Binomial Theorem

In Chapter 4, when multiplying polynomials, we developed patterns for squaring and cubing binomials. Now we want to develop a general pattern that can be used to raise a binomial to any positive integral power. Let's begin by looking at some specific expansions that can be verified by direct multiplication. (Note that the patterns for squaring and cubing a binomial are a part of this list.)

$$
\begin{aligned}
& (x+y)^{0}=1 \\
& (x+y)^{1}=x+y \\
& (x+y)^{2}=x^{2}+2 x y+y^{2} \\
& (x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \\
& (x+y)^{4}=x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4} \\
& (x+y)^{5}=x^{5}+5 x^{4} y+10 x^{3} y^{2}+10 x^{2} y^{3}+5 x y^{4}+y^{5}
\end{aligned}
$$

First, note the pattern of the exponents for x and y on a term-by-term basis. The exponents of x begin with the exponent of the binomial and decrease by 1 , term by term, until the last term has x^{0}, which is 1 . The exponents of y begin with zero $\left(y^{0}=1\right)$ and increase by 1 , term by term, until the last term contains y to the power of the binomial. In other words, the variables in the expansion of $(x+y)^{n}$ have the following pattern.

$$
x^{n}, \quad x^{n-1} y, \quad x^{n-2} y^{2}, \quad x^{n-3} y^{3}, \quad \ldots, \quad x y^{n-1}, \quad y^{n}
$$

Note that for each term, the sum of the exponents of x and y is n.
Now let's look for a pattern for the coefficients by examining specifically the expansion of $(x+y)^{5}$.

As indicated by the arrows, the coefficients are numbers that arise as different-sized combinations of five things. To see why this happens, consider the coefficient for the term containing $x^{3} y^{2}$. The two y 's (for y^{2}) come from two of the factors of $(x+y)$, and therefore the three x^{\prime} 's (for x^{3}) must come from the other three factors of $(x+y)$. In other words, the coefficient is $C(5,2)$.

We can now state a general expansion formula for $(x+y)^{n}$; this formula is often called the binomial theorem. But before stating it, let's make a small switch in notation. Instead of $C(n, r)$, we shall write $\binom{n}{r}$, which will prove to be a little more convenient at this time. The symbol $\binom{n}{r}$, still refers to the number of combinations of n things taken r at a time, but in this context, it is called a binomial coefficient.

Binomial Theorem

For any binomial $(x+y)$ and any natural number n,

$$
(x+y)^{n}=x^{n}+\binom{n}{1} x^{n-1} y+\binom{n}{2} x^{n-2} y^{2}+\cdots+\binom{n}{n} y^{n}
$$

The binomial theorem can be proved by mathematical induction, but we will not do that in this text. Instead, we'll consider a few examples that put the binomial theorem to work.

EXAMPLE 1 Expand $(x+y)^{7}$.

Solution

$$
\begin{aligned}
(x+y)^{7}= & x^{7}+\binom{7}{1} x^{6} y+\binom{7}{2} x^{5} y^{2}+\binom{7}{3} x^{4} y^{3}+\binom{7}{4} x^{3} y^{4} \\
& +\binom{7}{5} x^{2} y^{5}+\binom{7}{6} x y^{6}+\binom{7}{7} y^{7} \\
= & x^{7}+7 x^{6} y+21 x^{5} y^{2}+35 x^{4} y^{3}+35 x^{3} y^{4}+21 x^{2} y^{5}+7 x y^{6}+y^{7}
\end{aligned}
$$

EXAMPLE 2 Expand $(x-y)^{5}$.

Solution

We shall treat $(x-y)^{5}$ as $[x+(-y)]^{5}$:

$$
\begin{aligned}
{[x+(-y)]^{5}=} & x^{5}+\binom{5}{1} x^{4}(-y)+\binom{5}{2} x^{3}(-y)^{2}+\binom{5}{3} x^{2}(-y)^{3} \\
& +\binom{5}{4} x(-y)^{4}+\binom{5}{5}(-y)^{5} \\
= & x^{5}-5 x^{4} y+10 x^{3} y^{2}-10 x^{2} y^{3}+5 x y^{4}-y^{5}
\end{aligned}
$$

EXAMPLE 3 Expand $(2 a+3 b)^{4}$.

Solution

Let $x=2 a$ and $y=3 b$ in the binomial theorem:

$$
\begin{aligned}
(2 a+3 b)^{4}= & (2 a)^{4}+\binom{4}{1}(2 a)^{3}(3 b)+\binom{4}{2}(2 a)^{2}(3 b)^{2} \\
& +\binom{4}{3}(2 a)(3 b)^{3}+\binom{4}{4}(3 b)^{4} \\
= & 16 a^{4}+96 a^{3} b+216 a^{2} b^{2}+216 a b^{3}+81 b^{4}
\end{aligned}
$$

EXAMPLE 4
 $$
\text { Expand }\left(a+\frac{1}{n}\right)^{5} \text {. }
$$

Solution

$$
\begin{aligned}
\left(a+\frac{1}{n}\right)^{5} & =a^{5}+\binom{5}{1} a^{4}\left(\frac{1}{n}\right)+\binom{5}{2} a^{3}\left(\frac{1}{n}\right)^{2}+\binom{5}{3} a^{2}\left(\frac{1}{n}\right)^{3}+\binom{5}{4} a\left(\frac{1}{n}\right)^{4}+\binom{5}{5}\left(\frac{1}{n}\right)^{5} \\
& =a^{5}+\frac{5 a^{4}}{n}+\frac{10 a^{3}}{n^{2}}+\frac{10 a^{2}}{n^{3}}+\frac{5 a}{n^{4}}+\frac{1}{n^{5}}
\end{aligned}
$$

EXAMPLE 5 Expand $\left(x^{2}-2 y^{3}\right)^{6}$.

Solution

$$
\begin{aligned}
{\left[x^{2}+\left(-2 y^{3}\right)\right]^{6}=} & \left(x^{2}\right)^{6}+\binom{6}{1}\left(x^{2}\right)^{5}\left(-2 y^{3}\right)+\binom{6}{2}\left(x^{2}\right)^{4}\left(-2 y^{3}\right)^{2} \\
& +\binom{6}{3}\left(x^{2}\right)^{3}\left(-2 y^{3}\right)^{3}+\binom{6}{4}\left(x^{2}\right)^{2}\left(-2 y^{3}\right)^{4} \\
& +\binom{6}{5}\left(x^{2}\right)\left(-2 y^{3}\right)^{5}+\binom{6}{6}\left(-2 y^{3}\right)^{6} \\
= & x^{12}-12 x^{10} y^{3}+60 x^{8} y^{6}-160 x^{6} y^{9}+240 x^{4} y^{12}-192 x^{2} y^{15}+64 y^{18}
\end{aligned}
$$

Finding Specific Terms

Sometimes it is convenient to be able to write down the specific term of a binomial expansion without writing out the entire expansion. For example, suppose that we want the sixth term of the expansion $(x+y)^{12}$. We can proceed as follows: The sixth term will contain y^{5}. (Note in the binomial theorem that the exponent of y is always one less than the number of the term.) Because the sum of the exponents for x and y must be 12 (the exponent of the binomial), the sixth term will also contain x^{7}. The coefficient is $\binom{12}{5}$, and the 5 agrees with the exponent of
y^{5}. Therefore the sixth term of $(x+y)^{12}$ is

$$
\binom{12}{5} x^{7} y^{5}=792 x^{7} y^{5}
$$

EXAMPLE 6 Find the fourth term of $(3 a+2 b)^{7}$.

Solution

The fourth term will contain $(2 b)^{3}$, and therefore it will also contain $(3 a)^{4}$. The coefficient is $\binom{7}{3}$. Thus the fourth term is

$$
\binom{7}{3}(3 a)^{4}(2 b)^{3}=(35)\left(81 a^{4}\right)\left(8 b^{3}\right)=22,680 a^{4} b^{3}
$$

EXAMPLE 7 Find the sixth term of $(4 x-y)^{9}$.

Solution

The sixth term will contain $(-y)^{5}$, and therefore it will also contain $(4 x)^{4}$. The coefficient is $\binom{9}{5}$. Thus the sixth term is

$$
\binom{9}{5}(4 x)^{4}(-y)^{5}=(126)\left(256 x^{4}\right)\left(-y^{5}\right)=-32,256 x^{4} y^{5}
$$

Practice Exercises

For Problems 1-26, expand and simplify each binomial.

1. $(x+y)^{8}$
2. $(x+y)^{9}$
3. $(x-y)^{6}$
4. $(x-y)^{4}$
5. $(a+2 b)^{4}$
6. $(3 a+b)^{4}$
7. $(x-3 y)^{5}$
8. $(2 x-y)^{6}$
9. $(2 a-3 b)^{4}$
10. $(3 a-2 b)^{5}$
11. $\left(x^{2}+y\right)^{5}$
12. $\left(x+y^{3}\right)^{6}$
13. $\left(2 x^{2}-y^{2}\right)^{4}$
14. $\left(3 x^{2}-2 y^{2}\right)^{5}$
15. $(x+3)^{6}$
16. $(x+2)^{7}$
17. $(x-1)^{9}$
18. $(x-3)^{4}$
19. $\left(1+\frac{1}{n}\right)^{4}$
20. $\left(2+\frac{1}{n}\right)^{5}$
21. $\left(a-\frac{1}{n}\right)^{6}$
22. $\left(2 a-\frac{1}{n}\right)^{5}$
23. $(1+\sqrt{2})^{4}$
24. $(2+\sqrt{3})^{3}$
25. $(3-\sqrt{2})^{5}$
26. $(1-\sqrt{3})^{4}$

For Problems 27-36, write the first four terms of each expansion.
27. $(x+y)^{12}$
28. $(x+y)^{15}$
29. $(x-y)^{20}$
30. $(a-2 b)^{13}$
31. $\left(x^{2}-2 y^{3}\right)^{14}$
32. $\left(x^{3}-3 y^{2}\right)^{11}$
33. $\left(a+\frac{1}{n}\right)^{9}$
34. $\left(2-\frac{1}{n}\right)^{6}$
35. $(-x+2 y)^{10}$
36. $(-a-b)^{14}$

For Problems 37-46, find the specified term for each binomial expansion.
37. The fourth term of $(x+y)^{8}$
38. The seventh term of $(x+y)^{11}$
39. The fifth term of $(x-y)^{9}$
40. The fourth term of $(x-2 y)^{6}$
41. The sixth term of $(3 a+b)^{7}$
42. The third term of $(2 x-5 y)^{5}$
43. The eighth term of $\left(x^{2}+y^{3}\right)^{10}$
44. The ninth term of $\left(a+b^{3}\right)^{12}$
45. The seventh term of $\left(1-\frac{1}{n}\right)^{15}$
46. The eighth term of $\left(1-\frac{1}{n}\right)^{13}$

