

Frequency Division Multiplexing

- A number of signals are carried simultaneously on the same medium.
- Each signal is modulated to a different carrier frequency
- Useful bandwidth of medium should exceed required bandwidth of channels
- Carrier frequencies separated so signals do not overlap (guard bands)

EE 4272

- e.g. FM radio, CATV
- Channel allocated even if no data

Spring, 2003

Michigan Cel

1

Synchronous Time Division Multiplexing Data rate of medium exceeds data rate of *digital signals* in terleaved in time Multiple *digital signals* interleaved in time Interleaving can be at: *bit level; blocks of bytes level; or larger quantities level*Time slots preassigned to sources and fixed Time slots allocated even if no data Time slots do not have to be evenly distributed amongst sources -> TDM can handle source with different data rate.

SONET/SD	H: An examp	le of TDM			
Synchronous Option	cal Network by Be	llCore (ANSI)			
Synchronous Digital Hierarchy (ITU-T)					
Signal Hierarchy					
SONET: Synchronous Transport Signal level 1 (STS-1) or Optical Carrier level 1 (OC-1): 51.84Mbps					
 Can carry DS-3 or a group of lower rate signals (DS1 DS1C DS2) plus ITU-T rates (e.g. 2.048Mbps) 					
> SDH : lowest rate is 155.52Mbps (STM-1)					
SONET uses a frame structure with the same 8khz repetition rate as traditional TDM system					
Multiple STS-1 combined into STS-N signal					
Spring, 2003	EE 4272	Michigan			

SO	NET	STS-1	Over	head Octets
Section Overhead	Framing A1 BIP-8 B1 DataCom	Framing A2 Orderwire E1 DataCom	STS-ID C1 User F1 DataCom	Trace J1 BIP-8 B3 Signal
	D1 Pointer H1 BIP-8 B2	D2 Pointer H2 APS K1	D3 Pointer Action H3 APS K2	Label C2 Path Status G1 User F2
Line Overhead	DataCom D4 DataCom D7 DataCom	DataCom D5 DataCom D8 DataCom	DataCom D6 DataCom D9 DataCom	Multiframe H4 Growth Z3 Growth
l	D10 Growth Z1 (a) Tr	D11 Growth Z2	D12 Orderwire E2	(b) Path Overhead
Spring, 2003	(,		EE 4272	Michiganiea

Discrete Multitone (DMT)

- ITU-T G.992.1 standard for ADSL uses DMT
- DMT divides available bandwidth into # of subchannels
- 4kHz for each subchannels
- The binary bits are distributed among the subchannel, each of which use QAM (using two copies of the carrier frequency, one shifted by 90⁰)
- More bits feed to subchannels with high SNR, less bits to subchannels with poor SNR
- Current ADSL: 256 downstream subchannels (1.5 to 9Mbps).

EE 4272

Spring, 2003

Michigan -

xDSL

- High data rate DSL (HDSL): deliver T1 data (1.544Mbps) over two twisted pair lines -> replace T1 lines - 1.544 or 2.048 Mbps
- Single line DSL (SDSL): echo cancellation used
- Very high data rate DSL: 13 to 52 Mbps downstream

EE 4272

Spring, 2003

Michi