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10.5.16 (a) Starting with a one-dimensional inhomogeneous differential equation (Eq. (10.89)),
assume thatψ(x) and ρ(x) may be represented by eigenfunction expansions.
Without any use of the Dirac delta function or its representations, show that

ψ(x)=
∞∑

n=0

∫ b

a
ρ(t)ϕn(t) dt

λn − λ
ϕn(x).

Note that (1) ifρ = 0, no solution exists unlessλ = λn and (2) if λ = λn, no
solution exists unlessρ is orthogonal toϕn. This same behavior will reappear with
integral equations in Section 16.4.

(b) Interchanging summation and integration, show that you have constructed the
Green’s function corresponding to Eq. (10.90).

10.5.17 The eigenfunctions of the Schrödinger equation are often complex. In this case the
orthogonality integral, Eq. (10.40), is replaced by

∫ b

a

ϕ∗i (x)ϕj (x)w(x)dx = δij .

Instead of Eq. (1.189), we have

δ(r1− r2)=
∞∑

n=0

ϕn(r1)ϕ
∗
n(r2).

Show that the Green’s function, Eq. (10.87), becomes

G(r1, r2)=
∞∑

n=0

ϕn(r1)ϕ
∗
n(r2)

k2
n − k2

=G∗(r2, r1).
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CHAPTER 11

BESSEL FUNCTIONS

11.1 BESSEL FUNCTIONS OF THE FIRST KIND, Jν(x)

Bessel functions appear in a wide variety of physical problems. In Section 9.3, separa-
tion of the Helmholtz, or wave, equation in circular cylindrical coordinates led to Bessel’s
equation. In Section 11.7 we will see that the Helmholtz equation in spherical polar co-
ordinates also leads to a form of Bessel’s equation. Bessel functions may also appear in
integral form — integral representations. This may result from integral transforms (Chap-
ter 15) or from the mathematical elegance of starting the study of Bessel functions with
Hankel functions, Section 11.4.

Bessel functions and closely related functions form a rich area of mathematical analysis
with many representations, many interesting and useful properties, and many interrela-
tions. Some of the major interrelations are developed in Section 11.1 and in succeeding
sections. Note that Bessel functions are not restricted to Chapter 11. The asymptotic forms
are developed in Section 7.3 as well as in Section 11.6. The confluent hypergeometric
representations appear in Section 13.5.

Generating Function for Integral Order

Although Bessel functions are of interest primarily as solutions of differential equations, it
is instructive and convenient to develop them from a completely different approach, that of
the generating function.1 This approach also has the advantage of focusing on the functions
themselves rather than on the differential equations they satisfy. Let us introduce a function
of two variables,

g(x, t)= e(x/2)(t−1/t). (11.1)

1Generating functions have already been used in Chapter 5. In Section 5.6 the generating function(1+ x)n was used to derive
the binomial coefficients. In Section 5.9 the generating functionx(ex − 1)−1 was used to derive the Bernoulli numbers.
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676 Chapter 11 Bessel Functions

Expanding this function in a Laurent series (Section 6.5), we obtain

e(x/2)(t−1/t) =
∞∑

n=−∞
Jn(x)t

n. (11.2)

It is instructive to compare Eq. (11.2) with the equivalent Eqs. (11.23) and (11.25).
The coefficient oftn, Jn(x), is defined to be a Bessel function of the first kind, of integral

ordern. Expanding the exponentials, we have a product of Maclaurin series inxt/2 and
−x/2t , respectively,

ext/2 · e−x/2t =
∞∑

r=0

(
x

2

)r
t r

r!

∞∑

s=0

(−1)s
(
x

2

)s
t−s

s! . (11.3)

Here, the summation indexr is changed ton, with n= r− s and summation limitsn=−s
to ∞, and the order of the summations is interchanged, which is justified by absolute
convergence. The range of the summation overn becomes−∞ to∞, while the summation
overs extends from max(−n,0) to∞. For a givens we gettn(n≥ 0) from r = n+ s:

(
x

2

)n+s
tn+s

(n+ s)! (−1)s
(
x

2

)s
t−s

s! . (11.4)

The coefficient oftn is then2

Jn(x)=
∞∑

s=0

(−1)s

s!(n+ s)!

(
x

2

)n+2s

= xn

2nn! −
xn+2

2n+2(n+ 1)! + · · · . (11.5)

This series form exhibits is behavior of the Bessel functionJn(x) for smallx and permits
numerical evaluation ofJn(x). The results forJ0, J1, andJ2 are shown in Fig. 11.1. From
Section 5.3 the error in using only a finite number of terms of this alternating series in
numerical evaluation is less than the first term omitted. For instance, if we wantJn(x)

FIGURE 11.1 Bessel functions,J0(x), J1(x), andJ2(x).

2From the steps leading to this series and from its convergence characteristics it should be clear that this series may be used with
x replaced byz and withz any point in the finite complex plane.
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to ±1% accuracy, the first term alone of Eq. (11.5) will suffice, provided the ratio of the
second term to the first is less than 1% (in magnitude) orx < 0.2(n+ 1)1/2. The Bessel
functions oscillate but arenot periodic — except in the limit asx→∞ (Section 11.6). The
amplitude ofJn(x) is not constant but decreases asymptotically asx−1/2. (See Eq.(11.137)
for this envelope.)

Forn < 0, Eq. (11.5) gives

J−n(x)=
∞∑

s=0

(−1)s

s!(s − n)!

(
x

2

)2s−n
. (11.6)

Sincen is an integer (here),(s − n)! →∞ for s = 0, . . . , (n− 1). Hence the series may be
considered to start withs = n. Replacings by s + n, we obtain

J−n(x)=
∞∑

s=0

(−1)s+n

s!(s + n)!

(
x

2

)n+2s

, (11.7)

showing immediately thatJn(x) andJ−n(x) are not independent but are related by

J−n(x)= (−1)nJn(x) (integraln). (11.8)

These series expressions (Eqs. (11.5) and (11.6)) may be used withn replaced byν to
defineJν(x) andJ−ν(x) for nonintegralν (compare Exercise 11.1.7).

Recurrence Relations

The recurrence relations forJn(x) and its derivatives may all be obtained by operating
on the series, Eq. (11.5), although this requires a bit of clairvoyance (or a lot of trial and
error). Verification of the known recurrence relations is straightforward, Exercise 11.1.7.
Here it is convenient to obtain them from the generating function,g(x, t). Differentiating
both sides of Eq. (11.1) with respect tot , we find that

∂

∂t
g(x, t) = 1

2
x

(
1+ 1

t2

)
e(x/2)(t−1/t)

=
∞∑

n=−∞
nJn(x)t

n−1, (11.9)

and substituting Eq. (11.2) for the exponential and equating the coefficients of like powers
of t ,3 we obtain

Jn−1(x)+ Jn+1(x)=
2n

x
Jn(x). (11.10)

This is a three-term recurrence relation. GivenJ0 andJ1, for example,J2 (and any other
integral orderJn) may be computed.

3This depends on the fact that the power-series representation is unique (Sections 5.7 and 6.5).
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Differentiating Eq. (11.1) with respect tox, we have

∂

∂x
g(x, t)= 1

2

(
t − 1

t

)
e(x/2)(t−1/t) =

∞∑

n=−∞
J ′n(x)t

n. (11.11)

Again, substituting in Eq. (11.2) and equating the coefficients of like powers oft , we obtain
the result

Jn−1(x)− Jn+1(x)= 2J ′n(x). (11.12)

As a special case of this general recurrence relation,

J ′0(x)=−J1(x). (11.13)

Adding Eqs. (11.10) and (11.12) and dividing by 2, we have

Jn−1(x)=
n

x
Jn(x)+ J ′n(x). (11.14)

Multiplying by xn and rearranging terms produces

d

dx

[
xnJn(x)

]
= xnJn−1(x). (11.15)

Subtracting Eq. (11.12) from Eq. (11.10) and dividing by 2 yields

Jn+1(x)=
n

x
Jn(x)− J ′n(x). (11.16)

Multiplying by x−n and rearranging terms, we obtain

d

dx

[
x−nJn(x)

]
=−x−nJn+1(x). (11.17)

Bessel’s Differential Equation

Suppose we consider a set of functionsZν(x) that satisfies the basic recurrence relations
(Eqs. (11.10) and (11.12)), but withν not necessarily an integer andZν not necessarily
given by the series (Eq. (11.5)). Equation (11.14) may be rewritten(n→ ν) as

xZ′ν(x)= xZν−1(x)− νZν(x). (11.18)

On differentiating with respect tox, we have

xZ′′ν (x)+ (ν + 1)Z′ν − xZ′ν−1−Zν−1= 0. (11.19)

Multiplying by x and then subtracting Eq. (11.18) multiplied byν gives us

x2Z′′ν + xZ′ν − ν2Zν + (ν − 1)xZν−1− x2Z′ν−1= 0. (11.20)

Now we rewrite Eq. (11.16) and replacen by ν − 1:

xZ′ν−1= (ν − 1)Zν−1− xZν . (11.21)

Using Eq. (11.21) to eliminateZν−1 andZ′ν−1 from Eq. (11.20), we finally get

x2Z′′ν + xZ′ν +
(
x2− ν2

)
Zν = 0, (11.22)



11.1 Bessel Functions of the First Kind, Jν(x) 679

which is Bessel’s ODE. Hence any functionsZν(x) that satisfy the recurrence relations
(Eqs. (11.10) and (11.12), (11.14) and (11.16), or (11.15) and (11.17)) satisfy Bessel’s
equation; that is, the unknownZν are Bessel functions. In particular, we have shown that
the functionsJn(x), defined by our generating function, satisfy Bessel’s ODE. If the argu-
ment iskρ rather thanx, Eq. (11.22) becomes

ρ2 d2

dρ2
Zν(kρ)+ ρ

d

dρ
Zν(kρ)+

(
k2ρ2− ν2)Zν(kρ)= 0. (11.22a)

Integral Representation

A particularly useful and powerful way of treating Bessel functions employs integral rep-
resentations. If we return to the generating function (Eq. (11.2)), and substitutet = eiθ , we
get

eix sinθ = J0(x)+ 2
[
J2(x)cos 2θ + J4(x)cos4θ + · · ·

]

+ 2i
[
J1(x)sinθ + J3(x)sin 3θ + · · ·

]
, (11.23)

in which we have used the relations

J1(x)e
iθ + J−1(x)e

−iθ = J1(x)
(
eiθ − e−iθ

)

= 2iJ1(x)sinθ, (11.24)

J2(x)e
2iθ + J−2(x)e

−2iθ = 2J2(x)cos2θ,

and so on.
In summation notation,

cos(x sinθ) = J0(x)+ 2
∞∑

n=1

J2n(x)cos(2nθ),

(11.25)

sin(x sinθ) = 2
∞∑

n=1

J2n−1(x)sin
[
(2n− 1)θ

]
,

equating real and imaginary parts of Eq. (11.23).
By employing the orthogonality properties of cosine and sine,4

∫ π

0
cosnθ cosmθ dθ = π

2
δnm, (11.26a)

∫ π

0
sinnθ sinmθ dθ = π

2
δnm, (11.26b)

4They are eigenfunctions of a self-adjoint equation (linear oscillator equation) and satisfy appropriate boundary conditions
(compare Sections 10.2 and 14.1).
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in whichn andm arepositive integers (zero is excluded),5 we obtain

1

π

∫ π

0
cos(x sinθ)cosnθ dθ =

{
Jn(x), n even,
0, n odd,

(11.27)

1

π

∫ π

0
sin(x sinθ)sinnθ dθ =

{
0, n even,
Jn(x), n odd.

(11.28)

If these two equations are added together,

Jn(x) =
1

π

∫ π

0

[
cos(x sinθ)cosnθ + sin(x sinθ)sinnθ

]
dθ

= 1

π

∫ π

0
cos(nθ − x sinθ) dθ, n= 0,1,2,3, . . . . (11.29)

As a special case (integrate Eq. (11.25) over(0,π) to get)

J0(x)=
1

π

∫ π

0
cos(x sinθ) dθ. (11.30)

Noting that cos(x sinθ) repeats itself in all four quadrants, we may write Eq. (11.30)
as

J0(x)=
1

2π

∫ 2π

0
cos(x sinθ) dθ. (11.30a)

On the other hand, sin(x sinθ) reverses its sign in the third and fourth quadrants, so

1

2π

∫ 2π

0
sin(x sinθ) dθ = 0. (11.30b)

Adding Eq. (11.30a) andi times Eq. (11.30b), we obtain the complex exponential repre-
sentation

J0(x)=
1

2π

∫ 2π

0
eix sinθ dθ = 1

2π

∫ 2π

0
eix cosθ dθ. (11.30c)

This integral representation (Eq. (11.29)) may be obtained somewhat more directly by
employing contour integration (compare Exercise 11.1.16).6 Many other integral repre-
sentations exist (compare Exercise 11.1.18).

Example 11.1.1 FRAUNHOFER DIFFRACTION, CIRCULAR APERTURE

In the theory of diffraction through a circular aperture we encounter the integral

�∼
∫ a

0
r dr

∫ 2π

0
eibr cosθ dθ (11.31)

5Equations (11.26a) and (11.26b) hold for eitherm or n = 0. If both m andn = 0, the constant in (11.26a) becomesπ ; the
constant in Eq. (11.26b) becomes 0.
6Forn= 0 a simple integration overθ from 0 to 2π will convert Eq. (11.23) into Eq. (11.30c).
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FIGURE 11.2 Fraunhofer diffraction, circular aperture.

for �, the amplitude of the diffracted wave.7 Hereθ is an azimuth angle in the plane of the
circular aperture of radiusa, andα is the angle defined by a point on a screen below the
circular aperture relative to the normal through the center point. The parameterb is given
by

b= 2π

λ
sinα, (11.32)

with λ the wavelength of the incident wave. The other symbols are defined by Fig. 11.2.
From Eq. (11.30c) we get8

�∼ 2π
∫ a

0
J0(br)r dr. (11.33)

Equation (11.15) enables us to integrate Eq. (11.33) immediately to obtain

�∼ 2πab

b2
J1(ab)∼

λa

sinα
J1

(
2πa

λ
sinα

)
. (11.34)

Note here thatJ1(0)= 0. The intensity of the light in the diffraction pattern is proportional
to �2 and

�2∼
{
J1[(2πa/λ)sinα]

sinα

}2

. (11.35)

7The exponentibr cosθ gives the phase of the wave on the distant screen at angleα relative to the phase of the wave incident on
the aperture at the point(r, θ). The imaginary exponential form of this integrand means that the integral is technically a Fourier
transform, Chapter 15. In general, the Fraunhofer diffraction pattern is given by the Fourier transform of the aperture.
8We could also refer to Exercise 11.1.16(b).
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Table 11.1 Zeros of the Bessel Functions and Their First Derivatives

Number of zero J0(x) J1(x) J2(x) J3(x) J4(x) J5(x)

1 2.4048 3.8317 5.1356 6.3802 7.5883 8.7715
2 5.5201 7.0156 8.4172 9.7610 11.0647 12.3386
3 8.6537 10.1735 11.6198 13.0152 14.3725 15.7002
4 11.7915 13.3237 14.7960 16.2235 17.6160 18.9801
5 14.9309 16.4706 17.9598 19.4094 20.8269 22.2178

J ′0(x)
a J ′1(x) J ′2(x) J ′3(x)

1 3.8317 1.8412 3.0542 4.2012
2 7.0156 5.3314 6.7061 8.0152
3 10.1735 8.5363 9.9695 11.3459

aJ ′0(x)=−J1(x).

From Table 11.1, which lists the zeros of the Bessel functions and their first derivatives,9

Eq. (11.35) will have a zero at

2πa

λ
sinα = 3.8317. . . , (11.36)

or

sinα = 3.8317λ

2πa
. (11.37)

For green light,λ= 5.5× 10−5 cm. Hence, ifa = 0.5 cm,

α ≈ sinα = 6.7× 10−5 (radian)≈ 14 seconds of arc, (11.38)

which shows that the bending or spreading of the light ray is extremely small. If this analy-
sis had been known in the seventeenth century, the arguments against the wave theory of
light would have collapsed. In mid-twentieth century this same diffraction pattern appears
in the scattering of nuclear particles by atomic nuclei — a striking demonstration of the
wave properties of the nuclear particles. �

A further example of the use of Bessel functions and their roots is provided by the
electromagnetic resonant cavity (Example 11.1.2) and the example and exercises of Sec-
tion 11.2.

Example 11.1.2 CYLINDRICAL RESONANT CAVITY

The propagation of electromagnetic waves in hollow metallic cylinders is important in
many practical devices. If the cylinder has end surfaces, it is called acavity. Resonant
cavities play a crucial role in many particle accelerators.

9Additional roots of the Bessel functions and their first derivatives may be found in C. L. Beattie, Table of first 700 zeros of
Bessel functions.Bell Syst. Tech. J.37: 689 (1958), and Bell Monogr.3055. Roots may be accessed in Mathematica and other
symbolic software and are on the Web.
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FIGURE 11.3 Cylindrical resonant
cavity.

We take thez-axis along the center of the cavity with end surfaces atz= 0 andz= l and
use cylindrical coordinates suggested by the geometry. Its walls are perfect conductors, so
the tangential electric field vanishes on them (as in Fig. 11.3):

Ez = 0=Eϕ for ρ = a, Eρ = 0=Eϕ for z= 0, l.

Inside the cavity we have a vacuum, soε0µ0 = 1/c2. In the interior of a resonant cav-
ity, electromagnetic waves oscillate with harmonic time dependencee−iωt , which follows
from separating the time from the spatial variables in Maxwell’s equations (Section 1.9),
so

∇×∇×E=− 1

c2

∂2E
∂t2

= α2E, α = ω

c
.

With ∇ · E = 0 (vacuum, no charges) and Eq. (1.85), we obtain for the space part of the
electric field

∇2E+ α2E= 0,

which is called thevector Helmholtz PDE. Thez-component (Ez, space part only) satis-
fies the scalar Helmholtz equation,

∇2Ez + α2Ez = 0. (11.39)

The transverse electric field componentsE⊥ = (Eρ,Eϕ) obey the same PDE but different
boundary conditions, given earlier. OnceEz is known, Maxwell’s equations determineEϕ

fully. See Jackson,Electrodynamicsin Additional Readings for details.
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We separate thez variable fromρ andϕ, because there are no mixed derivatives∂2Ez

∂z ∂ρ
,

etc. The product solution,Ez = v(ρ,ϕ)w(z), is substituted into the Helmholtz PDE forEz

using Eq. (2.35) for∇2 in cylindrical coordinates, and then we divide byvw, yielding

1

w(z)

d2w

dz2
+ 1

v

(
∂2v

∂ρ2
+ 1

ρ

∂v

∂ρ
+ 1

ρ2

∂2v

∂ϕ2
+ α2

)
v(ρ,ϕ)= 0.

This implies

− 1

w(z)

d2w

dz2
= 1

v(ρ,ϕ)

(
∂2v

∂ρ2
+ 1

ρ

∂v

∂ρ
+ 1

ρ2

∂2v

∂ϕ2
+ α2v

)
= k2.

Here,k2 is a separation constant, because the left- and right-hand sides depend on different
variables. Forw(z) we find the harmonic oscillator ODE with standing wave solution (not
transients) that we seek,

w(z)=Asinkz+B coskz,

with A,B constants. Forv(ρ,ϕ) we obtain

∂2v

∂ρ2
+ 1

ρ

∂v

∂ρ
+ 1

ρ2

∂2v

∂ϕ2
+ γ 2v = 0, γ 2= α2− k2.

In this PDE we can separate theρ andϕ variables, because there is no mixed term∂
2v

∂ρ ∂ϕ
.

The product formv = u(ρ)�(ϕ) yields

ρ2

u(ρ)

(
d2u

dρ2
+ 1

ρ

du

dρ
+ γ 2

)
=− 1

�(ϕ)

d2�

dϕ2
=m2,

where theseparation constantm2 must be an integer, because the angular solution�=
eimϕ of the ODE

d2�

dϕ2
+m2�= 0

must be periodic in the azimuthal angle.
This leaves us with the radial ODE

d2u

dρ2
+ 1

ρ

du

dρ
+
(
γ 2− m2

ρ2

)
u= 0.

Dimensional arguments suggest rescalingρ→ r = γρ and dividing byγ 2, which yields

d2u

dr2
+ 1

r

du

dr
+
(

1− m2

r2

)
u= 0.

This is Bessel’s ODE forν =m. We use the regular solutionJm(γρ) because the (irregular)
second independent solution is singular at the origin, which is unacceptable here. The
complete solution is

Ez = Jm(γρ)e
imϕ(Asinkz+B coskz), (11.40a)

where the constantγ is determined from theboundary condition Ez = 0 on the cavity sur-
faceρ = a, that is, thatγ a be a root of the Bessel functionJm (see Table 11.1). This gives
a discrete set of valuesγ = γmn, wheren designates thenth root ofJm (see Table 11.1).
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For the transverse magnetic or TM mode of oscillation withHz = 0 Maxwell’s equations
imply. (See againResonant Cavitiesin J. D. Jackson’sElectrodynamicsin Additional
Readings.)

E⊥ ∼∇⊥
∂Ez

∂z
, ∇⊥ =

(
∂

∂ρ
,

1

ρ

∂

∂ϕ

)
.

The form of this result suggestsEz ∼ coskz, that is, settingA= 0 so thatE⊥ ∼ sinkz= 0
at z= 0, l can be satisfied by

k = pπ

l
, p = 0,1,2, . . . . (11.41)

Thus, thetangential electric fieldsEρ andEϕ vanish atz= 0 andl. In other words,A= 0
corresponds todEz/dz= 0 atz= 0 andz= l for the TM mode. Altogether then, we have

γ 2= ω2

c2
− k2= ω2

c2
− p2π2

l2
, (11.42)

with

γ = γmn =
αmn

a
, (11.43)

whereαmn is thenth zero ofJm. The general solution

Ez =
∑

m,n,p

Jm(γmnρ)e
±imϕBmnp cos

pπz

l
, (11.40b)

with constantsBmnp, now follows from the superposition principle.
The result of the two boundary conditions and the separation constantm2 is that the

angular frequency of our oscillation depends on three discrete parameters:

ωmnp = c

√
α2
mn

a2
+ p2π2

l2
,





m= 0,1,2, . . . ,

n= 1,2,3, . . . ,

p = 0,1,2 . . . .

(11.44)

These are the allowable resonant frequencies for our TM mode. The TE mode of oscillation
is the topic of Exercise 11.1.26. �

Alternate Approaches

Bessel functions are introduced here by means of a generating function, Eq. (11.2). Other
approaches are possible. Listing the various possibilities, we have:

1. Generating function (magic), Eq. (11.2).
2. Series solution of Bessel’s differential equation, Section 9.5.
3. Contour integrals: Some writers prefer to start with contour integral definitions of the

Hankel functions, Section 7.3 and 11.4, and develop the Bessel functionJν(x) from
the Hankel functions.
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4. Direct solution of physical problems: Example 11.1.1. Fraunhofer diffraction with a
circular aperture, illustrates this. Incidentally, Eq. (11.31) can be treated by series ex-
pansion, if desired. Feynman10 develops Bessel functions from a consideration of cav-
ity resonators.

In case the generating function seems too arbitrary, it can be derived from a contour inte-
gral, Exercise 11.1.16, or from the Bessel function recurrence relations, Exercise 11.1.6.
Note that the contour integral is not limited to integerν, thus providing a starting point for
developing Bessel functions.

Bessel Functions of Nonintegral Order

These different approaches are not exactly equivalent. The generating function approach
is very convenient for deriving two recurrence relations, Bessel’s differential equation,
integral representations, addition theorems (Exercise 11.1.2), and upper and lower bounds
(Exercise 11.1.1). However, you will probably have noticed that the generating function
defined only Bessel functions of integral order,J0, J1, J2, and so on. This is a limitation
of the generating function approach that can be avoided by using the contour integral in
Exercise 11.1.16 instead, thus leading to foregoing approach (3). But the Bessel function of
the first kind,Jν(x), may easily be defined for nonintegralν by using the series (Eq. (11.5))
as a new definition.

The recurrence relations may be verified by substituting in the series form ofJν(x) (Ex-
ercise 11.1.7). From these relations Bessel’s equation follows. In fact, ifν is not an integer,
there is actually an important simplification. It is found thatJν andJ−ν are independent,
for no relation of the form of Eq. (11.8) exists. On the other hand, forν = n, an integer, we
need another solution. The development of this second solution and an investigation of its
properties form the subject of Section 11.3.

Exercises

11.1.1 From the product of the generating functionsg(x, t) · g(x,−t) show that

1=
[
J0(x)

]2+ 2
[
J1(x)

]2+ 2
[
J2(x)

]2+ · · ·
and therefore that|J0(x)| ≤ 1 and|Jn(x)| ≤ 1/

√
2, n= 1,2,3, . . . .

Hint. Use uniqueness of power series, Section 5.7.

11.1.2 Using a generating functiong(x, t)= g(u+ v, t)= g(u, t) · g(v, t), show that

(a) Jn(u+ v)=
∞∑

s=−∞
Js(u) · Jn−s(v),

(b) J0(u+ v)= J0(u)J0(v)+ 2
∞∑

s=1

Js(u)J−s(v).

10R. P. Feynman, R. B. Leighton, and M. Sands,The Feynman Lectures on Physics, Vol. II. Reading, MA: Addison-Wesley
(1964), Chapter 23.
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These are addition theorems for the Bessel functions.

11.1.3 Using only the generating function

e(x/2)(t−1/t) =
∞∑

n=−∞
Jn(x)t

n

and not the explicit series form ofJn(x), show thatJn(x) has odd or even parity accord-
ing to whethern is odd or even, that is,11

Jn(x)= (−1)nJn(−x).
11.1.4 Derive the Jacobi–Anger expansion

eizcosθ =
∞∑

m=−∞
imJm(z)e

imθ .

This is an expansion of a plane wave in a series of cylindrical waves.

11.1.5 Show that

(a) cosx = J0(x)+ 2
∞∑

n=1

(−1)nJ2n(x),

(b) sinx = 2
∞∑

n=0

(−1)nJ2n+1(x).

11.1.6 To help remove the generating function from the realm of magic, show that it can be
derived from the recurrence relation, Eq. (11.10).
Hint.

(a) Assume a generating function of the form

g(x, t)=
∞∑

m=−∞
Jm(x)t

m.

(b) Multiply Eq. (11.10) bytn and sum overn.
(c) Rewrite the preceding result as

(
t + 1

t

)
g(x, t)= 2t

x

∂g(x, t)

∂t
.

(d) Integrate and adjust the “constant” of integration (a function ofx) so that the
coefficient of the zeroth power,t0, is J0(x), as given by Eq. (11.5).

11.1.7 Show, by direct differentiation, that

Jν(x)=
∞∑

s=0

(−1)s

s!(s + ν)!

(
x

2

)ν+2s

11This is easily seen from the series form (Eq. (11.5)).
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satisfies the two recurrence relations

Jν−1(x)+ Jν+1(x) =
2ν

x
Jν(x),

Jν−1(x)− Jν+1(x) = 2J ′ν(x),

and Bessel’s differential equation

x2J ′′ν (x)+ xJ ′ν(x)+
(
x2− ν2)Jν(x)= 0.

11.1.8 Prove that

sinx

x
=
∫ π/2

0
J0(x cosθ)cosθ dθ,

1− cosx

x
=
∫ π/2

0
J1(x cosθ) dθ.

Hint. The definite integral
∫ π/2

0
cos2s+1 θ dθ = 2 · 4 · 6 · · · (2s)

1 · 3 · 5 · · · (2s + 1)

may be useful.

11.1.9 Show that

J0(x)=
2

π

∫ 1

0

cosxt√
1− t2

dt.

This integral is a Fourier cosine transform (compare Section 15.3). The corresponding
Fourier sine transform,

J0(x)=
2

π

∫ ∞

1

sinxt√
t2− 1

dt,

is established in Section 11.4 (Exercise 11.4.6) using a Hankel function integral repre-
sentation.

11.1.10 Derive

Jn(x)= (−1)nxn
(

1

x

d

dx

)n

J0(x).

Hint. Try mathematical induction.

11.1.11 Show that between any two consecutive zeros ofJn(x) there is one and only one zero
of Jn+1(x).
Hint. Equations (11.15) and (11.17) may be useful.

11.1.12 An analysis of antenna radiation patterns for a system with a circular aperture involves
the equation

g(u)=
∫ 1

0
f (r)J0(ur)r dr.

If f (r)= 1− r2, show that

g(u)= 2

u2
J2(u).
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11.1.13 The differential cross section in a nuclear scattering experiment is given bydσ/d�=
|f (θ)|2 . An approximate treatment leads to

f (θ)= −ik
2π

∫ 2π

0

∫ R

0
exp[ikρ sinθ sinϕ]ρ dρ dϕ.

Hereθ is an angle through which the scattered particle is scattered.R is the nuclear
radius. Show that

dσ

d�
=
(
πR2) 1

π

[
J1(kR sinθ)

sinθ

]2

.

11.1.14 A set of functionsCn(x) satisfies the recurrence relations

Cn−1(x)−Cn+1(x) =
2n

x
Cn(x),

Cn−1(x)+Cn+1(x) = 2C′n(x).

(a) What linear second-order ODE does theCn(x) satisfy?
(b) By a change of variable transform your ODE into Bessel’s equation. This sug-

gests thatCn(x) may be expressed in terms of Bessel functions of transformed
argument.

11.1.15 A particle (massm) is contained in a right circular cylinder (pillbox) of radiusR and
heightH . The particle is described by a wave function satisfying the Schrödinger wave
equation

− h̄2

2m
∇2ψ(ρ,ϕ, z)=Eψ(ρ,ϕ, z)

and the condition that the wave function go to zero over the surface of the pillbox. Find
the lowest (zero point) permitted energy.

ANS.E = h̄2

2m

[(
zpq

R

)2

+
(
nπ

H

)2]
,

Emin=
h̄2

2m

[(
2.405

R

)2

+
(
π

H

)2]
,

wherezpq is theqth zero ofJp and the indexp is fixed by the azimuthal dependence.

11.1.16 (a) Show by direct differentiation and substitution that

Jν(x)=
1

2πi

∫

C

e(x/2)(t−1/t)t−ν−1dt

or that the equivalent equation,

Jν(x)=
1

2πi

(
x

2

)ν ∫
es−x

2/4ss−ν−1ds,

satisfies Bessel’s equation.C is the contour shown in Fig. 11.4. The negative real
axis is the cut line.
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FIGURE 11.4 Bessel function contour.

Hint. Show that the total integrand (after substituting in Bessel’s differential equa-
tion) may be written as a total derivative:

d

dt

{
exp

[
x

2

(
t − 1

t

)]
t−ν

[
ν + x

2

(
t + 1

t

)]}
.

(b) Show that the first integral (withn an integer) may be transformed into

Jn(x)=
1

2π

∫ 2π

0
ei(x sinθ−nθ) dθ = i−n

2π

∫ 2π

0
ei(x cosθ+nθ) dθ.

11.1.17 The contourC in Exercise 11.1.16 is deformed to the path−∞ to−1, unit circlee−iπ

to eiπ , and finally−1 to−∞. Show that

Jν(x)=
1

π

∫ π

0
cos(νθ − x sinθ) dθ − sinνπ

π

∫ ∞

0
e−νθ−x sinhθ dθ.

This is Bessel’s integral.
Hint. The negative values of the variable of integrationu may be handled by using

u= te±ix .

11.1.18 (a) Show that

Jν(x)=
2

π1/2(ν − 1
2)!

(
x

2

)ν ∫ π/2

0
cos(x sinθ)cos2ν θ dθ,

whereν >−1
2 .

Hint. Here is a chance to use series expansion and term-by-term integration. The
formulas of Section 8.4 will prove useful.
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(b) Transform the integral in part (a) into

Jν(x) =
1

π1/2(ν − 1
2)!

(
x

2

)ν ∫ π

0
cos(x cosθ)sin2ν θ dθ

= 1

π1/2(ν − 1
2)!

(
x

2

)ν ∫ π

0
e±ix cosθ sin2ν θ dθ

= 1

π1/2(ν − 1
2)!

(
x

2

)ν ∫ 1

−1
e±ipx(1− p2)ν−1/2dp.

These are alternate integral representations ofJν(x).

11.1.19 (a) From

Jν(x)=
1

2πi

(
x

2

)ν ∫
t−ν−1et−x

2/4t dt

derive the recurrence relation

J ′ν(x)=
ν

x
Jν(x)− Jν+1(x).

(b) From

Jν(x)=
1

2πi

∫
t−ν−1e(x/2)(t−1/t) dt

derive the recurrence relation

J ′ν(x)= 1
2

[
Jν−1(x)− Jν+1(x)

]
.

11.1.20 Show that the recurrence relation

J ′n(x)= 1
2

[
Jn−1(x)− Jn+1(x)

]

follows directly from differentiation of

Jn(x)=
1

π

∫ π

0
cos(nθ − x sinθ) dθ.

11.1.21 Evaluate
∫ ∞

0
e−axJ0(bx) dx, a, b > 0.

Actually the results hold fora ≥ 0,−∞< b <∞. This is a Laplace transform ofJ0.
Hint. Either an integral representation ofJ0 or a series expansion will be helpful.

11.1.22 Using trigonometric forms, verify that

J0(br)=
1

2π

∫ 2π

0
eibr sinθ dθ.

11.1.23 (a) Plot the intensity (�2 of Eq. (11.35)) as a function of(sinα/λ) along a diameter
of the circular diffraction pattern. Locate the first two minima.
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(b) What fraction of the total light intensity falls within the central maximum?
Hint. [J1(x)]2/x may be written as a derivative and the area integral of the intensity
integrated by inspection.

11.1.24 The fraction of light incident on a circular aperture (normal incidence) that is transmitted
is given by

T = 2
∫ 2ka

0
J2(x)

dx

x
− 1

2ka

∫ 2ka

0
J2(x) dx.

Herea is the radius of the aperture andk is the wave number, 2π/λ. Show that

(a) T = 1− 1

ka

∞∑

n=0

J2n+1(2ka), (b) T = 1− 1

2ka

∫ 2ka

0
J0(x) dx.

11.1.25 The amplitudeU(ρ,ϕ, t) of a vibrating circular membrane of radiusa satisfies the wave
equation

∇2U − 1

v2

∂2U

∂t2
= 0.

Herev is the phase velocity of the wave fixed by the elastic constants and whatever
damping is imposed.

(a) Show that a solution is

U(ρ,ϕ, t)= Jm(kρ)
(
a1e

imϕ + a2e
−imϕ

)(
b1e

iωt + b2e
−iωt).

(b) From the Dirichlet boundary condition,Jm(ka)= 0, find the allowable values of
the wavelengthλ(k = 2π/λ).

Note. There are other Bessel functions besidesJm, but they all diverge atρ = 0.
This is shown explicitly in Section 11.3. The divergent behavior is actually implicit
in Eq. (11.6).

11.1.26 Example 11.1.2 describes the TM modes of electromagnetic cavity oscillation. The
transverse electric (TE) modes differ, in that we work from thez component of the
magnetic inductionB:

∇2Bz + α2Bz = 0

with boundary conditions

Bz(0)= Bz(l)= 0 and
∂Bz

∂ρ

∣∣∣∣
ρ=0

= 0.

Show that the TE resonant frequencies are given by

ωmnp = c

√
β2
mn

a2
+ p2π2

l2
, p = 1,2,3, . . . .
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11.1.27 Plot the three lowest TM and the three lowest TE angular resonant frequencies,ωmnp,
as a function of the radius/length(a/ l) ratio for 0≤ a/l ≤ 1.5.
Hint. Try plottingω2 (in units ofc2/a2) versus(a/ l)2. Why this choice?

11.1.28 A thin conducting disk of radiusa carries a chargeq. Show that the potential is de-
scribed by

ϕ(r, z)= q

4πε0a

∫ ∞

0
e−k|z|J0(kr)

sinka

k
dk,

whereJ0 is the usual Bessel function andr andz are the familiar cylindrical coordi-
nates.
Note. This is a difficult problem. One approach is through Fourier transforms such as
Exercise 15.3.11. For a discussion of the physical problem see Jackson (Classical Elec-
trodynamicsin Additional Readings).

11.1.29 Show that
∫ a

0
xmJn(x) dx, m≥ n≥ 0,

(a) is integrable in terms of Bessel functions and powers ofx (such asapJq(a)) for
m+ n odd;

(b) may be reduced to integrated terms plus
∫ a

0 J0(x)dx for m+ n even.

11.1.30 Show that
∫ α0n

0

(
1− y

α0n

)
J0(y)y dy =

1

α0n

∫ α0n

0
J0(y) dy.

Hereα0n is thenth root of J0(y). This relation is useful (see Exercise 11.2.11): The
expression on the right is easier and quicker to evaluate — and much more accurate.
Taking the difference of two terms in the expression on the left leads to a large relative
error.

11.1.31 The circular aperature diffraction amplitude� of Eq. (17.35) is proportional tof (z)=
J1(z)/z. The corresponding single slit diffraction amplitude is proportional tog(z) =
sinz/z.

(a) Calculate and plotf (z) andg(z) for z= 0.0(0.2)12.0.
(b) Locate the two lowest values ofz(z > 0) for whichf (z) takes on an extreme value.

Calculate the corresponding values off (z).
(c) Locate the two lowest values ofz(z > 0) for whichg(z) takes on an extreme value.

Calculate the corresponding values ofg(z).

11.1.32 Calculate the electrostatic potential of a charged diskϕ(r, z) from the integral
form of Exercise 11.1.28. Calculate the potential forr/a = 0.0(0.5)2.0 and z/a =
0.25(0.25)1.25. Why is z/a = 0 omitted? Exercise 12.3.17 is a spherical harmonic
version of this same problem.
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11.2 ORTHOGONALITY

If Bessel’s equation, Eq. (11.22a), is divided byρ, we see that it becomes self-adjoint, and
therefore, by the Sturm–Liouville theory, Section 10.2, the solutions are expected to be
orthogonal — if we can arrange to have appropriate boundary conditions satisfied. To take
care of the boundary conditions for a finite interval[0, a], we introduce parametersa and
ανm into the argument ofJν to getJν(ανmρ/a). Herea is the upper limit of the cylindrical
radial coordinateρ. From Eq. (11.22a),

ρ
d2

dρ2
Jν

(
ανm

ρ

a

)
+ d

dρ
Jν

(
ανm

ρ

a

)
+
(
α2
νmρ

a2
− ν2

ρ

)
Jν

(
ανm

ρ

a

)
= 0. (11.45)

Changing the parameterανm to ανn, we find thatJν(ανnρ/a) satisfies

ρ
d2

dρ2
Jν

(
ανn

ρ

a

)
+ d

dρ
Jν

(
ανn

ρ

a

)
+
(
α2
νnρ

a2
− ν2

ρ

)
Jν

(
ανn

ρ

a

)
= 0. (11.45a)

Proceeding as in Section 10.2, we multiply Eq. (11.45) byJν(ανnρ/a) and Eq. (11.45a)
by Jν(ανmρ/a) and subtract, obtaining

Jν

(
ανn

ρ

a

)
d

dρ

[
ρ

d

dρ
Jν

(
ανm

ρ

a

)]
− Jν

(
ανm

ρ

a

)
d

dρ

[
ρ

d

dρ
Jν

(
ανn

ρ

a

)]

= α2
νn − α2

νm

a2
ρJν

(
ανm

ρ

a

)
Jν

(
ανn

ρ

a

)
. (11.46)

Integrating fromρ = 0 toρ = a, we obtain
∫ a

0
Jν

(
ανn

ρ

a

)
d

dρ

[
ρ

d

dρ
Jν

(
ανm

ρ

a

)]
dρ −

∫ a

0
Jν

(
ανm

ρ

a

)
d

dρ

[
ρ

d

dρ
Jν

(
ανn

ρ

a

)]
dρ

= α2
νn − α2

νm

a2

∫ a

0
Jν

(
ανm

ρ

a

)
Jν

(
ανn

ρ

a

)
ρ dρ. (11.47)

Upon integrating by parts, we see that the left-hand side of Eq. (11.47) becomes
∣∣∣∣ρJν

(
ανn

ρ

a

)
d

dρ
Jν

(
ανm

ρ

a

)∣∣∣∣
a

0
−
∣∣∣∣ρJν

(
ανm

ρ

a

)
d

dρ
Jν

(
ανn

ρ

a

)∣∣∣∣
a

0
. (11.48)

For ν ≥ 0 the factorρ guarantees a zero at the lower limit,ρ = 0. Actually the lower
limit on the indexν may be extended down toν >−1, Exercise 11.2.4.12 At ρ = a, each
expression vanishes if we choose the parametersανn andανm to be zeros, or roots ofJν ;
that is,Jν(ανm)= 0. The subscripts now become meaningful:ανm is themth zero ofJν .

With this choice of parameters, the left-hand side vanishes (the Sturm–Liouville bound-
ary conditions are satisfied) and form 
= n,

∫ a

0
Jν

(
ανm

ρ

a

)
Jν

(
ανn

ρ

a

)
ρ dρ = 0. (11.49)

This gives us orthogonality over the interval[0, a].

12The caseν =−1 reverts toν =+1, Eq. (11.8).
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Normalization

The normalization integral may be developed by returning to Eq. (11.48), settingανn =
ανm + ε, and taking the limitε→ 0 (compare Exercise 11.2.2). With the aid of the recur-
rence relation, Eq. (11.16), the result may be written as

∫ a

0

[
Jν

(
ανm

ρ

a

)]2

ρ dρ = a2

2

[
Jν+1(ανm)

]2
. (11.50)

Bessel Series

If we assume that the set of Bessel functionsJν(ανmρ/a))(ν fixed, m = 1,2,3, . . .) is
complete, then any well-behaved but otherwise arbitrary functionf (ρ) may be expanded
in a Bessel series (Bessel–Fourier or Fourier–Bessel)

f (ρ)=
∞∑

m=1

cνmJν

(
ανm

ρ

a

)
, 0≤ ρ ≤ a, ν >−1. (11.51)

The coefficientscνm are determined by using Eq. (11.50),

cνm =
2

a2[Jν+1(ανm)]2
∫ a

0
f (ρ)Jν

(
ανm

ρ

a

)
ρ dρ. (11.52)

A similar series expansion involvingJν(βνmρ/a) with (d/dρ)Jν(βνmρ/a)|ρ=a = 0 is
included in Exercises 11.2.3 and 11.2.6(b).

Example 11.2.1 ELECTROSTATIC POTENTIAL IN A HOLLOW CYLINDER

From Table 9.3 of Section 9.3 (withα replaced byk), our solution of Laplace’s equation
in circular cylindrical coordinates is a linear combination of

ψkm(ρ,ϕ, z)= Jm(kρ)[am sinmϕ + bm cosmϕ]
[
c1e

kz + c2e
−kz]. (11.53)

The particular linear combination is determined by the boundary conditions to be satisfied.
Our cylinder here has a radiusa and a heightl. The top end section has a potential distrib-
utionψ(ρ,ϕ). Elsewhere on the surface the potential is zero.13 The problem is to find the
electrostatic potential

ψ(ρ,ϕ, z)=
∑

k,m

ψkm(ρ,ϕ, z) (11.54)

everywhere in the interior.
For convenience, the circular cylindrical coordinates are placed as shown in Fig. 11.3.

Sinceψ(ρ,ϕ,0)= 0, we takec1=−c2= 1
2 . Thez dependence becomes sinhkz, vanish-

ing at z = 0. The requirement thatψ = 0 on the cylindrical sides is met by requiring the
separation constantk to be

k = kmn =
αmn

a
, (11.55)

13If ψ = 0 atz= 0, l, butψ 
= 0 for ρ = a, the modified Bessel functions, Section 11.5, are involved.
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where the first subscript,m, gives the index of the Bessel function, whereas the second
subscript identifies the particular zero ofJm.

The electrostatic potential becomes

ψ(ρ,ϕ, z) =
∞∑

m=0

∞∑

n=1

Jm

(
αmn

ρ

a

)

· [amn sinmϕ + bmn cosmϕ] · sinh

(
αmn

z

a

)
. (11.56)

Equation (11.56) is a double series: a Bessel series inρ and a Fourier series inϕ.
At z= l,ψ =ψ(ρ,ϕ), a known function ofρ andϕ. Therefore

ψ(ρ,ϕ) =
∞∑

m=0

∞∑

n=1

Jm

(
αmn

ρ

a

)

· [amn sinmϕ + bmn cosmϕ] · sinh

(
αmn

l

a

)
. (11.57)

The constantsamn andbmn are evaluated by using Eqs. (11.49) and (11.50) and the corre-
sponding equations for sinϕ and cosϕ (Example 10.2.1 and Eqs. (14.2), (14.3), (14.15) to
(14.17)). We find14

amn

bmn

}
= 2

[
πa2 sinh

(
αmn

l

a

)
J 2
m+1(αmn)

]−1

·
∫ 2π

0

∫ a

0
ψ(ρ,ϕ)Jm

(
αmn

ρ

a

){
sinmϕ

cosmϕ

}
ρ dρ dϕ. (11.58)

These are definite integrals, that is, numbers. Substituting back into Eq. (11.56), the series
is specified and the potentialψ(ρ,ϕ, z) is determined. �

Continuum Form

The Bessel series, Eq. (11.51), and Exercise 11.2.6 apply to expansions over the finite
interval [0, a]. If a→∞, then the series forms may be expected to go over into integrals.
The discrete rootsανm become a continuous variableα. A similar situation is encountered
in the Fourier series, Section 15.2. The development of the Bessel integral from the Bessel
series is left as Exercise 11.2.8.

For operations with a continuum of Bessel functions,Jν(αρ), a key relation is the Bessel
functionclosureequation,

∫ ∞

0
Jν(αρ)Jν(α

′ρ)ρ dρ = 1

α
δ(α − α′), ν >−1

2
. (11.59)

This may be proved by the use of Hankel transforms, Section 15.1. An alternate approach,
starting from a relation similar to Eq. (10.82), is given by Morse and Feshbach, Section 6.3.
A second kind of orthogonality (varying the index) is developed for spherical Bessel func-
tions in Section 11.7.

14If m= 0, the factor 2 is omitted (compare Eq. (14.16)).
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Exercises

11.2.1 Show that

(
a2− b2)

∫ P

0
Jν(ax)Jν(bx)x dx = P

[
bJν(aP )J ′ν(bP )− aJ ′ν(aP )Jν(bP )

]
,

with

J ′ν(aP )= d

d(ax)
Jν(ax)

∣∣
x=P ,

∫ P

0

[
Jν(ax)

]2
x dx = P 2

2

{[
J ′ν(aP )

]2+
(

1− ν2

a2P 2

)[
Jν(aP )

]2
}
, ν >−1.

These two integrals are usually called thefirst and second Lommel integrals.
Hint. We have the development of the orthogonality of the Bessel functions as an anal-
ogy.

11.2.2 Show that
∫ a

0

[
Jν

(
ανm

ρ

a

)]2

ρ dρ = a2

2

[
Jν+1(ανm)

]2
, ν >−1.

Hereανm is themth zero ofJν .
Hint. With ανn = ανm+ ε, expandJν[(ανm+ ε)ρ/a] aboutανmρ/a by a Taylor expan-
sion.

11.2.3 (a) If βνm is themth zero of(d/dρ)Jν(βνmρ/a), show that the Bessel functions are
orthogonal over the interval[0, a] with an orthogonality integral

∫ a

0
Jν

(
βνm

ρ

a

)
Jν

(
βνn

ρ

a

)
ρ dρ = 0, m 
= n, ν >−1.

(b) Derive the corresponding normalization integral(m= n).

ANS.
a2

2

(
1− ν2

β2
νm

)[
Jν(βνm)

]2
, ν >−1.

11.2.4 Verify that the orthogonality equation, Eq. (11.49), and the normalization equation,
Eq. (11.50), hold forν >−1.
Hint. Using power-series expansions, examine the behavior of Eq. (11.48) asρ→ 0.

11.2.5 From Eq. (11.49) develop a proof thatJν(z), ν > −1, has no complex roots (with
nonzero imaginary part).
Hint.

(a) Use the series form ofJν(z) to exclude pure imaginary roots.
(b) Assumeανm to be complex and takeανn to beα∗νm.

11.2.6 (a) In the series expansion

f (ρ)=
∞∑

m=1

cνmJν

(
ανm

ρ

a

)
, 0≤ ρ ≤ a, ν >−1,
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with Jν(ανm)= 0, show that the coefficients are given by

cνm =
2

a2[Jν+1(ανm)]2
∫ a

0
f (ρ)Jν

(
ανm

ρ

a

)
ρ dρ.

(b) In the series expansion

f (ρ)=
∞∑

m=1

dνmJν

(
βνm

ρ

a

)
, 0≤ ρ ≤ a, ν >−1,

with (d/dρ)Jν(βνmρ/a) |ρ=a= 0, show that the coefficients are given by

dνm =
2

a2(1− ν2/β2
νm)[Jν(βνm)]2

∫ a

0
f (ρ)Jν

(
βνm

ρ

a

)
ρ dρ.

11.2.7 A right circular cylinder has an electrostatic potential ofψ(ρ,ϕ) on both ends. The po-
tential on the curved cylindrical surface is zero. Find the potential at all interior points.
Hint. Choose your coordinate system and adjust yourz dependence to exploit the sym-
metry of your potential.

11.2.8 For the continuum case, show that Eqs. (11.51) and (11.52) are replaced by

f (ρ) =
∫ ∞

0
a(α)Jν(αρ)dα,

a(α) = α

∫ ∞

0
f (ρ)Jν(αρ)ρ dρ.

Hint. The corresponding case for sines and cosines is worked out in Section 15.2. These
are Hankel transforms. A derivation for the special caseν = 0 is the topic of Exer-
cise 15.1.1.

11.2.9 A functionf (x) is expressed as a Bessel series:

f (x)=
∞∑

n=1

anJm(αmnx),

with αmn thenth root ofJm. Prove the Parseval relation,

∫ 1

0

[
f (x)

]2
x dx = 1

2

∞∑

n=1

a2
n

[
Jm+1(αmn)

]2
.

11.2.10 Prove that

∞∑

n=1

(αmn)
−2= 1

4(m+ 1)
.

Hint. Expandxm in a Bessel series and apply the Parseval relation.
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11.2.11 A right circular cylinder of lengthl has a potential

ψ

(
z=± l

2

)
= 100

(
1− ρ

a

)
,

where a is the radius. The potential over the curved surface (side) is zero. Using
the Bessel series from Exercise 11.2.7, calculate the electrostatic potential forρ/a =
0.0(0.2)1.0 andz/l = 0.0(0.1)0.5. Takea/l = 0.5.
Hint. From Exercise 11.1.30 you have

∫ α0n

0

(
1− y

α0n

)
J0(y)y dy.

Show that this equals

1

α0n

∫ α0n

0
J0(y) dy.

Numerical evaluation of this latter form rather than the former is both faster and more
accurate.
Note. Forρ/a = 0.0 andz/l = 0.5 the convergence is slow, 20 terms giving only 98.4
rather than 100.

Check value. Forρ/a = 0.4 andz/l = 0.3,
ψ = 24.558.

11.3 NEUMANN FUNCTIONS, BESSEL FUNCTIONS

OF THE SECOND KIND

From the theory of ODEs it is known that Bessel’s equation has two independent solutions.
Indeed, for nonintegral orderν we have already found two solutions and labeled them
Jν(x) and J−ν(x), using the infinite series (Eq. (11.5)). The trouble is that whenν is
integral, Eq. (11.8) holds and we have but one independent solution. A second solution
may be developed by the methods of Section 9.6. This yields a perfectly good second
solution of Bessel’s equation but is not the standard form.

Definition and Series Form

As an alternate approach, we take the particular linear combination ofJν(x) andJ−ν(x)

Nν(x)=
cosνπJν(x)− J−ν(x)

sinνπ
. (11.60)

This is the Neumann function (Fig. 11.5).15 For nonintegralν,Nν(x) clearly satisfies
Bessel’s equation, for it is a linear combination of known solutionsJν(x) and J−ν(x).

15In AMS-55 (see footnote 4 in Chapter 5 or Additional Readings of Chapter 8 p. for this ref.) and in most mathematics tables,
this is labeledYν(x).
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FIGURE 11.5 Neumann functionsN0(x), N1(x), andN2(x).

Substituting the power-series Eq. (11.6) forn→ ν (given in Exercise 11.1.7) yields

Nν(x)=−
(ν − 1)!

π

(
2

x

)ν

+ · · · ,16 (11.61)

for ν > 0. However, for integralν, ν = n, Eq. (11.8) applies and Eq. (11.60)16 becomes in-
determinate. The definition ofNν(x) was chosen deliberately for this indeterminate prop-
erty. Again substituting the power series and evaluatingNν(x) for ν→ 0 by l’Hôpital’s
rule for indeterminate forms, we obtain the limiting value

N0(x)=
2

π
(lnx + γ − ln2)+O

(
x2) (11.62)

for n= 0 andx→ 0, using

ν!(−ν)! = πν

sinπν
(11.63)

from Eq. (8.32). The first and third terms in Eq. (11.62) come from using(d/dν)(x/2)ν =
(x/2)ν ln(x/2), while γ comes from(d/dν)ν! for ν→ 0 using Eqs. (8.38) and (8.40). For
n > 0 we obtain similarly

Nn(x)=−
1

π
(n− 1)!

(
2

x

)n

+ · · · + 2

π

(
x

2

)n 1

n! ln
(
x

2

)
+ · · · . (11.64)

Equations (11.62) and (11.64) exhibit the logarithmic dependence that was to be expected.
This, of course, verifies the independence ofJn andNn.

16Note that this limiting form applies to both integral and nonintegral values of the indexν.
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Other Forms

As with all the other Bessel functions,Nν(x) has integral representations. ForN0(x) we
have

N0(x)=−
2

π

∫ ∞

0
cos(x cosht) dt =− 2

π

∫ ∞

1

cos(xt)

(t2− 1)1/2
dt, x > 0.

These forms can be derived as the imaginary part of the Hankel representations of Exer-
cise 11.4.7. The latter form is a Fourier cosine transform.

To verify thatNν(x), our Neumann function (Fig. 11.5) or Bessel function of the second
kind, actually does satisfy Bessel’s equation for integraln, we may proceed as follows.
L’Hôpital’s rule applied to Eq. (11.60) yields

Nn(x) =
(d/dν)[cosνπJν(x)− J−ν(x)]

(d/dν)sinνπ

∣∣∣∣
ν=n

= −π sinnπJn(x)+ [cosnπ∂Jν/∂ν − ∂J−ν/∂ν]|ν=n
π cosnπ

= 1

π

[
∂Jν(x)

∂ν
− (−1)n

∂J−ν(x)
∂ν

]∣∣∣∣
ν=n

. (11.65)

Differentiating Bessel’s equation forJ±ν(x) with respect toν, we have

x2 d2

dx2

(
∂J±ν
∂ν

)
+ x

d

dx

(
∂J±ν
∂ν

)
+
(
x2− ν2)∂J±ν

∂ν
= 2νJ±ν . (11.66)

Multiplying the equation forJ−ν by (−1)ν , subtracting from the equation forJν (as sug-
gested by Eq. (11.65)), and taking the limitν→ n, we obtain

x2 d2

dx2
Nn + x

d

dx
Nn +

(
x2− n2)Nn =

2n

π

[
Jn − (−1)nJ−n

]
. (11.67)

For ν = n, an integer, the right-hand side vanishes by Eq. (11.8) andNn(x) is seen to be a
solution of Bessel’s equation. The most general solution for anyν can therefore be written
as

y(x)=AJν(x)+BNν(x). (11.68)

It is seen from Eqs. (11.62) and (11.64) thatNn diverges, at least logarithmically. Any
boundary condition that requires the solution to be finite at the origin (as in our vibrat-
ing circular membrane (Section 11.1)) automatically excludesNn(x). Conversely, in the
absence of such a requirement,Nn(x) must be considered.

To a certain extent the definition of the Neumann functionNn(x) is arbitrary. Equa-
tions (11.62) and (11.64) contain terms of the formanJn(x). Clearly, any finite value of
the constantan would still give us a second solution of Bessel’s equation. Why shouldan
have the particular value implicit in Eqs. (11.62) and (11.64)? The answer involves the as-
ymptotic dependence developed in Section 11.6. IfJn corresponds to a cosine wave, then
Nn corresponds to a sine wave. This simple and convenient asymptotic phase relationship
is a consequence of the particular admixture ofJn in Nn.
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Recurrence Relations

Substituting Eq. (11.60) forNν(x) (nonintegralν) into the recurrence relations (Eqs. (11.10)
and (11.12) forJn(x), we see immediately thatNν(x) satisfies these same recurrence rela-
tions. This actually constitutes another proof thatNν is a solution. Note that the converse
is not necessarily true. All solutions need not satisfy the same recurrence relations. An
example of this sort of trouble appears in Section 11.5.

Wronskian Formulas

From Section 9.6 and Exercise 10.1.4 we have the Wronskian formula17 for solutions of
the Bessel equation,

uν(x)v
′
ν(x)− u′ν(x)vν(x)=

Aν

x
, (11.69)

in which Aν is a parameter that depends on the particular Bessel functionsuν(x) and
vν(x) being considered.Aν is a constant in the sense that it is independent ofx. Consider
the special case

uν(x)= Jν(x), vν(x)= J−ν(x), (11.70)

JνJ
′
−ν − J ′νJ−ν =

Aν

x
. (11.71)

SinceAν is a constant, it may be identified at any convenient point, such asx = 0. Using
the first terms in the series expansions (Eqs. (11.5) and (11.6)), we obtain

Jν →
xν

2νν! , J−ν →
2νx−ν

(−ν)!

J ′ν →
νxν−1

2νν! , J ′−ν →−ν2νx−ν−1

(−ν)! . (11.72)

Substitution into Eq. (11.69) yields

Jν(x)J
′
−ν(x)− J ′ν(x)J−ν(x)=

−2ν

xν!(−ν)! = −
2 sinνπ

πx
, (11.73)

using Eq. (8.32). Note thatAν vanishes for integralν, as it must, since the nonvanishing of
the Wronskian is a test of the independence of the two solutions. By Eq. (11.73),Jn and
J−n are clearly linearly dependent.

Using our recurrence relations, we may readily develop a large number of alternate
forms, among which are

JνJ−ν+1+ J−νJν−1=
2 sinνπ

πx
, (11.74)

17This result depends onP(x) of Section 9.5 being equal top′(x)/p(x), the corresponding coefficient of the self-adjoint form
of Section 10.1.
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JνJ−ν−1+ J−νJν+1=−
2 sinνπ

πx
, (11.75)

JνN
′
ν − J ′νNν =

2

πx
, (11.76)

JνNν+1− Jν+1Nν =−
2

πx
. (11.77)

Many more will be found in the references given at chapter’s end.
You will recall that in Chapter 9 Wronskians were of great value in two respects: (1) in

establishing the linear independence or linear dependence of solutions of differential equa-
tions and (2) in developing an integral form of a second solution. Here the specific forms
of the Wronskians and Wronskian-derived combinations of Bessel functions are useful pri-
marily to illustrate the general behavior of the various Bessel functions. Wronskians are of
great use in checking tables of Bessel functions. In Section 10.5 Wronskians appeared in
connection with Green’s functions.

Example 11.3.1 COAXIAL WAVE GUIDES

We are interested in an electromagnetic wave confined between the concentric, conducting
cylindrical surfacesρ = a andρ = b. Most of the mathematics is worked out in Section 9.3
and Example 11.1.2. To go from the standing wave of these examples to the traveling wave
here, we letA= iB,A= amn,B = bmn in Eq. (11.40a) and obtain

Ez =
∑

m,n

bmnJm(γρ)e
±imϕei(kz−ωt). (11.78)

Additional properties of the components of the electromagnetic wave in the simple cylin-
drical wave guide are explored in Exercises 11.3.8 and 11.3.9. For the coaxial wave guide
one generalization is needed. The origin,ρ = 0, is now excluded(0< a ≤ ρ ≤ b). Hence
the Neumann functionNm(γρ) may not be excluded.Ez(ρ,ϕ, z, t) becomes

Ez =
∑

m,n

[
bmnJm(γρ)+ cmnNm(γρ)

]
e±imϕei(kz−ωt). (11.79)

With the condition

Hz = 0, (11.80)

we have the basic equations for a TM (transverse magnetic) wave.
The (tangential) electric field must vanish at the conducting surfaces (Dirichlet boundary

condition), or

bmnJm(γ a)+ cmnNm(γ a)= 0, (11.81)

bmnJm(γ b)+ cmnNm(γ b)= 0. (11.82)
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These transcendental equations may be solved forγ (γmn) and the ratiocmn/bmn. From
Example 11.1.2,

k2= ω2µ0ε0− γ 2= ω2

c2
− γ 2. (11.83)

Sincek2 must be positive for a real wave, the minimum frequency that will be propagated
(in this TM mode) is

ω= γ c, (11.84)

with γ fixed by the boundary conditions, Eqs. (11.81) and (11.82). This is the cutoff fre-
quency of the wave guide.

There is also a TE (transverse electric) mode, withEz = 0 andHz given by Eq. (11.79).
Then we have Neumann boundary conditions in place of Eqs. (11.81) and (11.82). Finally,
for the coaxial guide (not for the plain cylindrical guide,a = 0), a TEM (transverse elec-
tromagnetic) mode,Ez =Hz = 0, is possible. This corresponds to a plane wave, as in free
space.

The simpler cases (no Neumann functions, simpler boundary conditions) of a circular
wave guide are included as Exercises 11.3.8 and 11.3.9.

To conclude this discussion of Neumann functions, we introduce the Neumann function
Nν(x) for the following reasons:

1. It is a second, independent solution of Bessel’s equation, which completes the general
solution.

2. It is required for specific physical problems such as electromagnetic waves in coaxial
cables and quantum mechanical scattering theory.

3. It leads to a Green’s function for the Bessel equation (Sections 9.7 and 10.5).
4. It leads directly to the two Hankel functions (Section 11.4).

�

Exercises

11.3.1 Prove that the Neumann functionsNn (with n an integer) satisfy the recurrence relations

Nn−1(x)+Nn+1(x) =
2n

x
Nn(x),

Nn−1(x)−Nn+1(x) = 2N ′n(x).

Hint. These relations may be proved by differentiating the recurrence relations forJν or
by using the limit form ofNν butnot dividing everything by zero.

11.3.2 Show that

N−n(x)= (−1)nNn(x).

11.3.3 Show that

N ′0(x)=−N1(x).
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11.3.4 If Y andZ are any two solutions of Bessel’s equation, show that

Yν(x)Z
′
ν(x)− Y ′ν(x)Zν(x)=

Aν

x
,

in whichAν may depend onν but is independent ofx. This is a special case of Exer-
cise 10.1.4.

11.3.5 Verify the Wronskian formulas

Jν(x)J−ν+1(x)+ J−ν(x)Jν−1(x) =
2 sinνπ

πx
,

Jν(x)N
′
ν(x)− J ′ν(x)Nν(x) =

2

πx
.

11.3.6 As an alternative to lettingx approach zero in the evaluation of the Wronskian constant,
we may invoke uniqueness of power series (Section 5.7). The coefficient ofx−1 in the
series expansion ofuν(x)v′ν(x)−u′ν(x)vν(x) is thenAν . Show by series expansion that
the coefficients ofx0 andx1 of Jν(x)J ′−ν(x)− J ′ν(x)J−ν(x) are each zero.

11.3.7 (a) By differentiating and substituting into Bessel’s ODE, show that
∫ ∞

0
cos(x cosht) dt

is a solution.
Hint. You can rearrange the final integral as

∫ ∞

0

d

dt

{
x sin(x cosht)sinht

}
dt.

(b) Show that

N0(x)=−
2

π

∫ ∞

0
cos(x cosht) dt

is linearly independent ofJ0(x).

11.3.8 A cylindrical wave guide has radiusr0. Find the nonvanishing components of the elec-
tric and magnetic fields for

(a) TM01, transverse magnetic wave(Hz =Hρ =Eϕ = 0),
(b) TE01, transverse electric wave(Ez =Eρ =Hϕ = 0).

The subscripts 01 indicate that the longitudinal component (Ez or Hz) involvesJ0 and
the boundary condition is satisfied by thefirst zero ofJ0 or J ′0.
Hint. All components of the wave have the same factor: expi(kz−ωt).

11.3.9 For a given mode of oscillation theminimum frequency that will be passed by a circular
cylindrical wave guide (radiusr0) is

νmin=
c

λc
,
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in whichλc is fixed by the boundary condition

Jn

(
2πr0

λc

)
= 0 for TMnm mode,

J ′n

(
2πr0

λc

)
= 0 for TEnm mode.

The subscriptn denotes the order of the Bessel function andm indicates the zero
used. Find this cutoff wavelengthλc for the three TM and three TE modes with the
longest cutoff wavelengths. Explain your results in terms of the graph ofJ0, J1, andJ2
(Fig. 11.1).

11.3.10 Write a program that will compute successive roots of the Neumann functionNn(x),
that isαns , whereNn(αns) = 0. Tabulate the first five roots ofN0,N1, andN2. Check
your values for the roots against those listed in AMS-55 (see Additional Readings of
Chapter 8 for the full ref.).

Check value.α12= 5.42968.

11.3.11 For the casem= 0, a = 1, andb= 2, the coaxial wave guide boundary conditions lead
to

f (x)= J0(2x)

N0(2x)
− J0(x)

N0(x)

(Fig. 11.6).

(a) Calculatef (x) for x = 0.0(0.1)10.0 and plotf (x) versusx to find the approxi-
mate location of the roots.

FIGURE 11.6 f (x) of Exercise 11.3.11.
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(b) Call a root-finding subroutine to determine the first three roots to higher precision.

ANS. 3.1230, 6.2734, 9.4182.

Note. The higher roots can be expected to appear at intervals whose length approaches
n. Why? AMS-55 (see Additional Readings of Chapter 8 for the reference), gives an
approximate formula for the roots. The functiong(x)= J0(x)N0(2x)−J0(2x)N0(x) is
much better behaved thanf (x) previously discussed.

11.4 HANKEL FUNCTIONS

Many authors prefer to introduce the Hankel functions by means of integral representations
and then to use them to define the Neumann functionNν(z). An outline of this approach is
given at the end of this section.

Definitions

Because we have already obtained the Neumann function by more elementary (and less
powerful) techniques, we may use it to define the Hankel functionsH

(1)
ν (x) andH (2)

ν (x):

H (1)
ν (x)= Jν(x)+ iNν(x) (11.85)

and

H (2)
ν (x)= Jν(x)− iNν(x). (11.86)

This is exactly analogous to taking

e±iθ = cosθ ± i sinθ. (11.87)

For real arguments,H (1)
ν andH (2)

ν are complex conjugates. The extent of the analogy will
be seen even better when the asymptotic forms are considered (Section 11.6). Indeed, it is
their asymptotic behavior that makes the Hankel functions useful.

Series expansion ofH (1)
ν (x) andH (2)

ν (x) may be obtained by combining Eqs. (11.5) and
(11.63). Often only the first term is of interest; it is given by

H
(1)
0 (x)≈ i

2

π
lnx + 1+ i

2

π
(γ − ln2)+ · · · , (11.88)

H (1)
ν (x)≈−i (ν − 1)!

π

(
2

x

)ν

+ · · · , ν > 0, (11.89)

H
(2)
0 (x)≈−i 2

π
lnx + 1− i

2

π
(γ − ln2)+ · · · , (11.90)

H (2)
ν (x)≈ i

(ν − 1)!
π

(
2

x

)ν

+ · · · , ν > 0. (11.91)
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Since the Hankel functions are linear combinations (with constant coefficients) ofJν
andNν , they satisfy the same recurrence relations (Eqs. (11.10) and (11.12))

Hν−1(x)+Hν+1(x)=
2ν

x
Hν(x), (11.92)

Hν−1(x)−Hν+1(x)= 2H ′
ν(x), (11.93)

for bothH (1)
ν (x) andH (2)

ν (x).
A variety of Wronskian formulas can be developed:

H (2)
ν H

(1)
ν+1−H (1)

ν H
(2)
ν+1=

4

iπx
, (11.94)

Jν−1H
(1)
ν − JνH

(1)
ν−1=

2

iπx
, (11.95)

JνH
(2)
ν−1− Jν−1H

(2)
ν = 2

iπx
. (11.96)

Example 11.4.1 CYLINDRICAL TRAVELING WAVES

As an illustration of the use of Hankel functions, consider a two-dimensional wave problem
similar to the vibrating circular membrane of Exercise 11.1.25. Now imagine that the waves
are generated atr = 0 and move outward to infinity. We replace our standing waves by
traveling ones. The differential equation remains the same, but the boundary conditions
change. We now demand that for larger the wave behave like

U ∼ ei(kr−ωt) (11.97)

to describe an outgoing wave. As before,k is the wave number. This assumes, for sim-
plicity, that there is no azimuthal dependence, that is, no angular momentum, orm= 0. In
Sections 7.3 and 11.6,H (1)

0 (kr) is shown to have the asymptotic behavior (forr→∞)

H
(1)
0 (kr)∼ eikr . (11.98)

This boundary condition at infinity then determines our wave solution as

U(r, t)=H
(1)
0 (kr)e−iωt . (11.99)

This solution diverges asr→ 0, which is the behavior to be expected with a source at the
origin.

The choice of a two-dimensional wave problem to illustrate the Hankel functionH
(1)
0 (z)

is not accidental. Bessel functions may appear in a variety of ways, such as in the sepa-
ration of conical coordinates. However, they enter most commonly in the radial equations
from the separation of variables in the Helmholtz equation in cylindrical and in spheri-
cal polar coordinates. We have taken a degenerate form of cylindrical coordinates for this
illustration. Had we used spherical polar coordinates (spherical waves), we should have
encountered indexν = n+ 1

2, n an integer. These special values yield the spherical Bessel
functions to be discussed in Section 11.7. �
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Contour Integral Representation of
the Hankel Functions

The integral representation (Schlaefli integral)

Jν(x)=
1

2πi

∮

C

e(x/2)(t−1/t) dt

tν+1
(11.100)

may easily be established as a Cauchy integral forν = n, an integer (by recognizing that
the numerator is the generating function (Eq. (11.1)) and integrating around the origin).
If ν is not an integer, the integrand is not single-valued and a cut line is needed in our
complex plane. Choosing the negative real axis as the cut line and using the contour shown
in Fig. 11.7, we can extend Eq. (11.100) to nonintegralν. Substituting Eq. (11.100) into
Bessel’s ODE, we can represent the combined integrand by an exact differential that van-
ishes ast→∞e±iπ (compare Exercise 11.1.16).

We now deform the contour so that it approaches the origin along the positive real axis,
as shown in Fig. 11.8. Forx > 0, this particular approach guarantees that the exact differ-
ential mentioned will vanish ast→ 0 because of thee−x/2t → 0 factor. Hence each of the
separate portions (∞ e−iπ to 0) and (0 to∞ eiπ ) is a solution of Bessel’s equation. We
define

H (1)
ν (x)= 1

πi

∫ ∞eiπ

0
e(x/2)(t−1/t) dt

tν+1
, (11.101)

H (2)
ν (x)= 1

πi

∫ 0

∞e−iπ
e(x/2)(t−1/t) dt

tν+1
. (11.102)

These expressions are particularly convenient because they may be handled by the method
of steepest descents (Section 7.3).H

(1)
ν (x) has a saddle point att =+i, whereasH (2)

ν (x)

has a saddle point att =−i.

FIGURE 11.7 Bessel function contour.



710 Chapter 11 Bessel Functions

FIGURE 11.8 Hankel function contours.

The problem of relating Eqs. (11.101) and (11.102) to our earlier definition of the Hankel
function (Eqs. (11.85) and (11.86)) remains. Since Eqs. (11.100) to (11.102) combined
yield

Jν(x)=
1

2

[
H (1)

ν (x)+H (2)
ν (x)

]
(11.103)

by inspection, we need only show that

Nν(x)=
1

2i

[
H (1)

ν (x)−H (2)
ν (x)

]
. (11.104)

This may be accomplished by the following steps:

1. With the substitutionst = eiπ/s for H (1)
ν andt = e−iπ/s for H (2)

ν , we obtain

H (1)
ν (x)= e−iνπH (1)

−ν (x), (11.105)

H (2)
ν (x)= eiνπH

(2)
−ν (x). (11.106)

2. From Eqs. (11.103)(ν→−ν), (11.105), and (11.106),

J−ν(x)=
1

2

[
eiνπH (1)

ν (x)+ e−iνπH (2)
ν (x)

]
. (11.107)

3. Finally substituteJν (Eq. (11.103)) andJ−ν (Eq. (11.107)) into the defining equation
for Nν , Eq. (11.60). This leads to Eq. (11.104) and establishes the contour integrals
Eqs. (11.101) and (11.102) as the Hankel functions.

Integral representations have appeared before: Eq. (8.35) forŴ(z) and various representa-
tions ofJν(z) in Section 11.1. With these integral representations of the Hankel functions,
it is perhaps appropriate to ask why we are interested in integral representations. There
are at least four reasons. The first is simply aesthetic appeal. Second, the integral repre-
sentations help to distinguish between two linearly independent solutions. In Fig. 11.6, the
contoursC1 andC2 crossdifferent saddle points (Section 7.3). For the Legendre functions
the contour forPn(z) (Fig. 12.11) and that forQn(z) encircledifferent singular points.
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Third, the integral representations facilitate manipulations, analysis, and the develop-
ment of relations among the various special functions. Fourth, and probably most impor-
tant of all, the integral representations are extremely useful in developing asymptotic ex-
pansions. One approach, the method of steepest descents, appears in Section 7.3. A second
approach, the direct expansion of an integral representation is given in Section 11.6 for the
modified Bessel functionKν(z). This same technique may be used to obtain asymptotic
expansions of the confluent hypergeometric functionsM andU — Exercise 13.5.13.

In conclusion, the Hankel functions are introduced here for the following reasons:

• As analogs ofe±ix they are useful for describing traveling waves.

• They offer an alternate (contour integral) and a rather elegant definition of Bessel func-
tions.

• H
(1)
ν is used to define the modified Bessel functionKν of Section 11.5.

Exercises

11.4.1 Verify the Wronskian formulas

(a) Jν(x)H
(1)′
ν (x)− J ′ν(x)H

(1)
ν (x)= 2i

πx
,

(b) Jν(x)H
(2)′
ν (x)− J ′ν(x)H

(2)
ν (x)= −2i

πx
,

(c) Nν(x)H
(1)′
ν (x)−N ′ν(x)H

(1)
ν (x)= −2

πx
,

(d) Nν(x)H
(2)′
ν (x)−N ′ν(x)H

(2)
ν (x)= −2

πx
,

(e) H
(1)
ν (x)H

(2)′
ν (x)−H

(1)′
ν (x)H

(2)
ν (x)= −4i

πx
,

(f) H
(2)
ν (x)H

(1)
ν+1(x)−H

(1)
ν (x)H

(2)
ν+1(x)= 4

iπx
,

(g) Jν−1(x)H
(1)
ν (x)− Jν(x)H

(1)
ν−1(x)= 2

iπx
.

11.4.2 Show that the integral forms

(a)
1

iπ

∫ ∞eiπ

0C1

e(x/2)(t−1/t) dt

tν+1
=H (1)

ν (x),

(b)
1

iπ

∫ 0

∞e−iπC2

e(x/2)(t−1/t) dt

tν+1
=H (2)

ν (x)

satisfy Bessel’s ODE. The contoursC1 andC2 are shown in Fig. 11.8.

11.4.3 Using the integrals and contours given in problem 11.4.2, show that

1

2i

[
H (1)

ν (x)−H (2)
ν (x)

]
=Nν(x).

11.4.4 Show that the integrals in Exercise 11.4.2 may be transformed to yield

(a) H
(1)
ν (x)= 1

πi

∫

C3

ex sinhγ−νγ dγ, (b) H (2)
ν (x)= 1

πi

∫

C4

ex sinhγ−νγ dγ
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FIGURE 11.9 Hankel function contours.

(see Fig. 11.9).

11.4.5 (a) TransformH (1)
0 (x), Eq. (11.101), into

H
(1)
0 (x)= 1

iπ

∫

C

eix coshs ds,

where the contourC runs from−∞− iπ/2 through the origin of thes-plane to
∞+ iπ/2.

(b) Justify rewritingH (1)
0 (x) as

H
(1)
0 (x)= 2

iπ

∫ ∞+iπ/2

0
eix coshs ds.

(c) Verify that this integral representation actually satisfies Bessel’s differential equa-
tion. (Theiπ/2 in the upper limit is not essential. It serves as a convergence factor.
We can replace it byiaπ/2 and take the limit.)

11.4.6 From

H
(1)
0 (x)= 2

iπ

∫ ∞

0
eix coshs ds

show that

(a) J0(x)=
2

π

∫ ∞

0
sin(x coshs) ds, (b) J0(x)=

2

π

∫ ∞

1

sin(xt)√
t2− 1

dt.

This last result is a Fourier sine transform.

11.4.7 From (see Exercises 11.4.4 and 11.4.5)

H
(1)
0 (x)= 2

iπ

∫ ∞

0
eix coshsds

show that

(a) N0(x)=−
2

π

∫ ∞

0
cos(x coshs) ds.
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(b) N0(x)=−
2

π

∫ ∞

1

cos(xt)√
t2− 1)

dt .

These are the integral representations in Section 11.3 (Other Forms).
This last result is a Fourier cosine transform.

11.5 MODIFIED BESSEL FUNCTIONS, Iν(x) AND Kν(x)

The Helmholtz equation,

∇2ψ + k2ψ = 0,

separated in circular cylindrical coordinates, leads to Eq. (11.22a), the Bessel equation.
Equation (11.22a) is satisfied by the Bessel and Neumann functionsJν(kρ) andNν(kρ)

and any linear combination, such as the Hankel functionsH
(1)
ν (kρ) andH (2)

ν (kρ). Now,
the Helmholtz equation describes the space part of wave phenomena. If instead we have a
diffusion problem, then the Helmholtz equation is replaced by

∇2ψ − k2ψ = 0. (11.108)

The analog to Eq. (11.22a) is

ρ2 d2

dρ2
Yν(kρ)+ ρ

d

dρ
Yν(kρ)−

(
k2ρ2+ ν2)Yν(kρ)= 0. (11.109)

The Helmholtz equation may be transformed into the diffusion equation by the trans-
formationk→ ik. Similarly, k→ ik changes Eq. (11.22a) into Eq. (11.109) and shows
that

Yν(kρ)= Zν(ikρ).

The solutions of Eq. (11.109) are Bessel functions of imaginary argument. To obtain a
solution that is regular at the origin, we takeZν as the regular Bessel functionJν . It is
customary (and convenient) to choose the normalization so that

Yν(x)= Iν(x)≡ i−νJν(ix). (11.110)

(Here the variablekρ is being replaced byx for simplicity.) The extrai−ν normalization
cancels theiν from each term and leavesIν(x) real. Often this is written as

Iν(x)= e−νπi/2Jν
(
xeiπ/2

)
. (11.111)

I0 andI1 are shown in Fig. 11.10.
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FIGURE 11.10 Modified Bessel
functions.

Series Form

In terms of infinite series this is equivalent to removing the(−1)s sign in Eq. (11.5) and
writing

Iν(x)=
∞∑

s=0

1

s!(s + ν)!

(
x

2

)2s+ν
, I−ν(x)=

∞∑

s=0

1

s!(s − ν)!

(
x

2

)2s−ν
. (11.112)

For integralν this yields

In(x)= I−n(x). (11.113)

Recurrence Relations

The recurrence relations satisfied byIν(x) may be developed from the series expansions,
but it is perhaps easier to work from the existing recurrence relations forJν(x). Let us
replacex by−ix and rewrite Eq. (11.110) as

Jν(x)= iνIν(−ix). (11.114)

Then Eq. (11.10) becomes

iν−1Iν−1(−ix)+ iν+1Iν+1(−ix)=
2ν

x
iνIν(−ix).

Replacingx by ix, we have a recurrence relation forIν(x),

Iν−1(x)− Iν+1(x)=
2ν

x
Iν(x). (11.115)
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Equation (11.12) transforms to

Iν−1(x)+ Iν+1(x)= 2I ′ν(x). (11.116)

These are the recurrence relations used in Exercise 11.1.14. It is worth emphasizing that al-
though two recurrence relations, Eqs. (11.115) and (11.116) or Exercise 11.5.7, specify the
second-order ODE, the converse is not true. The ODE does not uniquely fix the recurrence
relations. Equations (11.115) and (11.116) and Exercise 11.5.7 provide an example.

From Eq. (11.113) it is seen that we have but one independent solution whenν is an
integer, exactly as in the Bessel functionsJν . The choice of a second, independent solution
of Eq. (11.108) is essentially a matter of convenience. The second solution given here
is selected on the basis of its asymptotic behavior — as shown in the next section. The
confusion of choice and notation for this solution is perhaps greater than anywhere else
in this field.18 Many authors19 choose to define a second solution in terms of the Hankel
functionH (1)

ν (x) by

Kν(x)≡
π

2
iν+1H (1)

ν (ix)= π

2
iν+1[Jν(ix)+ iNν(ix)

]
. (11.117)

The factoriν+1 makesKν(x) real whenx is real. Using Eqs. (11.60) and (11.110), we may
transform Eq. (11.117) to20

Kν(x)=
π

2

I−ν(x)− Iν(x)

sinνπ
, (11.118)

analogous to Eq. (11.60) forNν(x). The choice of Eq. (11.117) as a definition is somewhat
unfortunate in that the functionKν(x) does not satisfy the same recurrence relations as
Iν(x) (compare Exercises 11.5.7 and 11.5.8). To avoid this annoyance, other authors21

have included an additional factor of cosνπ . This permitsKν to satisfy the same recurrence
relations asIν , but it has the disadvantage of makingKν = 0 for ν = 1

2,
3
5,

5
2, . . . .

The series expansion ofKν(x) follows directly from the series form ofH (1)
ν (ix). The

lowest-order terms are (cf. Eqs. (11.61) and (11.62))

K0(x) = − lnx − γ + ln 2+ · · · ,
Kν(x) = 2ν−1(ν − 1)!x−ν + · · · . (11.119)

Because the modified Bessel functionIν is related to the Bessel functionJν , much as sinh
is related to sine,Iν and the second solutionKν are sometimes referred to as hyperbolic
Bessel functions.K0 andK1 are shown in Fig. 11.10.

I0(x) andK0(x) have the integral representations

I0(x)=
1

π

∫ π

0
cosh(x cosθ) dθ, (11.120)

K0(x)=
∫ ∞

0
cos(x sinht) dt =

∫ ∞

0

cos(xt) dt

(t2+ 1)1/2
, x > 0. (11.121)

18A discussion and comparison of notations will be found inMath. Tables Aids Comput.1: 207–308 (1944).
19Watson, Morse and Feshbach, Jeffreys and Jeffreys (without theπ/2).
20For integral indexn we take the limit asν→ n.
21Whittaker and Watson, see Additional Readings of Chapter 13.
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Equation (11.120) may be derived from Eq. (11.30) forJ0(x) or may be taken as a special
case of Exercise 11.5.4,ν = 0. The integral representation ofK0, Eq. (11.121), is a Fourier
transform and may best be derived with Fourier transforms, Chapter 15, or with Green’s
functions Section 9.7. A variety of other forms of integral representations (includingν 
= 0)
appear in the exercises. These integral representations are useful in developing asymptotic
forms (Section 11.6) and in connection with Fourier transforms, Chapter 15.

To put the modified Bessel functionsIν(x) andKν(x) in proper perspective, we intro-
duce them here because:

• These functions are solutions of the frequently encountered modified Bessel equation.

• They are needed for specific physical problems, such as diffusion problems.

• Kν(x) provides a Green’s function, Section 9.7.

• Kν(x) leads to a convenient determination of asymptotic behavior (Section 11.6).

Exercises

11.5.1 Show that

e(x/2)(t+1/t) =
∞∑

n=−∞
In(x)t

n,

thus generating modified Bessel functions,In(x).

11.5.2 Verify the following identities

(a) 1= I0(x)+ 2
∞∑

n=1

(−1)nI2n(x),

(b) ex = I0(x)+ 2
∞∑

n=1

In(x),

(c) e−x = I0(x)+ 2
∞∑

n=1

(−1)nIn(x),

(d) coshx = I0(x)+ 2
∞∑

n=1

I2n(x),

(e) sinhx = 2
∞∑

n=1

I2n−1(x).

11.5.3 (a) From the generating function of Exercise 11.5.1 show that

In(x)=
1

2πi

∮
exp

[
(x/2)(t + 1/t)

] dt

tn+1
.
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(b) Forn= ν, not an integer, show that the preceding integral representation may be
generalized to

Iν(x)=
1

2πi

∫

C

exp
[
(x/2)(t + 1/t)

] dt

tν+1
.

The contourC is the same as that forJν(x), Fig. 11.7.

11.5.4 For ν >−1
2 show thatIν(z) may be represented by

Iν(z) =
1

π1/2(ν − 1
2)!

(
z

2

)ν ∫ π

0
e±zcosθ sin2ν θ dθ

= 1

π1/2(ν − 1
2)!

(
z

2

)ν ∫ 1

−1
e±zp

(
1− p2)ν−1/2

dp

= 2

π1/2(ν − 1
2)!

(
z

2

)ν ∫ π/2

0
cosh(zcosθ)sin2ν θ dθ.

11.5.5 A cylindrical cavity has a radiusa and heightl, Fig. 11.3. The ends,z= 0 andl, are at
zero potential. The cylindrical walls,ρ = a, have a potentialV = V (ϕ, z).

(a) Show that the electrostatic potential�(ρ,ϕ, z) has the functional form

�(ρ,ϕ, z)=
∞∑

m=0

∞∑

n=1

Im(knρ)sinknz · (amn sinmϕ + bmn cosmϕ),

wherekn = nπ/l.
(b) Show that the coefficientsamn andbmn are given by22

amn

bmn

}
= 2

πlIm(kna)

∫ 2π

0

∫ l

0
V (ϕ, z)sinknz ·

{
sinmϕ

cosmϕ

}
dzdϕ.

Hint. ExpandV (ϕ, z) as a double series and use the orthogonality of the trigonometric
functions.

11.5.6 Verify thatKν(x) is given by

Kν(x)=
π

2

I−ν(x)− Iν(x)

sinνπ

and from this show that

Kν(x)=K−ν(x).

11.5.7 Show thatKν(x) satisfies the recurrence relations

Kν−1(x)−Kν+1(x) = −
2ν

x
Kν(x),

Kν−1(x)+Kν+1(x) = −2K ′ν(x).

22Whenm= 0, the 2 in the coefficient is replaced by 1.
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11.5.8 If Kν = eνπiKν , show thatKν satisfies the same recurrence relations asIν .

11.5.9 For ν >−1
2 show thatKν(z) may be represented by

Kν(z) =
π1/2

(ν − 1
2)!

(
z

2

)ν ∫ ∞

0
e−zcosht sinh2ν t dt, −π

2
< argz <

π

2

= π1/2

(ν − 1
2)!

(
z

2

)ν ∫ ∞

1
e−zp(p2− 1)ν−1/2dp.

11.5.10 Show thatIν(x) andKν(x) satisfy the Wronskian relation

Iν(x)K
′
ν(x)− I ′ν(x)Kν(x)=−

1

x
.

This result is quoted in Section 9.7 in the development of a Green’s function.

11.5.11 If r = (x2+ y2)1/2, prove that

1

r
= 2

π

∫ ∞

0
cos(xt)K0(yt) dt.

This is a Fourier cosine transform ofK0.

11.5.12 (a) Verify that

I0(x)=
1

π

∫ π

0
cosh(x cosθ) dθ

satisfies the modified Bessel equation,ν = 0.
(b) Show that this integral contains no admixture ofK0(x), the irregular second solu-

tion.
(c) Verify the normalization factor 1/π .

11.5.13 Verify that the integral representations

In(z) =
1

π

∫ π

0
ezcost cos(nt) dt,

Kν(z) =
∫ ∞

0
e−zcosht cosh(νt) dt, ℜ(z) > 0,

satisfy the modified Bessel equation by direct substitution into that equation. How can
you show that the first form does not contain an admixture ofKn and that the second
form does not contain an admixture ofIν? How can you check the normalization?

11.5.14 Derive the integral representation

In(x)=
1

π

∫ π

0
ex cosθ cos(nθ) dθ.

Hint. Start with the corresponding integral representation ofJn(x). Equation (11.120)
is a special case of this representation.
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11.5.15 Show that

K0(z)=
∫ ∞

0
e−zcosht dt

satisfies the modified Bessel equation. How can you establish that this form is linearly
independent ofI0(z)?

11.5.16 Show that

eax = I0(a)T0(x)+ 2
∞∑

n=1

In(a)Tn(x), −1≤ x ≤ 1.

Tn(x) is thenth-order Chebyshev polynomial, Section 13.3.
Hint. Assume a Chebyshev series expansion. Using the orthogonality and normalization
of theTn(x), solve for the coefficients of the Chebyshev series.

11.5.17 (a) Write a double precision subroutine to calculateIn(x) to 12-decimal-place accu-
racy forn= 0,1,2,3, . . . and 0≤ x ≤ 1. Check your results against the 10-place
values given in AMS-55, Table 9.11, see Additional Readings of Chapter 8 for the
reference.

(b) Referring to Exercise 11.5.16, calculate the coefficients in the Chebyshev expan-
sions of coshx and of sinhx.

11.5.18 The cylindrical cavity of Exercise 11.5.5 has a potential along the cylinder walls:

V (z)=
{

100z
l
, 0≤ z

l
≤ 1

2,

100
(
1− z

l

)
, 1

2 ≤ z
l
≤ 1.

With the radius–height ratioa/l = 0.5, calculate the potential forz/l = 0.1(0.1)0.5 and
ρ/a = 0.0(0.2)1.0.

Check value.For z/l = 0.3 andρ/a = 0.8,V = 26.396.

11.6 ASYMPTOTIC EXPANSIONS

Frequently in physical problems there is a need to know how a given Bessel or modified
Bessel function behaves for large values of the argument, that is, the asymptotic behavior.
This is one occasion when computers are not very helpful. One possible approach is to
develop a power-series solution of the differential equation, as in Section 9.5, but now using
negative powers. This is Stokes’ method, Exercise 11.6.5. The limitation is that starting
from some positive value of the argument (for convergence of the series), we do not know
what mixture of solutions or multiple of a given solution we have. The problem is to relate
the asymptotic series (useful for large values of the variable) to the power-series or related
definition (useful for small values of the variable). This relationship can be established by
introducing a suitableintegral representationand then using either the method of steepest
descent, Section 7.3, or the direct expansion as developed in this section.
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Expansion of an Integral Representation

As a direct approach, consider the integral representation (Exercise 11.5.9)

Kν(z)=
π1/2

(ν − 1
2)!

(
z

2

)ν ∫ ∞

1
e−zx

(
x2− 1

)ν−1/2
dx, ν >−1

2
. (11.122)

For the present let us takez to be real, although Eq. (11.122) may be established for
−π/2< argz < π/2 (ℜ(z) > 0). We have three tasks:

1. To show thatKν as given in Eq. (11.122) actually satisfies the modified Bessel equa-
tion (11.109).

2. To show that the regular solutionIν is absent.
3. To show that Eq. (11.122) has the proper normalization.

1. The fact that Eq. (11.122) is a solution of the modified Bessel equation may be verified
by direct substitution. We obtain

zν+1
∫ ∞

1

d

dx

[
e−zx

(
x2− 1

)ν+1/2]
dx = 0,

which transforms the combined integrand into the derivative of a function that vanishes at
both endpoints. Hence the integral is some linear combination ofIν andKν .

2. The rejection of the possibility that this solution containsIν constitutes Exer-
cise 11.6.1.

3. The normalization may be verified by showing that, in the limitz→ 0,Kν(z) is in
agreement with Eq. (11.119). By substitutingx = 1+ t/z,

π1/2

(ν − 1
2)!

(
z

2

)ν ∫ ∞

1
e−zx

(
x2− 1

)ν−1/2
dx

= π1/2

(ν − 1
2)!

(
z

2

)ν

e−z
∫ ∞

0
e−t

(
t2

z2
+ 2t

z

)ν−1/2
dt

z
(11.123a)

= π1/2

(ν − 1
2)!

e−z

2νzν

∫ ∞

0
e−t t2ν−1

(
1+ 2z

t

)ν−1/2

dt, (11.123b)

taking outt2/z2 as a factor. This substitution has changed the limits of integration to a more
convenient range and has isolated the negative exponential dependencee−z. The integral
in Eq. (11.123b) may be evaluated forz= 0 to yield(2ν−1)!. Then, using the duplication
formula (Section 8.4), we have

lim
z→0

Kν(z)=
(ν − 1)!2ν−1

zν
, ν > 0, (11.124)

in agreement with Eq. (11.119), which thus checks the normalization.23

23For ν → 0 the integral diverges logarithmically, in agreement with the logarithmic divergence ofK0(z) for z→ 0 (Sec-
tion 11.5).
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Now, to develop an asymptotic series forKν(z), we may rewrite Eq. (11.123a) as

Kν(z)=
√

π

2z

e−z

(ν − 1
2)!

∫ ∞

0
e−t tν−1/2

(
1+ t

2z

)ν−1/2

dt (11.125)

(taking out 2t/z as a factor).
We expand(1+ t/2z)ν−1/2 by the binomial theorem to obtain

Kν(z)=
√

π

2z

e−z

(ν − 1
2)!

∞∑

r=0

(ν − 1
2)!

r!(ν − r − 1
2)!

(2z)−r
∫ ∞

0
e−t tν+r−1/2dt. (11.126)

Term-by-term integration (valid for asymptotic series) yields the desired asymptotic ex-
pansion ofKν(z):

Kν(z)∼
√

π

2z
e−z

[
1+ (4ν2− 12)

1!8z + (4ν2− 12)(4ν2− 32)

2!(8z)2 + · · ·
]
. (11.127)

Although the integral of Eq. (11.122), integrating along the real axis, was convergent only
for −π/2< argz < π/2, Eq. (11.127) may be extended to−3π/2< argz < 3π/2. Con-
sidered as an infinite series, Eq. (11.127) is actually divergent.24 However, this series is
asymptotic, in the sense that for large enoughz,Kν(z) may be approximated to any fixed
degree of accuracy with a small number of terms. (Compare Section 5.10 for a definition
and discussion of asymptotic series.)

It is convenient to rewrite Eq. (11.127) as

Kν(z)=
√

π

2z
e−z

[
Pν(iz)+ iQν(iz)

]
, (11.128)

where

Pν(z)∼ 1− (µ− 1)(µ− 9)

2!(8z)2 + (µ− 1)(µ− 9)(µ− 25)(µ− 49)

4!(8z)4 − · · · , (11.129a)

Qν(z)∼
µ− 1

1!(8z) −
(µ− 1)(µ− 9)(µ− 25)

3!(8z)3 + · · · , (11.129b)

and

µ= 4ν2.

It should be noted that althoughPν(z) of Eq. (11.129a) andQν(z) of Eq. (11.129b) have
alternating signs, the series forPν(iz) and Qν(iz) of Eq. (11.128) have all signs positive.
Finally, for z large,Pν dominates.

Then with the asymptotic form ofKν(z), Eq. (11.128), we can obtain expansions for all
other Bessel and hyperbolic Bessel functions by defining relations:

24Our binomial expansion is valid only fort < 2z and we have integratedt out to infinity. The exponential decrease of the
integrand prevents a disaster, but the resultant series is still only asymptotic, not convergent. By Table 9.3,z=∞ is an essential
singularity of the Bessel (and modified Bessel) equations. Fuchs’ theorem does not guarantee a convergent series and we do not
get a convergent series.
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1. From

π

2
iν+1H (1)

ν (iz)=Kν(z) (11.130)

we have

H (1)
ν (z) =

√
2

πz
exp

{
i

[
z−

(
ν + 1

2

)
π

2

]}

·
[
Pν(z)+ iQν(z)

]
, −π < argz < 2π. (11.131)

2. The second Hankel function is just the complex conjugate of the first (for real argu-
ment),

H (2)
ν (z) =

√
2

πz
exp

{
−i
[
z−

(
ν + 1

2

)
π

2

]}

·
[
Pν(z)− iQν(z)

]
, −2π < argz < π. (11.132)

An alternate derivation of the asymptotic behavior of the Hankel functions appears in
Section 7.3 as an application of the method of steepest descents.

3. SinceJν(z) is the real part ofH (1)
ν (z) for realz,

Jν(z) =
√

2

πz

{
Pν(z)cos

[
z−

(
ν + 1

2

)
π

2

]

−Qν(z)sin

[
z−

(
ν + 1

2

)
π

2

]}
, −π < argz < π, (11.133)

holds for realz, that is, argz = 0,π . Once Eq. (11.133) is established for realz, the
relation is valid for complexz in the given range of argument.

4. The Neumann function is the imaginary part ofH
(1)
ν (z) for realz, or

Nν(z) =
√

2

πz

{
Pν(z)sin

[
z−

(
ν + 1

2

)
π

2

]

+Qν(z)cos

[
z−

(
ν + 1

2

)
π

2

]}
, −π < argz < π. (11.134)

Initially, this relation is established for realz, but it may be extended to the complex
domain as shown.

5. Finally, the regular hyperbolic or modified Bessel functionIν(z) is given by

Iν(z)= i−νJν(iz) (11.135)

or

Iν(z)=
ez√
2πz

[
Pν(iz)− iQν(iz)

]
, −π

2
< argz <

π

2
. (11.136)
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FIGURE 11.11 Asymptotic approximation ofJ0(x).

This completes our determination of the asymptotic expansions. However, it is perhaps
worth noting the primary characteristics. Apart from the ubiquitousz−1/2, Jν andNν be-
have as cosine and sine, respectively. The zeros arealmost evenly spaced at intervals of
π ; the spacing becomes exactlyπ in the limit asz→∞. The Hankel functions have been
defined to behave like the imaginary exponentials, and the modified Bessel functionsIν
andKν go into the positive and negative exponentials. This asymptotic behavior may be
sufficient to eliminate immediately one of these functions as a solution for a physical prob-
lem. We should also note that the asymptotic seriesPν(z) andQν(z), Eqs. (11.129a) and
(11.129b), terminate forν =±1/2,±3/2, . . . and become polynomials (in negative powers
of z). For these special values ofν the asymptotic approximations become exact solutions.

It is of some interest to consider the accuracy of the asymptotic forms, taking just the
first term, for example (Fig. 11.11),

Jn(x)≈
√

2

πx
cos

[
x −

(
n+ 1

2

)(
π

2

)]
. (11.137)

Clearly, the condition for the validity of Eq. (11.137) is that the sine term be negligible;
that is,

8x≫ 4n2− 1. (11.138)

Forn or ν > 1 the asymptotic region may be far out.
As pointed out in Section 11.3, the asymptotic forms may be used to evaluate the various

Wronskian formulas (compare Exercise 11.6.3).

Exercises

11.6.1 In checking the normalization of the integral representation ofKν(z) (Eq. (11.122)), we
assumed thatIν(z) was not present. How do we know that the integral representation
(Eq. (11.122)) does not yieldKν(z)+ εIν(z) with ε 
= 0?
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FIGURE 11.12 Modified Bessel function contours.

11.6.2 (a) Show that

y(z)= zν
∫

e−zt
(
t2− 1

)ν−1/2
dt

satisfies the modified Bessel equation, provided the contour is chosen so that

e−zt
(
t2− 1

)ν+1/2

has the same value at the initial and final points of the contour.
(b) Verify that the contours shown in Fig. 11.12 are suitable for this problem.

11.6.3 Use the asymptotic expansions to verify the following Wronskian formulas:

(a) Jν(x)J−ν−1(x)+ J−ν(x)Jν+1(x)=−2 sinνπ/πx,
(b) Jν(x)Nν+1(x)− Jν+1(x)Nν(x)=−2/πx,
(c) Jν(x)H

(2)
ν−1(x)− Jν−1(x)H

(2)
ν (x)= 2/iπx,

(d) Iν(x)K
′
ν(x)− I ′ν(x)Kν(x)=−1/x,

(e) Iν(x)Kν+1(x)+ Iν+1(x)Kν(x)= 1/x.

11.6.4 From the asymptotic form ofKν(z), Eq. (11.127), derive the asymptotic form of
H

(1)
ν (z), Eq. (11.131). Note particularly the phase,(ν + 1

2)π/2.

11.6.5 Stokes’ method.

(a) Replace the Bessel function in Bessel’s equation byx−1/2y(x) and show thaty(x)
satisfies

y′′(x)+
(

1− ν2− 1
4

x2

)
y(x)= 0.

(b) Develop a power-series solution with negative powers ofx starting with the as-
sumed form

y(x)= eix
∞∑

n=0

anx
−n.

Determine the recurrence relation givingan+1 in terms ofan. Check your result
against the asymptotic series, Eq. (11.131).

(c) From the results of Section 7.4 determine the initial coefficient,a0.
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11.6.6 Calculate the first 15 partial sums ofP0(x) andQ0(x), Eqs. (11.129a) and (11.129b).
Let x vary from 4 to 10 in unit steps. Determine the number of terms to be retained
for maximum accuracy and the accuracy achieved as a function ofx. Specifically, how
small mayx be without raising the error above 3× 10−6?

ANS. xmin= 6.

11.6.7 (a) Using the asymptotic series (partial sums)P0(x) andQ0(x) determined in Exer-
cise 11.6.6, write a function subprogram FCT(X) that will calculateJ0(x), x real,
for x ≥ xmin.

(b) Test your function by comparing it with theJ0(x) (tables or computer library
subroutine) forx = xmin(10)xmin+ 10.

Note. A more accurate and perhaps simpler asymptotic form forJ0(x) is given in AMS-
55, Eq. (9.4.3), see Additional Readings of Chapter 8 for the reference.

11.7 SPHERICAL BESSEL FUNCTIONS

When the Helmholtz equation is separated in spherical coordinates, the radial equation has
the form

r2d
2R

dr2
+ 2r

dR

dr
+
[
k2r2− n(n+ 1)

]
R = 0. (11.139)

This is Eq. (9.65) of Section 9.3. The parameterk enters from the original Helmholtz
equation, whilen(n + 1) is a separation constant. From the behavior of the polar angle
function (Legendre’s equation, Sections 9.5 and 12.5), the separation constant must have
this form, with n a nonnegative integer. Equation (11.139) has the virtue of being self-
adjoint, but clearly it is not Bessel’s equation. However, if we substitute

R(kr)= Z(kr)

(kr)1/2
,

Equation (11.139) becomes

r2d
2Z

dr2
+ r

dZ

dr
+
[
k2r2−

(
n+ 1

2

)2]
Z = 0, (11.140)

which is Bessel’s equation.Z is a Bessel function of ordern+ 1
2 (n an integer). Because

of the importance of spherical coordinates, this combination, that is,

Zn+1/2(kr)

(kr)1/2
,

occurs quite often.
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Definitions

It is convenient to label these functions spherical Bessel functions with the following defin-
ing equations:

jn(x) =
√

π

2x
Jn+1/2(x),

nn(x) =
√

π

2x
Nn+1/2(x)= (−1)n+1

√
π

2x
J−n−1/2(x),

25

h
(1)
n (x) =

√
π

2x
H

(1)
n+1/2(x)= jn(x)+ inn(x),

h
(2)
n (x) =

√
π

2x
H

(2)
n+1/2(x)= jn(x)− inn(x).

(11.141)

These spherical Bessel functions (Figs. 11.13 and 11.14) can be expressed in series form
by using the series (Eq. (11.5)) forJn, replacingn with n+ 1

2 :

Jn+1/2(x)=
∞∑

s=0

(−1)s

s!(s + n+ 1
2)!

(
x

2

)2s+n+1/2

. (11.142)

Using the Legendre duplication formula,

z!(z+ 1
2)! = 2−2z−1π1/2(2z+ 1)!, (11.143)

we have

jn(x) =
√

π

2x

∞∑

s=0

(−1)s22s+2n+1(s + n)!
π1/2(2s + 2n+ 1)!s!

(
x

2

)2s+n+1/2

= 2nxn
∞∑

s=0

(−1)s(s + n)!
s!(2s + 2n+ 1)!x

2s . (11.144)

Now,Nn+1/2(x)= (−1)n+1J−n−1/2(x) and from Eq. (11.5) we find that

J−n−1/2(x)=
∞∑

s=0

(−1)s

s!(s − n− 1
2)!

(
x

2

)2s−n−1/2

. (11.145)

This yields

nn(x)= (−1)n+1 2nπ1/2

xn+1

∞∑

s=0

(−1)s

s!(s − n− 1
2)!

(
x

2

)2s

. (11.146)

25This is possible because cos(n+ 1
2)π = 0, see Eq. (11.60).



11.7 Spherical Bessel Functions 727

FIGURE 11.13 Spherical Bessel functions.

FIGURE 11.14 Spherical Neumann functions.
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The Legendre duplication formula can be used again to give

nn(x)=
(−1)n+1

2nxn+1

∞∑

s=0

(−1)s(s − n)!
s!(2s − 2n)! x

2s . (11.147)

These series forms, Eqs. (11.144) and (11.147), are useful in three ways: (1) limiting values
asx→ 0, (2) closed-form representations forn = 0, and, as an extension of this, (3) an
indication that the spherical Bessel functions are closely related to sine and cosine.

For the special casen= 0 we find from Eq. (11.144) that

j0(x)=
∞∑

s=0

(−1)s

(2s + 1)!x
2s = sinx

x
, (11.148)

whereas forn0, Eq. (11.147) yields

n0(x)=−
cosx

x
. (11.149)

From the definition of the spherical Hankel functions (Eq. (11.141)),

h
(1)
0 (x) = 1

x
(sinx − i cosx)=− i

x
eix,

h
(2)
0 (x) = 1

x
(sinx + i cosx)= i

x
e−ix . (11.150)

Equations (11.148) and (11.149) suggest expressing all spherical Bessel functions as
combinations of sine and cosine. The appropriate combinations can be developed from the
power-series solutions, Eqs. (11.144) and (11.147), but this approach is awkward. Actually
the trigonometric forms are already available as the asymptotic expansion of Section 11.6.
From Eqs. (11.131) and (11.129a),

h(1)n (x) =
√

π

2z
H

(1)
n+1/2(z)

= (−i)n+1e
iz

z

{
Pn+1/2(z)+ iQn+1/2(z)

}
. (11.151)

Now,Pn+1/2 andQn+1/2 arepolynomials. This means that Eq. (11.151) is mathematically
exact, not simply an asymptotic approximation. We obtain

h(1)n (z) = (−i)n+1e
iz

z

n∑

s=0

is

s!(8z)s
(2n+ 2s)!!
(2n− 2s)!!

= (−i)n+1e
iz

z

n∑

s=0

is

s!(2z)s
(n+ s)!
(n− s)! . (11.152)

Often a factor(−i)n = (e−iπ/2)n will be combined with theeiz to give ei(z−nπ/2). For
z real, jn(z) is the real part of this,nn(z) the imaginary part, andh(2)n (z) the complex
conjugate. Specifically,

h
(1)
1 (x)= eix

(
−1

x
− i

x2

)
, (11.153a)
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h
(1)
2 (x)= eix

(
i

x
− 3

x2
− 3i

x3

)
, (11.153b)

j1(x) =
sinx

x2
− cosx

x
,

(11.154)

j2(x) =
(

3

x3
− 1

x

)
sinx − 3

x2
cosx,

n1(x) = −
cosx

x2
− sinx

x
,

(11.155)

n2(x) = −
(

3

x3
− 1

x

)
cosx − 3

x2
sinx,

and so on.

Limiting Values

Forx≪ 1,26 Eqs. (11.144) and (11.147) yield

jn(x)≈
2nn!

(2n+ 1)!x
n = xn

(2n+ 1)!! , (11.156)

nn(x) ≈
(−1)n+1

2n
· (−n)!
(−2n)!x

−n−1

= − (2n)!
2nn! x

−n−1=−(2n− 1)!!x−n−1. (11.157)

The transformation of factorials in the expressions fornn(x) employs Exercise 8.1.3. The
limiting values of the spherical Hankel functions go as±inn(x).

The asymptotic values ofjn, nn, h
(2)
n , andh(1)n may be obtained from the Bessel asymp-

totic forms, Section 11.6. We find

jn(x)∼
1

x
sin

(
x − nπ

2

)
, (11.158)

nn(x)∼−
1

x
cos

(
x − nπ

2

)
, (11.159)

h(1)n (x)∼ (−i)n+1e
ix

x
=−i e

i(x−nπ/2)

x
, (11.160a)

h(2)n (x)∼ in+1e
−ix

x
= i

e−i(x−nπ/2)

x
. (11.160b)

26The condition that the second term in the series be negligible compared to the first is actuallyx ≪ 2[(2n + 2)(2n + 3)/
(n+ 1)]1/2 for jn(x).
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The condition for these spherical Bessel forms is thatx ≫ n(n + 1)/2. From these as-
ymptotic values we see thatjn(x) andnn(x) are appropriate for a description ofstanding
spherical waves; h(1)n (x) andh(2)n (x) correspond totraveling spherical waves. If the time
dependence for the traveling waves is taken to bee−iωt , thenh(1)n (x) yields an outgoing
traveling spherical wave,h(2)n (x) an incoming wave. Radiation theory in electromagnetism
and scattering theory in quantum mechanics provide many applications.

Recurrence Relations

The recurrence relations to which we now turn provide a convenient way of developing the
higher-order spherical Bessel functions. These recurrence relations may be derived from
the series, but, as with the modified Bessel functions, it is easier to substitute into the known
recurrence relations (Eqs. (11.10) and (11.12)). This gives

fn−1(x)+ fn+1(x)=
2n+ 1

x
fn(x), (11.161)

nfn−1(x)− (n+ 1)fn+1(x)= (2n+ 1)f ′n(x). (11.162)

Rearranging these relations (or substituting into Eqs. (11.15) and (11.17)), we obtain

d

dx

[
xn+1fn(x)

]
= xn+1fn−1(x), (11.163)

d

dx

[
x−nfn(x)

]
=−x−nfn+1(x). (11.164)

Herefn may representjn, nn, h
(1)
n , or h(2)n .

The specific forms, Eqs. (11.154) and (11.155), may also be readily obtained from
Eq. (11.164).

By mathematical induction we may establish the Rayleigh formulas

jn(x)= (−1)nxn
(

1

x

d

dx

)n(sinx

x

)
, (11.165)

nn(x)=−(−1)nxn
(

1

x

d

dx

)n(cosx

x

)
, (11.166)

h(1)n (x) = −i(−1)nxn
(

1

x

d

dx

)n(
eix

x

)
,

(11.167)

h(2)n (x) = i(−1)nxn
(

1

x

d

dx

)n(
e−ix

x

)
.
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Orthogonality

We may take the orthogonality integral for the ordinary Bessel functions (Eqs. (11.49) and
(11.50)),

∫ a

0
Jν

(
ανp

ρ

a

)
Jν

(
ανq

ρ

a

)
ρ dρ = a2

2

[
Jν+1(ανp)

]2
δpq , (11.168)

and substitute in the expression forjn to obtain
∫ a

0
jn

(
αnp

ρ

a

)
jn

(
αnq

ρ

a

)
ρ2dρ = a3

2

[
jn+1(αnp)

]2
δpq . (11.169)

Hereαnp andαnq are roots ofjn.
This represents orthogonality with respect to the roots of the Bessel functions. An illus-

tration of this sort of orthogonality is provided in Example 11.7.1, the problem of a particle
in a sphere. Equation (11.169) guarantees orthogonality of the wave functionsjn(r) for
fixedn. (If n varies, the accompanying spherical harmonic will provide orthogonality.)

Example 11.7.1 PARTICLE IN A SPHERE

An illustration of the use of the spherical Bessel functions is provided by the problem of
a quantum mechanical particle in a sphere of radiusa. Quantum theory requires that the
wave functionψ , describing our particle, satisfy

− h̄2

2m
∇2ψ =Eψ, (11.170)

and the boundary conditions (1)ψ(r ≤ a) remains finite, (2)ψ(a)= 0. This corresponds
to a square-well potentialV = 0, r ≤ a, andV =∞, r > a. Hereh̄ is Planck’s constant
divided by 2π,m is the mass of our particle, andE is, its energy. Let us determine the
minimum value of the energy for which our wave equation has an acceptable solution.
Equation (11.170) is Helmholtz’s equation with a radial part (compare Section 9.3 for
separation of variables):

d2R

dr2
+ 2

r

dR

dr
+
[
k2− n(n+ 1)

r2

]
R = 0, (11.171)

with k2= 2mE/h̄2. Hence by Eq. (11.139), withn= 0,

R =Aj0(kr)+Bn0(kr).

We choose the orbital angular momentum indexn= 0, for any angular dependence would
raise the energy. The spherical Neumann function is rejected because of its divergent be-
havior at the origin. To satisfy the second boundary condition (for all angles), we require

ka =
√

2mE

h̄
a = α, (11.172)
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whereα is a root ofj0, that is,j0(α) = 0. This has the effect of limiting the allowable
energies to a certain discrete set, or, in other words, application of boundary condition (2)
quantizes the energyE. The smallestα is the first zero ofj0,

α = π,

and

Emin=
π2h̄2

2ma2
= h2

8ma2
, (11.173)

which means that for any finite sphere the particle energy will have a positive minimum
or zero-point energy. This is an illustration of the Heisenberg uncertainty principle for�p

with �r ≤ a.
In solid-state physics, astrophysics, and other areas of physics, we may wish to know

how many different solutions (energy states) correspond to energies less than or equal to
some fixed energyE0. For a cubic volume (Exercise 9.3.5) the problem is fairly simple.
The considerably more difficult spherical case is worked out by R. H. Lambert,Am. J.
Phys.36: 417, 1169 (1968).

The relevant orthogonality relation for thejn(kr) can be derived from the integral given
in Exercise 11.7.23. �

Another form, orthogonality with respect to the indices, may be written as
∫ ∞

−∞
jm(x)jn(x) dx = 0, m 
= n, m,n≥ 0. (11.174)

The proof is left as Exercise 11.7.10. Ifm= n (compare Exercise 11.7.11), we have
∫ ∞

−∞

[
jn(x)

]2
dx = π

2n+ 1
. (11.175)

Most physical applications of orthogonal Bessel and spherical Bessel functions involve
orthogonality with varying roots and an interval[0, a] and Eqs. (11.168) and (11.169) and
Exercise 11.7.23 for continuous-energy eigenvalues.

The spherical Bessel functions will enter again in connection with spherical waves, but
further consideration is postponed until the corresponding angular functions, the Legendre
functions, have been introduced.

Exercises

11.7.1 Show that if

nn(x)=
√

π

2x
Nn+1/2(x),

it automatically equals

(−1)n+1
√

π

2x
J−n−1/2(x).
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11.7.2 Derive the trigonometric-polynomial forms ofjn(z) andnn(z).27

jn(z) =
1

z
sin

(
z− nπ

2

) [n/2]∑

s=0

(−1)s(n+ 2s)!
(2s)!(2z)2s(n− 2s)!

+ 1

z
cos

(
z− nπ

2

) [(n−1)/2]∑

s=0

(−1)s(n+ 2s + 1)!
(2s + 1)!(2z)2s(n− 2s − 1)! ,

nn(z) =
(−1)n+1

z
cos

(
z+ nπ

2

) [n/2]∑

s=0

(−1)s(n+ 2s)!
(2s)!(2z)2s(n− 2s)!

+ (−1)n+1

z
sin

(
z+ nπ

2

) [(n−1)/2]∑

s=0

(−1)s(n+ 2s + 1)!
(2s + 1)!(2z)2s+1(n− 2s − 1)! .

11.7.3 Use the integral representation ofJν(x),

Jν(x)=
1

π1/2(ν − 1
2)!

(
x

2

)ν ∫ 1

−1
e±ixp

(
1− p2)ν−1/2

dp,

to show that the spherical Bessel functionsjn(x) are expressible in terms of trigono-
metric functions; that is, for example,

j0(x)=
sinx

x
, j1(x)=

sinx

x2
− cosx

x
.

11.7.4 (a) Derive the recurrence relations

fn−1(x)+ fn+1(x) =
2n+ 1

x
fn(x),

nfn−1(x)− (n+ 1)fn+1(x) = (2n+ 1)f ′n(x)

satisfied by the spherical Bessel functionsjn(x), nn(x), h
(1)
n (x), andh(2)n (x).

(b) Show, from these two recurrence relations, that the spherical Bessel functionfn(x)

satisfies the differential equation

x2f ′′n (x)+ 2xf ′n(x)+
[
x2− n(n+ 1)

]
fn(x)= 0.

11.7.5 Prove by mathematical induction that

jn(x)= (−1)nxn
(

1

x

d

dx

)n(sinx

x

)

for n an arbitrary nonnegative integer.

11.7.6 From the discussion of orthogonality of the spherical Bessel functions, show that a
Wronskian relation forjn(x) andnn(x) is

jn(x)n
′
n(x)− j ′n(x)nn(x)=

1

x2
.

27The upper limit on the summation[n/2] means the largestinteger that does not exceedn/2.
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11.7.7 Verify

h(1)n (x)h(2)
′

n (x)− h(1)
′

n (x)h(2)n (x)=− 2i

x2
.

11.7.8 Verify Poisson’s integral representation of the spherical Bessel function,

jn(z)=
zn

2n+1n!

∫ π

0
cos(zcosθ)sin2n+1 θ dθ.

11.7.9 Show that
∫ ∞

0
Jµ(x)Jν(x)

dx

x
= 2

π

sin[(µ− ν)π/2]
µ2− ν2

, µ+ ν >−1.

11.7.10 Derive Eq. (11.174):
∫ ∞

−∞
jm(x)jn(x) dx = 0,

m 
= n

m,n≥ 0.

11.7.11 Derive Eq. (11.175):
∫ ∞

−∞

[
jn(x)

]2
dx = π

2n+ 1
.

11.7.12 Set up the orthogonality integral forjL(kr) in a sphere of radiusR with the boundary
condition

jL(kR)= 0.

The result is used in classifying electromagnetic radiation according to its angular mo-
mentum.

11.7.13 The Fresnel integrals (Fig. 11.15 and Exercise 5.10.2) occurring in diffraction theory
are given by

x(t)=
√
π

2
C

(√
π

2
t

)
=
∫ t

0
cos
(
v2)dv, y(t)=

√
π

2
S

(√
π

2
t

)
=
∫ t

0
sin
(
v2)dv.

Show that these integrals may be expanded in series of spherical Bessel functions

x(s) = 1

2

∫ s

0
j−1(u)u

1/2du= s1/2
∞∑

n=0

j2n(s),

y(s) = 1

2

∫ s

0
j0(u)u

1/2du= s1/2
∞∑

n=0

j2n+1(s).

Hint. To establish the equality of the integral and the sum, you may wish to work with
their derivatives. The spherical Bessel analogs of Eqs. (11.12) and (11.14) are helpful.

11.7.14 A hollow sphere of radiusa (Helmholtz resonator) contains standing sound waves. Find
the minimum frequency of oscillation in terms of the radiusa and the velocity of sound
v. The sound waves satisfy the wave equation

∇2ψ = 1

v2

∂2ψ

∂t2
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FIGURE 11.15 Fresnel integrals.

and the boundary condition

∂ψ

∂r
= 0, r = a.

This is a Neumann boundary condition. Example 11.7.1 has the same PDE but with a
Dirichlet boundary condition.

ANS. νmin= 0.3313v/a, λmax= 3.018a.

11.7.15 Defining the spherical modified Bessel functions (Fig. 11.16) by

in(x)=
√

π

2x
In+1/2(x), kn(x)=

√
2

πx
Kn+1/2(x),

show that

i0(x)=
sinhx

x
, k0(x)=

e−x

x
.

Note that the numerical factors in the definitions ofin andkn are not identical.

11.7.16 (a) Show that the parity ofin(x) is (−1)n.
(b) Show thatkn(x) has no definite parity.
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FIGURE 11.16 Spherical modified Bessel
functions.

11.7.17 Show that the spherical modified Bessel functions satisfy the following relations:

(a) in(x)= i−njn(ix),
kn(x)=−inh(1)n (ix),

(b) in+1(x)= xn
d

dx

(
x−nin

)
,

kn+1(x)=−xn
d

dx

(
x−nkn

)
,

(c) in(x)= xn
(

1

x

d

dx

)n sinhx

x
,

kn(x)= (−1)nxn
(

1

x

d

dx

)n
e−x

x
.

11.7.18 Show that the recurrence relations forin(x) andkn(x) are

(a) in−1(x)− in+1(x)=
2n+ 1

x
in(x),

nin−1(x)+ (n+ 1)in+1(x)= (2n+ 1)i′n(x),
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(b) kn−1(x)− kn+1(x)=−
2n+ 1

x
kn(x),

nkn−1(x)+ (n+ 1)kn+1(x)=−(2n+ 1)k′n(x).

11.7.19 Derive the limiting values for the spherical modified Bessel functions

(a)
in(x)≈

xn

(2n+ 1)!! , kn(x)≈
(2n− 1)!!

xn+1
, x≪ 1.

(b)
in(x)∼

ex

2x
, kn(x)∼

e−x

x
, x≫ 1

2
n(n+ 1).

11.7.20 Show that the Wronskian of the spherical modified Bessel functions is given by

in(x)k
′
n(x)− i′n(x)kn(x)=−

1

x2
.

11.7.21 A quantum particle of massM is trapped in a “square” well of radiusa. The Schrödinger
equation potential is

V (r)=
{
−V0, 0≤ r < a

0, r > a.

The particle’s energyE is negative (an eigenvalue).

(a) Show that the radial part of the wave function is given byjl(k1r) for 0≤ r < a

and kl(k2r) for r > a. (We require thatψ(0) be finite andψ(∞)→ 0.) Here
k2

1 = 2M(E + V0)/h̄
2, k2

2 = −2ME/h̄2, and l is the angular momentum (n in
Eq. (11.139)).

(b) The boundary condition atr = a is that the wave functionψ(r) and its first deriv-
ative be continuous. Show that this means

(d/dr)jl(k1r)

jl(k1r)

∣∣∣∣
r=a

= (d/dr)kl(k2r)

kl(k2r)

∣∣∣∣
r=a

.

This equation determines the energy eigenvalues.

Note. This is a generalization of Example 10.1.2.

11.7.22 The quantum mechanical radial wave function for a scattered wave is given by

ψk =
sin(kr + δ0)

kr
,

wherek is the wave number,k =√2mE/h̄, andδ0 is the scattering phase shift. Show
that the normalization integral is

∫ ∞

0
ψk(r)ψk′(r)r

2 dr = π

2k
δ(k − k′).

Hint. You can use a sine representation of the Dirac delta function. See Exercise 15.3.8.
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11.7.23 Derive the spherical Bessel function closure relation

2a2

π

∫ ∞

0
jn(ar)jn(br)r

2 dr = δ(a − b).

Note. An interesting derivation involving Fourier transforms, the Rayleigh plane-wave
expansion, and spherical harmonics has been given by P. Ugincius,Am. J. Phys.40:
1690 (1972).

11.7.24 (a) Write a subroutine that will generate the spherical Bessel functions,jn(x), that is,
will generate the numerical value ofjn(x) givenx andn.
Note. One possibility is to use the explicit known forms ofj0 andj1 and to develop
the higher indexjn, by repeated application of the recurrence relation.

(b) Check your subroutine by an independent calculation, such as Eq. (11.154). If
possible, compare the machine time needed for this check with the time required
for your subroutine.

11.7.25 The wave function of a particle in a sphere (Example 11.7.1) with angular momen-
tum l is ψ(r, θ,ϕ) = Ajl((

√
2ME)r/h̄)Ym

l (θ,ϕ). The Ym
l (θ,ϕ) is a spherical har-

monic, described in Section 12.6. From the boundary conditionψ(a, θ,ϕ) = 0 or
jl((
√

2ME)a/h̄) = 0 calculate the 10 lowest-energy states. Disregard them degen-
eracy (2l + 1 values ofm for each choice ofl). Check your results against AMS-55,
Table 10.6, see Additional Readings for Chapter 8 for the reference.
Hint. You can use your spherical Bessel subroutine and a root-finding subroutine.

Check values.jl(αls) = 0,
α01= 3.1416
α11= 4.4934
α21= 5.7635
α02= 6.2832.

11.7.26 Let Example 11.7.1 be modified so that the potential is a finiteV0 outside(r > a).

(a) ForE < V0 show that

ψout(r, θ,ϕ)∼ kl

(
r

h̄

√
2M(V0−E)

)
.

(b) The new boundary conditions to be satisfied atr = a are

ψin(a, θ,ϕ) = ψout(a, θ,ϕ),

∂

∂r
ψin(a, θ,ϕ) =

∂

∂r
ψout(a, θ,ϕ)

or
1

ψin

∂ψin

∂r

∣∣∣∣
r=a

= 1

ψout

∂ψout

∂r

∣∣∣∣
r=a

.

For l = 0 show that the boundary condition atr = a leads to

f (E)= k

{
cotka − 1

ka

}
+ k′

{
1+ 1

k′a

}
= 0,

wherek =
√

2ME/h̄ andk′ =√2M(V0−E)/h̄.
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(c) With a = 4πε0h̄
2/Me2 (Bohr radius) andV0= 4Me4/2h̄2, compute the possible

bound states(0<E < V0).
Hint. Call a root-finding subroutine after you know the approximate location of
the roots of

f (E)= 0 (0≤E ≤ V0).

(d) Show that whena = 4πε0h̄
2/Me2 the minimum value ofV0 for which a bound

state exists isV0= 2.4674Me4/2h̄2.

11.7.27 In some nuclear stripping reactions the differential cross section is proportional to
jl(x)

2, wherel is the angular momentum. The location of the maximum on the curve of
experimental data permits a determination ofl, if the location of the (first) maximum of
jl(x) is known. Compute the location of the first maximum ofj1(x), j2(x), andj3(x).
Note. For better accuracy look for the first zero ofj ′l (x). Why is this more accurate than
direct location of the maximum?

Additional Readings

Jackson, J. D.,Classical Electrodynamics, 3rd ed., New York: J. Wiley (1999).

McBride, E. B.,Obtaining Generating Functions. New York: Springer-Verlag (1971). An introduction to methods
of obtaining generating functions.

Watson, G. N.,A Treatise on the Theory of Bessel Functions, 2nd ed. Cambridge, UK: Cambridge University
Press (1952). This is the definitive text on Bessel functions and their properties. Although difficult reading, it
is invaluable as the ultimate reference.

Watson, G. N.,A Treatise on the Theory of Bessel Functions, 1st ed. Cambridge, UK: Cambridge University Press
(1922). See also the references listed at the end of Chapter 13.


