma X Y$ as below:

|  | $\boldsymbol{X}$ | $\boldsymbol{Y}$ | $\boldsymbol{X Y}$ | $\boldsymbol{X}^{\mathbf{2}}$ | $\boldsymbol{Y}^{\mathbf{2}}$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
|  | 1 | 3 | 3 | 1 | 9 |
|  | 2 | 4 | 8 | 4 | 16 |
|  | 3 | 6 | 18 | 9 | 36 |
|  | 4 | 9 | 36 | 16 | 81 |
|  | 5 | 10 | 50 | 25 | 100 |
| $\Sigma$ | 15 | 32 | 115 | 55 | 242 |

Thus the normal equations become

$$
\begin{gathered}
5 a+15 b=32 \\
15 a+55 b=115
\end{gathered}
$$

Solving these two equations simultaneously, we obtain

$$
a=0.7 \text { an }(4)=1.9
$$

Hence the equation of the required straigh ine is

$$
\text { of } 0.7+1.9 X
$$

The sum of squares of residuals is qiven by

$$
\begin{aligned}
S & =\sum\left(Y_{i}-a-b X\right)^{2} \\
& =\Sigma[Y(Y-a-b X)]=\sum Y^{2}-a \sum Y-b \sum X Y \\
S & =242-0.7(32)-1.9(115) \\
& =242-240.9=1.1 .
\end{aligned}
$$

12.2.2 Fitting a Second Degree Parabola. The simplest type of a non-linear approximating curve second degree parabola that has the equation

$$
Y=a+b X+c X^{2}
$$

the values of $a, b$ and $c$ are to be determined.
Let us suppose that we wish to fit this parabolic curve to n pairs of observations $\left[\left(X_{i}, Y_{i}\right), i=1,2\right.$, Then we need to find those values of $a, b$ and $c$ which will minimize the sum of squares of mes between actual $Y$ values and corresponding values obtained by $a+b X+c X^{2}$. (the principle of quares). That is we minimize

$$
S=\Sigma\left(Y_{i}-a-b X_{i}-c X_{i}^{2}\right)^{2}
$$

Minimizing $S$, we need to set its partial derivatives w.r.t $a, b$ and $c$ equal to zero. Thus

$$
\begin{aligned}
& \frac{\partial S}{\partial a}=2 \Sigma\left(Y_{i}-a-b X_{i}-c X_{i}^{2}\right)(-1)=0 \\
& \frac{\partial S}{\partial b}=2 \Sigma\left(Y_{i}-a-b X_{i}-c X_{i}^{2}\right)\left(-X_{i}\right)=0, \text { and } \\
& \frac{\partial S}{\partial c}=2 \Sigma\left(Y_{i}-a-b X_{i}-c X_{i}^{2}\right)\left(-X_{i}^{2}\right)=0
\end{aligned}
$$

Simplifying, we get the following three normal equations

$$
\begin{aligned}
& \sum Y=n a+b \sum X+c \sum X^{2} \\
& \sum X Y=a \sum X+b \sum X^{2}+c \sum X^{3} \\
& \sum X^{2} Y=a \sum X^{2}+b \sum X^{3}+c \sum X^{4}
\end{aligned}
$$

These equations are solved simultaneously to determine the values of $a, b$ and $c$.
The sum of squares of residuals in case of second degree parabola is given by

$$
\begin{aligned}
S & =\Sigma\left(Y-a-b X-c X^{2}\right)^{2}=\sum\left[Y\left(Y-a-b X-c D^{2}\right)\right] \\
& =\Sigma Y^{2}-a \sum Y-b \sum X Y-c \sum X^{2} Y
\end{aligned}
$$

Example 12.2 Fit a second degree parabola the following data, taking $X$ as indeper variable.

| $X$ | 0 | 4 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $Y$ | 1 | 1.8 | 1.3 | 2.5 | 6.3 |

(P.U., B.A./B.Sc. 1961

Let the equation of the second degree parabola be

$$
Y=a+b X+c X^{2}
$$

The normal equationsade

$$
\begin{aligned}
& \sum Y=+b \sum X+c \sum X^{2} \\
& \sum X Y=a \sum X+b \sum X^{2}+c \sum X^{3} \\
& \sum X^{2} Y=a \sum X^{2}+b \sum X^{3}+c \sum X^{4}
\end{aligned}
$$

The computations involved are shown in the following table:

|  | $\boldsymbol{X}$ | $\boldsymbol{Y}$ | $\boldsymbol{X} \boldsymbol{Y}$ | $\boldsymbol{X}^{2}$ | $\boldsymbol{X}^{2} \boldsymbol{Y}$ | $\boldsymbol{X}^{3}$ | $\boldsymbol{X}^{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1.0 | 0 | 0 | 0 | 0 | 0 |
|  | 1 | 1.8 | 1.8 | 1 | 1.8 | 1 | 1 |
|  | 2 | 1.3 | 2.6 | 4 | 5.2 | 8 | 16 |
|  | 3 | 2.5 | 7.5 | 9 | 22.5 | 27 | 81 |
|  | 4 | 6.3 | 25.2 | 16 | 100.8 | 64 | 256 |
| Total | 10 | 12.9 | 37.1 | 30 | 130.3 | 100 | 354 |

Putting these values in the normal equations, we get

$$
\begin{aligned}
& 12.9=5 a+10 b+30 c \\
& 37.1=10 a+30 b+100 c \\
& 130.3=30 a+100 b+354 c
\end{aligned}
$$

ing them as simultaneous equations in $a, b$ and $c$, we obtain

$$
a=1.42, b=-1.07, \text { and } c=0.55 .
$$

ece the equation of the required second degree parabola is

$$
Y=1.42-1.07 X+0.55 X^{2}
$$

Example 12.3 Fit an equation of the form $Y=a X^{2}+\mathrm{b} X$ to the following data:

| $X$ | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $Y$ | 1 | 5 | 12 | 20 | 25 | 36 |

Also find the sum of squares of residuals.
(P.U., B.A./B.Sc. 1993)

The curve to be fitted is $Y=a X^{2}+b X$.
The normal equations are

$$
\left.\sum X^{2} Y=a \sum X^{4}+b \sum X^{3} \text { and } \sum X Y=a \sum X\right\} b \sum X^{2}
$$

The arithmetic is arranged in the table below:

| $\boldsymbol{X}$ | $\boldsymbol{Y}$ | $\boldsymbol{X}^{2}$ | $\boldsymbol{X}^{\mathbf{3}}$ | $\boldsymbol{D}^{\circ}$ | $\boldsymbol{X Y}$ | $\boldsymbol{X}^{2} \boldsymbol{Y}$ | $\boldsymbol{Y}^{2}$ |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1 | 5 | 1 |  | 1 | 5 | 5 | 25 |
| 2 | 12 | 4 | 8 | 16 | 24 | 48 | 144 |
| 3 | 20 |  | 27 | 81 | 60 | 180 | 400 |
| 4 | 25 | 16 | 64 | 256 | 100 | 400 | 625 |
| 5 | 36 | 25 | 125 | 625 | 180 | 900 | 1296 |
| 15 | 99 | 55 | 225 | 979 | 369 | 1533 | 2491 |

Sabstitution gives

$$
\begin{aligned}
& 979 a+225 b=1533 \\
& 225 a+55 b=369
\end{aligned}
$$

Solving them simultaneously, we get

$$
a=0.4006 \text { and } b=5.0703
$$

Ince the desired equation is $Y=0.40 X^{2}+5.07 X$.
Te sum of squares of residuals is given by

$$
S=\Sigma\left(Y-a X^{2}-b X\right)^{2}=\Sigma\left[Y\left(Y-a X^{2}-b X\right)\right]
$$

$$
\begin{aligned}
& =\sum Y^{2}-a \sum X^{2} Y-b \sum X Y \\
& =2491-(0.40)(1533)-(5.07)(369) \\
& =2491-613.2-1870.83=6.97
\end{aligned}
$$

12.2.3 Fitting of Higher Degree Parabolic Curves. A parabolic curve of degree $p$, approxi= a set of observations $\left[\left(X_{i}, Y_{i}\right), i=1,2, \ldots, n\right]$ has the equation

$$
Y_{i}=a+b X_{i}+c X_{i}^{2}+\ldots+k X_{i}^{p}
$$

where $a, b, c, \ldots, k$ are the unknown quantities and where $k \neq 0$, and $n>p+1$.
The problem is to determine the $(p+1)$ unknown quantities $a, b, c, \ldots, k$ in such a way resulting values of $Y_{i}$ should be as close as possible to the observed values. We, therefore, take the squares of the residuals, i.e.

$$
S=\sum_{i=1}^{n}\left(Y_{i}-a-b X_{i}-c X_{i}^{2}-\ldots-k X_{i}^{p}\right)^{2}
$$

which is a function of $a, b, c, \ldots, k$ as $\left(X_{i}, Y_{i}\right)$ are certain numbers. The principle of least-squares the selection of that parabolic curve that minimizes $S$, the sum ar $\mathbb{q}$ quares of differences between values of $Y$ and the corresponding values calculated from che curve. To minimize $S$, we $=$ $\frac{\partial S}{\partial a}, \frac{\partial S}{\partial b}, \frac{\partial S}{\partial c}, \ldots, \frac{\partial S}{\partial k}$ and set them equal to zero. Simplifitation leads to the following $(p+1)$ eq

$$
\begin{aligned}
& \sum Y=n a+b \sum X+c \sum X^{2}+\ldots \not X^{p} \\
& \sum X Y=a \sum X+b \Sigma X^{2}+\Sigma X^{3}+\ldots+k \sum X^{p+1} \\
& \Sigma X^{2} Y=a \sum X^{2}+b \Sigma X^{3}+c \sum X^{4}+\ldots+k \sum X^{p+2} \\
& \Sigma X^{p} Y=a \sum X^{p}+b \Sigma X^{p+1}+c \sum X^{p+2}+\ldots+k \sum X^{2 p}
\end{aligned}
$$

These are the normal equations for fitting the parabolic curve of degree $p$. Soll $=$ simultaneously, we determine $a, b, c, \ldots, k$.

For the particular case, $p=3$, the normal equations for fiting the cubic $Y_{i}=a+b X_{i}+c X_{i}^{2}+d X_{i}^{3}$ become

$$
\begin{aligned}
& \sum Y=n a+b \sum X+c \sum X^{2}+d \sum X^{3} \\
& \Sigma X Y=a \sum X+b \sum X^{2}+c \sum X^{3}+d \sum X^{4} \\
& \sum X^{2} Y=a \sum X^{2}+b \sum X^{3}+c \sum X^{4}+d \sum X^{5} \\
& \sum X^{3} Y=a \sum X^{3}+b \sum X^{4}+c \sum X^{5}+d \sum X^{6}
\end{aligned}
$$

Similarly, parabolic curves of higher degree may be fitted.

The sum of squares of residuals in case of cubic parabola is given by

$$
\begin{aligned}
S & =\Sigma\left(Y-a-b X-c X^{2}-d X^{3}\right)^{2} \\
& =\sum Y^{2}-a \sum Y-b \sum X Y-c \sum X^{2} Y-d \sum X^{3} Y
\end{aligned}
$$

A better fit. It is important to note that the sum of squares of residuals enables us to make some of comparison. A simple way of judging whether a straight line, a quadratic parabola or a cubic Fabola is likely to give the better fit, is to calculate the sum of squares of residuals in each case. The aller the sum of squares, the better is the fit.
12.2.4 Change of Origin and Unit. The computational labour may be reduced by a suitable ice of origin and unit. If the given values of $X_{i}(i=1,2, \ldots, n)$ are equally spaced with a common تval $h$ and $n$ is an odd number of values, say, $n=2 k+1$, the normal equations are simplified by taking nid value of $X$ as the origin and the common interval $h$ as unit of measurement. That is, if $X_{0}$ be the salue, then $u_{i}=\left(X_{i}-X_{0}\right) / h$ takes the values $-k .-(k-1), \ldots,-2,-1,0,1,2, \ldots,(k-1), k$. Hence we get $=0=\sum u^{3}=\ldots$ If instead, $n$ is an even number, say $n=2 k$, we take the origin at the mean of the two values of $X$ and $h / 2$ as the new unit. The values of $u_{i}$ then become $-(2 k-1),-(2 k-3), \ldots,-3,-1,1,3$, $2 k-3),(2 k-1)$, so that $\sum u=0=\sum u^{3}=\ldots$ (Also see chapter 13).
Example 12.4 The profits, $£ Y$, of a certain company in the $X$ th year of its life are given by

| $X$ | 1 | 2 | 3 | 5 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $Y$ | 2500 | 2800 | 3300 | 480 | 4600 |

Taking $u=X-3$ and $v=(Y-3300) / 100$, find the parabolic curve of $v$ on $u$ in the form $v=a+b u+c u^{2}$ educe the curve of $Y$ on $X$.
(P.U., B.A./B.Sc. (Hons) 1964)

Since $u=X-3$ (given), so we find that the shems of odd powers of $u$ are zero, i.e. $\Sigma u=0=\sum u^{3}$.
The normal equations are thus reduge $f$ to

$$
\begin{aligned}
& \sum v=n a+c \sum u^{2}, \\
& \sum u v=b \sum u^{2} \\
& \sum u^{2} v=a \sum u^{2}+c \sum u^{4} .
\end{aligned}
$$

Fions are computed in the following table.

| $\boldsymbol{X}$ | $\boldsymbol{u}$ | $\boldsymbol{y}$ | $\boldsymbol{v}$ | $\boldsymbol{u}^{\mathbf{2}}$ | $\boldsymbol{u}^{4}$ | $\boldsymbol{u v}$ | $\boldsymbol{u}^{\mathbf{2} v}$ |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | -2 | 2500 | -8 | 4 | 16 | 16 | -32 |
| 2 | -1 | 2800 | -5 | 1 | 1 | 5 | -5 |
| 3 | 0 | 3300 | 0 | 0 | 0 | 0 | 0 |
| 4 | 1 | 3900 | 6 | 1 | 1 | 6 | 6 |
| 5 | 2 | 4600 | 13 | 4 | 16 | 26 | 52 |
| $\Sigma$ | 0 | - | 6 | 10 | 34 | 53 | 21 |

Substituting these values in the normal equations, we get

$$
\begin{aligned}
5 a+10 c & =9, \\
10 b & =53, \\
10 a+34 c & =21 .
\end{aligned}
$$

Solving them, we find $a=-0.086, b=5.3$ and $c=0.643$.
The equation of the required parabolic curve is therefore

$$
v=-0.086+5.3 u+0.643 u^{2} .
$$

In order to deduce the parabolic curve of $Y$ and $X$ we replace $u$ by $X-3$ and $v$ by $\frac{Y-3300}{100}$ in $=$ above relation. Thus we obtain

$$
\frac{Y-3300}{100}=-0.086+5.3(X-3)+0.643(X-3)^{2}
$$

Simplifying, we get

$$
Y=2280+144.2 X+64.3 X^{2} .
$$

as the required parabolic curve of $Y$ on $X$.

### 12.3 EXPONENTIAL CURVES

Equations in which one of the variable quantities $\varnothing$ ecurs as an exponent such as $Y=a c^{b X}$, are $a$ exponential equations and graphs showing these eqearions as exponential curves. Exponential curve used to describe a relation in which one variableforms approximately a geometric progression, whil other forms an arithmetic progression. Datagithis hybrid type frequently occurs in the fields of bis banking and economics. In the equation $1 \theta_{d}^{d x}$, the letter $c$ is a fixed constant, usually either $10 \propto$ $a$ and $b$ are determined from the data a and $b$ are estimated by method of least-squares, we $k$ minimize $S$, where

$$
S=\Sigma\left[Y_{1}-a e^{\left.b x_{d}\right]^{2}}\right.
$$

Finding the partial derfvatives with respect to $a$ and $b$, and equating them to zero, we get

$$
\begin{aligned}
& \frac{\partial S}{\partial a}=2 \Sigma\left[Y_{i}-a e^{h X i}\right]\left[-e^{h X_{i}}\right]=0 \text {, and } \\
& \frac{\partial S}{\partial b}=2 \sum\left[Y_{i}-a e^{h X i}\right]\left[-a e^{h x i}, X_{i}\right]=0 .
\end{aligned}
$$

Simplifying, we get

$$
\begin{aligned}
& \sum Y_{i} e^{h X_{i}}=a \sum e^{2 b x i}, \text { and } \\
& \sum X_{i} Y_{i} e^{h x i}=a \sum X_{i} e^{2 b x_{i}} .
\end{aligned}
$$

It is difficult to solve these equations as the solution requires tedious numerical method solution simplifies if the non-linear curve may be reduced to the linear form by some transformation of one or both the variables. The equation $Y=a e^{b X}$ can be linearized by tallogarithms to the base 10 , of both sides. Thus the exponential curve becomes.

$$
\log Y=\log a+(b \log e) X
$$

which may be written as

$$
Y^{\prime}=A+B X
$$

Where $Y^{\prime}=\log Y, A=\log a$ and $B=b \log e$. But this is the equation of a straight line in $\log Y$ and $X$. Hence the method of fitting an exponential curve to the observed set of data is to fit a straight line to the logarithms of the $Y_{S}$. It should be noted that it is the deviations of $\log Y$, and not of $Y$, which are being minimized. It is relevant to point out that $\log$ form is better for calculating the values from the fitted curve.

We give some of the more common non-linear curves with suitable transformations to convert them into linear form $Y=a+b X$.

| Non-linear Form | Transformation | Linearized Form |
| :---: | :---: | :---: |
| $Y=a X^{b}$ | $\begin{aligned} & Y^{\prime}=\log Y, A=\log a, \\ & X^{\prime}=\log X \end{aligned}$ | $Y^{\prime}=A+b X^{\prime}$ |
| $Y=a b^{X}$ | $\begin{aligned} & Y^{\prime}=\log Y, A=\log a, \\ & B=\log b \end{aligned}$ | $V^{\prime}=A+B X$ |
| $Y=\frac{1}{a+b X}$ or $\frac{1}{Y}=a+b X$ | $Y^{\prime}=\frac{1}{Y}$ | $Y^{\prime}=a+b X^{\prime}$ |
| $\frac{1}{Y}=a+\frac{b}{1+X}$ | $Y^{\prime}=\frac{1}{Y}, X^{\prime}=\frac{1}{1^{\circ}+X}$ |  |
| $Y=a+b \sqrt{X}$ |  | $Y=a+b X^{\prime}$ |
| $Y=a X^{2}+b X$ |  | $Y^{\prime}=a X+b$ |

It is worth remaking that, if the variable $Y$ incorporates an element of random variation, we moduce a random error term e, mod the equations become

$$
\begin{aligned}
& Y=a+b X+e \\
& Y=a+b X+c X^{2}+e \text { etc. }
\end{aligned}
$$

ch will be very similar to the regression models discussed in an earlier chapter.
Example 12.5 Fit an exponential curve $Y=a e^{b X}$ to the following data:

| $X$ | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $Y$ | 1.6 | 4.5 | 13.8 | 40.2 | 125.0 | 363.0 |

(P.U., B.A./B.Sc. (Hons.), 1962; B.Z.U., 1976)

We can write the given equation as

$$
\log Y=\log a+(b \log e) X
$$

or

$$
\begin{equation*}
Y^{\prime}=A+B X . \tag{Fromofast.line}
\end{equation*}
$$

where

$$
Y^{\prime}=\log _{10} Y, A=\log _{10} a \text { and } B=b \log _{10} e
$$

As the equation is linear in $Y^{\prime}=\log Y^{\prime}$ and $X$, therefore the two normal equations are

$$
\begin{aligned}
& \Sigma Y^{\prime}=n A+B \sum X \\
& \Sigma X Y^{\prime}=A \sum X+B \sum X^{2},
\end{aligned}
$$

The necessary calculations are shown in the following table:

|  | $X$ | $Y$ | $X^{2}$ | $Y^{\prime}(=\log Y)$ | $X Y^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 1.6 | 1 | 0.2041 | 0.2041 |
|  | 2 | 4.5 | 4 | 0.6532 | 1.3064 |
|  | 3 | 13.8 | 9 | 1.1399 | 3.4197 |
|  | 4 | 40.2 | 16 | 1.6042 | 6.4168 |
|  | 5 | 125.0 | 25 | 2.0969 | 10.4845 |
|  | 6 | 363.0 | 36 | 2.5599 | 15.3594 |
| Total | 21 | $\cdots$ | 91 | 8.2582 | 87.1909 |

Substituting these values, the normal equations become

$$
\begin{aligned}
6 A+21 B & =8.2582 \\
21 A+91 B & =376909
\end{aligned}
$$

Solving these equations simultaneously, we get

$$
\begin{aligned}
& A=-0.2805 \text {, and } B=0.4734 \\
& \therefore \quad a=\operatorname{anti}-\log A=\operatorname{anti}-\log (6,2805) \\
& =\text { anti-log } \overline{1} .7195=- \text { d. } 32
\end{aligned}
$$

and $\quad 0.4343 \quad b=0.4734$ or $b=1.09$

$$
\left(\because \log _{10} e=0.4343\right)
$$

Hence the equation of the eurve fitted to the data is

$$
Y=0.52(e)^{1.09 \mathrm{X}}
$$

Example 12.6 Fit an equation of the form $Y=\mathrm{a} X^{b}$ to the following data:

| $X$ | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $Y$ | 2.98 | 4.26 | 5.21 | 6.10 | 6.80 | 7.50 |

We may reduce the given equation to a linear form by taking logs to the base 10 . Thus $\log Y=\log a+b \log X$
or

$$
Y^{\prime}=A+b X^{\prime}
$$

where $Y^{\prime}=\log Y, A=\log a$ and $X^{\prime}=\log X$.

## https://stat9943.blogspot.com

As the equation is linear in $Y^{\prime}=\log Y$ and $X^{\prime}=\log X$, therefore the two normal equations are

$$
\begin{aligned}
& \Sigma Y^{\prime}=n A+b \Sigma X^{\prime} \\
& \Sigma X^{\prime} Y^{\prime}=A \Sigma X^{\prime}+b \Sigma X^{\prime 2} .
\end{aligned}
$$

The following table contains the necessary calculations:

| $X$ | $X^{\prime}(=\log X)$ | $Y$ | $Y^{\prime}(=\log \eta$ | $X^{\prime} Y^{\prime}$ | $X^{\prime 2}$ |
| :---: | :---: | :---: | :---: | :--- | :--- |
| 1 | 0 | 2.98 | 0.4742 | 0 | 0 |
| 2 | 0.3010 | 4.26 | 0.6294 | 0.189449 | 0.0906 |
| 3 | 0.4771 | 5.21 | 0.7168 | 0.341986 | 0.2276 |
| 4 | 0.6021 | 6.10 | 0.7853 | 0.472829 | 0.3625 |
| 5 | 0.6990 | 6.80 | 0.8325 | 0.581918 | 0.4886 |
| 6 | .0 .7782 | 7.50 | 0.8751 | 0.681003 | 0.6056 |
| $\Sigma$ | 2.8574 | - | 4.3133 | 2.267185 | 1.7749 |

Substituting these summations, we get

$$
\begin{array}{r}
6 A+2.8574 b=4.31330 \\
2.8574 A+1.774 \text { 9b }=2.2672 .
\end{array}
$$

Solving them simultaneously and taking antileg of $A$, we get

$$
a=2,978 \text { and } b=0.5144
$$

Hence the required equation is

$$
\begin{aligned}
Y & =2.978(X)^{0.5144} \\
& =3 X^{1 / 2} \text { approximately } .
\end{aligned}
$$

## OTHER TYPES OF CURVES

Some other types of curves frequently encountered in applied statistics are the following:
12.1 Modified Exponential Curve. A modified exponential curve, which is obtained by adding let $k$ to an exponential curve, is defined by the relation

$$
Y=k+a b^{X} .
$$

describes a set of data, the absolute growth of which decreases by a constant proportion when rgative and " $b$ " is less than one.
$=$ first method to fit this curve is to transform it into a linear form by taking logarithms of both
Ethen to use the least-squares method. But this method is difficult for practical use. In the second se need three equations, because there are three constants $k, a$ and $b$ which are to be determined. ered data are therefore divided into three equal parts, leaving one or two values at the beginning,
if necessary, to obtain the three equations, the criterion of fit being that the three partial totals of the tren values must equal those of the original data.

Let $n$ denote the number of values in each third of the data.
Then the first equation is

$$
\begin{aligned}
\Sigma_{1} Y & =n k+a+a b+a b^{2}+a b^{3}+\ldots+a b^{n-1} \\
& =n k+a\left[1+b+b^{2}+b^{3}+\ldots+b^{n-1}\right] \\
& =n k+a\left[\frac{b^{n}-1}{b-1}\right] \quad\left(\because \frac{b^{n}-1}{b-1}=1+b+b^{2}+\ldots+b^{n-1}\right)
\end{aligned}
$$

In a similar way, the other two equations are obtained as

$$
\begin{aligned}
& \Sigma_{2} Y=n k+a b^{n}\left(\frac{b^{n}-1}{b-1}\right), \text { and } \\
& \Sigma_{3} Y=n k+a b^{2 n}\left(\frac{b^{n}-1}{b-1}\right)
\end{aligned}
$$

Now we find the constant $k, a$ and $b$.
Subtracting the first equation from the second ate, we get

$$
\Sigma_{2} Y-\Sigma_{1} Y=a\left(\frac{b^{n}-1}{b-1}\right)\left(b^{\prime}, \gamma\right)^{-1}=a \cdot \frac{\left(b^{n}-1\right)^{2}}{b-1}
$$

Again, subtracting the second equation from the third one, we get

$$
\Sigma_{3} Y-\Sigma_{2} Y=A \varrho^{\circ} \frac{\left(b^{n}-1\right)^{2}}{b-1}
$$

Dividing, we have

$$
\frac{\Sigma_{3} Y-\Sigma_{2} Y}{\Sigma_{2} Y-\Sigma_{1} Y}=\left[a b^{n} \cdot \frac{\left(b^{n}-1\right)^{2}}{b-1}\right] \div\left[a \frac{\left(b^{n}-1\right)^{2}}{b-1}\right]=b^{n}
$$

which gives $\quad b=\sqrt[n]{\frac{\Sigma_{3} Y-\Sigma_{2} Y}{\sum_{2} Y-\Sigma_{1} Y}}$.
Finally,

$$
\begin{aligned}
& a=\left(\Sigma_{2} Y-\Sigma_{1} Y\right) \frac{b-1}{\left(b^{n}-1\right)^{2}}, \text { and } \\
& k=\frac{1}{n}\left[\Sigma_{1} Y-\left(\frac{b^{n}-1}{b-1}\right) a\right]
\end{aligned}
$$

## https://stat9943.blogspot.com

12.4.2 The Compertz Curve, named after Benjamin Gompertz, is given by the equation

$$
Y=k a^{b^{X}},
$$

shere $k, a$ and $b$ are constants. The equation is changed to modified exponential equation by taking logarithms of both sides. Thus

$$
\log Y=\log k+b^{X} \log a
$$

or $\quad Y^{\prime}=k^{\prime}+a^{\prime} b^{X}$
where $\quad Y^{\prime}=\log Y, k^{\prime}=\log k$ and $a^{\prime}=\log a$.
The Compertz curve, which increases first at an increasing rate, then increases at a decreasing rate ntil it reaches a maximum level, is frequently used in business and actuarial work.
12.4.3 The Logistic Curve, which is widely used to represent growth, is defined by the relation

$$
Y=\frac{k}{1+b c^{X}},
$$

ir inverting, we get

$$
\begin{aligned}
\frac{1}{Y} & =\frac{1}{k}+\frac{b}{k} c^{x} \\
& =k^{\prime}+a c^{X}
\end{aligned}
$$

where $k^{\prime}=\frac{1}{k}$ and $a=\frac{b}{k}$. This is similar in form to tho modified exponential curve if $\frac{1}{Y}$ is expressed as a function of $X$ and the same method of fitting ghay therefore be applied with the reciprocals $\frac{1}{Y_{i}}$ instead
IY Y . The use of this curve to analyse popilation and biological growth was advocated by Raymond Pearl ${ }^{2}$ L.J. Reed. It should be noted that the logistic curve has four different stages, viz., (i) a period of rlatively slow growth, (ii) then a period of accelerated growth (iii) then a period of decelerated growth ad (iv) finally a period of stabily, when the curve does not go up at all. The growth of human rpulation and that of econome variables are appropriately described by the curve as they conform to tese stages.
12.4.4 The Makeham Curve is defined as

$$
Y=k s^{x} b^{c^{x}}
$$

In the logarithmic form;

$$
\begin{aligned}
\log Y & =\log k+X \log s+c^{X} \log b \\
& =A+C X+B c^{X}
\end{aligned}
$$

tere $A=\log k, C=\log s$ and $B=\log b$.
This type of curve, which is actually a combination of a straight line with a Compertz curve, is ed in actuarial and insurance work.

## https://stat9943.blogspot.com

### 12.5 CRITERIA FOR A SUITABLE CURVE

Frequently, we are required to choose a suitable form of curve to obtain a reasonable fit to the observed sets of data in two variables. The suitability of several curves may be determined by examining the differences in the values of the dependent variable $Y$. The first difference, denoted by $\Delta Y$ read as delta $Y$ ) is defined by $\Delta Y_{i}=Y_{i+1}-Y_{i}$, the second difference is defined by $\Delta^{2} Y_{i}=\Delta Y_{i+1}-\Delta Y_{i}$, and so on. A straight line has the property that its first difference is equal to b (a constant), a second degree parabola has the property that its second difference is equal to $2 c$ (a constant) and, in general, a parabolic curve of the $n$th degree has the property that its $n$th differences are constant. Thus we fit
i) a straight line, if the first differences between successive values are approximately constant;
ii) a second degree parabola, if the second differences are approximately constant;
iii) a third degree parabola, if the third differences prove to be constant;
iv) an exponential curve, if the first differences of the logarithms are approximately constant;
v) a log parabola $Y=a b^{x} c^{x^{2}}$, if the second differences of the logarithms of the $Y$-values tend tos be constant;
vi) a modified exponential curve, if each first difference is a constant percentage of the preceding first difference;
vii) a Gompertz curve, if the first differences of logarithmate changing by a constant percentage,
viii) a logistic curve, if the first differences of the reciprocals are changing by a constar percentage; and
ix) a reciprocal line $\frac{1}{Y}=a+b X$, if the reciprocals of the data show a straight line when plotted ar a graph.

### 12.6 FINDING PLAUSIBLE VALIGES BY THE PRINCIPLE OF LEAST-SQUARES

The principle of least squarer can also be applied to find the most satisfactory values of $\leq$ unknown quantities from a numbergf independent liner equations in the unknowns when the number $=$ equations is greater than the number of unknowns.

Suppose there are $k$ unknown quantities $X_{1}, X_{2}, \ldots, X_{k}$ and let the $n$ observed relations where $n>k$ be

$$
\begin{aligned}
& a_{1} X_{1}+b_{1} X_{2}+\ldots+f_{1} X_{k}=l_{1} \\
& a_{2} X_{1}+b_{2} X_{2}+\ldots+f_{2} X_{k}=l_{2} \\
& a_{n} X_{1}+b_{n} X_{2}+\ldots+f_{n} X_{k}=l_{n}
\end{aligned}
$$

where $a$ 's, $b$ 's, ,.., l's are constants.
When $n>k$, i.e. the number of equations is greater than the number of unknowns, there $m a y=$ exist a unique solution. In such cases, we therefore try to find those values of $X_{1}, X_{2}, \ldots, X_{\mathrm{k}}$ which * simultaneously satisfy the given set of independent linear equations as nearly as possible. Such valuma obtained by the least-squares method and are called the best or most plausible values.

## https://stat9943.blogspot.com

The least-squares criterion calls for the selection of those values of $X_{1}, X_{2}, \ldots, X_{\mathrm{k}}$, which make the sum of squares of the discrepancies $\cdot D_{i}$ 's, also called errors or residuals, a minimum, where

$$
D_{i}=a_{i} X_{1}+b_{i} X_{2}+\ldots+f_{i} X_{k}-I_{k} \quad i=1,2, \ldots, n
$$

In other words, we have to select those values of $X_{1}, X_{2}, \ldots, X_{\mathrm{k}}$ which minimize

$$
S=\sum_{i=1}^{n} D_{i}^{2}=\sum_{i=1}^{n}\left(a_{i} X_{1}+b_{i} X_{2}+\ldots+f_{i} X_{k}-l_{i}\right)^{2}
$$

It is obvious that $S=f\left(X_{1}, X_{2}, \ldots, X_{\mathrm{k}}\right)$, that is, the sum of squares of residuals is some function of $X_{\mathrm{t}}, X_{2}, \ldots, X_{\mathrm{k}}$. If $S$ is to have a minimum value, it is necessary that its partial derivatives with respect to $X_{1}, X_{2}, \ldots, X_{\mathrm{k}}$, if they exist, vanish there; hence $X_{1}, X_{2}, \ldots, X_{\mathrm{k}}$ must satisfy the equations

$$
\begin{aligned}
& \frac{\partial S}{\partial X_{1}}=2 \sum a_{i}\left(a_{i} X_{1}+b_{i} X_{2}+\ldots+f_{i} X_{k}-l_{i}\right)=0 \\
& \frac{\partial S}{\partial X_{2}}=2 \sum b_{i}\left(a_{i} X_{1}+b_{i} X_{2}+\ldots+f_{i} X_{k}-l_{i}\right)=0
\end{aligned}
$$

$$
\frac{\partial S}{\partial X_{k}}=2 \sum f_{i}\left(a_{i} X_{1}+b_{1} X_{2}+\ldots+f_{i} X_{k}-l_{i} \partial\right.
$$

The equations given above may be written in the sandard form as

$$
\begin{aligned}
& X_{1} \Sigma a_{i}^{2}+X_{2} \Sigma a_{i} b_{i}+\ldots+X^{2} \Sigma d_{i} f_{i}=\sum a_{i} l_{i} \\
& X_{1} \Sigma a_{i} b_{i}+X_{2} \Sigma b_{i}^{2}+\ldots+\sigma \Sigma b_{i} f_{i}=\Sigma b_{i} l_{i}
\end{aligned}
$$

$$
X_{1} \sum a_{i} f_{i}+\sum \sum b_{i} f_{i}+\ldots+X_{k} \sum f_{i}^{2}=\sum f_{i} l_{i}
$$

Tese simultaneous equations obtained by minimizing process, are the normal equations which are multaneously solved to obtain the best or the most plausible values of $X_{\mathrm{l}}, X_{2}, \ldots, X_{\mathrm{k}}$.

It should be noted that the normal equations for a set of variables are obtained by multiplying each eation by the co-efficient of the respective variable in the equations and adding them together. This is a enient way for remembering the normal equations.
Example 12.7 Apply the principle of least-squares to solve

$$
\begin{equation*}
2 X+Y=0,3 X-2 Y=0,-X+Y=-2 . \tag{P.U.,B.A.B.Sc.1971.75}
\end{equation*}
$$

There are 3 linear equations and 2 unknown variables $X$ and $Y$, therefore we apply the least-squares =hod to get the most plausible values of $X$ and $Y$.

Now

$$
S=(2 X+Y-0)^{2}+(3 X-2 Y-0)^{2}+(-X+Y+2)^{2}
$$

The normal equations are $\frac{\partial S}{\partial X}=0$ and $\frac{\partial S}{\partial Y}=0$,

$$
\begin{array}{ll}
\text { i.e. } & 2(2 X+Y)+3(3 X-2 Y)-(-X+Y+2)=0 \\
\text { and } & (2 X+Y)-2(3 X-2 Y)+(-X+Y+2)=0 \\
\text { or } & 14 X-5 Y=2 \text { and }-5 X+6 Y=-2 .
\end{array}
$$

Solving these equations simultaneously, we get-

$$
X=0.034, \text { and } Y=-0.305
$$

Example 12.8 Find the most plausible values of $X$ and $Y$ from the following equations:

$$
\begin{aligned}
& X-Y-3=0 \\
& 3 X+2 Y-4=0
\end{aligned}
$$

$$
2 X-3 Y+1=0 \quad \text { (P.U., B.A. (Hons.) Part-I, 1963, B.A./B.Sc. } 197
$$

We first find the normal equation for $X$. Multiplying each equation by the co-efficient of $X$ in it $=$ have

$$
\begin{gathered}
X-Y=3 \\
9 X+6 Y=12 \\
4 X-6 Y=-3
\end{gathered}
$$

Adding, we get $14 X-Y=13$, which is the normatequation for $X$.
We then find the normal equation for $Y$. Agam multiplying each equation by the co-efficient of it, we get

$$
\begin{array}{r}
-X+Y=-3 \\
6 X+4 Y=8 \\
-6 X+9 Y=3
\end{array}
$$

Adding them together, wehive $-X+14 Y=8$ as the normal equation for $Y$.
Thus the two normal equations are

$$
\begin{aligned}
& 14 X-Y=13 \\
& -X+14 Y=8
\end{aligned}
$$

Solving them simultaneously, we obtain

$$
X=0.97 \text { and } Y=0.64
$$

which is the required solution.

## EXERCISES

12.1 a) What is meant by Curve Fitting?
(P.U., B.A./B.SC
b) Explain the principle of Least Squares with particular reference to a straight line fit in a sense, does it give the "best" solution?
(P.U., B.A./B.SC
c) Fit a straight line to the following data:

| $X$ | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $Y$ | 2 | 6 | 7 | 8 | 10 | 11 |

Calculate the values of $Y$ for each value of $X$, obtain the values of residuals $e_{i}$ 's and check that $\sum e_{i}=0$.
12.2 a) By means of Least Squares, show how a straight line can be fitted to a set of given observations, and obtain the normal equations.
b) Prove that a least squares line always passes through the point $(\bar{X}, \bar{Y})$.
(P.U., B.A./B.Sc. 1978)
c) Fit a straight line to the following data and plot on the graph paper the actual and calculated values.

| $X$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $Y$ | 5 | 11 | 8 | 14 | 10 | 16 | 2 | 20 | 15 |

23 a) , Write down the equation of a straight line through the odgin and derive an expression for finding its slope by the principle of least squares.
(P.U., B.A./B.Sc. 1991)
b) Fit a least-squares line to the following data:

| Year $(X)$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Output $(Y)$ | 1 | 3 | 2 | 4 | 3 | 5 | 4 | 6 | 5 |

Measure the deviations from the fitteine and find the sum of squared deviations.
a) Find the normal equations which determine the values of $a$ and $b$ in least squares line $Y=a+b X$; and show that the sum of squares of residuals from the least squares line is given by

$$
S S=\Sigma Y^{2}-a \Sigma Y-b \Sigma X Y
$$

b) Fit a straight line to the following data:

| $X$ | 0 | 5 | 10 | 15 | 20 | 25 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $Y$ | 12 | 15 | 17 | 22 | 24 | 30 |

(P.U., B.A./B.Sc. 1962; 80)
a) Fit the least squares line for 20 pairs of observations having $\bar{X}=2, \bar{Y}=8, \sum X^{2}=180$ and $\Sigma X Y=404$.
(P.U., B.A./B.Sc. 1986)
b) Given

| $X$ | 1 | 2 | 3 | 4 | 5 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $Y$ | 8 | 9 | 13 | 18 | 27 |

Fit $Y=a+b X$ by least-squares and estimate $Y$ for $X=6$. Also fit $X=c+d Y$ and use this equation to estimate $Y$ for $X=6$. Account for the difference in two estimates.
(P.U., B.A. (Hons.) Part-II, 1963-S)

## https://stat9943.blogspot.com

12.6 a) Find the normal equations for $a, b$ and $c$ that will minimize

$$
S=\Sigma\left[Y-\left(a+b X+c X^{2}\right)\right]^{2}
$$

b) Show that the sum of squares of residuals for a second degree parabola is

$$
S=\Sigma Y^{2}-a \Sigma Y-b \Sigma X Y-c \sum X^{2} Y
$$

c) Fit a parabola of the form $Y=a+b X+c X^{2}$ to the data:

| $X$ | -2 | -1 | 0 | 1 | 2 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| $Y$ | -5 | -2 | 1 | 2 | 1 |

12.7 a) By means of the principle of least squares, show how a parabola of second order can fitted to a set of $n$ observation ( $X_{i}, Y_{i}$ ) and obtain the normal equations.
b) For 5 pairs of observations, it is given that A.M. of $X$ series is 2 and A.M. of $Y$ series is is also known that
$\sum X^{2}=30, \sum X^{3}=100, \sum X^{4}=354, \sum X Y=242, \sum \int^{2} Y=850$
Fit a second degree parabola, taking X as the inderpendent variable.
(P.U., B.A./B.Sc:
c) Fit a second degree parabola to the following data:

| $X$ | 0 | $b$ | 2 | 3 |
| :---: | :--- | ---: | ---: | ---: |
| $Y$ | 1 | 3 | 4 |  |
|  | 10 | 22 | 38 |  |

(P.U., B.A. (Part-I
12.8 Fit a second degree parabola to the following seven pairs of values:

| $X$. | कु | 1.5 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $Y_{0}$ | 0 | 1.1 | 1.3 | 1.6 | 2.0 | 2.7 | 3.4 |

(P.U., B.A./B.SC
12.9 Fit a second degrefequation to the following data:

| $X$ | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $Y$ | 2.4 | 4.8 | 8.3 | 9.5 | 11.2 | 24.3 | 22.2 | 21.2 | 25.4 |

(P.U., B.A. (Hons.) Part-'
12.10 The profits, $£ Y$, of a certain company in the $X$ th year of its life are given by:

| $X$ | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $Y$ | 1250 | 1400 | 1650 | 1950 | 2300 |

Taking $u=X-3, v=(Y-1650) / 50$, show that the parabolic curve of $v$ on $u$ is

$$
v+0.086=5.30 u+0.643 u^{2},
$$

and deduce that the parabolic curve of $Y$ on $X$ is

$$
\gamma=1140+72.14 X+32.14 X^{2}
$$

2.11 Fit, by the method of least-squares,
i) the straight line of best fit,
ii) the 2nd degree parabola of best fit, to the following data:

| $X$ | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $Y$ | 240 | 315 | 403 | 450 | 488 | 520 | 525 | 532 |

Also calculate the sum of squares of residuals in the two cases.
212 Fit a straight line and parabolas of the second and third degrees to the following data, taking $X$ to be the independent variable;

| $X$ | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $Y$ | 1 | 1.8 | 1.3 | 2.5 | 6.3 |

and calculate the sum of squares of residuals in the three cases.
13 a) You are given data in two variables $X$ and $Y$ and you have to takea decision about fitting a suitable trend. How will you proceed?
(P.U., B.A./B.Sc. 1987)
b) Given the following pairs of values of $X$ and $Y$.

| $X$ | 0 | 1 | 2 | $300^{4}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $Y$ | 10 | 17 | 28 | 43 | 62 |

Fit a suitable curve.
(P.U., B.A./B.Sc. 1976)
a) Explain the principle of least squareshad use it to obtain the normal equations when a cubic parabola is fitted to $n$ pairs of obseefvations.
b) Fit a curve of the form $Y=a b b^{\circ}$ to the following data in which $Y$ represents the number of bacteria per unit volume exsring in a culture at the end of $X$ hours:

|  | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $Y$ | 73 | 91 | 112 | 131 | 162 |

Estimate the value of $Y$ when $X=5$ and 6 .
(P.C.S. 1972; P.U., B.A./B.Sc. 1978)

The number ( $Y$ ) of bacteria per unit volume present in a culture after $X$ hours is given in the following table:

| No. of hours $(X)$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: |
| No. of bacteria per <br> unit volume $(Y)$ | 32 | 47 | 65 | 92 | 132 | 190 | 275 |

Fit a least-squares curve having the form $Y=a b^{X}$ to thie data. Estimate the value of $Y$ when $X=7$.
(P.U., B.A./B.Sc. 1969, 79, 80)

## https://stat9943.blogspot.com

12.16 Fit a simple exponential to the following data for a growing plant by taking the logarithms of $=$ exponential equation.

| Day | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Height | 0.75 | 1.20 | 1.75 | 2.50 | 3.45 | 4.70 | 6.20 | 8.25 | 11.50 |

12.17 Fit a curve of the type $Y=a b^{X}$ to the following data:

| $X$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $Y$ | 10 | 12.2 | 14.5 | 17.3 | 21.0 | 25.0 | 29.0 |

12.18 The following data represent the enrolments at a small liberal arts college during the past seed years:

| $X$ (years) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $Y$ (enrolments) | 304 | 341 | 393 | 457 | 548 | 670 | 882 |

Use the method of least-squares to estimate a curve of the form $y=a b^{X}$ and predict the enrolmes years from now.
(P.U., B.A./B.Sc. 15
12.19 a) Given $n=8, \Sigma X=16, \Sigma X^{2}=204, \Sigma X^{3}=582$, $\Sigma \log Y=23, \Sigma X \log Y=104$. Fit a suab curve.
(P.U., B.A./B.Sc. Hons.
b) Fit a curve of form $Y=a+b \sqrt{X}$ to theonowing data:

| $X$ | 1.20 | 2.59 | 3.40 | 4.70 | 5.30 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $Y$ | 6.33 | 8.03 | 8.95 | 10.09 | 10.56 |

12.20 Fit a curve $Y=a X^{b}$ to the followinggata:

| $X$ | $y_{1}$ | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 1200 | 900 | 600 | 200 | 110 | 50 |

12.21 Fit a curve of the form $Y=a X^{b}$ to the following data on the unit cost in dollars of producing electronic components and the number of units produced.

| Lot size $(X)$ | 50 | 100 | 250 | 500 | 1000 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Unit cost $(Y)$ | 108 | 53 | 24 | 9 | 5 |

Use the result to estimate the unit cost for a lot of 400 components.
(P.U., B.A./B.Sc

12:22 It is thought that two physical quantities $X$ and $Y$ should be connected by a relation of the $Y=a X^{n}$. The experimental values are:

| $X$ | 0.5 | 1.5 | 2.5 | 5.0 | 10.0 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $Y$ | 3.4 | 7.0 | 12.8 | 29.8 | 68.2 |

Find the best values of $a$ and $n$.
(P.U., B.A./B.SC
2.2. The dircharge of a capacitor through a resistance gave he following results:

| $t$ (seconds) | 0.5 | 0.8 | 1.4 | 2.0 | 2.5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $v$ (volts) | 9.1 | 8.5 | 7.5 | 6.7 | 6.1 |

Fit a curve of the type $v=a e^{b t}$ to these data.
224 a) Fit a curve of the type $Y=a e^{b X}$ to the following data:

| $X$ | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $Y$ | 27 | 73 | 200 | 545 | 1484 |

where $e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$.
b) Obtain the values of $Y$ from the approximating line for various values of $X$. Do the deviations of the observed values of $Y$ from the corresponding calculated values add to zero? Explain your result.
(P.U., B.A./B.Sc. 1977)

25 Estimate the constant of Pareto Curve, $n=A X^{-a}$, which fits the data below:

| Income ( $£$ ) | Number $(n)$ |
| :---: | ---: |
| 150 | 14,008900 |
| 500 | 825,000 |
| 1,000 | 173,000 |
| 2,000 | 35,500 |

06 The pressure ( $p$ ) of a gas and its үolume ( $v$ ) are known to be related by an equation of the form $p \nu^{\gamma}=$ constant. From the follopfing data, find the value of $\gamma$ by fitting a straight line to the logarithms of $p$ and $v$, taking $R$ te be the independent variable.

| $p$ (kg. penspq. cm ) | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\nu$ (litres) | 1.62 | 1.00 | 0.75 | 0.62 | 0.52 | 0.46 |

a) Derive the least-squares equations for fitting a curve of the type $\frac{1}{Y}=a+b X$ to a set of $n$ observations. Also find the values of $a$ and $b$.
b). Fit a reciprocal curve $\frac{1}{Y}=a+b X$ to the following data:

| $X$ | 0 | 1 | 4 | 6 | 12 | 16 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $Y$ | 10 | 8 | 5 | 4 | 2.5 | 2 |

a) Find the normal equations for determining $a, b$ and $c$ from the linear equation $Y=a+b X_{1}+$ $c X_{2}$.

## https://stat9943.blogspot.com

b) Find the least-squares fit $Y=a+b X_{1}+c X_{2}$, given

| $Y$ | 2 | 5 | 7 | 8 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $X_{1}$ | 8 | 8 | 6 | 5 | 3 |
| $X_{2}$ | 0 | 1 | 1 | 3 | 4 |

12.29 a) What is the modified exponential curve? Describe the method of fitting it:
(P.U., B.A. (Hons.) Part-II, $196=$
b) Derive the least-squares equations for fitting a modified exponential, $Y=c+a e^{b x}$ to a set $c$ $n$ observations, and indicate why these equations would be difficult to solve.
12.30 Write a critical note on the law of growth as portrayed by the logistic curve and the Gomper= curve.
(P.U., B.A./B.Sc. 196-
12.31 Use the "principle of least-squares" to find the normal equations when the number of equations is greater than the number of unknown quantities.

- (P.U., B.A./B.Sc. 1981, 84, 86,
12.32 a) Explain the method of least-squares. Apply it to solve the equations

$$
X+7 Y=17,2 X-Y=0,3 X-2 Y=-1
$$

(P.U., B.A./B.Sc. 197
b) Find the most plausible values of $X$ and $Y$ fromghe following equations. Also compute $t=$ sum of squares of residuals.

$$
\begin{array}{ll}
2 X+Y=4.8, & -X+3 Y \\
3 X-2 Y=-2.1, & 3 X-(2) ?=8.0,
\end{array}
$$

12.33 a) Find the most plausible values and $Y$ from the following equations:

$$
\begin{aligned}
& X+Y=3.01, \\
& X+3 Y=7.02
\end{aligned} \quad \begin{array}{r}
2 X-Y=0.03 \\
3 X+Y=4.97
\end{array}
$$

b) Obtain the best possole values of $X$ and $Y$ from

$$
\begin{array}{ll}
2 X+Y=4 & 3 X-Y=10.02 \\
X+2 Y=5.02, & 3 X+2 Y=0.97
\end{array}
$$

(P.U., B.A./B.Sc.
12.34 Form normal equations and solve

$$
\begin{array}{ll}
X+2 Y+Z=1, & 2 X+Y+Z=4 \\
-X+Y+2 Z=3, & 4 X+2 Y-5 Z=-7
\end{array}
$$

12.35 Find the most plausible values of $X, Y$ and $Z$ from the following equations:

$$
\begin{array}{ll}
X-Y+2 Z=3, & 3 X+2 Y-5 Z=5 \\
4 X+Y+4 Z=21, & -X+3 Y+3 Z=14
\end{array}
$$

