FUNCTIONS OF A COMPLEX
VARIABLE |
ANALYTIC PROPERTIES, MAPPING

The imaginary numbers are a wonderful flight of God's spirit;
they are almost an amphibian between being and not being.

GOTTFRIED WILHELM VON LEIBNIZ, 1702

We turn now to a study of functions of a complex variable. In this area we develop some
of the most powerful and widely useful tools in all of analysis. To indicate, at least partly,
why complex variables are important, we mention briefly several areas of application.

1. For many pairs of functions « and v, both « and v satisfy Laplace’s equation,

Y (x,y) i 2’y (x,y) _

Viy =
v dx2 ay?

0.

Hence either # or v may be used to describe a two-dimensional electrostatic potential. The
other function, which gives a family of curves orthogonal to those of the first function, may
then be used to describe the electric field E. A similar situation holds for the hydrodynamics
of an ideal fluid in irrotational motion. The function « might describe the velocity potential,
whereas the function v would then be the stream function.

In many cases in which the functions ¥ and v are unknown, mapping or transforming
in the complex plane permits us to create a coordinate system tailored to the particular
problem.

2. In Chapter 9 we shall see that the second-order differential equations of interest in
physics may be solved by power series. The same power series may be used in the complex
plane to replace x by the complex variable z. The dependence of the solution f(z) at a
given zg on the behavior of f(z) elsewhere gives us greater insight into the behavior of our
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solution and a powerful tool (analytic continuation) for extending the region in which the
solution is valid.

3. The change of a parameter k from real to imaginary, k — ik, transforms the Helmholtz
equation into the diffusion equation. The same change transforms the Helmholtz equa-
tion solutions (Bessel and spherical Bessel functions) into the diffusion equation solutions
(modified Bessel and modified spherical Bessel functions).

4. Integrals in the complex plane have a wide variety of useful applications:

Evaluating definite integrals;

Inverting power series;

Forming infinite products;

Obtaining solutions of differential equations for large values of the variable (asymptotic
solutions);

e Investigating the stability of potentially oscillatory systems;

e Inverting integral transforms.

5. Many physical quantities that were originally real become complex as a simple phys-
ical theory is made more general. The real index of refraction of light becomes a complex
quantity when absorption is included. The real energy associated with an energy level be-
comes complex when the finite lifetime of the level is considered.

6.1 COMPLEX ALGEBRA

A complex number is nothing more than an ordered pair of two real numbers, (a, b). Sim-
ilarly, a complex variable is an ordered pair of two real variables, !

z=(x,y). (6.1)

The ordering is significant. In general (a, b) is not equal to (b,a) and (x, y) is not equal
to (y,x). As usual, we continue writing a real number (x,0) simply as x, and we call
i = (0, 1) the imaginary unit.

All our complex variable analysis can be developed in terms of ordered pairs of numbers
(a, b), variables (x, y), and functions (u(x, y), v(x, y)).

We now define addition of complex numbers in terms of their Cartesian components
as

Z1+z2 = (x1, y1) + (x2, y2) = (x1 + x2. y1 + y2), (6.2a)

that is, two-dimensional vector addition. In Chapter 1 the points in the xy-plane are

identified with the two-dimensional displacement vector r = Xx + §y. As a result, two-

dimensional vector analogs can be developed for much of our complex analysis. Exer-

cise 6.1.2 is one simple example; Cauchy’s theorem, Section 6.3, is another.
Multiplication of complex numbers is defined as

2122 =(x1, ¥1) - (x2, y2) = (x1X2 — y1y2, X1¥2 + x2)1). (6.2b)

! This is precisely how a computer does complex arithmetic.
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Using Eq. (6.2b) we verify that it = (0,1)-(0,1) =(—1,0) = —1, so we can also identify
i = +/—1, as usual and further rewrite Eq. (6.1) as

2=, Y)=x, 04+ 0, y)=x+0,1)-(v,0) =x +iy. (6.2¢)

Clearly, the i is not necessary here but it is convenient. It serves to keep pairs in order —
somewhat like the unit vectors of Chapter 1.2

Permanence of Algebraic Form

All our elementary functions, e, sin z, and so on, can be extended into the complex plane
(compare Exercise 6.1.9). For instance, they can be defined by power-series expansions,
such as

e“=l+ﬁ+i+"'= ey (6.3)
n=l
for the exponential. Such definitions agree with the real variable definitions along the real
x-axis and extend the corresponding real functions into the complex plane. This result is
often called permanence of the algebraic form.
It is convenient to employ a graphical representation of the complex variable. By plotting
x — the real part of z— as the abscissa and y — the imaginary part of z— as the ordinate,
we have the complex plane, or Argand plane, shown in Fig. 6.1. If we assign specific
values to x and y, then z corresponds to a point (x, y) in the plane. In terms of the ordering
mentioned before, it is obvious that the point (x, y) does not coincide with the point (y, x)
except for the special case of x = y. Further, from Fig. 6.1 we may write

X =rcosf, y=rsinf (6.4a)

FIGURE 6.1 Complex
plane — Argand diagram.

2The algebra of complex numbers, (a, b), is isomorphic with that of matrices of the form

o)

(compare Exercise 3.2.4).
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and
z=r(cosf +isinf). (6.4b)

Using a result that is suggested (but not rigorously proved)® by Section 5.6 and Exer-
cise 5.6.1, we have the useful polar representation

z=r(cosf +isinf) = re'?. (6.4c)

In order to prove this identity, we use i> = —i, i* = 1, ... in the Taylor expansion of the

exponential and trigonometric functions and separate even and odd powers in

o _ oo (ie)n 3 0 (ig)lv o (1-9)2v+1
¢ _,.; al _§(2v)! +§)(2v+l)!

o 921} 00 92v+1
- —1)" +i —1)Y——— =cos 8 +isinf.
vzzo( ) o) g( AT !

For the special values # = /2 and # = m, we obtain
i T T .
e"'/2=c055+isin5=i, e =cos(m) =-1,

intriguing connections between e, i, and . Moreover, the exponential function eif is peri-
odic with period 27, just like sin# and cosé.

In this representation r is called the modulus or magnitude of z (r = |z| = =+ _vzjl/z)
and the angle # (= tan™! (y/x)) is labeled the argument or phase of z. (Note that the arctan
function tan~'(y/x) has infinitely many branches.)

The choice of polar representation, Eq. (6.4¢), or Cartesian representation, Eqs. (6.1) and
(6.2c), is a matter of convenience. Addition and subtraction of complex variables are easier
in the Cartesian representation, Eq. (6.2a). Multiplication, division, powers, and roots are
easier to handle in polar form, Eq. (6.4c).

Analytically or graphically, using the vector analogy, we may show that the modulus of
the sum of two complex numbers is no greater than the sum of the moduli and no less than
the difference, Exercise 6.1.3,

lz1] — lz2] < lz1 + 22| <lz1] + |22 (6.5)

Because of the vector analogy, these are called the triangle inequalities.
Using the polar form, Eq. (6.4¢), we find that the magnitude of a product is the product
of the magnitudes:

lz1 - 22| = |z1] - z2]- (6.6)
Also,

arg(z) - z2) = argz) + arg 22. (6.7)

3Striclly speaking, Chapter 5 was limited to real variables. The development of power-series expansions for complex functions
is taken up in Section 6.5 (Laurent expansion).
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z-plane w-plane
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FIGURE 6.2 The function w(z) = u(x, y) +iv(x, y) maps points in the xy-plane
into points in the uv-plane.

From our complex variable z complex functions f(z) or w(z) may be constructed. These
complex functions may then be resolved into real and imaginary parts,

w(z) =u(x,y) +iv(x,y), (6.8)

in which the separate functions u(x, ¥) and v(x, y) are pure real. For example, if f(z) = .

we have
f@=x+ f_VJZ = (.’52 = )‘2) +i2xy.

The real part of a function f(z) will be labeled )i f(z), whereas the imaginary part will
be labeled 3 f(z). In Eq. (6.8)

Nw(z) =Re(w) =u(x, y), Sw(z) =Im(w) = v(x, y).

The relationship between the independent variable z and the dependent variable w is
perhaps best pictured as a mapping operation. A given z = x + iy means a given point in
the z-plane. The complex value of w(z) is then a point in the w-plane. Points in the z-plane
map into points in the w-plane and curves in the z-plane map into curves in the w-plane,
as indicated in Fig. 6.2.

Complex Conjugation

In all these steps, complex number, variable, and function, the operation of replacing i by
—i is called “taking the complex conjugate.” The complex conjugate of z is denoted by z*,
where*

F=x—iy. (6.9)

4The complex conjugate is often denoted by Z in the mathematical literature.
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y

¢ T (x, =)
FIGURE 6.3 Complex conjugate points.
The complex variable z and its complex conjugate z* are mirror images of each other

reflected in the x-axis, that is, inversion of the y-axis (compare Fig. 6.3). The product zz*
leads to

= +iy)x —iy)=x>+y*=r2 (6.10)

Hence

(zz)'? = |z),

the magnitude of z.

Functions of a Complex Variable

All the elementary functions of real variables may be extended into the complex plane —
replacing the real variable x by the complex variable z. This is an example of the analytic
continuation mentioned in Section 6.5. The extremely important relation of Eq. (6.4¢) is
an illustration. Moving into the complex plane opens up new opportunities for analysis.

Example 6.1.1  De MoRre’s FORMULA

If Eq. (6.4c) (setting r = 1) is raised to the nth power, we have
"’ = (cosf +isind)". (6.11)
Expanding the exponential now with argument nf), we obtain
cosnf +isinnf = (cosf + i sinf)". (6.12)

De Moivre's formula is generated if the right-hand side of Eq. (6.12) is expanded by the bi-
nomial theorem; we obtain cos n6 as a series of powers of cos @ and sin#, Exercise 6.1.6. i

Numerous other examples of relations among the exponential, hyperbolic, and trigono-
metric functions in the complex plane appear in the exercises.

Occasionally there are complications. The logarithm of a complex variable may be ex-
panded using the polar representation

Inz=Inre' =Inr +i6. (6.13a)
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This is not complete. To the phase angle, 6, we may add any integral multiple of 2 without
changing z. Hence Eq. (6.13a) should read

Inz =Inre! @207 —Inr +i(0 + 2nn). (6.13b)

The parameter n may be any integer. This means that In z is a multivalued function having
an infinite number of values for a single pair of real values r and #. To avoid ambiguity,
the simplest choice is n = 0 and limitation of the phase to an interval of length 2, such
as (—m, ).5 The line in the z-plane that is not crossed, the negative real axis in this case,
is labeled a cut line or branch cut. The value of Inz with n = 0 is called the principal
value of Inz. Further discussion of these functions, including the logarithm, appears in
Section 6.7.

Exercises

6.1.1 (a) Find the reciprocal of x + iy, working entirely in the Cartesian representation.

(b) Repeat part (a), working in polar form but expressing the final result in Cartesian
form.

6.1.2 The complex quantities @ = u + iv and b = x + iy may also be represented as two-

dimensional vectors a = Xu + yv, b = Xx + yy. Show that
a*b=a-b+iz-axb.
6.1.3 Prove algebraically that for complex numbers,
[z1] = |z2] < |z1 + 22| < |z1] + |22]-
Interpret this result in terms of two-dimensional vectors. Prove that
lz—1<|V22=1]| <]z +1], for MN(z) > 0.

6.1.4 We may define a complex conjugation operator K such that Kz = z*. Show that K is
not a linear operator.

6.1.5 Show that complex numbers have square roots and that the square roots are contained
in the complex plane. What are the square roots of i ?

6.1.6 Show that

(a) cosnf =cos" @ — () cos" 20sin?H + () cos" *Osin*H — ...
(b) sinnd = (') cos" ! @sinf — (5)cos" 3 Osin’ 6 +---.

Note. The quantities () are binomial coefficients: () =n!/[(n — m)!m!].
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N—1 .

. sin(Nx/2) . X

b sinnxy = ——sin(N — 1)—.
{0 rg sinx/2 ( )2

These series occur in the analysis of the multiple-slit diffraction pattern. Another appli-
cation is the analysis of the Gibbs phenomenon, Section 14.5.

Hint. Parts (a) and (b) may be combined to form a geometric series (compare Sec-
tion 5.1).

6.1.8 For —1 < p < 1 prove that

oo
1— pcosx
a "cosnx = ——«———,
@ "ZOP 1 —2pcosx + p?
. psinx
b msinny = —————.
®) "gup 1—2pcosx + p?

These series occur in the theory of the Fabry—Perot interferometer.

6.1.9 Assume that the trigonometric functions and the hyperbolic functions are defined for
complex argument by the appropriate power series

oo (—1)/2 n 29 ~25+1
sinz = B | R [ ) e —
- Z B n! Z( )(23+1)!
n=1,o0dd s=0
o 1 2" oc zls
Pt = n e o '
cosz = Z (-1 HE_Z( 1) T
n=0,even s=0
o0 2" oo L25+1
sinhz = — = AL
- Z n! Z(2s+l)!'
n=1,odd s=0)
o N o 25
coshz = Z P Z 25)!
n=0,even 5=
(a) Show that
isinz =sinhiz, siniz =1isinhz,
cosz =coshiz, cosiz = coshz.

(b) Verify that familiar functional relations such as

coshz = €2

sin(z; + z2) = sinzj cosz2 + sinza2 cos 71,

still hold in the complex plane.
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Using the identities

o't eIt ) £iz — piz
CoOsz = —, smz = ——
2 2i

established from comparison of power series, show that

(a) sin(x +iy)=sinxcoshy+icosxsinhy,
cos(x +iy)=cosxcoshy —isinxsinhy,

(b) |sinz|? =sin? x + sinh? v, | cos z|2 = cos? x + sinh? y.

This demonstrates that we may have |sinz|, [cosz| > 1 in the complex plane.

From the identities in Exercises 6.1.9 and 6.1.10 show that

(a) sinh(x 4+iy)=sinhxcosy +icoshxsiny,

cosh(x +iy) =coshxcosy+isinhxsiny,

(b) | sinhz[2 = sinh? x + sin’ ¥, |‘:oshz|2 = cosh? x + sin’ y.
Prove that
(a) |sinz| = |sinx| (b) |cosz| = |cosx].

Show that the exponential function e° is periodic with a pure imaginary period of 2mi.

Show that
z sinhx+isiny z sinhx —isiny
(a) tanh — = 4, (b) coth — = #.
2 coshx +cosy 2 coshx —cosy
Find all the zeros of
(a) sinz, (b) cos z, (c) sinhz, (d) coshz.

Show that
@sin~'z=—iln(iz£ V1 -2z2), (d)sinh~'z=In(z + V22 + 1),
(b)cos ' z= —iln(zxvz2-1), (e) cosh !z =In(z+Vz2-1),

(C)tan_lz=%ln(i_+z), (f)tanh_'z=%ln(l+z).

1—2

p—

e

Hint. 1. Express the trigonometric and hyperbolic functions in terms of exponentials.
2. Solve for the exponential and then for the exponent.

In the quantum theory of the photoionization we encounter the identity

iq— 1\ib
PN,

in which a and b are real. Verify this identity.
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6.1.18

6.1.19

6.1.20

6.1.21

6.1.22

6.1.23

6.1.24

6.1.25

A plane wave of light of angular frequency  is represented by

eimfr—n,\'/(‘}‘

In a certain substance the simple real index of refraction n is replaced by the complex
quantity n — ik. What is the effect of k on the wave? What does k correspond to phys-
ically? The generalization of a quantity from real to complex form occurs frequently
in physics. Examples range from the complex Young’s modulus of viscoelastic materi-
als to the complex (optical) potential of the “cloudy crystal ball” model of the atomic
nucleus.

We see that for the angular momentum components defined in Exercise 2.5.14,
Ly—iLy# (Lx+iLy)".
Explain why this occurs.

Show that the phase of f(z) = u + iv is equal to the imaginary part of the logarithm of
f(2). Exercise 8.2.13 depends on this result.

(a) Show that ¢z always equals z.
(b) Show that Ine® does not always equal z.

The infinite product representations of Section 5.11 hold when the real variable x is
replaced by the complex variable z. From this, develop infinite product representations
for

(a) sinh z, (b) cosh z.

The equation of motion of a mass m relative to a rotating coordinate system is
d’r » frer i dr) do
m— =F—-mwx(@xr)—2m|lwx — | —m| — xr|.
dt? dt dt

Consider the case F =0,r = Xx + ¥y, and @ = wz, with @ constant. Show that the
replacement of r =Xx + ¥y by z =x + iy leads to

d’z . dz
F+t2wz—wzz= .

Note. This ODE may be solved by the substitution z = fe~/®'.

Using the complex arithmetic available in FORTRAN, write a program that will cal-
culate the complex exponential ¢ from its series expansion (definition). Calculate ¢*
for z = e™/6 »n=0,1,2,...,12. Tabulate the phase angle (# =nx/6), Rz, Iz, N(e),
J(e%), |e*|, and the phase of ¢°.

Check value. n = 5,0 = 2.61799, R (z) = —0.86602,
3z =0.50000, % (e?) = 0.36913, J(e%) = 0.20166,
le?| = 0.42062, phase(e?) = 0.50000.

Using the complex arithmetic available in FORTRAN, calculate and tabulate )i(sinh z),
J(sinh z), | sinh z|, and phase (sinhz) for x =0.0(0.1)1.0 and y = 0.0(0.1)1.0.



