
CHAPTER 8

THE GAMMA FUNCTION

(FACTORIAL FUNCTION)

The gamma function appears occasionally in physical problems such as the normalization
of Coulomb wave functions and the computation of probabilities in statistical mechanics.
In general, however, it has less direct physical application and interpretation than, say, the
Legendre and Bessel functions of Chapters 11 and 12. Rather, its importance stems from its
usefulness in developing other functions that have direct physical application. The gamma
function, therefore, is included here.

8.1 DEFINITIONS, SIMPLE PROPERTIES

At least three different, convenient definitions of the gamma function are in common use.
Our first task is to state these definitions, to develop some simple, direct consequences, and
to show the equivalence of the three forms.

Infinite Limit (Euler)

The first definition, named after Euler, is

Ŵ(z)≡ lim
n→∞

1 · 2 · 3 · · ·n
z(z+ 1)(z+ 2) · · · (z+ n)

nz, z 
= 0,−1,−2,−3, . . . . (8.1)

This definition ofŴ(z) is useful in developing the Weierstrass infinite-product form of
Ŵ(z), Eq. (8.16), and in obtaining the derivative of lnŴ(z) (Section 8.2). Here and else-
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500 Chapter 8 Gamma–Factorial Function

where in this chapterz may be either real or complex. Replacingz with z+ 1, we have

Ŵ(z+ 1) = lim
n→∞

1 · 2 · 3 · · ·n
(z+ 1)(z+ 2)(z+ 3) · · · (z+ n+ 1)

nz+1

= lim
n→∞

nz

z+ n+ 1
· 1 · 2 · 3 · · ·n
z(z+ 1)(z+ 2) · · · (z+ n)

nz

= zŴ(z). (8.2)

This is the basic functional relation for the gamma function. It should be noted that it
is a difference equation. It has been shown that the gamma function is one of a general
class of functions that do not satisfy any differential equation with rational coefficients.
Specifically, the gamma function is one of the very few functions of mathematical physics
that does not satisfy either the hypergeometric differential equation (Section 13.4) or the
confluent hypergeometric equation (Section 13.5).

Also, from the definition,

Ŵ(1)= lim
n→∞

1 · 2 · 3 · · ·n
1 · 2 · 3 · · ·n(n+ 1)

n= 1. (8.3)

Now, application of Eq. (8.2) gives

Ŵ(2) = 1,

Ŵ(3) = 2Ŵ(2)= 2, . . . (8.4)

Ŵ(n) = 1 · 2 · 3 · · · (n− 1)= (n− 1)!.

Definite Integral (Euler)

A second definition, also frequently called the Euler integral, is

Ŵ(z)≡
∫ ∞

0
e−t tz−1dt, ℜ(z) > 0. (8.5)

The restriction onz is necessary to avoid divergence of the integral. When the gamma
function does appear in physical problems, it is often in this form or some variation, such
as

Ŵ(z) = 2
∫ ∞

0
e−t

2
t2z−1dt, ℜ(z) > 0. (8.6)

Ŵ(z) =
∫ 1

0

[
ln

(
1

t

)]z−1

dt, ℜ(z) > 0. (8.7)

Whenz= 1
2 , Eq. (8.6) is just the Gauss error integral, and we have the interesting result

Ŵ
(1

2

)
=√π. (8.8)

Generalizations of Eq. (8.6), the Gaussian integrals, are considered in Exercise 8.1.11. This
definite integral form ofŴ(z), Eq. (8.5), leads to the beta function, Section 8.4.



8.1 Definitions, Simple Properties 501

To show the equivalence of these two definitions, Eqs. (8.1) and (8.5), consider the
function of two variables

F(z,n)=
∫ n

0

(
1− t

n

)n

tz−1dt, ℜ(z) > 0, (8.9)

with n a positive integer.1 Since

lim
n→∞

(
1− t

n

)n

≡ e−t , (8.10)

from the definition of the exponential

lim
n→∞

F(z,n)= F(z,∞)=
∫ ∞

0
e−t tz−1dt ≡ Ŵ(z) (8.11)

by Eq. (8.5).
Returning toF(z,n), we evaluate it in successive integrations by parts. For convenience

let u= t/n. Then

F(z,n)= nz
∫ 1

0
(1− u)nuz−1du. (8.12)

Integrating by parts, we obtain

F(z,n)

nz
= (1− u)n

uz

z

∣∣∣∣
1

0
+ n

z

∫ 1

0
(1− u)n−1uz du. (8.13)

Repeating this with the integrated part vanishing at both endpoints each time, we finally
get

F(z,n) = nz
n(n− 1) · · ·1

z(z+ 1) · · · (z+ n− 1)

∫ 1

0
uz+n−1du

= 1 · 2 · 3 · · ·n
z(z+ 1)(z+ 2) · · · (z+ n)

nz. (8.14)

This is identical with the expression on the right side of Eq. (8.1). Hence

lim
n→∞

F(z,n)= F(z,∞)≡ Ŵ(z), (8.15)

by Eq. (8.1), completing the proof.

Infinite Product (Weierstrass)

The third definition (Weierstrass’ form) is

1

Ŵ(z)
≡ zeγ z

∞∏

n=1

(
1+ z

n

)
e−z/n, (8.16)

1The form ofF(z,n) is suggested by the beta function (compare Eq. (8.60)).



502 Chapter 8 Gamma–Factorial Function

whereγ is the Euler–Mascheroni constant,

γ = 0.5772156619. . . . (8.17)

This infinite-product form may be used to develop the reflection identity, Eq. (8.23), and
applied in the exercises, such as Exercise 8.1.17. This form can be derived from the original
definition (Eq. (8.1)) by rewriting it as

Ŵ(z)= lim
n→∞

1 · 2 · 3 · · ·n
z(z+ 1) · · · (z+ n)

nz = lim
n→∞

1

z

n∏

m=1

(
1+ z

m

)−1

nz. (8.18)

Inverting Eq. (8.18) and using

n−z = e(− lnn)z, (8.19)

we obtain

1

Ŵ(z)
= z lim

n→∞
e(− lnn)z

n∏

m=1

(
1+ z

m

)
. (8.20)

Multiplying and dividing by

exp

[(
1+ 1

2
+ 1

3
+ · · · + 1

n

)
z

]
=

n∏

m=1

ez/m, (8.21)

we get

1

Ŵ(z)
= z

{
lim
n→∞

exp

[(
1+ 1

2
+ 1

3
+ · · · + 1

n
− lnn

)
z

]}

×
[

lim
n→∞

n∏

m=1

(
1+ z

m

)
e−z/m

]
. (8.22)

As shown in Section 5.2, the parenthesis in the exponent approaches a limit, namelyγ , the
Euler–Mascheroni constant. Hence Eq. (8.16) follows.

It was shown in Section 5.11 that the Weierstrass infinite-product definition ofŴ(z) led
directly to an important identity,

Ŵ(z)Ŵ(1− z)= π

sinzπ
. (8.23)

Alternatively, we can start from the product of Euler integrals,

Ŵ(z+ 1)Ŵ(1− z) =
∫ ∞

0
sze−sds

∫ ∞

0
t−ze−t dt

=
∫ ∞

0
vz

dv

(v + 1)2

∫ ∞

0
e−uudu= πz

sinπz
,

transforming from the variabless, t to u= s + t, v = s/t , as suggested by combining the
exponentials and the powers in the integrands. The Jacobian is

J =−
∣∣∣∣
1 1
1
t
− s

t2

∣∣∣∣=
s + t

t2
= (v+ 1)2

u
,
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where(v + 1)t = u. The integral
∫∞

0 e−uudu = 1, while that overv may be derived by
contour integration, giving πz

sinπz .
This identity may also be derived by contour integration (Example 7.1.6 and Exer-

cises 7.1.18 and 7.1.19) and the beta function, Section 8.4. Settingz = 1
2 in Eq. (8.23),

we obtain

Ŵ
(1

2

)
=√π (8.24a)

(taking the positive square root), in agreement with Eq. (8.8).
Similarly one can establishLegendre’s duplication formula,

Ŵ(1+ z)Ŵ
(
z+ 1

2

)
= 2−2z√πŴ(2z+ 1). (8.24b)

The Weierstrass definition shows immediately thatŴ(z) has simple poles atz =
0,−1,−2,−3, . . . and that[Ŵ(z)]−1 has no poles in the finite complex plane, which means
thatŴ(z) has no zeros. This behavior may also be seen in Eq. (8.23), in which we note that
π/(sinπz) is never equal to zero.

Actually the infinite-product definition ofŴ(z) may be derived from the Weierstrass
factorization theorem with the specification that[Ŵ(z)]−1 have simple zeros atz =
0,−1,−2,−3, . . . . The Euler–Mascheroni constant is fixed by requiringŴ(1) = 1. See
also the products expansions of entire functions in Section 7.1.

In probability theory the gamma distribution (probability density) is given by

f (x)=





1

βαŴ(α)
xα−1e−x/β , x > 0

0, x ≤ 0.
(8.24c)

The constant[βαŴ(α)]−1 is chosen so that the total (integrated) probability will be unity.
Forx→E, kinetic energy,α→ 3

2 , andβ→ kT , Eq. (8.24c) yields the classical Maxwell–
Boltzmann statistics.

Factorial Notation

So far this discussion has been presented in terms of the classical notation. As pointed out
by Jeffreys and others, the−1 of thez− 1 exponent in our second definition (Eq. (8.5)) is
a continual nuisance. Accordingly, Eq. (8.5) is sometimes rewritten as

∫ ∞

0
e−t tz dt ≡ z!, ℜ(z) >−1, (8.25)

to define a factorial functionz!. Occasionally we may still encounter Gauss’ notation,∏
(z), for the factorial function:

∏
(z)= z! = Ŵ(z+ 1). (8.26)

TheŴ notation is due to Legendre. The factorial function of Eq. (8.25) is related to the
gamma function by

Ŵ(z)= (z− 1)! or Ŵ(z+ 1)= z!. (8.27)
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FIGURE 8.1 The factorial
function — extension to negative

arguments.

If z= n, a positive integer (Eq. (8.4)) shows that

z! = n! = 1 · 2 · 3 · · ·n, (8.28)

the familiar factorial. However, it should be noted that sincez! is now defined by Eq. (8.25)
(or equivalently by Eq. (8.27)) the factorial function is no longer limited to positive integral
values of the argument (Fig. 8.1). The difference relation (Eq. (8.2)) becomes

(z− 1)! = z!
z
. (8.29)

This shows immediately that

0! = 1 (8.30)

and

n! = ±∞ for n, anegativeinteger. (8.31)

In terms of the factorial, Eq. (8.23) becomes

z!(−z)! = πz

sinπz
. (8.32)

By restricting ourselves to the real values of the argument, we find thatŴ(x+1) defines
the curves shown in Figs. 8.1 and 8.2. The minimum of the curve is

Ŵ(x + 1)= x! = (0.46163. . .)! = 0.88560. . . . (8.33a)
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FIGURE 8.2 The factorial function and the first two derivatives of
ln(Ŵ(x + 1)).

Double Factorial Notation

In many problems of mathematical physics, particularly in connection with Legendre poly-
nomials (Chapter 12), we encounter products of the odd positive integers and products of
the even positive integers. For convenience these are given special labels as double facto-
rials:

1 · 3 · 5 · · · (2n+ 1) = (2n+ 1)!!
2 · 4 · 6 · · · (2n) = (2n)!!.

(8.33b)

Clearly, these are related to the regular factorial functions by

(2n)!! = 2nn! and (2n+ 1)!! = (2n+ 1)!
2nn! . (8.33c)

We also define(−1)!! = 1, a special case that does not follow from Eq. (8.33c).

Integral Representation

An integral representation that is useful in developing asymptotic series for the Bessel
functions is ∫

C

e−zzν dz=
(
e2πiν − 1

)
Ŵ(ν + 1), (8.34)

whereC is the contour shown in Fig. 8.3. This contour integral representation is only
useful whenν is not an integer,z= 0 then being abranch point. Equation (8.34) may be
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FIGURE 8.3 Factorial function contour.

FIGURE 8.4 The contour of Fig. 8.3 deformed.

readily verified forν > −1 by deforming the contour as shown in Fig. 8.4. The integral
from∞ into the origin yields−(ν!), placing the phase ofz at 0. The integral out to∞ (in
the fourth quadrant) then yieldse2πiνν!, the phase ofz having increased to 2π . Since the
circle around the origin contributes nothing whenν >−1, Eq. (8.34) follows.

It is often convenient to cast this result into a more symmetrical form:
∫

C

e−z(−z)ν dz= 2iŴ(ν + 1)sin(νπ). (8.35)

This analysis establishes Eqs. (8.34) and (8.35) forν > −1. It is relatively simple to
extend the range to include all nonintegralν. First, we note that the integral exists for
ν < −1 as long as we stay away from the origin. Second, integrating by parts we find
that Eq. (8.35) yields the familiar difference relation (Eq. (8.29)). If we take the difference
relation to define the factorial function ofν <−1, then Eqs. (8.34) and (8.35) are verified
for all ν (except negative integers).

Exercises

8.1.1 Derive the recurrence relations

Ŵ(z+ 1)= zŴ(z)

from the Euler integral (Eq. (8.5)),

Ŵ(z)=
∫ ∞

0
e−t tz−1dt.
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8.1.2 In a power-series solution for the Legendre functions of the second kind we encounter
the expression

(n+ 1)(n+ 2)(n+ 3) · · · (n+ 2s − 1)(n+ 2s)

2 · 4 · 6 · 8 · · · (2s − 2)(2s) · (2n+ 3)(2n+ 5)(2n+ 7) · · · (2n+ 2s + 1)
,

in which s is a positive integer. Rewrite this expression in terms of factorials.

8.1.3 Show that, ass − n→ negative integer,

(s − n)!
(2s − 2n)! →

(−1)n−s(2n− 2s)!
(n− s)! .

Heres andn are integers withs < n. This result can be used to avoid negative facto-
rials, such as in the series representations of the spherical Neumann functions and the
Legendre functions of the second kind.

8.1.4 Show thatŴ(z) may be written

Ŵ(z) = 2
∫ ∞

0
e−t

2
t2z−1dt, ℜ(z) > 0,

Ŵ(z) =
∫ 1

0

[
ln

(
1

t

)]z−1

dt, ℜ(z) > 0.

8.1.5 In a Maxwellian distribution the fraction of particles with speed betweenv andv + dv

is

dN

N
= 4π

(
m

2πkT

)3/2

exp

(
−mv2

2kT

)
v2dv,

N being the total number of particles. The average or expectation value ofvn is defined
as〈vn〉 =N−1

∫
vn dN . Show that

〈
vn
〉
=
(

2kT

m

)n/2Ŵ
(
n+3

2

)

Ŵ(3/2)
.

8.1.6 By transforming the integral into a gamma function, show that

−
∫ 1

0
xk lnx dx = 1

(k + 1)2
, k >−1.

8.1.7 Show that
∫ ∞

0
e−x

4
dx = Ŵ

(
5

4

)
.

8.1.8 Show that

lim
x→0

(ax − 1)!
(x − 1)! =

1

a
.

8.1.9 Locate the poles ofŴ(z). Show that they are simple poles and determine the residues.

8.1.10 Show that the equationx! = k, k 
= 0, has an infinite number of real roots.

8.1.11 Show that
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(a)
∫ ∞

0
x2s+1 exp

(
−ax2)dx = s!

2as+1
.

(b)
∫ ∞

0
x2s exp

(
−ax2)dx = (s − 1

2)!
2as+1/2

= (2s − 1)!!
2s+1as

√
π

a
.

These Gaussian integrals are of major importance in statistical mechanics.

8.1.12 (a) Develop recurrence relations for(2n)!! and for(2n+ 1)!!.
(b) Use these recurrence relations to calculate (or to define) 0!! and(−1)!!.

ANS. 0!! = 1, (−1)!! = 1.

8.1.13 For s a nonnegative integer, show that

(−2s − 1)!! = (−1)s

(2s − 1)!! =
(−1)s2ss!

(2s)! .

8.1.14 Express the coefficient of thenth term of the expansion of(1+ x)1/2

(a) in terms of factorials of integers,
(b) in terms of the double factorial (!!) functions.

ANS. an = (−1)n+1 (2n− 3)!
22n−2n!(n− 2)! = (−1)n+1 (2n− 3)!!

(2n)!! , n= 2,3, . . . .

8.1.15 Express the coefficient of thenth term of the expansion of(1+ x)−1/2

(a) in terms of the factorials of integers,
(b) in terms of the double factorial (!!) functions.

ANS. an = (−1)n
(2n)!

22n(n!)2 = (−1)n
(2n− 1)!!
(2n)!! , n= 1,2,3, . . . .

8.1.16 The Legendre polynomial may be written as

Pn(cosθ) = 2
(2n− 1)!!
(2n)!!

{
cosnθ + 1

1
· n

2n− 1
cos(n− 2)θ

+ 1 · 3
1 · 2

n(n− 1)

(2n− 1)(2n− 3)
cos(n− 4)θ

+ 1 · 3 · 5
1 · 2 · 3

n(n− 1)(n− 2)

(2n− 1)(2n− 3)(2n− 5)
cos(n− 6)θ + · · ·

}
.

Let n= 2s + 1. Then

Pn(cosθ)= P2s+1(cosθ)=
s∑

m=0

am cos(2m+ 1)θ.

Findam in terms of factorials and double factorials.
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8.1.17 (a) Show that

Ŵ
(1

2 − n
)
Ŵ
(1

2 + n
)
= (−1)nπ,

wheren is an integer.
(b) ExpressŴ(1

2 + n) andŴ(1
2 − n) separately in terms ofπ1/2 and a!! function.

ANS.Ŵ(1
2 + n)= (2n− 1)!!

2n
π1/2.

8.1.18 From one of the definitions of the factorial or gamma function, show that
∣∣(ix)!

∣∣2= πx

sinhπx
.

8.1.19 Prove that

∣∣Ŵ(α + iβ)
∣∣=

∣∣Ŵ(α)
∣∣
∞∏

n=0

[
1+ β2

(α + n)2

]−1/2

.

This equation has been useful in calculations of beta decay theory.

8.1.20 Show that

∣∣(n+ ib)!
∣∣=

(
πb

sinhπb

)1/2 n∏

s=1

(
s2+ b2)1/2

for n, a positive integer.

8.1.21 Show that

|x!| ≥
∣∣(x + iy)!

∣∣

for all x. The variablesx andy are real.

8.1.22 Show that
∣∣Ŵ
(1

2 + iy
)∣∣2= π

coshπy
.

8.1.23 The probability density associated with the normal distribution of statistics is given by

f (x)= 1

σ(2π)1/2
exp

[
− (x −µ)2

2σ 2

]
,

with (−∞,∞) for the range ofx. Show that

(a) the mean value ofx, 〈x〉 is equal toµ,
(b) the standard deviation(〈x2〉 − 〈x〉2)1/2 is given byσ .

8.1.24 From the gamma distribution

f (x)=





1

βαŴ(α)
xα−1e−x/β , x > 0,

0, x ≤ 0,

show that

(a) 〈x〉 (mean)= αβ, (b) σ 2 (variance)≡ 〈x2〉 − 〈x〉2= αβ2.
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8.1.25 The wave function of a particle scattered by a Coulomb potential isψ(r, θ). At the
origin the wave function becomes

ψ(0)= e−πγ/2Ŵ(1+ iγ ),

whereγ = Z1Z2e
2/h̄v. Show that

∣∣ψ(0)
∣∣2= 2πγ

e2πγ − 1
.

8.1.26 Derive the contour integral representation of Eq. (8.34),

2iν!sinνπ =
∫

C

e−z(−z)ν dz.

8.1.27 Write a function subprogramFACT(N) (fixed-point independent variable) that will cal-
culateN !. Include provision for rejection and appropriate error message ifN is nega-
tive.
Note.For small integerN , direct multiplication is simplest. For largeN , Eq. (8.55),
Stirling’s series would be appropriate.

8.1.28 (a) Write a function subprogram to calculate the double factorial ratio(2N − 1)!!/
(2N)!!. Include provision forN = 0 and for rejection and an error message ifN is
negative. Calculate and tabulate this ratio forN = 1(1)100.

(b) Check your function subprogram calculation of 199!!/200!! against the value ob-
tained from Stirling’s series (Section 8.3).

ANS.
199!!
200!! = 0.056348.

8.1.29 Using either the FORTRAN-supplied GAMMA or a library-supplied subroutine for
x! or Ŵ(x), determine the value ofx for which Ŵ(x) is a minimum(1≤ x ≤ 2) and
this minimum value ofŴ(x). Notice that although the minimum value ofŴ(x) may be
obtained to about six significant figures (single precision), the corresponding value ofx

is much less accurate. Why this relatively low accuracy?

8.1.30 The factorial function expressed in integral form can be evaluated by the Gauss–
Laguerre quadrature. For a 10-point formula the resultantx! is theoretically exact for
x an integer, 0 up through 19. What happens ifx is not an integer? Use the Gauss–
Laguerre quadrature to evaluatex!, x = 0.0(0.1)2.0. Tabulate the absolute error as a
function ofx.

Check value.x!exact− x!quadrature= 0.00034 for x = 1.3.

8.2 DIGAMMA AND POLYGAMMA FUNCTIONS

Digamma Functions

As may be noted from the three definitions in Section 8.1, it is inconvenient to deal with
the derivatives of the gamma or factorial function directly. Instead, it is customary to take
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the natural logarithm of the factorial function (Eq. (8.1)), convert the product to a sum, and
then differentiate; that is,

Ŵ(z+ 1)= zŴ(z)= lim
n→∞

n!
(z+ 1)(z+ 2) · · · (z+ n)

nz (8.36)

and

lnŴ(z+ 1) = lim
n→∞

[
ln(n!)+ z lnn− ln(z+ 1)

− ln(z+ 2)− · · · − ln(z+ n)
]
, (8.37)

in which the logarithm of the limit is equal to the limit of the logarithm. Differentiating
with respect toz, we obtain

d

dz
lnŴ(z+ 1)≡ψ(z+ 1)= lim

n→∞

(
lnn− 1

z+ 1
− 1

z+ 2
− · · · − 1

z+ n

)
, (8.38)

which definesψ(z + 1), the digamma function. From the definition of the Euler–
Mascheroni constant,2 Eq. (8.38) may be rewritten as

ψ(z+ 1) = −γ −
∞∑

n=1

(
1

z+ n
− 1

n

)

= −γ +
∞∑

n=1

z

n(n+ z)
. (8.39)

One application of Eq. (8.39) is in the derivation of the series form of the Neumann function
(Section 11.3). Clearly,

ψ(1)=−γ =−0.577 215 664 901. . . .3 (8.40)

Another, perhaps more useful, expression forψ(z) is derived in Section 8.3.

Polygamma Function

The digamma function may be differentiated repeatedly, giving rise to the polygamma
function:

ψ (m)(z+ 1) ≡ dm+1

dzm+1
ln(z!)

= (−1)m+1m!
∞∑

n=1

1

(z+ n)m+1
, m= 1,2,3, . . . . (8.41)

2Compare Sections 5.2 and 5.9. We add and substract
∑n

s=1 s
−1.

3γ has been computed to 1271 places by D. E. Knuth,Math. Comput.16: 275 (1962), and to 3566 decimal places by
D. W. Sweeney,ibid. 17: 170 (1963). It may be of interest that the fraction 228/395 givesγ accurate to six places.
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A plot of ψ(x + 1) andψ ′(x + 1) is included in Fig. 8.2. Since the series in Eq. (8.41)
defines the Riemann zeta function4 (with z= 0),

ζ(m)≡
∞∑

n=1

1

nm
, (8.42)

we have

ψ (m)(1)= (−1)m+1m!ζ(m+ 1), m= 1,2,3, . . . . (8.43)

The values of the polygamma functions of positive integral argument,ψ (m)(n+ 1), may
be calculated by using Exercise 8.2.6.

In terms of the perhaps more commonŴ notation,

dn+1

dzn+1
lnŴ(z)= dn

dzn
ψ(z)=ψ (n)(z). (8.44a)

Maclaurin Expansion, Computation

It is now possible to write a Maclaurin expansion for lnŴ(z+ 1):

lnŴ(z+ 1)=
∞∑

n=1

zn

n!ψ
(n−1)(1)=−γ z+

∞∑

n=2

(−1)n
zn

n
ζ(n) (8.44b)

convergent for|z| < 1; for z = x, the range is−1< x ≤ 1. Alternate forms of this series
appear in Exercise 5.9.14. Equation (8.44b) is a possible means of computingŴ(z+ 1) for
real or complexz, but Stirling’s series (Section 8.3) is usually better, and in addition, an
excellent table of values of the gamma function for complex arguments based on the use
of Stirling’s series and the recurrence relation (Eq. (8.29)) is now available.5

Series Summation

The digamma and polygamma functions may also be used in summing series. If the general
term of the series has the form of a rational fraction (with the highest power of the index in
the numerator at least two less than the highest power of the index in the denominator), it
may be transformed by the method of partial fractions (compare Section 15.8). The infinite
series may then be expressed as a finite sum of digamma and polygamma functions. The
usefulness of this method depends on the availability of tables of digamma and polygamma
functions. Such tables and examples of series summation are given in AMS-55, Chapter 6
(see Additional Readings for the reference).

4See Section 5.9. Forz 
= 0 this series may be used to define a generalized zeta function.
5Table of the Gamma Function for Complex Arguments, Applied Mathematics Series No. 34. Washington, DC: National Bureau
of Standards (1954).
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Example 8.2.1 CATALAN’S CONSTANT

Catalan’s constant, Exercise 5.2.22, orβ(2) of Section 5.9 is given by

K = β(2)=
∞∑

k=0

(−1)k

(2k + 1)2
. (8.44c)

Grouping the positive and negative terms separately and starting with unit index (to match
the form ofψ (1), Eq. (8.41)), we obtain

K = 1+
∞∑

n=1

1

(4n+ 1)2
− 1

9
−

∞∑

n=1

1

(4n+ 3)2
.

Now, quoting Eq. (8.41), we get

K = 8
9 + 1

16ψ
(1)
(
1+ 1

4

)
− 1

16ψ
(1)
(
1+ 3

4

)
. (8.44d)

Using the values ofψ (1) from Table 6.1 of AMS-55 (see Additional Readings for the
reference), we obtain

K = 0.91596559. . . .

Compare this calculation of Catalan’s constant with the calculations of Chapter 5, either
direct summation or a modification using Riemann zeta function values. �

Exercises

8.2.1 Verify that the following two forms of the digamma function,

ψ(x + 1)=
x∑

r=1

1

r
− γ

and

ψ(x + 1)=
∞∑

r=1

x

r(r + x)
− γ,

are equal to each other (forx a positive integer).

8.2.2 Show thatψ(z+ 1) has the series expansion

ψ(z+ 1)=−γ +
∞∑

n=2

(−1)nζ(n)zn−1.

8.2.3 For a power-series expansion of ln(z!), AMS-55 (see Additional Readings for reference)
lists

ln(z!)=− ln(1+ z)+ z(1− γ )+
∞∑

n=2

(−1)n
[ζ(n)− 1]zn

n
.
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(a) Show that this agrees with Eq. (8.44b) for|z|< 1.
(b) What is the range of convergence of this new expression?

8.2.4 Show that

1

2
ln

(
πz

sinπz

)
=

∞∑

n=1

ζ(2n)

2n
z2n, |z|< 1.

Hint. Try Eq. (8.32).

8.2.5 Write out a Weierstrass infinite-product definition of ln(z!). Without differentiating,
show that this leads directly to the Maclaurin expansion of ln(z!), Eq. (8.44b).

8.2.6 Derive the difference relation for the polygamma function

ψ (m)(z+ 2)=ψ (m)(z+ 1)+ (−1)m
m!

(z+ 1)m+1
, m= 0,1,2, . . . .

8.2.7 Show that if

Ŵ(x + iy)= u+ iv,

then

Ŵ(x − iy)= u− iv.

This is a special case of the Schwarz reflection principle, Section 6.5.

8.2.8 The Pochhammer symbol(a)n is defined as

(a)n = a(a + 1) · · · (a + n− 1), (a)0= 1

(for integraln).

(a) Express(a)n in terms of factorials.
(b) Find(d/da)(a)n in terms of(a)n and digamma functions.

ANS.
d

da
(a)n = (a)n

[
ψ(a + n)−ψ(a)

]
.

(c) Show that

(a)n+k = (a + n)k · (a)n.

8.2.9 Verify the following special values of theψ form of the di- and polygamma functions:

ψ(1)=−γ, ψ (1)(1)= ζ(2), ψ (2)(1)=−2ζ(3).

8.2.10 Derive the polygamma function recurrence relation

ψ (m)(1+ z)=ψ (m)(z)+ (−1)mm!/zm+1, m= 0,1,2, . . . .

8.2.11 Verify

(a)
∫ ∞

0
e−r ln r dr =−γ .
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(b)
∫ ∞

0
re−r ln r dr = 1− γ .

(c)
∫ ∞

0
rne−r ln r dr = (n− 1)! + n

∫ ∞

0
rn−1e−r ln r dr, n= 1,2,3, . . . .

Hint. These may be verified by integration by parts, three parts, or differentiating the
integral form ofn! with respect ton.

8.2.12 Dirac relativistic wave functions for hydrogen involve factors such as[2(1−α2Z2)1/2]!
where α, the fine structure constant, is1137 and Z is the atomic number. Expand
[2(1− α2Z2)1/2]! in a series of powers ofα2Z2.

8.2.13 The quantum mechanical description of a particle in a Coulomb field requires a knowl-
edge of the phase of the complex factorial function. Determine the phase of(1+ ib)!
for smallb.

8.2.14 The total energy radiated by a blackbody is given by

u= 8πk4T 4

c3h3

∫ ∞

0

x3

ex − 1
dx.

Show that the integral in this expression is equal to 3!ζ(4).
[ζ(4)= π4/90= 1.0823. . .] The final result is the Stefan–Boltzmann law.

8.2.15 As a generalization of the result in Exercise 8.2.14, show that
∫ ∞

0

xs dx

ex − 1
= s!ζ(s + 1), ℜ(s) > 0.

8.2.16 The neutrino energy density (Fermi distribution) in the early history of the universe is
given by

ρν =
4π

h3

∫ ∞

0

x3

exp(x/kT )+ 1
dx.

Show that

ρν =
7π5

30h3
(kT )4.

8.2.17 Prove that
∫ ∞

0

xs dx

ex + 1
= s!

(
1− 2−s

)
ζ(s + 1), ℜ(s) > 0.

Exercises 8.2.15 and 8.2.17 actually constitute Mellin integral transforms (compare Sec-
tion 15.1).

8.2.18 Prove that

ψ (n)(z)= (−1)n+1
∫ ∞

0

tne−zt

1− e−t
dt, ℜ(z) > 0.
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8.2.19 Using di- and polygamma functions, sum the series

(a)
∞∑

n=1

1

n(n+ 1)
, (b)

∞∑

n=2

1

n2− 1
.

Note.You can use Exercise 8.2.6 to calculate the needed digamma functions.

8.2.20 Show that

∞∑

n=1

1

(n+ a)(n+ b)
= 1

(b− a)

{
ψ(1+ b)−ψ(1+ a)

}
,

wherea 
= b and neithera nor b is a negative integer. It is of some interest to compare
this summation with the corresponding integral,

∫ ∞

1

dx

(x + a)(x + b)
= 1

b− a

{
ln(1+ b)− ln(1+ a)

}
.

The relation betweenψ(x) and lnx is made explicit in Eq. (8.51) in the next section.

8.2.21 Verify the contour integral representation ofζ(s),

ζ(s)=− (−s)!
2πi

∫

C

(−z)s−1

ez − 1
dz.

The contourC is the same as that for Eq. (8.35). The pointsz=±2nπi, n= 1,2,3, . . . ,
are all excluded.

8.2.22 Show thatζ(s) is analytic in the entire finite complex plane except ats = 1, where it
has a simple pole with a residue of+1.
Hint. The contour integral representation will be useful.

8.2.23 Using the complex variable capability of FORTRAN calculateℜ(1+ ib)!, ℑ(1+ ib)!,
|(1+ ib)!| and phase(1+ ib)! for b= 0.0(0.1)1.0. Plot the phase of(1+ ib)! versusb.
Hint. Exercise 8.2.3 offers a convenient approach. You will need to calculateζ(n).

8.3 STIRLING’S SERIES

For computation of ln(z!) for very largez (statistical mechanics) and for numerical com-
putations at nonintegral values ofz, a series expansion of ln(z!) in negative powers ofz is
desirable. Perhaps the most elegant way of deriving such an expansion is by the method of
steepest descents (Section 7.3). The following method, starting with a numerical integra-
tion formula, does not require knowledge of contour integration and is particularly direct.
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Derivation from Euler–Maclaurin Integration Formula

The Euler–Maclaurin formula for evaluating a definite integral6 is
∫ n

0
f (x)dx = 1

2f (0)+ f (1)+ f (2)+ · · · + 1
2f (n)

− b2
[
f ′(n)− f ′(0)

]
− b4

[
f ′′′(n)− f ′′′(0)

]
− · · · , (8.45)

in which theb2n are related to the Bernoulli numbersB2n (compare Section 5.9) by

(2n)!b2n = B2n, (8.46)

B0= 1, B6 = 1
42,

B2= 1
6, B8 =− 1

30,

B4=− 1
30, B10= 5

66, and so on.

(8.47)

By applying Eq. (8.45) to the definite integral
∫ ∞

0

dx

(z+ x)2
= 1

z
(8.48)

(for z not on the negative real axis), we obtain

1

z
= 1

2z2
+ψ (1)(z+ 1)− 2!b2

z3
− 4!b4

z5
− · · · . (8.49)

This is the reason for using Eq. (8.48). The Euler–Maclaurin evaluation yieldsψ (1)(z+1),
which isd2 lnŴ(z+ 1)/dz2.

Using Eq. (8.46) and solving forψ (1)(z+ 1), we have

ψ (1)(z+ 1)= d

dz
ψ(z+ 1) = 1

z
− 1

2z2
+ B2

z3
+ B4

z5
+ · · ·

= 1

z
− 1

2z2
+

∞∑

n=1

B2n

z2n+1
. (8.50)

Since the Bernoulli numbers diverge strongly, this series does not converge. It is a semi-
convergent, or asymptotic, series, useful if one retains a small enough number of terms
(compare Section 5.10).

Integrating once, we get the digamma function

ψ(z+ 1) = C1+ ln z+ 1

2z
− B2

2z2
− B4

4z4
− · · ·

= C1+ ln z+ 1

2z
−

∞∑

n=1

B2n

2nz2n
. (8.51)

Integrating Eq. (8.51) with respect toz from z−1 toz and then lettingz approach infinity,
C1, the constant of integration, may be shown to vanish. This gives us a second expression
for the digamma function, often more useful than Eq. (8.38) or (8.44b).

6This is obtained by repeated integration by parts, Section 5.9.
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Stirling’s Series

The indefinite integral of the digamma function (Eq. (8.51)) is

lnŴ(z+ 1)= C2+
(
z+ 1

2

)
ln z− z+ B2

2z
+ · · · + B2n

2n(2n− 1)z2n−1
+ · · · , (8.52)

in which C2 is another constant of integration. To fixC2 we find it convenient to use the
doubling, or Legendre duplication, formula derived in Section 8.4,

Ŵ(z+ 1)Ŵ
(
z+ 1

2

)
= 2−2zπ1/2Ŵ(2z+ 1). (8.53)

This may be proved directly whenz is a positive integer by writingŴ(2z+ 1) as a product
of even terms times a product of odd terms and extracting a factor of 2 from each term
(Exercise 8.3.5). Substituting Eq. (8.52) into the logarithm of the doubling formula, we
find thatC2 is

C2= 1
2 ln 2π, (8.54)

giving

lnŴ(z+ 1)= 1

2
ln 2π +

(
z+ 1

2

)
ln z− z+ 1

12z
− 1

360z3
+ 1

1260z5
− · · · . (8.55)

This is Stirling’s series, an asymptotic expansion. The absolute value of the error is less
than the absolute value of the first term omitted.

The constants of integrationC1 andC2 may also be evaluated by comparison with the
first term of the series expansion obtained by the method of “steepest descent.” This is
carried out in Section 7.3.

To help convey a feeling of the remarkable precision of Stirling’s series forŴ(s + 1),
the ratio of the first term of Stirling’s approximation toŴ(s + 1) is plotted in Fig. 8.5.
A tabulation gives the ratio of the first term in the expansion toŴ(s + 1) and the ratio of
the first two terms in the expansion toŴ(s + 1) (Table 8.1). The derivation of these forms
is Exercise 8.3.1.

Exercises

8.3.1 Rewrite Stirling’s series to giveŴ(z+ 1) instead of lnŴ(z+ 1).

ANS.Ŵ(z+ 1)=
√

2πzz+1/2e−z
(

1+ 1

12z
+ 1

288z2
− 139

51,840z3
+ · · ·

)
.

8.3.2 Use Stirling’s formula to estimate 52!, the number of possible rearrangements of cards
in a standard deck of playing cards.

8.3.3 By integrating Eq. (8.51) fromz− 1 to z and then lettingz→∞, evaluate the constant
C1 in the asymptotic series for the digamma functionψ(z).

8.3.4 Show that the constantC2 in Stirling’s formula equals12 ln2π by using the logarithm of
the doubling formula.
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FIGURE 8.5 Accuracy of Stirling’s formula.

Table 8.1

s
1

Ŵ(s + 1)

√
2πss+1/2e−s

1

Ŵ(s + 1)

√
2πss+1/2e−s

(
1+ 1

12s

)

1 0.92213 0.99898
2 0.95950 0.99949
3 0.97270 0.99972
4 0.97942 0.99983
5 0.98349 0.99988
6 0.98621 0.99992
7 0.98817 0.99994
8 0.98964 0.99995
9 0.99078 0.99996

10 0.99170 0.99998

8.3.5 By direct expansion, verify the doubling formula forz= n+ 1
2 ; n is an integer.

8.3.6 Without using Stirling’s series show that

(a) ln(n!) <
∫ n+1

1
lnx dx, (b) ln(n!) >

∫ n

1
lnx dx; n is an integer≥ 2.

Notice that the arithmetic mean of these two integrals gives a good approximation for
Stirling’s series.

8.3.7 Test for convergence

∞∑

p=0

[
(p− 1

2)!
p!

]2

× 2p+ 1

2p+ 2
= π

∞∑

p=0

(2p− 1)!!(2p+ 1)!!
(2p)!!(2p+ 2)!! .


