848 CHAPTER 13 Vector Funcliom

13.1 Vector Functions and Space Curves

If im, _rir) = L. this definition is
eguivalent W saying that the Jength and
dwection of the vector r(r) approach the
keagih and direction of the vector L.

In general, a function s & rule that assigns to each element in the domain

the range. A vector-valued function, or vector function, is simply
domain is a set of real numbers and whose range is & set of veclors, W, o
ested In vector functions £ whose values are three-dimensional vectory Thig
for every number / In the domain of r there I8 & unigue veclor in V, de "
S, g(1), and h(r) ure the components of the vector r{1), then f, g, and A P,
functions called the component functions of r and we can write b

e(1) = (£ (0, g(0), h(0)) = SN} + ()] + hink

We use the letter 1 to denote the independent variable because it represents gy,
applications of vector functions.

EXAMPLE 1 If
r(r) = (%, 1n(3 = 1), V1)

then the component functions are

=1 g(n) =1n(3 = 1) h(t) = 1

By our usual convention, the domain of r consists of all values of t for which &
sion for r(z) is defined. The expressions £, In(3 — 1), and \/:- are all defined w
3 — ¢ > 0and t = 0. Therefore the domain of r is the interval [0, 3).

@ Limits and Continuity
The limit of a vector function r is defined by taking the limits of its compones
as follows.

LI () = (f(1), g(1), h(1)), then
limr(t) = (}m: £, 'lir-nu g(r), !irp h(r)}

I ru

! provided the limits of the component functions exist.
—

Equivalently, we could have used an &-8 definition (see Exercise 54). Lim
functions obey the same rules as limits of real-valued functions (see Exerci®

EXAMPLE 2 Find lim (1), where r(r) = (1 + )i+ retj + sinf
1 0 !

SOLUTION According 1o Definition 1, the limit of r is the vector whos¢ of
the limits of the component functions of r:

[ -0

: inf
lim r(r) = ['mmu $ :’J]i + [:in{;} re"']j - [hm 3'-,-]“

=i+ Kk i
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FIGURE 1

C » traced out by the tip of a moving
position vector r(r).
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wham Visual 13.1A shows several
urves being traced out by position
‘ectors, including those in Figures 1
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GURE 2
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A vector funetlon r s cont vuous nt a if
Him re(r) = rla)
I 'w
In view of Definition 1, we see that r Is continuous at @ If and only If it com sonent {une.

tions £, g, and h are continuous at a

W Space Curves

There Is a close connection between continuous vector functions and space curves. Sup
pose that /, g, and h ure contnuous real-valued functions on un interval / The
C of all points (x, y, ) In space, where

| e st

12| x=f() y=glt) z=hi)

and ¢ varies throughout the interval /, is called a space curve. The equations in (2) are
called parametric equations of C and 1 is called a parameter. We can think of € as
being traced out by a moving particle whose position at time 1 is ( f(1), gl1), his)). If we
now consider the vector function r(r) = (f(1), g(1), (1)), then r(z) is the positioff vector
of the point P(f(1), g(1), (1) on C. Thus any continuous vector function r defines a space

curve C that is traced out by the tip of the moving vector r(r), as shown in Figure |.
EXAMPLE 3 Describe the curve defined by the vector function

r() = (1 + 10,2451, -1+ 61)

SOLUTION The corresponding parametric equations are

x=1+1 y=2+5t z= =] + 61

which we recognize from Equations 12.5.2 as parametric equations of a line passing
through the point (1, 2, — 1) and parallel to the vector (1, 5, 6). Alternatively, we could
observe that the function can be written as r = ry + tv, where ry = (1,2, - 1) and

v = (1,5, 6), and this is the vector equation of a line as given by Equation 12.5.1. -

Plane curves can also be represented in vector notation. For insta
by the parametric equations x = ¢?
be described by the vector equation

ncg, the curve given
= 2tandy =t + | (see Example 10.1.1) could also

M =(P =21+ 1)=(2=201+(+ 1) j
where i = (1,0) and j = (0, 1).

EXAMPLE 4 Sketch the curve whose vector equation is

r(f) = costi + sinrj + rk
SOLUTION The parametric equations for this curve are

X = Cost Yy =sint z=

Since x* + y¥ = cos¥ + sin* = | for all values of 1, the curve must lie on the circular
cylinder x* + y* = |. The point (x, ¥. 2) lies directly above the point (x, y, 0), which
moves counterclockwise around the circle x* + y* = 1 in the xy-plane. (The projection
of the curve onto the xy-plane has vector equalio-n r(1) = (cos 1, sin ¢, 0). See Example
10.1.2 1. the curve spirals upward around the cylinder as 1 increases. The

cun <. shown in Figure 2, is called a helix. .
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The corkscrew shape of the hehix in l‘-!t"‘TP]C 415 Tamihar from jig -
coiled springs. It also occurs in the model of DNA (deoxyribonucleig acg, .
material of living cells). In 1953 James Watson and Francis Crick showeg thyy ,*
ware of the DNA molecule is that ol two linked. parallel helixes that are mlcnw,ﬂ
Figure 3 o , :

In Examples 3 and 4 we were given vector equalions ol curves and agey

n amf - , "
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metric description or sketch. In the next 1wo examples we arc given 4 geomeyy,, .
tion of a curve and are asked 10 find parametric equations for the curve, !

EXAMPLE 5 Find a vector equation and parametric equations for the line g,

RGURE 3 joins the point P(1. 3. —2) to the point (2, — 1, 3).

wE— . s e m for the lin
- SOLUTION In Section 12.5 we found a vector equation € segment th—a?

the tip of the vector ry 10 the tip of the vector ry:
Fepwe 4 shows the hee scpment PO 1n

Exampie

ri)=(1—-0re+ 1N IEYER

- (See Equation 12.5.4.) Here we take ro = (1,3, -2)andr, = (2, =1, 3) 100ty
o vector equation of the line segment from P to Q-

r0=00-0{,3-2+12,-13) 0<sr<|

or ri)= +13-41-2+ 501 O0=s1=|

The corresponding parametric equations are

EXAMPLE 6 Find a vector function that represents the curve of intersection of th
cylinder x* + y° = | and the plane y + z = 2,

SOLUTION Figure 5 shows how the plane and the cylinder intersect, and Figure
shows the curve of intersection C, which is an ellipse.
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The projection of € onto the xy-plane is the circle ¥ + y* 1.z = 0. So we know
from Example 10.1.2 that we can wrile

x = cos ! y = sin{ 0= 1= 2w

From the equation of the plane, we have

z=2 —y=72-sin{

So we can write parametric equations for C as
X = COs !t v = sint z=2—-sint - 0= <27
The corresponding vector equation is
r(1) = costi+sintj+ (2 —sinnk 0s1<2w

This equation is called a parametrization of the curve C. The arrows in Figure 6 indi-
cate the direction in which C is traced as the parameter 1 increases. Y

@ Using Computers to Draw Space Curves

Space curves are inherently more difficult to draw by hand than plane curves: for
an accurate representation we need to use technology. For instance, Figure 7 shows a
computer-generated graph of the curve with parametric equations

-

x = (4 + sin 201) cos ¢ y = (4 + sin 201) sint z = cos 20¢

It's called a toroidal spiral because it lies on a torus. Another interesting curve, the tre-
foil knot, with equations

x = (2 + cos 1.51) cos 1 y = (2 + cos 1.51) sin ¢ z = sin 1.5

is graphed in Figure 8. It wouldn’t be casy to plot either of these curves by hand.
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FIGURE 7 FIGURE 8
A wroidal spiral A trefoil knot

Even whcn'u computer is used W draw a space curve, optical illusions mak it difficult
:‘_ get a good impression of what the curve really looks like. (This is especially true n
igure 8. See Exercise 52.) The next example shows how 1o cope with this problem.

EX'AMPLE';’ Use a computer 1o draw the curve with vector cquation r(r) = (1. 1°.1")
This curve is called a twisted cubic.

) JTON

‘ We start by using the computer to plot the curve with parametric equations
ol 8 y o= - Vg 5 . . ) . :
’ $°. 2 i L S l 2 The result is sioonm Frgare 9ar, but i0s hard

o s the
Wwir 1 . y i
true nature of the corve fronn that graph alone. Most thre c-dimensional




