DETERMINANTS

Introduction to Determinants

DETERMINANT

Every square matrix has associated with it a scalar called its determinant.
Given a matrix \mathbf{A}, we use $\operatorname{det}(\mathbf{A})$ or $|\mathbf{A}|$ to designate its determinant.

We can also designate the determinant of matrix \mathbf{A} by replacing the brackets by vertical straight lines. For example,

$$
A=\left[\begin{array}{ll}
2 & 1 \\
0 & 3
\end{array}\right] \quad \operatorname{det}(A)=\left|\begin{array}{ll}
2 & 1 \\
0 & 3
\end{array}\right|
$$

Definition 1: The determinant of a 1×1 matrix [a] is the scalar a.

Definition 2: The determinant of a 2×2 matrix scalar ad-bc.

is the

For higher order matrices, we will use a recursive procedure to compute determinants.

Example

Evaluate the determinant: $\left|\begin{array}{rr}4 & -3 \\ 2 & 5\end{array}\right|$

Solution: $\left|\begin{array}{rr}4 & -3 \\ 2 & 5\end{array}\right|=4 \times 5-2 \times(-3)=20+6=26$

Solution

The determinant of a $\mathbf{3} \times \mathbf{3}$ matrix \boldsymbol{A}, where

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

is a real number defined as

$$
\text { det } \begin{aligned}
A= & a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \\
& -\left(a_{31} a_{22} a_{13}+a_{32} a_{23} a_{11}+a_{33} a_{21} a_{12}\right) .
\end{aligned}
$$

Solution

$$
\text { If } A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \text { is a square matrix of order } 3 \text {, then }
$$

$$
|A|=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
$$

[Expanding along first row]

$$
=a_{11}\left(a_{22} a_{33}-a_{32} a_{23}\right)-a_{12}\left(a_{21} a_{33}-a_{31} a_{23}\right)+a_{13}\left(a_{21} a_{32}-a_{31} a_{22}\right)
$$

$$
=\left(a_{11} a_{22} a_{33}+a_{12} a_{31} a_{23}+a_{13} a_{21} a_{32}\right)-\left(a_{11} a_{23} a_{32}+a_{12} a_{21} a_{33}+a_{13} a_{31} a_{22}\right)
$$

Example

Evaluate the determinant: $\left|\begin{array}{ccc}2 & 3 & -5 \\ 7 & 1 & -2 \\ -3 & 4 & 1\end{array}\right|$

Solution :

$\left|\begin{array}{lll}2 & 3 & -5 \\ 7 & 1 & -2 \\ -3 & 4 & 1\end{array}\right|=2\left|\begin{array}{rr}1 & -2 \\ 4 & 1\end{array}\right|-3\left|\begin{array}{lr}7 & -2 \\ -3 & 1\end{array}\right|+(-5)\left|\begin{array}{ll}7 & 1 \\ -3 & 4\end{array}\right|$
[Expanding along first row]
$=2(1+8)-3(7-6)-5(28+3)$
$=18-3-155$
$=-140$

properties of Determinants

Properties of Determinants

1. The value of a determinant remains unchanged, if its rows and columns are interchanged.

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| \text { i.e. }|A|=|A \cdot|
$$

2. If any two rows (or columns) of a determinant are interchanged, then the value of the determinant is changed by minus sign.
$\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|=-\left|\begin{array}{lll}a_{2} & b_{2} & c_{2} \\ a_{1} & b_{1} & c_{1} \\ a_{3} & b_{3} & c_{3}\end{array}\right| \quad$ [Applying $R_{2} \leftrightarrow R_{1}$]

Properties

3. If all the elements of a row (or column) is multiplied by a non-zero number k, then the value of the new determinant is k times the value of the original determinant.

$$
\left|\begin{array}{ccc}
k a_{1} & k b_{1} & k c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=k\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

which also implies

$\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|=\frac{1}{m}\left|\begin{array}{ccc}m a_{1} & m b_{1} & m c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$

Properties

4. If each element of any row (or column) consists of two or more terms, then the determinant can be expressed as the sum of two or more determinants.

$$
\left|\begin{array}{lll}
a_{1}+x & b_{1} & c_{1} \\
a_{2}+y & b_{2} & c_{2} \\
a_{3}+z & b_{3} & c_{3}
\end{array}\right|=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|+\left|\begin{array}{lll}
x & b_{1} & c_{1} \\
y & b_{2} & c_{2} \\
z & b_{3} & c_{3}
\end{array}\right|
$$

5. The value of a determinant is unchanged, if any row (or column) is multiplied by a number and then added to any other row (or column).

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=\left|\begin{array}{lll}
a_{1}+m b_{1}-n c_{1} & b_{1} & c_{1} \\
a_{2}+m b_{2}-n c_{2} & b_{2} & c_{2} \\
a_{3}+m b_{3}-n c_{3} & b_{3} & c_{3}
\end{array}\right|
$$

$$
\text { [Applying } \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{mC}_{2}-\mathrm{nC}_{3} \text {] }
$$

Properties

6. If any two rows (or columns) of a determinant are identical, then its value is zero.
$\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{1} & b_{1} & c_{1}\end{array}\right|=0$
7. If each element of a row (or column) of a determinant is zero, then its value is zero.

$$
\left|\begin{array}{ccc}
0 & 0 & 0 \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=0
$$

Properties

(8) Let $A=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]$ be a diagonal matrix, then

$$
|A|=\left|\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right|=a b c
$$

Minors and
Cofactors

The Minor of an Element

- The determinant of each 3×3 matrix is called a minor of the associated element.
- The symbol $M_{i j}$ represents the minor when the ith row and j th column are eliminated.

Element	Minor	Element	Minor
a_{11}	$M_{11}=\operatorname{det}\left[\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right]$	a_{22}	$M_{22}=\operatorname{det}\left[\begin{array}{ll}a_{11} & a_{13} \\ a_{31} & a_{33}\end{array}\right]$
a_{21}	$M_{21}=\operatorname{det}\left[\begin{array}{ll}a_{12} & a_{13} \\ a_{32} & a_{33}\end{array}\right]$	a_{23}	$M_{23}=\operatorname{det}\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{31} & a_{32}\end{array}\right]$
a_{31}	$M_{31}=\operatorname{det}\left[\begin{array}{ll}a_{12} & a_{13} \\ a_{22} & a_{23}\end{array}\right]$	a_{33}	$M_{33}=\operatorname{det}\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$

The Cofactor of an Element

Let $M_{i j}$ be the minor for element $a_{i j}$ in an $n \times n$ matrix. The cofactor of $a_{i j}$, written $A_{i j}$, is

$$
\boldsymbol{A}_{i j}=(-1)^{i+j} \cdot M_{i j}
$$

- To find the determinant of a 3×3 or larger square matrix:

1. Choose any row or column,
2. Multiply the minor of each element in that row or column by $\mathbf{a}+1$ or -1 , depending on whether the sum of $i+j$ is even or odd,
3. Then, multiply each cofactor by its corresponding element in the matrix and find the sum of these products. This sum is the determinant of the matrix.

Finding the Determinant

Example Evaluate det $\left[\begin{array}{rrr}2 & -3 & -2 \\ -1 & -4 & -3 \\ -1 & 0 & 2\end{array}\right]$, expanding
by the second column.
Solution First find the minors of each element in the second column.

$$
\begin{aligned}
& M_{12}=\operatorname{det}\left[\begin{array}{rr}
-1 & -3 \\
-1 & 2
\end{array}\right]=-1(2)-(-1)(-3)=-5 \\
& M_{22}=\operatorname{det}\left[\begin{array}{rr}
2 & -2 \\
-1 & 2
\end{array}\right]=2(2)-(-1)(-2)=2 \\
& M_{32}=\operatorname{det}\left[\begin{array}{rr}
2 & -2 \\
-1 & -3
\end{array}\right]=2(-3)-(-1)(-2)=-8
\end{aligned}
$$

Finding the Determinant

Now, find the cofactor.

$$
\begin{aligned}
& A_{12}=(-1)^{1+2} \cdot M_{12}=(-1)^{3} \cdot(-5)=5 \\
& A_{22}=(-1)^{2+2} \cdot M_{22}=(-1)^{4} \cdot(2)=2 \\
& A_{32}=(-1)^{3+2} \cdot M_{32}=(-1)^{5} \cdot(-8)=8
\end{aligned}
$$

The determinant is found by multiplying each cofactor by its corresponding element in the matrix and finding the sum of these products.

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{rrr}
2 & -3 & -2 \\
-1 & -4 & -3 \\
-1 & 0 & 2
\end{array}\right] & =a_{12} \cdot A_{12}+a_{22} \cdot A_{22}+a_{32} \cdot A_{32} \\
& =-3(5)+(-4)(2)+(0)(8) \\
& =-23
\end{aligned}
$$

VALUE OF DETERMINANT IN TERMS OF MINORS AND COFACTORS

$$
\text { If } A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \text {, then }
$$

$$
|A|=\sum_{j=1}^{3}(-1)^{i+j} a_{i j} M_{i j}=\sum_{j=1}^{3} a_{i j} C_{i j}
$$

$$
=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+a_{i 3} C_{i 3}, \text { for } i=1 \text { or } i=2 \text { or } i=3
$$

ROW (COLUMN) OPERATIONS

Following are the notations to evaluate a determinant:
(i) R_{i} to denote ith row
(ii) $R_{i} \leftrightarrow R_{j}$ to denote the interchange of ith and j th rows.
(iii) $R_{i} \leftrightarrow R_{i}+\lambda R_{j}$ to denote the addition of λ times the elements of jth row to the corresponding elements of ith row.
(iv) λR_{i} to denote the multiplication of all elements of ith row by λ.

Similar notations can be used to denote column
operations by replacing R with C.

EVALUATION OF DETERMINANTS

If a determinant becomes zero on putting
$x=\alpha$, then $(x-\alpha)$ is the factor of the determinant.

For example, if $\Delta=\left|\begin{array}{ccc}x & 5 & 2 \\ x^{2} & 9 & 4 \\ x^{3} & 16 & 8\end{array}\right|$, then at $x=2$
$\Delta=$ Dbecause C_{1} and C_{2} are identical at $\mathrm{x}=2$
Hence, $(x-2)$ is a factor of determinant

SIGN SYSTEM FOR EXPANSION OF DETERMINANT

Sign System for order 2 and order 3 are given by

$$
\left|\begin{array}{cc}
+ & - \\
- & +
\end{array}\right|,\left|\begin{array}{lll}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}\right|
$$

EXAMPLE - 1

Find the value of the following determinants
(i) $\left|\begin{array}{lll}42 & 1 & 6 \\ 28 & 7 & 4 \\ 14 & 3 & 2\end{array}\right|$
(ii) $\left|\begin{array}{ccc}6 & -3 & 2 \\ 2 & -1 & 2 \\ -10 & 5 & 2\end{array}\right|$

Solution :

(i) $\left|\begin{array}{lll}42 & 1 & 6 \\ 28 & 7 & 4 \\ 14 & 3 & 2\end{array}\right|=\left|\begin{array}{lll}6 \times 7 & 1 & 6 \\ 4 \times 7 & 7 & 4 \\ 2 \times 7 & 3 & 2\end{array}\right|$
$=7\left|\begin{array}{lll}6 & 1 & 6 \\ 4 & 7 & 4 \\ 2 & 3 & 2\end{array}\right| \quad$ [Taking out 7 common from C_{1}]
$=7 \times 0 \quad\left[\because C_{1}\right.$ and C_{3} are identical $]$
$=0$

EXAMPLE -1 (II)

(ii) $\left|\begin{array}{ccc}6 & -3 & 2 \\ 2 & -1 & 2 \\ -10 & 5 & 2\end{array}\right|$

$$
=\left|\begin{array}{ccc}
-3 \times(-2) & -3 & 2 \\
-1 \times(-2) & -1 & 2 \\
5 \times(-2) & 5 & 2
\end{array}\right|
$$

$$
=(-2)\left|\begin{array}{ccc}
-3 & -3 & 2 \\
-1 & -1 & 2 \\
5 & 5 & 2
\end{array}\right|
$$

[Taking out -2 common from C_{1}]

$$
\begin{aligned}
& =(-2) \times 0 \\
& =0
\end{aligned}
$$

EXAMPLE - 2

Evaluate the determinant $\left|\begin{array}{lll}1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b\end{array}\right|$

Solution :

$$
\left|\begin{array}{lll}
1 & a & b+c \\
1 & b & c+a \\
1 & c & a+b
\end{array}\right|=\left|\begin{array}{lll}
1 & a & a+b+c \\
1 & b & a+b+c \\
1 & c & a+b+c
\end{array}\right| \quad \text { [Applying } c_{3} \rightarrow c_{2}+c_{3} \text {] }
$$

$$
=(a+b+c)\left|\begin{array}{lll}
1 & a & 1 \\
1 & b & 1 \\
1 & c & 1
\end{array}\right| \quad\left[\text { Taking }(a+b+c) \text { common from } C_{3}\right]
$$

$=(a+b+c) \times 0 \quad\left[\because C_{1}\right.$ and C_{3} are identical $]$
$=0$

EXAMPLE-3

Evaluate the determinant: \quad Solution: $\quad\left|\begin{array}{ccc}a & b & c \\ a^{2} & b^{2} & c^{2} \\ b c & c a & a b\end{array}\right|$
We have $\left|\begin{array}{ccc}a & b & c \\ a^{2} & b^{2} & c^{2} \\ b c & c a & a b\end{array}\right|$
$=\left|\begin{array}{ccc}(a-b) & b-c & c \\ (a-b)(a+b) & (b-c)(b+c) & c^{2} \\ -c(a-b) & -a(b-c) & a b\end{array}\right| \quad\left[\right.$ Applying $C_{1} \rightarrow C_{1}-C_{2}$ and $C_{2} \rightarrow C_{2}-C_{3}$]
$=(a-b)(b-c)\left|\begin{array}{ccc}1 & 1 & c \\ a+b & b+c & c^{2} \\ -c & -a & a b\end{array}\right| \quad\left[\begin{array}{l}\text { Taking }(a-b) \text { and }(b-c) \text { common } \\ \text { from } c_{1} \text { and } c_{2} \text { respectively }\end{array}\right]$

SOLUTION CONT.

$=(a-b)(b-c)\left|\begin{array}{ccc}0 & 1 & c \\ -(c-a) & b+c & c^{2} \\ -(c-a) & -a & a b\end{array}\right| \quad\left[\right.$ Applying $c_{1} \rightarrow c_{1}-c_{2}$]
$=-(a-b)(b-c)(c-a)\left|\begin{array}{ccc}0 & 1 & c \\ 1 & b+c & c^{2} \\ 1 & -a & a b\end{array}\right|$
$=-(a-b)(b-c)(c-a)\left|\begin{array}{ccc}0 & 1 & c \\ 0 & a+b+c & c^{2}-a b \\ 1 & -a & a b\end{array}\right| \quad\left[\right.$ Applying $R_{2} \rightarrow R_{2}-R_{3}$]
Now expanding along C_{1}, we get
(a-b) $(b-c)(c-a)\left[-\left(c^{2}-a b-a c-b c-c^{2}\right)\right]$
$=(a-b)(b-c)(c-a)(a b+b c+a c)$

EXAMPLE-4

Without expanding the determinant,
prove that $\left|\begin{array}{ccc}3 x+y & 2 x & x \\ 4 x+3 y & 3 x & 3 x \\ 5 x+6 y & 4 x & 6 x\end{array}\right|=x^{3}$
Solution :
L.H.S $=\left|\begin{array}{ccc}3 x+y & 2 x & x \\ 4 x+3 y & 3 x & 3 x \\ 5 x+6 y & 4 x & 6 x\end{array}\right|=\left|\begin{array}{ccc}3 x & 2 x & x \\ 4 x & 3 x & 3 x \\ 5 x & 4 x & 6 x\end{array}\right|+\left|\begin{array}{ccc}y & 2 x & x \\ 3 y & 3 x & 3 x \\ 6 y & 4 x & 6 x\end{array}\right|$
$=x^{3}\left|\begin{array}{lll}3 & 2 & 1 \\ 4 & 3 & 3 \\ 5 & 4 & 6\end{array}\right|+x^{2} y\left|\begin{array}{lll}1 & 2 & 1 \\ 3 & 3 & 3 \\ 6 & 4 & 6\end{array}\right|$
$=x^{3}\left|\begin{array}{lll}3 & 2 & 1 \\ 4 & 3 & 3 \\ 5 & 4 & 6\end{array}\right|+x^{2} y \times 0 \quad\left[\because C_{1}\right.$ and C_{2} are identical in II determinant $]$

SOLUTION CONT.

$$
\begin{aligned}
& =x^{3}\left|\begin{array}{lll}
3 & 2 & 1 \\
4 & 3 & 3 \\
5 & 4 & 6
\end{array}\right| \\
& =x^{3}\left|\begin{array}{lll}
1 & 2 & 1 \\
1 & 3 & 3 \\
1 & 4 & 6
\end{array}\right| \quad \text { [Applying } C_{1} \rightarrow C_{1}-C_{2} \text {] } \\
& =x^{3}\left|\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 2 \\
0 & 1 & 3
\end{array}\right| \quad\left[\text { Applying } R_{2} \rightarrow R_{2}-R_{1} \text { and } R_{3} \rightarrow R_{3}-R_{2}\right. \text {] }
\end{aligned}
$$

$$
\begin{aligned}
& =x^{3} \times(3-2) \quad\left[\text { Expanding along } C_{1}\right] \\
& =x^{3}=\text { R.H.S. }
\end{aligned}
$$

EXAMPLE - 5

Prove that : $\left|\begin{array}{ccc}1 & \omega^{3} & \omega^{5} \\ \omega^{3} & 1 & \omega^{4} \\ \omega^{5} & \omega^{5} & 1\end{array}\right|=0$, where ω is cube root of unity.

Solution :

$$
\begin{aligned}
& \text { L.H.S }=\left|\begin{array}{ccc}
1 & \omega^{3} & \omega^{5} \\
\omega^{3} & 1 & \omega^{4} \\
\omega^{5} & \omega^{5} & 1
\end{array}\right|=\left|\begin{array}{ccc}
1 & \omega^{3} & \omega^{3} \cdot \omega^{2} \\
\omega^{3} & 1 & \omega^{3} \cdot \omega \\
\omega^{3} \cdot \omega^{2} & \omega^{3} \cdot \omega^{2} & 1
\end{array}\right| \\
& =\left|\begin{array}{ccc}
1 & 1 & \omega^{2} \\
1 & 1 & \omega \\
\omega^{2} & \omega^{2} & 1
\end{array}\right| \\
& {\left[\because \omega^{3}=1\right]}
\end{aligned}
$$

$$
=0=\text { R.H.S. }
$$

[$\because C_{1}$ and C_{2} are identical]

EXAMPLE - 6

Prove that: $\left|\begin{array}{ccc}x+a & b & c \\ a & x+b & c \\ a & b & x+c\end{array}\right|=x^{2}(x+a+b+c)$

Solution :

L.H.S $=\left|\begin{array}{ccc}x+a & b & c \\ a & x+b & c \\ a & b & x+c\end{array}\right|=\left|\begin{array}{ccc}x+a+b+c & b & c \\ x+a+b+c & x+b & c \\ x+a+b+c & b & x+c\end{array}\right|$
[Applying $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$]

[Taking $(x+a+b+c)$ common from C_{1}]

SOLUTION CONT.

$=(x+a+b+c)\left|\begin{array}{ccc}1 & b & c \\ 0 & x & 0 \\ 0 & 0 & x\end{array}\right|$
[Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$]

$$
\begin{aligned}
& \text { Expanding along } C_{1} \text {, we get } \\
& (x+a+b+c)\left[1\left(x^{2}\right)\right]=x^{2}(x+a+b+c) \\
& =\text { R.H.S }
\end{aligned}
$$

EXAMPLE-7

Using properties of determinants, prove that

$$
\left|\begin{array}{lll}
b+c & c+a & a+b \\
c+a & a+b & b+c \\
a+b & b+c & c+a
\end{array}\right|=2(a+b+c)\left(a b+b c+c a-a^{2}-b^{2}-c^{2}\right)
$$

Solution :

L.H.S $=\left|\begin{array}{lll}b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a\end{array}\right|$
$=\left|\begin{array}{ccc}2(a+b+c) & 2(a+b+c) & 2(a+b+c) \\ c+a & a+b & b+c \\ a+b & b+c & c+a\end{array}\right| \quad\left[\right.$ Applying $\left.R_{1} \rightarrow R_{1}+R_{2}+R_{3}\right]$
$=2(a+b+c)\left|\begin{array}{ccc}1 & 1 & 1 \\ c+a & a+b & b+c \\ a+b & b+c & c+a\end{array}\right|$

SOLUTION CONT.

$=2(a+b+c)\left|\begin{array}{ccc}0 & 0 & 1 \\ (c-b) & (a-c) & b+c \\ (a-c) & (b-a) & c+a\end{array}\right| \quad\left[\right.$ Applying $C_{1} \rightarrow C_{1}-C_{2}$ and $C_{2} \rightarrow C_{2}-C_{3}$]
Now expanding along R_{1}, we get

$$
\begin{aligned}
& 2(a+b+c)\left[(c-b)(b-a)-(a-c)^{2}\right] \\
& =2(a+b+c)\left[b c-b^{2}-a c+a b-\left(a^{2}+c^{2}-2 a c\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =2(a+b+c)\left[a b+b c+a c-a^{2}-b^{2}-c^{2}\right] \\
& =\text { R.H.S }
\end{aligned}
$$

EXAMPLE-8

Using properties of determinants prove that

$$
\left|\begin{array}{ccc}
x+4 & 2 x & 2 x \\
2 x & x+4 & 2 x \\
2 x & 2 x & x+4
\end{array}\right|=(5 x+4)(4-x)^{2}
$$

Solution :

L.H.S $=\left|\begin{array}{ccc}x+4 & 2 x & 2 x \\ 2 x & x+4 & 2 x \\ 2 x & 2 x & x+4\end{array}\right|=\left|\begin{array}{ccc}5 x+4 & 2 x & 2 x \\ 5 x+4 & x+4 & 2 x \\ 5 x+4 & 2 x & x+4\end{array}\right|$ [Applying $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$]
$=(5 x+4)\left|\begin{array}{ccc}1 & 2 x & 2 x \\ 1 & x+4 & 2 x \\ 1 & 2 x & x+4\end{array}\right|$

SOLUTION CONT.

$$
=(5 x+4)\left|\begin{array}{ccc}
1 & 2 x & 2 x \\
0 & -(x-4) & 0 \\
0 & x-4 & -(x-4)
\end{array}\right| \quad\left[\text { Applying } R_{2} \rightarrow R_{2}-R_{1} \text { and } R_{3} \rightarrow R_{3}-R_{2}\right]
$$

Now expanding along C_{1}, we get
$(5 x+4)\left[1(x-4)^{2}-0\right]$
$=(5 x+4)(4-x)^{2}$
=R.H.S

EXAMPLE - 9

Using properties of determinants, prove that
$\left|\begin{array}{ccc}x+9 & x & x \\ x & x+9 & x \\ x & x & x+9\end{array}\right|=243(x+3)$

Solution :

L.H.S $=\left|\begin{array}{ccc}x+9 & x & x \\ x & x+9 & x \\ x & x & x+9\end{array}\right|$
$=\left|\begin{array}{ccc}3 x+9 & x & x \\ 3 x+9 & x+9 & x \\ 3 x+9 & x & x+9\end{array}\right| \quad\left[\right.$ Applying $\left.C_{1} \rightarrow C_{1}+C_{2}+C_{3}\right]$

SOLUTION CONT.

$$
\begin{aligned}
& =(3 \times+9)\left|\begin{array}{ccc}
1 & \times & \times \\
1 & \times+9 & \times \\
1 & \times & \times+9
\end{array}\right| \\
& =3(x+3)\left|\begin{array}{ccc}
1 & \times & \times \\
0 & 9 & 0 \\
0 & -9 & 9
\end{array}\right| \quad\left[\text { Applying } R_{2} \rightarrow R_{2}-R_{1} \text { and } R_{3} \rightarrow R_{3}-R_{2}\right]
\end{aligned}
$$

$$
=3(x+3) \times 81 \quad\left[\text { Expanding along } C_{1}\right]
$$

$$
=243(x+3)
$$

= R.H.S.

SOLUTION CONT.

$$
\begin{aligned}
& =\left(a^{2}+b^{2}+c^{2}\right)\left|\begin{array}{ccc}
1 & a^{2} & b c \\
0 & (b-a)(b+a) & c(a-b) \\
0 & (c-b)(c+b) & a(b-c)
\end{array}\right| \quad\left[\text { Applying } R_{2} \rightarrow R_{2}-R_{1} \text { and } R_{3} \rightarrow R_{3}-R_{2}\right] \\
& =\left(a^{2}+b^{2}+c^{2}\right)(a-b)(b-c)\left|\begin{array}{ccc}
1 & a^{2} & b c \\
0 & -(b+a) & c \\
0 & -(b+c) & a
\end{array}\right| \\
& =\left(a^{2}+b^{2}+c^{2}\right)(a-b)(b-c)\left(-a b-a^{2}+b c+c^{2}\right) \quad\left[\text { Expanding along } C_{1}\right] \\
& =\left(a^{2}+b^{2}+c^{2}\right)(a-b)(b-c)[b(c-a)+(c-a)(c+a)]
\end{aligned}
$$

$$
=\left(a^{2}+b^{2}+c^{2}\right)(a-b)(b-c)(c-a)(a+b+c)=\text { R.H.S. }
$$

EXAMPLE - 10

$$
\text { Show that }\left|\begin{array}{lll}
(b+c)^{2} & a^{2} & b c \\
(c+a)^{2} & b^{2} & c a \\
(a+b)^{2} & c^{2} & a b
\end{array}\right|=\left(a^{2}+b^{2}+c^{2}\right)(a-b)(b-c)(c-a)(a+b+c)
$$

Solution :

L.H.S. $=\left|\begin{array}{lll}(b+c)^{2} & a^{2} & b c \\ (c+a)^{2} & b^{2} & c a \\ (a+b)^{2} & c^{2} & a b\end{array}\right|=\left|\begin{array}{lll}b^{2}+c^{2} & a^{2} & b c \\ c^{2}+a^{2} & b^{2} & c a \\ a^{2}+b^{2} & c^{2} & a b\end{array}\right|\left[\right.$ Applying $\left.C_{1} \rightarrow C_{1}-2 C_{3}\right]$

$$
=\left|\begin{array}{lll}
a^{2}+b^{2}+c^{2} & a^{2} & b c \\
a^{2}+b^{2}+c^{2} & b^{2} & c a \\
a^{2}+b^{2}+c^{2} & c^{2} & a b
\end{array}\right| \quad\left[\text { Applying } C_{1} \rightarrow C_{1}+C_{2}\right]
$$

$$
=\left(a^{2}+b^{2}+c^{2}\right)\left|\begin{array}{lll}
1 & a^{2} & b c \\
1 & b^{2} & c a \\
1 & c^{2} & a b
\end{array}\right|
$$

Applications
Determinants

Applications of Determinants (Area of a Triangle)

The area of a triangle whose vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ is given by the expression

$$
\begin{aligned}
\Delta & =\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right| \\
& =\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]
\end{aligned}
$$

Example

Find the area of a triangle whose vertices are $(-1,8),(-2,-3)$ and $(3,2)$.

Solution :

$$
\begin{aligned}
& \text { Area of triangle }=\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|=\frac{1}{2}\left|\begin{array}{ccc}
-1 & 8 & 1 \\
-2 & -3 & 1 \\
3 & 2 & 1
\end{array}\right| \\
& =\frac{1}{2}[-1(-3-2)-8(-2-3)+1(-4+9)] \\
& =\frac{1}{2}[5+40+5]=25 \text { sq.units }
\end{aligned}
$$

Condition of Collinearity of Three Points

If $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ are three points, then A, B, C are collinear
\Leftrightarrow Area of triangle $A B C=0$

$$
\Leftrightarrow \frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|=0 \Leftrightarrow\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|=0
$$

Example

If the points $(x,-2),(5,2),(8,8)$ are collinear, find x, using determinants.

Solution :

Since the given points are collinear.

$$
\begin{aligned}
& \therefore\left|\begin{array}{ccc}
x & -2 & 1 \\
5 & 2 & 1 \\
8 & 8 & 1
\end{array}\right|=0 \\
& \Rightarrow x(2-8)-(-2)(5-8)+1(40-16)=0 \\
& \Rightarrow-6 x-6+24=0 \\
& \Rightarrow 6 x=18 \Rightarrow x=3
\end{aligned}
$$

Solution of System of 2 Linear Equations (Cramer's Rule)

Let the system of linear equations be

$$
\begin{equation*}
a_{1} x+b_{1} y=c_{1} \tag{i}
\end{equation*}
$$

$a_{2} x+b_{2} y=c_{2}$
Then $x=\frac{D_{1}}{D}, y=\frac{D_{2}}{D}$ provided $D \neq 0$,
where $D=\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|, \quad D_{1}=\left|\begin{array}{ll}c_{1} & b_{1} \\ c_{2} & b_{2}\end{array}\right|$ and $D_{2}=\left|\begin{array}{cc}a_{1} & c_{1} \\ a_{2} & c_{2}\end{array}\right|$

Cramer's Rule

Note:

(1) If $D \neq O$,
then the system is consistent and has unique solution.
(2) If $D=0$ and $D_{1}=D_{2}=0$,
then the system is consistent and has infinitely many solutions.
(3) If $D=0$ and one of $D_{1}, D_{2} \neq 0$,
then the system is inconsistent and has no solution.

Example

Using Cramer's rule, solve the following system of equations $2 x-3 y=7,3 x+y=5$

Solution :

$D=\left|\begin{array}{cc}2 & -3 \\ 3 & 1\end{array}\right|=2+9=11 \neq 0$
$D_{1}=\left|\begin{array}{cc}7 & -3 \\ 5 & 1\end{array}\right|=7+15=22$
$D_{2}=\left|\begin{array}{ll}2 & 7 \\ 3 & 5\end{array}\right|=10-21=-11$
$\because D \neq 0$
$\therefore B y$ Cramer's Rule $x=\frac{D_{1}}{D}=\frac{22}{11}=2$ and $y=\frac{D_{2}}{D}=\frac{-11}{11}=-1$

Solution of System of 3 Linear Equations (Cramer's Rule)

Let the system of linear equations be

$$
\begin{align*}
& a_{1} x+b_{1} y+c_{1} z=d_{1} \\
& a_{2} x+b_{2} y+c_{2} z=d_{2} \\
& a_{3} x+b_{3} y+c_{3} z=d_{3} \tag{iii}
\end{align*}
$$

$$
\ldots(i)
$$

$$
\ldots \text { (ii) }
$$

Then $x=\frac{D_{1}}{D}, y=\frac{D_{2}}{D}, z=\frac{D_{3}}{D}$ provided $D \neq 0$,
where $D=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|, \quad D_{1}=\left|\begin{array}{lll}d_{1} & b_{1} & c_{1} \\ d_{2} & b_{2} & c_{2} \\ d_{3} & b_{3} & c_{3}\end{array}\right|, \quad D_{2}=\left|\begin{array}{lll}a_{1} & d_{1} & c_{1} \\ a_{2} & d_{2} & c_{2} \\ a_{3} & d_{3} & c_{3}\end{array}\right|$
and $D_{3}=\left|\begin{array}{lll}a_{1} & b_{1} & d_{1} \\ a_{2} & b_{2} & d_{2} \\ a_{3} & b_{3} & d_{3}\end{array}\right|$

Cramer's Rule

Note:

(1) If $D \neq 0$, then the system is consistent and has a unique solution.
(2) If $D=0$ and $D_{1}=D_{2}=D_{3}=0$, then the system has infinite solutions or no solution.
(3) If $D=0$ and one of $D_{1}, D_{2}, D_{3} \neq 0$, then the system is inconsistent and has no solution.
(4) If $d_{1}=d_{2}=d_{3}=0$, then the system is called the system of homogeneous linear equations.
(i) If $D \neq 0$, then the system has only trivial solution $x=y=z=0$.
(ii) If $\mathrm{D}=0$, then the system has infinite solutions.

Example

Using Cramer's rule, solve the following system of equations
$5 x-y+4 z=5$
$2 x+3 y+5 z=2$
$5 x-2 y+6 z=-1$

Solution :

$$
\left.\begin{array}{rlrl}
D & =\left|\begin{array}{ccc}
5 & -1 & 4 \\
2 & 3 & 5 \\
5 & -2 & 6
\end{array}\right| & & =5(18+10)+1(12-25)+4(-4-15) \\
& =540-13-76=140-89 \\
& =51 \neq 0
\end{array} \quad \begin{array}{ccc}
5 & -1 & 4 \\
2 & 3 & 5 \\
-1 & -2 & 6
\end{array} \right\rvert\, \quad \begin{array}{ll}
& =5(18+10)+1(12+5)+4(-4+3)
\end{array}
$$

Solution
$D_{2}=\left|\begin{array}{ccc}5 & 5 & 4 \\ 2 & 2 & 5 \\ 5 & -1 & 6\end{array}\right|$

$$
\begin{aligned}
& =5(12+5)+5(12-25)+4(-2-10) \\
& =85+65-48=150-48 \\
& =102
\end{aligned}
$$

$D_{3}=\left|\begin{array}{ccc}5 & -1 & 5 \\ 2 & 3 & 2 \\ 5 & -2 & -1\end{array}\right|$

$$
\begin{aligned}
& =5(-3+4)+1(-2-10)+5(-4-15) \\
& =5-12-95=5-107 \\
& =-102
\end{aligned}
$$

$\because D \neq 0$
$\therefore B y$ Cramer's Rule $x=\frac{D_{1}}{D}=\frac{153}{51}=3, y=\frac{D_{2}}{D}=\frac{102}{51}=2$ and $z=\frac{D_{3}}{D}=\frac{-102}{51}=-2$

Example

Solve the following system of homogeneous linear equations:
$x+y-z=0, x-2 y+z=0,3 x+6 y+-5 z=0$

Solution:

We have $D=\left[\begin{array}{rrr}1 & 1 & -1 \\ 1 & -2 & 1 \\ 3 & 6 & -5\end{array}\right]=1(10-6)-1(-5-3)-1(6+6)$

$$
=4+8-12=0
$$

\therefore The system has infinitely many solutions.
Putting $z=k$, in first two equations, we get
$x+y=k, x-2 y=-k$
\therefore By Cramer's rule $x=\frac{D_{1}}{D}=\frac{\left|\begin{array}{cc}k & 1 \\ -k & -2\end{array}\right|}{\left|\begin{array}{cc}1 & 1 \\ 1 & -2\end{array}\right|}=\frac{-2 k+k}{-2-1}=\frac{k}{3}$

$$
y=\frac{D_{2}}{D}=\frac{\left|\begin{array}{rr}
1 & k \\
1 & -k
\end{array}\right|}{\left|\begin{array}{rr}
1 & 1 \\
1 & -2
\end{array}\right|}=\frac{-k-k}{-2-1}=\frac{2 k}{3}
$$

These values of x, y and $z=k$ satisfy (iii) equation.
$\therefore x=\frac{k}{3}, y=\frac{2 k}{3}, z=k, \quad$ where $k \in R$

Find the determinant of each matrix.

$$
\left|\begin{array}{ccc}
6 & -3 & 2 \\
2 & -1 & 2 \\
-10 & 5 & 2
\end{array}\right| \quad\left|\begin{array}{ccc}
42 & 1 & 6 \\
28 & 7 & 4 \\
14 & 3 & 2
\end{array}\right| \quad\left[\begin{array}{ccc}
2 & 3 & -1 \\
0 & 2 & 4 \\
-2 & 5 & 6
\end{array}\right]
$$

$$
\left[\begin{array}{rrcr}
8 & 2 & -1 & -4 \\
3 & 5 & -3 & 11 \\
0 & 0 & 4 & 0 \\
2 & 2 & 7 & -1
\end{array}\right] \quad\left(\begin{array}{rccc}
2 & 1 & 4 & 8 \\
0 & 2 & 5 & 19 \\
0 & 0 & 3 & -1 \\
2 & 1 & 4 & 0
\end{array}\right)
$$

THE END......!

