
The Fourier Transform

The Fourier transform is crucial to any discussion of time series analysis, and this chapter discusses the
definition of the transform and begins introducing some of the ways it is useful.

We will use a Mathematica-esque notation. This includes using the symbol I  for the square root of

minus one. Also, what is conventionally written as sin(t) in Mathematica is Sin[t] ; similarly the cosine

is Cos[t]. Finally, the irrational number 2.71828... is represented by the symbol E.

The contents of this chapter are:

Fourier Series
Fourier Transform
Example and Interpretation
Oddness and Evenness
The Convolution Theorem
Discrete Fourier Transforms

Definitions
Example
Implementation
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Ã Fourier Series

Recall the Fourier series, in which a function f[t]  is written as a sum of sine and cosine terms:
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The coefficients are found from the fact that the sine and cosine terms are orthogonal, from which:
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Fourier series are used, for example, to discuss the harmonic structure of the tonic and overtones of a
vibrating string.

Note that the series represents either f[t]  over a limited range of 0 < t  < 2S, or we assume that the
function is periodic with a period equal to 2S.

Also note that, as opposed to the Taylor series, the Fourier series can represent a discontinuous func-
tion:
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Ã Fourier Transform

In the previous section we defined the series over the interval (0, 2S). Say instead we are interested in
the interval (-L, L). Then the coefficients in the Fourier series are:
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Thus we write the series of f as a function of a dummy variable x as:
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The trigonometry relation:

Cos#T1 � T2'  

Cos#T2 � T1'  Cos#T1'�Cos#T2' � Sin #T1'�Sin #T2'
allows us to rewrite the expansion as:
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Let L ��, ie. let the interval (-L, L) go to (-�, �). We write:
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The meaning of 'Z is that it is the amount that Z changes for each time in the sum that n goes to n + 1.

The first term in the series is the DC component of f[t] . In the limit as L � �, the integral must be
either infinity or zero; the latter is the only reasonable choice. So we now can write the expansion as:
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Recall the notation, useful for multiple integrals that:

Ã -Ã f #x, y '�Åx1�Åy  Ã Åy �Ã Åx f #x, y '
In the expression for f[x] , we replace the sum with an integral:
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Since the sine is odd:
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we can write:
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Adding this to the expression for f[x]  gives:
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The Fourier transform F1[Z] of f[t]  is:
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Note that it is a function of Z. If we interpret t  as the time, then Z is the angular frequency. Thus we
have replaced a function of time with a spectrum in frequency.

The inverse Fourier transform takes F[Z] and, as we have just proved, reproduces f[t]:
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You should be aware that there are other common conventions for the Fourier transform (which is why
we labelled the above transforms with a subscript). For example, some texts use a different normalisa-
tion:
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Still others reverse the transform and its inverse:
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The only difference between the "type-2" definition and the "type-3" one is the relative signs of the real
and imaginary parts of the transforms.

By default, Mathematica uses this "type-3" definition of the Fourier transform. In this class we will
almost always be using the "type-1" convention.

Say we have a function of the position x: g[x]. Then the type-1 Fourier transform and inverse transform
are:
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In this case the transform is a function of the wavenumber k = 2S/O.

Ã Example and Interpretation

Say we have a function:
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f #t_ ' :  Sin #Z0 t ' s; Abs #t ' � nS
ccccccc
Z0

f #t_ ' :  0 s; Abs #t ' � nS
ccccccc
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where Abs is Mathematica's function for an absolute value. Also, the t_ means any variable, and := is

the form of equal sign used in function definitions. The /;  imposes the conditions under which the
definition applies.

For n = 5 and Z0 = 100, this looks like:
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Increasing n to 10 increases the number of cycles:
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The Fourier transform is:
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This evaluates to:
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where of course I used Mathematica to actually do the integration.

For Z � Z0 and Z0 large:
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For n = 5 and Z0 = 100, the right hand side of the above looks like:
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The zeroes in the above occur at:
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Since the contributions outside the central maximum are small, we may take:
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to be a measure of the width of the peak.

For n = 10 and the same value of Z0 the plot looks like:
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Clearly, the width of the curve is now decreased.

Curves such as the above will occur sufficiently often that we will give the function that generates them
a name: the sinc:

Sinc #x' �
Sin #Sx'
ccccccccccccccccccccc

Sx

One interpretation of the above Fourier transform is that F[Z] is the frequency spectrum of a sine wave

signal f[t]  which is varying in time; thus Z is the angular frequency. The main frequency component
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occurs at the frequency of the sine wave, Z0, but there are other frequency components that cancel out

the signal for values of the time whose absolute value is greater than nS/Z0. If we think about letting n
go to infinity, then the sine wave is non-zero for all values of the time from -� to �; in this case the
width of the Fourier transform goes to zero and become a Dirac delta function centered at Z0.

Thus if we have an infinite sine wave but only measure it for a finite period of time, the measurement
will introduce "sidebands" in the frequency spectrum.

Another interpretation of the transform is that the symbol t  is the finite width of a slit; the Fourier

transform of f[t]  is then the amplitude of the diffraction pattern of the slit. The fact that a wider slit
produces a narrower transform means that to get, say, good dispersion of the high tones from a loud-
speaker requires that the speaker be small.

Yet another interpretation is that f[t]  is the amplitude of an electromagnetic wave that is passing by us.
The period of the sine wave itself is

T  
2�S
cccccccc
Z0

and there are n cycles of the sine wave in f[t] , so it takes a time:

't  n�
2�S
cccccccc
Z0

for the wave to pass us.

The width in the peak of the Fourier transform is a way of saying there is an uncertainty in the "true"

value of the frequency. But we know from Planck that the frequency is related to the energy E accord-
ing to:
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Thus, the uncertainty in the frequency corresponds to an uncertainty in the energy:
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Above we estimated GZ to be Z0/n so:
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Thus:

'E 't  
´h Z0
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2�S n
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 h

This is just a form of the Heisenberg uncertainty principle!

Ã Oddness and Evenness

Symmetry arguments in Fourier theory often allows us to show directly that certain integrals vanish
without needing to evaluate them. Also, often symmetry considerations allows us the reduce the limits
of integration, which again can symplify calculations.

An even function e[t] is one such that e[-t] = e[t]; an example is the cosine. An odd function o[t]  is one

such that o[-t] = -o[t] ; an example is the sine. Given an arbitrary function f[t] , we can extract the even
and odd parts of it:

e#t '  1 s2�+f #t ' � f #�t '/
o#t '  1 s2�+f #t ' � f #�t '/

and:

f #t '  e#t ' � o#t '
In general e and o are complex.

The Fourier transform of f[t]  is:
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Thus, for example, if f[t]  has an even part that is real and an odd part that is imaginary, its Fourier
transform is real.
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Ã The Convolution Theorem

I hope that after going through some of the interpretations of the Fourier transform above, you are
already convinced that it is one of the "keys to the universe." Here we present one of the most impor-
tant keys in the context of time series analysis.

Imagine we have a function f[t]  whose Fourier transform is F[Z], and another function g[t]  whose

transform is G[Z]. Then the convolution is:
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We write g[t - u] in terms of the inverse Fourier transform:
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Thus:
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But the right hand integral above is just the Fourier transform of f[u] , so:
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1
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In words:

The inverse Fourier transform of a product of Fourier transforms is the convolution of the original
functions.

Here is an example. The Fourier transform of a Sinc function is just the rectangle function that in the
Convolution chapter we gave the symbol ¾:
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f #t '  Sin #Z0t ' s +Z0t /

�Z0 Z0
Z

F#Z'  ¾

Thus F[Z] only passes frequencies with an absolute value less than Z0. So if we convolve a Sinc func-

tion with some signal g[t] , the Sinc is performing as an ideal "low pass filter."

The example shows that we can consider the design of a filter in two separate domains:

1. In the frequency domain we can just multiply the Fourier transform of the original time series by
some desired filter, a low pass filter in the above example.

2. In the time domain, we can convolve the time series with the inverse Fourier transform of the desired
filter.

The fact that the amplitude of the Sinc function approaches zero asymptotically as t � ±� means that

doing the full convolution would require measuring f[t]  from t = -� to t = +�. Since this is physically
impossible, we have proved that the ideal low pass filter can not be built.

Ã Discrete Fourier Transforms

So far in this chapter we have only considered continuous functions f[t] . Here we extend to a time

series that is a sample of f[t] . This section is divided into three subsections: Definitions, Examples,
and Implementation.

� Definitions

If f[t]  is a times series of length n, then we replace the continous Fourier transform:
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�Å t

with a sum:
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We wish to evaluate tk in the above. Recall that ' is the sampling interval so the time is:

t k  k '

Imagine that f[t]  is periodic and we have sampled over one complete period T so f0 = fn. Then:

T  n '

In order to evaluate Z j  we will think for a moment about Fourier series. The term Z0 is zero and is the
DC component, corresponding to the a0 term in the series. The next term:

Z  
2�S
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T

corresponds to the first allowed vibration, which for a vibrating string is the tonic and determines the
note that is being played:

The next term is:

Z  2�- 2�S
cccccccc

T
1

and represents the first harmonic of a vibrating string:

So in general the frequencies are:

Zj  j - 2�S
cccccccc

T
1
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So now we can write the discrete Fourier transform as:
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To get the inverse Fourier transform:
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The value of GZ is just how much Z j  changes with each change from j  to j + 1. We just saw that it is:
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So the discrete inverse Fourier transform is:
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Note that in both the transform and its inverse, by making the usual choice that the sampling interval '

is one simplifies the definition. We shall make that choice for the remainder of this chapter. Thus:
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We recall that F j  is a shorthand for F[Z j ], where:

Zj  j �- 2�S
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n'

1  j �- 2�S
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n
1

and that fk is a shorthand for f[ tk], where:
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t k  k'  k

� Example

As already mentioned, the built in discrete Fourier transform routines in Mathematica use a different
convention than we use by default in these notes. Earlier, we called Mathematica's choice a "type-3"
definition, so we write:

F3##j ''  
1

ccccccccccr����
n
�Å
k 1

n

f ##k'' EI 2 S +j �1/ + k�1/ s n

Here the sign of the exponential is different than the type-1 definition. Also note that k  goes from 1

through n, because that is the way the Mathematica accesses members of a list. Recall that we usually
write the elements of a time series as:

timeSeries  �f 0, f 1, f 2, ... , f n�1�
Then Mathematica's access of elements of the list is:

timeSeries ##k''  f k�1

The Mathematica function implementing this definition is called Fourier .

The inverse Fourier transform in Mathematica, InverseFourier, is:

f 3##k''  
1

ccccccccccr����
n
�Å
j  1

n

F3##j ''�E�I 2 S +j �1/ + k�1/ s n

It is fairly simple to use Mathematica's functions to implement the "type-1" conventions that we have
been using, but in this subsection we will not bother. The only real difference between the two conven-
tions is the signs of the real and imaginary parts and the normalisation.

Say we have a n = 200 element time series of five cycles of a sine wave:
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A sampled sine wave

The period is 40, so the angular frequency is 2S/40.

Then using Fourier  on the time series gives us the transform, whose absolute values are:
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Fourier transform

Note: there is a bug somewhere in the Mathematica � PostScript � PDF sequence that puts a superflu-
ous dot on the vertical axis of the above plot. It should not be there. I am working with the vendor of
Mathematica to try to find and fix the bug.

Almost all the values are close to with zero. The sixth element has a value of 7.07. In the previous sub-
section we showed that the frequency values in the Fourier transform are:
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which here is:

Zj  j �- S
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The maximum in the transform occurs at the sixth element, which corresponds to j = 5. Thus:

Zj  5�- S
cccccccccc
100

1  
S
ccccccc
20

This is precisely the frequency of the original sine wave.

Note that element 196 of the Fourier transform also has a value of 7.07. This is called an "alias" of the
peak occuring in the sixth element. If you go through the Fourier transform definitions above you can
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convince yourself that the frequency can just as well be a negative number as a positive one. The alias
is a representation of the negative frequency component of the Fourier transform. Ideally we would like
it to look something like:

Z

Ideal plot of the Fourier transform

Note: the above plot also shows the same bug as the previous one. There is an extra dot high on the
vertical axis. Ignore it.

But since the Fourier transform is just a list of numbers, not {frequency, number} pairs, Mathematica

couldn't do that. Instead it joined the negative frequency values to the end of the positive frequency
ones.

We will have a lot more to say about aliasing in the next chapter.

� Implementation

One "brute force" way of calculating the sums of a Fourier transform is to define:

W � E�I2 Ssn

Then:

Fj  Å
k 0

n � 1

f k E�I 2 S j k s n
 Å

k 0

n � 1

f k �W
jk

We can think of f  as a vector of length n, and W  as a matrix of dimension n l k. This multiplication
requires n2 calculations, and evaluating the sum requires a smaller number of operations to generate the

powers of W. Thus calculating the Fourier transform this way is a O(n2) process. Doubling the number
of points in a time sample quadruples the time necessary to calculate the transform; tripling the number
of points requires nine times as much time.
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However, there is a Fast Fourier Transform algorithm that can give an immense improvement. The
basic idea is that we split the sum into two parts:

Fj  Å
k 0

ns2 � 1

f 2 k E�I 2 S j 2 k s n
� Å

k 0

ns2 � 1

f 2 k � 1 E�I 2 S j +2 k � 1/s n

The first sum involves the even terms in f, and the second sum the odd ones.

Using the same W as before, we can write:
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 Fk

e
� Wk

�Fk
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We can apply the same procedure recursively to the sums represented by Fk
e and Fk

o. Eventually, if n is
a power of two, we end up with no summations at all, just a product of terms.

It turns out that this procedure is O(n log2n). So, doubling the number of points in the time series only
doubles the time necessary to calculate the transform using this algorithm, and tripling the number of
points increases the time by about 4.75.

Many people treat this Fast Fourier Transform as "magic", and it is does seem magical in its properties.

But notice that it all hinges on n being a power of two. For example, if one constructs a time series:

timeSeries  Å
t  1

32700

E�t s+32700 s6/

the values range from 0.999817 to 0.00247. Mathematica's Fourier  in one computing environment
took 13.12 seconds to transform this series. Since the last terms in the series are so close to zero, it is
quite reasonable to add zeroes to the end of the time series. We added 68 zeroes, so the total length of

the series becomes 32,768 = 215. Now it took Fourier  only 5.16 seconds to do the transform.

The lesson, then, is that if one is taking data in the lab and later the data will be Fourier transformed, if
there is a lot of data the total number of data points should always be a factor of two.
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