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Hint. Beware of dividing by zero when calculating an angle as an arc tangent.

Check value. z = 0.2 4 0.17, fi(sinh z) = 0.20033,
J(sinhz) = 0.10184, | sinh z| = 0.22473,
phase(sinh z) = 0.47030.

Repeat Exercise 6.1.25 for cosh z.

6.2 CAUCHY-RIEMANN CONDITIONS

Having established complex functions of a complex variable, we now proceed to differen-
tiate them. The derivative of f(z), like that of a real function, is defined by

lim f@+82) - f(z) _ lim 8@ _df _
80 z+8z-z 5z—0 &z dz
provided that the limit is independent of the particular approach to the point z. For real
variables we require that the right-hand limit (x — x¢ from above) and the left-hand limit
(x — x from below) be equal for the derivative df (x)/dx to exist at x = xo. Now, with z
(or zp) some point in a plane, our requirement that the limit be independent of the direction
of approach is very restrictive.
Consider increments dx and 8y of the variables x and y, respectively. Then

(@), (6.14)

8z =dx +idy. (6.15)
Also,

8f =éu +idv, (6.16)
so that

8f du+idv

8z dx+idy’ el

Let us take the limit indicated by Eq. (6.14) by two different approaches, as shown in
Fig. 6.4. First, with §y = 0, we let x — 0. Equation (6.14) yields

" 8 _— 8u+_6v _8u+_3v 6.18)
5208z  axso\sx ' 'ax) " ax " 'ax’ (©.
by
dx—0 0
dy=0
dx=0
Iﬁy—)ﬂ
:

FIGURE 6.4 Alternate
approaches to zg.
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assuming the partial derivatives exist. For a second approach, we set §x = 0 and then let
8y — 0. This leads to

8f du v du  dv
lim — = li —i— +—)|=—i— 4+ —. 6.1
5120 82 a_\-lg'n( e 5;-) e (6.19)

If we are to have a derivative df/dz. Egs. (6.18) and (6.19) must be identical. Equating
real parts to real parts and imaginary parts to imaginary parts (like components of vectors),
we obtain

3u_3v 3u_ v

s e (6.20)
dx  ay ay ox

These are the famous Cauchy-Riemann conditions. They were discovered by Cauchy and
used extensively by Riemann in his theory of analytic functions. These Cauchy—Riemann
conditions are necessary for the existence of a derivative of f(z); that is, if df/dz exists,
the Cauchy—Riemann conditions must hold.

Conversely, if the Cauchy-Riemann conditions are satisfied and the partial derivatives
of u(x, y) and v(x, y) are continuous, the derivative df/dz exists. This may be shown by

writing
ou dv du dv
§f=|—+i— )8 — +i— |8y. 6.21
f (Bx +18_r) X+(3_v -HH_\-') g ( )

The justification for this expression depends on the continuity of the partial derivatives of
u and v. Dividing by 8z, we have
5f . (du/dx +i(dv/ox))dx + (du/dy +i(dv/ay))dy
E o Sx +idy
_ (Qu/ox +i(dv/dx)) + (Qu/dy +i(dv/0y))dy/dx
B 1 +i(8y/8x) '

If §f/6z is to have a unique value, the dependence on y/dx must be eliminated. Apply-
ing the Cauchy-Riemann conditions to the y derivatives, we obtain

du  dv dv du
dy +'8)' T ax +13x'

(6.22)

(6.23)

Substituting Eq. (6.23) into Eq. (6.22), we may cancel out the §y/dx dependence and

8f Ou dv
—=—+i—, 6.24
dz ox +,3x ( )
which shows that liméf/8z is independent of the direction of approach in the complex
plane as long as the partial derivatives are continuous. Thus, ﬂ—{ exists and f is analytic
at z.

It is worthwhile noting that the Cauchy—Riemann conditions guarantee that the curves
u = ¢ will be orthogonal to the curves v = ¢2 (compare Section 2.1). This is fundamental
in application to potential problems in a variety of areas of physics. If u = ¢ is a line of
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electric force, then v = ¢ is an equipotential line (surface), and vice versa. To see this, let
us write the Cauchy-Riemann conditions as a product of ratios of partial derivatives,

ol . ) (6.25)
uy Uy
with the abbreviations
w_ ow_ o dw_
g ay T gy

Now recall the geometric meaning of —u, /u, as the slope of the tangent of each curve
u(x,y) = const. and similarly for v(x, y) = const. This means that the « = const. and
v = const. curves are mutually orthogonal at each intersection. Alternatively,

uydx +uydy=0=vydx —vedy

says that, if (dx, dy) is tangent to the u-curve, then the orthogonal (—dy, dx) is tangent to
the v-curve at the intersection point, z = (x, y). Or equivalently, u, v, + u,v, = 0 implies
that the gradient vectors (u,.u,) and (v,. v,) are perpendicular. A further implication
for potential theory is developed in Exercise 6.2.1.

Analytic Functions

Finally, if f(z) is differentiable at z = z¢ and in some small region around zg, we say that
f(2) is analytic® at z = z¢. If f(z) is analytic everywhere in the (finite) complex plane, we
call it an entire function. Our theory of complex variables here is one of analytic functions
of a complex variable, which points up the crucial importance of the Cauchy-Riemann
conditions. The concept of analyticity carried on in advanced theories of modern physics
plays a crucial role in dispersion theory (of elementary particles). If f’(z) does not exist
at z = 7o, then zp is labeled a singular point and consideration of it is postponed until
Section 6.6.
To illustrate the Cauchy—Riemann conditions, consider two very simple examples.

Example 6.2.1 215 ANaLYTIC

Let f(z) = z>. Then the real partu(x,y) = x? — y? and the imaginary part v(x, y) = 2xy.
Following Eq. (6.20),

i =2y = ﬁ = y av.

dax ay ay ’ dx

We see that f(z) = z° satisfies the Cauchy—Riemann conditions throughout the complex
plane. Since the partial derivatives are clearly continuous, we conclude that f(z) =z is
analytic. |

6Some writers use the term holomorphic or regular.
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Example 6.2.2  :*1s NOT ANALYTIC

Let f(z) =z*. Now u = x and v = —y. Applying the Cauchy-Riemann conditions, we
obtain

du 1 dv 1

i T
The Cauchy-Riemann conditions are not satisfied and f(z) = z* is not an analytic function
of z. It is interesting to note that f(z) = z* is continuous, thus providing an example of a
function that is everywhere continuous but nowhere differentiable in the complex plane.

The derivative of a real function of a real variable is essentially a local characteristic, in

that it provides information about the function only in a local neighborhood — for instance,
as a truncated Taylor expansion. The existence of a derivative of a function of a complex
variable has much more far-reaching implications. The real and imaginary parts of our an-
alytic function must separately satisfy Laplace’s equation. This is Exercise 6.2.1. Further,
our analytic function is guaranteed derivatives of all orders, Section 6.4. In this sense the
derivative not only governs the local behavior of the complex function, but controls the
distant behavior as well. |

Exercises

6.2.1

6.2.2
6.2.3

The functions u(x, y) and v(x, y) are the real and imaginary parts, respectively, of an
analytic function w(z).

(a) Assuming that the required derivatives exist, show that
Viu=vV3y=0.

Solutions of Laplace’s equation such as u(x, y) and v(x, y) are called harmonic
functions.
(b) Show that

du du Hviiv_
axdy oxday

and give a geomeltric interpretation.
Hint. The technique of Section 1.6 allows you to construct vectors normal to the curves
u(x,y)=cj and v(x, y) =cj.

Show whether or not the function f(z) = M(z) = x is analytic.

Having shown that the real part u(x, y) and the imaginary part v(x, y) of an analytic
function w(z) each satisfy Laplace’s equation, show that u(x, y) and v(x, y) cannot
both have either a maximum or a minimum in the interior of any region in which
w(z) is analytic. (They can have saddle points only.)



6.2.4

6.2.5

6.2.6

6.2.7
6.2.8

6.2.9

6.2.10

6.2.11
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Let A = 3*w/dx*, B = 8*w/dxdy. C = d*w/dy>. From the calculus of functions of
two variables, w(x, y), we have a saddle point if

BZ—AC>0.

With f(z) = u(x,y)+iv(x,y), apply the Cauchy—Riemann conditions and show that
neither u(x, y) nor v(x, v) has a maximum or a minimum in a finite region of the
complex plane. (See also Section 7.3.)

Find the analytic function
w(z) =ulx,y) +iv(x,y)
if (a) u(x,y) =x3 —3xy2, (b) v(x,y) =e Vsinx.

If there is some common region in which w; = u(x, y) +iv(x,y) and wy = wy =
u(x,y) —iv(x, y) are both analytic, prove that u(x, y) and v(x, y) are constants.

The function f(z) =u(x.y) + iv(x, y) is analytic. Show that f*(z*) is also analytic.

Using f(re'”) = R(r,8)e'®"? in which R(r,@) and ®(r,8) are differentiable real
functions of r and @, show that the Cauchy—Riemann conditions in polar coordinates
become

dR RO b 19R a6
®OwF=rm ®re="tur
Hint. Set up the derivative first with 4z radial and then with §z tangential.

As an extension of Exercise 6.2.8 show that ©(r, ) satisfies Laplace’s equation in polar
coordinates. Equation (2.35) (without the final term and set to zero) is the Laplacian in
polar coordinates.

Two-dimensional irrotational fluid flow is conveniently described by a complex poten-
tial f(z) = u(x,v) +iv(x,y). We label the real part, u(x, y), the velocity potential
and the imaginary part, v(x, y), the stream function. The fluid velocity V is given by
V =Vu.If f(z) is analytic,

(a) Showthatdf/dz =V, —iVy:
(b) Show that V - V = 0 (no sources or sinks);
(¢) Show that V x V = 0 (irrotational, nonturbulent flow).

A proof of the Schwarz inequality (Section 10.4) involves minimizing an expression,

f = Yaa + +Vab + A‘w:b =+ lk‘wbb >0.

The y are integrals of products of functions; V4, and Y are real, ¥, is complex and
A is a complex parameter.

(a) Differentiate the preceding expression with respect to A*, treating 4 as an indepen-
dent parameter, independent of 1*. Show that setting the derivative 3f/dA* equal
to zero yields

l=—i.

Ybb



