™

Graph the function using various domains and view-
posts. Comment on the limiting behavior of the function. What
happens as both r and y become large? What happens as (x, y)
approaches the origm”

(b}

a5 KF ) Ty
. flxy = : 76. fley) = ——
£ Ty X"+ y

1. Investigate the family of functions f(x. y) = ¢**"™"". How (©)

ducs the shape of the graph depend on c?

.

4.2 Limits and Continuity "/

SECTION YAl L ang Cantinginy oul

s b
Pt
- s €
o L 1
" =
[ 8 — & trow does the share gra .
andd
s g
7. Uswe ac eutig { " Ll
< : - . i .
As Ll - wh . - 3
1 o e seandk . .
e how e i—-‘f" Hdgw obxped Trom e P '\ \ Juadrng s -
> 8. Gry < wlhions
: -
LV T a ‘
T . .
O . oftn ¥
SEN o it A ¢
i " - L v
il " Y N |
i W RE -
- ,ll - 4 - : \ 7 v
c) #x ) r=y—=
L )
\ |}
Use a compeier to graph the [UnChOR USIRG VATOUS genera - . - . ol
Jomamss and viewpaants. Get a priatout that gives a good view graph o
¢ te “peaks aad vallevs” Would you say the function has a
‘ ! 9 ; o the x < 'S e ' )
maimen value” Can vou ideatifly any ponts on the graph that ‘ ol
vou mught coasider to be “jocal maximum points What about
Tt fe—— _ﬂl."!'.L"ﬂ' OMXaingd from the A O g !
.g frvi=3x—=1"—4y — :;,'}'_\ ~ 8. (a Show that. by taking loganthms. t rene Cobb
, : . . ‘
M fix e’ Douglas fung £ ca avpressed as
P ’
mM—=Inb+aln—

(P X), the equation
b

if welet x = In(L/K) and
in part (a) becomes the linear eguation
Use Table 2 (in Example 3) to make a table of vaiues
of In(L/K) and In{P, K) for the years 18991922

Then use a graphing caleulator or computer © had

oLy -

the least squares regression line through the pounts
Un{L,K). m(P/K)).

Deduce that the Cobb-Douglas production funcuon is
P = 10122

Let's compare the behavior of the functions

X sin(x” + y°) : el &
fRE, Y] ™= it and "0 R TR
A T r v ¥

as x and y both approach 0 [and theretore the pomt (v, ) approaches the ongin|




tives

CHAPTER 14 Partial Deriva

904 .y x, y), correct (

2 show values of flx, y) nn.d ) , © three deg,
Tables | and 2 SROW 7 (Notice that neither function is defineq ,, th M,
. rigin. ton!
(1, v) near the € ' h
points Table 2 Values of 4(, ) \

alues of f(x, V) (% ——T ] T

Table 1 Values of S — '\’—T—ﬂ_llo -05 | =02 0 i ¥
T ' > 0 T o2 | 05 1.0 XN T T
<V =10 =05 —02 N DR S j _10 | 0000 0600 0923 1.000 Oq,“\
I N | s . C . 5 ‘ _‘_7__-_‘[_ — . —l e )
» ' 29 | 0759 | 0453 —t . Yy
\ c9 | 0829 | 0.841 | 082 i it : | 0000 0724 1000 Rt
N ~10 | 0458 | O 4 4 —0.5 | —0.600 07
: iy | 759 7T | T L]
. 90 | 0986 | 0959 | 0.7 — P
-0 0759 () 959 0.986 O'uﬁ__‘__ i g I 2 _.092.‘ ( —0 724 0.000 1.000 0(") b
t— 0829 N 41—y
-02 0829 | 0986 | 0999 1.000 99_‘77‘?_‘_79?.8'?_#—-—« "F'(;,:—,;]) | =1.000 | —1.000 - 1(11)\
[ | i (T 1000 0990 0.841 L ———T "+ T e ~‘~..-\t7
O |08 (09590 100 4 02 |-0923|-0724| 0000 1.000 | oo
) | 0986 | 0999 1000 0999 | 0986 | 0829 | ! 11T
0 0829 ) ?3— 4 _;_),4_4_--——--‘———'"—_”_"'_‘___._-4 0 5 ‘ _.0("()0 0000 0.724 | 1.000 | 012‘ )

piiteg——— 0.759 | g o L 4
75 | 0959 | 0986 | 0990 | 0986 | 0959 | i M T
= E,i. (1‘)_0@?_-_’%7”__'___”_____.#___ ' 1.0 0.000 | 0.600| 0923 1.000 | 09y N
10 | 04ss | 0759 | 0829 | 0841 | 0829 | 0759 | 0433 I B e I

————
—

It appears that as (x, y) approaches (0, 0), the values of f(x,y) are y
whereas the values of g(x, y) aren’t approaching any num.bcr. It tumg "
guesses based on numerical evidence are correct, and we write

, xt -y
1 and hm  ——5 doesny

, sin(x* + y7)
lim (e.v) »0.0) x° + y°

5 5
(ny) »0.00  x°+ y°

In general, we use the notation

lim f(x,y) =1L
(vy) »lab)
to indicate that the values of f(x, y) approach the number L as the point (x,
the point (a. b) along any path that stays within the domain of f. In otherw
make the values of f(x, y) as close to L as we like by taking the point (x,)
close to the point (a, b), but not equal to (a, b). A more precise definitionfo

rr — —— =
| SE——

1] Definition Let f be a function of two variables whose domain D

points arbitrarily close to (a, b). Then we say that the limit of f(x, y)®

E
' approaches (a, b) is L and we write

| ,
! (x, \llln-1(;.-. b) f(.l‘. \) = L
b | iffore
\ | ftiorevery number & > 0 there is a corresponding number & > 0 such!

() €ED and 0< x=p

—

B e

+(y-b) <8 then |f(x)
i " |

\

e e e ——e—

Other notations for the limit in Definition 1 are

fif.flf{x. Y=L and

v +h f('l1 y) - L as (1. y) — [d,b;

(x~a)7 ¥ = b)z mhf ;b the distance between the numbers Ji+/

- Definiti ¢ distance betwe : ;

| nton 1 says that the distance between f (T :)l;:glzlc(a; ;mfdl:‘:rﬁ
' m
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e (e, ) sufficiently singll (bt nen G Figure | illustrates

ik ing the distan frovin (4
[aehinition | Dy means of o arow diagram 1 any small imerval (L~ & L + &) s given
aremind £, then we cah fioved a disk 1hg with cener (a, b)) and radius &

[ ’ Y r)

{) h that / maps
all thee peints i Dy [except possibly (a, b)) into the interval (1

"4

"

| 2
|

|

FIGURE 2

Another ustration of Delinition | is given in Figure 2 where the surface S 1s the
graph of f. 10 & > Ois given, we can find & > O such that if (x, y) is restricted (o lie in the
disk 1, and (v, y) # (a, b), then the corresponding part of § lies between the horizontal
planes : = L = eand 2 = L + ¢,

For functions of a single variable, when we let x approach a, there are only two pos-
sible directions of approach, from the left or from the right. We recall from Chapter 2 that
ilim, ., f(x) # lim, .. f(x), then lim, ., f(x) does not exist.

For functions of two variables the situation is not as simple because we can let (x, y)

\ approach (a, b) from an infinite number of directions in any manner whatsoever (see
' A: Al j Figure 3) as long as (x, y) stays within the domain of /.,
1 ‘ Definition | says that the distance between f(x, y) and L can be made arbitrarily small
by making the distance from (x, y) to (a, b) sufficiently small (but not 0). The definition
. ' refers only 10 the distance between (x, y) and (a, b). It does not refer to the direction of
approach. Therefore, if the limit exists, then f(x, y) must approach the same limit no
matter how (x, y) approaches (a, b). Thus, if we can find two difl crent paths of approach
along which the function f(x, y) has differentlimits, thenitfollows that lim, ., .. . f(x, y)
does not exist,
L J
0 f(x,y) = Lyus (x, y) == (a, b) ulong a path €, and f(x, y) = L as
(x,y) = (a, b) along a path Cy, where L, # L,, then lim, ,,-..o o f(1, ¥) does
not exist,

2 2

EXAMPLE 1 Show that lim = docs not exist.

(a9 «(0,0 x’ 2 y2

{ o SOLUTION Let f(x, y) = (x* = y*)/(x* + y*). First let’s approach (0, 0) along the
A-axis, Then y ~ 0 gives f(x,0) = x¥/x* = | forall x # 0, so

fo flayy)==1  as  (x,y) (0, 0) along the x-axis

We now upproach along the y-axis by putting x = 0. Then f(0, y) = -:- = =] for all
Y7 0,50 ’ r

Slx, y) — =] us (x, y) —= (0. 0) along the y-axis

Figure 4.) Since / has two different limits along two different lines, the given limit
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APTER 14 parnal [)m-wll ' We mads
M

snfirms the conjectt N the hug,
¢ T

A
: ooy g oo yf this gection.)
“ at the heginning !
deme "/‘I) ) ‘-.".tlu; 1 e ”‘ i
H"" £ . . o ¢ 'lm
MPLE 2 If |
N (x, 0) = 0/x" = 0. Therefore
ytion Ify = 0. then /X
‘ \
SOl )y -0 as (4, ¥) == (0, 0) along
fla.y .
e (), 8O
if x = 0, then £00,¥) = 0/y
‘ fla,¥) = 0 . (2, y) == (0,0) alopg phrm
xy-
t danttos ' llmi'.\ ill”“lv ”lf' axes. lh'" -
B ¢ hav ained identica N
| AIIho\I}Sh:c BJIZ$:("°W approach (0, 0) along another line, ayy .,
: ven limit 18 0. L
f g ‘. I
; 2 fl.!..\) r’ + x° pJ
f= 0 t |
e ey : (x, ¥) = (0, 0) along y =
Therefore féxy =3 as ,
FIGU (See Figure 5.) Since we have obtained different limits along differe,
e limit does not exist.

Figure 6 sheds some light on Example 2. The ridge that occurs gy,
corresponds to the fact that f(x, y) = % tor all points (v, v) on that line

BE# 1 Visua) 14.2 3 rotating line on
e suriace in Figure 6 shows differ-
ent fmuts at the ongin from different
rection

FIGURE 6

fAx v) "Ti‘--

X" » \“

¥ adoes lim X, v) exist”
& +.\, tay 'H‘.ﬂl'f( N

EXAMPLES 1f f(y, 1) o _2°

%
) - (0, 0) along v = ™

result oy ki
W(I‘n;;;)u". (0, 0) along the Jine y - 0. Thus /¥
1 Ough the nrjgin But that does nol Sh‘]‘
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jit 18 0, for if we now let (x. v} — (0. @) along the parabola & = y-. we have
¢ ' .
¥ ) N S

f - : | - %9
flx. ¥) = fUy% ) O'F + P 2"

|-

f(.r.y)-'& as (x.y) — (0.0) along x = ¥

lead to different

<0
exis: B

Since different paths limiting values, the given himit does rof
hat do exist. Just as for functions of onc variable. the calcua-
f two vanables can be greatly simphified by the use of pop-
ed in Section 2.3 can be extended 1o functions of Two
of a product is the prodect

Now let's look at limuts t
tion of limits for functions O

erties of limits. The Limit Laws list
variables: the limit of a sum 1s the sum of the limits, the limit

of the Jimits. and so on. In particular, the following equations arc

/' lim x=a lim y=25 m c¢=¢
s (r.y) e M (vt vie M r im M

The Squeeze Theorem also holds

uc.

/ : ) iy . .
EXAMPLE S Fmd‘ m — — if 1t exisis.

Lvh »0.0

x- = ‘.’: .
d show that the limit along any line through the
given limit is 0, but the limits along the parabe-

pect that the limit docs

SOLUTION As in Example 3. we coul
origin is 0. This doesn’t prove that the

las_\-=x’andx=y:alsommoultobeo.soucbegin(osus

exist and is equal to 0.
Let £ > 0. We want to find & > ( such that

b 2 !
i . ; — i 3x%y ;
-“-“-C if 0<yx*+y* <& then ;—75—)-7—0 <eg
Cak s o -%

iyl .,

that is, if 0<yx*+y* <4 then > .
X +Yy

Butx® < x° + y since y* =0, so x*/(x* + y*) < | and therefore

3y v
__f_lllT < 3l}-| = 3\;_‘,: < 3\_/11 + ),:

rt+y
Thus if we choose 8 = £/3 and let 0 < /x* + y* < 8, then

3x°y
2+

s3,f7=‘+7<35=3(5)=s

-0
3

Hence. by Definition |,

3x°y -0 "

m = =
.yt 00 x° + )7'

® Continuity

::call that g\'a}ualing limits of continuous functions of a sin
accomplished by direct substinution because the defiming property of a continuogs

gle variable 1s easy. li can
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al Derivatives

f(a). Continuous functions of (WO variables 4, 2
) == al.

V- lim, -« f(X
function 18 sl rty.
by the direct substitution prope y _ —

all

o variables is called continuous g (a,}
')

uncti tw
2| Definition A function f of

im Slx y) = fla, b)
(v} ola. b

f is continuous at every point (a, b) in 1y

ty is that if the point (x, y) changes "

ges by a small amount. This meang g ai
{

us function has no hole or brc:?k_
ts, you can se€ that sums, differences, Produc;,
I‘(; continuous on their domains. Let’s use this g

We say f is continuous on D if

itive meaning of continul

The intu 5} chan

amount, then the value of. f(
that is the graph of a conn.npo.

Using the properties 0% limi
tients of continuous functions a

: s functions. :
examples of continuous fun ; ial. fi \
AF;Jolynomial function of two variables (or polynom or short) js

" f the form cx"y", where c is a constant and m and n are nonnegative i,
crms O ; 3 , s
rational function is a ratio of polynomials. For instance,

flry) =t + 55yt bxyt =Ty + 6

is a polynomial, whereas
)i xy + |
g(x!) x2 va y2
is a rational function.
The limits in (2) show that the functions f(x, y) = x, g(x, y) = y, and h(x,y)
continuous. Since any polynomial can be built up out of the simple functions f,
by multiplication and addition, it follows that all polynomials are continuous

Likewise, any rational function is continuous on its domain because it is a que
continuous functions.

2 z.A 3
EXAMPLE 5 Evaluate (H}n‘r(ll'n (xy” = x%y? + 3x + 2y),

Sﬁ)LUTION Since f(x,y) = xzy“. =X’y + 3x + 2yisa polynomial, it is contit
everywhere, so we can find the limit by direct substitution:

i 2,3 3,2 s
oy BV =X 3t )= 2 L pg 3:142:2m

reist le cti f( I
0 )’) ) . "
| P e hc nction X = —_—_-x‘ 2 CO“[I“UOUS.’
S nce f IS a rational funclion. il iS continuous

D=A.y) | (x,y) » (0, 0},

(0..0) because it is not defined th
On its domain, which is the set

% :
ox y)={ T 7 i (x,y) # (0, 0)

if (x,y) = (0, 0)

O e e T Ly
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11 discontinuous there because lim, ;< v, g(x, y)
Here @ 15 defined at (0, 0) but g 1s still -

does not exist (se€ Example 1)
EXAMPLE B Let

Ix'y
i if (x, y) 7 (0,0)

/(_x'y, = ,‘) + ).)

0 if (x, y) = (0,0)

We know f is continuous for (x, y) # (0,0) since it is equal to a rational function there
Also, from Example 4, we have
3xty
i = Jim —~—=0=/(00)
l'l.)!"-rtlu.ﬂj f(x’ y) (r.y) »(0,0) xz . )_.2

. v . " 2
Therefore f is continuous at (0, 0), and so it is continuous on R

Just as for functions of one variable, composition is another way of combining two
continuous functions to get a third. In fact, it can be-shown that if [ is a continuous func-
tion of two variables and g is a continuous function of a single variable that is defined on
the range of f, then the composite function h = g °f dcfined by h(x, y) = g(flx,y)) is

also a continuous function.

EXAMPLE 9 Where is the function A(x, y) = arctan(y/x) continuous?

'.:; , / SOLUTION The function f (x, ¥) = y/x is a rational function and therefore continuous
3 sl . g except on the line x = 0. The function g(#) = arctan ¢ is continuous everywhere. So the
& ' ' composite function

9(f(x,y)) = arctan(y/x) = h(x, y)

\'j‘m ’
is continuous except where x = 0. The graph in Figure 9 shows the break in the graph

qae function h(x, y) = arctan(y/x)
discontinuous where x = () of h above the y-axis.

B Functions of Three or More Variables
Everything that we have done in this section can be extended to functions of three or

03 ;
more variables. The notation

(1, y, :]t":r(lu. b, ¢) f(x. s Z) =L
means_lhat the values of f(x, y, z) approach the number L as the point (x, y, z) approaches
lht'j point (a, b, c) along any path in the domain of /. Because the distance between two
* pO{nts;x. y.z)and (a, b, c)inR’is givenby /(x = a)? + (y = b)? + (z - )7, we can
‘ write the precise definition as*follows: for eve > i '
e 6 et b ry number & > 0 there is a corresponding

if (x. y, 2) is in the domain of f and 0 < Vo=a)i+(y-b) +Gz-01<8
then |f(x,y.2)-L|<e

The function f is continuous at (q, b, ¢) if

lim S(x,y,2) = fla, b, c)

eyl sla b, o)
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& g4 Pgrva Lerve
s ¥

a)

For instance. the function

fle,y, 1) ™ .

| function of three variables and 50 is continuous g ¢,
e i PN P [ In other words. it is discontinuous on the he '
where 8 + vy + & ‘
N a'ld l'lld‘u‘ l , ¢
- the vector notation introduced at the end of Section 4,
if we u-cm o  limit for functions of two or three vaniables
et )

"a

the

i
Nag n
’ ﬂc;‘
as [ollows

o o —”_-“—--\
5 1f f s defined on a subset D of R”, then hm.g;f(ox) -hLm -
numhc; ¢ > 0 there is a corresponding number such that

( xED and 0<|x-a|<8 then |flx)-p|.,
i

~

Notice thatif n = |, then x = rand a = a, and (15) 1S just .u;e d?ﬁ,‘mn
fun'chons of a single variable. For the case n = Z, w:i hax? X = (g,
and |x — a| = J(x = a)? + (y — b)?, so (5) bccowc»_ Definition | 3l,r
X = ‘(.r‘ y,2),a=(ab,c) and (5) bccomc.s thc. de.hmuon of a _hmug;i
three variables. Tn cach case the definition of continuity can be writien 5

lirp. f(x) = f(a)

£
i
1. Suppose that imi . . . o, f(x, v) = 6. What can you say 7. ; 'li:n ¥ sin(x — v) 8. u L!"."‘ )
. . Ly) oow w/2 TR
about the value of £(3.1)? What if f is continuous? '
_ . " 2 b.J
. Explam why each function is continuous or discontinuous. 9. lim X —-%° 0. lm -
81 The oudoor wemperature as a function of longitude, .y -0.0 ¢ + 2y? y) 0@ X
laiude and ume
. h ] .
W Elevation (height shove sea level) as 3 function of 1" PR i sin’x 12 lim —
? i s el ! %
longitude. lahiede, and time ey 00 x* + _y‘ v L0
Mhe Comt of @ Lani nde @ a function of distance traveled
d tvm . xy i
e 13, lim “"—2.-__?_- 14 Im ..T‘
d o Vit + ! fa v} ~0.1
1o Labic of numencal values of [ y) for L0 ) near the
IR Lo ke @ congecture shout the value of the himut of f(x, y) vy cos y >
* V. 0} Thes explain Fvec 15 hm ") hm
o oxplon wihy your guess 15 Correct e Wy gt 16. ww @1
T Ay 8 , Xy
3 e 4 fixy) T — g e !
‘ y R 7 hm
LU T} J'*! + “.J + I — l
Find the st if i exists o show that the Jimu does W lm “-—-—““
Kind oy sam ! 4 8
- 4y°) Ay + gy 1
Sl % P 19. hm “tan(x: e B gl
y o smo yn tan{xz) 20 08

fa, 23"



ArICTE,

.

h; " ,.-ﬁ.’ rEyvs
. "s, 340
. e » oW
"-;u‘, .ﬁtﬁ;"-‘_-'»-:‘
‘.'
& ‘.“ m e
-*‘-L'» - L“M”Wd“m- m
"‘“uaaﬂ#
2% = Tay = 4y° 5y
———————————— -
Ly R Ty

e ¥
3. 34 Fiwd Mx.y) = ¥ fix y)) and the se of points & which &

L _  contiamows
'iﬂ‘} F+4t. finy 2x+H -6
o Sy
"m,,"‘“-'-h" fix. ¥ Ty
i ¢

" 1 1 225 Graph the fanction and chscrve where 4 » dscontins-
T ¢ 4 Then one the formeta 1o cxplasn what you huve obwerved.

el - g Wiy 8 fixy)=- ' 3
Jlxy) =« JAES | -2 -y

32 Determine the set of pownts 2t which the fonction n

Lo
x g —
i - =% 30. Az y) - emyT 57—
48+ e+
Flz 5) - = 32 His
. | Rl Gl ” e - §

y /
‘.-' m—""'d’;* sl"l’i-)!

o Gry) = In{l + 5-3)
L«.- P ey 2) = mesinls® 4 5 4 77

Sy = ofy—xlin;
=

LR 2 3
LA
fuy={ 25+, Hx)»0.0
-
Th ! diry 0.0
-
z“’r.

OO 42 Teus e ¥

37 Ve guisy curdiogmes = ot tie
prfar cuordwtes 7 Yx oo ik r 2 U e S
BLL); -89

r —» 9

4.

4
24 “BW

ad pacsied on e ~un asceeraca evadenor the
flry) = imic; of P Oulrtunes &

confrm S vaiue of B bma Thee paph e funcuon

" 3. Graph and dscuns e comnumy of e fuvcuos

fix
- '] -
19 < o = 3
I“!-‘
- 1 f B 7”7 o -
- v

(2) Shom bt fiz 3} ~0Om
Grough 0. Dlof e form v = msr' witt 0 < g < &
b) Despute part (a). show tha ¢« Ssoostmeoss & 8 01

ic) Show tm [ » dscoemtiesons or o cHIET CRIVES

e g Y Dad

45. Show tha the fancuon § pivcs b fiN) = (1| & continuous
omR* [How Comside-x -3 <is—a x-a)

4. e V. show tha e fumcton f pvea by fid) = ¢ 358
continuoss o R”.

Q'Nhy.mhiﬁyﬂauﬂﬁwkwﬂh « really
is. whereas in very dry air we perceive the tempersinre to be Jower Dam e fermom-
ekr indicases. The National Weather Service has deviced the hest imdex (also calied fhe
temperature-humidity index. or humidex, in *ome cosrics) w0 describe the combemcd
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By taking & = S and ~ 5. we approximate G'(70) using the tabular values

(718) = GITD) (96, 75) — f196, T0) 130 - 125
GTI0) = ——— 5 - 5 el

GL6S) = GIT0)  f(96,65) — £(96.70) 121 — 125

() - — = (038
pido -5 -3 -5

By averaging these values we get the estimate G'(70) = 0.9. This says that, when the
temperature is 96°F and the relative humidity is 70%. the heat index rises about 0.9°F for
every percent that the relative humidity rises.

In general. if f 1s a function of two vanables x and y, suppose we let only x vary while
keeping v fixed, say y = b, where b is a constant. Then we are really considering a func-
non of a single variable x, namely, g(x) = f(x, b). If g has a derivative at a, then we call
it the partial derivative of f with respect to x at (a, b) and denote it by f.(a, b). Thus

?7 j fla, b) = g'(a) where g(x) = f(x, b) ,
By the definition of a derivative, we have
+ L
g'la) = lim ga+ h ~ gla)

B0 h

and so Equation | becomes
|
. + - ¥ =
- 1 i

J

Similarly, the partial derivative of f with respect to y at (a, b), denoted by f,(a, b). is
obtained by keeping x fixed (x = a) and finding the ordinary derivative at b of the func-

tion G(y) = f(a, v):

1

fla.b) = lim fapd ’;.) =il L —

o ——

nd

. With this notation for partial derivatives, we can write the rates of change of the heat
index / with respect to the actual temperature T and relative humidity # when T = 96°F
and H = 70% as follows:

J1(96,70) = 3.75 [1(96, 70) = 0.9

If we now let the point (a, b) vary in Equations 2 and 3, /. and £, become functions of
WO variables.
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ariables, its partial derivatives are the fu"‘liun\"'
!

'

a! If /1s atunction of tWO N
and /. defined by

[(x + "l‘_l,’._i_/.('}.:)f’_

filx,y) = ;!".II. e p
\ o fly t - flxy)
filey) = '!lr.r}‘ S p

There are many alternative notations for partial dcri»’ativcs. For instance, ip
f. we can write fi or D f (to indicate differentiation with respect to the firg Vari

af/ax. But here df/dx can’t be interpreted as a ratio of differentials.

———— 4

| Notations for Partial Derivatives If z = f(x,y), we write

' . af d _ _1_3-.-2______ ot _
| f‘(xy)’)=ﬂ=‘5;=gf(x-)’)— o fi=Df=D.f

. LW B W he_pe
) =h= e oo fn)) = o= fi= Dof = Dof

e 4 af iz
| o

To compute partial derivatives, all we have to do is remember from Equation ||
the partial derivative with respect to x is just the ordinary derivative of the function,
a single variable that we get by keeping y fixed. Thus we have the following rule.

e — e ES——)

l Rule for Finding Partial Derivativesof = = fix, v

| 1. To find f, regard y as a constant and differentiate Sf(x, ¥) with respect to x.
i L 2. To find f,, regard x as a constant and differentiate f(x, y) with respect to ).

R —

EXAMPLE T If f(x, y) = x* + x?y* - 2y*, find £,(2, 1) and £2, 1)

SOLUTION Holding y constant and differentiating with respect (o x, we get

felx,y) = 32 + 2xy*

and so

f\(2.1)=3.2.‘+2_2'l]“l6

b . C <

Sl y) = 303y < g,

AT A Kl LEN L
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B interpretations of Partial Derivatives
To pve & peomctrx interpevtation of partial der VAIVES. we recall (ha i
r = flx, v repwesents 3 surface 5 (the graph of /) If flag b) =, o , ',',j# o
s om 8 n) &l'n‘ y = & we e RWK!N“ our attention to the curve (“ ."r‘ ru : ‘
mﬂ# y - ’mi‘ ‘ ’[n Olhﬂ' ‘1."'}\ ( j\”’i‘f Hace r.!' ') i e ',jdﬂf . - i):.
Likewne, the vertcal plane 1 ~ g intersects § 1n 2 curve C; Both of the wh.-‘ P hdl
C; pass through the pownt P (See Figure | ) -
\.guttc\r\r C uthv»:mm'd\c!ur,m-‘m, x) = flx, b), % the slope of its tan-
g T P nrgtm = fla. b} The curve C; is the graph of the function Gl y) = f(g, y)
so the slope of s tangent T at Pis G'(b) = f.(a, b) '
Thes the partial dervatives f.(a. b) and /,(a. b) can be interpreted geometrically as
we e shopes of the taagent hnes at Pla, b, ¢} 10 the traces C, and (. of S in the planes y = b
n wdi=a '
r As we have seen in the case of the heat index function, partial derivatives can also be
f meerpreted as rates of change If - = f(x, y), then 4z/dx represents the rate of change of
= with respect 0 x when v is fixed. Sumilarly, 3/ 3y represents the rate of change of 7 with
L respect 10 y when x is fixed.

EXAMPLE 2 If flx, y) =4 — x* = 2y% find £.(1, 1) and f(1, |) and interpret these
sumbers as slopes.

SOLUTION We have

filx,y) = —2x fi(x.y) = —4y

£41. 1)~ =2 AL 1) =—4

The graph of f is the paraboloid z = -x - 2}'zandd1cvenjc.alplm'1c) = linun:-
sects it in the parabola z = 2 — x°, y = 1. (As in the preceding discussion. we label it
C.hﬁg\lcz.)’l'hcslopcoflhcungcntlimlomiSpaabolaalthcmlnttl.l.l)ts
£A1, 1) = —=2. Similarly, the curve C; in which the plane x = lmtcrsftlsmcpambq-
loid is the parabola z = 3 — 2y°, x = 1, and the slope of the tangent line at (1, 1. 1) is
fi1,1) = —4. (See Figure 3.)
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Now we regard m as a constani The partial derivative with respect to h iy

aB o~ A) A m) ( g Im
. e— s L ->"-‘ o ’ — e - - ———
h ah \ n "W ) h

~ =27 (kg/m’)/m

AR 264
— (G4, | O8) = — e
»0 ah (

(1.68)"
This is the rate at which the man’s BMI increases with respect to his height when he
weighs 64 kg and his height is 1.68 m. So if the man is still growing and his weight
stays unchanged while his height increases by a small amount, say | cm, then his BMI

will decrease by about 27(0.01) = 0.27, .
. X of of
EXAMPLE 4 Iff(x. y) sm( = y).culculalc v and =

SOLUTION Using the Chain Rule for functions of one variable. we have

af X i X X I
= = COS v a— = COos .
dax l+y dx \ 1l +y 1 +y F+y

af x ) d X X ) X
— = C0S + m— = —(Cos . ~ "
dy l+y/ ay\l+y 1 + v (1 + vy

EXAMPLE 5 Find dz/dx and dz/dy if z is defined implicitly as a function of x » .J y by
the equation

x*+y'+ 2+ 6xyz =

SOLUTION To find dz/dx, we differentiate implicitly with respect to x, being careful to

treat y as a constant: ” 6JJ
= b3 uf

dz
U+ 32—+ 6yz + 61_}'-&—2- =0
dx ’ ox

Solving this equation for dz/dx, we obtain

9 x4+
ax z? + 2xy

Similarly, implicit differentiation with respect to y gives

az y? + 2xz
dy 27+ xy

® Functions of More Than Two Variables X

i dnqmw“ can also be defined for functions of three or more \amblu Fot
Example. if f is 4 function of three variables x, v, and z, then its partial dertvative with
10 x 15 defined as

Slx+ by 2) =[x z)
h

:‘d " 18 found by regarding y and z as constants and differentiating f(x. y. 2) with mspt:tc':
“Ww = f(x.y, 2), then f, = 3w/ ax can be interpreted as the rate of change of w W

Silx, p,2) = ‘!ir_%
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o i l\‘.,,v,ﬂ\\u‘\

L g ore held fixed. But we can tmlterpret i g"'“mg-
oA when d and ¢ W

ragrh w1 tour Jimensional ‘P““f - [ q
(he praph ol If ':“"\'\ a function oln variables, u G XL, ngw
senctial, s -
\nlll:‘:‘l\:‘:':'l 1o the 1th variable X 1% b = S
, AT T b L L Ui L Y
o = lim—"" h ~

and we also wrile

i cy.z)=e"Inz
FXAMPLE 6 Find y - o and [ if f(x 7)=¢

noN Holding y and = constant and differentiating with respect o1y
SL)*.U L} Yy -

fi=ye"Inz

— e Inz d = —
Simlarly, f, = xe*’Inz an f :

® Higher Derivatives _ o | |
If f is a function of two variables, then its partial der'waz.wes feand f m!
of tvo variables, so we can consider their partial derivatives (fo e (L
which are called the second partial derivatives of f.If z = flx, y), weus!
notation:

ad

S =fou=fu= 3;(

_a(of\_ ¥f _ oz
fLh=fo=fa= ay (()x) dy dx dy dx

9* dz
(.h).=f_\-,=f3.=i(a_f) S ...

o\ _ ¥ _ &
dx

ox \ay)  oxay axd
, a © P 2z
L’;‘)\:_ﬂw:fn:"“— a—f =d—{=-‘1—7
dy \ dy ay”  dy’

Thus 1l?c notation f,, (or &° f/dy ax) means that we firet differcntiste ¥ a
then with respect to v, whereas in computing f,, the order is reversed

EXAMPLE 7 Find the second partial derivatives of

f(‘t'.v) = x' + x{y’ - 2),:

SOLUTION In Example | we found that

Lla,y) = 3x? + 2xy’

Nk WY - Y
Sk Lx y) = 3Py
d
fu T,ﬂ‘(]l' + 2ry') = 6y + 2y? S = .9_(3_‘3 + 2.1')""
ay

v 0

'._, —— lq - |" — i : .

T Y ) -y fr === (@xly' - 4

dy



