\v/ 111G lla'a dh.bU”lllluualeu mne ruies ot DOth C'aSSiCa, and quantun] ’]]C‘(:’]{],]‘(:L“ piiy
and this thing can not be supported theoretically.

(vi)©  Its model only works for the hydrogen like system, just like Bohr'gfnode!.
4.7.0 DUAL NATURE OF MATTE
(= b Szl J. <-s0)

4.7.1 Introduction:
) Luis de-Broglie in 1923, :
¢/ 35 7#) that the particles like el

..lc.b'l:;d(u“ E_wnlv . 3
JLﬂ#J%;_».:sva_,L.gw 20 _11/Z_de Broglie
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electric field crystal

Fig. (4.12) Davisson and Germer's ex »

: : ' periment for diffraction of elec!rans: %

The wavelength associated with a particie of mass 'm’ moving with velocity 'v' is given by the
h

i kLR (1)

P This relation is called de-Broglie's equatioW is called de-Broglie’s wavelength.

412 Derivation of de-Broglie's Equation:

This equation is derived by combining
 Einstein. According to Einstein's law of mass en
- mass (= L76). If its mass is 'm', then

the mass and energy relationship given by Planck and
€rgy equivalence (i), the photon must have a finite

: E=mez2 . (2)
According to quantum theory of radiation, the energy associated with one photon of light is,

Ry . 3)
: Comparing equations (2) and (3),
' mc2 = hy
E- _
; & R
: h
'- e oy

h

i mc = X
E,_ - i . (4)
| dis A7 As)
s S0, the wavelength of the photon of light is inversely proportional to the momentum (=" /L=~
?‘,ofme Photon,
. Letusrepresent the momentum by P.
__ L e TR (5)
b, B p

icles travelling
i . »isle%) this idea to all other particles tra\
The French scientist Luis de-Broglie extended (i) this idea benomenon in the

8 finite velocity. This idea helped the scientists to interpret a n: mbae:;r’;fe Fc))f mass
M World (2> 1,3 3s.#), S0 he said that the wavelength of the p
'm]a 3 (. 2D < ’

elocity ‘v is given by the equation,

L : e R R e S (1)
Sk A my :

'm' moving

Scanned with CamScanner



- -~ . o ‘\’1(‘5/0,'
4.8.0 HEISENBERG'S UNCERTAINITY PRINCIPp
!1

(b Y )

|

\\J\@

8. ion:
481 Introductio ng object say a planet, then we can foj,

When we are studying a large movint |
on which it travels. |f we krzlow its initial position and‘momentum, then we can predict jt pgs;,te
momentum at any other time. But this is not possyble_e for' elec'tron, proton and neyroy ‘wmi
microscopic particles. Heisenberg has given a pnnmple. in this connection, He S35 thy
impossible to measure simultaneously both the position and momentum of ]

particle with accuracy or certainity. |
Mathematically this principle can be put as follows:

Microg,

h
AXXAP?_ 47[

AX = Uncertainity in the position
AP = Uncertainity in the moinentum
These two uncertainities are inversely proportional to each other. So, If posiion ¢
microscopic particle is known with more accuracy, then there will be more uncertainity in its monen
and vice versa. 2
4.8.2 Physical Concept of Uncertainity Principle (.../luld-‘b b’&e'/ ,,—fd:’l):
In order to know the position of ar ebject, we throw the photons of light upon them ffe
to l'.oave the idea for the position of electron, then the photons of X-rays region have to be used b
their wavelengths are very small and the possibility for the hitting of electr:m is there. During this 1

the photon transfers (< t./{ S ) some of its energy to the electron. Therefore, the velocty @
the momentum of electron changes.

If
we use the photons of longer wavelength say of visible region, the veloclty &
ind 0

mom i -
o ansgttl;";mv::le'zt t;hange appreciably (£ w 6 ) because longer wavelengths 2 |
ectron. Butits position can not be determined because object will not be Visoé

Keep it in mi - .
P itin mind that, the uncertainity is not due to Jack (J) of better techniques (U~
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-

hv' = scattered light

i
1

0 >Y

v
.

Fig. (4.14) Microscope to study the uncertainity principle.

A photon from a source of y-rays or X-rays with energy 'hv' strikes the electron at the point P.
When the electron scatters (q_t/-% this photon into the microscope in a direction making an angle '
wih e x-axis, the electron will receive some momentum (=/7 .L=+), from the photon along x-axis.
Scatiered photon can enter the microscope anywhere within the angle 2. Its contribution (t./1s .+>) to
rcomponent of the momentum of electron is,

AP,.=2F'sinot=27h sina|l e (1)
(because A= L)
mv .

~ Rayleigh's equation for the resolving power (= b u‘;;—'/"uky J 1) can be used to find the
¥Ry (£ & ) with which an object can be located (t./#** &) by a microscope and is given by,

A
2sin

- &X= Distnace between two points which can just be resolved /K

P : B by the microscope
v o = Wavelength of photon
~ Muliplying equation (1) with (2),
\ R R . (3)
‘_AX.AP. = Jsna A SNG ~ h —_
ording to the eduation (3), the product of two uncertainities lies in the range of 1.

> more carefully, then we come to know that,

W AX =

&l

- APy 25 er the

e ition, great
' rmining the pos! i
indicates that greater the accuracy mot::tz ity inroduces an uncertainity

[ o———". T s i’t1'ty is known free from error,
i if one quantl
quantity. In other words, |

becomes infinity.

then the
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When AX = 0
____b.___—- = o
AP . 47‘[X4Ax

ity of Velocity: d change of momentym
o Unce:’a;nt‘(:{hz definition of momentum (=/7 Ax), @n g U
Accordin

AP = M= AV
It means that, \

h
AXxmxAV 2 g

h

: a mult .
So. itis difficult to determine the velocity and position of e'lectrc)f flmg -ﬁaneOUSy
i e S E S A
Uncertainity principle can also be applied for another conjugate pair 1.€. encrgy and ime

Since, ]
Av = Zt
As, AE = hxAv
h
So, AE = At
XE X At = h
More realistic treatmient shows that,
AE x At = N
27 i
N ar
't means that it is difficult to determine the energy and time for the F
simultaneously.

iables he conclusion that the, produc
variable is always constant and jts

co
L of uncertainities of any W
value range between > - anq e __—T4
Born Werner Kar| Heisenberg,

—dax - A
5D —
1901r Wl'-"Zburn Ravav~ ~ ecember 2 h —”} J n
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[ ilu‘l 'L \ ' 1 = "
& (i) "¥ should have a definite vl 3 over the spave us =~
that ony acceptable values (UF UF ) of " shouw nave

r wave functions

~ The ahove discussion ShOWS
¥ -‘-’{")- Thesg significant (7 &) values of "y are called functions ©
s eigen function gives significant values of total energy of electron called eigen valu
MENSIONAL BOX

12.0 MOTION OF SARTICLE IN ONE-D!
u,bfl/d'../')

nd is simplest way to apply the

ger wave equation @

'S one of the best applications of Schrodin

(-t £ z» - Application

Particle say an electron of mass$ 'm’ moving i
in diagram (4.15).

)

nsional boX of width 'a’, along

_,glb(,:/l)l/‘d/"’

naone dime
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PE.

> X-axis
X=0 | X =a |
Fig. (4.15) Motion of a particle in one dimensional box, i. e along X-a‘X/;S.;r o
The boundaries (s« of the box are x = 0 and x = a. The height of the Na»:,:,
X = a are infinite (Lit>v). The potential energy 'P' inside the box is zero. So, the r~ ;"
without any restriction (44) inside the box. Anyhow, the potential energy at the walls and
box is at infinity. It means that the particle i fully confined (‘Ln"’ ) within the box and it cannot esi
from the box by crossing (:./7+#) the walls of infinite height (S <k stsy).

Now, let us apply the Sshrodinger wave equation to understand the motion of the parice!
this box.

Schrodinger equation in three dimensional motion is as follows:

o S L L N -
i i
In one dimension box the particle

3T

- IS not moving along y- and z-axis in one dimens m
S0, the derivative of "y with respect to and z, is : 'P' i zero W
» IS Zero. ergy
the box. So, equation Y y _ ero. Moreover, the potential energ
Y 8nem
B 2) )
Forﬂ‘EinenStdeofﬂiesystem e - e (e Y]
of quantum mechanics (-<- 0y Cﬂ:é"irr‘ergy E'is constant, which is one of the postulates | .
. =

8n2m b =i 7 2 2y, Now put
T E= 2

k' is constant and is ind

- (3)
. ependent of 1y
Equation (2) can he written ag ik
e 4
a2 kY = 4)
...... (

%) Ly
This is a second order differentjg| equatio r: K J(4)f -

h "L“'-J/"‘ucl:_la(/kfd:(,:;)"m})
Y= Asin(kx) +B €S (kx) % the fol

Owing solution.
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| oA, 'B' and k' are the arbitrary constants. Let us differentiate the equation (5), twice 1 -
| S - 4 % TWCo 1 get
l "v"d o

| ¥ |

| B2 - ~I[Asin(k)+Beos (k)] = -~k .. (6)

E putting in equation (4)

{ _kzw + kz\v = 0

‘ 0=0

('9‘-‘.0'"0/1.5/,/)"LJHVL'A(S);I,V;]?’”Q;L,Q)
In order to .delermine the value of constant 'k', let us apply the boundary conditions.
(4 /i) in €quation (5) ~
[ () Whenx =0, ¥ =0 (First boundary condition)
It means that selection of equation (5) as the solution of (4) is correct.
0=Asin(kx0)+Bcos(kx0)=Asin0+Bcos0
0=0+Bx1
or, B=0
Putting this condition that B = 0 in cquation (5), we get
; , -GJJC«EJBJI‘C-b?u{di‘u"
¥ = Asintksp (7)
) A x=a =0 (Secondboundaryconditicn
0 = Asin(k x a) +0cos (kxa) = Asin (k x a)
'A' can not be zero. If A = 0, then it will lead to ¥’ = 0 for any value of 'x"
It means that the particle does not exist in the box, which is not acceptable.

Hence, sin(kxa)= 0 = sin(nm)  whenn=0.1.23

S0, (kxa)= nn
] K = ﬂal! iy 1 T bt (8)
Putting this value of 'k’ in equation (7)- (q—&f St bk
Y= Asin (n_g_{) I ek (9)
n = ‘quantUm number. tted'.SO, 10, = 0, everywhere within the box.

Yough the zero value of '’ is perm!

nce n =0, is not acceptable:

i i are
words. values of '’ which aré acceptable in the equation (9)

. ' WS.
sion for the eign value ' can be obtained 35 follo

Y
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192 —Lhysica ¢,
~ BnimE \\
ki s h)
k?h?
E = Bn‘m
ing equation (8) in (10)
Putting eq ’n71(17 g
E = L?)Bn’m ® Bma?
B e (11)
Hence, |E=gm a2 |

Equation (11) giveé the values of the energies of the moving electron in one dimeng .
These permitted values of energy are called eigen values. When we put the values of n = 1 ; ;

then we get the energies associated with that particle in one dimensional box.
The diagram for energy ievels is shown in Fig (4.16)

-

n

2

9h
Sma2

4h
8ma’

2

|
l“’ : h
it Sma’ : =1

X =0 |
) X=a
O F:fag. (4.16) Energy levels of one-dimensional box.
x=asx =0 xaxiss, 2o A £y, s e e 5 j
i e LA/ E I3 tbox1i )
JAdimensione_ s 2y 1 L 5

U axis1l AL

o Jioie ‘
s S IRGAL e LS e i) 7P
- A% 5 3 1k s V'R t 0l
— A -ﬂ_/"u_c'(Llﬁ:u:drj’qu ;‘5./.' ( ';:" d;/&;/’:&j” J

The formulae of eigen values shows that:

) Eo-
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