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8.3.8

8.3.9

8.3.10

8.3.11

8.3.12

This series arises in an attempt to describe the magnetic field created by and enclosed
by a current loop.

Show that

lim xb—aw —
X—>00 (x + b)! ’

Show that

im =DM ae 1
n—oo (2n)!!

Calculate the binomial coeﬁicielﬁﬁf’) to six significant figures for = 10, 20, and 30.

Check your values by

(a) a Stirling series approximation through termsirt,
(b) a double precision calculation.

ANS. (39) = 1.84756x 10°, (50) = 1.37846x 101,

(50) = 1.18264x 107

Write a program (or subprogram) that will calculate Jgg@!) directly from Stirling’s
series. Assume that > 10. (Smaller values could be calculated via the factorial re-
currence relation.) Tabulate Iggx!) versusx for x = 10(10)300. Check your results
against AMS-55 (see Additional Readings for this reference) or by direct multiplication
(for n = 10, 20, and 30).

Check value log;,(100) = 157.97.

Using the complex arithmetic capability of FORTRAN, write a subroutine that will cal-
culate In(z!) for complexz based on Stirling’s series. Include a test and an appropriate
error message if is too close to a negative real integer. Check your subroutine against
alternate calculations farreal,z pure imaginary, and = 1+ ib (Exercise 8.2.23).

Check values [(10.5)!| =0.82618
phase(i0.5)! = —0.24406.

8.4 THE BETA FUNCTION

Using the integral definition (Eq. (8.25)), we write the product of two factorials as the
product of two integrals. To facilitate a change in variables, we take the integrals over a
finite range:

2 2

. at at R(m) > —1
! '= u, m v, n t]
mlin! azlinoo/(; e "u du/o e v dv, N(n) > —1, (8.56a)

Replacing: with x2 andv with y2, we obtain

a a
m!n!= lim 4] e_xzxzm"'ldx/ e_yzyz”“dy. (8.56b)
0

a— 00 0
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FIGURE 8.6 Transformation from
Cartesian to polar coordinates.

Transforming to polar coordinates gives us

a /2
min! = lim 4[ e—"2r2'"+21+3drf co2"+1 g sir?" 16 dp
0

a—> o0 0
/2
=(m+n+1)12 / cos" 1o sin?" 16 d6. (8.57)
0
Here the Cartesian area eleméntdy has been replaced byir d6 (Fig. 8.6). The last

equality in Eq. (8.57) follows from Exercise 8.1.11.
The definite integral, together with the factor 2, has been named the beta function:

/2
Bm+1n+1)= 2/ co" 19 sin?*t19 do
0

m!n!
= . 8.58
(m+n+ 1) (8.582)
Equivalently, in terms of the gamma function and noting its symmetry,
I'(p)I'(g)
B(p,q) = p—q, B(g,p)=B(p,q). (8.58b)
L'(p+4q)

The only reason for choosing + 1 andn + 1, rather tham: andrn, as the arguments &
is to be in agreement with the conventional, historical beta function.

Definite Integrals, Alternate Forms

The beta function is useful in the evaluation of a wide variety of definite integrals. The
substitutiory = cos’ ¢ converts Eq. (8.58a) fo

Bm+1n+1) min! /lt’”(l 1" d (8.59a)
m+1n == - . .
(m+n+ 1) 0

"The Laplace transform convolution theorem provides an alternate derivation of Eq. (8.58a), compare Exercise 15.11.2.
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Replacing: by x2, we obtain

m!n! 1 2m+1 0N
— = 1- dx. 8.59b
20m +n + 1)1 /ox (1—x%)"dx (8.59D)
The substitutionr = u/(1+ u) in Eq. (8.59a) yields still another useful form,
m!n! *© u™
—_— = ———du. 8.60
m+n+1) /0 @+ uyrtnt2 ™ (6.60)

The beta function as a definite integral is useful in establishing integral representations of
the Bessel function (Exercise 11.1.18) and the hypergeometric function (Exercise 13.4.10).

Verification of ra/ sinta Relation

If we takem =a,n=—a, —1<a <1, then

/0 (1:t_u)2du —al(—a). (8.61)

By contour integration this integral may be shown to be equakdg sinta (Exer-
cise 7.1.18), thus providing another method of obtaining Eq. (8.32).

Derivation of Legendre Duplication Formula

The form of Eqg. (8.58a) suggests that the beta function may be useful in deriving the
doubling formula used in the preceding section. From Eq. (8.59a) mithn = z and
N(z) > —1,

zlz! L. .
21 D 2/0 t*(1—t)*dt. (8.62)
By substitutingr = (1 + 5)/2, we have
A _pa /1 (1-sd) ds=2"% /1(1 — s%)%ds. (8.63)
(2z+1)! 1 0

The last equality holds because the integrand is even. Evaluating this integral as a beta
function (Eq. (8.59b)), we obtain

Z!Z! _ *ZZ*lZ!(_%)!
2z4+1)! G+ (8.64)

Rearranging terms and recalling ti{at%)! = 1/2, we reduce this equation to one form
of the Legendre duplication formula,

2z +3)1=27F"17122; 4 1)1, (8.65a)
Dividing by (z + %), we obtain an alternate form of the duplication formula:

2z — 31 =27%n220)1. (8.65h)
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Although the integrals used in this derivation are defined onlyif@) > —1, the results
(Egs. (8.65a) and (8.65b) hold for all regular pointsy analytic continuatiof.

Using the double factorial notation (Section 8.1), we may rewrite Eq. (8.65a) {fwith
n, an integer) as

(n+ 3)! = 7220 + D11/2m L, (8.65¢)

This is often convenient for eliminating factorials of fractions.

Incomplete Beta Function

Just as there is an incomplete gamma function (Section 8.5), there is also an incomplete
beta function,

X
B.(p,q) = / tP7r1—-n9"tdr,  0<x<1 p>0,¢g>0 (fx=1). (8.66)
0
Clearly, B,—1(p, g) becomes the regular (complete) beta function, Eq. (8.59a). A power-
series expansion a8, (p, q) is the subject of Exercises 5.2.18 and 5.7.8. The relation to
hypergeometric functions appears in Section 13.4.

The incomplete beta function makes an appearance in probability theory in calculating
the probability of at most successes in independent trial$.

Exercises

8.4.1 Derive the doubling formula for the factorial function by integratifsin 2)2'*+1 =
(2sind cosv)?*+1 (and using the beta function).

8.4.2 Verify the following beta function identities:
(@ B(a,b)=B(a+1,b)+ B(a,b+1),
(b) B(a,b)= #B(a, b+1),
© B.b)=""TBa+1b-1),
(d) B(a,b)B(a+b,c)=B(b,c)B(a,b+c).

8.4.3 (@) Show that

1 /2, n=0
f (1-2)"2?dx =1 @11
1 T—, n=1223,....
(2n +2)!

8|f 2z is a negative integer, we get the valid but unilluminating resail cc.
SW. Feller,An Introduction to Probability Theory and Its Applicatiorgsd ed. New York: Wiley (1968), Section VI.10.
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(b) Show that

1 7, n=0
/(1—x2)*1/2x2”dx= 21— !
-1 T, n_132a3’
2n)!!
8.4.4 Show that
on+1 n'n' 1
! (2n+1)! B
(1—x2)”dx= ’
1 2n)!! _ 012
m, n=ul.4,....

8.4.5 Evaluateffl(l + x)%(1— x)?dx in terms of the beta function.

ANS. 2+b+1B(a 4+ 1, b+ 1).
8.4.6 Show, by means of the beta function, that
< d
f a = — d , O<a<l
: @—x)le(x —pe  sinma
8.4.7 Show that the Dirichlet integral
Iq! B 1, 1
//xpyqudyz plq _ B+ q+)’
(p+q+2)! p+qg+2

where the range of integration is the triangle bounded by the positisad y-axes and
the linex + y =1.

8.4.8 Show that

/ / e—(x +y“+2xy Cco )dx dy —
0 0

What are the limits o8 ?
Hint. Consider obliquey-coordinates.

2sing’

ANS. —7 <0 < 7.

8.4.9 Evaluate (using the beta function)

(a)
/2 3/2
f cos/20do = (Zﬂ—iz
0 160(3)!]
(b)
n/2 /2 _
f cos‘i@d@:/ sirf' 0. dg = Y7L —D/21
0 0 2(n/2)!
(n— DH for n odd
_ n!!
7 for n even.

2 n!!
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Evaluatefol(l —xYHVY24x as a beta function.

(D% 4
ANS., ———— =1.311028777.
(27.[)1/2
Given
2 z v /2 .
=— = (2 sin?” 6 cogz cosd) db R -1
Jv(2) nl/z(v—%)!<2> [O I 9z )do, (V) >—3,

show, with the aid of beta functions, that this reduces to the Bessel series

o0 s 1 z 2.S‘+V
Jv(z)=gjo<—1) —s,(sﬂ)!(i) :

identifying the initial J, as an integral representation of the Bessel functipr(Sec-
tion 11.1).
Given the associated Legendre function

P (x) = (2m — D!N(1—x))"/?,

Section 12.5, show that

1
(@) [[P,:’f(x)]zdx: @m), m=012,...,
~1

2m+1

1
m 2 dx
(®) /_1[P'"(x)] T 2=2@n=-DL  m=123...

Show that
1
2541 2-v2, (@)
(a) o X (1—)6 ) dx = m,
1 — Ly
(b) x2p(1_x2)‘1dx:}(1772)'q1'.
0 2(p+q+3)!

A particle of massz moving in a symmetric potential that is well describedWbix) =
Alx|" has a total energ%rn(dx/a’t)2 + V(x) = E. Solving fordx/dt and integrating
we find that the period of motion is

Xmax d
r= 2\/2m/ al
0

(E — Axm)Y/2’
wherexmax is a classical turning point given byx/;, ., = E. Show that

2 2nm<£>l/” I'(1/n)

T=—4 — . N
nVoE\A) ram+d)

Referring to Exercise 8.4.14,
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(@) Determine the limit as — oo of

2 [Erm (£ _ram
nV o E \A) T/m+dy

(b) Find lim 7 from the behavior of the integranid — Ax")~ 12,

(c) Inves’ugate the behavior of the physical system (potential wel)-asco. Obtain
the period from inspection of this limiting physical system.

8.4.16 Show that

dx==B ,
o 2 2

/OO sink* x 1 (a—i—l B—a
o cost x 2

), —1l<a<§.

Hint. Let sintf x = u.

8.4.17 The beta distribution of probability theory has a probability density

['(a+B)

_ a=1: _ \B-1
fx) = T@TB)" Q—=x)""",
with x restricted to the interval (0, 1). Show that
@ x)mean= . ﬂ
2 ; — (x2) ()2 — o
(b) o“(variance = (x“) — (x) PEVCEY R
8.4.18 From
12 i 0 do
jim oS0 _
n=oo [1/2 i1+l g qg

derive the Wallis formula for: :
T 2.2 4.4 6-6

2 133557
8.4.19 Tabulate the beta functioB(p, g) for p andg = 1.0(0.1)2.0 independently.
Check value.B(1.3,1.7) = 0.40774.

8.4.20 (a) Write a subroutine that will calculate the incomplete beta funclotp, ¢). For
0.5 < x < 1 you will find it convenient to use the relation

By(p,q) = B(p,q) — Bi—x(q, p)-

(b) TabulateBx(%, %). Spot check your results by using the Gauss—Legendre quadra-
ture.
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8.5 THE INCOMPLETE GAMMA FUNCTIONS AND RELATED
FUNCTIONS

Generalizing the Euler definition of the gamma function (Eg. (8.5)), we define the incom-
plete gamma functions by the variable limit integrals

X
y(a,x) =/ e 't Lat, N(a) >0
0
and
o0
F(a,x):/ e "1 Ldr. (8.67)

Clearly, the two functions are related, for
y(a,x)+(a,x)=T(a). (8.68)

The choice of employing (a, x) or I'(a, x) is purely a matter of convenience. If the para-
metera is a positive integer, Eq. (8.67) may be integrated completely to yield

n—=1 ¢
y(n.x) = (n — 1)!(1_e—x 3 %)

s=0
(8.69)

n—=1
_ X
T(n,x)=(n—1le XZE’ n=12....
s=0
For nonintegrad:, a power-series expansionypfa, x) for smallx and an asymptotic ex-
pansion ofl"(a, x) (denoted ag (x, p)) are developed in Exercise 5.7.7 and Section 5.10:

y(a,x) = x* Z( n‘(H e I~ Lsmall),

oo

1 (a—121)! 1
I'(a,x)=x" e x27~—n (8.70)
= (a—1-—n)! x

a—1_—x n( n—a)l 1
=x1e ,12_(:)( 1) Car x> 1 (largex).

These incomplete gamma functions may also be expressed quite elegantly in terms of con-
fluent hypergeometric functions (compare Section 13.5).

Exponential Integral

Although the incomplete gamma functidt(a, x) in its general form (Eg. (8.67)) is only
infrequently encountered in physical problems, a special case is quite common and very
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E®
A

4

) 1 1 > x

1 1 1 1 1
02 04 06 08 10 12 14 16

FIGURE 8.7 The exponential integral,
E1(x) = —Ei(—x).

useful. We define the exponential integratby
o0 e—l
X

(See Fig. 8.7.) Caution is needed here, for the integral in Eq. (8.71) diverges logarithmically
asx — 0. To obtain a series expansion for smgllve start from

E1(x)=T(0,x) = |im0[F(a) —y(a, x)]. (8.72)

We may split the divergent term in the series expansiornyfat, x),

E1(x) :‘!iLno[“F(“zl—_xa} _ Z (_ann. (8.73)
—1

n-n!

Using I'Hopital’s rule (Exercise 5.6.8) and

d d d
%{ar(a)} = -a!= %eln(a!) =al¥(a+1), (8.74)

and then Eq. (8.40% we obtain the rapidly converging series

S —1)tyn
Ei(x)=—y —Inx — Z ( " .)nf . (8.75)
n=1 ’

An asymptotic expansiofi1(x) ~ e~*[1 — 4 +---] for x — oo is developed in Sec-
tion 5.10.

10The appearance of the two minus signs-Ri(—x) is a historical monstrosity. AMS-55, Chapter 5, denotes this integral as
E1(x). See Additional Readings for the reference.
14x4 jda = x“ Inx.
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1.0+

Ci(w)

[
~—L

10
-1.0

FIGURE 8.8 Sine and cosine integrals.

Further special forms related to the exponential integral are the sine integral, cosine
integral (Fig. 8.8), and logarithmic integral, definedby

Si(x) = — /OO ﬂdt
.t
Ci(x) = — /Oo gdt (8.76)

. * du .
li(x) =/(; N =Ei(nx)

for their principal branch, with the branch cut conventionally chosen to be along the nega-
tive real axis from the branch point at zero. By transforming from real to imaginary argu-
ment, we can show that

si(x) = %[Ei(ix) — Ei(—ix)] = %[El(ix) — E1(—ix)], (8.77)
whereas
Cix) = :—ZL[Ei(ix) +Ei(—ix)] = —%[El(ix) +Ei(-in)].  lagr <. (8.78)
Adding these two relations, we obtain
Ei(ix) = Ci(x) + isi(x), (8.79)

to show that the relation among these integrals is exactly analogous to that affipng
cosx, and sink. Reference to Eqgs. (8.71) and (8.78) shows thdk Cagrees with the
definitions of AMS-55 (see Additional Readings for the reference). In ternig of

E1(ix) = —Ci(x) + isi(x).

Asymptotic expansions of Ci) and s{x) are developed in Section 5.10. Power-series
expansions about the origin for @j), si(x), and liix) may be obtained from those for

12Another sine integral is given by &) = si(x) + /2.
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erf x 4
1

2 1 2

-1

FIGURE 8.9 Error function, erf.

the exponential integraE1(x), or by direct integration, Exercise 8.5.10. The exponential,
sine, and cosine integrals are tabulated in AMS-55, Chapter 5, (see Additional Readings
for the reference) and can also be accessed by symbolic software such as Mathematica,
Maple, Mathcad, and Reduce.

Error Integrals

The error integrals

erf 2 /Z - 4 erfcz=1—erf 2 /0@ ! (8.80a)
7= — e , z=1l—erfz=— e .
\/7? 0 \/7? b4

(normalized so that efo = 1) are introduced in Exercise 5.10.4 (Fig. 8.9). Asymptotic
forms are developed there. From the general form of the integrands and Eq. (8.6) we ex-
pect that erf and erfe; may be written as incomplete gamma functions witk % The
relations are

erfz=n""2y(3,2%),  erfcz=n"171(%,2%). (8.80Db)

The power-series expansion of efbllows directly from Eq. (8.70).

Exercises

85.1 Show that

e¢]

=y @D e

X
!
‘ (a+n)!

(&) by repeatedly integrating by parts.
(b) Demonstrate this relation by transforming it into Eq. (8.70).

85.2 Show that

dxm

@) [x ™y (a,x)]=(D"x"*"y(a+m,x),
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" . . . T B
(b) W[e y@,x)]=e 7F(a_m)y(a m, x).

8.5.3 Show thaty (a, x) andI'(a, x) satisfy the recurrence relations

(@ y(@+lx)=ay(a,x)—x"e™,
(b) T'(a+1,x)=al(a,x)+x%"~.

8.5.4 The potential produced by &ydrogen electron (Exercise 12.8.6) is given by

V(r)=

1
—y(3,2 r'2,2r);.
4 goagp { 2r @2+ I r)}

(@) Forr « 1, show that
2
V)= —1 {1__r2+...}_

4 epag 3

(b) Forr > 1, show that
q 1

V(r)= - —.
") 4megag r

Herer is expressed in units ef, the Bohr radius.
Note.For computation at intermediate values-oEqgs. (8.69) are convenient.

8.5.5 The potential of a 2 hydrogen electron is found to be (Exercise 12.8.7)

vin= -+ . 111 5, T4
()—47T80'T4ao{;)/(,")+ (J’)}

1
_ N A 2I(2,r) { P2(cosd).
- 12wo{r3y( r)+rT( r)} 2(COS)

Herer is expressed in units af, the Bohr radiusP2(cos9) is a Legendre polynomial
(Section 12.1).

(a) Forr « 1, show that

V()= !
(_4

g1 1,
L) 2 2pcos) +--- |
TEeQ Ao

4 120
(b) Forr > 1, show that

1 6
a {1——2P2(c059)+--~}.
r

V)= .
® 4meg aor

8.5.6 Prove that the exponential integral has the expansion

[e.¢]

ooe—t (_1)nxn
—dt=—y—Inx— ,
/x t 4 * Z n-n!

n=1

wherey is the Euler—Mascheroni constant.
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8.5.7

8.5.8

8.5.9
8.5.10

8.5.11

8.5.12

8.5.13

8.5.14

8.5.15

Show thatE1(z) may be written as
o0 e—zt
E =e ¢ dt.
1) =e /0 1+t
Show also that we must impose the conditiangz| < /2.

Related to the exponential integral (Eq. (8.71)) by a simple change of variable is the

function
o0 efxt
E,,(x):/1 m dt.

Show thatE,, (x) satisfies the recurrence relation
1
Enii(0)=—¢*—2E, ), n=123....
n n

With E, (x) as defined in Exercise 8.5.8, show tligt(0) =1/(n — 1), n > 1.
Develop the following power-series expansions:
. T o0 (_1)nx2n+1
a) six)=—— -
@) sw=-73 +ZO(2n+1><zn+1>z
(_1)nx2n
2n(2n)!

n=|

(b) Cix)=y+Inx+)"
n=1

An analysis of a center-fed linear antenna leads to the expression

/" 11— cost
dt.
0 1t

Show that this is equal tg + Inx — Ci(x).

Using the relation
['(a)=y(a,x)+T(a,x),

show that ify (a, x) satisfies the relations of Exercise 8.5.2, th&, x) must satisfy
the same relations.

(&) Write a subroutine that will calculate the incomplete gamma funciignsx) and
I'(n, x) for n a positive integer. Spot che€kn, x) by Gauss—Laguerre quadratures.
(b) Tabulatey (n, x) andI'(n, x) for x = 0.0(0.1)1.0 andn =1, 2, 3.

Calculate the potential produced by & Hydrogen electron (Exercise 8.5.4) (Fig. 8.10).
TabulateV (r)/(q /4 coap) for x = 0.0(0.1)4.0. Check your calculations fer« 1 and
for r > 1 by calculating the limiting forms given in Exercise 8.5.4.

Using Egs. (5.182) and (8.75), calculate the exponential intdgyral) for
(a)x =0.2(0.2)1.0, (b) x =6.0(2.0)10.0.

Program your own calculation but check each value, using a library subroutine if avail-
able. Also check your calculations at each point by a Gauss—Laguerre quadrature.
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Point charge potential
1/r

Distributed
charge
potential

|
r

FIGURE 8.10 Distributed charge potential produced
by a 1S hydrogen electron, Exercise 8.5.14.

You'll find that the power-series converges rapidly and yields high precision for small
x. The asymptotic series, even foe= 10, yields relatively poor accuracy.

Check values. E1(1.0) = 0.219384
E1(10.0) = 4.15697x 1076.

The two expressions fat1(x), (1) Eq. (5.182), an asymptotic series and (2) Eq. (8.75),

a convergent power series, provide a means of calculating the Euler-Mascheroni con-
stanty to high accuracy. Using double precision, calculatérom Eg. (8.75), with

E1(x) evaluated by Eq. (5.182).

Hint. As a convenient choice takein the range 10 to 20. (Your choice ofwill set

a limit on the accuracy of your result.) To minimize errors in the alternating series of
Eq. (8.75), accumulate the positive and negative terms separately.

ANS. Forx = 10 and “double precisionjyy = 0.57721566.

Additional Readings

Abramowitz, M., and I. A. Stegun, edddandbook of Mathematical Functions with Formulas, Graphs, and

Mathematical Table§AMS-55). Washington, DC: National Bureau of Standards (1972), reprinted, Dover
(1974). Contains a wealth of information about gamma functions, incomplete gamma functions, exponential
integrals, error functions, and related functions — Chapters 4 to 6.

Artin, E., The Gamma Functioftranslated by M. Butler). New York: Holt, Rinehart and Winston (1964). Demon-

strates that if a functiory' (x) is smooth (log convex) and equal ¢@ — 1)! whenx = n = integer, it is the
gamma function.

Davis, H. T.,Tables of the Higher Mathematical FunctiorBloomington, IN: Principia Press (1933). Volume |

contains extensive information on the gamma function and the polygamma functions.

Gradshteyn, I. S., and |. M. RyzhiKable of Integrals, Series, and Produdiew York: Academic Press (1980).
Luke, Y. L., The Special Functions and Their Approximatipwal. 1. New York: Academic Press (1969).
Luke, Y. L., Mathematical Functions and Their Approximatioéew York: Academic Press (1975). This is

an updated supplement andbook of Mathematical Functions with Formulas, Graphs, and Mathematical
Tables(AMS-55). Chapter 1 deals with the gamma function. Chapter 4 treats the incomplete gamma function
and a host of related functions.
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