https://stat9943.blogspot.com

Contents

CHAPTER 10

SIMPLE

 REGRESSIONVAND CORRELAMTION
https://stat9943.blogspot.com SIMPLE REGRESSION AND CORRELATION

10.1 INTRODUCTION

The term regression was introduced by the English biometrician, Sir Francis Galton (1822-1911) describe a phenomenon which he observed in analyzing the heights of children and their parents. He and that, though tall parents have tall children and short parents have short children, the average height Echildren tends to step back or to regress toward the average height of all men. This tendency toward te average height of all men was called a regression by Galton.

Today, the word regression is used in a quite different sense. It investigates the dependence of one xriable, conventionally called the dependent variable, on one or more other variables, called lependent variables, and provides an equation to be used for estimating or predicting the average value the dependent variable from the known values of the independent variable. The dependent variable is umed to be a random variable whereas the independent variables are assumed to have fixed values, i.e. y are chosen non-randomly. The relation between the expected value of the dependent variable and the ulependent variable is called a regression relation. When we study the dependence of a variable on a gle independent variable, it is called a simple or two-variable regression. When the dependence of arable on two or more than two independent variables is studied it is called multiple regression. erthermore, when the dependence is represented by a straight line equation, the regression is said to be rur, otherwise it is said to be curvilinear.

It is relevant to note that in regression study, a variagle whose variation we try to explain is a sudent variable while an independent variable is a vartable that is used to explain the variation in the pendent variable.

Some more terminology: The dependent rartable is also called the regressand, the predictand, the onse or the explained variable whereas the thdependent or the non-random variable is also referred to regressor, the predictor, the regressiopvariable or the explanatory variable.

2 DETERMINISTIC AND PROBABILISTIC RELATIONS OR MODELS

The relationship among yandales may or may not be governed by an exact physical law. For enience, let us consider ager of n pairs of observation $\left(X_{i} Y_{i}\right)$. If the relation between the variables is linear, then the mathematical equation describing the linear relation is generally written as

$$
Y_{i}=a+b X_{i}
$$

a is the value of Y when X equals zero and is called the Y-intercept, and b indicates the change in Y one-unit change in X and is called the slope of the line. Substituting a value for X in the equation, we completely determine a unique value of Y. The linear relation in such a case is said to be a ministic model. An important example of the deterministic model is the relationship between Celsius Fhhrenheit scales in the form of $F=32+\frac{9}{5} C$. Another example is the area of a circle expressed by elation, area $=\pi r^{2}$. Such relations cannot be studied by regression.

In contrast to the above, the linear relationship in some situations is not exact. For example, we precisely determine a person's weight from his height as the relationship between them is not ted to follow an exact linear form. The weights for given values of age are reasonably assumed to measurement of random errors. The deterministic relation in such cases is then modified to allow
for the inexact relationship between the variables and we get what is called a non-determinise 4 probabilistic model as

$$
Y_{i}=a+b X_{i}+e_{i}, \quad(i=1,2, \ldots, n)
$$

where e_{i} 's are the unknown random errors.

10.3 SCATTER DIAGRAM

A first step in finding whether or not a relationship between two variables exists, is to plat = pair of independent-dependent observations $\left\{\left(X_{i}, Y_{i}\right), i=1,2, \ldots, n\right\}$ as a point on graph paper, use $=\mathbf{z}$ X -axis for the regression variable and the Y -axis for the dependent variable. Such a diagram is scatter diagram or a scatter plot. If a relationship between the variables exists, then the points scatter diagram will show a tendency to cluster around a straight line or some curve. Such a line or $=$ around which the points cluster, is called the regression line or regression curve which can be estimate the expected value of the random variable Y from the values of the nonrandom variable X

The scatter diagrams shown below reveal that the relationship between two variable positive and linear, in (b) is negative and linear, in (c) is curvilinear and in (d) there is no relationst?

10.4 SIMPLE LINEAR REGRESSION MODEL

We assume that the linear relationship between the dependent variable Y_{i} and the value $X=$ regressor X is

$$
Y_{i}=\alpha+\beta X_{i}+\varepsilon_{i}
$$

where the X_{i} 's are fixed or predetermined values,
the Y_{i} 's are observations randomly drawn from a population,
the ε_{i} 's are error components or random deviations,

https://stat9943.blogspot.com

α and β are population parameters, α is the intercept and the slope β is called regression coefficient, which may be positive or negative depending upon the direction of the relationship between X and Y.

Furthermore, we assume that \vdots
i) $E\left(\varepsilon_{i}\right)=0$, i.e. the expected value of error term is zero, it implies that the expected value of Y is related to X in the population by a straight line;
i) $\operatorname{Var}\left(\varepsilon_{i}\right)=E\left(\varepsilon_{i}^{2}\right)=\sigma^{2}$ for all i, i.e. the variance of error term is constant. It means that the distribution of error has the same variance for all values of X. (Homoscedasticity assumption);
ii) $E\left(\varepsilon_{i}, \varepsilon_{j}\right)=0$ for all $i \neq j$, i.e. error terms are independent of each other (assumption of no serial or auto correlation between ε 's);
$E\left(X, \varepsilon_{i}\right)=0$, i.e. X and ε are also independent of each other;
7) ε_{i} 's are normally distributed with a mean of zero and a constant variance σ^{2}. This implies that Y values are also normally distributed. The distributions 08 and ε are identical except that they have different means. This assumption is require for estimation and testing of hypothesis on linear regression.
According to this population regression model, each Y_{i} is in observation from a normal distribution sean $=\alpha+\beta X$ and variance $=\sigma^{2}$. Thus the relation matye expressed alternatively as

$$
E(Y)=\alpha{ }^{\prime} D^{2} X
$$

mplies that the expected value of Y is lineatly related to X and the observed value of Y deviates $=$ line $E(Y)=\alpha+\beta X$ by a random component ε, i.e. $\varepsilon_{i}=Y_{i}-\left(\alpha+\beta X_{i}\right)$. The following graph \rightarrow the assumed line, giving $E(Y)$ fot \langle 亩 given values of X.

in practice, we have a sample from some population, therefore we desire to estimate the regression line from the sample data. Then the basic relation in terms of sample data may be

$$
Y_{i}=a+b X_{i}+e_{i}
$$

and e_{i} are the estimates of α, β and ε_{i}. The estimated regression is generally written as

https://stat9943.blogspot.com

Many possible regression lines could be fitted to the sampie data, but we choose that partic which best fits that data. The best regression line is obtained by estimating the regression paranthe most commonly used method of least squares which we describe in the following subsection
10.4.1 An Aside-The Principle of Least Squares. The principle of least squares ($L S=$ of determining the values of the unknown parameters that will minimize the sum of squares of residuals) where errors are defined as the differences between observed values and the conen values predicted or estimated by the fitted Model equation.

Thé parameter values thus determined, will give the least sum of the squares of entr known as least squares estimates. The method of least squares that gets its name from the of a sum of squared deviations is attributed to Karl F. Gauss (1777-1855). Some people belie method was discovered at the same time by Adrien M. Legendre (1752-1833), Piere (1749-1827) and others. Markov's name is also mentioned in connection with its further develgun recent years, efforts have been made to find better methods of fitting but the least squares mether dominant and is used as one of the important methods of estimating the population parameters.
10.4.2 Least-Squares Estimates in Simple Linear Regression. Let there be a set of obine $\left\{\left(X_{i}, Y_{i}\right), i=1,2, \ldots, n\right\}$,

$$
Y_{i}=\alpha+\beta X i+\varepsilon C
$$

or in terms of sample data as

where a and b are the least-squares estimateses a and β, e_{i} commonly called residual, is the of the observed Y_{i} from its estimate providedty $Y_{i}=a+b X_{i}$.

According to the principle of ceast-squares, we determine those values of a and b minimize the sum of squares of thefesiduals. In other words, the best regression line is the minimizes the sum of the squaresof the vertical deviations between the observed values corresponding values predicted by the regression model, i.e. $Y_{i}=a+b X_{i}$. That is the least minimizes

$$
\begin{aligned}
S(a, b) & =\sum_{i=1}^{n} e e^{2}+\sum_{i=1}^{K}\left(Y_{i}-\hat{Y}\right)^{2} \\
& =\sum\left(Y_{i}-a-b X_{i}\right)^{2}
\end{aligned}
$$

As a and b, the two quantities that determine the line, vary, $S(a, b)$ will vary too. We therefore consider $S(a, b)$ as a function of a and b, and we wish to determine at what values of a and b, it will be minimum.

Minimizing $S(a, b)$, we need to set its partial derivatives w.r.t a and b equal to zero. Ther

$$
\begin{aligned}
& \frac{\partial S(a, b)}{\partial a}=2 \sum\left(Y_{i}-a-b X_{i}\right)(-1)=0, \text { and } \\
& \frac{\partial S(a, b)}{\partial b}=2 \sum\left(Y_{i}-a-b X_{i}\right)\left(-X_{i}\right)=0
\end{aligned}
$$

https./lstat9943.blogspot.com

Simplifying, we obtain the following two equations, called the normal equations (the word normal d here in the sense of regular or standard).

$$
\Sigma Y_{t}=n a+b \Sigma X_{i} \text { and } \Sigma X_{i} Y_{i}=a \sum X_{i}+b \sum X_{i}^{2}
$$

These two normal equations are solved simultaneously for values of a and b either by direct ation or by using dèterminants.
i) Direct Elimination: Multiplying the first equation by ΣX_{i} and the second equation by n, we get $\sum X \sum Y=n a \sum \mathrm{X}+\mathrm{b}\left(\sum X\right)^{2}$ and $n \sum X Y=n a \sum X+n b \Sigma X^{2}$

Subtracting, we get

$$
\begin{aligned}
& n \sum X Y-\sum X \sum Y=b\left[n \sum X^{2}-\left(\sum X\right)^{2}\right] \\
& b=\frac{n \sum X Y-\sum X \sum Y}{n \sum X^{2}-\left(\sum X\right)^{2}}=\frac{\sum(X-\bar{X})(Y-\bar{Y})}{\sum(X-\bar{X})^{2}}
\end{aligned}
$$

is the least-squares estimate of the regression co-efficient β.
Similarly, we get

$$
a=\frac{\sum X^{2} \sum Y-\sum X \sum X Y}{n \sum X^{2}-\left(\sum X\right)^{2}}
$$

enst squares estimate of α.
Uternatively, we divide the first normal equation by n , and get the least-squares estimate of α as

Dis also shows that the estimated regression line passes through (\bar{X}, \bar{Y}), the means of the data.
By means of determinants, the solution is

$$
\begin{aligned}
& b=\frac{\left.\left|\begin{array}{ll}
\sum X Y & \sum X \\
\sum Y & X
\end{array}\right|=\frac{n \sum X Y-\left(\sum X\right)\left(\sum Y\right)}{\sum X^{2}} \begin{array}{ll}
\sum X \\
\sum X & n
\end{array} \right\rvert\,}{n \sum X^{2}-\left(\sum X\right)^{2}} \text { and } \\
& a=\frac{\left|\begin{array}{ll}
\sum X^{2} & \sum X Y \\
\sum X & \sum Y
\end{array}\right|}{\left|\begin{array}{ll}
\sum X^{2} & \sum X \\
\sum X & n
\end{array}\right|=\frac{\left(\sum X^{2}\right)\left(\sum Y\right)-\left(\sum X\right)\left(\sum X Y\right)}{n \sum X^{2}-\left(\sum X\right)^{2}},}
\end{aligned}
$$

estimates give us the regression equation

$$
\begin{aligned}
\hat{Y}_{i} & =a+b X_{i} \\
& =\bar{Y}+b(X-\bar{X}) .
\end{aligned}
$$

$$
\text { where } \quad b=\frac{n \sum X Y-\left(\sum X\right)\left(\sum Y\right)}{n \sum X^{2}-\left(\sum X\right)^{2}}
$$

Since Y is a random variable, therefore the deviations in the Y direction are taken into aser determining the best-fitting line.

It is very important to note that, when both X and Y are observed at random, i.e. the sample are from a bivariate population, there are two regression equations, each obtained by chooar variable as dependent whose average value is to be estimated and treating the other independent. In case of a single random variable, the single regrossion equation is used to estin values of either the dependent or the independent variable. In case of two regression, lines, it is to denote the regression coefficients of Y on X and of X on Y by $b_{y x}$ and $b_{x y}$ respectively.

Example 10.1 Compute the least squares regression equation of Y on X for the follow= What is the regression coefficient and what does it mean?

X	5	6	8	10	12	13	15	16	17
Y	16	19	23	28	36	41	44	45	50

The estimated regression line of Y on X is

$$
\hat{Y}=a+b X
$$

and the two normal equations are

$$
\begin{aligned}
& \sum Y=n a+b \Sigma X \\
& \sum X Y=a \Sigma X+b \Sigma X^{2}
\end{aligned}
$$

To compute the necessary summations, werrange the computations in the table below:

X	Y	$X Y$	X^{2}
	5	16	80
	6	19	114
	8	23	184

Now $\bar{X}=\frac{\sum X}{n}=\frac{102}{9}=11.33, \bar{Y}=\frac{\sum Y}{n}=\frac{302}{9}=33.56$,

$$
\begin{aligned}
b & =\frac{n \sum X Y-\left(\sum X\right)\left(\sum Y\right)}{n \sum X^{2}-\left(\sum X\right)^{2}}=\frac{9(3853)-(102)(302)}{9(1308)-(102)^{2}} \\
& =\frac{34677-30804}{11772-10404}=\frac{3873}{1368}=2.831, \text { and }
\end{aligned}
$$

$$
a=\bar{Y}-b \bar{X}=33.56-(2.831)(11.33)=1.47 .
$$

ese the desired estimated regression line of Y on X is

$$
\hat{Y}=1.47+2.831 X .
$$

The estimated regression co-efficient, $b=2.831$, which indicates that the values of Y increase by units for a unit increase in X.

Example 10.2 In an experiment to measure the stiffness of a spring, the length of the spring under Et loads was measured as follows:

$X=$ Loads (1b)	3	5	6	9	10	12	15	20	22	28
$Y=$ length (in)	10	12	15	18	20	22	27	30	32	34

Find the regression equations appropriate for predicting
the length, given the weight on the spring;
the weight, given the length of the spring.
(W.P.C.S., 1964)

The data come from a bivariate population, i.e. both X and Y are random, therefore there are two tion lines. To find the regression equation for predicting length Y), we take Y as dependent and treat X as independent variable (i.e. non-random). For the ${ }^{\circ}$ second regression, the choice of rables is reversed.
The computations needed for the regression lines are gixe on the following table:

X	Y	X^{2}	Y^{2}	$X Y$
3	10	\mathbf{S}^{9}	100	30
5	12	25	144	60
6	15	36	225	90
9	18	81	324	162
10	180	100	400	200
12	22	144	484	264
15	27	225	729	405
	15	30	400	900
	600			
	22	32	484	1024
	704			
	28	34	784	1156
Total	130	220	2288	5486

The estimated regression equation appropriate for predicting the length, Y, given the weight X, is

$$
\hat{Y}=a_{0}+b_{y x} X,
$$

where $b_{Y X}=\frac{n \sum X Y-\left(\sum X\right)\left(\sum Y\right)}{n \sum X^{2}-\left(\sum X\right)^{2}}=\frac{(10)(3467)-(130)(220)}{(10)(2288)-(130)^{2}}$

$$
\begin{aligned}
& =\frac{6070}{5980}=1.02, \text { and } \\
a_{0} & =\bar{Y}-b_{y x} \bar{X}=22-(1.02)(13)=8.74
\end{aligned}
$$

https://stat9943.blogspot.com

Hence the desired estimated regression equation is

$$
\hat{Y}=8.74+1.02 X
$$

ii) The estimated regression equation appropriate for predicting the weight, X, given the $=$

$$
\hat{X}=a_{1}+b_{\mathrm{xy}} Y,
$$

$$
\text { where } \begin{aligned}
b_{X Y} & =\frac{n \sum X Y-\left(\sum X\right)\left(\sum Y\right)}{n \sum Y^{2}-\left(\sum Y\right)^{2}}=\frac{(10)(3467)-(130)(220)}{(10)(5486)-(220)^{2}} \\
& =\frac{6070}{6460}=0.94, \text { and } \\
a_{1} & =\bar{X}-b_{x y} \bar{Y}=13-(0.94)(22)=-7.68
\end{aligned}
$$

Hence $\hat{X}=0.94 Y-7.68$ is the estimated regression equation appropriate for predicting the wext given the length (Y).
10.4.3 Properties of the Least-Squares Regression Line. ©he least-squares linear regreas has the following properties:

$$
b_{y x} \neq b_{x y}
$$

i) The least squares regression line always goes through the point (\bar{X}, \bar{Y}), the means of $t=$
ii) The sum of the deviations of the observed Y_{i} from the least squares regressiat always equal to zero, i.e. $\Sigma\left(Y_{i}-\hat{Y}\right)=0$
iii) The sum of the squares of the deviations of the observed values from the leas-regression line is a minimumpe. $\Sigma\left(Y_{i}-\hat{Y}_{i}\right)^{2}=$ minimum.
iv) The least-squares regredsion line obtained from a random sample is the line of best fir a and b are the unbiased estimates of the parameters α and β.
10.4.4 Standard Refiation of Regression or Standard Error of Estimate. The observe of (X, Y) do not all fall on the regression line but they scatter away from it. The degree (or dispersion) of the observed values about the regression line is measured by what is called the deviation of regression or the standard error of estimate of Y on X. For the population data, the $=$ deviation that measures the variation of observations about the true regression line $E(Y)=\alpha-$ denoted by $\sigma_{Y X}$ and is defined by

$$
\sigma_{Y X}=\sqrt{\frac{\sum[Y-(\alpha+\beta X)]^{2}}{N}}
$$

where N is the population size.
For sample data, we estimate $\sigma_{Y, X}$ by s_{y-x} which is defined as

$$
s_{y . x}=\sqrt{\frac{\sum(Y-\hat{Y})^{2}}{n-2}}
$$

https://stat9943.blogspot.com

$\hat{Y}=a+b X$, the estimated regression line. This is actually an unbiased estimate of $\sigma_{Y, X}$, the ion standard deviation about the regression line. The standard error of estimate, $s_{y x}$ will be zero all the observed values fall on the regression line. It is interesting to note that the ranges $\hat{Y} \pm 2 s_{y x x}$ and $\hat{Y} \pm 3 s_{y x}$ contain about $68 \%, 95.4 \%$ and 99.7% observations respectively.

To find $\sum(Y-\hat{Y})^{2}$, we have to calculate \hat{Y} from the estimated regression line for the observed of X, which is not an easy task. We therefore use an alternative form obtained as below:

$$
\begin{aligned}
-\hat{Y})^{2} & =\sum\left(Y_{i}-a-b X_{i}\right)^{2} \\
& =\sum Y_{i}\left(Y_{i}-a-b X_{i}\right)-a \sum\left(Y_{i}-a-b X_{i}\right)-b \sum X_{i}\left(Y_{i}-a-b X_{i} T\right. \\
& =\sum Y_{i}^{2}-a \sum Y_{i}-b \sum X_{i} Y_{i}-a\left[\sum Y_{i}-n a-b \sum X_{i}\right]-b\left[\sum X_{i} Y_{i}-a \sum X_{i}-b \sum X_{i}^{2}\right]
\end{aligned}
$$

Bat $\sum Y_{i}-n a-b \sum X_{i}=0$ and $\sum X_{i} Y_{i}-a \sum X_{i}-b \sum X_{i}^{2}=0$ as they are the normal equations.

$$
\begin{aligned}
& \quad \sum\left(Y_{i}-\hat{Y}\right)^{2}=\sum Y_{i}^{2}-a \sum Y_{i}-b \sum X_{i} Y_{i} \\
& \text { Bence } s_{y . x}=\sqrt{\frac{\sum Y_{i}^{2}-a \sum Y_{i}-b \sum X_{i} Y_{i}}{n-2}},
\end{aligned}
$$

In is the number of pairs.
Erample 10.3 Using the data in Example 1
find the values of \hat{Y} and show that $\{(Y-\hat{Y})=0$, and
compute the standard error of eftimate $s_{y . x}=S . D$
Te calculations needed to fint ve values of \hat{Y} and the standard error of estimate $s_{y, x}$ are given in lebelow:

X	Y	\hat{Y} $(=1.47+2.831 \mathrm{X})$	$Y-\hat{Y}$	$(Y-\hat{Y})^{2}$	Y^{2}
5	16	15.625	0.375	0.140625	256
6	19	18.456	0.544	0.295936	361
8	23	24.118	-1.118	1.249924	529
10	28	29.780	-1.780	3.168400	784
12	36	35.442	0.558	0.311364	1296
13	41	38.273	2.727	7.436529	1681
15	44	43.935	0.065	0.004225	1936
16	45	46.766	-1.766	3.118756	2025
17	50	49.597	0.403	0.162409	2500
102	302	301.992	0.008	15.888168	110368

i) The estimated values \hat{Y} appear in the third column of the table on page 403, and Z turns out to be 0.008 . This small difference is due to rounding off.
ii) The standard error of estimate of Y on X is

$$
s_{y . x}=\sqrt{\frac{\sum(Y-\hat{Y})^{2}}{n-2}}=\sqrt{\frac{15.888168}{7}}=\sqrt{2.269738}=1.51
$$

Using the alternative form for the calculation of $s_{y . x}$, we get

$$
\begin{aligned}
s_{y . x} & =\sqrt{\frac{\sum Y^{2}-a \sum Y-b \sum X Y}{n-2}} \\
& =\sqrt{\frac{11368-(1.47)(302)-(2.831)(3853)}{9-2}} \\
& =\sqrt{\frac{16.217}{7}}=\sqrt{2.316714}=1.52 .
\end{aligned}
$$

10.4.5 Co-efficient of Determination. The variability Y, called the total variation, is given by $\Sigma(Y-\bar{Y})^{2}$. This is composed of two parts (i) that explained by (associated with) the regression line, ie $(\bar{Y} \hat{Y}-\bar{Y})^{2}$, (ii) that which the regression to explain, i.e. $\Sigma(Y-\hat{Y})^{2}$ (see-figure). In symbols.

$$
\Sigma(Y-\bar{Y})^{2}=\Sigma(Y-\hat{Y})^{2}+\Sigma(\hat{Y}
$$

Total variation $=$ Unexplained eration + Explained variation

The co-efficient of determination which measures the proportion of variability of the values dependent variable (Y) explained by its linear relation with the independent variable (X), is defined b ratio of the explained variation to the total variation. We use the symbol ρ^{2} for the population para

https://stat9943.blogspot.com

ad symbol r^{2} for the estimate obtained from sample. Thus the sample co-efficient of determination is pen by

$$
\begin{aligned}
r^{2} & =\frac{\text { Explained variation }}{\text { Total variatioin }}=\frac{\sum(\hat{Y}-\bar{Y})^{2}}{\sum(Y-\bar{Y})^{2}} \\
& =1-\frac{\sum(Y-\hat{Y})^{2}}{\sum(Y-\bar{Y})^{2}}
\end{aligned}
$$

2alternative form for calculating the coefficient of determination is

$$
r^{2}=\frac{a \sum Y+b \sum X Y-\left(\sum Y\right)^{2} / n}{\sum Y^{2}-\left(\sum Y\right)^{2} / n}
$$

When all the observed values fall on the regression line, then $Y=\hat{Y}$ and $\Sigma(Y-\bar{Y})^{2}=\Sigma(\hat{Y}-\bar{Y})^{2}$,
bence $r^{2}=1$. When the observed values are such that $\hat{Y}=\bar{Y}$, then $\Sigma(\hat{Y}-\bar{Y})^{2}=0$, and hence $=0$. This shows that $0 \leq r^{2} \leq 1$. A value of $r^{2}=1$, signifies that 100% of the variability in the endent variable is associated with the regression equation. When $r^{2}=0$, it means that none of the bility in the dependent variable is explained by X-variable. A vagre of $r^{2}=0.93$, indicates that 93% variability in Y is explained by its linear relationship with the independent variable X and 7% of the non is due to chance or other factors.

Example 10.4 Taking length (Y) as dependent vachable for the data in Example 10.2, calculate \pm total variation, (ii) the unexplained variation, (ii) yhe explained variation, and (iv) the co-efficient ermination and interpret the coefficient.

In Example 10.2, we found that

$$
\Sigma Y=220, \Sigma Y^{2}=5486, \Sigma X Y=3467, b=1.02, a=8.74 \text { and } n=10
$$

We now find

$$
\begin{aligned}
\text { Total variation } & =\Sigma(P+Y)^{2}=\Sigma Y^{2}-(\Sigma Y)^{2} / n \\
& =5486-(220)^{2} / 10=646
\end{aligned}
$$

Unexplained variation $=\Sigma(Y-\hat{Y})^{2}=\Sigma Y^{2}-a \Sigma Y-b \Sigma X Y$

$$
\begin{aligned}
& =5486-(8.74)(220)-(1.02)(3467) \\
& =5486-5459.14=26.86
\end{aligned}
$$

Explained variation $=$ Total variation - unexplained variation

$$
=646-26.86=619.14
$$

The coefficient of determination, r^{2}, is given by

$$
r^{2}=\frac{\text { Explained variation }}{\text { Total variation }}=\frac{\sum(\hat{Y}-\bar{Y})^{2}}{\sum(Y-\bar{Y})^{2}}
$$

$$
=\frac{619.14}{646}=0.958
$$

A value of $r^{2}=0.958$ indicates that 95.8% of the variability in Y, the length of the spring : demonstrated by its linear relationship with X, the weight on the spring.

10.5 CORRELATION

Correlation, like covariance, is a measure of the degree to which any two variables vary toget In other words, two variables are said to be correlated if they tend to simultaneously vary in direction. If both the variables tend to increase (or decrease) together, the correlation is said to be or positive, e.g. the length of an iron bar will increase as the temperature increases. If one variable to increase as the other variable decreases, the correlation is said to be negative or inverse, eg = volume of gas will decrease as the pressure increases. It is worth remarking that in correlation, we the strength of the relationship (or interdependence) between two variables; both the variables are ra variables, and they are treated symmetrically, i.e. there is no distinction between dependers independent variable. In regression, by contrast, we are interested in determining the dependence variable that is random, upon the other variable that is non-random or fixed, and in predicting the ave value of the dependent variable by using the known values of the othe variable.
10.5.1 Pearson Product Moment Correlation Co-efficient. A numerical measure of stren the linear relationship between any two variables is called the Pearson's product moment come co-efficient or sometimes, the coefficient of simple correfanion or total correlation. The sample correlation coefficient for n pairs of observations (X, Y \&

$$
r=\frac{\sum(X-\bar{X})(Y-\bar{Y})}{\sqrt{\sum(X-\bar{X})^{2} \Sigma\left(Y-\bar{Y} \sigma^{2}\right)}} ?^{\circ}
$$

The population correlation co-efficigat for a bivariate distribution, denoted by ρ, has alreat defined as

$$
p=\frac{\left.\operatorname{Cov}\left(X, q_{0}\right)\right)^{S}}{\sqrt{\operatorname{Var}(X N \operatorname{ar}(Y)}}
$$

For computational purposes, we have an alternative form of r as

$$
\begin{aligned}
r & =\frac{\sum X Y-\left(\sum X\right)\left(\sum Y\right) / n}{\sqrt{\left[\Sigma X^{2}-(\Sigma X)^{2} / n\right]\left[\left(\sum Y^{2}-(\Sigma Y)^{2} / n\right)\right]}} \\
& =\frac{n \sum X Y-\sum X \sum Y}{\sqrt{\left[n \sum X^{2}-\left(\sum X\right)^{2}\right]\left[n \sum Y^{2}-(\Sigma Y)^{2}\right]}}
\end{aligned}
$$

This is a more convenient and useful form, especially when \bar{X} and \bar{Y} are not integen coefficient of correlation r is a pure number (i.e. independent of the units in which the variabia measured) and it assumes values that can range from +1 for perfect positive linear relationship, to perfect negative linear relationship with the intermediate value of zero indicating no linear relzter between X and Y. The sign of r indicates the direction of the relationship or correlation.

https://stat9943.blogspot.com

DIPLE REGRESSION AND CORRELATION

It is important to note that $r=0$ does not mean that there is no relationship at all. For example, if all $=$ observed values lie exactly on a circle, there is a perfect non-linear relationship between the variables I r will have a value of zero as r only measures the linear correlation.

The linear correlation co-efficient, is also the square root of the linear co-efficient of determination,

Have $\quad \hat{Y}=\bar{Y}+b(X-\bar{X})$

$$
\text { or } \quad \hat{Y}-\bar{Y}=b(X-\bar{X})
$$

Squaring both sides, we get

$$
(\hat{Y}-\bar{Y})^{2}=b^{2}(X-\bar{X})^{2}
$$

Substituting in the ratio, we find

$$
\begin{aligned}
\frac{\sum(\hat{Y}-\bar{Y})^{2}}{\sum(Y-\bar{Y})^{2}} & =\frac{b^{2} \Sigma(X-\bar{X})^{2}}{\sum(Y-\bar{Y})^{2}} \\
& =\frac{\sum(X-\bar{X})^{2}}{\sum(Y-\bar{Y})^{2}}\left[\frac{\Sigma(X-\bar{X})(Y-\bar{Y})}{\Sigma(X-\bar{X})^{2} 0^{\circ}}\right]^{\prime} \\
& =\left[\frac{\Sigma(X-\bar{X})(Y-\bar{Y})^{\circ}}{\sqrt{\left.\Sigma(Y-\bar{Y})^{2} \sum(X)-\bar{X}\right)^{2}}}\right]^{2}=r^{2}
\end{aligned}
$$

 Ing data:

$\times Y$	1	2	3	4	5
2	5	3	8	7	

(P.U., B.A./B.Sc. 1973)

The calculations needed to compute r are given below:

X	Y	$(X-\bar{X})$	$(X-\bar{X})^{2}$	$(Y-\bar{Y})$	$(Y-\bar{Y})^{2}$	$(X-\bar{X})(Y-\bar{Y})$
1	2	-2	4	-3	9	6
2	5	-1	1	0	0	0
3	3	0	0	-2	4	0
4	8	1	1	3	9	3
5	7	2	4	2	4	4
15	25	0	10	0	26	13

https://stat9943.blogspot.com

Here

$$
\begin{array}{ll}
\text { Here } & \bar{X}=\frac{\sum X}{n}=\frac{15}{5}=3, \text { and } \bar{Y}=\frac{\sum Y}{n}=\frac{25}{5}=5 \\
\therefore & r=\frac{\sum(X-\bar{X})(Y-\bar{Y})}{\sqrt{\sum(X-\bar{X})^{2} \sum(Y-\bar{Y})^{2}}}=\frac{13}{\sqrt{10 \times 26}}=\frac{13}{16.1}=0.8
\end{array}
$$

Alternatively, the following table is set up for calculation of r.

	X	Y	X^{2}	Y^{2}	$X Y$
	1	2	1	4	2
	2	5	4	25	10
	3	3	9	9	9
	4	8	16	64	32
	5	7	25	49	35
	15	25	55	151	88
$\Sigma X Y-(\Sigma Y)(\Sigma Y) / n$					
$88-(15) 25 / 5$					

10.5.2 Correlation and Causation. The fact that correlation exists between two variabis not imply any cause-and-effect relationshig two unrelated variables such as the sale of bananas death rate from cancer in a city, may prgetuce a high positive correlation which may be due to a unknown variable (namely, the city pgpulation). The larger the city, the more consumption of and the higher will be the death rate from cancer. Clearly, this is a false or a merely incidental cor which is the result of a third yarinble, the city size. Such a false correlation between two uncos variables is called nonsensera spurious correlation. We therefore should be very careful in interg the correlation coefficientea measure of relationship or interdependence between two variables.
10.5.3 Properties of r . The sample correlation co-efficient r has the following properties:
i) The correlation co-efficient r is symmetrical with respect to the variables X and Y, i.e $n=-$
ii) The correlation co-efficient lies between -1 and +1 , i.e. $-1 \leq r \leq+1$.
iii) The correlation co-efficient is independent of the origin and scale.

Proof: Let u and v be the two new variables defined by $u=\frac{X-a}{h}$ and $v=\frac{Y-b}{k}$ so that $X=a+h=$ $Y=b+k v$, where a and b are the new origins and h and k are the units of measurement.

Let $r_{X Y}$ denote the correlation co-efficient between X and Y and $r_{u m}$ the correlation cobetween u and v.

Substituting these values in $r_{X \gamma}, v i z$.

$$
\begin{aligned}
& r_{X Y}=\frac{\sum(X-\bar{X})(Y-\bar{Y})}{\sqrt{\Sigma(X-\bar{X})^{2} \sum(Y-\bar{Y})^{2}}} \text {, we get } \\
& r_{X Y}=\frac{\sum[(a+h u)-(a+h \bar{u})][(b+k v)-(b+k \bar{v})]}{\sqrt{\sum[(a+h u)-(a+h \bar{u})]^{2} \cdot \Sigma[(b+k v)-(b+k \bar{v})]^{2}}},
\end{aligned}
$$

where $\bar{X}=a+h \bar{u}$ and $\bar{Y}=b+k \bar{v}$. Therefore

$$
r_{X Y}=\frac{h k \sum(u-\bar{u})(v-\bar{v})}{h k \sqrt{\sum(u-\bar{u})^{2} \cdot \sum(v-\bar{v})^{2}}}=r_{u v}
$$

This property is very useful in numerical evaluation of r, since due to this property, we can choose mvenient origin and scale.

In case of a bivariate population where both X and Y are random variables, r is the geometric mean between the two regression co-efficient.

That is, if $b_{y x}$ is the regression coefficient of the regression line $\mathcal{C 1} Y$ on X and $b_{x y}$ is the regression ent of the regression line of X on Y, and r is the coefficient ${ }^{\circ}$ correlation, then $r^{2}=b_{y x} b_{x y}$ implies $= \pm \sqrt{b_{y x} \cdot b_{x y}}$:

Since the signs of the regression coefficients depend on the same expression $\Sigma(\mathrm{Y}-\bar{X})(\mathrm{Y}-\bar{Y})$ so b_{y} and $b_{x y}$ are both positive or $b_{y x}$ and $b_{x y}$ are bethriegative. Therefore

$$
\begin{aligned}
& r=+\sqrt{b_{y x} \cdot b_{x y}}, \text { if } b_{y x} \text { and } b_{x y} \text { areositive, } \\
& r=-\sqrt{b_{y x} \cdot b_{x y}}, \text { if } b_{y x} \text { and } b_{x} \text { gre negative. }
\end{aligned}
$$

the value of r always takes the samhelsign as the regression coefficients.
The regression co-efficients) and the regression lines for a bivariate population, by using the Ton of the correlation co-efficient, may be expressed as

$$
\begin{aligned}
& b_{y x}=r \frac{S_{y}}{S_{x}} ; b_{x y}=r \frac{S_{x}}{S_{y}} \\
& Y-\bar{Y}=r \frac{S_{y}}{S_{x}}(X-\bar{X}) ; \text { and } X-\bar{X}=r \frac{S_{x}}{S_{y}}(Y-\bar{Y}),
\end{aligned}
$$

be letters have their usual meaning.
Example 10.6 Calculate the co-efficient of correlation between the values of X and Y given below:

X	78	89	97	69	59	79	68	61
Y	125	137	156	112	107	136	123	108

Let $u=X-69$ and $v=Y-112$. Then $r_{x y}=\mathrm{r}_{u v}$. The calculations needed to find r are given in the in the next page:

X	Y	u	v	u^{2}	v^{2}	$u v$
78	125	9	13	81	169	117
89	137	20	25	400	625	500
97	156	28	44	784	1936	1232
69	112	0	0	0	0	0
59	107	-10	-5	100	25	50
79	136	10	24	100	576	540
68	123	-1	11	1	121	-11
61	108	-8	-4	64	16	32
600	1004	48	108	1530	3468	2160

Now $\quad r=\frac{\sum u v-\left(\sum u\right)\left(\sum v\right) / n}{\sqrt{\left[\sum u^{2}-\frac{\left(\sum u\right)^{2}}{n}\right]\left[\sum v^{2}-\frac{\left(\sum v\right)^{2}}{n}\right]}}$

$$
=\frac{2160-\frac{48 \times 108}{8}}{-\sqrt{\left[1530-\frac{(48)^{2}}{8}\right]\left[3468-\frac{(108)^{2}}{8}\right]}}
$$

$$
=\frac{2160-648}{\sqrt{(1530-288) \times(3468-1458)}}=\frac{1512}{\sqrt{(578}}=0.96 .
$$

Hence the correlation coefficient between P and Y is 0.96 .
Example 10.7 If $b_{i j}$ is the regssion coefficient of X_{i} on X_{j}, then calculate the product $=$ coefficient of correlation in each case! given
i)
) $b_{12}=-0.1, b_{21}=-0.4$
ii) $b_{13}=0.27, b_{31}=0.6$
iii) $\quad b_{23}=0.67, b_{32}=38$.

The product moment coefficient of correlation between X_{i} and X_{j} is given by

$$
r_{i j}=\sqrt{b_{i j} \times b}
$$

i) Here $b_{12}=-0.1$, and $b_{21}=-0.4$

$$
\therefore \quad r_{12}=-\sqrt{(-0.1)(-0.4)}=-0.20 .
$$

r is negative since both regression coefficients are negative.
ii) Here both regression coefficients are positive, so r is positive. Thus

$$
r_{13}=+\sqrt{b_{13} \times b_{31}}=+\sqrt{(0.27)(0.6)}=+0.40 .
$$

iii) Here we have

$$
r_{23}=\sqrt{(0.67)(0.38)}=0.50\left(\because b_{23} \text { and } b_{32} \text { are positive }\right)
$$

10.5.4 Correlation Co-efficient for Grouped Data. In a simple frequency table, the data are rnged with respect to one variable only. If the arrangement is made according to two variables mitaneously in say, m columns and k rows, the frequency table thus obtained is called a correlation -ke or a bivariate frequency table. The number of observations falling in the (i, j) th cell, is called the Tth cell frequency and is denoted by $f_{i v}$. The correlation co-efficient, if it exists, can be calculated from \pm a two-way frequency table by using the class midpoints as the value of the observations. The mula for r then becomes

$$
r=\frac{\sum f_{i j} X_{j} Y_{i}-\frac{1}{n}\left(\sum f_{j}, K_{j}\right)\left(\sum f_{i} Y_{i}\right)}{\left.\sqrt{\left[\sum f_{\cdot j} X_{j}^{2}-\frac{1}{n}\left(\sum f_{\cdot j} X_{j}\right)^{2}\right]\left[\sum f_{i} \cdot Y_{i}^{2}-\frac{1}{n}\left(\sum f_{i} b^{2}\right.\right.}\right]}
$$

$=f_{i}=\sum_{j=1}^{m} f_{i j}$, the frequency of Y values, $f_{\cdot j}=\sum_{j=1}^{k} f_{i j}$, figequency of X value and n is the total zency.

Example 10.8 Calculate the co-efficient of Jinger correlation from the table given bolow:

Grades in Statistics (Y)	Gradas in Mathematics (X)						Total
	$40-49$	$50-59$	$60-69$	$70-79$	$80-89$	$90-99$	
$90-99$	-	-	-	2	4	4	10
$80-89$		-	1	4	6	5	16
$70-79$	-	-	5	10	8	1	24
$60-69$	1	4	9	5	2	-	21
$50-59$	3	6	6	2	-	-	17
$40-49$	3	5	4	-	-	-	12
Total	7	15	25	23	20	10	100

(P.U., B.A./B.Sc. 1968)

Let us introduce two new variables u and v given by the relations $u=\frac{X-64.5}{10}$ and $v=\frac{Y-74.5}{10}$. $=$ te calculations needed for finding r are arranged in the table on page (412).

https://stat9943.blogspot.com

Y_{i}	X_{j}	44.5	54.5	64.5	74.5	84.5	94.5	$f i$.	f_{i}, v_{i}.	f_{i}, v_{i}^{2}	$f_{i j} u_{j} v_{f}$
		-2	-1	0	1	2	3				
94.5	2	--	--	--	$2^{[4]}$	$4^{[16]}$	$4^{[24]}$	10	20	40	44
84.5	1	--	--	$1^{[0]}$	$4^{[4]}$	$6^{[12]}$	$5^{[15]}$	16	16	16	31
74.5	0	--	--	$5^{[0]}$	$10^{[0]}$	$8^{[0]}$	$1^{[0]}$	24	0	0	0
64.5	-1	$1^{[2]}$	$4^{[4]}$	$9^{[0]}$	$5^{[-5]}$	$2^{[-4]}$	---	21	-21	21	-3
54.5	-2	$3^{[12]}$	$6^{[12]}$	$6^{[0]}$	$2^{[-4]}$	---	---	17	-34	68	20
44.5	-3	$3^{[18]}$	$5^{[15]}$	$4^{[0]}$	---	---		12	-36	108	33
$f_{\text {f }}$		7	15	25	23	20	$\bigcirc 10$	100	-55	253	125
$\begin{array}{r} f_{1} u_{j} \\ f_{j} u_{j}^{2} \\ f_{i j} u_{j} v_{i} \end{array}$		-14 28 32	-15 15 31	0 0 0	$\begin{aligned} & 23 \\ & 23 \\ & x^{2} \end{aligned}$	$\begin{array}{r} 49 \\ -80 \\ 24 \end{array}$	30 90 39	$\begin{gathered} 64 \\ 236 \\ 125 \end{gathered}$	4	- Cl	${ }_{\text {ck }}$

The number in the corner of each gelj represents the product $f_{i j} u_{j} v_{i}$, where $f_{i j}$ is the cell freczThus $f_{1,4} u_{4} v_{1}=2(1)(2)=4$ and $\left.f_{1,5} u_{5} v_{1}=g_{5}^{2}\right)(2)=16$ and so on. The totals in the last column and row are equal and represent $\sum f_{i j} u_{j} v_{0}$

Now

$$
r_{X Y}=r_{u v}=\frac{n \Sigma u v-\left(\sum f u\right)\left(\sum f v\right)}{\sqrt{\left[n \sum \gamma-\left(\sum f u\right)^{2}\right]\left[n \sum f v^{2}-\left(\sum f v\right)^{2}\right]}}
$$

(subscripts dropped for convenience in pr

$$
=\frac{(100)(125)-(64)(-55)}{\sqrt{\left[(100)(236)-(64)^{2}\right]\left[(100)(253)-(-55)^{2}\right]}}
$$

$$
=\frac{16020}{\sqrt{(19504)(22275)}}=0.77
$$

Example 10.9 (a) Correlation between X and Y is r, show that correlation between $a X$ and $b I=-$ or $-r$ according as a and b have the same or different signs.
b) Find correlation between X and Y connected by

$$
a X+b Y+c=0
$$

a) Let $u=a X$, so that $\bar{u}=a \bar{X}$,
and $\quad v=b Y$, so that $\bar{v}=b \bar{Y}$
Then $(u-\vec{u})=a(X-\bar{X})$ and $(v-\bar{v})=\mathrm{b}(Y-\bar{Y})$
By definition, we have

$$
\begin{aligned}
r_{u v} & =\frac{\sum(u-\bar{u})(v-\bar{v})}{\sqrt{\sum(u-\bar{u})^{2} \cdot \sum(v-\bar{v})^{2}}} \\
& =\frac{a b \sum(X-\bar{X})(Y-\bar{Y})}{\sqrt{\mathrm{a}^{2} \sum(X-\bar{X})^{2} b^{2} \sum(Y-\bar{Y})^{2}}} \\
& =\frac{a b}{\sqrt{a^{2} b^{2}}} r_{x \gamma} \\
& =+r, \text { if } a \text { and } b \text { are of the same signs. } \\
& =-r, \text { if } a \text { and } b \text { are of the different signs. }
\end{aligned}
$$

b) We are given $a X+b Y+c=0$

Thus $a \sum X+b \sum Y+n c=0$, where n is the number of pars of values $\left(X_{i}, Y_{i}\right)$
Dividing by n, we get
$a \bar{X}+\mathrm{b} \bar{Y}+c=0, \bar{X}$ and \bar{Y} being the means $O \boldsymbol{O} X$ and Y sets of observations. Subtracting, we have

$$
a(X-\bar{X})+b(Y-\bar{Y})=0
$$

or

$$
(Y-\bar{Y})=-\frac{a}{b}(X-\bar{X})
$$

Now

$$
\begin{aligned}
r_{x \dot{Y}} & =\frac{\sum(X-\bar{X} \dot{Y}-\bar{Y})}{\sqrt{\sum(X-\bar{Y})^{2} \sum(Y-\bar{Y})^{2}}} \\
& =\frac{-\frac{a}{b} \sum(X-\bar{X})^{2}}{\sqrt{\left[\sum(X-\bar{X})^{2}\right]\left[\frac{a^{2}}{b^{2}} \sum(X-\bar{X})^{2}\right]}}=\frac{-a / b}{\sqrt{\frac{a^{2}}{b^{2}}}} \\
& =-1, \text { if } a \text { and } b \text { are of the same signs. } \\
& =+1, \text { if } a \text { and } b \text { are of the opposite signs. }
\end{aligned}
$$

RANK CORRELATION

Sometimes, the actual measurements or counts of individuals or objects are either not available or assessment is not possible. They are then arranged in order according to some characteristic of Such an ordered arrangement is called a ranking and the order given to an individucal or object is sank. The correlation between two such sets of rankings is known as Rank Correlation.

hittps://stat9943.blogspot.com

10.6.1 Derivation of Rank Correlation. Let a set of n objects be ranked with respect to A as $x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}$, and according to character B as $y_{1}, y_{2}, \ldots, y_{i}, \ldots, y_{n}$. We-assume that no more objects are given the same ranks (i.e. are tied). Then obviously x_{i} and y_{i} are some two numben 1 to n.

Since both x_{i} and y_{i} are the first n natural numbers, therefore, we have

$$
\begin{aligned}
& \sum_{i=1}^{n} x=\sum_{i=1}^{n} y=\sum_{i=1}^{n} i=1+2+3+\ldots+n=\frac{n(n+1)}{2} \\
& \begin{aligned}
& \sum_{i=1}^{n} x^{2}=\sum_{i=1}^{n} y^{2}=\sum_{i=1}^{n}(i)^{2}=1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6} \\
& \begin{aligned}
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} & =\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i=1}^{n} y_{i}^{2}-\frac{\left(\sum y_{i}\right)^{2}}{n} \\
& =\frac{n(n+1)(2 n+1)}{6}-\frac{n(n+1)^{2}}{4}=\frac{n\left(n^{2}-1\right)}{12}
\end{aligned}
\end{aligned} .
\end{aligned}
$$

Let d_{i} denote the difference in ranks assigned to the ith individual or object, i.e. $d_{i}=x_{i}-1-$
Then

$$
\begin{aligned}
\sum_{i=1}^{n} d_{i}^{2} & =\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2} \\
& =\sum\left(x_{i}^{2}+y_{i}^{2}-2 x_{i} y_{i}\right)=\sum x_{i}^{2}
\end{aligned}
$$

Substituting for $\sum x_{i}{ }^{2}$ and $\sum y_{i}{ }^{2}$, we get

$$
\begin{aligned}
& \sum_{i=1}^{n} d_{i}^{2}=\frac{n(n+1)(2 n+1)}{6}+\frac{n(2)+1)(2 n+1)}{6}-2 \sum x_{i} y_{i} \\
& \sum x_{i} y_{i}=\frac{n(n+1)(2 n+t)}{65}-\frac{1}{2} \sum d_{i}^{2}
\end{aligned}
$$

or
The product moment co-efficient of correlation between the two sets of rankings is

$$
r=\frac{\sum x y-\frac{\left(\Sigma x\left(\sum y\right)\right.}{n}}{\sqrt{\left[\Sigma x^{2}-\frac{\left(\sum x\right)^{2}}{n}\right]\left[\Sigma y^{2}-\frac{\left(\sum y\right)^{2}}{n}\right]}}
$$

Substitution gives

$$
\begin{aligned}
r_{s} & =\frac{\left[\frac{n(n+1)(2 n+1)}{6}-\frac{1}{2} \sum d_{i}^{2}\right]-\frac{n(n+1)^{2}}{4}}{\frac{n\left(n^{2}-1\right)}{12}} \\
& =\frac{\left[\frac{n(n+1)(2 n+1)}{6}-\frac{n(n+1)^{2}}{4}\right]-\frac{1}{2} \sum d_{i}{ }^{2}}{\frac{n\left(n^{2}-1\right)}{12}}
\end{aligned}
$$

$$
=\frac{\frac{n\left(n^{2}-1\right)}{12}-\frac{1}{2} \sum d_{i}^{2}}{\frac{n\left(n^{2}-1\right)}{12}}=1-\frac{6 \sum d_{i}^{2}}{n\left(n^{2}-1\right)}
$$

This formula is usually denoted by r_{s} in order to have a distinction. It is often called Spearman's cient of rank correlation, in honour of the psychometrician Charles Edward Spearman -1945), who first developed the procedure in 1904.

Is to be noted that $\sum d_{i}^{2}$ has the least value and is zero when the numbers are in complete ant. When they are in complete disagreement, $\Sigma d_{i}{ }^{2}$ attains the maximum value and is equal to (-1).

Scbstituting these values in the formula, we see that

$$
\begin{aligned}
& r_{s}=1 \text { for } \sum d_{i}^{2}=0, \text { and } \\
& r_{s}=-1 \text { for } \sum d_{i}^{2}=\frac{n\left(n^{2}-1\right)}{3}
\end{aligned}
$$

Tuus r_{s} also lies between -1 and +1 .
Trample 10.10 Find the co-efficient of rank correlation from the following rankings of 10 in in Statistics and Mathematics.

Statistics $(x):$	1	2	3	4	5	6	7	8	9

Fe calculate the co-efficient of rank correlation as follows:

x_{i}	y_{i}	$d_{i}\left(=x_{i}-y_{i}\right)$	d_{i}^{2}
1	2	-1	1
2	4	-2	4
3	3	0	0
4	1	3	9
5	7	-2	4
6	5	1	1
7	8	-1	1
8	10	-2	4
9	6	3	9
10	9	1	1
-	--	0	34

Hence, using Spearman's co-efficient of rank correlation, we get

$$
r_{s}=1-\frac{6 \sum d_{i}^{2}}{n\left(n^{2}-1\right)}=1-\frac{6 \times 34}{10 \times 99}=1-0.2=+0.8
$$

This indicates a high correlation between Statistics and Mathematics.
10.6.2 Rank Correlation for Tied Ranks. The Spearman's co-efficient of rank correl applies only when no ties are present. In case there are ties in ranks, the ranks are adjusted by assign the mean of the ranks which the tied objects or observations would have if they were ordered example, if two objects or observations are tied for fourth and fifth, they are both given the mean rai 4 and 5, i.e. 4.5. The sum of adjusted ranks remains $\frac{n(n+1)}{2}$ but $\Sigma\left(x_{i}-\bar{x}\right)^{2} \neq \Sigma\left(y_{i}-\bar{y}\right)^{2} \neq \frac{n\left(n^{2}-1\right.}{12}$ has been shown that each set of ties involving t observations reduces the values of d^{2} by a quantin $=$ to $\frac{1}{12}\left(t^{3}-t\right)$. In such a situation, one of the following two methods is to be used:

First, for each tie, add a quantity $\frac{1}{12}\left(t^{3}-t\right)$ to $\sum d^{2}$ before substituting the values $=$ Spearman's co-efficient of rank correlation in order to adjust the ermula for the tied observations

Second, use the product moment co-efficient of correlation to find the correlation between sets of adjusted ranks.

Example 10.11 Two members of a selectioncommittee rank eight persons according $=$ suitability for promotion as follows:

Persons	A		D	E	F	G	H
Member 1 -	1 O 2.5	2.5	4	5	6	7	8
Member 2	2104	1	3	6	6	6	8

Calculate the co-efficient of rafke correlation.
We observe that both the sets of rankings contain ties. The coefficient of rank correi therefore calculated as below

Pran	Member 1	Member 2	d	d
A	1	2	-1	1
B	2.5	4	-1.5	2.25
C	2.5	1	1.5	2.25
D	4	3	1	1
E	5	6	-1	1
F	6	6	0	0
G	7	6	1	1
H	8	8	0	0
E	36	36	0	8.5

For tie between B and C, (first rankings) $t=2$ and for E, F and G (second rankings) $t=3$, $=$ the quantity to be added to Σd^{2} is

https://stat9943.blogspot.com

$$
\frac{1}{12}\left(2^{3}-2\right)+\frac{1}{12}\left(3^{3}-3\right)=2.5 .
$$

Hence $r_{s}=1-\frac{6[8.5+2.5]}{8(64-1)}=1-\frac{66}{504}=1-0.131=0.869$.

ernative Method:

We see that the first member has tied B and C, while the second member has tied E, F and.G. Let mote the ranks given by the first member by x_{i} and those of second member by y_{i}. Then we proceed

x_{i}	y_{i}	x_{i}^{2}	y_{i}^{2}	$x_{i} y_{i}$
1	2	1	4	2
2.5	4	6.25	16	10
2.5	1	6.25	1	2.5
4	3	16	9	12
5	6	25	36	30
6	6	36	36	360
7	6	49	36	42
8	8	64	64	64
36	36	203.5	2020	198.5

Hence the co-efficient of rank correlation is

$$
\begin{aligned}
r & =\frac{\left.\sum x_{i} y_{i}-\left(\sum x_{0}\right) y_{i}\right) / n}{\sqrt{\left[\sum x_{i}^{2}-\left(\sum x_{i}\right)^{2} / \ln 2 y_{i}^{2}-\left(\sum y_{i}\right)^{2} / n\right]}} \\
& =\frac{198.5-(36)(36 / 8)}{\sqrt{\left.\left[203.5-(36)^{2}\right)\right]\left[202-(36)^{2} / 8\right]}} \\
& =\frac{1988-162}{\sqrt{(203.5-162)(202-162)}}=\frac{36.5}{\sqrt{(41.5)(40)}} \\
& =\frac{36.5}{40.47}=0.896
\end{aligned}
$$

adicates a high degree of agreement between the two members.
1.6.3 Co-efficient of Concordance. The Spearman's co-efficient of rank correlation measures ment between two sets of rankings only, but in practice; the individuals or objects are sometimes
by more than two people. We then need a co-efficient to measure agreement among more than t of rankings. Such a co-efficient is obtained as below:
nt there be m rankings of n individuals or objects instead of two. Obviously in case of complete the rank totals will form the series $m, 2 m, 3 m, \ldots, n m$.

Te mean of these totals is

$$
\begin{aligned}
\bar{X} & =(m+2 m+3 m+\ldots+n m) \div n \\
& =\frac{m(1+2+3+\ldots+n)}{n}=\frac{m(n+1)}{2}
\end{aligned}
$$

and the variance of these sums, which is the maximum possible, is

$$
\begin{aligned}
\operatorname{Var}(\text { Total }) & =\frac{1}{n}\left[m^{2}+(2 m)^{2}+(3 m)^{2}+\ldots+(n m)^{2}\right]-\left[\frac{m(n+1)}{2}\right]^{2} \\
& =\frac{m^{2}\left[1^{2}+2^{2}+3^{2}+\ldots+n^{2}\right]}{n}-\left[\frac{m(n+1)}{2}\right]^{2} \\
& =\frac{m^{2}(n+1)(2 n+1)}{6}-\frac{m^{2}(n \neq 1)^{2}}{4}=\frac{m^{2}\left(n^{2}-1\right)}{12} .
\end{aligned}
$$

But the totals of observed ranks will not necessarily be the same Let S denote the sum squares of deviations of the totals of the observed ranks from their common mean, ie. $\frac{m(n+1)}{2}$, Coefficient of Concordance, W, is defined as the ratio of the variance of the totals of the observed to the variance in case of complete agreement. Thus, we have

$$
W=\frac{S}{n} \div \frac{m^{2}\left(n^{2}-1\right)}{12}=\frac{12 S}{m^{2}\left(n^{3}-n\right)} .
$$

This co-efficient is due to Maurice G. Kendall (1907-1983) and varies from 0 to 1. When represents complete agreement.
新 Q and R. Calculate the co-efficient of concordance.

Persons						
Judge P	A	B	C	D	E	F
Judge Q	4	1	6	2	5	4
Judge R	2	1	6	5	4	3

(P.U., B.A. (Hons.), Part-

Here the totals of the observed ranks are $9,5,14,12,10$ and $13 ; m=3$ and $n=6$ so mean $=\frac{m(n+1)}{2}=\frac{3(6+1)}{2}=10.5$.
Thus $\quad S=(9-10.5)^{2}+(5-10.5)^{2}+(14-10.5)^{2}+(12-10.5)^{2}+(10-10.5)^{2}+(13-10.5)^{2}$

$$
=(-1.5)^{2}+(-5.5)^{2}+(3.5)^{2}+(1.5)^{2}+(-0.5)^{2}+(2.5)^{2}=53.50
$$

Hence $W=\frac{12 S}{m^{2}\left(n^{3}-n\right)}=\frac{12 \times 53.5}{9(216-6)}=\frac{642}{1890}=+0.34$.

EXERCISES

sJECTIVE

Answer 'True' or 'False'. If the statement is not true then replace the underlined words with words that make the statement true:
i) A high value of correlation between Y and X indicates a high likelihood of a cause and effect relationship between Y and X .

1) Correlation analysis finds the equation of the line for two variables.

⿻) The co-efficient of correlation lies between 0 and +1 .
The correlation co-efficient is not independent of the origin and scale.
Regression analysis measures the strength of the linear relationship between two variables.
In regression analysis X and Y must both be normally distributed.
The method of least squares gives the line of best fit.
If the co-efficient of determination r^{2} is equal to $1 / 2$, then it indicates that 50% of the variation is due to chance or other factors.

If the slope of the regression line has a negative sign, then the coefficient of determination also is negative.

If all the points in a scatter diagram fallon the regression line, then the standard error of estimate equals positive value.

MULTIPLE CHOICE QUESTTGNS

When the slope of regressigine is negative, the following statistic is also negative
a) r
b) r^{2}
c) Standard error of estimate
d) Standard error of slope co-efficient

If there is no linear relationship between the two variables then which one of the following does not hold?
a) $a=0$
b) $b=0$
c) $\mathrm{r}^{2}=0$
d) The regression line is either vertical; or horizontal.
iii) If the correlation co-efficient $\mathrm{r}=0.7$, then the proportion of variation for Y explained by $\mathrm{X}=$
a) 0.49
b) 0.50
c) 0.70
d) $\sqrt{0.70}$
iv) The dependent variable is also known as
a) Explained variable
b) Response variable
c) Predicted variable
d) All of above
v) In the regression equation $Y=\alpha+\beta x+\varepsilon$, both X and Y variables are
a) Random
b) Fixed
c) X is fixed and Y is random
d) Y is fixed and X is random
vi) The variation of the Y values around theregression line is measured by
a) $\Sigma(Y-\bar{Y})^{2}$
b) $\Sigma(Y-\hat{Y})^{2}$
c) $\sum(\hat{Y}-\bar{Y})^{2}$
d) None of above
vii) If both the deperdent and independent variables increase simultaneously, the oorn coefficient will be in the range of
a) 0 to +1
b) 0 to -1^{-}
c) 1 to 2
d) -1 to +1
viii) Which of the following statements is incorrect about correlation coefficient?
a) It passes through the means of the data
b) It is symmetrical with respect to X and Y
c) It is independent of origin and scale
d) It is the geometric mean between the two regression coefficients

https://stat9943.blogspot.com

ix) If the unexplained variation between variables X and Y is 0.40 then r^{2} is
a) 0.75
b) 0.60
c) 0.40
d) None of the above
x) The strength of a linear relationship between two variables Y and X is measured by
a) r^{2}
b) $b_{y x}$
c) r
d) None of above

JECTIVE

a) Explain what is meant by (i) regression, (ii) regressand, (iii) regressor, and (iv) regression co-efficient.
b) Differentiate between a deterministic and a probabilistic relationship, giving examples.
a) What is a scatter diagram? Describe its role in the theoryof regression.
b) What is a linear regression model? Explain the asssmptions underlying the linear regression model.
a) Explain the principle of least-squares.
b) Explain briefly how the principle of least squares is used to find a regression line based on a sample of size n. Illustrate on a rough sketch the distances whose squares are minimized, taking care to distinguish the deperident and independent variables.
Find least-squares estimases of parameters in a simple linear regression model $Y_{i}=\alpha+\beta X_{i}+e_{i}$, whero ${ }^{\circ} \mathrm{s}$ are distributed independently with mean zero and constant variance.

What are the properties of the least-squares regression line?
(P.U., B.A./B.Sc. 1992)

Show that the regression line passes through the means of observations.
(P.U., D.St. 1962)

Describe briefly how you would obtain the line of regression of one variable (γ) on another variable (X), using the method of least-squares.
(P.U., B.A./B.Sc. 1975)

What is meant by the standard error of estimate? If the regression line of Y on X is given by $\hat{Y}=a+b X$, prove that the standard errot of estimate $S_{y x}$ is given by

$$
s_{y, x}=\sqrt{\frac{\sum Y^{2}-a \sum Y-b \sum X Y}{n-2}}
$$

10.6 Given the following set of values:

X	20	11	15	10	17	19
Y	5	15	14	17	8	9

a) Determine the equation of the least squares regression line.
b) Find the predicted values of Y for $X=10,11,15,17,19,20$.
c) Use the predicted values found in (b) to find the standard error of estimate.
10.7 Given these ten pairs of (X, Y) values:

X	1	1	2	3	4	4	5	6	6	7
Y	2.1	2.5	3.1	3.0	3.8	3.2	4.3	3.9	4.4	4.8

a) Plot a scatter diagram for the above data.
b) Carry out the necessary computations to obtain the least-squares estimates of the paramre in the simple linear regression $Y_{i}=\alpha+\beta X_{i}+e_{i}$.
c) Compute the residuals and verify that they add to zero.
d) Use the regression equation to predict the values of Y @ren $X=10$.
10.8 For each of the following data, determine the estimated fegression equation $\hat{Y}=a+b X$.
a) $\bar{X}=10 ; \bar{Y}=20 ; \sum X Y=1,000 ; \sum X^{2}=2,000 ; \overrightarrow{2}=10$.
b) $\quad \sum X=528 ; \Sigma Y=11,720 ; \Sigma X Y=193.640 ; \Sigma X^{2}=11,440 ; n=32$.
c) $\Sigma X=1,239 ; \Sigma Y=79 ; \Sigma X Y=613 ; \Sigma X^{2}=17,322 ; \Sigma Y^{2}=293 ; n=100$.
d) $n=10, \Sigma X=1710, \Sigma Y=29, \Sigma X^{2}=293,162, \Sigma Y^{2}=59,390, \Sigma X Y=130,628$.
e) $\bar{X}=52, \bar{Y}=237, \Sigma(X+\bar{X})^{2}=2800, \Sigma(X-\bar{X})(Y-\bar{Y})=9871$.
10.9 The owner of a retailing organization is interested in the relationship between price at whe commodity is offered for sale and the quantity sold. The following sample data have collected.

Price	25	45	30	50	35	40	65	75	70	60
Quantity sold	118	105	112	100	111	108	95	88	91	96

a) Plot a scatter diagram for the above data.
b) Using the method of least squares, determine the equation for the estimated regression Plot this line on the scatter diagram.
c) Calculate the standard deviation of regression, s_{y-x}.
(B.Z.U., M.A. Econ,
10.10 Given the following sets of values:

Y	6.5	5.3	8.6	1.2	4.2	2.9	1.1	3.0
X	3.2	2.7	4.5	1.0	2.0	1.7	0.6	1.9

a) Compute the least-squares regression equation for Y values on X values, that is the equation $\hat{Y}=a+b X$.
b) Compute the standard error of estimate, $s_{y=}$.
c) Compute the least-squares regression equation for X values on Y values, that is the equation $\hat{X}=a_{0}+b_{0} Y$.
d) Compute the standard error of estimate, $s_{x, y}$

11 a) Explain what is meant by the co-efficient of determination,
b) Compute the co-efficient of determination for the following data and interpret the co-efficient.

Income $(X)(000)$	10	20	30	40	50	60
Expenditure $(Y)(000)$	7	21	23	34	6	53

a) What is the total variation, the explained variation and the unexplained variation?
b) Compute (i) the total variation, (ii) the explained variation and (in) the unexplained variation for the data in 10.11(b). How much of the variability in Y is explained by the linear regression model?

Differentiate between regression and correlation, giey examples.
(P.U., B.A./B.Sc. 1979)
b) Describe the properties of the correlation coefingrent.
s) What values may r assume? Interpret the weaning when $r=-1,0,+1$.
(P.U., B.A./B.Sc. 1980)

Define the terms correlation and风ioduct moment co-efficient of correlation. Prove that the correlation co-efficient is indeperident of the origin and scale. (P.U.. B.A.B.Sc. 1981)
Compute the correlation \mathcal{O}-efficient between the variables X and Y represented in the following table:

X	2	4	5	6	8	11
Y	18	12	0	8	7	5

c) Multiply each X value by 2 and add 6 . Multiply each Y value by 3 and subtract 15 . Find the correlation co-efficient between the two new sets of values, explaining why you do or do not obtain the same result as in part (b).
a) Show that, if $r_{X Y}$ is the correlation co-efficient calculated from a set of paired data $\left(X_{1}, Y_{1}\right)$, $\left(X_{2}, Y_{2}\right), \ldots,\left(X_{n}, Y_{n}\right)$, then $r_{u v}$, the correlation co-efficient for $u_{i}=a X_{i}+b$ and $v_{i}=c Y_{i}+d$ (with $a \neq 0$ and $c \neq 0$), is given by $r_{w v}=r_{X Y}$.
b) Calculate the correlation co-efficient by first multiplying each X and Y by 10 and then subtracting 70 from each X and 60 from each Y.

X	8.2	9.6	7.0	9.4	10.9	7.1	9.0	6.6	8.4	10.5
Y	8.7	9.6	6.9	8.5	11.3	7.6	9.2	6.3	8.4	12.4

https://stat9943.blogspot.com

10.16 a) Explain the term correlation. It is known that $r_{X Y}=0.7$. Find (i) $r_{Y X}$, (ii) $r_{u v}$, where $u=$ and $\nu=3 Y$.
b) Calculate the coefficient of correlation for a sample of 20 pairs of observations, given the

$$
\bar{X}=2, \bar{Y}=8, \sum X^{2}=180, \sum Y^{2}=1424 \text { and } \sum X Y=404 \text {. (P.U., B.Sc. Hons. }
$$

10.17. The following data were computed from personnel records of a manufacturing firm:
$X=$ number of years of service, $Y=$ weekly wage rate
$n=23 ; \Sigma X=2,433 ; \sum Y=4,245 ; \sum X^{2}=281,019 ; \sum Y^{2}=841,786$ and $\sum X Y=482,788$.
i) Compute the correlation co-efficient.
ii) If the correlation co-efficient indicates that there does exist a relationship between λ compute the least-squares line of regression. What do the values of a and b signify?
(P.U., B.A./B.Sc.
10.18 Find the product moment co-efficient of correlation between traffic density and accident rate : the following information available. Find also the coefficient θ determination and interpret it

Traffic Density	30	35	40	45	50	60	70	80	90
Accident Rate	2	4	5	5	8	15	24	30	32

10.19 Given marks as

Student	1	2	9	4	5	6	7	8	9	10	11	12
Economics paper	36	56	41	46	59	46	65	31	68	41	70	36
Physics Paper	62	42	60	53	36	50	42	66	44	58	65	71

Find the co-efficient of elation and interpret it.
10.20 Calculate the co-efficient of correlation and obtain the lines of regression of the following datr

Price (X)	3	4	5	6	7	8	9	10	11	12
Demand (Y)	25	24	20	20	19	17	16	13	10	6

(P.U., M.A. Econ
10.21 a) Find the correlation co-efficient between X and Y, given

X	5	12	4	16	18	21	22	23	25
Y	11	16	15	20	17	19	25	24	21

(P.U., M.A. Econ.
b) Find the co-efficient of correlation between persons employed and cloth manufactured in a textile mill. Interpret the result

Persons employed	137	209	113	189	176	200	219
Cloth manufactured ('000 yds)	23	47	22	40	39	51	49

(P.U.. B.A./B.Sc. 1960)

22 The following table gives the distribution of the total population and those who are wholly or partially blind among them. Find out if there is any relation between age and blindness.

Age	No. of Persons in thousand	Blind
$0-9$	100	55
$10-19$	60	40
$20-29$	40	40
$30-39$	36	40
$40-49$	24	36
$50-59$	11	22
$60-69$	6	0
$70-79$	3	18

(P.U., B.A./B.Sc. 1983)

Hint. First calcuiate the numbers of blink per 1aph and then correlate with the midpoints of age groups.

13 A computer while calculating the correlation co-efficient between two variables X and Y from 25 pairs of observations obtained the follooging sums:

$$
\Sigma X=125,\left.\sum_{0} X\right|^{2}=650, \Sigma Y=100, \Sigma Y^{2}=460, \Sigma X Y=508
$$

It was, however, later discovered at the time of checking that he had copied down two pairs as \begin{tabular}{l|l}
X \& Y

\hline 6 \& 14

\hline 8 \& 6

 while the correct values were

X \& Y

\hline 8 \& 12

\hline 6 \& 8
\end{tabular} . Obtain the correct value of the co-efficient of correlation.

(P.C.S. 1972; P.U., B.A./B.Sc. 1974)

If the equations of the least squares regression lines are:
a) $Y=20.8-0.219 X(Y$ on $X)$, and $X=16.2-0.785 Y(X$ or $Y)$;
b) $\quad Y=2.64+0.648 X(Y$ on $X)$, and $X=-1.91+0.917 Y(X$ or $Y)$;
c) $\quad Y=1.94 X+10.83(Y$ on $X)$, and $X=0.15 Y+6.18(X$ or $Y)$;
d) $\quad Y=15-1.96 X(Y$ on $X)$, and $Y=15.91-2.22 X(X$ or $Y)$;

Find the product moment coefficient of correlation in each case.

https://stat9943.blogspot.com

426
10.25 Find the co-efficient of correlation for the frequency distribution of two variables given $k=1$ Practical following table.

Y	$5-14$	$15-24$	$25-34$	$35-44$	$45-54$
$0-9$	3	1	-	-	--
$10-19$	12	8	14	1	--
$20-29$	2	13	40	12	3
$30-39$	--	3	40	27	7
$40-49$	--	--	6	4	4

Also find the regression equation of Y and X.
10.26 Compute correlation co-efficient from the following correlation table for weights and hei women students.

Height in inches	Weight in pounds						
	90		110	130	150	170	
57	-	-	-	-	1	-	
60	8	21	8	1	-	-	
63	3	50	57	0	-	2	
66	1	24	54	19	3	-	
69	-	1	8	5	3	-	
72	--	-	2	-	-	1	

(P.U., B.A./B.Sc.
10.27 a) Describe in simple words the following concepts:
(i) co-efficient of corelation, (ii) scatter diagram, (iii) least squares principle $=$ (iv) estimate of regressian co-efficient.
b) The following resile were obtained for a bivariate frequency distribution after mak transformation $v=\frac{x-1250}{500}$ and $v=\frac{y-500}{200}: n=66, \sum f u=-4, \sum f u^{2}=109, \sum f v=-$ $\sum f v^{2}=115, \sum f u v=91$. Calculate the coefficient of correlation and obtain the equatice the lines of regression in the simplest form.
(P.U., B.A./B.Sc.
10.28 If X_{1}, X_{2} and X_{3} are uncorrelated variables, each having the same standard deviation, obtain co-efficient of correlation between $\left(X_{1}+X_{2}\right)$ and $\left(X_{2}+X_{3}\right)$.
(P.U., B.A. Hons. Part-II,
10.29 a) What is rank correlation? Derive Spearman's co-efficient of rank correlation.
(P.U., B.A./B.Sc. 1960, 71, 82, 84
b) The ranks of the same 16 students in Mathematics and Physics were as follows: $(1,1) ;(2,10) ;(3,3) ;(4,4) ;(5,5) ;(6,7) ;(7,2) ;(8,6),(9,8) ;(10,11) ;(11,15) ;(12,9$ $14) ;(14,12) ;(15,16) ;(16,13)$; the two numbers within brackets denoting the ranks same student in Maths, and Physics respectively. Calculate the rank correlation co-effion for proficiencies of this group in two subjects.
(P.U., B.A./B.Sc.

30 a) If n pairs of values of two variables a and b are given, where each variable is ranked in order (1 to n), show that the co-efficient of correlation between ranks is given by

$$
r_{s}=1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)}
$$

where d is the difference between the ranks of a and b.
(P.U., B.A./B.Sc. 1989)
b) Obtain the product moment coefficient of correlation between the following values:

a	7.4	9.0	11.0	2.5	4.6	6.5
b	8.5	6.1	2.4	6.7	12.6	3.3

Rank the values and hence find a rank correlation coefficient between the two sets.
31 a) Describe circumstances in which you would use: (i) rank correlation co-efficient; (ii) product moment correlation coefficient.
b) The following table shows how 10 students, arranged in alphabetical order, were ranked according to their achievements in both laboratory and lecture portions of a statistics course. Find the co-efficient of rank correlation.

Laboratory	8	3	9	2	7	10	4	6	1	5
Lecture	9	5	10	1	8	2	3	4	2	6

(P.U., B.A./B.Sc. 1969)

32 Ten competitors in a beauty contest are ranked by three judges in the following order.

First Judge	1	6	5	10	3	2	4	9	7	8
Second Judge	3	5	8	4	7	10	2	1	6	9
Third Judge	6	4	8	8	1	2	3	10	5	7

Use the rank correlation co-efficient to discuss which pair of judges have the nearest approach to common tastes in beauty.
(P.U., B.A./B.Sc., 1960, B.Sc. (Hons.) Part-I, 1971)

43 In a painting competition various entries are ranked by three judges. Use Spearman's rank correlation co-efficient to discuss which pair of judges has the nearest approach to common tastes.

Entry	A	B	C	D	E	F	G	H	K	L
Judge X	5	2	6	8	1	7	4	9	3	10
Judge Y	1	7	6	10	4	5	3	8	2	9
Judge Z	6	4	9	8	1	2	3	10	5	7

(P.U., D.St., 1964)

4 a) What are tied ranks? Explain how you would find the co-efficient of rank correlation for tied ranks.
b) Compute the co-efficient of rank correlation for the following ranks;

X	8	3	6.5	3	6.5	9	3	1	5
Y	8	9	6.5	2.5	4	5	6.5	1	2.5

10.35 Establish the formula for the 'co-efficient of concordance'. Find the same for the following data:

X	1	2	3	4	5	6	7	8	9	10
Y	7	10	4	1	6	8	9	5	2	3
Z	9	6	10	3	5	4	7	8	2	1

