DETERMINANTS

Instructor

Memoona Nawaz

Contents

- > Introduction to Determinants
- Determinant of a Square Matrix
- Minors and Cofactors
- Properties of Determinants
- > Application of Determinants
- > Area of Triangle
- ➤ Condition of Collinearity of Three Points
- > Cramer's Rule
- > Related Pronlems

Introduction to Determinants

DETERMINANT

Every square matrix has associated with it a scalar called its determinant.

Given a matrix A, we use det(A) or |A| to designate its determinant.

We can also designate the determinant of matrix **A** by replacing the brackets by vertical straight lines. For example,

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} \qquad \det(A) = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$$

Definition 1: The determinant of a 1×1 matrix [a] is the scalar a.

Definition 2: The determinant of a 2×2 matrix is the scalar ad-bc.

For higher order matrices, we will use a recursive procedure to compute determinants.

Example

Evaluate the determinant:
$$\begin{vmatrix} 4 & -3 \\ 2 & 5 \end{vmatrix}$$

Solution:
$$\begin{vmatrix} 4 & -3 \\ 2 & 5 \end{vmatrix} = 4 \times 5 - 2 \times (-3) = 20 + 6 = 26$$

Solution

The determinant of a 3×3 matrix A,

where

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

is a real number defined as

$$\det A = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - (a_{31}a_{22}a_{13} + a_{32}a_{23}a_{11} + a_{33}a_{21}a_{12}).$$

Solution

If A =
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
 is a square matrix of order 3, then

[Expanding along first row]

$$= a_{11} (a_{22}a_{33} - a_{32}a_{23}) - a_{12} (a_{21}a_{33} - a_{31}a_{23}) + a_{13} (a_{21}a_{32} - a_{31}a_{22}) = (a_{11}a_{22}a_{33} + a_{12}a_{31}a_{23} + a_{13}a_{21}a_{32}) - (a_{11}a_{23}a_{32} + a_{12}a_{21}a_{33} + a_{13}a_{31}a_{22})$$

Example

2 3 - 5
Evaluate the determinant: 7 1 - 2
-3 4 1

Solution:

$$\begin{vmatrix} 2 & 3 & -5 \\ 7 & 1 & -2 \\ -3 & 4 & 1 \end{vmatrix} = 2 \begin{vmatrix} 1 & -2 \\ 4 & 1 \end{vmatrix} - 3 \begin{vmatrix} 7 & -2 \\ -3 & 1 \end{vmatrix} + (-5) \begin{vmatrix} 7 & 1 \\ -3 & 4 \end{vmatrix}$$

[Expanding along first row]

$$= 2(1+8)-3(7-6)-5(28+3)$$

$$= 18 - 3 - 155$$

$$= -140$$

Properties of Determinants

 The value of a determinant remains unchanged, if its rows and columns are interchanged.

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
 i.e. $|A| = |A'|$

If any two rows (or columns) of a determinant are interchanged, then the value of the determinant is changed by minus sign.

If all the elements of a row (or column) is multiplied by a non-zero number k, then the value of the new determinant is k times the value of the original determinant.

$$\begin{vmatrix} ka_1 & kb_1 & kc_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

which also implies

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \frac{1}{m} \begin{vmatrix} ma_1 & mb_1 & mc_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

 If each element of any row (or column) consists of two or more terms, then the determinant can be expressed as the sum of two or more determinants.

$$\begin{vmatrix} a_1 + x & b_1 & c_1 \\ a_2 + y & b_2 & c_2 \\ a_3 + z & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} + \begin{vmatrix} x & b_1 & c_1 \\ y & b_2 & c_2 \\ z & b_3 & c_3 \end{vmatrix}$$

The value of a determinant is unchanged, if any row (or column) is multiplied by a number and then added to any other row (or column).

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 + mb_1 - nc_1 & b_1 & c_1 \\ a_2 + mb_2 - nc_2 & b_2 & c_2 \\ a_3 + mb_3 - nc_3 & b_3 & c_3 \end{vmatrix}$$
 [Applying $C_1 \rightarrow C_1 + mC_2 - nC_3$]

If any two rows (or columns) of a determinant are identical, then its value is zero.

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_1 & b_1 & c_1 \end{vmatrix} = 0$$

If each element of a row (or column) of a determinant is zero, then its value is zero.

$$\begin{vmatrix} 0 & 0 & 0 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$$

(8) Let
$$A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$$
 be a diagonal matrix, then

$$|A| = \begin{vmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{vmatrix} = abc$$

The Minor of an Element

- The determinant of each 3 × 3 matrix is called a minor of the associated element.
- The symbol M_{ij} represents the minor when the ith row and jth column are eliminated.

Element	Minor	Element	Minor
a ₁₁	$M_{11} = \det \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix}$	a_{22}	$M_{22} = \det \begin{bmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{bmatrix}$
a ₂₁	$M_{21} = \det \begin{bmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{bmatrix}$	a ₂₃	$M_{23} = \det \begin{bmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{bmatrix}$
a_{31}	$M_{31} = \det \begin{bmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{bmatrix}$	a ₃₃	$M_{33} = \det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$

The Cofactor of an Element

Let M_{ij} be the minor for element a_{ij} in an $n \times n$ matrix. The **cofactor** of a_{ij} , written A_{ij} , is

$$\boldsymbol{A}_{ij} = (-1)^{i+j} \cdot \boldsymbol{M}_{ij}.$$

- To find the determinant of a 3 × 3 or larger square matrix:
 - Choose any row or column,
 - Multiply the minor of each element in that row or column by a +1 or −1, depending on whether the sum of i + j is even or odd,
 - Then, multiply each cofactor by its corresponding element in the matrix and find the sum of these products. This sum is the determinant of the matrix.

Finding the Determinant

Example Evaluate det $\begin{bmatrix} 2 & -3 & -2 \\ -1 & -4 & -3 \\ -1 & 0 & 2 \end{bmatrix}$, expanding by the second column.

Solution First find the minors of each element in the second column.

$$M_{12} = \det \begin{bmatrix} -1 & -3 \\ -1 & 2 \end{bmatrix} = -1(2) - (-1)(-3) = -5$$

$$M_{22} = \det \begin{bmatrix} 2 & -2 \\ -1 & 2 \end{bmatrix} = 2(2) - (-1)(-2) = 2$$

$$M_{32} = \det \begin{bmatrix} 2 & -2 \\ -1 & -3 \end{bmatrix} = 2(-3) - (-1)(-2) = -8$$

Finding the Determinant

Now, find the cofactor.

$$A_{12} = (-1)^{1+2} \cdot M_{12} = (-1)^3 \cdot (-5) = 5$$

$$A_{22} = (-1)^{2+2} \cdot M_{22} = (-1)^4 \cdot (2) = 2$$

$$A_{32} = (-1)^{3+2} \cdot M_{32} = (-1)^5 \cdot (-8) = 8$$

The determinant is found by multiplying each cofactor by its corresponding element in the matrix and finding the sum of these products.

$$\det\begin{bmatrix} 2 & -3 & -2 \\ -1 & -4 & -3 \\ -1 & 0 & 2 \end{bmatrix} = a_{12} \cdot A_{12} + a_{22} \cdot A_{22} + a_{32} \cdot A_{32}$$
$$= -3(5) + (-4)(2) + (0)(8)$$
$$= -23$$

VALUE OF DETERMINANT IN TERMS OF MINORS AND COFACTORS

If
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
, then

$$|A| = \sum_{j=1}^{3} (-1)^{i+j} a_{ij} M_{ij} = \sum_{j=1}^{3} a_{ij} C_{ij}$$

$$= a_{i1}C_{i1} + a_{i2}C_{i2} + a_{i3}C_{i3}$$
, for $i = 1$ or $i = 2$ or $i = 3$

ROW (COLUMN) OPERATIONS

Following are the notations to evaluate a determinant:

- (i) R_i to denote ith row
- (ii) R_i↔R_j to denote the interchange of ith and jth rows.
- (iii) R_i ↔ R_i + λR_j to denote the addition of λ times the elements of jth row to the corresponding elements of ith row.
- (iv) λR_i to denote the multiplication of all elements of ith row by λ .

Similar notations can be used to denote column operations by replacing R with C.

EVALUATION OF DETERMINANTS

If a determinant becomes zero on putting $x = \alpha$, then $(x - \alpha)$ is the factor of the determinant.

For example, if
$$\Delta = \begin{vmatrix} x & 5 & 2 \\ x^2 & 9 & 4 \end{vmatrix}$$
, then at $x = 2$ $x = 2$

 $\Delta = 0$ because C_1 and C_2 are identical at x = 2

Hence, (x - 2) is a factor of determinant . Δ

SIGN SYSTEM FOR EXPANSION OF DETERMINANT

Sign System for order 2 and order 3 are given by

Find the value of the following determinants

Solution:

(i)
$$\begin{vmatrix} 42 & 1 & 6 \\ 28 & 7 & 4 \\ 14 & 3 & 2 \end{vmatrix} = \begin{vmatrix} 6 \times 7 & 1 & 6 \\ 4 \times 7 & 7 & 4 \\ 2 \times 7 & 3 & 2 \end{vmatrix}$$

=
$$7 \times 0$$
 [: C_1 and C_3 are identical]

EXAMPLE -1 (II)

$$= \begin{vmatrix} -3 \times (-2) & -3 & 2 \\ -1 \times (-2) & -1 & 2 \\ 5 \times (-2) & 5 & 2 \end{vmatrix}$$

$$= (-2) \times 0$$
$$= 0$$

Taking out – 2 common from C₁

C1 and C2 are identical

Evaluate the determinant
$$\begin{vmatrix} 1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b \end{vmatrix}$$

Solution:

$$=(a+b+c)\begin{vmatrix} 1 & a & 1 \\ 1 & b & 1 \\ 1 & c & 1 \end{vmatrix}$$
 [Taking $(a+b+c)$ common from C_3]

=
$$(a+b+c)\times 0$$
 [: C_1 and C_3 are identical]
= 0

Evaluate the determinant:

Solution:

We have
$$\begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ bc & ca & ab \end{vmatrix}$$

$$= \begin{vmatrix} (a-b) & b-c & c \\ (a-b)(a+b) & (b-c)(b+c) & c^2 \\ -c(a-b) & -a(b-c) & ab \end{vmatrix}$$
 [Applying $C_1 \rightarrow C_1 - C_2$ and $C_2 \rightarrow C_2 - C_3$]

$$= (a-b)(b-c) \begin{vmatrix} 1 & 1 & c \\ a+b & b+c & c^2 \\ -c & -a & ab \end{vmatrix}$$
 Taking $(a-b)$ and $(b-c)$ comfrom C_1 and C_2 respectively

Taking(a-b) and (b-c) common

SOLUTION CONT.

$$= (a-b)(b-c) \begin{vmatrix} 0 & 1 & c \\ -(c-a) & b+c & c^2 \\ -(c-a) & -a & ab \end{vmatrix}$$
 [Applying $c_1 \to c_1 - c_2$]
$$= -(a-b)(b-c)(c-a) \begin{vmatrix} 0 & 1 & c \\ 1 & b+c & c^2 \\ 1 & -a & ab \end{vmatrix}$$

$$= -(a-b)(b-c)(c-a) \begin{vmatrix} 0 & 1 & c \\ 0 & a+b+c & c^2 - ab \\ 1 & -a & ab \end{vmatrix}$$
 [Applying $R_2 \to R_2 - R_3$]

Now expanding along
$$C_1$$
, we get (a-b) (b-c) (c-a) [- (c^2 – ab – ac – bc – c^2)] = (a-b) (b-c) (c-a) (ab + bc + ac)

Without expanding the determinant,

prove that
$$\begin{vmatrix} 3x+y & 2x & x \\ 4x+3y & 3x & 3x = x^3 \\ 5x+6y & 4x & 6x \end{vmatrix}$$

Solution:

L.H.S =
$$\begin{vmatrix} 3x + y & 2x & x & | & 3x & 2x & x & | & y & 2x & x \\ 4x + 3y & 3x & 3x & = | & 4x & 3x & 3x & | & 4x & 3x & 3x \\ 5x + 6y & 4x & 6x & | & 5x & 4x & 6x & | & 6y & 4x & 6x \end{vmatrix}$$

$$\begin{vmatrix} 3 & 2 & 1 & | 1 & 2 & 1 \\ = x^3 & 4 & 3 & 3 + x^2y & 3 & 3 & 3 \\ 5 & 4 & 6 & | 6 & 4 & 6 \end{vmatrix}$$

$$= x^3$$
 | 4 | 3 | 3 | + $x^2y \times 0$ [\therefore C₁ and C₂ are identical in II determinant] | 5 | 4 | 6

SOLUTION CONT.

$$= x^3 \begin{vmatrix} 3 & 2 & 1 \\ 4 & 3 & 3 \\ 5 & 4 & 6 \end{vmatrix}$$

$$= x^{3} \begin{vmatrix} 1 & 2 & 1 \\ 1 & 3 & 3 \\ 1 & 4 & 6 \end{vmatrix}$$
 [Applying $C_{1} \rightarrow C_{1} - C_{2}$]

$$= x^3 \begin{vmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{vmatrix}$$
 [Applying $R_2 \rightarrow R_2 - R_1$ and $R_3 \rightarrow R_3 - R_2$]

=
$$x^3 \times (3-2)$$
 [Expanding along C_1]
= $x^3 = R.H.S.$

Prove that :
$$\begin{vmatrix} 1 & \omega^3 & \omega^5 \\ \omega^3 & 1 & \omega^4 \\ \omega^5 & \omega^5 & 1 \end{vmatrix} = 0 \text{ , where } \omega \text{ is cube root of unity.}$$

Solution:

L.H.S =
$$\begin{vmatrix} \mathbf{1} & \omega^3 & \omega^5 \\ \omega^3 & \mathbf{1} & \omega^4 \\ \omega^5 & \omega^5 & \mathbf{1} \end{vmatrix} = \begin{vmatrix} \mathbf{1} & \omega^3 & \omega^3 \cdot \omega^2 \\ \omega^3 & \mathbf{1} & \omega^3 \cdot \omega \end{vmatrix}$$

$$= \begin{vmatrix} \mathbf{1} & \mathbf{1} & \omega^2 \\ \mathbf{1} & \mathbf{1} & \omega \\ \omega^2 & \omega^2 & \mathbf{1} \end{vmatrix} \quad \begin{bmatrix} \cdot \cdot \cdot \omega^3 = \mathbf{1} \end{bmatrix}$$

$$= 0 = R.H.S.$$
 [: C_1 and C_2 are identical]

Prove that:
$$\begin{vmatrix} x+a & b & c \\ a & x+b & c \\ a & b & x+C \end{vmatrix} = x^2(x+a+b+c)$$

Solution:

L.H.S=
$$\begin{vmatrix} x+a & b & c \\ a & x+b & c \\ a & b & x+C \end{vmatrix} = \begin{vmatrix} x+a+b+c & b & c \\ x+a+b+c & x+b & c \\ x+a+b+c & b & x+c \end{vmatrix}$$
[Applying $C_1 \rightarrow C_1 + C_2 + C_3$]

$$=(x+a+b+c)\begin{vmatrix} 1 & b & c \\ 1 & x+b & c \\ 1 & b & x+c \end{vmatrix}$$

Taking (x+a+b+c) common from C_1

SOLUTION CONT.

$$= (x+a+b+c)\begin{vmatrix} 1 & b & c \\ 0 & x & 0 \\ 0 & 0 & x \end{vmatrix}$$
[Applying $R_2 \to R_2 - R_1$ and $R_3 \to R_3 - R_1$]

Expanding along
$$C_1$$
, we get $(x + a + b + c) [1(x^2)] = x^2(x + a + b + c)$ = R.H.S

Using properties of determinants, prove that

$$b+c$$
 $c+a$ $a+b$
 $c+a$ $a+b$ $b+c$ = 2(a+b+c)(ab+bc+ca-a²-b²-c²).
 $a+b$ $b+c$ $c+a$

Solution:

$$2(a+b+c)$$
 $2(a+b+c)$ $2(a+b+c)$
= $c+a$ $a+b$ $b+c$ [Applying $R_1 \rightarrow R_1 + R_2 + R_3$]
 $a+b$ $b+c$ $c+a$

SOLUTION CONT.

$$= 2(a+b+c) (c-b) (a-c) b+c (a-c) (b-a) c+a [Applying $C_1 \rightarrow C_1 - C_2 \text{ and } C_2 \rightarrow C_2 - C_3]$$$

Now expanding along R₁, we get

$$2(a+b+c)[(c-b)(b-a)-(a-c)^2]$$

=
$$2(a+b+c)[bc-b^2-ac+ab-(a^2+c^2-2ac)]$$

=
$$2(a+b+c)[ab+bc+ac-a^2-b^2-c^2]$$

= R.H.S

Using properties of determinants prove that

$$\begin{vmatrix} x+4 & 2x & 2x \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \end{vmatrix} = (5x+4)(4-x)^2$$

Solution:

L.H.S =
$$\begin{vmatrix} x+4 & 2x & 2x \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \end{vmatrix} = \begin{vmatrix} 5x+4 & 2x & 2x \\ 5x+4 & x+4 & 2x \\ 5x+4 & 2x & x+4 \end{vmatrix} = \begin{bmatrix} Applying C_1 \rightarrow C_1 + C_2 + C_3 \end{bmatrix}$$

SOLUTION CONT.

Now expanding along C_1 , we get

$$(5x+4)[1(x-4)^2-0]$$

= $(5x+4)(4-x)^2$

=R.H.S

EXAMPLE - 9

Using properties of determinants, prove that

$$\begin{vmatrix} x+9 & x & x \\ x & x+9 & x \\ x & x & x+9 \end{vmatrix} = 243(x+3)$$

$$L.H.S = \begin{vmatrix} x+9 & x & x \\ x & x+9 & x \\ x & x & x+9 \end{vmatrix}$$

$$3x+9$$
 x x

SOLUTION CONT.

$$=(3x+9)\begin{vmatrix} 1 & x & x \\ 1 & x+9 & x \\ 1 & x & x+9 \end{vmatrix}$$

= 3(x+3)
$$\begin{vmatrix} 1 & x & x \\ 0 & 9 & 0 \\ 0 & -9 & 9 \end{vmatrix}$$
 [Applying R₂ \rightarrow R₂ - R₁ and R₃ \rightarrow R₃ - R₂]

=
$$3(x+3)\times81$$
 [Expanding along C_1]
= $243(x+3)$

= R.H.S.

SOLUTION CONT.

$$= (a^{2} + b^{2} + c^{2}) \begin{vmatrix} 1 & a^{2} & bc \\ 0 & (b-a)(b+a) & c(a-b) \\ 0 & (c-b)(c+b) & a(b-c) \end{vmatrix} \begin{bmatrix} Applying R_{2} \rightarrow R_{2} - R_{1} \text{ and } R_{3} \rightarrow R_{3} - R_{2} \end{bmatrix}$$

$$= (a^{2} + b^{2} + c^{2})(a-b)(b-c) \begin{vmatrix} 1 & a^{2} & bc \\ 0 & -(b+a) & c \\ 0 & -(b+c) & a \end{vmatrix}$$

$$= (a^{2} + b^{2} + c^{2})(a-b)(b-c)(-ab-a^{2} + bc + c^{2}) \quad [Expanding along C_{1}]$$

$$= (a^{2} + b^{2} + c^{2})(a-b)(b-c)[b(c-a) + (c-a)(c+a)]$$

$$=(a^2+b^2+c^2)(a-b)(b-c)(c-a)(a+b+c)=R.H.S.$$

EXAMPLE - 10

Show that
$$\begin{vmatrix} (b+c)^2 & a^2 & bc \\ (c+a)^2 & b^2 & ca \\ (a+b)^2 & c^2 & ab \end{vmatrix} = (a^2+b^2+c^2)(a-b)(b-c)(c-a)(a+b+c)$$

L.H.S. =
$$(b+c)^2$$
 a^2 bc $|b^2+c^2|$ a^2 bc $|c^2+a^2|$ bc $|c^2+a^2|$ bc $|c^2+a^2|$ ca $|c^2+a^2|$ ca

$$a^{2} + b^{2} + c^{2}$$
 a^{2} bc
= $a^{2} + b^{2} + c^{2}$ b^{2} ca [Applying $C_{1} \rightarrow C_{1} + C_{2}$]
 $a^{2} + b^{2} + c^{2}$ c^{2} ab

$$= (a^{2} + b^{2} + c^{2}) \begin{vmatrix} 1 & a^{2} & bc \\ 1 & b^{2} & ca \\ 1 & c^{2} & ab \end{vmatrix}$$

Applications of Determinants (Area of a Triangle)

The area of a triangle whose vertices are

 (x_1, y_1) , (x_2, y_2) and (x_3, y_3) is given by the expression

$$\Delta = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

$$= \frac{1}{2} [x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2)]$$

Find the area of a triangle whose vertices are (-1, 8), (-2, -3) and (3, 2).

Area of triangle =
$$\frac{1}{2}\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = \frac{1}{2}\begin{vmatrix} -1 & 8 & 1 \\ -2 & -3 & 1 \\ 3 & 2 & 1 \end{vmatrix}$$

$$=\frac{1}{2}[-1(-3-2)-8(-2-3)+1(-4+9)]$$

$$=\frac{1}{2}[5+40+5]=25$$
 sq.units

Condition of Collinearity of Three Points

If A (x_1, y_1) , B (x_2, y_2) and C (x_3, y_3) are three points, then A, B, C are collinear

 \Leftrightarrow Area of triangle ABC = 0

$$\Leftrightarrow \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0 \Leftrightarrow \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0$$

If the points (x, -2), (5, 2), (8, 8) are collinear, find x, using determinants.

Solution:

Since the given points are collinear.

$$\Rightarrow x(2-8)-(-2)(5-8)+1(40-16)=0$$

$$\Rightarrow$$
 -6x - 6 + 24 = 0

$$\Rightarrow$$
 6x = 18 \Rightarrow x = 3

Solution of System of 2 Linear Equations (Cramer's Rule)

Let the system of linear equations be

$$a_1x + b_1y = c_1$$
 ...(i)

$$a_2x + b_2y = c_2$$
 ...(ii)

Then
$$x = \frac{D_1}{D}$$
, $y = \frac{D_2}{D}$ provided $D \neq 0$,

where
$$D = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$$
, $D_1 = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix}$ and $D_2 = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix}$

Cramer's Rule

Note:

(1) If
$$D \neq 0$$
,

then the system is consistent and has unique solution.

(2) If D = 0 and $D_1 = D_2 = 0$,

then the system is consistent and has infinitely many solutions.

(3) If D=0 and one of D_1 , $D_2 \neq 0$,

then the system is inconsistent and has no solution.

Using Cramer's rule, solve the following system of equations 2x-3y=7, 3x+y=5

$$D = \begin{vmatrix} 2 & -3 \\ 3 & 1 \end{vmatrix} = 2 + 9 = 11 \neq 0$$

$$D_1 = \begin{vmatrix} 7 & -3 \\ 5 & 1 \end{vmatrix} = 7 + 15 = 22$$

$$D_2 = \begin{vmatrix} 2 & 7 \\ 3 & 5 \end{vmatrix} = 10 - 21 = -11$$

:. By Cramer's Rule
$$x = \frac{D_1}{D} = \frac{22}{11} = 2$$
 and $y = \frac{D_2}{D} = \frac{-11}{11} = -1$

Solution of System of 3 Linear Equations (Cramer's Rule)

Let the system of linear equations be

$$a_1x + b_1y + c_1z = d_1$$
 ...(i)
 $a_2x + b_2y + c_2z = d_2$...(ii)
 $a_3x + b_3y + c_3z = d_3$...(iii)

Then
$$x = \frac{D_1}{D}$$
, $y = \frac{D_2}{D}$, $z = \frac{D_3}{D}$ provided $D \neq 0$,

where
$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
, $D_1 = \begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix}$, $D_2 = \begin{vmatrix} a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end{vmatrix}$

and
$$D_3 = \begin{vmatrix} a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \end{vmatrix}$$

Cramer's Rule

Note:

- If D ≠ 0, then the system is consistent and has a unique solution.
- (2) If D=0 and $D_1=D_2=D_3=0$, then the system has infinite solutions or no solution.
- (3) If D = 0 and one of D₁, D₂, D₃ ≠ 0, then the system is inconsistent and has no solution.
- (4) If d₁ = d₂ = d₃ = 0, then the system is called the system of homogeneous linear equations.
- (i) If D \neq 0, then the system has only trivial solution x = y = z = 0.
- (ii) If D = 0, then the system has infinite solutions.

Using Cramer's rule , solve the following system of equations

$$5x - y + 4z = 5$$

 $2x + 3y + 5z = 2$
 $5x - 2y + 6z = -1$

$$D_1 = \begin{vmatrix} 5 & -1 & 4 \\ 2 & 3 & 5 \\ -1 & -2 & 6 \end{vmatrix}$$

=
$$5(18+10) + 1(12-25)+4(-4-15)$$

= $140-13-76=140-89$
= $51 \neq 0$

$$D_2 = \begin{vmatrix} 5 & 5 & 4 \\ 2 & 2 & 5 \\ 5 & -1 & 6 \end{vmatrix}$$

$$D_3 = \begin{vmatrix} 5 & -1 & 5 \\ 2 & 3 & 2 \\ 5 & -2 & -1 \end{vmatrix}$$

$$= 5(12 +5)+5(12 - 25)+ 4(-2 - 10)$$

= $85 + 65 - 48 = 150 - 48$
= 102

$$= 5(-3 +4)+1(-2 - 10)+5(-4-15)$$

= $5 - 12 - 95 = 5 - 107$
= $- 102$

∴ By Cramer's Rule
$$x = \frac{D_1}{D} = \frac{153}{51} = 3$$
, $y = \frac{D_2}{D} = \frac{102}{51} = 2$

and
$$z = \frac{D_3}{D} = \frac{-102}{51} = -2$$

Solve the following system of homogeneous linear equations:

$$x + y - z = 0$$
, $x - 2y + z = 0$, $3x + 6y + -5z = 0$

Solution:

We have D =
$$\begin{bmatrix} 1 & 1 & -1 \\ 1 & -2 & 1 \\ 3 & 6 & -5 \end{bmatrix} = 1(10 - 6) - 1(-5 - 3) - 1(6 + 6)$$
$$= 4 + 8 - 12 = 0$$

.. The system has infinitely many solutions.

Putting z = k, in first two equations, we get

$$x + y = k$$
, $x - 2y = -k$

∴ By Cramer's rule
$$x = \frac{D_1}{D} = \frac{\begin{vmatrix} k & 1 \\ -k & -2 \end{vmatrix}}{\begin{vmatrix} 1 & 1 \\ 1 & -2 \end{vmatrix}} = \frac{-2k + k}{-2 - 1} = \frac{k}{3}$$

$$y = \frac{D_2}{D} = \frac{\begin{vmatrix} 1 & k \\ 1 & -k \end{vmatrix}}{\begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}} = \frac{-k - k}{-2 - 1} = \frac{2k}{3}$$

These values of x, y and z = k satisfy (iii) equation.

$$\therefore x = \frac{k}{3}, y = \frac{2k}{3}, z = k, \text{ where } k \in \mathbb{R}$$

Find the determinant of each matrix.

8	2	-1	-4
3	5	-3	11
0	0	4	0
2	2	7	-1

$$\begin{pmatrix} 2 & 1 & 4 & 8 \\ 0 & 2 & 5 & 19 \\ 0 & 0 & 3 & -1 \\ 2 & 1 & 4 & 0 \end{pmatrix}$$

THE END...