QUADRATIC EQUATION

Quadratic Equation

An equation whose heights power of unknown is TWO is called quadratic equation.

$$
\text { e.g } a x^{2}+b x+c=0
$$

Ways to solve quadratic equations

Completing the square

Most popular

Quadratic formula

Most straightforward

COMPLETING SQUARE METHOD

```
ax}+\mp@code{2}+\textrm{b}+\textrm{c}=
```

Step No. 1 Transferring constant to right hand side
$a x^{2}+b x=-c$
Step No. 2 Eliminating the co-efficient of X^{2}
$\frac{a}{a} \mathrm{X}^{2}+\frac{b}{a} \mathrm{X}=\frac{-c}{a}$
$\mathrm{X}^{2}+\frac{b}{a} \mathrm{X}=\frac{-c}{a}$
Step No. 3 Dividing Co-efficient of X by 2 and adding the square of it on both sides

$$
\begin{array}{r}
\mathrm{x}^{2}+\frac{b}{a} \mathrm{X}+\left(\frac{b}{2 a}\right)^{2}=\frac{-c}{a}+\left(\frac{b}{2 a}\right)^{2} \\
\left(\mathrm{x}+\frac{b}{2 a}\right)^{2}=\frac{-c}{a}+\frac{b^{2}}{4 a^{2}} \\
\left(\mathrm{x}+\frac{b}{2 a}\right)^{2}=\frac{-4 a c+b^{2}}{4 a^{2}}
\end{array}
$$

$\left(\mathrm{x}+\frac{b}{2 a}\right)^{2}=\frac{-4 a c+b^{2}}{4 a^{2}}$
Taking square root on both sides

$$
\begin{aligned}
& \sqrt{\left(x+\frac{b}{2 a}\right)^{2}}=\sqrt{\frac{-4 a c+b^{2}}{4 a^{2}}} \\
& \left(\mathrm{x}+\frac{b}{2 a}\right)= \pm \sqrt{\frac{-4 a c+b^{2}}{4 a^{2}}}
\end{aligned}
$$

Transferring $\frac{b}{a}$ to right hand side
$\mathbf{x}=-\frac{b}{2 a} \pm \sqrt{\frac{-4 a c+b^{2}}{4 a^{2}}}$
$\mathrm{x}=-\frac{b}{2 a} \pm \frac{\sqrt{-4 a c+b^{2}}}{2 a}$

$$
\mathbf{x}=\frac{b \pm \sqrt{-4 a c+b^{2}}}{2 a}
$$

```
2\mp@subsup{x}{}{2}+3x+1=0
```

Step No. 1 Transferring constant to right hand side Step No. 2 Eliminating the co-efficient of X^{2}

$$
\begin{aligned}
& \frac{2}{2} x^{2}+\frac{3}{2} x=\frac{-1}{2} \\
& x^{2}+\frac{3}{2} x=\frac{-1}{2}
\end{aligned}
$$

Step No. 3 Dividing Co-efficient of X by 2 and adding the square of it on both sides

$$
\begin{aligned}
\mathrm{x}^{2}+\frac{3}{2} \mathrm{x}+\left(\frac{3}{4}\right)^{2} & =-\frac{1}{2}+\left(\frac{3}{4}\right)^{2} \\
\left(\mathrm{x}+\frac{3}{4}\right)^{2} & =-\frac{1}{2}+\frac{9}{16} \\
\left(\mathrm{x}+\frac{3}{4}\right)^{2} & =\frac{-8+9}{16}
\end{aligned}
$$

$\left(x+\frac{3}{4}\right)^{2}=\frac{-8+9}{16}$
$\left(x+\frac{3}{4}\right)^{2}=\frac{1}{16}$
Taking square root on both sides
$\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{1}{16}}$
$\left(x+\frac{3}{4}\right)= \pm \sqrt{\frac{1}{16}}$
Transferring $\frac{3}{4}$ to right hand side

$$
\begin{aligned}
& x=-\frac{3}{4} \pm \frac{1}{4} \\
& x=\frac{-3 \pm 1}{4}
\end{aligned}
$$

$$
x=\frac{-3 \pm 1}{4}
$$

$$
x=\frac{-3-1}{4}=\frac{-4}{4}=-1, \quad x=\frac{-3+1}{4}=\frac{-2}{4}=\frac{-1}{2}
$$

So solution set is $\left\{-1, \frac{-1}{2}\right\}$

FORMULA METHOD (Quadratic Formula)

STANDARD METHOD

$$
x^{2}-5 x+6=0
$$

here $a=1, b=-5, c=6$ substituting the constants in the STANDERD METHOD to find x

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(1)(6)}}{2(1)} \\
& x=\frac{5 \pm \sqrt{25-24}}{2} \\
& x=\frac{5 \pm 1}{2} \\
& x=\frac{5+1}{2} \text { or } \frac{5-1}{2} \\
& x=3 \text { or } 2
\end{aligned}
$$

$$
\begin{aligned}
& 2 x^{2}-8 x-24=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-8) \pm \sqrt{(-8)^{2}-4(2)(-24)}}{2(2)} \\
& x=\frac{8 \pm \sqrt{64-(-192)}}{4} \\
& x=\frac{8 \pm \sqrt{256}}{4} \\
& x=\frac{8 \pm 16}{4}=2 \pm 4 \\
& x=6,-2
\end{aligned}
$$

