# Applications of Quadratic Equations 

## Applications of Quadratic Equations.

We can now use factoring to solve quadratic equations that arise in application problems.

## Solving an Applied Problem

Step 1: Read the problem carefully. What information is given? What are yo asked to find?

Step 2: Assign a variable to represent the unknown value. Use a sketch, diagram, or table, as needed. If necessary, express any other unknown values in terms of the variable.

Step 3: Write an equation, using the variable expression(s).
Step 4: Solve the equation.
Step 5: State the answer. Label it appropriately. Does it seem reasonable?

Step 6: Check the answer in the words of the original problem.
In solving applied problems always check solutions against physical facts and discard any answers that are not appropriate.

## SOLVE PROBLEMS INYOLVING GEOMETRIC FIGURES.

## Solving an Area Problem

A right triangle has one leg that is 3 m shorter than the other leg. The triangle has area of $54 \mathrm{~m}^{2}$. Find the lengths of the legs.

Solution:
Let $\quad x=$ the length of the one leg.
Then $x-3=$ the length of the shorter leg.

$$
\begin{aligned}
A & =\frac{1}{2} b h \\
2 \cdot 54 & =\left(\frac{1}{2} x(x-3)\right) 2 \\
108-108 & =x^{2}-3 x-108 \\
0 & =x^{2}-3 x-108 \\
0 & =(x+9)(x-12)
\end{aligned}
$$

Since - 9 doesn't make sense in this case the one leg of the triangle is 12 m and the other leg is 9 m in length.

## SOLVE PROBLEMS INVOLVING CONSECUTIVE INTEGERS.

## Solve problems involving consecutive integers.

Recall from Section 2.4 that consecutive integers are next to each other on number line, such as 5 and 6, or -11 and -10 .

Consecutive odd integers are odd integers that are next to each other, such as 5 and 7 , or -13 and -11 .

Consecutive even integers are defined similarly; for example, 4 and 6 are consecutive even integers, as are -10 and -8.

## PROBLEM-SOLVING HINT

if $x$ represents the first integer, then for
two consecutive integers, use

$$
x, \quad x+1
$$

three consecutive integers, use
two consecutive even or odd integers, use $x, x+1 ; x+2 ;$
three consecutive even or odd integers, use $x$, $x, x+2$;
three consecutive even or $x+2 ; x+4$.

## Solving a Consecutive Integer Problem

The product of the first and third of three consecutive odd integers is 16 more than the middle integer. Find the integers.

## Solution:

Let $\quad x=$ the first integer, then $x+2=$ the second integer, and $x+4=$ the third integer.

$$
\begin{aligned}
x(x+4) & =(x+2)+16 \\
x^{2}+4 x-(x+18) & =x+18-(x+18) \\
x^{2}+3 x-18 & =0 \\
(x+6)(x-3) & =0
\end{aligned}
$$

$$
\begin{aligned}
x-3+3 & =0+3 \\
x & =3 \\
x+6-6 & =0-6 \\
x & =-6
\end{aligned}
$$

Since -6 is an even integer, the first integer is 3 , the second integer is 5 , and the third integer is 7.

# SOLVE PROBLEMS BY APPLYING THE PYTHAGOREAN THEOREM. 

## Solve problems by using the Pythagorean formula.

## Pythagorean Formula

If a right triangle has longest side of length $c$ and two other sides of lengths $a$ and $b$, then


The longest side, the hypotenuse, is opposite the right angle. The two shorter sides are the legs of the triangle.

## PROBLEM-SOLVING HINT

In solving a problem involving the Pythagorean formula, be sure that the expressions for the sides are properly placed.

$$
(\text { one leg })^{2}+(\text { other leg })^{2}=\text { hypotenuse }{ }^{2}
$$

Pythagorean formula can only be applied to right triangles.

## Applying the Pythagorean Theorem

The hypotenuse of a right triangle is 3 in . longer than the longer leg. The shorter leg is 3 in . shorter than the longer leg. Find the lengths of the sides of the triangle.

Solution:
Let $\quad x=$ the length of the longer leg, then $x+3=$ the length of the hypotenuse,

$$
0=x(x-12)
$$

and $x-3=$ the length of the shorter leg.

$$
0=x
$$ or

$$
\begin{array}{rlrl}
(x+3)^{2} & =(x-3)^{2}+x^{2} & 0=x \\
x^{2}+6 x+9 & =x^{2}-6 x+9+x^{2} & 0+12=x \\
\left(x^{2}+6 x+9\right)-\left(x^{2}+6 x+9\right) & =2 x^{2}-6 x+9-\left(x^{2}+6 x+9\right) & 12=x \\
0 & =x^{2}-12 x &
\end{array}
$$

Since $\mathbf{0}$ does not make sense in this case, the longer leg is 12 in ., the shorter leg is 9 in ., and the hypotenuse is 15 in .

## SOLVE PROBLEMS BY USING GIVEN QUADRATIC MODELS.

## Finding the Height of a Ball

The number $y$ of impulses fired after a nerve has been stimulated is modeled by $y=-x^{2}+2 x+60$, where $x$ is in milliseconds (ms) after the stimulation. When will 45 impulses occur? Do we get two solutions? Why is only one answer acceptable?

## Solution:

$$
\begin{aligned}
45-45 & =-x^{2}+2 x+60-45 \\
0 & =-x^{2}+2 x+15 \\
0 & =(-x+5)(x+3)
\end{aligned}
$$

$$
\begin{aligned}
0-5 & =-x+5-5 \\
-x & =-5 \\
x & =5 \\
0-3 & =x+3-3 \\
x & =-3
\end{aligned}
$$

After 5 ms ; there are two solutions, -3 and 5; only one answer makes sense here, because a negative answer is not appropriate.

Use the model, $y=0.01048 x^{2}-0.5400 x+15.43$, to find the foreign-born population of the United States in 1990. Give your answer to the nearest tenth of a million. How does it compare against the actual data from the table?

## Solution:

When $x=0$ represents 1930, then let $x=60$ represents 1990 .
$y=0.01048 x^{2}-0.5400 x+15.43$

| Year | Foreign-Born <br> population (milfions) |
| :---: | :---: |
| 1930 | 14.2 |
| 1940 | 11.6 |
| 1950 | 10.3 |
| 1960 | 9.7 |
| 1970 | 9.6 |
| 1980 | 14.1 |
| 1990 | 19.8 |
| 2000 | 28.4 |
| 2007 | 37.3 |


$y=0.01048(60)^{2}-0.5400(60)+15.43$
$y=0.01048(3600)-0.5400(60)+15.43$
$y=37.728-32.4+15.43$
$y=20.758$
20.8 million; The actual value is 19.8 million, so our answer using the model is somewhat high.

