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es and the Gradient Vector

The weather map in Figure | show: 4 contour map of the temperature fanction I
the states of Cahifornia and Nevada at 3 00 pm on a day in Octobet I'he leve) g
isothermals, join locations with the same temperature. The partial denvative T4

h as Reno is the rate of change of temperature with respect (o dustance fu

tion suc
cast from Reno: 7, is the rate of change of lemperature if we travel north, But
| southgast tom

want to know the rate of change of temperature when we travel
Vegas). or in some other direction” In this section we introduce a type ‘.
called a directional derivative, that enables us to find the rate of change 0l sl

two or more variables in any direction

@ Directional Derivatives
Recall that if z = f(x, y), then the partial derivatives f, and f, are defined &
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e present the rates of change of z in the x- and y-directions, that 1° i
of the unit vectors i and j.
Suppose that we
e < h; pose that we now wish (o tind the rate of change of 7 at (xs. ¥0)
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with the equation :
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eets S oacune C (See Figure 1) The slope of the tangent hine 7 10 € at the pomt P 1s

the rate ol change of 21 the direction of u
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If Q(x, v, =) is another point on C and P’, Q" are the projections of P, Q onto the
—
xv-plane, then the vector P'Q" is parallel to u and so

—
P'Q" = hu = (ha, hb)

for some scalar h. Therefore x — xo = ha, y — Yo = hb,sox = xo + ha,y = Yo © hb,
and

Az z-2z20 _ [flxo+ ha yo + hb) = f(xy, yo)

h h h

If we take the limit as i — 0, we obtain the rate of change of = (with respect to distance)
in the direction of u, which is called the directional derivative of f in the direction of u.

“tnitien The directional derivative of f at (o, yo) in the direction of a
unit vectoru = (a, b) 1s

f(xo + ha, v, + hb) = [(xo, Vo)
h

Dy f(xg, yo) = lim
uf( 0 )U) ‘!"_'u
H this limit exists

By comparing Definuon 2 with Equations |, we see that e

u"f “Jiandifu = § = (0, 1), then Dy f = £,. In other words. the partial derivatives of f
With respect 10.x and y are just special cases of the directional derivative.
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Om fhe other hand, e can wTic gl = flx. yi. where x = x; ~ ha.\ = - hb.s0
sae Ohsum Rude (Theorem 14.5.2) gives
{ dx i dv
gih) = —— 4+ ——=fix vla + f(x
ax dh dh
Wwenowpm s = (. thenxr = 1, ¥y = ¥, and
§g10) = filxe. wda + filx, vo) b
Companng Equations 4 and 5. we see that
D, fixe. ¥) = fulxe. wla + fixo, ¥o) b 2

if the unst vecior u makes an angle & with the positive x-axis (as in Figure 2), then we
can wric 8 = (cos 8. sin ) and the formula in Theorem 3 becomes

A Y
6 D, fix.¥) = fx,¥) cos® + f.(x, y) sinh
EXAMPLE 2 Find the directional derivative D, f(x, y) if
flx.y) =x" = 3xy + &
and u is the unit vector given by angle 0 = =/6. What is D, f(1, 2)?
SOLUTION Formula 6 gives
D,f(x.y) = fi(x, y) cos Lo & fAx, y) sin b4
6 ; 6
g 3
= (3x- - 3))%',-* +{—3x + 8_\‘)%
=330 - 3x + (8 - 33 )]
Therefore
- g 1 -3 i
D.f(!.2)=§[3\f’3_(lr-3(1)+(8—3\3)12)}=—l—‘—2"l§— a

® The Gradient Vector

NO_"CC from Theorem 3 that the directional derivative of a differentiable function can be
wrillen as the dot product of two vectors:

£

D.f(x.¥) = fix, y)a + fix, vib
=(flx,¥), filx.¥)) - (a. b)

=, fix.y) - u

The fiey vector n this dot
'n many other contexis
4 special notation (grad f

product occurs not only in computing directional denvatives
as well. So we give it a special name (the gradient of f) and
or Vf, which is read “del (™)
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This expresses
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projection of the gra

nal derivative of the function f(x,y) =¥

EXAMPLE 4 Find the directio
f the vector v = 2i + 5.

point (2, —1)in the direction 0

cOLUTION We first compute the gradient vector at (2, ~1)

¥y = 2xy’i + (3x2y* — 4)j
V@2, —1) = —4i+ 8]
Note that v is not a unit vector, but since [v| = \@'6 _ the unit vector in theé
of vis

u=-v—=———2 i+—-—-—5 i
[v] 29 \/29’

Therefore, by Equation 9, we have

Dufid, —1) = : /5/]
@ -1 =V -1)-u=(-si+8D- TP
V2 v

- =
vay \/29
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8 Maximizing the Directional Derivative
canction J of two or three variables and we consiy,

Sappose e AT ai _
& eomal GECIVERIVES of f at a given pont. These give the rates Ofdu,
sl darecuons. We can then ask the guestions: in which of these direg

- - pe fastest and what is the Maximum raic of change” The answers are pmy
{9l ieing heorem.

€ Thewem Supposefisa differentiable function of two or three v
The miximum value of the directional derivative D, f(x)1s|V/[lx)] sl

occurs when o has the same direction as the gradient vector Vf(x)

/% From Eguation 9 or 14 wch-‘vc-

Duf = S u=|V/|lu|cost = |9f | con

where § is the angle between ¥ [ and u. The maximum value of cosfn!!
ﬁf “"““ 8 = 0. Therefore the maximum value of D, f is |9/ and ¥
). that is, when o has the same direction as V.

EXAMPLE 6

(@) If fla.5) = 2¢ o
trom P 1o g}, 2;‘ -find the rate of change of f a the pownt /(2.0 .
4 w'wl"

®) In what directy
raie of dumi? M does [ have the maximum rate of change

SOLITION
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FIGURE 7

EXAMPLE 7 Seppose that the wemperatore af a pomat (1 ¥, =} in space is given by
Me .2l = 81 = = 2y" = 3\ where T is measared in degroes Cedsias and
£ 3. - m merers n whach drectioa does the iemperature increase fastest at the posat
L I, =277 Wha = the saxsnem raie of mcrease”?

WOLUTON The grafieni of T s
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e 3 5 2 TR T T 3 %’ & LET
+r+x+ ¥ I+ +2xy+3

6l
= - - ~{—xi— 2yj — k)
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Al the poust (1. | —2) the gradiemt vector is
Tris. b =2 = 8i-i - 2]+ 6k} = {(-i - 2 - oK)

By Theorem | S the temperature increases fastest in the direcuon of the gradeat veoior
CTi. 1. =21 = j{=i - 2 + 6K) or, equivalently, in the diwaction of —i - 2j.~ ok
of the unit vector (—1 ~ 2] + 6Kk)/, 41. The maxvimum rate of mcrease © the icngth of
the gradient vecior

(ST 1, =2)] = §| =i = 2] + ok| = {4

e

Therefore the maximum rate of increase of lemperature is {41 = 4°C/m .




