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10.5.16 (a) Starting with a one-dimensional inhomogeneous differential equation (Eg. (10.89)),

10.5.17

(b)

assume thaty(x) and p(x) may be represented by eigenfunction expansions.
Without any use of the Dirac delta function or its representations, show that

e, (t)dt
w<)—2fpi)‘fi

n

Note that (1) ifp = 0, no solution exists unless= A, and (2) if A = 4, no
solution exists unless is orthogonal tap,,. This same behavior will reappear with
integral equations in Section 16.4.

Interchanging summation and integration, show that you have constructed the
Green's function corresponding to Eq. (10.90).

The eigenfunctions of the Schrédinger equation are often complex. In this case the
orthogonality integral, Eq. (10.40), is replaced by

b
/ 97 (D)gj(Dw(x)dx = §;;.

Instead of Eq. (1.189), we have

Sri—r2) =) ¢alr)g;(r2).

n=0

Show that the Green’s function, Eq. (10.87), becomes

Grip=3 %ﬂ;j” —G* (1),
n=0
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CHAPTER 11

BESSEL FUNCTIONS

11.1 BESSEL FUNCTIONS OF THE FIRST KIND, J,(x)

Bessel functions appear in a wide variety of physical problems. In Section 9.3, separa-
tion of the Helmholtz, or wave, equation in circular cylindrical coordinates led to Bessel's
equation. In Section 11.7 we will see that the Helmholtz equation in spherical polar co-
ordinates also leads to a form of Bessel's equation. Bessel functions may also appear in
integral form — integral representations. This may result from integral transforms (Chap-
ter 15) or from the mathematical elegance of starting the study of Bessel functions with
Hankel functions, Section 11.4.

Bessel functions and closely related functions form a rich area of mathematical analysis
with many representations, many interesting and useful properties, and many interrela-
tions. Some of the major interrelations are developed in Section 11.1 and in succeeding
sections. Note that Bessel functions are not restricted to Chapter 11. The asymptotic forms
are developed in Section 7.3 as well as in Section 11.6. The confluent hypergeometric
representations appear in Section 13.5.

Generating Function for Integral Order

Although Bessel functions are of interest primarily as solutions of differential equations, it
is instructive and convenient to develop them from a completely different approach, that of
the generating functiohThis approach also has the advantage of focusing on the functions
themselves rather than on the differential equations they satisfy. Let us introduce a function
of two variables,

g(x, 1) = /2011 (11.1)

1Generating functions have already been used in Chapter 5. In Section 5.6 the generating {retiof was used to derive
the binomial coefficients. In Section 5.9 the generating functi@hi — 1)~ was used to derive the Bernoulli numbers.

675



676 Chapter 11 Bessel Functions

Expanding this function in a Laurent series (Section 6.5), we obtain

oo
e&/D=1/1) _ Z Ja ()", (11.2)

n=—oo

Itis instructive to compare Eqg. (11.2) with the equivalent Egs. (11.23) and (11.25).

The coefficient of”, J, (x), is defined to be a Bessel function of the first kind, of integral
ordern. Expanding the exponentials, we have a product of Maclaurin series/thand
—x/2t, respectively,

SH12 /2 _ Z( ) Z( 1)s< ) e~ (11.3)

-
Here, the summation indexis changed ta, with n = r — s and summation limitg = —s

to oo, and the order of the summations is interchanged, which is justified by absolute
convergence. The range of the summation eveecomes-oo to oo, while the summation
overs extends from makn, 0) to co. For a givens we gett" (n > 0) fromr =n + s:

X n+s tn—i—v St—v
) () a9

The coefficient of” is ther?

%0 n+2s )

(_1)S x xl’l xﬂ
I o U G . N 115
In®) gs!(n—i-s)!(Z) 2l 22y D) (11.5)

This series form exhibits is behavior of the Bessel functipgx) for smallx and permits
numerical evaluation aof,, (x). The results fot/y, J1, andJ, are shown in Fig. 11.1. From
Section 5.3 the error in using only a finite number of terms of this alternating series in
numerical evaluation is less than the first term omitted. For instance, if we Jyant

v}

T4

J,(x)

FIGURE 11.1 Bessel functions/g(x), J1(x), andJa(x).

2From the steps leading to this series and from its convergence characteristics it should be clear that this series may be used with
x replaced by, and withz any point in the finite complex plane.
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to +1% accuracy, the first term alone of Eq. (11.5) will suffice, provided the ratio of the
second term to the first is less than 1% (in magnitude) er0.2(n 4+ 1)%/2. The Bessel
functions oscillate but aneot periodic — except in the limit as — oo (Section 11.6). The
amplitude of/,, (x) is not constant but decreases asymptotically @2 (See Eq.(11.137)
for this envelope.)

Forn <0, EqQ. (11.5) gives

e9]

—1)s 25—n
Jam=Y ﬁ (g) . (11.6)

s=0

Sincen is an integer (here)s —n)! — oo fors =0,..., (n — 1). Hence the series may be
considered to start with=n. Replacings by s + n, we obtain

o (_1)s+n X n+2s
=3 ia) e

showing immediately that, (x) andJ_, (x) are not independent but are related by
J_n(x)=(=D"J,(x) (integraln). (11.8)

These series expressions (Egs. (11.5) and (11.6)) may be used wétilaced by to
define J,,(x) andJ_, (x) for nonintegrab (compare Exercise 11.1.7).

Recurrence Relations

The recurrence relations fak, (x) and its derivatives may all be obtained by operating
on the series, Eq. (11.5), although this requires a bit of clairvoyance (or a lot of trial and
error). Verification of the known recurrence relations is straightforward, Exercise 11.1.7.
Here it is convenient to obtain them from the generating funci@m, 7). Differentiating

both sides of Eq. (11.1) with respectitove find that

a 1 1
— (x/2)(1=1/1)
Eg(xat) = Ex(l'f' t—2>€ .

o0

AT (1L.9)

n=—oo

and substituting Eq. (11.2) for the exponential and equating the coefficients of like powers
of 7,3 we obtain

2n
Jn—1(x) + Jpp1(x) = 7-’11 (x). (11.10)

This is a three-term recurrence relation. Givgnand J1, for example, /o (and any other
integral order/,,) may be computed.

3This depends on the fact that the power-series representation is unique (Sections 5.7 and 6.5).
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Differentiating Eq. (11.1) with respect g we have

ig(x, 1= 10— D\ ewmi-vn _ i J (0", (11.11)
ax 2 t = "
Again, substituting in Eq. (11.2) and equating the coefficients of like powersaf obtain
the result
Jn—1(x) = Jug1(x) = 27, (x). (11.12)
As a special case of this general recurrence relation,
Jyx) = —J1(x). (11.13)
Adding Egs. (11.10) and (11.12) and dividing by 2, we have
Tae1(x) = S da(x) + J) (). (11.14)
X
Multiplying by x” and rearranging terms produces
d
—[*" ()] = x" Jp1 (). (11.15)
dx

Subtracting Eq. (11.12) from Eq. (11.10) and dividing by 2 yields
T2 () = 20y (x) = T (). (11.16)
X

Multiplying by x~" and rearranging terms, we obtain

d
E[x_"fn(x)] =—x"Jpr1(x). (11.17)

Bessel’s Differential Equation

Suppose we consider a set of functiofi\gx) that satisfies the basic recurrence relations
(Egs. (11.10) and (11.12)), but withnot necessarily an integer ait} not necessarily
given by the series (Eq. (11.5)). Equation (11.14) may be rewrjiter v) as

xZ,(x) =xZy_1(x) —vZy(x). (11.18)
On differentiating with respect to, we have
xZVx)+ W +DZ, —xZ, 4 —Z,_1=0. (11.19)
Multiplying by x and then subtracting Eq. (11.18) multiplied bgives us
x2Z! +xZ, —v?Z, + (v —DxZ, 1 — sz;_l =0. (11.20)
Now we rewrite Eq. (11.16) and replagéy v — 1:
xZ, 1=Ww—-1Z,_1—xZ,. (11.21)

Using Eq. (11.21) to eliminat&, ; andZ;,_, from Eq. (11.20), we finally get

x2Z) +xZ,+ (x> —1v?)Z, =0, (11.22)
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which is Besseb ODE. Hence any functionZ, (x) that satisfy the recurrence relations
(Egs. (11.10) and (11.12), (11.14) and (11.16), or (11.15) and (11.17)) satisfy Bessel's
equation; that is, the unknow#, are Bessel functions. In particular, we have shown that
the functions/, (x), defined by our generating function, satisfy Bessel's ODE. If the argu-
ment iskp rather thanc, Eq. (11.22) becomes

2

d d
pzd—pzzu(kp) o 2ok + (k2p? = v?)Z, (kp) =0. (11.22a)

Integral Representation

A particularly useful and powerful way of treating Bessel functions employs integral rep-
resentations. If we return to the generating function (Eq. (11.2)), and substitu€ , we
get

SN — Jo(x) +2[J2(x) cOS D + Ja(x) cOSH + - -- ]
+ 2i[J1(x) SinG + Ja(x)sin® + - -], (11.23)
in which we have used the relations
Jl(x)eie + J_1(x)efi6 = Jl(x)(eie — eiie)
= 2i J1(x) sing, (11.24)
Jz(x)eZie + J,2(x)e_2i0 =2J2(x)cosd,
and so on.

In summation notation,

cogx sind) = Jo(x) + 2 Z Jon (x) COK2n0),

n=1
(11.25)
o0
sin(xsing) =2 " Ja, 1(x)sin[(2n — 1],
n=1
equating real and imaginary parts of Eq. (11.23).
By employing the orthogonality properties of cosine and $ine,
T s
/ cosnf cosmO db = 58"’”’ (11.26a)
0
T g
/ sinnd sinmb df = 58”'"’ (11.26b)
0

4They are eigenfunctions of a self-adjoint equation (linear oscillator equation) and satisfy appropriate boundary conditions
(compare Sections 10.2 and 14.1).



680 Chapter 11 Bessel Functions

in whichn andm arepositive integers (zero is excluded)ve obtain

1 /7 . I, n even
;/0 cogx sinf) cosnb db = {0’ n odd (11.27)
1 (" . . . 0, n even
;/0 sin(x sind) sinnf d6 = { 7). » odd (11.28)
If these two equations are added together,
1 T
Ju(x) == f [cog(x sin) cosnd + sin(x sing) sinnd|do
T Jo
1 T
= — / cognf — xsinb) do, n=0123,.... (11.29)
T Jo
As a special case (integrate Eq. (11.25) a¥etr) to get)
1 T
Jo(x) = —f coqx sing) dé. (11.30)
7 Jo
Noting that coéx sind) repeats itself in all four quadrants, we may write Eq. (11.30)
as
1 2
Jo(x) = —/ cogx sing) do. (11.30a)
2 0
On the other hand, sfm sing) reverses its sign in the third and fourth quadrants, so
1 2
— / sin(x sind) do = 0. (11.30b)
2 0
Adding Eq. (11.30a) andtimes Eqg. (11.30b), we obtain the complex exponential repre-
sentation
1 2 jx sing 1 o j X COSY
Jo(x) = —/ e do = — e deo. (11.30c¢)
27 0 2 0

This integral representation (Eq. (11.29)) may be obtained somewhat more directly by
employing contour integration (compare Exercise 11.1%1@any other integral repre-
sentations exist (compare Exercise 11.1.18).

Example 11.1.1  FRAUNHOFER DIFFRACTION, CIRCULAR APERTURE

In the theory of diffraction through a circular aperture we encounter the integral

a 2r
O~ f rdr f ebr e g (11.31)
0 0

5Equations (11.26a) and (11.26b) hold for eitheor n = 0. If both m andn = 0, the constant in (11.26a) becomesthe
constant in Eq. (11.26b) becomes 0.
SForn=0a simple integration ovet from 0 to 2¢ will convert Eq. (11.23) into Eg. (11.30c).
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l l l l l llncident\a;?VeS

FIGURE 11.2 Fraunhofer diffraction, circular aperture.

for @, the amplitude of the diffracted waveHered is an azimuth angle in the plane of the
circular aperture of radiug, ande is the angle defined by a point on a screen below the
circular aperture relative to the normal through the center point. The parabnistgiven

by

2
b= Tﬂ sina, (11.32)

with A the wavelength of the incident wave. The other symbols are defined by Fig. 11.2.
From Eq. (11.30c) we g&t

a
D~ 271'/ Jo(br)rdr. (11.33)
0
Equation (11.15) enables us to integrate Eq. (11.33) immediately to obtain
2rab Aa 2ra
D~ Ji(ab) ~ Ji| —si . 11.34
2 D™ Gng 1( A sma) ( )
Note here that/;(0) = 0. The intensity of the light in the diffraction pattern is proportional

to ®2 and

. 2
2~ { Ji[(2ra/)) sina] } . (11.35)

Sina

"The exponentbr cosd gives the phase of the wave on the distant screen at anglative to the phase of the wave incident on
the aperture at the poiiit, ). The imaginary exponential form of this integrand means that the integral is technically a Fourier
transform, Chapter 15. In general, the Fraunhofer diffraction pattern is given by the Fourier transform of the aperture.

8We could also refer to Exercise 11.1.16(b).
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Table 11.1  Zeros of the Bessel Functions and Their First Derivatives

Number of zero  Jo(x) J10) Jo(x) Ja(x) Ja(x) Js(x)

1 2.4048 38317 51356 63802 75883 87715
2 55201 70156 84172 97610 110647 123386
3 86537 101735 116198 130152 143725 157002
4 11.7915 133237 147960 162235 176160 189801
5 14.9309 164706 179598 194094 208269 222178

Jo)? J1(x) J5(x) J3(x)

1 38317 18412 30542 42012

2 7.0156 53314 67061 80152

3 10.1735 85363 99695 113459

JHx) = =J1(x).

From Table 11.1, which lists the zeros of the Bessel functions and their first derivtives,
Eq. (11.35) will have a zero at

2
% sina = 3.8317. .., (11.36)
or
3.8317
sing = > o= 11.37
o ora ( )

For green lightA = 5.5 x 10~2 cm. Hence, iz = 0.5 cm,
a ~ sina = 6.7 x 107° (radian ~ 14 seconds of arc (11.38)

which shows that the bending or spreading of the light ray is extremely small. If this analy-
sis had been known in the seventeenth century, the arguments against the wave theory of
light would have collapsed. In mid-twentieth century this same diffraction pattern appears
in the scattering of nuclear particles by atomic nuclei—a striking demonstration of the
wave properties of the nuclear particles. |

A further example of the use of Bessel functions and their roots is provided by the
electromagnetic resonant cavity (Example 11.1.2) and the example and exercises of Sec-
tion 11.2.

Example 11.1.2  CYLNDRICAL RESONANT CAVITY

The propagation of electromagnetic waves in hollow metallic cylinders is important in
many practical devices. If the cylinder has end surfaces, it is calleavitly. Resonant
cavities play a crucial role in many particle accelerators.

9Additional roots of the Bessel functions and their first derivatives may be found in C. L. Beattie, Table of first 700 zeros of
Bessel functionsBell Syst. Tech. B7: 689 (1958), and Bell MonogB055 Roots may be accessed in Mathematica and other
symbolic software and are on the Web.
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Lz

A
|

=y

X

FIGURE 11.3 Cylindrical resonant
cavity.

We take the-axis along the center of the cavity with end surfaces-at) andz = and
use cylindrical coordinates suggested by the geometry. Its walls are perfect conductors, so
the tangential electric field vanishes on them (as in Fig. 11.3):

E.=0=E, for p =a, E,=0=E, forz=0,1.

Inside the cavity we have a vacuum, sguo = 1/c2. In the interior of a resonant cav-
ity, electromagnetic waves oscillate with harmonic time dependenié&, which follows
from separating the time from the spatial variables in Maxwell’s equations (Section 1.9),
o]
2
VxVxE:—%%:azE, o=—.
c4 ot c

With V . E = 0 (vacuum, no charges) and Eq. (1.85), we obtain for the space part of the
electric field

V2E +a’E =0,
which is called thevector Helmholtz PDE. The z-component £, space part only) satis-
fies the scalar Helmholtz equation,
V2E. 4+ o?E. =0. (11.39)

The transverse electric field componeBts = (E,, E,) obey the same PDE but different
boundary conditions, given earlier. OnEe is known, Maxwell's equations determii,
fully. See Jacksorklectrodynamicén Additional Readings for details.
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2
We separate the variable fromp andg, because there are no mixed derivati 7
etc. The product solutiork, = v(p, ¢)w(z), is substituted into the Helmholtz PDE far,
using Eq. (2.35) fov? in cylindrical coordinates, and then we divide b, yielding

1 d?w 1/8% 1ov 1 8%
- +——+a v(p,p) =

w(z) dz? 32 pap | p2 g2
This implies
1 d%w 1 (9% 1av 1 3% )
T d2 902 oy T p2agr TXV) =R
w(z) dz v(p, 9) P Ip dp?

Here,k? is a separation constant, because the left- and right-hand sides depend on different
variables. Foiw(z) we find the harmonic oscillator ODE with standing wave solution (not
transients) that we seek,
w(z) = Asinkz + B coskz,
with A, B constants. Fov(p, ¢) we obtain
v 19 1 92
Y ——v—i———v—i—yzv:O, y2=a?— k2
p%  pdp  p?0g?

In this PDE we can separate theandy variables, because there is no mixed te;ﬁﬂg—
The product formv = u(p)® () yields
ﬁ(@gd_u z)_ 1 do_
u(p)\dp? = pdp D(p) dg?

where theseparation constantn? must be an integer because the angular solutign=
e'"? of the ODE

’

2% —
—2+m CD—O

must be periodic in the azimuthal angle.
This leaves us with the radial ODE

d?u n ldu . m? 0
— + —— —— Ju=0.
a? " pdp \V T2
Dimensional arguments suggest rescafng r = yp and dividing byy2, which yields
d?uv  1ldu m?2
— 1-— |Ju=0.
dr2+rdr+< r2>u

This is Bessel's ODE for = m. We use the regular solutiof, (y o) because the (irregular)
second independent solution is singular at the origin, which is unacceptable here. The
complete solution is

E. = Jy(yp)e™¥ (Asinkz + B coskz), (11.40a)

where the constant is determined from thBoundary condition E, = 0 on the cavity sur-
facep = a, that s, thatya be a root of the Bessel functiofy, (see Table 11.1). This gives
a discrete set of valugs= y,,,,, wheren designates theth root of J,, (see Table 11.1).



11.1 Bessel Functions of the First Kind, J, (x) 685

For the transverse magnetic or TM mode of oscillation viith= 0 Maxwell’s equations
imply. (See agairResonant Cavitiemn J. D. Jackson’sElectrodynamicgn Additional
Readings.)

E; a 19
E1~V,y , Vi=|l——-—7—)
9z ap p dg
The form of this result suggests, ~ coskz, that is, settingd = 0 so thate | ~ sinkz =0
atz =0,/ can be satisfied by

k:?, p=012.... (11.41)
Thus, thetangential electric fieldsE,, andE, vanish at: = 0 and!. In other wordsA =0

corresponds tdE, /dz =0 atz = 0 andz = [ for the TM mode. Altogether then, we have

2 2 2.2
2_ W 2 @ pr
Y= K= (11.42)
with
Umn

Y = VYmn = Pt (11.43)

whereqw,,, is thenth zero ofJ,,. The general solution
E= Y Ju(mnp)e™™ By cos”T“, (11.40b)

m,n,p

with constantsB,,,,, now follows from the superposition principle.
The result of the two boundary conditions and the separation constaig that the
angular frequency of our oscillation depends on three discrete parameters:

> 2,2 m=0,12,...,
_ o [%mn P _
Wpnp =€ 2 + 7 n=123, ..., (11.44)
p=0,12....
These are the allowable resonant frequencies for our TM mode. The TE mode of oscillation
is the topic of Exercise 11.1.26. |
Alternate Approaches

Bessel functions are introduced here by means of a generating function, Eq. (11.2). Other
approaches are possible. Listing the various possibilities, we have:

1. Generating function (magic), Eq. (11.2).

2. Series solution of Bessel's differential equation, Section 9.5.

3. Contour integrals: Some writers prefer to start with contour integral definitions of the
Hankel functions, Section 7.3 and 11.4, and develop the Bessel funktion from
the Hankel functions.
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4. Direct solution of physical problems: Example 11.1.1. Fraunhofer diffraction with a
circular aperture, illustrates this. Incidentally, Eq. (11.31) can be treated by series ex-
pansion, if desired. Feynm&hdevelops Bessel functions from a consideration of cav-
ity resonators.

In case the generating function seems too arbitrary, it can be derived from a contour inte-
gral, Exercise 11.1.16, or from the Bessel function recurrence relations, Exercise 11.1.6.
Note that the contour integral is not limited to integethus providing a starting point for
developing Bessel functions.

Bessel Functions of Nonintegral Order

These different approaches are not exactly equivalent. The generating function approach
is very convenient for deriving two recurrence relations, Bessel's differential equation,
integral representations, addition theorems (Exercise 11.1.2), and upper and lower bounds
(Exercise 11.1.1). However, you will probably have noticed that the generating function
defined only Bessel functions of integral ordds, J1, J2, and so on. This is a limitation
of the generating function approach that can be avoided by using the contour integral in
Exercise 11.1.16 instead, thus leading to foregoing approach (3). But the Bessel function of
the first kind,J, (x), may easily be defined for nonintegraby using the series (Eq. (11.5))
as a new definition.

The recurrence relations may be verified by substituting in the series fovpt.of (Ex-
ercise 11.1.7). From these relations Bessel’s equation follows. In fads ifiot an integer,
there is actually an important simplification. It is found tlfatand J_,, are independent,
for no relation of the form of Eq. (11.8) exists. On the other handyfern, an integer, we
need another solution. The development of this second solution and an investigation of its
properties form the subject of Section 11.3.

Exercises
11.1.1 From the product of the generating functigq(g, ¢) - g(x, —t) show that
1=[Jo()] + 2[A@)]* + 2[ 2(0)]* + -+
and therefore that/p(x)| <1 and|J,(x)| <1/v2,n=1,2,3,....
Hint. Use uniqueness of power series, Section 5.7.
11.1.2 Using a generating functiogi(x, r) = g(u + v, t) = g(u, t) - g(v, t), show that

e¢]

@ S@+vy= Y S - Jus),

§=—00

(b) Jo(u +v) = Jow)Jo) +2_ Js ()]s (v).
s=1

10R. p. Feynman, R. B. Leighton, and M. San@lee Feynman Lectures on Physit®sl. Il. Reading, MA: Addison-Wesley
(1964), Chapter 23.
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These are addition theorems for the Bessel functions.

11.1.3 Using only the generating function

o0
e(x/Z)(t—l/z) — Z Jn(x)tn

n=—0oo

and not the explicit series form df, (x), show that/, (x) has odd or even parity accord-
ing to whethem is odd or even, that it

Jn(x) = (_1))1 Ju(=x).

11.1.4 Derive the Jacobi—Anger expansion

00
etZCOSG — Z i jm(z)elme.
m=—00

This is an expansion of a plane wave in a series of cylindrical waves.
11.1.5 Show that

(@) cost=Jo(x)+2) (—1)"Ja(x),

n=1

(b) sinx = 22(—1)”J2n+1(x).
n=0

11.1.6  To help remove the generating function from the realm of magic, show that it can be
derived from the recurrence relation, Eq. (11.10).
Hint.

(a) Assume a generating function of the form

]

g.n= ) Ju(r".

m=—0o0

(b) Multiply Eq. (11.10) byt and sum oven.
(c) Rewrite the preceding result as

1 2t 9g(x,t)
t - , 1) = — .
( + t>g(x ) = 3

(d) Integrate and adjust the “constant” of integration (a function:obo that the
coefficient of the zeroth power?, is Jo(x), as given by Eq. (11.5).

11.1.7  Show, by direct differentiation, that

S (_1)s X v+2s
hx) = g sl(is +v)! <§)

11This is easily seen from the series form (Eq. (11.5)).
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11.1.8

11.1.9

11.1.10

11111

11.1.12

satisfies the two recurrence relations
2v
Jy—1(x) + Jv+1(x) = YJv(x),

Jy—1(x) = Jypa(x) = 277 (x),
and Bessel’s differential equation
szé’(x) +xJ)(x)+ (x2 — vZ)Jv(x) =0.

Prove that

sinx /2 1— cosx /2

— = Jo(x cosh) cosf do, _— = J1(x cos9) d6.

X 0 X 0

Hint. The definite integral

/2 2:4.6---(25)
co 1o do =
[0 1.3.5...(2s+1)

may be useful.

Show that
o) 2 (1 cosxt 5t
ox) = — —_— .
7 Jo ~/1—1¢2

This integral is a Fourier cosine transform (compare Section 15.3). The corresponding

Fourier sine transform,
2 [ sinxt
Jo(x) =— ——dt,
T J1 2—1

is established in Section 11.4 (Exercise 11.4.6) using a Hankel function integral repre-
sentation.

Derive
14\"
Jn(x) = (=D"x" (——) Jo(x).
xdx

Hint. Try mathematical induction.

Show that between any two consecutive zerog,@k) there is one and only one zero
of Jnr1(x).
Hint. Equations (11.15) and (11.17) may be useful.

An analysis of antenna radiation patterns for a system with a circular aperture involves
the equation

1
¢(u) = fo £ Jotur)r dr.
If £(r)=1—r?, show that

2
g = =5 Jo(w).
u
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The differential cross section in a nuclear scattering experiment is givela W =
| £(6)]% . An approximate treatment leads to
—ik 2 R
f®) = —/ / explikp sind singlpdp de.
2 0 0

Here#d is an angle through which the scattered particle is scattegtad.the nuclear
radius. Show that

do

o 1[J1(kRsing) |
ol

b4 sing

A set of functionsC,, (x) satisfies the recurrence relations
2n
Cp-1(x) — Cpy1(x) = 7Cn(X),
Cp—1(x) + Cpy1(x) = 2C;, (x).

(@) What linear second-order ODE does thgx) satisfy?

(b) By a change of variable transform your ODE into Bessel’s equation. This sug-
gests thatC, (x) may be expressed in terms of Bessel functions of transformed
argument.

A particle (massn) is contained in a right circular cylinder (pillbox) of radidsand
heightH. The particle is described by a wave function satisfying the Schrédinger wave
equation

2

h
—2—V21/f(p, ©.20)=Ey(p,¢,2)
m

and the condition that the wave function go to zero over the surface of the pillbox. Find
the lowest (zero point) permitted energy.
[z 2 nm\?
ANS.E=—| (2 — |,
ol (7) +(57)

o 2'4052+ 7\°
min — 2m R H )
wherez,, is theqth zero of/, and the index is fixed by the azimuthal dependence.

(&) Show by direct differentiation and substitution that
500 = & / S/2=1/1) -1 4,
2mi C
or that the equivalent equation,

1 v
Jy(x) = %(%) /es_xz/‘lss_”_lds,

satisfies Bessel's equatiofi.is the contour shown in Fig. 11.4. The negative real
axis is the cut line.
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» R

FIGURE 11.4 Bessel function contour.

Hint. Show that the total integrand (after substituting in Bessel’s differential equa-
tion) may be written as a total derivative:

ool L))}

(b) Show that the first integral (with an integer) may be transformed into

Ju(x) = i /271 plrsing—nd) 5o _ i /271 pixcosd+nd) 4o
! 2m 0 2 0 .

11.1.17 The contourC in Exercise 11.1.16 is deformed to the patho to —1, unit circlee ™
to €™, and finally—1 to —oo. Show that

1/” . sin o0 _
Ju(x)=;/0 cogvh — x sinfd) do — nm/o o—vo—xsinhd gp

This is Bessel's integral.
Hint. The negative values of the variable of integratiomay be handled by using

u=te

11.1.18 (a) Show that

v oem/2
Jy(x) = #C) / cos(x sind) co<” 6 do,
0

71200 — Hr\2

wherev > —3.
Hint. Here is a chance to use series expansion and term-by-term integration. The
formulas of Section 8.4 will prove useful.
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(b) Transform the integral in part (a) into

1 x\" (™ o
Jv(x)=7%)!<§) /O cos(x cosd) sin?” 6 do

a2 —

1 A\ [T oL
7<—> / e iV ¢ d
71200 = Hi1\2) Jo

1 A\ [t +i
I el eTPY (1 — 2)v71/2d .
7'[1/2(\}—%')!<2> /_1 (= i

These are alternate integral representations, of).

1 %
Jy(x) = %<g> /t—v—let—x2/4t dt

derive the recurrence relation

Ty == 0(0) = i1 (@),

(&) From

(b) From
2mi

derive the recurrence relation
1@ = 3[J0-1(0) = T2 ()]
Show that the recurrence relation
Ih () = 3[Jn1(x) = Jps1(x)]
follows directly from differentiation of
1 s
J(x) = —f cosnf — xsind) do.
T Jo
Evaluate

o0
f e Jo(bx)dx, a,b>0.
0

Actually the results hold fo# > 0, —o0 < b < o0o. This is a Laplace transform of.
Hint. Either an integral representation &f or a series expansion will be helpful.

Using trigonometric forms, verify that

1 [z
Jo(br) — Z/O ezbrsme do.

(@) Plot the intensity®? of Eq. (11.35)) as a function akine/) along a diameter
of the circular diffraction pattern. Locate the first two minima.
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11.1.24

11.1.25

11.1.26

(b) What fraction of the total light intensity falls within the central maximum?
Hint. [J1(x)]?/x may be written as a derivative and the area integral of the intensity
integrated by inspection.

The fraction of light incident on a circular aperture (normal incidence) that is transmitted

is given by
2ka 2ka
T= 2/ Jz(x)— - —/ Jo(x)dx.
0 X

Herea is the radius of the aperture akds the wave number,s2/i. Show that
2ka

1 1
T=1—— 2k b)) T=1— — dx.
@ kanX:(;Jszrl( a), (b) 2 Jo Jo(x)dx

The amplitudd/ (p, ¢, t) of a vibrating circular membrane of radiusatisfies the wave
equation

19%U
V2
v v2 912 =0

Herev is the phase velocity of the wave fixed by the elastic constants and whatever
damping is imposed.

(&) Show that a solution is
U(p,,t) = Jnukp) (aleimw + aze_im‘p)(bleiw’ + bge_iwt).

(b) From the Dirichlet boundary conditiod,, (ka) = 0, find the allowable values of
the wavelength.(k = 2 /1).

Note There are other Bessel functions besidgs but they all diverge ap = 0.
This is shown explicitly in Section 11.3. The divergent behavior is actually implicit
in Eq. (11.6).

Example 11.1.2 describes the TM modes of electromagnetic cavity oscillation. The
transverse electric (TE) modes differ, in that we work from theomponent of the
magnetic inductiorB:

V2B, +a’B, =0
with boundary conditions
9B,

B,(0)=B;()=0 and
8,0 ,0:0

=0.

Show that the TE resonant frequencies are given by

,3 2
a+12

p=123 ....

Wpnp = C
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Plot the three lowest TM and the three lowest TE angular resonant frequengigs,
as a function of the radius/length/ ) ratio for 0<a/l < 1.5.
Hint. Try plotting ? (in units of c?/a?) versus(a/1)?. Why this choice?

A thin conducting disk of radiua carries a charge. Show that the potential is de-
scribed by

q o0 Kz sinka
o(r,z) = e Jo(kr) dk,
4 eoa Jo k
where Jp is the usual Bessel function amdandz are the familiar cylindrical coordi-
nates.
Note This is a difficult problem. One approach is through Fourier transforms such as
Exercise 15.3.11. For a discussion of the physical problem see JacKsssital Elec-
trodynamicdn Additional Readings).

Show that

a
/ x" T (x)dx, m>n=>0,
0

(a) isintegrable in terms of Bessel functions and powers @fuch as:” J, (a)) for
m + n odd;
(b) may be reduced to integrated terms pjgslo(x)dx for m +n even.

aop y 1 Qon
/ <1 - —)Jo(y)y dy=— / Jo(y)dy.
0 Q0n Qon JO

Here ag, is thenth root of Jo(y). This relation is useful (see Exercise 11.2.11): The
expression on the right is easier and quicker to evaluate —and much more accurate.
Taking the difference of two terms in the expression on the left leads to a large relative
error.

Show that

The circular aperature diffraction amplitudeof Eq. (17.35) is proportional tg (z) =
J1(z)/z. The corresponding single slit diffraction amplitude is proportionat ¢ =
sinz/z.

(a) Calculate and plof(z) andg(z) for z =0.0(0.2)12.0.

(b) Locate the two lowest values gof; > 0) for which f(z) takes on an extreme value.
Calculate the corresponding valuesfat).

(c) Locate the two lowest values ofz > 0) for which g(z) takes on an extreme value.
Calculate the corresponding valuesgaf).

Calculate the electrostatic potential of a charged digk,z) from the integral
form of Exercise 11.1.28. Calculate the potential fge = 0.0(0.5)2.0 andz/a =
0.25(0.25)1.25. Why isz/a = 0 omitted? Exercise 12.3.17 is a spherical harmonic
version of this same problem.
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ORTHOGONALITY

If Bessel's equation, Eq. (11.22a), is divided oywe see that it becomes self-adjoint, and
therefore, by the Sturm—Liouville theory, Section 10.2, the solutions are expected to be
orthogonal —if we can arrange to have appropriate boundary conditions satisfied. To take
care of the boundary conditions for a finite interj@la], we introduce parametessand

a,, iNto the argument of, to getJ, (a,, 0/a). Herea is the upper limit of the cylindrical
radial coordinatep. From Eq. (11.22a),

d2 d o? p2
- Jo| otvm— P +—J avmﬁ + W;p —— 4 OthB =0. (11.45)
d a dp a a 0 a

Changing the parameter,, to «,,, we find that/, («,, p/a) satisfies

d? d o? v2
posdulawmZ )+ =0y (@2 ) + (222 - Z)n(anl) =0, (11.458)
dp a dp a a 0 a

Proceeding as in Section 10.2, we multiply Eq. (11.45)b§tx,,p/a) and Eg. (11.45a)
by J, (avm 0/a) and subtract, obtaining

d d d d
O o T P o)

2 _ 2
= LB g (et 2 ) du (o2 ). (11.46)
a a

a

Integrating fromop = 0 to p = a, we obtain

a df d a d[ d
G e e G K AR B e G

2 _ 2 a
= Yon = Lom Zavm / Jy (avmp>~]v (avnp>pdp (1147)
a 0 a

Upon integrating by parts, we see that the left-hand side of Eq. (11.47) becomes

o\ d o\ [ o\ d o
‘p-]u<avn_> Jv(“vm_> - ‘pjv(avm_> Jv(avn_)
a)dp allg a/dp allg

For v > 0 the factorp guarantees a zero at the lower limit= 0. Actually the lower
limit on the indexv may be extended down o> —1, Exercise 11.2.42 At p = a, each
expression vanishes if we choose the parametgranda,,, to be zeros, or roots af,;
that is, J, (a,,) = 0. The subscripts now become meaningdyl;, is themth zero ofJ,.

With this choice of parameters, the left-hand side vanishes (the Sturm—Liouville bound-
ary conditions are satisfied) and fer# n,

f 7, (ozvm 3) 7, (am ) pdp =0. (11.49)
0 a

This gives us orthogonality over the interyal a].

a

(11.48)

12The case = —1 reverts tov = +1, Eq. (11.8).
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Normalization

The normalization integral may be developed by returning to Eq. (11.48), setting
oy, + &, and taking the limie — O (compare Exercise 11.2.2). With the aid of the recur-
rence relation, Eq. (11.16), the result may be written as

a 2 2
/ |:Jv (avm B)] pdp= a—[.]v+1(0{vm)]2. (1150)
0 a 2

Bessel Series

If we assume that the set of Bessel functioh$a,,,p/a))(v fixed, m = 1,2,3,...) is
complete, then any well-behaved but otherwise arbitrary funcfignn may be expanded
in a Bessel series (Bessel-Fourier or Fourier—Bessel)

flp)= chm v(aum >7 0<p=<a, v>—1 (1151)

The coefficients,,, are determmed by using Eqg. (11.50),

vm =— "5y, 1o J vm d 11.52
¢ [Jv+l(05vm)]2 / ) (05 )p P ( )

A similar series expansion involving, (8., p/a) with (d/dp)J,(Bvmp/a)lp=a =0 is
included in Exercises 11.2.3 and 11.2.6(b).

Example 11.2.1 ELECTROSTATIC POTENTIAL IN A HOLLOW CYLINDER

From Table 9.3 of Section 9.3 (witl replaced byk), our solution of Laplace’s equation
in circular cylindrical coordinates is a linear combination of

Yiem (0. ¢, 2) = T (kp)[am Sinme + by, cosme][c1e** + coe ™). (11.53)

The particular linear combination is determined by the boundary conditions to be satisfied.
Our cylinder here has a radiusand a height. The top end section has a potential distrib-
ution v (p, ¢). Elsewhere on the surface the potential is Z8r6he problem is to find the
electrostatic potential

V(0,0 =Y_ Vim(p,9,2) (11.54)

k,m

everywhere in the interior.

For convenience, the circular cylindrical coordinates are placed as shown in Fig. 11.3.
Sinceyr (p, ¢,0) =0, we takec; = —co = % Thez dependence becomes sk vanish-
ing atz = 0. The requirement that = 0 on the cylindrical sides is met by requiring the
separation constahtto be

k= Ky = 1 (11.55)
a

13 Yy =0atz=0,1, buty # 0 for p = a, the modified Bessel functions, Section 11.5, are involved.
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where the first subscriptz, gives the index of the Bessel function, whereas the second
subscript identifies the particular zero 5f.
The electrostatic potential becomes

Y(p,0,2) = Z Z Im (amn§>

m=0n=1
- [amn SiINm@ + by, COSME] - sinh(amn 5). (11.56)
a

Equation (11.56) is a double series: a Bessel seripsand a Fourier series in.
At z=1,% =¥ (p, ¢), a known function ofp and¢. Therefore

Y(p,p) = ZZJm<amn§>

m=0n=1
. . [
- [amn Sinme + by, COSMQ] - smh(amn —). (11.57)
a

The constants,,, andb,,;, are evaluated by using Egs. (11.49) and (11.50) and the corre-
sponding equations for sinand cog (Example 10.2.1 and Egs. (14.2), (14.3), (14.15) to
(14.17)). We find*

. I -1
Zm" } = 2[na23|nh<amn—>J"21+1(otm,,)i|
mn a

2r  pa .
/0 fow(p,so)Jm<amn£>{s'”m‘p },Od,odgo. (11.58)

a ) | cosme

These are definite integrals, that is, numbers. Substituting back into Eq. (11.56), the series
is specified and the potentigl(p, ¢, z) is determined. [ |

Continuum Form

The Bessel series, Eq. (11.51), and Exercise 11.2.6 apply to expansions over the finite
interval [0, a]. If a — oo, then the series forms may be expected to go over into integrals.
The discrete roots,,,, become a continuous variahkle A similar situation is encountered
in the Fourier series, Section 15.2. The development of the Bessel integral from the Bessel
series is left as Exercise 11.2.8.

For operations with a continuum of Bessel functiongpp), a key relation is the Bessel
functionclosure equation,

2

This may be proved by the use of Hankel transforms, Section 15.1. An alternate approach,
starting from a relation similar to Eq. (10.82), is given by Morse and Feshbach, Section 6.3.
A second kind of orthogonality (varying the index) is developed for spherical Bessel func-
tions in Section 11.7.

o / 1 / l
/ Jy(ep) (@' p)pdp = —6(a — '), V> ——. (11.59)
0 o

14f m = 0, the factor 2 is omitted (compare Eq. (14.16)).
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Show that
P
(a® - b?) / Jy(ax)Jy(bx)x dx = P[bJ,(aP)J(bP) —aJ,(aP)J,(bP)],
0
with

, d
Jl(@P)= d—Jv(ax)|

(ax) x=p’

P 2 2
/O [Jy(ax)Pxdx = %{[J;(ap)]z + (1— #)[]U(aP)]Z}, b1,

These two integrals are usually called fitet and second Lommel integrals
Hint. We have the development of the orthogonality of the Bessel functions as an anal-

ogy.
Show that

a 2 2
a
/ |:Ju <Olvm£)i| ,Odp = _[Ju—i-l(avm)]z, v>—1.
0 a 2

Herea,,, is themth zero ofJ,.
Hint. With «,,,, = 0y, + €, expand/, [(a,, + ) p/a] abouta,,, p/a by a Taylor expan-
sion.

(@) If By, is themth zero of(d/dp)J, (Bump/a), sShow that the Bessel functions are
orthogonal over the intervdD, ] with an orthogonality integral

/ Jv(ﬂvmg)Jv(ﬂun£>Pd,0=0, m#n, v>—1
0 a a

(b) Derive the corresponding normalization integral= n).
2

a U2
ANS. 3(1— %>[Jv(ﬁum)]2, v>—1.

Verify that the orthogonality equation, Eq. (11.49), and the normalization equation,
Eqg. (11.50), hold fow > —1.
Hint. Using power-series expansions, examine the behavior of Eq. (11.48)a8.

From Eq. (11.49) develop a proof thdf(z),v > —1, has no complex roots (with
nonzero imaginary part).
Hint.

(8) Use the series form of,(z) to exclude pure imaginary roots.
(b) Assume,,, to be complex and take,, to bea,,.

(@) Inthe series expansion

00
f(p)zzcvmjv<aum§), O0<p<a, v>—1
m=1
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11.2.7

11.2.8

11.2.9

11.2.10

with J, (a,,,,) = 0, show that the coefficients are given by

2 [ P
o= a2[1v+1(avm)]2/o S (“”’"a)p i

(b) Inthe series expansion
o
f(p):Zd\)m‘,\)<ﬂl)m£)s OS,OSCZ, v>-—1,
m=1 a

with (d/dp)J,(Bump/a) | p=a= 0, show that the coefficients are given by

2 a p)
dym = Ju| Bom— dp.
a2<1—v2/ﬂ3m>wv<ﬂvm>]2/o F(e) (5 )’

A right circular cylinder has an electrostatic potential/afo, ¢) on both ends. The po-
tential on the curved cylindrical surface is zero. Find the potential at all interior points.
Hint. Choose your coordinate system and adjust yadependence to exploit the sym-
metry of your potential.

For the continuum case, show that Egs. (11.51) and (11.52) are replaced by
o
f(p) :/0 a(a)Jy(ap)da,

a(a) = a/O f(p)Jv(ap)pdp.

Hint. The corresponding case for sines and cosines is worked out in Section 15.2. These
are Hankel transforms. A derivation for the special case O is the topic of Exer-
cise 15.1.1.

A function f(x) is expressed as a Bessel series:
o0
f) = Zan-]m(amnx)’
n=1
with «,,,,, thenth root of J,,,. Prove the Parseval relation,

1 1
/0 [f(x)]zx dx = > Zag[Jm+1(0lmn)]2~
n=1

Prove that

Z(amn)_z = ;
4dim+ 1)

n=1

Hint. Expandx™ in a Bessel series and apply the Parseval relation.
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11.2.11 Arright circular cylinder of lengtli has a potential

1//(2 = j:f) — 100(1— 3),
2 a

where a is the radius. The potential over the curved surface (side) is zero. Using
the Bessel series from Exercise 11.2.7, calculate the electrostatic potentiglfer
0.0(0.2)1.0 andz/! = 0.0(0.1)0.5. Takea /! = 0.5.

Hint. From Exercise 11.1.30 you have

A0on y
/ (1— —>Jo(y)ydy.
0 Q0n

1 A0n
el T
aon JO

Numerical evaluation of this latter form rather than the former is both faster and more
accurate.

Note For p/a = 0.0 andz// = 0.5 the convergence is slow, 20 terms giving only 98.4
rather than 100.

Show that this equals

Check value Forp/a =0.4 andz/l = 0.3,
Y = 24.558.

11.3 NEUMANN FUNCTIONS, BESSEL FUNCTIONS
OF THE SECOND KIND

From the theory of ODEs it is known that Bessel’s equation has two independent solutions.
Indeed, for nonintegral ordar we have already found two solutions and labeled them
Jy(x) and J_,(x), using the infinite series (Eq. (11.5)). The trouble is that wheis
integral, Eg. (11.8) holds and we have but one independent solution. A second solution
may be developed by the methods of Section 9.6. This yields a perfectly good second
solution of Bessel's equation but is not the standard form.

Definition and Series Form

As an alternate approach, we take the particular linear combinatigy(.of andJ_, (x)

cosvrmJ,(x) — J_p(x)

Ny () = sinvw

(11.60)

This is the Neumann function (Fig. 11.5).For nonintegralv, N, (x) clearly satisfies
Bessel's equation, for it is a linear combination of known solutidnéc) and J_, (x).

15n AMS-55 (see footnote 4 in Chapter 5 or Additional Readings of Chapter 8 p. for this ref.) and in most mathematics tables,
this is labeledy;, (x).
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A

04—

FIGURE 11.5 Neumann function®p(x), N1(x), andNa(x).

Substituting the power-series Eg. (11.6) fior> v (given in Exercise 11.1.7) yields

Nv(x)=—(v;l)!<g) y... 16 (11.61)

X

for v > 0. However, for integrab, v = n, Eq. (11.8) applies and Eq. (11.66pecomes in-
determinate. The definition d¥, (x) was chosen deliberately for this indeterminate prop-
erty. Again substituting the power series and evaluafihhgr) for v — 0 by I'Hopital’s
rule for indeterminate forms, we obtain the limiting value

No(x) = %(Inx +y—In2)+ 0(x?) (11.62)

for n =0 andx — 0, using

vi(—v)! = (11.63)

sinzv
from Eq. (8.32). The first and third terms in Eq. (11.62) come from u&ingv)(x/2)" =
(x/2)" In(x/2), while y comes from(d /dv)v! for v — 0 using Egs. (8.38) and (8.40). For
n > 0 we obtain similarly
1 2\" 2 "1
Ny(x)=—=(n— 1)!(—) ++ —(f) = In<f) +oe (11.64)
b4 X m\2) n! 2

Equations (11.62) and (11.64) exhibit the logarithmic dependence that was to be expected.
This, of course, verifies the independence,pndN,,.

16Note that this limiting form applies to both integral and nonintegral values of the index
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Other Forms

As with all the other Bessel functiong/, (x) has integral representations. Hég(x) we
have

o oo
No(x) = —E/ coSx coshr)dr = —E/ Mdt, x>0.
7 Jo 7)1 (t2-1)12
These forms can be derived as the imaginary part of the Hankel representations of Exer-
cise 11.4.7. The latter form is a Fourier cosine transform.
To verify thatV, (x), our Neumann function (Fig. 11.5) or Bessel function of the second
kind, actually does satisfy Bessel's equation for integralve may proceed as follows.
L'Hépital's rule applied to Eq. (11.60) yields

_ (d/dv)[cosvr J, (x) — J_,(x)]

Ny (x)

(d/dv)sinvz ven
—m sinnm J, (x) + [cosnmdJ, /dv — dJ_,, /OV]|y=n
B 7T COSnIT
1[aJ 0J_
I G N NG (11.65)
Tl dv av v=n
Differentiating Bessel’s equation fok., (x) with respect ta, we have
d? [dJ. d (dJ aJ.
2 +v +v 2 2 +v
— — — =2vJ4y. 11.66
xde( 3v)+xdx< 8v>+(x ), =2 (11.66)

Multiplying the equation for/_, by (—1)”, subtracting from the equation fdi, (as sug-
gested by Eqg. (11.65)), and taking the limit> n, we obtain
2
XZ—

d 2n
T Nn XN+ (x2 = n?)N, = — [ = D" (11.67)
Forv = n, an integer, the right-hand side vanishes by Eq. (11.8)¥(d) is seen to be a
solution of Bessel's equation. The most general solution fonacgn therefore be written
as

y(x) = AJy(x) + BN,y (x). (11.68)

It is seen from Egs. (11.62) and (11.64) thét diverges, at least logarithmically. Any
boundary condition that requires the solution to be finite at the origin (as in our vibrat-
ing circular membrane (Section 11.1)) automatically exclubigér). Conversely, in the
absence of such a requirement,(x) must be considered.

To a certain extent the definition of the Neumann functidp(x) is arbitrary. Equa-
tions (11.62) and (11.64) contain terms of the farpy, (x). Clearly, any finite value of
the constant,, would still give us a second solution of Bessel’s equation. Why shauld
have the particular value implicit in Egs. (11.62) and (11.64)? The answer involves the as-
ymptotic dependence developed in Section 11.6, IEorresponds to a cosine wave, then
N, corresponds to a sine wave. This simple and convenient asymptotic phase relationship
is a consequence of the particular admixturd,pin N,,.
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Recurrence Relations

Substituting Eq. (11.60) faw,, (x) (nonintegrab) into the recurrence relations (Egs. (11.10)
and (11.12) for/, (x), we see immediately tha, (x) satisfies these same recurrence rela-
tions. This actually constitutes another proof thgtis a solution. Note that the converse

is not necessarily true. All solutions need not satisfy the same recurrence relations. An
example of this sort of trouble appears in Section 11.5.

Wronskian Formulas

From Section 9.6 and Exercise 10.1.4 we have the Wronskian fotfrfalasolutions of
the Bessel equation,
Ay
Uy (XU}, (x) — ) (X)vy (x) = —, (11.69)
X

in which A, is a parameter that depends on the particular Bessel funations and
v, (x) being consideredd, is a constant in the sense that it is independent @onsider
the special case

uy(x) = Jy (x), vy (x) = Jy (%), (11.70)

A
LI, = I d_y = 7” (11.71)

SinceA, is a constant, it may be identified at any convenient point, suah=a8. Using
the first terms in the series expansions (Egs. (11.5) and (11.6)), we obtain

xl) zl)x—l)
b= TS
, vxvfl , Uzvxfufl
JV —> 1 , ]—V —> —W (1172)
Substitution into Eqg. (11.69) yields
-2 2sin
Ty, (x) = T (0 Ty (x) = v _oowr (11.73)
xv!(—=v)! TX

using Eq. (8.32). Note that, vanishes for integral, as it must, since the nonvanishing of
the Wronskian is a test of the independence of the two solutions. By Eq. (1%,78hd
J_, are clearly linearly dependent.
Using our recurrence relations, we may readily develop a large number of alternate
forms, among which are
2sinvr

HdJv1+ Iy Jy_1= ’ (1174)
TX

17This result depends oR(x) of Section 9.5 being equal 1/ (x)/ p(x), the corresponding coefficient of the self-adjoint form
of Section 10.1.
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2sinvr
Jvavfl‘f‘vaJ\H»l:_ s (11-75)
X
;o 2
J,N, —J'N, = —, (11.76)
X
2
JoNyp1 — Jop1Ny = ——. (11-77)
X

Many more will be found in the references given at chapter’s end.

You will recall that in Chapter 9 Wronskians were of great value in two respects: (1) in
establishing the linear independence or linear dependence of solutions of differential equa-
tions and (2) in developing an integral form of a second solution. Here the specific forms
of the Wronskians and Wronskian-derived combinations of Bessel functions are useful pri-
marily to illustrate the general behavior of the various Bessel functions. Wronskians are of
great use in checking tables of Bessel functions. In Section 10.5 Wronskians appeared in
connection with Green'’s functions.

Example 11.3.1  CoaxiAL WAVE GUIDES

We are interested in an electromagnetic wave confined between the concentric, conducting
cylindrical surface® = a andp = b. Most of the mathematics is worked out in Section 9.3
and Example 11.1.2. To go from the standing wave of these examples to the traveling wave
here, we led =iB, A = ay,, B = by, in EQ. (11.40a) and obtain

E, = men Im (yp)e:timwei(kz—wt). (11.78)

m,n

Additional properties of the components of the electromagnetic wave in the simple cylin-
drical wave guide are explored in Exercises 11.3.8 and 11.3.9. For the coaxial wave guide
one generalization is needed. The origins 0, is now excludedO < a < p < b). Hence

the Neumann functiov,, (yp) may not be excluded, (p, ¢, z, t) becomes

E,= Z[bmn In(¥P) + Cpun N (y p) e ' k=), (11.79)

With the condition
H, =0, (11.80)

we have the basic equations for a TM (transverse magnetic) wave.
The (tangential) electric field must vanish at the conducting surfaces (Dirichlet boundary
condition), or

bunIm(ya) + cmnNm(ya) = 0, (11.81)

bun I (¥ b) + cmn N (yb) = 0. (11.82)
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These transcendental equations may be solvegd €py,,,) and the ratioc,,;, /by,. From
Example 11.1.2,

2
k? = w’poeo — y2 = a)_2 —y2 (11.83)
C
Sincek? must be positive for a real wave, the minimum frequency that will be propagated

(in this TM mode) is
w=yc, (11.84)

with y fixed by the boundary conditions, Egs. (11.81) and (11.82). This is the cutoff fre-
quency of the wave guide.

There is also a TE (transverse electric) mode, vlith= 0 andH, given by Eq. (11.79).
Then we have Neumann boundary conditions in place of Egs. (11.81) and (11.82). Finally,
for the coaxial guide (not for the plain cylindrical guide= 0), a TEM (transverse elec-
tromagnetic) modeE, = H, = 0, is possible. This corresponds to a plane wave, as in free
space.

The simpler cases (no Neumann functions, simpler boundary conditions) of a circular
wave guide are included as Exercises 11.3.8 and 11.3.9.

To conclude this discussion of Neumann functions, we introduce the Neumann function
N, (x) for the following reasons:

1. Itis asecond, independent solution of Bessel's equation, which completes the general
solution.

2. ltis required for specific physical problems such as electromagnetic waves in coaxial
cables and quantum mechanical scattering theory.

3. ltleads to a Green'’s function for the Bessel equation (Sections 9.7 and 10.5).

4. Itleads directly to the two Hankel functions (Section 11.4).

|
Exercises
11.3.1  Prove that the Neumann functioNg (with n an integer) satisfy the recurrence relations
2n
Np—1(x) + Npy1(x) = 7Nn (x),
Np—1(x) = Npy1(x) = 2N;2(x)~
Hint. These relations may be proved by differentiating the recurrence relatiosis dor
by using the limit form ofy,, butnot dividing everything by zero.
11.3.2  Show that
N_p(x) = (=1)" Ny (x).
11.3.3  Show that

Nj(x) = =N1(x).



11.34

11.35

11.3.6

11.3.7

11.3.8
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11.3 Neumann Functions 705
If Y andZ are any two solutions of Bessel’s equation, show that
/ / AV
Yy(x)Z,(x) =Y, (x)Z)(x) = =

in which A, may depend ow but is independent of. This is a special case of Exer-
cise 10.1.4.

Verify the Wronskian formulas

2sinvm
S (x)Jyi1x) +J () Jy—1(x) = e

2
Ty (N (x) = TS ()N, (x) = p—

As an alternative to letting approach zero in the evaluation of the Wronskian constant,
we may invoke uniqueness of power series (Section 5.7). The coefficient.ah the
series expansion af, (x)v], (x) —u),(x)v, (x) is thenA,. Show by series expansion that
the coefficients ok® andx?! of J,(x)J’ , (x) — J/(x)J_,(x) are each zero.

(a) By differentiating and substituting into Bessel's ODE, show that

o
/ cogx coshy) dr
0

is a solution.
Hint. You can rearrange the final integral as

® d
/ — {x sin(x coshy) sinht } dr.
o dt
(b) Show that
2 o
No(x)=——/ coSx coshr) dr
 Jo

is linearly independent afg(x).
A cylindrical wave guide has radiug. Find the nonvanishing components of the elec-
tric and magnetic fields for

(@) TMoy, transverse magnetic wav#l, = H, = E, = 0),
(b) TEgy, transverse electric wavé&, = E, = H, =0).

The subscripts 01 indicate that the longitudinal componEntof H,) involves Jg and
the boundary condition is satisfied by tfist zero of Jo or J.
Hint. All components of the wave have the same factor:iékp— wt).

For a given mode of oscillation thminimum frequency that will be passed by a circular
cylindrical wave guide (radiug) is

Vmin = A_’
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11.3.10

11.3.11

in which A, is fixed by the boundary condition

2
Jn< kr0> =0 for TM,,,, mode
C

27

J,Q(—VO> =0 for TE,,, mode
Ae

The subscript: denotes the order of the Bessel function amdndicates the zero

used. Find this cutoff wavelength. for the three TM and three TE modes with the

longest cutoff wavelengths. Explain your results in terms of the graph,ofi, andJ>

(Fig. 11.1).

Write a program that will compute successive roots of the Neumann funitjon),

that isa,s, whereN, (a,s) = 0. Tabulate the first five roots @¥g, N1, and N». Check

your values for the roots against those listed in AMS-55 (see Additional Readings of
Chapter 8 for the full ref.).

Check value.a12 = 5.42968.

For the casen = 0,a = 1, andb = 2, the coaxial wave guide boundary conditions lead
to

Jo(2x)  Jo(x)
No(2x)  No(x)

fx) =
(Fig. 11.6).

(a) Calculatef (x) for x = 0.0(0.1)10.0 and plot f (x) versusx to find the approxi-
mate location of the roots.

U L0 Iy
sk N, (2x) Ny )
¢
5
2 4 X 6 8 10

FIGURE 11.6  f(x) of Exercise 11.3.11.
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(b) Call aroot-finding subroutine to determine the first three roots to higher precision.

ANS. 3.1230, 6.2734, 9.4182.

Note The higher roots can be expected to appear at intervals whose length approaches
n. Why? AMS-55 (see Additional Readings of Chapter 8 for the reference), gives an
approximate formula for the roots. The functigéx) = Jo(x) No(2x) — Jo(2x) No(x) is

much better behaved thagf(x) previously discussed.

HANKEL FUNCTIONS

Many authors prefer to introduce the Hankel functions by means of integral representations
and then to use them to define the Neumann funatip¢r). An outline of this approach is
given at the end of this section.

Definitions

Because we have already obtained the Neumann function by more elementary (and less
powerful) techniques, we may use it to define the Hankel funcﬂﬂﬁ%(x) andHU(Z) (x):

HD (x) = J,(x) + i N, (x) (11.85)
and
HP (x) = J,(x) — i N, (x). (11.86)
This is exactly analogous to taking
e*? = cosh + i sind. (11.87)

For real argumentsHv(l) and HV(Z) are complex conjugates. The extent of the analogy will
be seen even better when the asymptotic forms are considered (Section 11.6). Indeed, it is
their asymptotic behavior that makes the Hankel functions useful.

Series expansion cﬂ,fl) (x) ande(z) (x) may be obtained by combining Egs. (11.5) and
(11.63). Often only the first term is of interest; it is given by

@ 2 .2
H, (x)%l;mx-i-l-i-l;()/—|n2)+--', (11.88)
—n!/2\"
T X
HO ()~ i 2 2
o (x)~—1;|nx+l—1;(y—|n2)+~~, (12.90)

H§2)(x)%iL1)!<g> +oe v>0. (11.91)

T X
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Since the Hankel functions are linear combinations (with constant coefficients) of
andN,, they satisfy the same recurrence relations (Egs. (11.10) and (11.12))

Hy_1(x) + Hy11(x) = zx_vHu(x), (11.92)

H,_1(x) — Hy41(x) = 2H, (x), (11.93)

for both H,fl) (x) and HV(Z) (x).
A variety of Wronskian formulas can be developed:

4

1 2
HPHY, ~HVH® = —, (11.94)
ITX
&N @ _ 2
B HY — g, B = — (11.95)
1T X
2 ) 2
WHZ 0, H? = = (11.96)
LT X

Example 11.4.1  CyuNDRICAL TRAVELING WAVES

As an illustration of the use of Hankel functions, consider a two-dimensional wave problem
similar to the vibrating circular membrane of Exercise 11.1.25. Now imagine that the waves
are generated at= 0 and move outward to infinity. We replace our standing waves by
traveling ones. The differential equation remains the same, but the boundary conditions
change. We now demand that for largthe wave behave like

U ~ ¢l kr=ot) (11.97)

to describe an outgoing wave. As befokeis the wave number. This assumes, for sim-
plicity, that there is no azimuthal dependence, that is, no angular momentums=@. In
Sections 7.3 and 11.6161) (kr) is shown to have the asymptotic behavior (fer> co)

HY (kr) ~ 7. (11.98)
This boundary condition at infinity then determines our wave solution as
U(r, 1) = HS" (krye ™", (11.99)

This solution diverges as— 0, which is the behavior to be expected with a source at the
origin.

The choice of a two-dimensional wave problem to illustrate the Hankel funH#))r(z)
is not accidental. Bessel functions may appear in a variety of ways, such as in the sepa-
ration of conical coordinates. However, they enter most commonly in the radial equations
from the separation of variables in the Helmholtz equation in cylindrical and in spheri-
cal polar coordinates. We have taken a degenerate form of cylindrical coordinates for this
illustration. Had we used spherical polar coordinates (spherical waves), we should have
encountered index=n + % n an integer. These special values yield the spherical Bessel
functions to be discussed in Section 11.7. [ |
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Contour Integral Representation of
the Hankel Functions

The integral representation (Schlaefli integral)

Jy(x) = 2—71” fc e<x/2><’—1/'>t% (11.100)
may easily be established as a Cauchy integral fern, an integer (by recognizing that

the numerator is the generating function (Eqg. (11.1)) and integrating around the origin).
If v is not an integer, the integrand is not single-valued and a cut line is needed in our
complex plane. Choosing the negative real axis as the cut line and using the contour shown
in Fig. 11.7, we can extend Eq. (11.100) to nonintegrabubstituting Eqg. (11.100) into
Bessel's ODE, we can represent the combined integrand by an exact differential that van-
ishes as — ooe™'™ (compare Exercise 11.1.16).

We now deform the contour so that it approaches the origin along the positive real axis,
as shown in Fig. 11.8. For > 0, this particular approach guarantees that the exact differ-
ential mentioned will vanish as— 0 because of the */% — 0 factor. Hence each of the
separate portionsx ¢ ™ to 0) and (0 tocc ¢/™) is a solution of Bessel's equation. We
define

im

1 dt
Wy L (+/20-1/1)
H (x)_m,/o o “ (11.102)
0
HO ()=~ / (201 L (11.102)
i Joge—in tv+1

These expressions are particularly convenient because they may be handled by the method
of steepest descents (Section YBﬁ.l) (x) has a saddle point at= +i, whereasH,fz) (x)
has a saddle point at= —i.

/

FIGURE 11.7 Bessel function contour.
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I
A

o t=1i
oog”"t )
C t=—i

2

>R

FiIGURE 11.8 Hankel function contours.

The problem of relating Egs. (11.101) and (11.102) to our earlier definition of the Hankel
function (Egs. (11.85) and (11.86)) remains. Since Egs. (11.100) to (11.102) combined
yield

1
Jy(x) = E[Hv(l)(x) +HP ()] (11.103)
by inspection, we need only show that

Ny (x) = Zi[Hvﬂ)(x) - HP )] (11.104)

i

This may be accomplished by the following steps:

1. With the substitutions= ¢/ /s for HY andr = e~ /s for H{?, we obtain

HO () =e " H) (x), (11.105)

H? (x) =" H® (x). (11.106)
2. FromEgs. (11.103v — —v), (11.105), and (11.106),

1 . )
J_,(x) = E[e”’” Hlfl) (x)+e V7 Hlfz) (x)]. (11.107)

3. Finally substitute/,, (Eq. (11.103)) and_, (Eg. (11.107)) into the defining equation
for N,, Eq. (11.60). This leads to Eq. (11.104) and establishes the contour integrals
Egs. (11.101) and (11.102) as the Hankel functions.

Integral representations have appeared before: Eq. (8.3b)f¢rand various representa-

tions of J,,(z) in Section 11.1. With these integral representations of the Hankel functions,

it is perhaps appropriate to ask why we are interested in integral representations. There
are at least four reasons. The first is simply aesthetic appeal. Second, the integral repre-
sentations help to distinguish between two linearly independent solutions. In Fig. 11.6, the
contoursCy andC» crossdifferent saddle points (Section 7.3). For the Legendre functions
the contour forP, (z) (Fig. 12.11) and that foQ, (z) encircledifferent singular points.
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Third, the integral representations facilitate manipulations, analysis, and the develop-
ment of relations among the various special functions. Fourth, and probably most impor-
tant of all, the integral representations are extremely useful in developing asymptotic ex-
pansions. One approach, the method of steepest descents, appears in Section 7.3. A second
approach, the direct expansion of an integral representation is given in Section 11.6 for the
modified Bessel functiork, (z). This same technique may be used to obtain asymptotic
expansions of the confluent hypergeometric functibhandU — Exercise 13.5.13.

In conclusion, the Hankel functions are introduced here for the following reasons:

e As analogs ob** they are useful for describing traveling waves.

e They offer an alternate (contour integral) and a rather elegant definition of Bessel func-
tions.

. Hv(l) is used to define the modified Bessel functionof Section 11.5.

Exercises

1141

11.4.2

11.4.3

11.4.4

Verify the Wronskian formulas

@ HHY @)= I HP () = Z

Tx’

0) JH? (x)— 1) HP (x) = =2

X’

© N@HY (x) = N (x)HP (x) = =2

Tx’

@) Ny HP (x) = N (x) H? (x) = =2

wx’
1 2) 1) 2 _4
€ HPH? (x)— HY (0)HP (x) = =4

Tx’
2 1 1 2
) HPWHY 0 - HY 0B 0 = £,

@ Ho1@HP @) = LoHD () = 2.

Show that the integral forms

ooel™
(@) — ey AL _ gy
1 Joc, vt
0
0 = w2y 41 _
I Jooe—inCy vt

satisfy Bessel's ODE. The contoufg andC» are shown in Fig. 11.8.

Using the integrals and contours given in problem 11.4.2, show that

1

?[Hlfl)(x) — HP ()] = Ny(x).
l

Show that the integrals in Exercise 11.4.2 may be transformed to yield

1 ; 1 ;
(a) H\Sl) (x) = _/ exsmhy—uy dy, (b) H‘EZ)(X) — _/ exsmhy—vy dy
Tl Cs3 Tl Ca
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11.45

11.4.6

11.4.7

oo + T
T
=Ry
T
—int G o0 — iT

FIGURE 11.9 Hankel function contours.

(see Fig. 11.9).
@ TransformHél)(x), Eq. (11.101), into

1 .
Hél)(x) _ _/ i coshs ds.
I Jc

where the contou€ runs from—oo — iz /2 through the origin of the-plane to
oo +im/2.
(b) Justify rewritingHél) (x) as

2 oco+im/2 ]
Hél)(x) — _/ eGCOShs dS.
T Jo

(c) \Verify that this integral representation actually satisfies Bessel’s differential equa-
tion. (Theix /2 in the upper limit is not essential. It serves as a convergence factor.
We can replace it byasr /2 and take the limit.)

From
1 2 (> .
H(g )()C) — _/ ezxcoshv ds
T Jo

show that

2 [®g 2 [ sin(xt
(@) Jolx)= —f sin(xcoshs)ds,  (b) Jo(x) = _/ X0

T Jo T J1 t2_1

This last result is a Fourier sine transform.

From (see Exercises 11.4.4 and 11.4.5)
1 2 [
Hé )()C)Z‘—/ ezxcoshvds
T Jo

show that

(8 Nokx)= —Efoocos(x coshs) ds.
T Jo
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© cogxr)

Ny t.

These are the integral representations in Section 11.3 (Other Forms).
This last result is a Fourier cosine transform.

2
(b) No(x)=-—
b4

MODIFIED BESSEL FUNCTIONS, I,(x) AND K,(x)

The Helmholtz equation,
V2y + k%Y =0,

separated in circular cylindrical coordinates, leads to Eq. (11.22a), the Bessel equation.
Equation (11.22a) is satisfied by the Bessel and Neumann functighs) and N, (kp)

and any linear combination, such as the Hankel functiHrﬁ]é (kp) and HU(Z)(k,o). Now,

the Helmholtz equation describes the space part of wave phenomena. If instead we have a
diffusion problem, then the Helmholtz equation is replaced by

V2y — k% =0. (11.108)
The analog to Eq. (11.22a) is
2 d? d 22, .2
o ﬁYu(kp)er%Yu(kp) — (k%p* + v°) Y, (kp) =0. (11.109)

The Helmholtz equation may be transformed into the diffusion equation by the trans-
formationk — ik. Similarly, k — ik changes Eq. (11.22a) into Eqg. (11.109) and shows
that

Y, (kp) = Z,(ikp).

The solutions of Eq. (11.109) are Bessel functions of imaginary argument. To obtain a
solution that is regular at the origin, we talkkg as the regular Bessel functioh. It is
customary (and convenient) to choose the normalization so that

Yy (x) = I,(x) =i " Jy(ix). (11.110)

(Here the variablép is being replaced by for simplicity.) The extra —" normalization
cancels the’ from each term and leavds(x) real. Often this is written as

I,(x) = e "m/2 ], (xel™/?). (11.111)

Ip and!; are shown in Fig. 11.10.
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A
24 _I<0 Kl 0 71

2.0F
1.6
1.2F
0.8F
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1 1

1
1 2 3

> X

FIGURE 11.10 Modified Bessel
functions.

Series Form

In terms of infinite series this is equivalent to removing thel)* sign in Eq. (11.5) and
writing

PPNV < S S 2 SRR - S S £.2 S P
V(X)_§s!(s+v)!<§> ’ _V(X)_§S!(S—V)!<§> - 42

For integralv this yields
L(x)=1_,(x). (11.113)

Recurrence Relations

The recurrence relations satisfied hyx) may be developed from the series expansions,
but it is perhaps easier to work from the existing recurrence relationg,fan. Let us
replacex by —ix and rewrite Eq. (11.110) as

Jy(x) =i"I,(—ix). (11.114)
Then Eqg. (11.10) becomes
iV (—ix) + i 1 (—ix) = %i”lv(—ix).
Replacingx by ix, we have a recurrence relation fhix),
a0~ fosa ) = 2 10, (11.115)
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Equation (11.12) transforms to
I-1(x) + Ly1(x) = 21}(x). (11.116)

These are the recurrence relations used in Exercise 11.1.14. It is worth emphasizing that al-
though two recurrence relations, Egs. (11.115) and (11.116) or Exercise 11.5.7, specify the
second-order ODE, the converse is not true. The ODE does not uniquely fix the recurrence
relations. Equations (11.115) and (11.116) and Exercise 11.5.7 provide an example.

From Eq. (11.113) it is seen that we have but one independent solution wisezn
integer, exactly as in the Bessel functiofis The choice of a second, independent solution
of Eg. (11.108) is essentially a matter of convenience. The second solution given here
is selected on the basis of its asymptotic behavior—as shown in the next section. The
confusion of choice and notation for this solution is perhaps greater than anywhere else
in this field® Many author$® choose to define a second solution in terms of the Hankel

function Hv(l) (x) by
K,(x) = %i”+1H51>(ix) = %i"“[],,(ix) +iN,(@ix)]. (11.117)

The factori"** makesk, (x) real whenx is real. Using Egs. (11.60) and (11.110), we may
transform Eq. (11.117) 88
T I, (x) =1 (x)
2 sinvm
analogous to Eq. (11.60) fa¥, (x). The choice of Eq. (11.117) as a definition is somewhat
unfortunate in that the functiok’,,(x) does not satisfy the same recurrence relations as
I,(x) (compare Exercises 11.5.7 and 11.5.8). To avoid this annoyance, other &tuthors
have included an additional factor of aos. This permitsK, to satisfy the same recurrence
relations ag,,, but it has the disadvantage of makikg=0forv=132 3, ....

The series expansion &, (x) follows directly from the series form OH,fl) (ix). The
lowest-order terms are (cf. Egs. (11.61) and (11.62))

K,(x) = (11.118)

Kox)=—Inx—y+In2+-..,
K,(x)=2""twv—-Dx™+-... (11.119)

Because the modified Bessel functifnis related to the Bessel functiol), much as sinh
is related to sine/, and the second solutioki, are sometimes referred to as hyperbolic
Bessel functionskg and K1 are shown in Fig. 11.10.

Io(x) and Ko(x) have the integral representations

1 T
Io(x)z—/ coshx cosd) do, (11.120)
T Jo

 cogqxr)dt

Ko(x)=/0 cos(xsinht)dt=/o 2t iz

x> 0. (11.121)

18A discussion and comparison of notations will be foundViath. Tables Aids Comput: 207—-308 (1944).
19watson, Morse and Feshbach, Jeffreys and Jeffreys (without/ e

20For integral index: we take the limit as — n.

2lwhittaker and Watson, see Additional Readings of Chapter 13.
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Equation (11.120) may be derived from Eq. (11.30)fgtx) or may be taken as a special
case of Exercise 11.5.4,= 0. The integral representation &b, Eq. (11.121), is a Fourier
transform and may best be derived with Fourier transforms, Chapter 15, or with Green’s
functions Section 9.7. A variety of other forms of integral representations (includ@)
appear in the exercises. These integral representations are useful in developing asymptotic
forms (Section 11.6) and in connection with Fourier transforms, Chapter 15.

To put the modified Bessel functiordg(x) and K, (x) in proper perspective, we intro-

duce them here because:

e They are needed for specific physical problems, such as diffusion problems.

Exercises

1151

1152

1153

These functions are solutions of the frequently encountered modified Bessel equation.

K, (x) provides a Green’s function, Section 9.7.

K, (x) leads to a convenient determination of asymptotic behavior (Section 11.6).

Show that

o0
P E/D0+1/1) Z I, (x)t",

n=—oo

thus generating modified Bessel functiofgx).

Verify the following identities

(@)

(b)

(©

(d)

(e)

(@)

1=1Io(x) +2) (1) T2 (),

n=1

¢ =Io(x)+2) L),
n=1

e =Io(x) +2) (=" (x),

n=1

coshr = Ip(x) + 22 Loy (%),
n=1

0
sinhx = ZZ I, _1(x).
n=1

From the generating function of Exercise 11.5.1 show that

1 d
Li(x) = > 7§ exp(x/2)(t + 1/;)]#.
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11.5 Modified Bessel Functions, I,,(x) and K, (x) 717

(b) Forn = v, not an integer, show that the preceding integral representation may be
generalized to

1 dt
I,(x)= %/Cexp[(x/Z)(tJr 1/t)]m.
The contourC is the same as that fo, (x), Fig. 11.7.
Forv > —% show thatl, (z) may be represented by

1 zZ\" 7
1V(z)=—< > / T2 5irtv 9 do
0

12w — 5N\ 2

. 1 <£>V/'l e:l:ZP(l_pz)v_l/zdp
7120 - H1\2) Ja

2 v oem/2
- —<Z> / cosh(z cosd) sir?”  d6.
0

712w — Hi\2
A cylindrical cavity has a radius and height, Fig. 11.3. The endg,= 0 and!, are at
zero potential. The cylindrical wallg, = a, have a potentiaV = V (¢, z).

(a) Show that the electrostatic potentialp, ¢, z) has the functional form

oo o0

@(p,p,2)= Z Z L (k) SiNknZ - (Amn Sinm@ + by COSMQ),

m=0n=1

wherek,, =nn/l.
(b) Show that the coefficients,,, andb,,, are given by?

2 pl ;
Amn 2 . sinmg
= V(p,z)sink,z - dzdo.
bmn } nl]m(kna) /0 /0 ((p Z) " {COSmgo} cae

Hint. ExpandV (¢, z) as a double series and use the orthogonality of the trigonometric
functions.

Verify that K, (x) is given by

Iy (x) = (%)

Ky(x) =2
xX)=—
v 2 sinvm

and from this show that
Ky(x) = K_y(x).

Show thatK, (x) satisfies the recurrence relations
2v
Ky_1(x) — Kyq1(x) = _?Kv(x),

Ky—1(x) + Kypy1(x) = —2K,,(x).

22\Whenm = 0, the 2 in the coefficient is replaced by 1.
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11.5.8 If K, =" K,, show thatl, satisfies the same recurrence relationg,as

11.5.9 Forv> —% show thatk, (z) may be represented by

1/2 Voo

T Z . 4 T
K,(7)=— |2 —2COSI Gin PV 4 g -~ <ar —
v (u_%>!<2) f, e 2 <=7

1/2 Vo poo

T Z _ —

= 1>v<§)f1 e (p?—1)"H2dp.
— 1

11.5.10 Show that/, (x) andK, (x) satisfy the Wronskian relation
1
LK, (x) = I(x) Ky (x) = —=.

X

This result is quoted in Section 9.7 in the development of a Green'’s function.

11.5.11 If r = (x? + y?)¥/2, prove that

2 o0
- = —/ coSxt)Ko(yt)dt.
r T Jo

This is a Fourier cosine transform &%.

11.5.12 (a) Verifythat

1 T
Io(x)=—f cosh(x cos?) db
T Jo

satisfies the modified Bessel equatiors O.

(b) Show that this integral contains no admixturek@f(x), the irregular second solu-
tion.

(c) Verify the normalization factor /ir.

11.5.13 \Verify that the integral representations
1 s
I,(z) = —/ €*%%% cognt) dt,
7 Jo

oo
K, (2) =/ ¢~2%S coshvr) dt, N(z) >0,
0

satisfy the modified Bessel equation by direct substitution into that equation. How can
you show that the first form does not contain an admixtur& pfand that the second
form does not contain an admixture Bf? How can you check the normalization?

11.5.14 Derive the integral representation
1 T
I,(x) = —/ ¢* % cognb) de.
7 Jo

Hint. Start with the corresponding integral representatiod,@%). Equation (11.120)
is a special case of this representation.
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11.5.15 Show that

o0
Ko(z) :/ e—zcoshf dt
0

satisfies the modified Bessel equation. How can you establish that this form is linearly
independent ofp(z)?

11.5.16 Show that

o0
™ = In(a) To(x) + ZZln(a)T,,(x), —1<x<1.
n=1
T, (x) is thenth-order Chebyshev polynomial, Section 13.3.

Hint. Assume a Chebyshev series expansion. Using the orthogonality and normalization
of the T}, (x), solve for the coefficients of the Chebyshev series.

11.5.17 (a) Write a double precision subroutine to calcultér) to 12-decimal-place accu-

racy forn =0,1,2,3,... and 0< x < 1. Check your results against the 10-place
values given in AMS-55, Table 9.11, see Additional Readings of Chapter 8 for the
reference.

(b) Referring to Exercise 11.5.16, calculate the coefficients in the Chebyshev expan-
sions of coshr and of sinhx.

11.5.18 The cylindrical cavity of Exercise 11.5.5 has a potential along the cylinder walls:

11.6

V&) 1007, 0
)=

1001- 7). §=
With the radius—height ratie// = 0.5, calculate the potential fay/ = 0.1(0.1)0.5 and
p/a =0.0(0.2)1.0.

Check value.Forz/l =0.3 andp/a = 0.8, V = 26.396.

ASYMPTOTIC EXPANSIONS

Frequently in physical problems there is a need to know how a given Bessel or modified
Bessel function behaves for large values of the argument, that is, the asymptotic behavior.
This is one occasion when computers are not very helpful. One possible approach is to
develop a power-series solution of the differential equation, as in Section 9.5, but now using
negative powers. This is Stokes’ method, Exercise 11.6.5. The limitation is that starting
from some positive value of the argument (for convergence of the series), we do not know
what mixture of solutions or multiple of a given solution we have. The problem is to relate
the asymptotic series (useful for large values of the variable) to the power-series or related
definition (useful for small values of the variable). This relationship can be established by
introducing a suitabletegral representationand then using either the method of steepest
descent, Section 7.3, or the direct expansion as developed in this section.
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Expansion of an Integral Representation

As a direct approach, consider the integral representation (Exercise 11.5.9)
1/2 V. roo 1
__T 2 —zx (.2 v-1/2
K,(z) = v—%)!(é) /1 e (x*=1) dx, v>—s. (11.122)

For the present let us taketo be real, although Eq. (11.122) may be established for
—m/2 < argz < /2 (M(z) > 0). We have three tasks:

1. To show thatk, as given in Eq. (11.122) actually satisfies the modified Bessel equa-
tion (11.109).

2. To show that the regular solutidp is absent.

3. To show that Eq. (11.122) has the proper normalization.

1. Thefactthat Eq. (11.122) is a solution of the modified Bessel equation may be verified
by direct substitution. We obtain

(0.¢]
d
Zu+1/ _[e—zx (x2 _ 1)V+1/2] dx =0,
1 dx
which transforms the combined integrand into the derivative of a function that vanishes at

both endpoints. Hence the integral is some linear combinatidp ahd K ,,.

2. The rejection of the possibility that this solution contaiRs constitutes Exer-
cise 11.6.1.

3. The normalization may be verified by showing that, in the limit- 0, K,,(z) is in
agreement with Eq. (11.119). By substituting= 1+ ¢/z,

1/2 V. poo
(2 e (x2 — 1)”71/2 dx
w-»1\2) )1

1/2 v 00 t2 2t v—l/Zdt
- <5) e_Z/ e—f<—2+—) = (11.123a)
(v—3)1"\2 0 Z Z z
1/2 -z poo v—1/2
= i 1)'%/ e—’t2v—1<1+%> dt, (11.123b)
VvV — 5): Z 0

taking outr?/z? as a factor. This substitution has changed the limits of integration to a more
convenient range and has isolated the negative exponential deperdénte integral
in Eg. (11.123b) may be evaluated foe 0 to yield (2v — 1)!. Then, using the duplication
formula (Section 8.4), we have
v—1
lim K,(z) = %, V>0, (11.124)
z—0

ZU

in agreement with Eq. (11.119), which thus checks the normaliz&tion.

23For v — 0 the integral diverges logarithmically, in agreement with the logarithmic divergendg @f) for z — 0 (Sec-

tion 11.5).
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Now, to develop an asymptotic series #y(z), we may rewrite Eq. (11.123a) as

T e * iv-1y2 AN
— 0 Il V= _
Ko@) =[5 (U_%)!/O et <1+2Z> di (11.125)

(taking out 2/z as a factor).
We expand 1+ t/2z)"~1/2 by the binomial theorem to obtain

_ |z e - e %)‘ —r * —t v+r—1/2
KV(Z)_\/;Z(V— ) > %)!(2z) /O et dt.  (11.126)

1y — 7 —
r:Or.(v r

Term-by-term integration (valid for asymptotic series) yields the desired asymptotic ex-
pansion ofK , (z):

T o, (M2 —-1%) (42 —-1%)(H?-3?
K, (2) \/;Ze [1+ 1152 + 21892 +} (11.127)

Although the integral of Eq. (11.122), integrating along the real axis, was convergent only
for —m/2 < argz < /2, EQ. (11.127) may be extended+@r/2 < argz < 37/2. Con-
sidered as an infinite series, Eq. (11.127) is actually diverfeHbwever, this series is
asymptotic, in the sense that for large enoggK, (z) may be approximated to any fixed
degree of accuracy with a small number of terms. (Compare Section 5.10 for a definition
and discussion of asymptotic series.)

It is convenient to rewrite Eq. (11.127) as

K,(z) = \/geZ[Pv(iz) +i0,(i2)], (11.128)

where

mw—Dwu—-9  (u—D(p—9u—25u—49
Py(z)~1— 21872 287 —.-, (11.129a)
w—1 (u—D(u—9(u—25
0,(2) 160 380)° +-- (11.129b)
and
n= 42

It should be noted that althoudh (z) of Eq. (11.129a) and, (z) of Eq. (11.129b) have
alternating signs, the series B (iz) and Q, (iz) of Eq. (11.128) have all signs positive.
Finally, for z large, P, dominates.

Then with the asymptotic form &, (z), Eq. (11.128), we can obtain expansions for all
other Bessel and hyperbolic Bessel functions by defining relations:

240ur binomial expansion is valid only far< 2z and we have integratedout to infinity. The exponential decrease of the
integrand prevents a disaster, but the resultant series is still only asymptotic, not convergent. By Tabie®.B an essential
singularity of the Bessel (and modified Bessel) equations. Fuchs’ theorem does not guarantee a convergent series and we do not
get a convergent series.
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1. From
%i”“Hé”(iz) =K,(2) (11.130)
we have
2 I\ m
@ _ | = | -\
H)7(2) =,/ p exp{z[z (v + 2) 2:|}
P@+i0,(@)]. —7 < argz < 2r. (11.131)

2. The second Hankel function is just the complex conjugate of the first (for real argu-

ment),
2 IN\n
@y [ £ il 4\
H)7(z) = mexp{ 1|:z <v+2)2“
(P@-i0,@)] —27 <argz < . (11.132)

An alternate derivation of the asymptotic behavior of the Hankel functions appears in
Section 7.3 as an application of the method of steepest descents.
3. SinceJ,(z) is the real part OHU(D (z) forrealz,

| 2 I\n
Ju(2) = JT_Z{PU(Z)CO{Z_ <V+§)E:|

v

- 02 Sin[z - (v + %) E} } —m <argz <m, (11.133)

holds for realz, that is, arg = 0, 7. Once Eq. (11.133) is established for reathe
relation is valid for complex in the given range of argument.

4. The Neumann function is the imaginary partHﬁ‘l) (z) forrealz, or

No@) = 2| Aoy sin L\7
v(2) = H—Z{ v (2)S |:Z—<v~|—§)§:|

T

+ 0.(2) COS|:Z - (v + %)E} } —n <argz <w. (11.134)

Initially, this relation is established for real but it may be extended to the complex
domain as shown.
5. Finally, the regular hyperbolic or modified Bessel functip(y) is given by

I(z) =i 7" J,(i2) (11.135)

or

2

e
2z

[Poi2) —i0.GD)], -2 <argz < = (11.136)

I,(2) = 5 >



11.6 Asymptotic Expansions 723
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\/% cos {(x — Z)
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FIGURE 11.11 Asymptotic approximation ofp(x).

This completes our determination of the asymptotic expansions. However, it is perhaps
worth noting the primary characteristics. Apart from the ubiquitot¥?, J, and N, be-
have as cosine and sine, respectively. The zeroslarest evenly spaced at intervals of
7 ; the spacing becomes exacityin the limit asz — oco. The Hankel functions have been
defined to behave like the imaginary exponentials, and the modified Bessel funktions
and K, go into the positive and negative exponentials. This asymptotic behavior may be
sufficient to eliminate immediately one of these functions as a solution for a physical prob-
lem. We should also note that the asymptotic sefigg) and 0, (z), Egs. (11.129a) and
(11.129b), terminate far = +1/2, +3/2, ... and become polynomials (in negative powers
of z). For these special values nthe asymptotic approximations become exact solutions.
It is of some interest to consider the accuracy of the asymptotic forms, taking just the
first term, for example (Fig. 11.11),

Ju () %\/gcos[x - <n+ %) <%>} (11.137)

Clearly, the condition for the validity of Eq. (11.137) is that the sine term be negligible;
that is,

8x > 4n° — 1. (11.138)

Forn orv > 1 the asymptotic region may be far out.
As pointed out in Section 11.3, the asymptotic forms may be used to evaluate the various
Wronskian formulas (compare Exercise 11.6.3).

Exercises

11.6.1

In checking the normalization of the integral representatioki,ak) (Eq. (11.122)), we
assumed thaf, (z) was not present. How do we know that the integral representation
(Eg. (11.122)) does not yield, (z) + 1, (z) with & # 0?
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4 ¢ plane

(2) Q)]

FIGURE 11.12 Modified Bessel function contours.

11.6.2 (a) Show that
y(z)=2" / e (1%~ 1)”71/2dt

satisfies the modified Bessel equation, provided the contour is chosen so that

et (tz . 1)V+1/2

has the same value at the initial and final points of the contour.
(b) \Verify that the contours shown in Fig. 11.12 are suitable for this problem.

11.6.3 Use the asymptotic expansions to verify the following Wronskian formulas:

@ JL(x)Jop—1(x)+ J_y(x)Jyp1(x) = —2sinvr /7 x,
(b) Jy()Nyy1(x) — Jygp1(X)Ny (x) = =2/7x,

© J@HP (x) = Jy1(0)HP (x) =2/inx,

(d) LK, x) — @)K, (x) =—1/x,

@) 1()Kyi1(x) + Lp1 () Ky (x) = 1/x.

11.6.4 From the asymptotic form oK ,(z), Eq. (11.127), derive the asymptotic form of
Hv(l)(z), Eqg. (11.131). Note particularly the phase + %)n/Z.

11.6.5 Stokes’ method.

(@) Replace the Bessel function in Bessel's equationty?y(x) and show thap(x)
satisfies
2_1

” v 4 _
y(x)+(1— = )y(x)_O.

(b) Develop a power-series solution with negative powers efarting with the as-
sumed form

(0.¢]
y(x) = e Zanx_".
n=0
Determine the recurrence relation giviag,1 in terms ofa,. Check your result
against the asymptotic series, Eq. (11.131).
(c) From the results of Section 7.4 determine the initial coefficiant,
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11.6.7

11.7
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Calculate the first 15 partial sums 8f(x) and Qo(x), Egs. (11.129a) and (11.129b).
Let x vary from 4 to 10 in unit steps. Determine the number of terms to be retained
for maximum accuracy and the accuracy achieved as a function@becifically, how
small mayx be without raising the error abovex310-6?

ANS Xmin = 6

(@) Using the asymptotic series (partial sun®gjx) and Qo(x) determined in Exer-
cise 11.6.6, write a function subprogram FCT(X) that will calculajex), x real,
for x > xmin.

(b) Test your function by comparing it with thé&(x) (tables or computer library
subroutine) forx = xmin(10)xmin + 10.

Note A more accurate and perhaps simpler asymptotic forrddér) is given in AMS-

55, Eq. (9.4.3), see Additional Readings of Chapter 8 for the reference.

SPHERICAL BESSEL FUNCTIONS

When the Helmholtz equation is separated in spherical coordinates, the radial equation has
the form

rzm+2rd—1:+[ 22 —n(n+1]R=0. (11.139)
This is Eqg. (9.65) of Section 9.3. The parameteenters from the original Helmholtz
equation, whilen(n + 1) is a separation constant. From the behavior of the polar angle
function (Legendre’s equation, Sections 9.5 and 12.5), the separation constant must have
this form, withn a nonnegative integer. Equation (11.139) has the virtue of being self-
adjoint, but clearly it is not Bessel’s equation. However, if we substitute

Z(kr)
R(kr) = W,
Equation (11.139) becomes
d?z 4z 1\?
2 2.2 —
P2 [k 2 (n+§) }z_o, (11.140)

whichis Bessel's equationZ is a Bessel function of order + % (n an integer). Because
of the importance of spherical coordinates, this combination, that is,

Zny1y2(kr)
(kr)1/2

)

occurs quite often.
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Definitions

Itis convenient to label these functions spherical Bessel functions with the following defin-
ing equations:

R B T J
Jn(x) =/ > n+1/2(X),
1 (x) = ,/%Nn+1/2(x> = (—1)"“,/%1_”_1/2@),25

T
B () =\ 5= H 31100 = (6) i (2).

(11.141)

P (x) = \/g HZ) 15(x) = ju(x) = iny (x).

These spherical Bessel functions (Figs. 11.13 and 11.14) can be expressed in series form
by using the series (Eq. (11.5)) fdj, replacings with n + %:

00 (—1)* £\ Z5Hn+1/2
Jns1p) =y ——— (= . 11.142
+1/2(x) §s1<s+n+%>!<z) ( )
Using the Legendre duplication formula,
2z + =272 g 122 4 1)1, (11.143)
we have
- \/7%(—1)522”2"“@%)! x\ 2t/
n(X) =,/ 57 5
/ 20 & 1225 + 21+ Dls! \2
o
DG +n)! 5
=2"x" —_ x~. 11.144
* ;s!(Zs+2n+1)!x ( )
NOw, Ny,+1/2(x) = (=1)"T1J_,_1,2(x) and from Eq. (11.5) we find that
00 s 25—n—1/2
(=1 (x>
Jonipx)=) ——— (= . 11.145
1/2(x) gs!(s_n_%)! > ( )
This yields
272 & (-1 [(x)\*
p(x) = (=1t =) . 11.146
O YIOs!(s—n—%>!<2> (11.146)

5This is possible because ¢ost 5) =0, see Eq. (11.60).
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FIGURE 11.13 Spherical Bessel functions.
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FIGURE 11.14 Spherical Neumann functions.
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The Legendre duplication formula can be used again to give

(D" SN (=D (s —n)! o,
2n L = s1(25 — 2n)!

n,(x) = (11.147)
These series forms, Egs. (11.144) and (11.147), are useful in three ways: (1) limiting values
asx — 0, (2) closed-form representations foe= 0, and, as an extension of this, (3) an
indication that the spherical Bessel functions are closely related to sine and cosine.

For the special case= 0 we find from Eq. (11.144) that

e¢]

. (=D* 5 sinx
= S = 11.148
Jo(x) ;)(szrl)!x — ( )
whereas fong, Eq. (11.147) yields
no(x) = — 2% (11.149)
X

From the definition of the spherlcal Hankel functions (Eq. (11.141)),

i .
h(l)( )= —(smx —icosx) =——e'",
X

h@ (x) = ;(sinx 4 icosy) = )l—ce_i". (11.150)

Equations (11.148) and (11.149) suggest expressing all spherical Bessel functions as
combinations of sine and cosine. The appropriate combinations can be developed from the
power-series solutions, Eqgs. (11.144) and (11.147), but this approach is awkward. Actually
the trigonometric forms are already available as the asymptotic expansion of Section 11.6.
From Egs. (11.131) and (11.129a),

h(x) = /2 H, 52

iz

= i Pra20) Q2@ (11.151)

Now, P,41/2 and Q0,412 arepolynomials. This means that Eq. (11.151) is mathematically
exact, not simply an asymptotic approximation. We obtain

)

@y n+16’ ' (2n+25)!!
hD(z) = (—i) Zs'(Sz)S o)1

n+1€’ = ¥ (m+s)!
= (=i)" st(zz)s (n—s)! (11.152)

Often a factor(—i)" = (e~*"/2)" will be combined with thee’ to give ¢!¢="7/2 For
z real, j,(z) is the real part of thisp,(z) the imaginary part, and,(,z)(z) the complex
conjugate. Specifically,

. 1 ]
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e 3 3
WOy =eir(Lo 2 2 11.153b
2(X)€<x 2 3) ( )
) sinx  cosx
Jilx) = — — ;
X X
(11.154)
, 3 1)\ . 3
Jo(x) = == Sinx — ) COSsx,
X X X
cosx  sinx
nx)=——5———,
X X
(11.155)
3 1 3 .
na(x) = —( — — - ) cosx — — sinx,
X X X
and so on.
Limiting Values
Forx « 1,26 Egs. (11.144) and (11.147) yield
2'n! x"
) A n_ , 11.156
Jn(X) (2n+1)!x 2n+ D! ( :
G R G ) L
n,(x) =~ on ' (—Zl’l)'
|
L B T (11.157)
2'n!

The transformation of factorials in the expressionsifpix) employs Exercise 8.1.3. The
limiting values of the spherical Hankel functions godai,, (x).

The asymptotic values qgf;, n,,, hﬁz), andhfll) may be obtained from the Bessel asymp-
totic forms, Section 11.6. We find

1
jux) ~ = sm(x - %) (11.158)
X
1
M () ~ —— cos<x - %) (11.159)
X
ix i(x—nm/2)
WO ) ~ iy = i (11.160a)
X X
—ix —i(x—nm/2)
h® (x) ~imH e =i f . (11.160b)
X X

26The condition that the second term in the series be negligible compared to the first is actda®y(2n + 2)(2n + 3)/
(n+ D12 for ju(x).
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The condition for these spherical Bessel forms is that n(n + 1)/2. From these as-
ymptotic values we see that(x) andn, (x) are appropriate for a description stnding
spherical waves hﬁ,l) (x) andh,(f) (x) correspond taraveling spherical waves If the time
dependence for the traveling waves is taken teté’, thenhﬁll) (x) yields an outgoing
traveling spherical wavéz,,(f) (x) an incoming wave. Radiation theory in electromagnetism
and scattering theory in quantum mechanics provide many applications.

Recurrence Relations

The recurrence relations to which we now turn provide a convenient way of developing the
higher-order spherical Bessel functions. These recurrence relations may be derived from
the series, but, as with the modified Bessel functions, itis easier to substitute into the known
recurrence relations (Eqgs. (11.10) and (11.12)). This gives

2n+1
foet@) + fusa0) = 2500, (11.161)

nfa—1(x) = (0 + 1) fur1(x) = 2n + 1) f (x). (11.162)

Rearranging these relations (or substituting into Egs. (11.15) and (11.17)), we obtain

%[x”“fm)] =x"t (), (11.163)
d —n —n
E[x fu(@)]==x7" fuga(x). (11.164)

Here £, may represent,, n,, h\Y, or h{?.
The specific forms, Egs. (11.154) and (11.155), may also be readily obtained from

Eq. (11.164).
By mathematical induction we may establish the Rayleigh formulas
1d\"(si
) = (—1)"x”(——) <ﬂ> (11.165)
x dx by
14d\"
np(x) = —(—D”x”(——) <Cosx), (11.166)
x dx X

WP (x) = =i (—=1)"x" (31> (6—>
xdx X

h?(x) = i(—l)”x"(li) <em>.
xdx X

(11.167)
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Orthogonality
We may take the orthogonality integral for the ordinary Bessel functions (Eqgs. (11.49) and
(11.50)),
a Jo 0 az 2
ol avp— || @vg— pdp = _[Jv+1(avp)] 3pg> (11.168)
0 a a 2
and substitute in the expression frto obtain
a 3
. P . Py 2 ar. 2
/0 Jn (anpz)]n (anq Z)p dp = 7[]n+1(05np)] Spg- (11.169)

Herew,, anda,, are roots ofj,.

This represents orthogonality with respect to the roots of the Bessel functions. An illus-
tration of this sort of orthogonality is provided in Example 11.7.1, the problem of a particle
in a sphere. Equation (11.169) guarantees orthogonality of the wave fungtionsor
fixedn. (If n varies, the accompanying spherical harmonic will provide orthogonality.)

Example 11.7.1 PARTICLE IN A SPHERE

An illustration of the use of the spherical Bessel functions is provided by the problem of
a quantum mechanical particle in a sphere of radiuQuantum theory requires that the
wave functiony, describing our particle, satisfy

hz
" 2m

and the boundary conditions ()(r < a) remains finite, (2)y(a) = 0. This corresponds

to a square-well potentidt =0, r < a, andV = oo, r > a. Here# is Planck’s constant
divided by 2r, m is the mass of our particle, anfl is, its energy. Let us determine the
minimum value of the energy for which our wave equation has an acceptable solution.
Equation (11.170) is Helmholtz’s equation with a radial part (compare Section 9.3 for
separation of variables):

V2 =Evy, (11.170)

2
R 2dR [kz—”(””Ll)}R:o, (11.171)

dr? + r dr r2
with k2 = 2m E /#?. Hence by Eq. (11.139), with =0,
R = Ajo(kr) + Bng(kr).

We choose the orbital angular momentum index 0, for any angular dependence would
raise the energy. The spherical Neumann function is rejected because of its divergent be-
havior at the origin. To satisfy the second boundary condition (for all angles), we require

a=u«a, (11.172)
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whereqx is a root of jo, that is, jo(a) = 0. This has the effect of limiting the allowable
energies to a certain discrete set, or, in other words, application of boundary condition (2)
quantizes the energy. The smallest is the first zero ofjo,

a=rm,
and
232 2
mh h
Ernin = 2ma? _ 8ma?’ (11.173)

which means that for any finite sphere the particle energy will have a positive minimum
or zero-point energy. This is an illustration of the Heisenberg uncertainty principlegfor
with Ar <a.

In solid-state physics, astrophysics, and other areas of physics, we may wish to know
how many different solutions (energy states) correspond to energies less than or equal to
some fixed energy¥y. For a cubic volume (Exercise 9.3.5) the problem is fairly simple.
The considerably more difficult spherical case is worked out by R. H. Lamhert,J.
Phys.36: 417, 1169 (1968).

The relevant orthogonality relation for thig(kr) can be derived from the integral given
in Exercise 11.7.23. |

Another form, orthogonality with respect to the indices, may be written as

o
/ Jm(X) jn(x)dx =0, m#n, m,n>0. (11.174)
—0o0
The proof is left as Exercise 11.7.10#f=n (compare Exercise 11.7.11), we have
P2 T
dx = . 11.175
/_M[Jn(x)] Y=o ( )

Most physical applications of orthogonal Bessel and spherical Bessel functions involve
orthogonality with varying roots and an inter8l a] and Egs. (11.168) and (11.169) and
Exercise 11.7.23 for continuous-energy eigenvalues.

The spherical Bessel functions will enter again in connection with spherical waves, but
further consideration is postponed until the corresponding angular functions, the Legendre
functions, have been introduced.

Exercises

11.7.1  Show that if

ny(x) = \/gNn—i-l/Z(x)a
(—1>"+1\/§Jnl/z<x).

it automatically equals
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11.7.2  Derive the trigonometric-polynomial forms g¢f(z) andn, (z).%’

(n/2]
) 1 nmw (=D*(n 4 25)!
Jn(@) = Zsm(z - 7) ;) (25)!(22)% (n — 2s)!

. nw [(”zl):/zl (—1)°(n + 25 + 1!
o\ 2) & @D@Ph-2 -1

(-t n\ A (L1 4 2)!
o= o+ ) 2 Bt -2

(=l N (=1)°(n + 25 + 1)!
T Sm<z + 7) 2 25+ D22 (n—25 — DI

s=0
11.7.3 Use the integral representation 4f(x),
1 AN s -1
- - 1 = 14 _ 2\V /2
S = %)!(2) /_16 (1—p%)" "dp,
to show that the spherical Bessel functigh$x) are expressible in terms of trigono-
metric functions; that is, for example,

. sinx . sinx  cosx
Jox) = T’ J1lx) = 7 -

X
11.7.4 (a) Derive the recurrence relations

2n+1
o1 + fora(x) = %fnm,

nfp-1() = (n+1) fur1(x) = 2 + 1) £, (x)

satisfied by the spherical Bessel functigpéx), n, (x), h,gl) (x), anth,z) (x).
(b) Show, from these two recurrence relations, that the spherical Bessel fufiation
satisfies the differential equation

X2 f () 4+ 2xf1(x) + [x2 = n(n + D] fulx) =0.

11.7.5 Prove by mathematical induction that

_ wonf1d\"(sinx
Jn(x)=(=1"x (——) (—)
xdx X

for n an arbitrary nonnegative integer.

11.7.6  From the discussion of orthogonality of the spherical Bessel functions, show that a
Wronskian relation forj, (x) andn,, (x) is

1
Jn QO (X) = ()ns (x) = 2

27The upper limit on the summatidn /2] means the largestteger that does not exceed/2.
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11.7.7

11.7.8

11.7.9

11.7.10

11.7.11

11.7.12

11.7.13

11.7.14

Verify
, , 2i
hP @2 (x) = hY (@ () = - 5.
X

Verify Poisson’s integral representation of the spherical Bessel function,

n

. z T ont1
Jn(z)zm/o cos(zcos@)smzn 0deo.

Show that

/oo dx  2sin[(u—v)r/2]

Ju)Sy(x)—=— , w+v>-—1L
X T

2 — 2
Derive Eq. (11.174):

/OO jn@jn(x)dx=0, 7"

oo m,n>0.

Derive Eq. (11.175):

2, T
/_Oo[]n(x)] dx_Zn—H

Set up the orthogonality integral fgy, (kr) in a sphere of radiug with the boundary
condition

JL(kR) =0.

The result is used in classifying electromagnetic radiation according to its angular mo-
mentum.

The Fresnel integrals (Fig. 11.15 and Exercise 5.10.2) occurring in diffraction theory
are given by

t t
x(t):\/gc< %t):/o cog(v?) dv, y(t):\/gS( %t):/o sin(v?) dv.

Show that these integrals may be expanded in series of spherical Bessel functions

1 —
x(s) == / Jra@ut?du=sY23" ja(s),
2 0 n=0

1 >
) =3 fo Jowyu'? du = sl/ZX_c:]jan(s).
Hint. To establish the equality of the integral and the sum, you may wish to work with
their derivatives. The spherical Bessel analogs of Egs. (11.12) and (11.14) are helpful.

A hollow sphere of radius (Helmholtz resonator) contains standing sound waves. Find
the minimum frequency of oscillation in terms of the radiugnd the velocity of sound
v. The sound waves satisfy the wave equation

1 0%y
V3= —
v v2 912
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FIGURE 11.15 Fresnel integrals.

and the boundary condition

oy
or

0, r=a.

This is a Neumann boundary condition. Example 11.7.1 has the same PDE but with a
Dirichlet boundary condition.
ANS. Vmin = 03313}/0, )\,maxz 3.01&:.

11.7.15 Defining the spherical modified Bessel functions (Fig. 11.16) by
. b4 2
in(x) =/ Zln+l/2(x)7 kn(x) =,/ EKnH/z(X),

. sinhx e~
io(x) = , ko(x) = .
X X

show that

Note that the numerical factors in the definitions,pfindk,, are not identical.

11.7.16 (a) Show that the parity af,(x) is (—1)".
(b) Show that, (x) has no definite parity.
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FIGURE 11.16 Spherical modified Bessel

functions.

11.7.17 Show that the spherical modified Bessel functions satisfy the following relations:

@) in(x)=i"ju(ix),
kn (x) = —i"h P (ix),

—n -

d
(b) in+1(x) :xn_(x ln)7

dx

d
kpy1(x) = —x" E (xinkn)y

) in(x)= x”(

kn(x) = (—1)"X"(

xdx

1d >” sinhx

’

X

1d\'e™
x dx x

11.7.18 Show that the recurrence relations fp¢x) andk, (x) are
2n+1

@ ip—1(x) —ippa(x) =

in(x),
X

nip-1(x) + (n + Dipy1(x) = (2n + )iy (x),



11.7.19

11.7.20

11.7.21

11.7.22
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2n+1
0) Ky 1(0) — knyp1(x) = —%kn(m,

nkp—1(x) + (n + Dkp11(x) = —(2n + Dk, (x).

Derive the limiting values for the spherical modified Bessel functions

@ " @ -y

in(x)%mﬁ kn(x) ~ prc et x KL
X —X 1
(b) ln(-x)'\'%v kn(x)'\" ex s x> En(n-l-l)

Show that the Wronskian of the spherical modified Bessel functions is given by

1
in (0K () = i,k () = = 5.

A quantum particle of mas¥ is trapped in a “square” well of radius The Schrédinger
equation potential is

—Vo, 0<
V(r):{ 0, <r<a
0, r>a.

The particle’s energ¥ is negative (an eigenvalue).

(&) Show that the radial part of the wave function is givenjlyir) for0<r <a
and k; (kor) for r > a. (We require thaty (0) be finite andy (c0) — 0.) Here
k? = 2M(E + Vo)/h?, k% = —2ME/h?, and! is the angular momentunm (in
Eqg. (11.139)).

(b) The boundary condition at= a is that the wave functiom () and its first deriv-
ative be continuous. Show that this means

(d/dr) ji(kir) _ (d/dr)k;(kor)
Ji(kar) re=a ki (kor) r:a.

This equation determines the energy eigenvalues.

Note This is a generalization of Example 10.1.2.
The quantum mechanical radial wave function for a scattered wave is given by

sin(kr + 8o)
ka = k77
r

wherek is the wave numbek = /2m E/k, anddy is the scattering phase shift. Show
that the normalization integral is

/OO V()Y (Nl dr = 18(/6 — K.
0 2k

Hint. You can use a sine representation of the Dirac delta function. See Exercise 15.3.8.
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11.7.23

11.7.24

11.7.25

11.7.26

Derive the spherical Bessel function closure relation
2612 00
b/

Note An interesting derivation involving Fourier transforms, the Rayleigh plane-wave
expansion, and spherical harmonics has been given by P. Ugircius]). Phys40:
1690 (1972).

(a) Write a subroutine that will generate the spherical Bessel functjp@s), that is,
will generate the numerical value gf(x) givenx andn.
Note One possibility is to use the explicit known formsjgfand j; and to develop
the higher index,, by repeated application of the recurrence relation.

(b) Check your subroutine by an independent calculation, such as Eq. (11.154). If
possible, compare the machine time needed for this check with the time required
for your subroutine.

jn(ar)jn(br)rzdr =6(a —Db).

The wave function of a particle in a sphere (Example 11.7.1) with angular momen-
tum s ¥ (r,0,9) = Aji(W2ME)r/n)Y" (0, ¢). The Y" (0, ¢) is a spherical har-
monic, described in Section 12.6. From the boundary conditign, 6, ¢) = 0 or
Ji((wW/2M E)a/h) = 0 calculate the 10 lowest-energy states. Disregardnthdegen-
eracy (2 + 1 values ofm for each choice of). Check your results against AMS-55,
Table 10.6, see Additional Readings for Chapter 8 for the reference.

Hint. You can use your spherical Bessel subroutine and a root-finding subroutine.

Check values. j;(og5) =0,

a1 = 3.1416
o171 =4.4934
a1 =5.7635
o2 = 6.2832

Let Example 11.7.1 be modified so that the potential is a fiviiteutside(r > a).
(@) ForE < Vg show that

’
Yout(r, 0, @) ~ ki <EV 2M (Vo — E))
(b) The new boundary conditions to be satisfied ata are
1ﬁin(av 9! (p) = 1pOLIt(av 87 (p)v

0 d
_Win(aa 9, (p) = _‘ﬂout(a, 97 (/7)
ar ar
or
L W] _ 1 dYou
Yin Or r=a Yout Or rza'
For/ = 0 show that the boundary conditionrat a leads to

1 1
f(E)=k{cotka — — +k'{1+—1 =0,
ka k'a

wherek = v2M E /i andk’ = /2M (Vo — E)/A.
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(c) With a = 4wegh?/Me? (Bohr radius) and/op = 4Me*/2h2, compute the possible
bound state$0 < E < V).
Hint. Call a root-finding subroutine after you know the approximate location of
the roots of

f(E)=0 (0<E<V).

(d) Show that whem = 4 ¢gfi?/Me? the minimum value ofy for which a bound
state exists i8/p = 2.4674M ¢* /212,

11.7.27 In some nuclear stripping reactions the differential cross section is proportional to
ji(x)2, wherel is the angular momentum. The location of the maximum on the curve of
experimental data permits a determinatioid,df the location of the (first) maximum of
Ji(x) is known. Compute the location of the first maximumjfx), j2(x), and j3(x).

Note For better accuracy look for the first zero gtx). Why is this more accurate than
direct location of the maximum?

Additional Readings

Jackson, J. DClassical ElectrodynamicS8rd ed., New York: J. Wiley (1999).

McBride, E. B.,Obtaining Generating Functiondlew York: Springer-Verlag (1971). An introduction to methods
of obtaining generating functions.

Watson, G. N.A Treatise on the Theory of Bessel Functioksd ed. Cambridge, UK: Cambridge University
Press (1952). This is the definitive text on Bessel functions and their properties. Although difficult reading, it
is invaluable as the ultimate reference.

Watson, G. N.A Treatise on the Theory of Bessel Functiatst ed. Cambridge, UK: Cambridge University Press
(1922). See also the references listed at the end of Chapter 13.



