6.3 CAUCHY’S INTEGRAL THEOREM

Contour Integrals

With differentiation under control, we turn to integration. The integral of a complex vari-
able over a contour in the complex plane may be defined in close analogy to the (Riemann)
integral of a real function integrated along the real x-axis.

We divide the contour from z to z; into n intervals by picking n — 1 intermediate points
21,22, ... on the contour (Fig. 6.5). Consider the sum

Sn=2_ f&)zj—zj-1), (6.26)
Jj=I
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FIGURE 6.5 Integration path.
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where ¢; is a point on the curve between z; and z;—;. Now let n — oo with
lzj—zj-1l—0

for all j. If the lim,_, , S, exists and is independent of the details of choosing the points
zj and Z;, then

lim S ® 27
Jim g f@pG;=2j-n= | "f@dz (6.27)
The right-hand side of Eq. (6.27) is called the contour integral of f(z) (along the specified
contour C from z = zg to z = z)).

The preceding development of the contour integral is closely analogous to the Riemann

integral of a real function of a real variable. As an alternative, the contour integral may be
defined by

fh f(2)dz = f "“[u(x, y) +iv(x,y)][dx +idy)
4| X

1)

Xx2,y2

x2,32
= f [u(x. y)dx —v(x, y)dy] +if [v(x,y)a‘x + u(x, y)dy]
X1.¥ X1. )1

with the path joining (x1, y1) and (x2, y2) specified. This reduces the complex integral to
the complex sum of real integrals. It is somewhat analogous to the replacement of a vector
integral by the vector sum of scalar integrals, Section 1.10.

An important example is the contour integral fC Z"dz, where C is a circle of radius
r > 0 around the origin z = 0 in the positive mathematical sense (counterclockwise). In
polar coordinates of Eq. (6.4c) we parameterize the circle as z = re'® and dz = ire’?d6.
For n # —1, n an integer, we then obtain

1 , o
= Cz dz = 5 [ﬂ exp[i(n + 1)0] a6
= [27i(n+ D] DO 2T <0 (6.27a)
because 27 is a period of e/ " while for n = —1
1 fdz_ 1 (*

—_— —=— do =1, 6.27b
2ni Je z 2 Jo ( )
again independent of r.
Alternatively, we can integrate around a rectangle with the corners z, z2, 23,24 to
obtain for n # —1

n+1
fz"dzz >
n+1

because each corner point appears once as an upper and a lower limit that cancel. For
n = —1 the corresponding real parts of the logarithms cancel similarly, but their imaginary
parts involve the increasing arguments of the points from z; to z4 and, when we come back
to the first corner z;, its argument has increased by 27 due to the multivaluedness of the
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logarithm, so 2i is left over as the value of the integral. Thus, the value of the integral
involving a multivalued function must be that which is reached in a continuous fash-
ion on the path being taken. These integrals are examples of Cauchy’s integral theorem,
which we consider in the next section.

Stokes’ Theorem Proof

Cauchy’s integral theorem is the first of two basic theorems in the theory of the behavior of
functions of a complex variable. First, we offer a proof under relatively restrictive condi-
tions — conditions that are intolerable to the mathematician developing a beautiful abstract
theory but that are usually satisfied in physical problems.

If a function f(z) is analytic, that is, if its partial derivatives are continuous throughout
some simply connected region R.’ for every closed path C (Fig. 6.6) in R, and if it is
single-valued (assumed for simplicity here), the line integral of f(z) around C is zero, or

f f(2)dz =j£ f(@)dz=0. (6.27¢)
(3 C

Recall that in Section 1.13 such a function f(z), identified as a force, was labeled conser-
vative. The symbol § is used to emphasize that the path is closed. Note that the interior
of the simply connected region bounded by a contour is that region lying to the left when
moving in the direction implied by the contour; as a rule, a simply connected region is
bounded by a single closed curve.

In this form the Cauchy integral theorem may be proved by direct application of Stokes’
theorem (Section 1.12). With f(z) =u(x, y) +iv(x,y) and dz =dx + idy,

= 9€(udx—vdy)+556(udx+udy). (6.28)
C

These two line integrals may be converted to surface integrals by Stokes’ theorem, a proce-
dure that is justified if the partial derivatives are continuous within C. In applying Stokes’
theorem, note that the final two integrals of Eq. (6.28) are real. Using

V= JA(V, +5IV\'!

Stokes’ theorem says that

aVy Vi
(Vedx + Vydy) = _— - dxdy. (6.29)
c : ax dy

For the first integral in the last part of Eq. (6.28) let u = V, and v = —1{“.8 Then

7Any closed simple curve (one that does not intersect itself) inside a simply connected region or domain may be contracted to a
single point that still belongs to the region. If a region is not simply connected, it is called multiply connected. As an example of
a multiply connected region, consider the z-plane with the interior of the unit circle excluded.

31n the proof of Stokes’ theorem, Section 1.12, Vy and Vy, are any two functions (with continuous partial derivatives).



6.3 Cauchy’s Integral Theorem 421
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FIGURE 6.6 A closed contour C
within a simply connected region R.

f(udx —vdy) =f(V_; dx + Vydy)
C [ &

v, Vs f(av au)
—_ —_— — —— |dxdy=- — + — )dxdy. 6.30
j(ax By)x" 3x+8y T | )

For the second integral on the right side of Eq. (6.28) we let u = V, and v = V. Using
Stokes’ theorem again, we obtain

é(vdx +udy)=f(a—u—a—v)dxdy. (6.31)
dx  dy

On application of the Cauchy-Riemann conditions, which must hold, since f(z) is as-
sumed analytic, each integrand vanishes and

ff(z)dz=—f(a—v+a—u)dxdy+if(a—u—a—v)d.rd_v=0. (6.32)
dx  dy dx dy

Cauchy-Goursat Proof

This completes the proof of Cauchy’s integral theorem. However, the proof is marred from
a theoretical point of view by the need for continuity of the first partial derivatives. Actually,
as shown by Goursat, this condition is not necessary. An outline of the Goursat proof is as
follows. We subdivide the region inside the contour C into a network of small squares, as

indicated in Fig. 6.7. Then
5£ f@)dz= Zjﬁ f(@)dz, (6.33)
C | Cj

all integrals along interior lines canceling out. To estimate the fc,— f(z)dz, we construct
the function

_f@-fGk) df@)

8j(z,zj) =
3225} Z—2zj dz

(6.34)

=z;

with z; an interior point of the jth subregion. Note that [ f(z) — f(z;)]1/(z — z;) is an
approximation to the derivative at z = z;. Equivalently, we may note that if f(z) had
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FIGURE 6.7 Cauchy—Goursat contours.

a Taylor expansion (which we have not yet proved), then §;(z, z;) would be of order z —z;,
approaching zero as the network was made finer. But since f'(z j) exists, that is, is finite,
we may make

|8j(z.2j)| <&, (6.35)

where ¢ is an arbitrarily chosen small positive quantity. Solving Eq. (6.34) for f(z) and
integrating around C;, we obtain

56 f(z)dz=§ (z—2zj)8j(z.zj)dz, (6.36)
Cj Cj

the integrals of the other terms vanishing.g When Egs. (6.35) and (6.36) are combined, one
shows that

< As, (6.37)

; L f(@dz

where A is a term of the order of the area of the enclosed region. Since ¢ is arbitrary, we
let £ — 0 and conclude that if a function f(z) is analytic on and within a closed path C,

f f(2)dz=0. (6.38)
C

Details of the proof of this significantly more general and more powerful form can be found
in Churchill in the Additional Readings. Actually we can still prove the theorem for f(z)
analytic within the interior of C and only continuous on C.

The consequence of the Cauchy integral theorem is that for analytic functions the line
integral is a function only of its endpoints, independent of the path of integration,

" f@dz=F(z2) - F(z1) = — f " f(dz, (6.39)

again exactly like the case of a conservative force, Section 1.13.

9§ dz and § zdz =0 by Eq. (6.27a).
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As in the preceding section, we consider a function f(z) that is analytic on a closed contour

C and within the interior region bounded by C. We seek to prove that

1 f(2)

2xi Jez—20

dz = f(z0),

(6.43)

in which z¢ is any point in the interior region bounded by C. This is the second of the
two basic theorems mentioned in Section 6.3. Note that since z is on the contour C while
zp is in the interior, z — zg # 0 and the integral Eq. (6.43) is well defined. Although f(z)
is assumed analytic, the integrand is f(z)/(z — zo) and is not analytic at z = zp unless
f(zp) = 0. If the contour is deformed as shown in Fig. 6.11 (or Fig. 6.9, Section 6.3),

Cauchy’s integral theorem applies. By Eq. (6.42),
[ o f@2)

ci—2 CI—2

dz=0,

(6.44)

where C is the original outer contour and C> is the circle surrounding the point zg traversed
in a counterclockwise direction. Let z = zg + re'”, using the polar representation because
of the circular shape of the path around zo. Here r is small and will eventually be made to

approach zero. We have (with dz =ire'"df from Eq. (6.27a))
: o4 rel®)
1O 4§ LGt
C:Z— 2 Ca re!

Taking the limit as » — 0, we obtain

J@ 4y =ifze) [ do=2mif (o),
Ca L —Z0 Cs

(6.45)
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FIGURE 6.11 Exclusion of a
singular point.

since f(z) is analytic and therefore continuous at z = zq. This proves the Cauchy integral
formula.

Here is a remarkable result. The value of an analytic function f(z) is given at an interior
point z = zp once the values on the boundary C are specified. This is closely analogous to
a two-dimensional form of Gauss’ law (Section 1.14) in which the magnitude of an interior
line charge would be given in terms of the cylindrical surface integral of the electric field E.

A further analogy is the determination of a function in real space by an integral of the
function and the corresponding Green’s function (and their derivatives) over the bounding
surface. Kirchhoff diffraction theory is an example of this.

It has been emphasized that zg is an interior point. What happens if zq is exterior to C?
In this case the entire integrand is analytic on and within C. Cauchy’s integral theorem,
Section 6.3, applies and the integral vanishes. We have

27i Je z—20 0, 20 exterior.

1 f(z)a’z_l f(z0). z  interior

Derivatives

Cauchy’s integral formula may be used to obtain an expression for the derivative of f(z).
From Eq. (6.43), with f(z) analytic,

f(z0+38z0) — f(zo) _ 1 (f f@& 4. _§I9 dz).

820 T 2midzg

z—29— 82 zZ—20
Then, by definition of derivative (Eq. (6.14)),
dz0f(2)

yn——u 2midzo J (z—zo—8z0)(z — z0)

f@@
T 2ni f (z— 70)2 (6.46)

This result could have been obtained by differentiating Eq. (6.43) under the integral sign
with respect to zg. This formal, or turning-the-crank, approach is valid, but the justification
for it is contained in the preceding analysis.

f(z0) =
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This technique for constructing derivatives may be repeated. We write f'(zo + 8z0)
and f’(z0), using Eq. (6.46). Subtracting, dividing by 8zo, and finally taking the limit as
8z0 — 0, we have

2 f(2)dz

Dy — 2
F7 o) 2ni | (z—1zp)3

Note that f®(z9) is independent of the direction of 8z, as it must be. Continuing, we
10
get

!
F™(zg) = — i

i P -z 647)

that is, the requirement that f(z) be analytic guarantees not only a first derivative but
derivatives of all orders as well! The derivatives of f(z) are automatically analytic. Notice
that this statement assumes the Goursat version of the Cauchy integral theorem. This is also
why Goursat’s contribution is so significant in the development of the theory of complex
variables.

Morera’s Theorem

A further application of Cauchy’s integral formula is in the proof of Morera’s theorem,
which is the converse of Cauchy’s integral theorem. The theorem states the following:

If a function f(z) is continuous in a simply connected region R and
55C f(z)dz = 0 for every closed contour C within R, then f(z) is analytic
throughout R.

Let us integrate f(z) from z; to z2. Since every closed-path integral of f(z) vanishes,
the integral is independent of path and depends only on its endpoints. We label the result
of the integration F(z), with

F(z2) - F(z1) =f~' f(2)dz. (6.48)
As an identity,
- 2 f(8) — dt
F(z) = F(z1) Py o —el ! s
2 — 121 2—24

using r as another complex variable. Now we take the limit as z; — z;:

2Uf() — f(z1)]dt
i S @O = fG0)] > .

2211 22— 21

10This expression is the starting point for defining derivatives of fractional order. See A. Erdelyi (ed.), Tubles of Integral
Transforms, Vol. 2. New York: McGraw-Hill (1954). For recent applications to mathematical analysis, see T. J. Osler, An integral
analogue of Taylor’s series and its use in computing Fourier transforms. Math. Comput. 26: 449 (1972), and references therein.
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Show that

f{_ = 27, n=-1,
AR g Wik,

where the contour C encircles the point z = z¢ in a positive (counterclockwise) sense.
The exponent n is an integer. See also Eq. (6.27a). The calculus of residues, Chapter 7,
is based on this result.

Show that

1 :
— @ z" " dz, m and n integers
2mi
(with the contour encircling the origin once counterclockwise) is a representation of the

Kronecker é,,,.

Solve Exercise 6.3.4 by separating the integrand into partial fractions and then applying
Cauchy’s integral theorem for multiply connected regions.
Note. Partial fractions are explained in Section 15.8 in connection with Laplace trans-

forms.
=
e

Assuming that f(z) is analytic on and within a closed contour C and that the point zg
is within C, show that

Evaluate

where C is the circle |z| =2.

f'(@ dz— f@@) e
cZ—20 c (z—2z0)"
You know that f(z) is analytic on and within a closed contour C. You suspect that the
nth derivative f(zg) is given by

() _.I"l'_' L o
f (»0)—21?1_};(:_:0}"“!1..

Using mathematical induction, prove that this expression is correct.

(a) A function f(z) is analytic within a closed contour C (and continuous on C). If
f(z)# 0 within C and | f(z)| < M on C, show that

|f@)| <M

for all points within C.
Hint. Consider w(z) = 1/f(z).

(b) If f(z) =0 within the contour C, show that the foregoing result does not hold
and that it is possible to have | f (z)| = 0 at one or more points in the interior with
| f(z)| = 0 over the entire bounding contour. Cite a specific example of an analytic
function that behaves this way.
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Using the Cauchy integral formula for the nth derivative, convert the following Ro-
drigues formulas into the corresponding so-called Schlaefli integrals.

(a) Legendre:

n

Pa®) = gy g (- = 1)

- 1 a-z2

ANS. —p ————dz.
27 2mi ) (z—-x)nt!

(b) Hermite:

Hy(x) = (—l)"e"rz —dﬂ e

e dx" '
(c) Laguerre:

e.l' dll -
La@) == e

Note. From the Schlaefli integral representations one can develop generating functions
for these special functions. Compare Sections 12.4, 13.1, and 13.2.

LAURENT EXPANSION

Taylor Expansion

The Cauchy integral formula of the preceding section opens up the way for another deriva-
tion of Taylor’s series (Section 5.6), but this time for functions of a complex variable.
Suppose we are trying to expand f(z) about z = zp and we have z = z) as the nearest point
on the Argand diagram for which f(z) is not analytic. We construct a circle C centered at
z = zo with radius less than |z; — z¢| (Fig. 6.12). Since z; was assumed to be the nearest
point at which f(z) was not analytic, f(z) is necessarily analytic on and within C.

From Eq. (6.43), the Cauchy integral formula,

1 47 (z))d7'

!

2ni Jo 7' —z2

g s
" 2mi Je (2 —20) — (z — 20)

1 f : f(Zhdz (6.53)
c(z

= i —20)[1 = (z —20)/ (@ —z20)]

Here z’ is a point on the contour C and z is any point interior to C. It is not legal yet to
expand the denominator of the integrand in Eq. (6.53) by the binomial theorem, for we have
not yet proved the binomial theorem for complex variables. Instead, we note the identity

f@=

1 o0
—=1+1+2 4P+ =) 1", 6.54
1—t : ‘

n=0
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FIGURE 6.12 Circular domain for Taylor
expansion.

which may easily be verified by multiplying both sides by 1 — r. The infinite series, fol-
lowing the methods of Section 5.2, is convergent for |¢| < 1.

Now, for a point z interior to C, |z — zo| < |2" — zo/, and, using Eq. (6.54), Eq. (6.53)
becomes

—z0)" f(2)dzZ
f@ )__ﬁz(z 20" f(2) @-20"f@)dz (6.55)

27i (' — zo)*+!

Interchanging the order of integration and summation (valid because Eq. (6.54) is uni-
formly convergent for |f| < 1), we obtain

o0

1 - f f(hdZ
N=— Z2—-2 T R T 6.56
f( ) 2mi g( 0) C (7 - Z(})"‘H ( )
Referring to Eq. (6.47), we get
20 (m)
f@=) G-" ! HEZO), (6.57)
n=0 )

which is our desired Taylor expansion. Note that it is based only on the assumption that
f(z) is analytic for |z — zg| < |z] — 20| Just as for real variable power series (Section 5.7),
this expansion is unique for a given zg.

From the Taylor expansion for f(z) a binomial theorem may be derived (Exercise 6.5.2).

Schwarz Reflection Principle

From the binomial expansion of g(z) = (z — x¢)" for integral n it is easy to see that the
complex conjugate of the function g is the function of the complex conjugate for real xg:

8@ =[Gz —x0)"]" =" —x0)" =5 (". (6.58)
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Laurent Series

We frequently encounter functions that are analytic and single-valued in an annular region,
say, of inner radius r and outer radius R, as shown in Fig. 6.15. Drawing an imaginary
contour line to convert our region into a simply connected region, we apply Cauchy’s
integral formula, and for two circles C2 and C; centered at z = z¢ and with radii r» and rp,
respectively, where r <r <r; < R, we have!?

o= L § 1L [ ez

2mi Je, 7 -z 2ni Je, 7 —2

(6.64)

Note that in Eq. (6.64) an explicit minus sign has been introduced so that the contour
C, (like C)) is to be traversed in the positive (counterclockwise) sense. The treatment of
Eq. (6.64) now proceeds exactly like that of Eq. (6.53) in the development of the Taylor
series. Each denominator is written as (z' — z9) — (z — zo) and expanded by the binomial
theorem, which now follows from the Taylor series (Eq. (6.57)).

Noting that for Cy, |z’ — zg| > |z — zo| while for Ca, |z" — zo| < |z — 20|, we find

_ . f&hdz
f@=— E}(‘, 20) fc T
l - =n - J . n—1 - -
+ i Z(- — 20) . (z'—z0)"" f(z)dz. (6.65)

n=1

The minus sign of Eq. (6.64) has been absorbed by the binomial expansion. Labeling the
first series S| and the second S> we have

1 ¢ f@ha
Si=5—) (—2)" P T I (6.66)
2mi g ¢ @ —zo)"*!

which is the regular Taylor expansion, convergent for |z — 29| < |z — zo| = r1, that is, for
all z interior to the larger circle, C|. For the second series in Eq. (6.65) we have

_ 1 = _ —n S oyt—=1 gy gt
S)_—E’E(u 20) f&u 20" (@), (6.67)

convergent for |z — zg| > |z’ — zo| = r», that is, for all z exterior to the smaller circle, C>.

Remember, C> now goes counterclockwise.
These two series are combined into one series'* (a Laurent series) by

oo

f@= )" anz—20)", (6.68)

n=-=—o00

13We may take ry arbitrarily close to r and ry arbitrarily close to R, maximizing the area enclosed between C} and C,.
4Replace n by —n in > and add.
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where

1 f(Zhdz
ay =

= (6.69)

Since, in Eq. (6.69), convergence of a binomial expansion is no longer a problem, C may
be any contour within the annular region r < |z — zg| < R encircling z¢ once in a counter-
clockwise sense. If we assume that such an annular region of convergence does exist, then
Eq. (6.68) is the Laurent series, or Laurent expansion, of f(z).

The use of the contour line (Fig. 6.15) is convenient in converting the annular region
into a simply connected region. Since our function is analytic in this annular region (and
single-valued), the contour line is not essential and, indeed, does not appear in the final
result, Eq. (6.69).

Laurent series coefficients need not come from evaluation of contour integrals (which
may be very intractable). Other techniques, such as ordinary series expansions, may pro-
vide the coefficients.

Numerous examples of Laurent series appear in Chapter 7. We limit ourselves here to
one simple example to illustrate the application of Eq. (6.68).

Example 6.5.1  LaurenT ExpansiON

Let f(z) = [z(z — 1))~ L. If we choose z9 =0, then r =0 and R = 1, f(z) diverging at
z = 1. A partial fraction expansion yields the Laurent series

1 1 1 1 i
= ——me—m1—z-2 =P .= Y 2. (670
z(z=1) 1-z z2 z : "=z_:|

From Eqgs. (6.70), (6.68), and (6.69) we then have

_ 1 dz7’ _ -1 forn> —1, 671)
M= @2 -1 '

0 forn < —1.

The integrals in Eq. (6.71) can also be directly evaluated by substituting the geometric-
series expansion of (1 — z)~! used already in Eq. (6.70) for (1 — z)~!:

-1 [ w dz’
ap = _é E (zr)m = :+2 . (6.72)
2mi el (")
Upon interchanging the order of summation and integration (uniformly convergent series),

we have

1 e d7’
L
= 2o f (ym+2-m” S
m=0)
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The Laurent expansion represents a generalization of the Taylor series in the presence of
singularities. We define the point zg as an isolated singular point of the function f(z) if
f(z) is not analytic at z = zq but is analytic at all neighboring points.
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Poles
In the Laurent expansion of f(z) about zq.
oC
f@= ) amiz—z20)", (6.75)
m=-—00

ifay =0form < —n <0 and a_, # 0, we say that z¢ is a pole of order n. For instance, if
n =1, thatis, if a_ /(z — z¢) is the first nonvanishing term in the Laurent series, we have
a pole of order 1, often called a simple pole.

If, on the other hand, the summation continues to m = —oo, then zg is a pole of infi-
nite order and is called an essential singularity. These essential singularities have many

pathological features. For instance, we can show that in any small neighborhood of an
essential singularity of f(z) the function f(z) comes arbitrarily close to any (and there-
fore every) preselected complex quantity wp.!> Here, the entire w-plane is mapped by
f into the neighborhood of the point zy. One point of fundamental difference between a
pole of finite order n and an essential singularity is that by multiplying f(z) by (z — z0)",
f(z)(z = z0)" is no longer singular at zo. This obviously cannot be done for an essential
singularity.

The behavior of f(z) as z — oc is defined in terms of the behavior of f(1/7) ast — 0.
Consider the function

it (_l)nzZn+1

ing= _ 6.76
sinz=) @n+ 1) 150
n=0

As 7z — oo, we replace the z by 1/1 to obtain

wNay W
sm(?) _E)W 677

From the definition, sin z has an essential singularity at infinity. This result could be antic-
ipated from Exercise 6.1.9 since

sinz =siniy =isinhy, when x =0,

which approaches infinity exponentially as y — oc. Thus, although the absolute value of
sinx for real x is equal to or less than unity. the absolute value of sinz is not bounded.

A function that is analytic throughout the finite complex plane except for isolated poles
is called meromorphic. such as ratios of two polynomials or tanz, cotz. Examples are
also entire functions that have no singularities in the finite complex plane, such as exp(z).
sin z, cos z (see Sections 5.9, 5.11).

I5This theorem is due to Picard. A proof is given by E. C. Titchmarsh, The Theory of Functions, 2nd ed. New York: Oxford
University Press (1939).



