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Preface

The theory of sets lies at the foundations of mathematics. Concepts in set theory,
such as functions and relations, appear explicitly or implicitly in every branch of
mathematics. These concepts also appear in many related fields such as computer
science, the physical sciences, and engineering. This text is an informal, nonaxio-
matic treatment of the theory of sets.

The material is divided into three Parts, since the logical development is thereby
not disturbed while the usefulness as a text and reference book on any of several
levels is increased. Part I contains an introduction to the elementary operations of
sets and a detailed discussion of the concepts of relation and function. Part II
develops the theory of cardinal and ordinal numbers in the classical approach of
Cantor. It also considers partially ordered sets, and the Axiom of Choice and its
equivalents including Zorn’s lemma. Part III treats those topics which are usually
associated with the elementary theory of sets, that is, logic and Boolean algebra.

This second edition of Set Theory covers more material than the first edition. In
particular, it includes a deeper discussion of the real numbers R and a more complete
discussion of the integers Z. Furthermore, it includes a discussion of algorithms and
their complexity in the chapter on functions, and it includes new material, jficluding
Karnaugh maps, in the chapter on Boolean algebra.

Each chapter begins with clear statements of pertinent definitions, principles,
and theorems together with illustrative and other descriptive material. This is fol-
lowed by graded sets of solved and supplementary problems. The solved problems
serve to illustrate and amplify the theory, bring into sharp focus those fine points
without which the student continually feels himself on unsafe ground, and provide
the repetition of basic principles so vital to effective learning. Numerous proofs of
theorems and derivations of basic results are included among the solved problems.
The supplementary problems serve as a complete review of each chapter.

Finally, the author wishes to thank the staff of the McGraw-Hill Schaum’s
Outline Series, especially Barbara Gilson, Mary Loebig Giles, and Maureen Walker,
for their excellent cooperation.

SEYMOUR LIPSCHUTZ
Temple University
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PART |: Elementary Theory of Sets

Chapter 1

Sets and Basic Operations on Sets

1.1 INTRODUCTION

The concept of a set appears in all branches of mathematics. This concept formalizes the idea of
grouping objects together and viewing them as a single entity. This chapter introduces this notion of a
set and its members. We also investigate three basic operations on sets, that is, the operations union,
intersection, and complement.

Although logic is formally treated in Chapter 10, we indicate here the close relationship between set
theory and logic by showing how Venn diagrams, pictures of sets, can be used to determine the validity
of certain arguments. The relation between set theory and logic will be further explored when we discuss
Boolean algebra in Chapter 11.

1.2 SETS AND ELEMENTS

A set may be viewed as any well-defined collection of objects; the objects are called the elements or
members of the set.
Although we shall study sets as abstract entities, we now list ten examples of sets:

(1) The numbers 1, 3, 7, and 10.
(2) The solutions of the equation x*> — 3x — 2 = 0.
(3) The vowels of the English alphabet: a, e, i, o, u.
(4) The people living on the earth.
(5) The students Tom, Dick, and Harry.
(6) The students absent from school.
(7) The countries England, France, and Denmark.
(8) The capital cities of Europe.
(9) The even integers: 2, 4,6, ....

(10) The rivers in the United States.

Observe that the sets in the odd-numbered examples are defined, that is, specified or presented, by
actually listing its members; and the sets in the even-numbered examples are defined by stating properties
or rules which decide whether or not a particular object is a member of the set.

Notation
A set will usually be denoted by a capital letter, such as,
A,B,X,Y,...,

whereas lower-case letters, a,b, ¢, x, y,z,... will usually be used to denote elements of sets.
There are essentially two ways to specify a particular set, as indicated above. One way, if possible, is
to list its elements. For example,

A ={a,e,i, 0, u}
means that A4 is the set whose elements are the letters a, e, i, 0, u. Note that the elements are separated by
commas and enclosed in braces { }. This is sometimes called the tabular form of a set.

1



2 SETS AND BASIC OPERATIONS ON SETS [CHAP. 1

The second way is to state those properties which characterize the elements in the set, that is,
properties held by the members of the set but not by nonmembers. Consider, for example, the expression

B = {x: x is an even integer, x > 0}
which reads:
“B is the set of x such that x is an even integer and x > 0”

It denotes the set B whose elements are the positive even integers. A letter, usually x, is used to denote a
typical member of the set; the colon is read as “‘such that” and the comma as “and”. This is sometimes
called the set-builder form or property method of specifying a set.
Two sets A and B are equal, written A = B, if they both have the same elements, that is, if every
element which belongs to A4 also belongs to B, and vice versa. The negation of 4 = B is written 4 # B.
The statement “p is an element of A” or, equivalently, the statement *“p belongs to 4™ is written

peEA
We also write
abeA

to state that both a and b belong to 4. The statement that p is not an element of A4, that is, the negation
of p € A, is written

p¢A

Remark: It is common practice in mathematics to put a vertical line ““|” or slanted line *‘/” through
a symbol to indicate the opposite or negative meaning of the symbol.

EXAMPLE 1.1

(a) The set 4 above can also be written as

A = {x: x is a letter in the English alphabet, x is a vowel}
Observe that b€ 4, e € A, and p € A.
(b) We cannot list all the elements of the above set B, although we frequently specify the set by writing
B={2,4)6,...}
where we assume everyone knows what we mean. Observe that 8 € B, but 9 ¢ B.

(¢) LetE = {x:x* - 3x+2=0}. In other words, E consists of those numbers which are solutions of the equation
x? = 3x + 2 = 0, sometimes called the solution set of the given equation. Since the solutions are 1 and 2, we
could also write E = {1,2}.

(d) Let E={x:x*—3x+2=0}, F={2,1}, and G={1,2,2,1,6/3}. Then E = F = G since each consists
precisely of the elements 1 and 2. Observe that a set does not depend on the way in which its elements are
displayed. A set remains the same even if its elements are repeated or rearranged.

Some sets of numbers will occur very often in the text, and so we use special symbols for them.
Unless otherwise specified, we will let:
N = the set of nonnegative integers: 0, 1,2, ...
P = the set of positive integers: 1,2,3,...
Z = the set of integers: ...,—2,—1,0,1,2,...
Q = the set of rational numbers
R = the set of real numbers
C = the set of complex numbers
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Even if we can list the elements of a set, it may not be practical to do so. For example, we would not
list the members of the set of people born in the world during the year 1976 although theoretically it is
possible to compile such a list. That is, we describe a set by listing its elements only if the set contains a
few elements; otherwise we describe a set by the property which characterizes its elements.

1.3 UNIVERSAL SET, EMPTY SET

All sets under investigation in any application of set theory are assumed to be contained in some
large fixed set called the universal set or universe. For example, in plane geometry, the universal set
consists of all the points in the plane, and in human population studies the universal set consists of all the
people in the world. We will denote the universal set by

U

unless otherwise specified.
Given a universal set U and a property P, there may be no element in U which has the property P.
For example, the set

S = {x: x is a positive integer, x* = 3}

has no elements since no positive integer has the required property. This set with no elements is called
the empty set or null set, and is denoted by

1%}

(based on the Greek letter phi). There is only one empty set: If S and T are both empty, then S=T
since they have exactly the same elements, namely, none.

1.4 SUBSETS

Suppose every element in a set A4 is also an element of a set B; then A is called a subset of B. We also
say that A is contained in B or B contains A. This relationship is written

ACB o BDA

If A is not a subset of B, that is, if at least one element of A does not belong to B, we write A € B or
B2 A.

EXAMPLE 1.2

(a) Consider the sets

A=1{1,3,5,8,9}, B=1{1,2,3,5,7}, C={1,5}

Then C C 4 and C C Bsince 1 and 5, the elements of C, are also elements of 4 and B. But B A since some of
its elements, e.g., 2 and 7, do not belong to A. Furthermore, since the elements in the sets 4, B, C must also
belong to the universal set U, it is clear that U must at least contain the set {1,2,3,4,5,6,7,8,9}.

(b) Let P,N,Z,Q,R be defined as in Section 1.2. Then:

PCNCZCQCR

(c) The set E = {2,4,6} is a subset of the set F = {6,2,4}, since each number 2, 4, and 6 belonging to E also
belongs to F. In fact, E = F. Similarly, it can be shown that every set is a subset of itself.
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The following properties of sets should be noted:

(i) Every set A4 is a subset of the universal set U since, by definition, all the elements of 4 belong to U.
Also the empty set ¥ is a subset of 4.

(ii) Every set A4 is a subset of itself since, trivially, the elements of 4 belong to A.
(iii) If every element of 4 belongs to a set B, and every element of B belongs to a set C, then clearly
every element of 4 belongs to C. In other words, if 4 C Band BC C, then 4 C C.

(iv) If A C Band B C A, then 4 and B have the same elements, i.e., 4 = B. Conversely, if 4 = B then
A C B and B C A since every set is a subset of itself.

We state these results formally.

Theorem 1.1: (i) For any set 4, we have @ C 4 C U.
(ii) For any set 4, we have 4 C 4.
(iii) IfACBand BC C,then 4 CC.
(ivy A=Bifandonlyif A C Band BC A.

Proper Subset

If A C B, then it is still possible that A = B. When 4 C B but A # B, we say that A is a proper subset
of B. We will write A C B when A4 is a proper subset of B. For example, suppose

A={1,3}, B=1{1,2,3}, Cc={1,3,2}
Then A and B are both subsets of C; but 4 is a proper subset of C, whereas B is not a proper subset of C.
Disjoint Sets
Two sets 4 and B are disjoint if they have no elements in common. For example, suppose
A ={1,2}, B={2,4,6}, C=1{4,5,6,7}

Note that 4 and B are not disjoint since they both contain the element 2. Similarly, B and C are not
disjoint since they both contain the element 4, among others. On the other hand, 4 and C are disjoint
since they have no element in common. We note that if two sets 4 and B are disjoint sets then neither is a
subset of the other (unless one is the empty set).

1.5 VENN DIAGRAMS

A Venn diagram is a pictorial representation of sets where sets are represented by enclosed areas in
the plane. The universal set U is represented by the points in a rectangle, and the other sets are
represented by disks lying within the rectangle. If 4 C B, then the disk representing A will be entirely
within the disk representing B, as in Fig. 1-1(a). If A4 and B are disjoint, i.e., have no elements in
common, then the disk representing 4 will be separated from the disk representing B, as in Fig. 1-1(b).

On the other hand, if 4 and B are two arbitrary sets, it is possible that some elements are in A but
not B, some elements are in B but not 4, some are in both 4 and B, and some are in neither 4 nor B;
hence, in general, we represent A and B as in Fig. 1-1(c).

U U U

()

@ACB (b) A and B are disjoint (©)

Fig. 1-1
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1.6 SET OPERATIONS

The reader has learned to add, subtract, and multiply in the ordinary arithmetic of numbers; that is,
to each pair of numbers a and b, we assign a number a + b called the sum of a and b, a number a — b
called the difference of a and b, and a number ab called the product of a and b. These assignments are
called the operations of addition, subtraction, and multiplication of numbers. This section defines a
number of set operations, including the basic operations of union, intersection, and difference of sets,
where new sets will be assigned to pairs of sets 4 and B. We will see that set operations have many
properties similar to the above operations on numbers.

Union and Intersection

The union of two sets 4 and B, denoted by 4 U B, is the set of all elements which belong to 4 or B;
that is,

AUB={x:x€Aor x€ B}
Here “or” is used in the sense of and/or. Figure 1-2(a) is a Venn diagram in which 4 U B is shaded.

The intersection of two sets 4 and B, denoted by 4 N B, is the set of all elements which belong to
both 4 and B; that is,

ANB={x:x€ A and x € B}
Figure 1-2(b) is a Venn diagram in which 4 N B is shaded.

Recall that sets 4 and B are said to be disjoint if they have no elements in common. Accordingly,
using the above notation, 4 and B are disjoint if 4 N B = (¥, the empty set.

(a) A U B is shaded (b) A N B is shaded

Fig. 1-2
EXAMPLE 1.3
(a) Let A=1{1,2,3,4}, B={3,4,5,6,7}, C = {2,3,8,9}. Then
AUB={1,2,3,4,5,6,7}, ANB={3,4}

AUC={1,23,4,8,9}, ANC={2,3}
BUC ={2,3,4,5,6,7,8,9},  BNC={3}

(b) Let U denote the set of students at a university, and let M and F denote, respectively, the set of male and female
students at the university. Then

MUF=U

since each student in U is either in M or in F. On the other hand,

MNF=(
since no student belongs to both M and F.



6 SETS AND BASIC OPERATIONS ON SETS [CHAP. 1

The following properties of the union and intersection of sets should be noted:

(i) Every element x in A N B belongs to both A and B; hence x belongs to 4 and x belongs to B. Thus
AN B is a subset of 4 and of B, that is,

ANBCA and ANBCB

(ii) An element x belongs to the union 4 U B if x belongs to 4 or x belongs to B; hence every element
in 4 belongs to AU B, and also every element in B belongs to 4 U B. That is,

ACAUB and BC AUB

We state the above results formally.
Theorem 1.2: For any sets 4 and B, we have
ANBCACAUB  and ANBCBC AUB

The operation of set inclusion is also closely related to the operations of union and intersection, as
shown by the following theorem, proved in Problem 1.13.

Theorem 1.3: The following are equivalent:
ACB, ANB=A, AUB=B

Other conditions equivalent to 4 C B are given in Problem 1.51.

Complement

Recall that all sets under consideration at a particular time are subsets of a fixed universal set U.
The absolute complement, or, simply, complement of a set A, denoted by A°, is the set of elements which
belong to U but which do not belong to 4; that is,

A ={x:xeUx ¢ A}

Some texts denote the complement of 4 by 4’ or A. Figure 1-3(a) is a Venn diagram in which A4 is
shaded.

(a) A° is shaded (b) A\B is shaded (b) A® B is shaded

Fig. 1-3
EXAMPLE 1.4
(a) LetU={a,b,c,...,y,z}, the English alphabet, be the universal set, and let
A= {a,b,c,d,e}, B = {e,f,g}, V = {a,e,i,o,u}
Then
A= {f,g,h,...,y,z} and B ={a,b,c,d,h,i,...,y,z}
Since V consists of the vowels in U, ¥* consists of the nonvowels, called consonants.

(b) Suppose the set R of real numbers is the universal set. Recall that Q denotes the set of rational numbers.
Hence Q° will denote the set of irrational numbers.
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(c) Let U be the set of students at a university, and suppose M and F denote, respectively, the male and female
students in U. Then

M‘=F and FF=M

Difference and Symmetric Difference

Let A and B be sets. The relative complement of B with respect to A or, simply, the djfference of A
and B, denoted by A\B, is the set of elements which belong to 4 but which do not belong to B; that is,

A\B={x:x€ A,x ¢ B}

The set A\B is read “4 minus B”. Many texts denote A\Bby 4 — Bor A ~ B. Figure 1-3(b) is a Venn
diagram in which A4\ B is shaded.

The symmetric difference of the sets A and B, denoted by 4 @ B, consists of those elements which
belong to 4 or B but not to both 4 and B. That is,

A®B=(AUB)\(ANB) or A®B=(A\B)U(B\A)
Figure 1-3(c) is a Venn diagram in which 4 @ B is shaded. The fact that
(AUB)\(ANB) = (A\B)U(B\A)
is proved in Problem 1.18.

EXAMPLE 1.5 Consider the sets

A={1,2,3,4}, B={3,4,5,6,7}, C ={6,7,8,9}
Then

A\B = {1,2}, B\C = {3,4,5}, B\A = {5,6,7}, C\B = {8,9}

Also,

A®B={1,2,56,7 and B&®C={34589}
Note that 4 and C are disjoint. This means

A\C =4, C\A=C, AdC=4UC

1.7 ALGEBRA OF SETS, DUALITY

Sets under the above operations of union, intersection, and complement satisfy various laws (iden-
tities) which are listed in Table 1-1. In fact, we formally state:

Theorem 1.4: Sets satisfy the laws in Table 1-1.

Each of the laws in Table 1-1 follows from an equivalent logical law. Consider, for example, the
proof of DeMorgan’s law:

(AUB={x:x¢(AorB)}={x:x¢Aand xg B} = A°NB°
Here we use the equivalent (DeMorgan’s) logical law:
~(pVg)=-pA-g

Here -~ means “not”, V means “or”, and A means “and”. Sometimes Venn diagrams are used to
illustrate the laws in Table 1-1 (cf. Problem 1.16).
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Table 1-1 Laws of the Algebra of Sets

Idempotent laws
(la) AUA=4 (1) ANA=4A
Associative laws
(2a) (AUB)UC=A4U(BUC) (26) (ANB)NC=A4AN(BNC)

Commutative laws
(3@) AUB=BUA (35) ANB=BNA

Distributive laws
(4a) AU(BNC)=(AUB)N(AUC) (4b) AN(BUC)=(ANB)U(ANC)

Identity laws
(5a) AU =4 (5b) ANU=4
(6a) AUU=U (6b) AN =g

Involution law
(1) () =4

Complement laws
(8a) AUA =U (80) ANA=g
(%a) U'=g (%) @F=U

DeMorgan’s laws
(10a) (AUB) =A°NF (106) (ANB)=A°UF

Duality

The identities in Table 1-1 are arranged in pairs, as, for example, (2a) and (2b). We now consider
the principle behind this arrangement. Let E be an equation of set algebra. The dual E* of E is the
equation obtained by replacing each occurrence of U,N, U, in E by N,U, &, U, respectively. For
example, the dual of

(UNA)UBNA) =4 is (FUA)N(BUA) =4

Observe that the pairs of laws in Table 1-1 are duals of each other. It is a fact of set algebra, called the
principle of duality, that, if any equation E is an identity, then its dual E* is also an identity.

1.8 FINITE SETS, COUNTING PRINCIPLES

A set is said to be finite if it contains exactly m distinct elements where m denotes some nonnegative
integer. Otherwise a set is said to be infinite. For example, the empty set & and the set of letters of the
English alphabet are finite sets, whereas the set of even positive integers {2,4,6, ...} is infinite. [Infinite
sets will be studied in detail in Chapter 6.]

The notation n(A4) or |4| will denote the number of elements in a finite set A.

First we begin with a special case.

Lemma 1.5: Suppose 4 and B are finite disjoint sets. Then 4 U B is finite and
n(AU B) = n(A) + n(B)
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Proof. In counting the elements of 4 U B, first count those that are in 4. There are n(A4) of these.
The only other elements of 4 U B are those that are in B but not in 4. Since 4 and B are disjoint,
no element of B is in A, so there are n(B) elements that are in B but not in 4. Therefore,
n(AU B) = n(A) + n(B), as claimed.

Remark: A set C is called the disjoint union of A and B if

C=AUB and ANB=(
Lemma 1.5 tells us that, in such a case, n(C) = n(4) + n(B).

Special Cases of Disjoint Unions

There are two special cases of disjoint unions which occur frequently.
(1) Given any set A4, then the universal set U is the disjoint union of 4 and its complement A°.
Thus, by Lemma 1.5,

n(U) = n(A) + n(A°)
Accordingly, bringing n(A) to the other side, we obtain the following useful result.
Theorem 1.6: Let A4 be any set in a finite universal set U. Then

n(A°) = n(U) — n(A4)

For example, if there are 20 male students in a class of 35 students, then there are 35— 20 = 15
female students.

(2) Given any sets 4 and B, we show (Problem 1.37) that A is the disjoint union of 4\B and 4 N B.
This is pictured in Fig. 1-4. Thus Lemma 1.5 gives us the following useful result.

Theorem 1.7: Suppose 4 and B are finite sets. Then

n(A\B) = n(4) —n(AN B)

For example, suppose an archery class 4 contains 35 students, and 15 of them are also in a bowling
class B. Then

n(A\B) =n(4) —n(ANB)=35-15=20

That is, there are 20 students in the class 4 who are not in class B.

Ais shaded
Fig. 1-4

Inclusion-Exclusion Principle

There is also a formula for n(A4 U B) even when they are not disjoint, called the inclusion-exclusion
principle. Namely:
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Theorem 1.8: Suppose 4 and B are finite sets. Then 4 N B and 4 U B are finite, and

n(AU B) = n(A) +n(B) — n(AN B)

That is, we find the number of elements in A or B (or both) by first adding n(4) and n(B) (inclusion)
and then subtracting n(4 N B) (exclusion) since the elements in 4 N B were counted twice.
We can apply this result to get a similar result for three sets.

Corollary 1.9: Suppose 4, B, C are finite sets. Then 4 U BU C is finite and
n(AUBUC) =n(4)+n(B)+n(C)—n(ANB)—n(ANC)—n(BNC)+n(ANBNC)

Mathematical induction (Section 1.11) may be used to further generalize this result to any finite
number of finite sets.

EXAMPLE 1.6 Consider the following data among 110 students in a college dormitory:

30 students are on a list A (taking Accounting),
35 students are on a list B (taking Biology),
20 students are on both lists.

Find the number of students: (a) on list or B, (b) on exactly one of the two lists, (c) on neither list.
(a) We seek n(4U B). By Theorem 1.8, }
n(AUB) =n(A) +n(B) —n(ANB)=30+35-20=45
In other words, we combine the two lists and then cross out the 20 student names which appear twice.
(b) List A contains 30 names and 20 of them are on list B; hence 30 — 20 = 10 names are only on list 4. That is,
n(A\B) =n(4) —n(AUB)=30-20=10

Similarly, list B contains 35 names and 20 of them are on list A; hence 35 — 20 = 15 names are only on list B.
That is,
n(B\A) =n(B) —n(AUB) =35-20=15

Thus there are 10 + 15 = 25 students on exactly one of the two lists.

(c) The students on neither the A list nor the B list form the set 4° N B°. By DeMorgan’s law, A° N B° = (4 U B)".
Hence

n(A° N B) = n((4 U B)) = n(U) — n(4 U B) = 110 — 45 = 65

EXAMPLE 1.7 Consider the following data for 120 mathematics students:

65 study French, 20 study French and German,
45 study German, 25 study French and Russian,
42 study Russian, 15 study German and Russian,

8 study all three languages
Let F, G, and R denote the sets of students studying French, German, and Russian, respectively.
(a) Find the number of students studying at least one of the three languages, i.e. find n(F U G U R).
(b) Fill in the correct number of students in each of the eight regions of the Venn diagram of Fig. 1-5(a).
(c¢) Find the number k of students studying: (1) exactly one language, (2) exactly two languages.
(a) By Corollary 1.9,

n(FUGUR) =n(F)+n(G)+n(R) —n(FNG)—n(FNR)—n(GNR)—n(FNGNR)
=65+45+42-20-25—-15+8 =100
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Fig. 1-§

(b) Using 8 study all three languages and 100 study at least one language, the remaining seven regions of the
required Venn diagram Fig. 1-5(b) are obtained as follows:
15 — 8 = 7 study German and Russian but not French,
25 — 8 = 17 study French and Russian but not German,
20 — 8 = 12 study French and German but not Russian,
42 — 17 — 8 — 7 = 10 study only Russian,
45 — 12 — 8 — 7 = 18 study only German,
65 — 12 — 8 — 17 = 28 study only French,
120 — 100 = 20 do not study any of the languages.

(¢) Use the Venn diagram of Fig. 1-5(b) to obtain:
(1) k=28+18+10=56, (2) k=12+17+7=36

1.9 CLASSES OF SETS, POWER SETS

Given a set S, we may wish to talk about some of its subsets. Thus we would be considering a “‘set of
sets”’. Whenever such a situation arises, to avoid confusion, we will speak of a class of sets or a collection
of sets. If we wish to consider some of the sets in a given class of sets, then we will use the term subclass
or subcollection.

EXAMPLE 1.8 Suppose S = {1,2,3,4}. Let o be the class of subsets of S which contain exactly three elements of
S. Then

« =({1,2,3},{1,2,4},{1,3,4},{2,3,4}]

The elements of o are the sets {1,2,3}, {1,2,4}, {1,3,4}, and {2,3,4}.
Let # be the class of subsets of S which contain 2 and two other elements of S. Then

2 =[{1,2,3},{1,2,4},{2,3,4}]
The elements of & are {1,2,3}, {1,2,4}, and {2,3,4}. Thus @ is a subclass of &. (To avoid confusion, we will
usually enclose the sets of a class in brackets instead of braces.)
Power Sets

For a given set S, we may speak about the class of all subsets of S. This class is called the power set
of S, and it will be denoted by 2(S). If S is finite, then so is 2(S). In fact, the number of elements in
2(S) is 2 raised to the power of n(S); that is,

n(2(8)) = 2"

(This is the reason 2(S) is called the power set of S; it is also sometimes denoted by 25.)
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EXAMPLE 1.9 Suppose S = {1,2,3}. Then

2(8) = [Q,{l},{Z},{3},{1,2},{1,3},{2,3},51

Note that the empty set & belongs to 2(S) since ¥ is a subset of S. Similarly S belongs to 2(S). As expected from
the above remark, 2(S) has 2° = 8 elements.

1.10 ARGUMENTS AND VENN DIAGRAMS

Many verbal statements are essentially statements about sets and they can therefore be described by
Venn diagrams. Hence Venn diagrams can sometimes be used to determine whether or not an argument
is valid. This is illustrated in the following example.

EXAMPLE 1.10 Show that the following argument (adapted from a book on logic by Lewis Carroll, the author of
Alice in Wonderland) is valid:

S): My saucepans are the only things I have that are made of tin.
S,: I find all your presents very useful.
S3:  None of my saucepans is of the slightest use.

S:  Your presents to me are not made of tin.

(The statements S, S,, and S; above the horizontal line denote the assumptions, and the statement S below the line
denotes the conclusion. The argument is valid if the conclusion S follows logically from the assumptions S, S,, and
$3.)

By S the tin objects are contained in the set of saucepans and by S; the set of saucepans and the set of useful
things are disjoint: hence draw the Venn diagram of Fig. 1-6.

@

Fig. 1-6

By S, the set of “your presents” is a subset of the set of useful things; hence draw Fig. 1-7.

saucepans useful things

Fig. 1-7

The conclusion is clearly valid by the Venn diagram in Fig. 1-7 because the set of “your presents” is disjoint
from the set of tin objects.
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1.11 MATHEMATICAL INDUCTION

Consider the set P = {1,2,...} of positive integers (or counting numbers). We say that an assertion
A(n) is defined on P if A(n) is true or false for each n € P. An essential property of P, which is used in
many proofs, follows.

Principle of Mathematical Induction I: Let A(n) be an assertion defined on P, that is, A(n) is true or
false for each integer n > 1. Suppose A(n) has the following two properties:

(1) A(1) is true.
(2) A(n+1) is true whenever A(n) is true.

Then A(n) is true for every n > 1.

We shall not prove this principle. In fact, this principle is usually given as one of the axioms when P
is developed axiomatically.
EXAMPLE 1.11 Let A(n) be the assertion that the sum of the first n odd integers is n?; that is,

A(n): 143+54--4+@2n-1)=n
[The nth odd integer is 2n — 1 and the next odd integer is 2n + 1.] Observe that A(n) is true for n = 1, that is,
A1): 1=12
Assuming A(n) is true, we add 2n + 1 to both sides of A(n), obtaining:
143454+ +Q2n=-1)+Q2n+1)=r*+2n+1)=(n+1)>

However, this is A(n+1). That is, A(n+ 1) is true whenever A(n) is true. By the principle of mathematical
induction, A(n) is true for all n > 1. :

There is another form of the principle of mathematical induction which is sometimes more con-
venient to use. Although it appears different, it is really equivalent to the above principle of induction.

Principle of Mathematical Induction II: Let A(n) be an assertion defined on the set P of positive integers
which satisfies the following two conditions:

(1) A(1) is true.
(2) A(n) is true whenever A(k) is true for 1 < k < n.

Then A(n) is true for every n > 1.

The above two principles may also be stated in terms of subsets of P rather than in terms of
assertions defined on P. (See Problem 1.40.) Although the languages are different, they are logically
equivalent.

Remark: Sometimes one wants to prove that an assertion A is true for a set of integers of the form

{a,a+1,a+2,...}

where a is any integer, possibly 0. This can be done by simply replacing 1 by the integer a in either of the
above principles of mathematical induction.

1.12 AXIOMATIC DEVELOPMENT OF SET THEORY
Any axiomatic development of a branch of mathematics begins with the following:

(1) undefined terms,
(2) undefined relations,
(3) axioms relating the undefined terms and undefined relations.
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Then, one develops theorems based upon the axioms and definitions.
Consider, for example, the axiomatic development of plane Euclidean geometry. It begins with the
following:

(1) “points” and “lines” are undefined terms;
(2) “point on a line” or, equivalently, “line contains a point” is an undefined relation.

Two of the many axioms of Euclidean geometry follow:

Axiom 1: Two distinct points are on one and only one line.

Axiom 2: Two distinct lines cannot contain more than one point in common.
The axiomatic development of set theory begins with the following:

(1) “‘element” and “‘set” are undefined terms;
(2) ‘“‘element belongs to a set” is the undefined relation.

Two of the axioms (called principles) of set theory follow:

Principle of Extension: Two sets 4 and B are equal if and only if they have the same elements, that is, if
every element in 4 belongs to B and every element in B belongs to A.

Principle of Abstraction: Given any set U and any property P, there is a set 4 such that the elements of
A are exactly those elements in U which have the property P; that is,

A ={x:x€U,P(x) is true}

There are other axioms which are not listed. As our treatment of set theory is mainly intuitive,
especially Part I, we will refrain from any further discussion of the axiomatic development of set theory.

Solved Problems

SETS AND SUBSETS
1.1.  Which of these sets are equal: {r,t,s}, {s,¢t,r,s}, {t,5,t,r}, {s,1,5,1}?

They are all equal. Order and repetition do not change a set.

1.2.  List the elements of the following sets where P = {1,2,3,...}.

(@) A={x:xeP,3<x< 12}

() B={x:x€P,xiseven, x <15}

() C={x:xeP,4+x=13}

(d) D= {x:xe€P, xis a multiple of 5}.

(a) A consists of the positive integers between 3 and 12; hence
A=1{4,56,789,10,11}

(b) B consists of the even positive integers less than 15; hence
B={2,4,6,8,10,12,14}

(¢) There are no positive integers which satisfy the condition 4 + x = 3; hence C contains no elements. In
other words, C = &, the empty set.
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D is infinite, so we cannot list all its elements. However, sometimes we write

D= {5,10,15,...,5n,...} or simply D = {5,10,15,...}

where we assume everyone understands that we mean the multiples of 5.

Consider the following sets:

9, A={1}1 B={173}s C={17519}v D={1a2’3$415}’
E={1,3,5,7,9}, U={1,2,...,8,9}

Insert the correct symbol C or € between each pair of sets:

(@)
(b)

(@)
(b
(c)
(d)
(e)
)
(8
(k)

g,4 (o BC (¢ C,D (g) DE
AB (d BE (f) CCE (k) DU

& C A because J is a subset of every set.

A C B because 1 is the only element of 4 and it belongs to B.
B¢Z C because 3€ Bbut 3¢ C.

B C E because the elements of B also belong to E.

C Z D because 9 € C but 9 ¢ D.

C C E because the elements of C also belong to E.

DZ E because2€ Dbut 2¢ E.

D C U because the elements of D also belong to U.

Show that 4 = {2, 3,4, 5} is not a subset of B= {x: x € P, x is even}.

It is necessary to show that at least one element in 4 does not belong to B. Now 3 € A and, since B

consists of even numbers, 3 ¢ B; hence A is not a subset of B.

Show that 4 = {2, 3,4, 5} is a proper subset of C = {1,2,3,...,8,9}.

Each element of 4 belongs to C so 4 C C. On the other hand, 1 € C but 1 € 4. Hence 4 # C.

Therefore A is a proper subset of C.

Determine whether or not each set is the null set:

(@ X={x:x*=9,2x=4}, () Y={x:x#x}, () Z={x:x+8=8}.

(a)
()

()

No number satisfies both x* = 9 and 2x = 4; hence X is the empty set; i.e., X = .

We interpret “=""to mean “is identical with” and so Y is empty. In fact, some texts define the empty
set as follows:

F={x:x#x}

The number zero satisfies x + 8 = 8 and zero is the only solution; hence Z = {0}. Thus Z is not the
empty set since it contains 0. That is, Z # &.
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SET OPERATIONS

1.7.

1.8.

1.9.

1.10.

Problems 1-7 to 1-10 refer to the universal set U = {1,2,...,9} and the sets:
A=1{1,2,3,4,5} C={5,6,7,8,9} E ={2,4,6,8}
B={4,5,6,7} D ={1,3,5,7,9} F ={1,5,9}

Find:

(@) AuBand 4N B, (¢) AuCand ANC, (¢) EUEand ENE
(b) BUDand BND, (d) DUEand DNE, (f) DUFand DNF

Recall that the union X U Y consists of those elements in either X or Y (or both), and that the
intersection X N Y consists of those elements in both X and Y.

() AUB=1{1,2,3,4,56,7}, ANB={4,5}

(b)) BUD=1{1,3,4,56,7,9}, BND={571}

() AUC={1,23,4,56789=U, ANC=g

(d DUE={1,2,3,4,56,89=U  DNE=g

() EUE={2,4,68}=E, ENE=1{2,4,68}=E
(f) DUF=1{1,3,5719}=D, DNF={1,59}=F

Observe that F C D; so by Theorem 1.3 we must have DUF =Dand DNF =F.

Find: (a) A°, B°, D°, E° (b) U°, &
(a) The complement X° consists of those elements in the universal set U which do not belong to X. Thus:
A= {6,7,8,9}, B ={1,2,3,8,9}, D ={2,4,6,8} =E, E°=1{1,3,5,7,9} =D
(Note: Since D° = E, we must have E° = D.)
(b) Here U’ = ¥, and &° = U, and this is always true.

Find: (a) A\B, B\A, D\E, F\D; (b)) A®B, C®D, E®F.
(a) The difference X\ Y consist of the elements in X which do not belong to Y. Thus:
A\B={1,2,3}, B\4={6,7}, D\E = {1,3,5,7,9} = D, F\D=g.
(Note: Since D and E are disjoint, we must have D\E = D; and since F C D, we must have F\D = (¥.)
(b) The symmetric difference X & Y consists of the elements in X or in Y but not in both X and Y. Thus:
A® B=1{1,2,3,6,7}, CoD=1{1,3,8,9}, E®F=1{2,46,81,59}=EUF
(Note: Since E and F are disjoint, we must have E @®@F=EUF.)

Find: (a) AN(BUE), (b)(4\B), (c) (AND)\B, (d) (BNF)U(CNE).
(a) First compute BUE = {2,4,5,6,7,8}. Then AN (BUE) = {2,4,5}.

(b) A\E ={1,3,5}. Then (4\E)° = {2,4,6,7,8,9).

(¢) AnD={1,3,5}. Now (ANnD)\B={1,3}.

(d) BNF={5}and CNE ={6,8). So (BNF)U(CNE)=/{5,6,8).
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1.11. Show that we can have 4N B = 4N C without B=C.

Let A= {1,2}, B={2,3},and C = {2,4}. ThenANB=(2}and ANC={2). Thus ANB=4ANC
but B# C.

1.12. Prove: B\A = BN A. Thus the set operation of difference can be written in terms of the opera-
tions of intersection and complementation.

B\A={x:x€B, x¢ A)={x:x€B, x€A)=BNA°

1.13. Prove Theorem 1.3: The following are equivalent: 4 C B, ANB=A4,and AUB=B.

Suppose 4 C B. Let x € A. Then x € B, hence x€ ANB and so 4 C ANB. By Theorem 1.2,
(ANB)C A. Therefore ANB=A. On the other hand, suppose ANB=A4. Let x€ A. Then
Xx € AN B, hence x € B. Therefore, A C B. Both results show that 4 C B is equivalent to AN B = A.

Suppose again that 4 C B. Let x€ AUB. Then x € A or x € B. If x € A, then x € B because 4 C B.
In either case, x € B. Therefore AUBC B. By Theorem 1.2, BC AU B. Therefore AUB= B. Now
suppose AUB = B. Let x € A. Then x € AU B by definition of union of sets. Hence x € B= AU B.
Therefore A C B. Both results show that 4 C B is equivalent to AU B = B.

Thus A C B, ANB= A and AU B = B are equivalent.

VENN DIAGRAMS, ALGEBRA OF SETS, DUALITY
1.14. Iliustrate DeMorgan’s law (4 U B)" = A° N B (proved in Section 1.7) using Venn diagrams.

Shade the area outside 4 U B in a Venn diagram of sets 4 and B. This is shown in Fig. 1-8(a); hence the
shaded area represents (4 U B)°. Now shade the area outside 4 in a Venn diagram of 4 and B with strokes
in one direction (///), and then shade the area outside B with strokes in another direction (\\\). This is
shown in Fig. 1-8(b). Thus the cross-hatched area (area where both lines are present) represents the
intersection of A° and B, that is, 4° N B°. Both (4 U B)® and A° N B° are represented by the same area;
hence the Venn diagrams indicate (4 U B) = A° N B°. (We emphasize that a Venn diagram is not a formal
proof but it can indicate relationships between sets.)

(a) Shaded area: (4 U B)° (b) Cross-hatched area: A° N B¢

Fig. 1-8

1.15. Consider the Venn diagram of two arbitrary sets 4 and B as pictured in Fig. 1-1(c). Shade the
sets: (@) AN B, (b) (B\A)".

(a) First shade the area represented by A with strokes in one direction (///), and then shade the area
represented by B° (the area outside B), with strokes in another direction (\\\). This is shown in Fig.
1-9(a). The cross-hatched area is the intersection of these two sets and represents A N B; and this is
shown in Fig. 1-9(b). Observe that A N B° = A\B. In fact, A\B is sometimes defined to be 4 N B.
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(b) First shade the area represented by B\ 4 (the area of B which does not lie in 4) as in Fig. 1-10(a). Then
the area outside this shaded region, which is shown in Fig. 1-10(b), represents (B\A)‘.

\\

\ A B
(a) A and B° are shaded (b) A N Bis shaded
Fig. 19
”//
(a) B\ A isshaded (b) (B\ A)°is shaded
Fig. 1-10

Prove Theorem 1.4: Distributive law (4b)
AN(BUC)=(ANB)U(ANC)
Illustrate the law using Venn diagrams.

By definition of union and intersection,

AN(BUC)={x:x€ 4, X€ BUC}
={x:x€A4, xéeEBorxe A, xeC)=(ANB)U(ANC)

Here we use the analogous logical law
pPA(GV)=(pAg)V(pAT)

where A denotes “and” and V denotes “or”.

Venn Diagram

Draw three intersecting circles labeled 4, B, C, as in Fig. 1-11(a). Now, as in Fig. 1-11(b) shade 4 with
strokes in one direction (///) and shade BU C with strokes in another direction (\\\). Then the cross-
hatched area is A N (BU C), as shaded in Fig. 1-11(c). Next shade 4 N B and then 4 N C, as in Fig. 1-11(d).
The total area shaded is (4 N B) U (4 N C), as shaded in Fig. 1-11(e). As expected by the distributive law,
AN(BUC) and (4N B)U (AN C) are both represented by the same set of points.
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(b) A and B U C are shaded

(d) AN Band A N C are shaded () AN B)YU(ANC) is shaded

Fig. 1-11

1.17. Prove the commutative laws: () AUB=BUA, (b) ANB=BNA.

(@ AUB={x:x€AdorxeB}={x:x€eBorxe A} =BUA.
() ANB={x:x€AandxeB}={x:x€ Band x€ A} = BN A.

1.18. Prove: (4U B)\(4 N B) = (4\B) U (B\A4). (Thus either one may be used to define the symmetric
difference 4 & B.)

Using X\Y = X N Y* and the laws in Table 1-1, including DeMorgan’s laws, we obtain

(AUB\(ANB)=(AUB)N(ANB) =(AUB)N (A U B)
=(ANA)U(ANB)U(BNAT)U(BNB)
=ZFUANB)UBNA)UY
=(ANB)U (BN A°) = (A\B) U (B\A)

1.19. Prove the following identity: (4 U B) N (4 U B°) = A.

Statement Reason
1. (AUB)N(AUB)=AU(BNB) Distributive law
2. BNB' =g Complement law
3. (AUBN(AUB)=AUg Substitution
4. AUGZ=A Identity law
5. (AUB)N(AUB)=A Substitution
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Write the dual of each set equation:

(@) (UNnA)U(BNA)=4 () ANUN(BUA)=T

() (AUBUC)*=(AUC)N(AUB) d ANU)YNA=g
Interchange U and N and also U and & in each set equation:

(@) (GUA)N(BUA)=A () AUuu@UnNA)=U

b)) (ANBNC)=(A4ANC)YU(4nB)* (d (Au@d)fud=U

FINITE SETS AND THE COUNTING PRINCIPLE

1.21.

1.22.

Determine which of the following sets are finite.

(a) A = {seasons in the year},

(b) B = {states in the United States of America},
(¢) C = {positive integers less than 1},

(d) D = {odd integers},

(e) E = {positive integral divisors of 12},

(f) F = {cats living in the United States}.

A is finite since there are four seasons in the year, i.e., n(4) = 4.
B is finite because there are 50 states in the United States, i.e., n(B) = 50.
There are no positive integers less than 1; hence C is empty. Thus C is finite and n(C) = @.

IR )
—_— o O

d) D is infinite.
e) The positive integer divisors of 12 are 1, 2, 3, 4, 6, 12. Hence E is finite and n(E) = 6.
(f) Although it may be difficult to find the number of cats living in the United States, there is still a finite

number of them at any point in time. Hence F is finite.

Suppose 50 science students are polled to see whether or not they have studied French (F) or
German (G) yielding the following data:

25 studied French, 20 studied German, 5 studied both.
Find the number of the students who: (@) studied only French, (b) did not study German,
(c) studied French or German, (d) studied neither language.

(a) Here 25 studied French, and 5 of them also studied German; hence 25 — 5 = 20 students only studied
French. That is, by Theorem 1.7,

n(F\G) =n(F) - N(FNG)=25-5=20.
(b) There are 50 students of whom 20 studied German; hence 50 — 20 = 30 did not study German. That is,
by Theorem 1.6,
n(G°) = n(U) — n(G) = 50 — 20 = 30
(¢) By the inclusion-exclusion principle, Theorem 1.8,
n(FUG)=n(F)+n(G)—n(FNG)=25+20-5=40
That is, 40 students studied French or German.

(d) The set F°NG° consists of the students who studied neither language. By DeMorgan’s law,
F°'NG° = (FUG) . By (c), 40 studied at least one of the languages; hence

n(F* N G°) = n(U) - n(FUG) = 50 — 40 = 10

That is, 10 students studied neither language.
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1.23. Suppose n(U) = 70, n(A4) = 30, n(B) = 45, n(A N B) = 10. Find:
(@) n(AU B), (b) n(A°) and n(B°), (c)n(A°NB°), (d)n(4Ae® B).
(a) By Theorem 1.9, n(4AU B) = n(A) + n(B) —n(ANB) =30+45— 10 = 65.
(b) Here
n(A°) =n(U) —n(4)=70-30=40 and n(B°)=n(U)—n(B)=70-45=25
(¢) Using DeMorgan’s law,
n(A°NB°) =n((AUB)°) =n(U) —n(AUB)=70—-65=5

(d) First find

n(A\B) = n(4) — n(AN B) =30 — 10 = 20

n(B\A) =n(B) —n(ANB)=45-10=25

Then
n(A @ B) = n(A\B) + n(B\A) = 20 + 25 = 45

1.24. A small college requires its students to take at least one mathematics course and at least one
science course. A survey of 140 of its sophomore students shows that:
60 completed their mathematics requirement (M),
45 completed their science requirement (S),
20 completed both requirements (M and S).

Use a Venn diagram to find the number of the students who had completed:

(a) exactly one of the two requirements,
(b) at least one of the requirements,
(¢) neither requirement.

Translating the above data into set notation yields:
n(M) = 60, n(S) = 45, n(M N S) =20, and n(U) = 140
Draw a Venn diagram of sets M and S with four regions as in Fig. 1-12(a). Then, as in Fig. 1-12(b),
assign numbers to the four regions as follows::

20 completed both M and S, i.e. n(M N S) = 20,

60 — 20 = 40 completed M but not S, i.e. n(M\S) = 40,

45 — 20 = 25 completed S but not M, i.e. n(S\M) = 25,

140 — 20 — 40 — 25 = 55 completed neither M nor S.

55

(@) ®)

Fig. 1-12
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By the Venn diagram:

(a) 40+ 25 = 65 completed exactly one of the requirements,

(b) 20+ 40 + 25 = 85 completed M or S. Alternately, we can find n(M U S) without the Venn diagram by
using Theorem 1.7. That is,

n(M US) = n(M) +n(S) —n(MNS) = 60 + 45 — 20 = 85

(c) 55 completed neither requirement.

In a survey of 60 people, it was found that:

25 read Newsweek magazine 9 read both Newsweek and Fortune
26 read Time 11 read both Newsweek and Time
26 read Fortune 8 read both Time and Fortune

3 read all three magazines

(a) Find the number of people who read at least one of the three magazines.

(b) Fill in the correct number of people in each of the eight regions of the Venn diagram in
Fig. 1-13(a) where N, T, and F denote the set of people who read Newsweek, Time, and
Fortune, respectively.

(¢) Find the number of people who read exactly one magazine.

A
avh
N

(a) ®)

8

Fig. 1-13

(@) We want n(NUT UF). By Corollary 1.9,
n(NUTUF)—=n(N)+N(T)+n(F)—n(NNF)—n(NNT)-n(TNF)+n(NNTNF)
=254+26+26—-11-9-8+3=52

(b) The required Venn diagram in Fig 1-13(b) is obtained as follows:

3 read all three magazines

11 — 3 = 8 read Newsweek and Time but not all three magazines
9 — 3 = 6 read Newsweek and Fortune but not all three magazines
8 — 3 = 5 read Time and Fortune but not all three magazines

25 - 8 — 6 — 3 = 8 read only Newsweek

26 — 8 — 5 — 3 = 10 read only Time

26 — 6 — 5 — 3 = 12 read only Fortune

60 — 52 = 8 read no magazine at all

(¢) 8+ 10+ 12 = 30 read only one magazine.
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1.26. Prove Theorem 1.8: If 4 and B are finite sets, then AUB and AN B are finite and
n(AU B) = n(A) + n(B) — n(AN B).

If A and B are finite, then clearly AN B and A U B are finite.
Suppose we count the elements of 4 and then count the elements of B. Then every element in AN B
would be counted twice, once in 4 and once in B. Hence

n(AU B) = n(A) +n(B) —n(ANB)
Alternatively (Problems 1.37 and 1.50),
(i) A is the disjoint union of 4\B and 4N B,
(ii) B is the disjoint union of B\A4 and 4N B,
(iii) AU B is the disjoint union of 4\B, AN B, and B\A.
Therefore, by Lemma 1.5 and Theorem 1.7,
n(A U B) = n(A\B) + n(4 N B) + n(B\A)
=n(A) —n(AN B) +n(AN B) +n(B\A) —n(AN B)
= n(A) +n(B) — n(ANB)

CLASSES OF SETS
1.27. Find the elements of the set 4 = [{1,2,3}, {4,5}, {6,7,8}], and determine whether each of the
following is true or false:
(@) 1€4 (¢) {6,7,8} 4 (&) Te4d
() {1,23tc4 (@ {{45}}c4 () Fc4
A is a collection (class) of sets; its elements are the sets {1,2,3}, {4,5}, and {6, 7,8}.

(a) False. 1 is not one of the elements of A.

(b) False. {1,2,3} is not a subset of 4; it is one of the elements of 4.

(¢) True. {6,7,8} is one of the elements of A.

(d) True. {{4,5}}, the set consisting of the element {4, 5} is a subset of 4.

(e) False. The empty set & is not an element of A4, i.e., it is not one of the three elements of 4.
(f) True. The empty set F is a subset of every set; even a collection of sets.

1.28. Consider that class A4 of sets in Problem 1.27. Find the subclass B of 4 where B consists of the
sets in 4 with exactly: (a) three elements, (b) four elements.

(a) There are two sets in A with three elements, {1,2,3} and {6,7,8}. Hence B = [{1,2,3}, {6,7,8}].
(b) There are no sets in 4 with four elements; hence B is empty, that is, B = .

1.29. Determine the power set #(A4) of A = {a,b,c,d}.
The elements of #(A4) are the subsets of 4. Hence

P(A) = [A,{a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}, {a,b}, {a,c},
{a,d}, {b,c}, {b,d}, {c,d}, {a}, {b}, {c}, {d}, @]

As expected, 2(A) has 2* = 16 elements.



24 SETS AND BASIC OPERATIONS ON SETS [CHAP. 1

1.30. Find the number of elements in the power set of each of the following sets:

(a) {days of the week}, (¢) {seasons of the year},
(b) {positive divisors of 12},  (d) {letters in the word “yes”}.

Recall that 2(A) contains 21l elements. Hence:
(@) 2"=128.
(b) 2% = 64 since there are six divisors, 1, 2, 3, 4, 6, 12, of 12.
(¢) 2*=16 since there are four seasons.
(d) 2°=s.

ARGUMENTS AND VENN DIAGRAMS
1.31. Determine the validity of the following argument:

S):  All my friends are musicians
S,: John is my friend.
S3:  None of my neighbors are musicians.

S: John is not my neighbor.

The premises S and S; lead to the Venn diagram in Fig. 1-14. By S,, John belongs to the set of friends
which is disjoint from the set of neighbors. Thus S is a valid conclusion and so the argument is valid.

musicians
neighbors

Fig. 1-14

1.32. Consider the following assumptions:

Si: Poets are happy people.
S>:  Every doctor is wealthy.
S3:  No happy person is wealthy.

Determine the validity of each of the following conclusions:

(a) No poet is wealthy. (b) Doctors are happy people.
(¢) No person can be both a poet and a doctor.

The three premises lead to the Venn diagram in Fig. 1-15. From the diagram it follows that (@) and (c)
are valid conclusions whereas (b) is not valid.
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(=D

happy people wealthy people

Fig. 1-15

1.33. Determine the validity of the following argument:

S;: Babies are illogical.
S,: Nobody is despised who can manage a crocodile.
S3:  Illogical people are despised.

S: Babies cannot manage crocodiles.

(The above argument is adapted from Lewis Carroll, Symbolic Logic; he is the author of Alice in
Wonderland.)

The three premises lead to the Venn diagram in Fig. 1-16. Since the set of babies and the set of people
who can manage crocodiles are disjoint, *“Babies cannot manage crocodiles” is a valid conclusion.

people who can
illogical people manage
babies crocodiles

Fig. 1-16

MATHEMATICAL INDUCTION
1.34. Prove the assertion A(n) that the sum of the first n positive integers is &n(n + 1); that is,
An): 14243+ - +n=1in(n+1)
The assertion holds for n = 1 since
A(D): 1=4)(1+1)
Assuming A(n) is true, we add n + 1 to both sides of 4(n), obtaining
14243+ +n+(n+1)=dn(n+1)+(n+1)
=4n(n+1)+2(n+1)]
=4[(n+1)(n +2)]

which is A(n + 1). That is, A(n + 1) is true whenever A(n) is true. By the principle of induction, A(n) is true
foralln>1.
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1.35. Prove the following assertion (for n > 0):
An): 142422423 4. 42" =2"1_
A(0) is true since 1 = 2' — 1. Assuming A(n) is true, we add 2"*! to both sides of A4(n), obtaining

1+2+22+23+'“+2n+2n+1=2n+l_l+2n+l
=2(2n+l)_1
=2n+2_l

which is A(n + 1). Thus A(n + 1) is true whenever A(n) is true. By the principle of induction, A(n) is true for
alln>0.

1.36. Prove: (a) n>2n+1forn>3, (b) n! > 2" forn > 4.

(a) Since 3% =9 and 2(3) + 1 = 7, the formula is true for n = 3. Using n*> > 2n + 1 in the second step and
2n > 1 in the fourth step, we have

(m+1)2=r+2n+1>2n+1)+2n+1=2n+2+21>2n+2+1=2(n+1)+1

Thus the formula is true for n 4+ 1. By induction, the formula is true for all n > 3.
(b) Since 4! =1-2.3-4 =24 and 2* = 16, the formula is true for n = 4. Assuming n! > 2" we have

(n+ 1) =n(n+1)>2"(n+1)>2"(2) = 2"

Thus the formula is true for n 4+ 1. By induction, the formula is true for all n > 4.

MISCELLANEOUS PROBLEMS
1.37. Show that A is the disjoint union of 4\B and 4 N B; that is, show that:
(a) A= (A\B)U(ANB), (b) (A\B)N(ANB)=(.
(a) By Problem 1.12, 4\B = 4 N B°. Using the distributive law and the complement law, we get
(AAB)U(ANB)=(ANB)U(ANB)=AN(B°UB)=ANU=4
(b) Also,
(AAB)N(ANB)=(ANB)N(ANB)=AN(B°NB)=ANZ=.

1.38. Prove Corollary 1.9. Suppose A4, B, C are finite sets. Then 4 U BU C is finite and
n(AUBUC) =n(A) +n(B)+n(C)—n(ANB)—n(ANC)—n(BNC)+n(ANBNC)
Clearly AU BU C is finite when A, B, C are finite. Using
(AUB)NC=(ANC)U(BNC) and (A4NB)N(BNC)=ANBNC
and using Theorem 1.8 repeatedly, we have

n(AUBUC) =n(AUB)+n(C)-n[(ANC)U(BNC))
= [n(4) + n(B) —n(ANB)] +n(C) = [n(ANC)+n(BNC)—n(ANBNC))
=n(A) +n(B) +n(C) —n(ANB) —n(ANC) —n(BNC)+n(ANBNC)

as required.



CHAP. 1] SETS AND BASIC OPERATIONS ON SETS 27

1.39. A set A4 of real numbers is said to be bounded from above if there exists a number M such that
x < M for every x in A. (Such a number M is called an upper bound of M.)

(a) Suppose 4 and B are sets which are bounded from above with respective upper bounds M,
and M,. What can be said about the union and intersection of 4 and B?

(b) Suppose C and D are sets of real numbers which are unbounded. What can be said about
the union and intersection of C and D?

(a) Both the union and intersection are bounded from above. In fact, the larger of M, and M, is always an
upper bound for 4 U B, and the smaller of M, and M, is always an upper bound for 4 N B.

(b) The union of C and D must be unbounded, but the intersection could be either bounded or unbounded.

1.40. Restate the Principle of Mathematical Induction I and II in terms of sets, rather than assertions.
(a) Principle of Mathematical Induction I Let S be a subset of P = {1,2,...} with two properties:
(H 1es. (2) Ifne S, thenn+1¢€S.

Then S =P.
(b) Principle of Mathematical Induction IT: Let S be a subset of P = {1,2,...} with two properties:

1) 1€8. 2) 1f{1,2,...,n—1} C S, thennesS.
Then S =P.

Supplementary Problems

SETS AND SUBSETS
1.41. Which of the following sets are equal?

A={x:x*—4x+3=0} C={x:xePx<3} E ={1,2} G={31}
B={x:x2—3x+2=0} D={x:xeP,xisodd,x <5} F={1,2,1} H={1,1,3}

1.42. List the elements of the following sets if the universal set is U = {a, b,c,...,y,z}. Furthermore, identify
which of the sets, if any, are equal.

A= {x:xisa vowel} C = {x : x precedes f in the alphabet}
B = {x: xis a letter in the word “little”} D = {x: x is a letter in the word “title”}

1.43. Let
A={1,2,...,8,9}, B={2,4,6,8}, Cc={1,3,5,7,9}, D ={3,4,5}, E =1{3,5}
Which of the above sets can equal a set X under each of the following conditions?

(a) X and B are disjoint. () XCAbutx Z C.
(b)) XCDbut X Z B. (dXCChut X Z A.
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1.44. Consider the following sets:
, A = {a}, B = {c,d}, C ={a,b,c,d}, D = {a,b}, E ={a,b,c,d,e}.
Insert the correct symbol, C or €, between each pair of sets:
(a) &, A4 (¢c) 4,B (e) B,C (¢) C,D
(b) D,E (d) D, A (f) D,C (h) B,D

SET OPERATIONS
145. Let U={1,2,3,...,8,9} be the universal set and let:
A={1,2,5,6}, B=1{2,5,7}, Cc={1,3,5,7,9}
Find: (a) ANBand ANC, (b)) AUBand AUC, (c) A and C°.

1.46.  For the sets in Problem 1.45, find: (a) A\B and A\C, (b) A®Band A® C.
1.47. For the sets in Problem 1.45, find: (a) (4 UC)\B, (b) (AUB)", (c) (B® C)\A4.

148. Let A ={a,b,c,d e}, B={a,b,d,f,g}, C={b,c,e,g,h}, D={d,e,f,g h}. Find:
(a) AUB (c) BN C (e) C\D (§) A® B
(b) CND (d) AND (f) D\A4 (h)y A®C

1.49. For the sets in Problem 1.48, find:

(a) AN (BUD) (¢) (AUD)\C (e) (C\A\D (&) (AND)\(BUC)
(b) B\(CUD) (d) BACND (f) (A®D\B  (h) (A\C)N (BN D)

1.50. Let A and B be any sets. Prove 4 U B is the disjoint union of A\B, AN B, and B\A.

1.51. Prove the following:
(@) ACBifandonlyif ANB = (¢) A C Bif and only if B° C A°
(b)) AC Bifand only if AAUB=U (d) A C Bif and only if A\B= &
(Compare with Theorem 1.3.)

1.52.  Prove the absorption laws: (a) AU(ANB)=A4, (b)) AN(AUB)=A.

1.53. The formula A\B = AN B defines the difference operation in terms of the operations of intersection and
complement. Find a formula that defines the union 4 U B in terms of the operations of intersection and
complement.

1.54. (a) Prove: AN(B\C)=(4ANB\(ANC).
(b) Give an example to show that 4 U (B\C) # (4 U B)\(4U C).

1.55. Prove the following properties of the symmetric difference:
(@) Ad (B C)=(A®B)dC (Associative law)
(b)) A®B=B® A (Commutative law)
() IfA®B=A®C, then B=C (Cancellation law)
(dy ANB®C)=(ANB)®d(ANC) (Distributive law)
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VENN DIAGRAMS, ALGEBRA OF SETS, DUALITY

1.56.

1.57.

1.58.

The Venn diagram in Fig. 1-17 shows sets 4, B, C. Shade the following sets:
(a) A\(BUC), (b) A°N(BNC), (¢) (AUC)N(BUC).

/S
ava
N

Fig. 1-17

Write the dual of each equation:

(@) A=(B°NA)U(4ANB), b) (ANBUMANB)U(A NB)UANB)=U

Use the laws in Table 1-1 to prove:

(@) (ANB)U(ANB) =4, (b) AUB=(ANB)U(A NB)U(ANB)

FINITE SETS AND THE COUNTING PRINCIPLE

1.59.

1.60.

1.61.

1.62.

Determine which of the following sets are finite:

(a) lines parallel to the x axis, (d) animals living on the earth,
(b) letters in the English alphabet, (e) circles through the origin (0,0),
(c) montbs in the year, (f) positive multiple of 5.

Given n(U) =20, n(4)=12, n(B)=9, n(ANB)=4. Find:
(@ n(AUB),  (b) n(4°), (o) n(B),  (d)n(4\B), (e) n(Q).

Among the 90 students in a dormitory, 35 own an automobile, 40 own a bicycle, and 10 have both an
automobile and a bicycle. Find the number of the students who:

(a) do not have an automobile. (c) have neither an automobile nor a bicycle;
(b) have an automobile or a bicycle; (d) have an automobile or a bicycle, but not both.

Among 120 Freshmen at a college, 40 take mathematics, 50 take English, and 15 take both mathematics and
English. Find the number of the Freshmen who:

(a) do not take mathematics; (d) take English, but not mathematics;
(b) take mathematics or English; (e) take exactly one of the two subjects;

(c) take mathematics, but not English; (f) take neither mathematics nor English.
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A survey on a sample of 25 new cars being sold at a local auto dealer was conducted to see which of three
popular options, air-conditioning (4), radio (R), and power windows (W), were already installed. The
survey found:

15 had air-conditioning 5 had air-conditioning and power windows
12 had radio 9 had air-conditioning and radio
11 had power windows 4 had radio and power windows

3 had all three options

Find the number of cars that had: (@) only power windows, (b) only air-conditioning, (c) only
radio, (d) radio and power windows but not air-conditioning, (e) air-conditioning and radio, but not
power windows, (f) only one of the options, (g) at least one option, (4) none of the options.

CLASSES OF SETS, POWER SETS

1.64.

1.65.

1.66.

1.67.

1.68.

Let A = [{a,b}, {c}, {d,e,f}]. List the elements of 4 and determine whether each of the following state-
ments is true or false:

(@)ae4 (c)ece4 () {def}cAa (9 T4
®)fayca (d{cea (){{abl}ca (HTCA4

Let B = [F,{1},{2,3},{3,4}]. List the elements of B and determine whether each of the following state-
ments is true or false:

(@) 1eB () {1} eB (@ {{231}cB (9 FC4
@G {1ycB  (@{23cB ()e4 (m) {2} c4

Let A ={1,2,3,4,5}. (a) Find the power set 2(4) of A. () Find the subcollection & of #(4) where each
element of # consists of 1 and two other elements of A4.

Find the power set 2(A) of the set 4 in Problem 1.64.

Suppose 4 is a finite set and n(4) = m. Prove that #(A4) has 2™ elements.

ARGUMENTS AND VENN DIAGRAMS

1.69.

1.70.

Draw a Venn diagram for the following assumptions:

S):  No practical car is expensive.
S,: Cars with sunroofs are expensive.
S3:  All wagons are practical.

Use the Venn diagram to determine whether or not each of the following is a valid conclusion:

(@) No practical car has a sunroof. (¢) No wagon has a sunroof.
(b) All practical cars are wagons. (d) Cars with sunroofs are not practical.

Draw a Venn diagram for the following assumptions:

Sy: I planted all my expensive trees last year.
Sy:  All my fruit trees are in my orchard.
S3:  No tree in my orchard was planted last year.

Use the Venn diagram to determine whether or not each of the following is a valid conclusion:

(a) The fruit trees were planted last year. (¢) No fruit tree is expensive.
(b) No expensive tree is in the orchard. (d) Only fruit trees are in the orchard.
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1.71.

1.72.

Draw a Venn diagram for the following assumptions:

S): All poets are poor.
S,: In order to be a teacher, one must graduate from college.
S3: No college graduate is poor.

Use the Venn diagram to determine whether or not each of the following is a valid conclusion:

(a) Teachers are not poor. (¢) College graduates do not become poets.
(b) Poets are not teachers. (d) Every poor person becomes a poet.

Draw a Venn diagram for the following assumptions:

S;: All mathematicians are interesting people.
S>:  Only uninteresting people become insurance salespersons.
S3:  Every genius is a mathematician.

Use the Venn diagram to determine whether or not each of the following is a valid conclusion:

(a) No genius is an insurance salesperson.
(b) Insurance salespersons are not mathematicians.

(¢) Every interesting person is a genius.

MATHEMATICAL INDUCTION

1.73.

1.74.

1.75.

1.76.

1.77.

1.41.

1.42.

1.43.

1.44.

1.45.

1.46.

Prove: 2+4464---+2n=n(n+1).

Prove: 1 +4+7+ .-+ (3n-2)=2n(3n—-1).

Prove: ! —+ ! +L+ !
1.3 3.5 5.7 (2n—1)(2n+) 2n+1'

2_n(n+l)(2n—|—l)

- 6

Prove: 17 +22+ 32+ +n

Prove: Given ¢® = 1 and a" = a""'a for n > 0. Prove: (a) d"a" = a™™, (b) (a™)" = a™.

Answers to Supplementary Problems
B=C=E=F, A=D=G=H
A={aeiou}; B=D={lite}; C={ab,cde}
(a) Cand E; (b) Dand E; (c) A, B, D; (d) none
@S BS O @ @S NS @ (e

(@) ANB=1{2,5}, AnC={1,5}); (b) AUB={1,2,5,6,7}, AUC = {1,2,3,5,6,7,9};
(c) A° = {3,4,7,8,9}, C° = {2,4,6,8}

(a) A\B={1,6}, A\C={2,6}; (b)) A®B=1{1,6,7}, A® C = {2,3,6,7,9}
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1.47. (a) {1,3,6,7,9}. (b) {3,4,8,9}, (c) {3,9}

148.  (a) {a,b,c,d,e.f,g}; (b) {e,g,h}; () {b,g}; (d) {d,e}; (e) {b,c}; (f) {f.8:h};
(&) {c,e.f,g}; (h) {a,d, g h}

1.49. (a) {a,b,d,e}; (b) {a}; (c){a,d.f}; (d){g}; (o) & () {c;h}; (9) &5 (h) {a,d}
1.53. AUB=(4NB)*

1.54. (b) A={a}; B={b}; C={c}, AU(B\C)={a}, (AUB)\(4UC)={b}
1.56. See Fig. 1-18.

(@ ®) ©

Fig. 1-18

1.57. (a) A=(B°'UA)N(AUB)
b) (AUB)N(AUB)N(AUB)N(AUB) =

1.59.  (b), (c), and (d)
1.60. (a)17; (b) 8 (c)11; (d)8; (e) 0

1.61. (a) 55 (b)75 ()15, (d) 55

1.62. (a)80; (b)75; (c)25: (d)35; (e)60; (f) 45

1.63. Use the data to first fill in the Venn diagram of A (air-conditioning), R (radio), W (power windows) in
Fig. 1-19. Then: (a) 5; (b)4; (c)2; (d) 4 (e) 6; (f) 11; (g) 23; (h)2.

/)
\/
&y

Fig. 1-19
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1.64.

1.65.

1.66.

1.67.

1.68.

1.69.

1.70.

Three elements: {a,b}, {c}, and {d,e,f}. (@) F; (O)F; (¢)F;, ()T, (e)F;, (NT, (g F, ()T
Four elements: &, {1}, {2,3},and {3,4}. (@) F; (B)F;, (¢)T;, AF;, (T, (NT, (T, (AT

(a) 2(A) has 2° = 32 elements as follows (where 135 = {1,3,5}):

[2,1,2,3,4,5,12,13,14,15,23,24,25,34,35,45,123, 124,125,134, 135, 145,234, 235,245, 345, 1234, 1235,
1245,1345,2345, A]

(b) % has 6 elements: [123, 124, 125, 134, 135, 145].

A has 3 elements, so 2(A) has 2° = 8 elements as follows (where [ab, ¢] = [{ab}, {c}]):
{5, lab], [c], def], [ab,c], [ab,def],[c, def], A}

Note that 2(A4) is a collection of collections of sets.

Let X be an arbitrary element of (4). For each a € A4, there are two possibilities, a € X or a € X. Since
there are m elements in A, there are 2.2 ... -2 (m factors) = 2" different sets X. That is, 2(A4) has 2™
elements.

See Fig. 1-20. (a) Yes; (b) no; (c) yes; (d) yes

See Fig. 1-21. (a) No; (b) yes; (c) yes; (d) no
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1.72.

Fig. 1-20 Fig. 1-21

See Fig. 1-22. (a) Yes; (b) yes; (c) yes; (d) no

See Fig. 1-23. (a) Yes; (b) yes; (c) no
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Chapter 2

Sets and Elementary Properties of the Real
Numbers

2.1 INTRODUCTION

This chapter investigates some sets and basic properties of the real numbers R and the integers
z={..,-2,-1,012,...}

(The letter Z comes from the word Zahlen which means number in German.)
The following simple rules concerning the addition and multiplication of these numbers are
assumed:

(a) Associative law for multiplication and addition:
(a+b)+c=a+(b+c) and (ab)c = a(bc)
() Commutative law for multiplication and addition:
a+b=b+a and ab = ba
(¢) Distributive law:
alb+c¢) =ab+ac

(d) Additive identity and multiplicative identity: There exists a zero element 0 and a unity element 1
such that, for any number aq,

a+0=0+a=a and arl=1l-a=a
(e) Additive inverse (negative): For any number a, there exists its negative —a such that
a+(—a)=(-a)+a=0

(f) Multiplicative inverse: For any number a # 0, there exists an inverse a~' such that

Subtraction and division (except by 0) are defined in R by
a—b=a+(-b) and a-b"'
Observe that subtraction uses property (e) of negatives, and division uses property (f) of inverses.
Warning. The last property (f) holds for the real numbers R and the rational numbers Q, but does

not hold for the integers Z. That is, one can add, subtract, multiply, and divide (except by 0) in R and Q,
but only add, subtract, and multiply in Z.

2.2 REAL NUMBER SYSTEM R

The notation R will be used to denote the real numbers. These are the numbers one uses in basic
arithmetic and algebra. R together with its properties is called the real number system.

34
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The set R of real numbers includes the following sets of numbers:
Z={.,-2,-1,0,1,2,...} = set of integers (signed whole numbers)
P ={1,2,3,...} = set of positive integers (counting numbers)
N ={0,1,2,...} = set of nonnegative integers (natural numbers)
Q = set of rational numbers, i.e. numbers which are ratios of integers

Examples of rational numbers are 2/3 and —3/4. Those real numbers that are not rational, such as m and
V2, i.e., real numbers which cannot be represented as the ratio of integers, are called irrational numbers.
The integer 0 is also a real number. Furthermore, for each positive real number, there is a corresponding
negative real number.

Real Line R, Decimal Expansion

One of the most important properties of the real numbers is that they can be represented graphically
by points on a straight line. Specifically, as pictured in Fig. 2-1, a point, called the origin, is chosen to
represent 0, and another point, usually to the right of 0, is chosen to represent 1. The direction from 0 to
1 is the positive direction and is sometimes indicated by an arrowhead at the end of the line. The distance
between 0 and 1 is the unit length. Now there is a natural way to pair off the points on the line and the
real numbers, that is, where each point on the line corresponds to a unique real number and vice versa.
The positive real numbers are those to the right of 0 (on the same side as 1) and the negative numbers
are those to the left of 0. The points representing the rational numbers 5/4 and —3/2 are indicated in
Fig. 2-1. We refer to such a line as the real line or the real line R.

N
w
EN
=2
>

@ »in
[ ]

wl
I
w

-5 -4 -3 -2 -1 0 i 2
Real line R
Fig. 2-1

Real numbers can also be represented by decimals. The decimal expansion of a rational number will
either stop as in % = 0.75 or will have a pattern that repeats indefinitely, such as ﬁ = 1.545454.... Even
when the decimal expansion stops, it can be rewritten using repeated 9’s, for example, % =0.74999....
The decimal expansion of an irrational number never stops nor does it have a repeating pattern. The
points representing the decimal 2.5 and 4.75 are indicated in Fig. 2-1.

2.3 ORDER AND INEQUALITIES
Let a and b be real numbers. We say a is less than b, written
a<b

if the difference b — a is positive. Geometrically, a < b if and only if the point a lies to the left of the
point b on the real line R.

Observe that we define order in R in terms of the positive real numbers denoted by R*. All the usual
properties of this order relation are a consequence of the following two properties of the positive real
numbers R*:

[P,] If a and b are positive, then a + b and ab are positive.
[P,] For any real number a, either a is positive, a = 0, or —a is positive.

The following additional notation and terminology are used:

a > b, means b < a; read: a is greater than b
a<b meansa<bora=b; read: a is less than or equal to b
a> b, means b < g read: a is greater than or equal to b
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Any statement of the form a < b, a < b, a > b, or a > b is called an inequality; and any statement of the
form a < b or a > b is sometimes called a strict inequality.

EXAMPLE 2.1

(@) 2<5; —-6<-3; 4<4; 5>-8; 620, -7<0.

(b) Sorting the numbers 4, —7, 9, -2, 6, 0, —11, 13, —1, —5 in increasing order we obtain:
-11,-7,-5,-2,-1,0,3,4,6,9,13

(¢) A real number a is positive iff a > 0, and a is negative iff a < 0. (Recall that “iff”” is short for “if and only if.”)

(d) The statement 2 < x < 7 means 2 < x and x < 7; hence x will lie between 2 and 7 on the real line R.

Basic properties of the inequality relations follow.

Proposition 2.1: Let q,b, ¢ be real numbers. Then:

(i) a<a.
(i) Ifa<band b<aq,thena=>s.
(iii)) Ifa<band b<c thena<c.

Proposition 2.2 (Law of Trichotomy): For any real numbers a and b, exactly one of the following holds:

a<b, a=>b, or a>b

Proposition 2.3: Let q, b, ¢ be real numbers such that a < b. Then:

(i) a+c<b+ec.
(ii) ac < bc when ¢ > 0; but ac > bc when ¢ < 0.

Remark: Observe that the above two properties [P;] and [P,] of the positive real numbers R are
also true for the positive rational numbers Q* viewed as a subset of the rational numbers Q, and the
positive integers P = Z viewed as a subset of the integers Z. Accordingly, Propositions 2.1, 2.2, and 2.3
also hold for the rational numbers Q and the integers Z.

24 ABSOLUTE VALUE, DISTANCE

The absolute value of a real number a, denoted by |a|, may be viewed as the distance between a and
the origin 0 on the real line R. Formally, |a| = a or —a according as a is positive or negative, and |0| = 0.
That is:

la| = a, ifa>0
"l =—a, ifa<0

Accordingly, |a| is always positive when a # 0. Intuitively, |a| may be viewed as the magnitude of a
without regard to sign.
The distance d between two points (real numbers) a and b is denoted by d(a, b) and is obtained from
the formula
d=d(a,b)=|a—bl=1|b-4q
Alternatively:

d— |a| + |b], if a and b have different signs
" 1 la] = |b], if a and b have the same sign and |a| > |b|
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These two cases are pictured in Fig. 2-2.

- d > -«d—>
] > «—|a|——
< |b|—> <«——|b|—>
—e . . —e *— .
a 0 b a b 0
(@) d=|a| +|b| (i) d=|a| - |b|
Fig. 2-2
EXAMPLE 2.2
(@ |=-31=3, |7|=17, |-13]=13, |425|=425 |- 0.75| = 0.75.
® R2=71=|-5=5 17=-2|=|5|=5, |-3-8|=|-11|=11.

(¢) Using Fig. 2-2,
d(-2,9)=2+9=11, d(5,8)=8-5=3, d(-4,-11)=11-4=7

The following proposition gives some properties of the absolute value function. [Problems 2.14 and
2.15 prove (iii) and (iv).]

Proposition 2.4: Let a and b be any real numbers.

() la| >0, and |a| = 0 iff a = 0.
(i) —la| <a<|al

(ii)  |ab| = |a] Jo].

(iv) la=xb| < la|+ |b].

) la| = |b]| < |a £ b].

2.5 INTERVALS

Let a and b be distinct real numbers with, say, a < b. The intervals with endpoints a to b are denoted
and defined as follows:

(a,b) ={x:a < x < b}, open interval from a to b

la,b] = {x:a <x < b}, closed interval from a to b

(a,b] = {x:a < x < b}, open-closed interval from a to b
[a,b) = {x:a < x < b}, -closed-open interval from a to b

Observe that an interval is open if it does not include’ its endpoints and is closed if it does include
its endpoints. Also, a parenthesis “(“ or ”)” is used to indicate that an endpoint does not belong
to the interval, and a bracket “[ or ]’ is used to indicate that an endpoint does belong to the
interval.

Figure 2-3 shows how we picture each of the above four intervals on the real line R. Notice that in
each case the endpoints a and b are circled, the line segment between a and b4 is thickened, and the circle

about the endpoint is filled if the endpoint belongs to the interval.
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O O T o—
a b a b
open interval: a <x < b closed interval: a<x< b
o ° P O
O~ < ® O—
a b a b
open-closed interval: a <x < b closed-open interval: a <x <b
Fig. 2-3

EXAMPLE 2.3
(a) Find the interval satisfying each inequality, i.e., rewrite the inequality in terms of x alone:
(1)2<x-5<8, (2)-1<x+3<4, 3)-6<3x<12, 4-6<-2x<4
(1) Add 5 to each side to obtain 7 < x < 13.
(2) Add -3 to each side to obtain -4 < x < 1.
(3) Divide each side by 3 (or: multiply by %) to obtain -2 < x < 4.
(4) Divide each side by —2 (or: multiply by —%) and reverse inequalities to obtain —6 < x < 3.

(b) The inequality |x| < 5 may be interpreted to mean that the distance between x and the origin O is less than §;
hence x must lie between —5 and 5 on the real line R. In other words,

|x] <5 and -5<x<5,
have the same meaning and, similarly,
x| <5 and -5<x<5

have the same meaning.

Definition: A set 4 of real numbers is said to be dense in R if every open interval contains a point of 4
or, equivalently, if there is a point of 4 between any two points in R.

The following theorem applies.
Theorem 2.5: The rational numbers Q are dense in R.

The proof of the above theorem lies beyond the scope of this text. It is closely related to the fact that
every real number may be expressed as an infinite decimal or, equivalently, that every real number is the
limit of a sequence of rational numbers.

Infinite Intervals

Let a be any real number. Then the set of real numbers x satisfying x < a, x < a, x > a,0or x > a, is
called an infinite interval with endpoint a. The interval is said to be closed or open according as the
endpoint a does or does not belong to the interval. The four infinite intervals may also be denoted and
defined as follows:

(—00,a) ={x:x < a} (a,00) ={x:x>a}

(—o0,a] ={x:x<a} la,00) = {x:x > a}
Note that the infinity symbol oo means all the numbers in the positive direction of a, whereas the minus
infinity symbol —oo means all the numbers in the negative direction of a. A parenthesis is used with

oo and —oo since they do not represent numbers in the interval. These infinite intervals are pictured in
Fig. 2-4.
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- O— - * —O L
a a a a
x<a x<a x>a x2a

Fig. 24

2.6 BOUNDED SETS, COMPLETION PROPERTY

Let A be a set of real numbers. Then A4 is said to be:
(i) bounded, (ii) bounded from above, (iii) bounded from below

according as there exists a real number M such that, for every x € 4:
() |x| <M, (i) x<M, (ii)M<x

The number M is called a bound in (i), an upper bound in (ii), and a lower bound in (iii). Note that A4 is
bounded if and only if 4 is a subset of some finite interval. Specifically, M is a bound of 4 if and only if
A is a subset of [-M, M].

If A is finite then A is necessarily bounded. If A is infinite, then 4 may be bounded, bounded from
above (below), or unbounded.

EXAMPLE 2.4
(@) A={1,1/2,1/3,...,1/n,...} is bounded since 4 is certainly a subset of the closed unit interval I = [0, 1].
(b) B={2,4,6,...} is unbounded, but it is bounded from below.
(¢) C={...,—5,-3,—1} is unbounded, but it is bounded from above.
d) Z={..,-2,-1,0,1,2,...} is unbounded. It has neither an upper bound nor a lower bound.
Definition: Let A be a set of real numbers. A number M is called the least upper bound or supremum of
A, written
M =sup(4)

if M is an upper bound of A4 but any number less than M is not an upper bound of 4, that
is, for any positive number ¢, there exist a € A such that, M — e < a.

The following statement applies.
Completion Property of R: If a set 4 of real numbers is bounded from above, then sup(4) exists.

The real numbers R are said to be complete since it satisfies the above property. We note that the
rational numbers Q is not complete as seen by the following example.

EXAMPLE 2.5 Let 4 be the following subset of the rational numbers Q:
A={x€Q:x>0,x2<3}

Observe that 4 is bounded. However sup(4) does not exist. We cannot let sup(4) = /3 since /3 is not a rational
number.

The next two theorems (see Problems 6.17 and 6.49) follow from the completion property of R.
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Nested Interval Theorem: The intersection S = N,J, of a nested sequence of closed intervals is not
empty. [A sequence {I,} of intervals is nested if I} D I,... ]

Heine-Borel Theorem: Let % be a collection of open intervals which contain a closed interval 4 = [a, b].
Then a finite subcollection of € contains 4.

2.7 INTEGERS Z (OPTIONAL MATERIAL)
The notation Z is used to denote the integers, the “signed whole numbers”; that is,
Z={..,-3-2,-1,1,23,...}

As noted above, Z satisfies all the properties in Section 2.1 except (f). Accordingly, one can always add,
subtract, and multiply integers obtaining integers. However, the quotient of two integers need not be an
integer, hence the question of divisibility plays an important role in Z.

One fundamental property of the integers Z is mathematical induction, which was discussed in
Section 1.11. We give an equivalent statement below.

Well-Ordering Principle

A property of the positive integers P which is equivalent to the principle of induction, although
apparently very dissimilar, is the well-ordering principle (proved in Problem 2.32). Namely:

Theorem 2.6 (Well-Ordering Principle): Let S be a nonempty set of positive integers. Then .S contains a
least element; that is, S contains an element a such that a < s for every s in S.

Generally speaking, an ordered set S is said to be well-ordered if every subset of S contains a first
element. Thus Theorem 2.6 states that P is well-ordered.

A set S of integers is said to be bounded from below if every element of S is greater than some integer
m (which may be negative). (The number m is called a lower bound of S.) A simple corollary of the
above theorem follows:

Corollary 2.7: Let S be a nonempty set of integers which is bounded from below. Then S contains a
least element.

Division Algorithm

The following fundamental property of arithmetic (proved in Problems 2.36 and 2.37) is essentially a
restatement of the result of long division.

Theorem 2.8 (Division Algorithm): Let a and b be integers with b # 0. Then there exists integers g and r

such that
a=bg+r and 0<r<|b

Also, the integers ¢ and r are unique.

The number ¢ in the above theorem is called the quotient, and r is called the remainder. We stress the
fact that r must be nonnegative. The theorem also states that
a—bg=r
This equation will be used subsequently.

EXAMPLE 2.6

(a) Let a=4461 and b = 16. Dividing a = 4461 by b = 16 yields a quotient ¢ = 278 and remainder r = 13. As
expected, a = bg + r, that is,
4461 = 16(278) + 13
(b) Leta= —262and b = 3. Here ais negative. First divide |a| = 262 by b = 3 to obtain a quotient ¢’ = 87 and a
remainder r’ = 1; hence

262 = 3(87) + 1
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We need a = —262, so we multiply by —1 obtaining
—262 =3(-87) -1
However, —1 is negative and hence cannot be r. We correct this by adding and subtracting b = 3 as follows:
—262=3(-87)-3+3—-1=3(-88)+2
Therefore, g = —(¢' +1) = —-88and r=b~r' = 2.

Remark: The result in Example 2.6(b) is true in general. That is, suppose a is negative and suppose
we want to find the quotient ¢ and remainder r when a is divided by b. First divide |a| by b to obtain a
positive quotient ¢’ and remainder r'. If r’ # 0, then set

!

g=—-(¢g'+1) and r=b—1r'

but if ' =0, then set g = —¢' and r =1’ = 0.
Divisibility
Let a and b be integers with a # 0. Suppose ac = b for some integer c. We then say that a divides b

or b is divisible by a and write
alb

We may also say that b is a multiple of a or that a is a factor or divisor of b. If a does not divide b, we will
write afb.
EXAMPLE 2.7
(@) 3|6 since 3:2 = 6; and —4/28 since (—4)(—7) = 28.
(b) The divisors:
(i) of 1 are +1 (iii) of 4 are £1,+2,+4 (v) of 7 are +1,+7,
(i) of 2 are £1,+2 (iv) of 5 are +1,+5 (vi) of 9 are +1,+3,+9
(¢) Ifa#0, then a|0 since a-0 = 0.

(d) Every integer a is divisible by =1 and +a. These are sometimes called the trivial divisors of a.

Simple properties of divisibility follow.
(i) If a|b and b|c, then a]c.
(ii) If a|b then, for any integer x, a|bx.
(iii) 1If a|b and 4lc, then a|(b + ¢) and a|(b — ¢).
(iv) If alb and b # 0, then a = +b or |a| < |b|.
(v) If a|b and b|a, then |a| = |b|, i.e., a = £b.
(vi) If a|l, then a = +1.

Putting (ii) and (iii) together, we obtain the following important result.
Proposition 2.9: Suppose a|b and a|c. Then, for any integers x and y, a|(bx + cy).

The expression bx + cy will be called a linear combination of b and c.

Primes

A positive integer p > 1 is called a prime number or a prime if its only divisors are £1 and +p, that is,
if p only has trivial divisors. If # > 1 is not prime, then # is said to be composite. We note (Problem 2.31)
that if n» > 1 is composite then n = ab where 1 < a,b < n.
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EXAMPLE 2.8
(a) The integers 2 and 7 are primes, whereas 6 =2-3 and 15 = 3-5 are composite.
(b) The primes less than 50 follow:
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47
(¢) Although 21, 24, and 1729 are not primes, each can be written as a product of primes:
21=3.7, 24=2.2.2.3=2%.3,  1729=7-13-19
The Fundamental Theorem of Arithmetic states that every integer n > 1 can be written as a product

of primes in essentially one way; it is a deep and somewhat difficult theorem to prove. However, using
induction, it is easy at this point to prove that such a product exists. Namely:

Theorem 2.10: Every integer n > 1 can be written as a product of primes.
Note that a product may consist of a single factor so that a prime p is itself a product of primes.

We prove Theorem 2.10 here, since its proof is relatively simple.

Proof: The proof is by induction. Let n = 2. Since 2 is prime, » is a product of primes. Suppose
n > 2, and the theorem holds for positive integers less than »n. If n is prime, then » is a product of primes.
If n is composite, then n = ab where a, b < n. By induction, a and b are products of primes; hence n = ab
is also a product of primes.

Euclid, who proved the Fundamental Theorem of Arithmetic, also asked whether or not there was a
largest prime. He answered the question thus:

Theorem 2.11: There is no largest prime, that is, there exists an infinite number of primes.

Proof. Suppose there is a finite number of primes, say p;,p,,...,P,. Consider the integer

n=pipr-Pm+1
Since 7 is a product of primes (Theorem 2.10), it is divisible by one of the primes, say p,. Note that p;
also divides the product p;p, - - - p,,. Therefore p, divides

n—pipr-pm=1

This is impossible, and so # is divisible by some other prime. This contradicts the assumption that
P1,D2,---,Pm are the only primes. Thus the number of primes is infinite, and the theorem is proved.

2.8 GREATEST COMMON DIVISOR, EUCLIDEAN ALGORITHM

Suppose a and b are integers, not both 0. An integer d is called a common divisor of a and b if d
divides both a and b, that is, if d|a and d|b. Note that 1 is always a positive common divisor of a and b,
and that any common divisor of @ and b cannot be greater than |a| or |5|. Thus there exists a largest
common divisor of a and b; it is denoted by

gcd (a,b)

and it is called the greatest common divisor of a and b.

EXAMPLE 2.9

(a) The common divisors of 12 and 18 are +1,+2,+3,+6. Thus ged (12,18) = 6. Similarly,
ged (12,—18) =6, ged (12, -16) = 4, ged (29,15) =1, ged (14,49) =7
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(b) For any integer a, we have ged (1,a) = 1.
(¢) For any prime p, we have ged (p,a) = p or ged (p,a) = 1 according as p|a or pja.

(d) Suppose a is positive. Then a|b if and only if ged (a,b) = a.

The following theorem (proved in Problem 2.43) gives an alternative characterization of the greatest
common divisor.

Theorem 2.12: Let d be the smallest positive integer of the form ax + by. Then d = ged (a, b).

Corollary 2.13: Suppose d = gcd (a,b). Then there exists integers x and y such that d = ax + by.

Another way to characterize the greatest common divisor, without using the inequality relation,
follows:

Theorem 2.14: A positive integer d = gcd (a,b) if and only if d has the following properties:
(1) d divides both a and b;
(2) if ¢ divides both a and b, then c|d.

Simple properties of the greatest common divisor follow.

(a) ged (a,b) = ged (b, a).

(b) If x > 0, then gcd (ax, bx) = x-ged (a,b).

(¢) If d =gcd (a,b), then ged (a/d, b/d) = 1.

(d) For any integer x, ged (a,b) = ged (a, b + ax).

Euclidean Algorithm

Let a and b be integers, and let d = ged (a,b). One can always find d by listing all the divisors of a
and then all the divisors of » and then choosing the largest common divisor. This procedure does not
find the integers x and y such that

d =ax+ by

This subsection gives a very efficient algorithm for finding both d = gcd (a, b) and the above integers x
and y.

This algorithm, called the Euclidean algorithm, consists of repeatedly applying the division algo-
rithm (long division). We illustrate the algorithm with an example.

EXAMPLE 2.10 Leta = 540 and b = 168. We find d = gcd (a, b) by dividing a by b and then repeatedly dividing
each remainder into the divisor until obtaining a zero remainder. These steps are pictured in Fig. 2-5. The last

nonzero remainder is 12. Thus
12 = ged (540, 168)

This follows from the fact that
ged (540, 168) = ged (168,36) = ged (36,24) = ged (24,12) = 12

3 4 1 2
168)540 36)168 24)36 12)24
504 144 24 24

36 24 12 0

Fig. 2-5
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Next we find x and y such that
12 = 540x + 168y

The first three quotients in Fig. 2-5 yield the equations:

(I) 540=3(168)+36 or  36= 540 —3(168)
(2) 168=4(36)+24  or  24=168 —4(36)
() 36=124)+12 or 12=36-1(24)

Equation (3) tells us that 12 is a linear combination of 36 and 24. We use (2) to replace 24 in (3) so we can write 12 as
a linear combination of 168 and 36 as follows:

(4) 12=136—1[168 — 4(36)] = 36 — (168) + 4(36)
= 5(36) — 1(168)

We now use (/) in (4) so we can write 12 as a linear combination of 168 and 540 as follows:
12 = 5[540 — 3(168)] — 1(168)
= 5(540) — 15(168) — 1(168)
= 5(540) — 16(168)

This is our desired linear combination. Thus x = 5 and y = —16.

Least Common Multiple

Suppose a and b are nonzero integers. Note that |ab| is a positive common multiple of a and 5. Thus
there exists a smallest positive common multiple of a and b; it is denoted by

lem (a, b)

and it is called the least common multiple of a and b.

EXAMPLE 2.11
(@) lem (2,3)=6, lcm (4,6) =12, lcm (9,10) = 90.
(b) For any positive integer a, we have lcm (1,a) = a.
(c¢) For any prime p and any positive integer a, lcm (p,a) = a or lem (p, a) = ap according as pla or pfa.
(d) Suppose a and b are positive integers. Then a|b if and only if lcm (a,b) = b.
The next theorem gives an important relationship between the greatest common divisor and the least
common multiple.

Theorem 2.15: Suppose a and b are nonzero integers. Then
_ ab|
lem (a,b) = ood (@ )
29 FUNDAMENTAL THEOREM OF ARITHMETIC

This section discusses the Fundamental Theorem of Arithmetic. First we need the notion of rela-
tively prime integers.

Two integers a and b are said to be relatively prime, or coprime, if
ged (a,b) =1
Accordingly, if a and b are relatively prime, then there exist integers x and y such that
ax+by=1

Conversely, if ax + by = 1, then a and b are relatively prime.
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EXAMPLE 2.12

(a) Observe that ged (12,35) =1, ged (49,18) =1, ged (21,64) = 1, ged (—28,45) =1

(b) If p and q are distinct primes, then ged (p,q) = 1.

(¢) For any integer a, we have gcd (a,a+ 1) = 1. This follows from the fact that any common divisor of a and

a + 1 must divide their difference (¢ +1) —a=1.

The relation of being relatively prime is particularly important because of the following results. We
will prove the second theorem here.

Theorem 2.16: Suppose gecd (a,b) = 1, and a and b both divide ¢. Then ab divides c.

Theorem 2.17: Suppose albc, and ged (a,b) = 1. Then 4lc.

Proof: Since ged (a,b) = 1, there exist x and y such that ax + by = 1. Multiplying by c yields
acx+ bcy =c

We have alacx. Also, a|bcy since, by hypothesis, albc. Hence a divides the sum acx + bey = c.

Corollary 2.18: Suppose a prime p divides a product ab. Then
pla or plb

This corollary dates back to Euclid. In fact, it is the basis of his proof of the fundamental theorem
of arithmetic.

Fundamental Theorem of Arithmetic

Theorem 2.10 asserts that every positive integer is a product of primes. Can different products of
primes yield the same number? Clearly, we can rearrange the order of the prime factors, e.g.

30=2.3.5=5.2-3=3.2.5
The fundamental theorem of arithmetic (proved in Problem 2.49) says that this is the only way that two
“different” products can give the same number. Namely:
Theorem 2.19 (Fundamental Theorem of Arithmetic): Every integer » > 1 can be expressed uniquely

(except for order) as a product of primes.

The primes in the factorization of n need not be distinct. Frequently, it is useful to collect together
all equal primes. Then » can be expressed uniquely in the form

m m m,
n=p'pypy

where the m; are positive and p; < p, < --- < p,. This is called the canonical factorization of n.

EXAMPLE 213 Leta=2%.3%.7-11-13 and b =2%-3%.5%.11-17. Find d = gcd (a,b) and m = lcm (a, b).

(a) First we find d = ged (a,b). Those primes p; which appear in both a and b, i.e., 2, 3, and 11, will also appear in
d, and the exponent of p; in d will be the smaller of its exponents in @ and 5. Thus

d=ged (a,b) =2°-32.11 =792

(b) Next we find m = lecm (a,b). Those primes p; which appear in either a and b, i.e., 2,3, 5,7, 11, 13 and 17 will
also appear in m, and the exponent of p; in m will be the larger of its exponents in @ and . Thus

m=lem (a,b) =2*-3*.52.11-13.17
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Solved Problems

REAL NUMBER SYSTEM R, SETS OF NUMBERS

2.1.

2.2.

2.3.

Assuming R, Q, Q’, Z, and P denote respectively, the real numbers, rational numbers, irrational
numbers, integers, and positive integers, state whether each of the following is true or false:

(a) =7 €P (d)3reQ (g) ™ €eR (j) —6€Q
b)V2eQ' (e)V8eP  (h)\9/4eQ  (k)vV—4€cR
(c)4eZ (f) -2€ezZ () 1)2€Z () 6€R

(a) False. P only contains positive integers, —7 is negative.

(b) True. V2 cannot be expressed as the ratio of two integers; hence /2 is irrational.
(¢) True. The integers Z contain all the “whole” numbers, so 4 is an integer.

(d) False. = is not rational and neither is 3.

(e) True. v/8=2is a positive integer.

(f) True. Z contains both the positive and negative “whole” numbers.

(g) True. = is real and so is 7°.

(h) False. \/9/4 = 3/2 is rational, not irrational.

(i) False. 1/2 is not an integer.

() True. The rational numbers include the integers.
(k) False. v/—4 = 2i is not a real number.

(/) True. The real numbers include the integers.

Plot the numbers 3, 3.8, —4.5, and —3.3 on the real line R.

The points corresponding to the numbers are shown in Fig. 2-6.

[ NI
w
%

Express each real number as an infinite decimal (that is, without ending in zeros):
(a) 2/3, (b) 4/7, (c) 3/8.

(a) Dividing 2 by 3 yields 2/3 = 0.6666. . ..
(b) Dividing 4 by 7 yields the following where 571428 repeats:

4/7=0.571428571428...

(¢) Dividing 3 by 8 yields 3/8 = 0.375, which is not an infinite decimal. However, for any nonzero digit d,
one can show that d = d'.999... where d’ = d — 1. Thus replace 5000... by 4999... to obtain the
required infinite decimal

3/8 = 0.3749999 ...
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24.

2.5.

Consider (a) the rational numbers Q and (b) the irrational numbers Q'. Determine whether or
not each is closed under the operations of addition and multiplication.

A set S of real numbers is closed under addition and multiplication according as the sum and product of
any numbers in S still belongs to S.

(a) The sum and product of rational numbers are rational; hence Q is closed under addition and multi-
plication.

(b) The sum and product of irrational numbers, need not be irrational. For example, v2 + (—v/2) = 0 is
not irrational, and v/2v/2 = 2 is not irrational. Thus Q' is not closed under addition and not closed
under multiplication.

Let (a) E = {2,4,6,...} and (b) F = {1,3,5,...}. Determine whether or not each is closed under
the operations of addition and multiplication.

(a) The sum and product of positive even integers are positive and even; hence E is closed under addition
and multiplication.

(b) The sum of two odd numbers is not odd, hence F is not closed under addition. However, the product
of two positive odd integers is positive and odd; hence F is closed under multiplication.

ORDER AND INEQUALITIES, ABSOLUTE VALUE

2.6.

2.7.

2.8.

Insert the correct symbol, <, >, or =, between each pair of real numbers:
(a) 4 -7 (c) 32 9 (e) 32 5.5
(b) =2 -9 (d) -8 T (f) 6.25 8

For each pair of real numbers, say a and b, determine their relative positions on the number line R; or,
alternately, compute b — a, and write

a<b, a>b, or a=b
according as b — a is positive, negative, or zero. Hence:
(@ 4>-7, (¢)3*=9, (e)3*>55,
(b) =2>-9, (d)-8<m (f)6.25<8.

Rewrite the following geometric relationships between the given real numbers using the inequality
notation: (a) x lies to the right of 8; (b) y lies to the left of —2; (c) z lies between —3 and
7, (d) t lies between 5 and 1.

Recall that a < b means that a lies to the left of b on the real line R. Thus: (a) x> 8 or 8 < x;
b)yy<-2; () -3<zandz<7or,simply, -3<z<7, (d)1<t<5.

Sort the following numbers in increasing order (where e = 2.7814...):

5 -8,2, =3, m, —=2.8,0,9, e —15,3

The negative numbers will be on the left of 0, decreasing in magnitude (absolute value) from left to
right, and the positive numbers will be on the right of 0 increasing in magnitude from left to right:

-8, -3, =28, -15,0,2,¢, 3, m 5,9
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29. Evaluate: (a)|—4|, 16.2], |0], | — 1.25]

(®) [2=5], [=2+5], [ -2-5|
() 15-8+[2—-4] [4-3]-|3-9|
(a)

The absolute value is the magnitude of the number without regard to sign. Hence:

[—4=4, [62]=62,

[0=0, |[—125=125
(b) Evaluate inside the absolute value sign first:
[2-5=|-3]=3, |—2+5=|3]=3, |=2-5|=|-7=7
(¢) Evaluate inside the absolute value sign first:
[5—8+2—4|=|-3]+]|-2[=3+2=5
[4=3-3~-9|=|1|-|-6/=1-6=-5
2.10. Find the distance d between each pair of integers:
(a) 3 and -7 (¢) 1 and 9 (e) 4and —4
(b) —4 and 2 (d) —8 and -3 (f) =5 and —8

The distance d between a and b is given by d = |a — b| = | b — a|. Alternatively, as shown in Fig. 2-2,
d = |a| + |b| when a and b have different signs, and d = |a| — |b| when a and b have the same sign and
|a| > |b|. Thus:

(e)d=4+4=8

@d=3+7=10 (c)d 1=8
(b)d=4+2=6 d=8-3=5 (f)d=8-5=3

2.11. Find all integers » such that:

(@) 1<2n—-6<14, (b)2<8-3n<18.

(a) Add 6 to the “three sides” to get 7 < 2n < 20. Then divide all sides by 2 (or multiply by 1/2) to get
3.5<n< 10. Hence

n=4,56,7,89
(&)

Add -8 to the three sides to get —6 < —3n < 10. Divide by —3 (or multiply by —1/3) and, since —3 is
negative, change the direction of the inequality to get

2>n>-33 or -33<n<?2
Hence n = -3, -2,

~1,0,1.

2.12. Prove Proposition 2.1(iii): Ifa<band b<c¢, thena<c.

The proposition is clearly true when a = b or b = ¢. Thus we need only consider the case that a < b and
b < c. Hence b — a and ¢ — b are positive. Therefore, by property [P,] of the positive real numbers R*, the
sum is also positive. That is,

(b—a)+(c—b)=c—a
is positive. Thus a < ¢ and hence a < c.
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2.13. Prove Proposition 2.3: Let a, b, c be real numbers such that a < b. Then:
()a+c<b+c, (i) ac< bc when ¢ > 0; but ac > bc when ¢ < 0.

The proposition is certainly true when a = b. Hence we need only consider the case when a < b, that is,
when b — a is positive.

(i) The following difference is positive:
(b+c)—(a+c)=b—-a
Hencea+c<b+ec.
(ii) Suppose c is positive. By property [P,] of the positive real numbers R*, the following product is also
positive:
c(b—a)=bc~ac

Thus ac < be. Now suppose c is negative. Then —c is positive. Thus the following product is also
positive:

(=¢)(b—a) =ac—bc

Accordingly, bc < ac, whence ac > be.

2.14. Prove Proposition 2.4(iii): |ab| = |a||b].
The proof consists of a case-by-case analysis.
(a) Suppose a=0orb=0.
Then |a| =0 or |b| =0, and so |a||b| =0. Also ab =0. Hence
lab| = 0 = |al 3]
(b) Suppose a >0 and b > 0.
Then |a| = a and |b] = b. Hence
lab| = ab = |al 8]
(¢) Suppose a >0 and b < 0.
Then |a| = a and |b| = —b. Also ab < 0. Hence
|ab| = —(ab) = a(—b) = |al|b]
(d) Suppose a < 0and b > 0.
Then |a| = —a and |b| = b. Also ab < 0. Hence
|ab| = —(ab) = (—a)b = |al|b|
(¢) Suppose a <0 and b < 0.

Then |a| = —a and |b| = —b. Also ab > 0. Hence
|ab| = ab = (—a)(-b) = |al|b|

2.15. Prove Proposition 2.4(iv): |a £ b| < |a| + |b].
Now ab < |ab| = |a||b|, and so 2ab < 2|a||b|. Hence
(a+b)" = a® +2ab+b" < |af’ +2lal|b| + |bI" = (lal + |b])*
But 1/(a+ b)* = |a + b|. Thus the square root of the above yields |a + b| < |a| + |b].
Also,
la—b| = la+ (=b)| < |al +| — b = |a| + |b]



50 SETS AND ELEMENTARY PROPERTIES OF THE REAL NUMBERS [CHAP. 2
2.16. Plot and describe the absolute value function f(x) = |x|.
For nonnegative values of x we have f(x) = x and hence we obtain points of the form (4, q), e.g.,
(0,0), (1,1), (2,2),...
For negative values of x we have f(x) = —x and hence we obtain points of the form (—a,a), e.g.,
(=L, 1), (=2,2), (-3,3),...
This yields the graph in Fig. 2-7. Observe that the graph of f(x) = |x] lies entirely in the upper half-
plane since f(x) > 0 for every x € R. Also, the graph consists of the line y = x in the right half-plane
and the line y = —x in the left half-plane.
4
2 -
_L4 1 _12 1 il é L ;;
Graph of f(x) = |x|
Fig. 2-7
INTERVALS
2.17. Rewrite each interval in set-builder form:
(a) A =1[-3,5), (b) B=(3,8), (¢) C=10,4], (d) D=(-7,-2].
Recall that a parenthesis means the endpoint does not belong to the interval, and that a bracket means
that the endpoint does belong to the interval. Thus:
(@ A={x:-3<x<5} () C={x:0<x<4}
(b B={x:3<x<8} d)D={x:-T<x< =2}
2.18. Describe and plot each interval:

(@) 4=(2,4), (b)) B=[-1,2], (c) C=(-3,1].

(a) A consists of all numbers between 2 and 4 without the endpoints 2 and 4. See Fig. 2-8(a).
(b)
(

¢) C consists of all points between —3 and 1 including only the endpoint 1. See Fig. 2-8(c).

B consists of all points between —1 and 2 including both endpoints —1 and 2. See Fig. 2-8(b).

Note that a circle about an endpoint is filled or unfilled according as the endpoint does or does not
belong to the interval.

O— !
4



CHAP. 2] SETS AND ELEMENTARY PROPERTIES OF THE REAL NUMBERS 51

2.19.

2.20.

2.21.

2.22.

2.23.

2.24.

Find the interval satisfying each inequality, i.e., rewrite the inequality in terms of x alone:
(@)3<x—4<9, () 2<x+5<3, (¢)-8<2x<2, (d)-9<-3x<L15

(@) Add 4 to each side to obtain 7 < x < 13.

() Add -5 to each side to obtain -7 < x < 2.

(¢) Divide each side 2 (or multiply by 1/2) to obtain —4 < x < 1.

(d) Divide each side —3 and reverse inequalities to obtain 3 > x > —5 or, in the usual form, -5 < x < 3.

Rewrite without the absolute value sign: (a) |x| <3, (b) |x—2| < S.

(a) Here x lies between —3 and 3; hence —3 < x < x.
(b)) Here -5<x—-2<Sor-3<x<T7.

Write each open interval in the form |x —a| <r: (@) 2 <x <10, (b) -7 <x<3.

Here a will be the “center”” and r will be the “radius” of the interval, i.e., a is the midpoint and r is half
the length of the interval. Thus find the sum s of the endpoints and divide by 2 to obtain «, and find the
distance d between the endpoints and divide by 2 to obtain r.

(@) s=12s0a=6;d=2_8sor=4;hence |x—6| <4
() s=-4soa=-2;d=10so r=75; hence |x+2| < 5.

Under what condition will the intersection of two intervals be an interval?

The intersection of two intervals will always be an interval or a singleton set {a} or the empty set . In
other words, if we view
[@,a) = {x:a < x < a} ={a} and (a,0) ={x:a<x<a}=g

as intervals, then the intersection of any two intervals is always an interval.

Describe, plot, and write in interval notation each set: (a) x > —1, (b) x <2.

(a) All numbers greater than —1, and hence all numbers to the right of —1 as pictured in Fig. 2-9(a). The
interval notation is (—1, 00) where the infinity symbol co means all the numbers in the positive direc-
tion of —1.

(b) All numbers less than or equal to 2, and hence 2 and all numbers to the left of 2 as pictured in
Fig. 2-9(b). The interval notation is (—o0,2]) where the minus infinity symbol —oo means all the
numbers in the negative direction of 2.

Fig. 2-9

Are the integers Z dense in R?

A set A is dense in R if every open interval contains an element of 4. Thus Z is not dense in R since, for
example, the open interval (1/3,1/2) does not contain an integer.
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BOUNDED AND UNBOUNDED SETS

2.25. State whether each set of real numbers is bounded or unbounded:

(@) A={x:x<5} (d) D={2,4,8,...,2",..
() B={...—-10,-5,0,5,10,...} (e E={, 1.4 ....()" ..}

'}

(c) C ={2'8,377,7,0,8%} (f) F={1,-1,}, 11 1}

(a)
(6)
()

A is unbounded. There are negative numbers whose absolute values are arbitrarily large.
B is unbounded.

Although C contains very large numbers, C is still bounded since C is finite.

D is the set of powers of 2 and they are arbitrarily large. Thus D is unbounded.

E is the set of positive powers of 1/2. Although E is infinite, it is still bounded. In fact, E is contained
in the unit interval I = [0, 1].

Although F is infinite it is still bounded. In fact, F is contained in the interval [—1,1].

2.26. Which of the unbounded sets 4, B, D in Problem 2.25 are bounded from: (a) below,
(b) above?

A is bounded from above, D is bounded from below, but B has neither an upper nor a lower bound.

2.27. If two sets are bounded, what can be said about their union and intersection?

Both the union and intersection of bounded sets are bounded.

2.28. If two sets are unbounded, what can be said about their union and intersection?

The union of the sets must be unbounded, but the intersection could be either unbounded or bounded.

For example, A = (—o0, 1] and B = [~1, 00) are unbounded, but 4 N B = [~1, 1] is bounded. On the other
hand, C = [3,00) and Z are unbounded, and CNZ = {3,4,5,...} is also unbounded.

INTEGERS Z, MATHEMATICAL INDUCTION, WELL-ORDERING PRINCIPLE

The reader is referred to Section 1.11 where the principle of mathematical induction is stated and

discussed.

2.29. Suppose a # 1. Let A4 be the assertion on the integers n > 1 defined by

an+1 _ 1

An): l+a+d+ad+-- +d" = —

Show that A4 is true for all n.

A(1) is true since

l+a=

a-—1
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2.30.

2.31.

2.32.

Assuming A(n) is true, we add a™*' to both sides of 4(n), obtaining

+1 _
l+a+d+a+--+d +a" =%

_d' — 1+ (a-1)a"!

N a—1
an+2_1

+ an+l

a-1
which is A(n+ 1). Thus A(r+ 1) is true whenever 4(n) is true. By the principle of induction, A4 is true for
allneP.

Prove: If n € Z and n is a positive integer, then n > 1. (This is not true for the rational numbers
Q.) In other words, if 4A(n) is the statement that n > 1, then A(n) is true for every n € P.

Method 1: (Mathematical Induction)
A(n) holds for n = 1since 1 > 1. Assuming A(n) is true, that is, n > 1, add 1 to both sides to
obtain

n+1>2>1

which is A(n+1). That is, A(n+ 1) is true whenever A(n) is true. By the principle of
mathematical induction, 4 is true for every n € P.

Method 2: (Well-Ordering Principle)
Suppose there does exist a positive integer less than 1. By the well-ordering principle, there
exists a least positive integer a such that

O<ax<l1
Multiplying the inequality by the positive integer a we obtain

0<ad*<a

Therefore, a° is a positive integer less than a which is also less than 1. This contradicts a’s

property of being the least positive integer less than 1. Thus there exists no positive integer
less than 1.

Suppose a and b are positive integers. Prove: (a) If b # 1, then a < ab. (b) If ab =1, then
a=1land b=1. (c) If nis composite, then n = ab where | < a,b < n.

(a) ByProblem2.30,5 > 1. Hence b — 1 > 0, that is, b — 1 is positive. By the property [P,] of the positive
integers P, the following product is also positive:

ab-1)=ab-a
Thus a < ab, as required.
(b) Suppose b # 1. By (a), a < ab = 1. This contradicts Problem 2.30; hence b = 1. It then follows that
a=1.

(¢) If nis not prime, then n has a positive divisor a such that a # 1 and a # n. Then n = ab where b # 1
and b # n. Thus, by Problem 2.30 and by part (a), | < a,b < ab=n.

Prove Theorem 2.6 (Well-Ordering Principle): Let S be a nonempty set of positive integers.
Then S contains a least element.

Suppose S has no least element. Let M consist of those positive integers which are less than every
element of S. Then 1 € M, otherwise, 1 € S and 1 would be a least element of S. Suppose k € M. Then k is
less than every element of S. Therefore k + 1 € M; otherwise k + 1 would be a least element of S.
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By the principle of mathematical induction, M contains every positive integer. Thus S is empty. This
contradicts the hypothesis that S is nonempty. Accordingly, the original assumption that S has no least
element cannot be true. Thus the theorem is true.

Prove the Principle of Mathematical Induction II: Let A(n) be an assertion defined on the
integers n > 1 such that:

@) A(1) is true.
(ii) A(n) is true whenever P(k) is true for all 1 < k <n.

Then A is true for all n > 1.

Let S be the set of integers n > 1 for which A4 is not true. Suppose S is not empty. By the well-ordering
principle, S contains a least element sy. By (i), 5o # 1.

Since sy is the least element of S, A is true for every integer k where 1 < k < s9. By (ii), A4 is true for s,.
This contradicts the fact that s € S. Hence S is empty, and so A4 is true for every integer n > 1.

DIVISION ALGORITHM

2.34.

2.35.

For each pair of integers a and b, find integers ¢ and r such that a = bg+r and 0 < r < |b|:
(@) a=258 and b = 12 (¢) a= —381 and b = 14
(b)) a=573 and b= —16 (d) a=—433 and b= —17

(a) Here aand b are positive. Simply divide a by b, that is, 258 by 12, to obtain the quotient ¢ = 21 and the
remainder r = 6.

(b) Here ais positive, but b is negative. Divide a by |b|, that is, 573 by 16, to obtain a quotient ¢’ = 35 and
remainder r’ = 13. Then

573 = (16)(35) + 13 = 573 = (—16)(=35) + 13
That is, g = —q¢' = —35and r = r' = 13.

(¢) Here a is negative and b is positive. Thus we have to make some adjustments to be sure that
0 < r < |b|. Divide |a| = 381 by b = 14 to obtain the quotient ¢’ = 27 and remainder r' = 14. There-
fore,

381 = (14)27) +3  andso  — 381 = (14)(=27) — 3
We add and subtract b = 14 as follows:
381 = (14)(=27) — 14+ 14 — 3 = (14)(=28) + 11
Thus ¢ = —28 and r = 11. Alternatively, g= —(¢' +1)=—-28and r=b—r' = 11.
(d) Divide |a| = 433 by |b| = 17 to obtain a quotient ¢’ = 25 and r’ = 8. Then
433=(17)(25)+8 andso  —433=(=17)(25) -8
We add and subtract |b| = 17 as follows:
433 = (=17)(25) — 17+ 17 — 8 = (=17)(26) + 9
Thusg=26and r=9. Thusg=¢q' +landr=5b—r'.

Prove /2 is not rational, that is, V2 # a/b where a and b are integers.

Suppose V2 is rational and v2 =a/b where a and b are integers reduced to lowest terms, i.e.
ged (a,b) = 1. Squaring both sides yields

2= or a* = 2b?
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Then 2 divides @®. Since 2 is a prime, 2|a. Say a =2c. Then
W =a>=4c> or b =2c

Then 2 divides b°. Since 2 is a prime, 2|b. Thus 2 divides both a and b. This contradicts the assumption
that ged (a,b) = 1. Therefore, v/2 is not rational.

2.36. Prove Theorem 2.8 (Division Algorithm) for the case of positive integers. That is, assuming a and
b are positive integers, prove that there exist nonnegative integers g and r such that

a=bg+r and 0<r<b (%)

If a < b, choose ¢ = 0 and r = a@; and if @ = b, choose ¢ = 1 and r = 0. In either case, g and r satisfy (x).

The proof is now by induction on a. If a = 1 then a < b or a = b; hence the theorem holds when a = 1.
Suppose a > b. Then a — b is positive and a — b < a. By induction, the theorem holds for a — 5. Thus there
exist ¢’ and r’ such that

a—-b=>bqg' +r and 0<r' <b
Then
a=bq +b+r' =bqg' +1)+r

Choose ¢ = ¢’ + 1 and r = r’. Then g and r are nonnegative integers and satisfy (x).

2.37. Prove Theorem 2.8 (Division Algorithm): Let a and b be integers with b # 0. Then there exists
integers ¢ and r such that

a=bg+r and 0<r<|b
Also, the integers ¢ and r are unique.

Let M be the set of nonnegative integers of the form a — xb for some integer x. If x = —|alb, then
a — xb is nonnegative (Problem 2.63); hence M is nonempty. By the well-ordering principle, M has a least
element, say r. Since r € M, we have

r>0 and r=a—gqb

for some integer g. We need only show that r < |b|.
Suppose r > |b|. Let r’ =r—|b|. Then r’ > 0 and also r’ < r because b # 0. Furthermore,

a—(g+1)b, ifb<0

r/zr—1b|=a—qb—|b|={a_(q_l)b, ifb>0

In either case, r’ belongs to M. This contradicts the fact that r is the least element of M. Accordingly,
r < |b|. Thus the existence of g and r is proved.
We now show that ¢ and r are unique. Suppose there exist integers ¢ and r and ¢’ and r’ such that

a=bg+r and a=bg'+r and 0<r, r <|b|

Then bg 4 r = bq' + r'; hence

blg—q)=r"—r
Thus b divides ' — r. But |[r' — r| < |b| since 0 < r,r’ < |b|. Accordingly, r’ —r = 0. This implies g — ¢’ =0
since b # 0. Consequently, r’' = r and ¢’ = ¢; that is, ¢ and r are uniquely determined by a and b.

DIVISIBILITY, PRIMES, GREATEST COMMON DIVISOR
2.38. Find all positive divisors of: (a) 18, (b) 256 =2%, (c) 392=2%.7%
(a) Since 18 is relatively small, we simply write down all positive integers (< 18) which divide 18. These are
1,2,3,6,9,18
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(b) Since 2 is a prime, the positive divisors of 256 = 2% are simply the lower powers of 2, that is,
20,21,22)23,24,2%,28,27 28
In other words, the positive divisors of 256 are
1,2,4,8,16,32,64,128,256

(¢) Since 2 and 7 are prime, the positive divisors of 392 = 23 .7% are the products of lower powers of 2
times lower powers of 7, that is:

20_70 21 .70 22’70 23.70 20.71 2] .71 22.7| 23.7l 20.72 21 .72 22.72 23.72
In other words, the positive powers of 392 are:
1,2,4,8,7,14,28,56,49,98, 196,392

(We have used the usual convention that n° = 1 for any nonzero number n.)

2.39. List all primes between 50 and 100.

Simply list all numbers p between 50 and 100 which cannot be written as a product of two positive
integers, excluding 1 and p. This yields:

51,53,57,59,61,67,71,73,79,83,87,89,91,93,97

2.40. Let a= 8316 and b = 10920.

(a) Find d = ged (a, b), the greatest common divisor of a and b.

(b) Find integers m and n such that d = ma + nb.

(¢) Find lem (a,b), the least common multiple of a and b.

(a) Divide the smaller number a = 8316 into the larger number b = 10920, and then repeatedly divide each

remainder into the divisor until obtaining a zero remainder. These steps are pictured in Fig. 2-10. The
last nonzero remainder is 84. Thus

84 = ged (8316, 10920)

1 3 5 6
8316)10920 2604)8316 504)2604 84)504
8316 7812 2520 504
2604 504 84 0

Fig. 2-10

(b) Now we find m and n such that
84 = 8316m + 10920n

The first three quotients in Fig. 2-10 yield the equations:

(I) 10920 = 1(8316) +2604;  or 2604 = 10920 — 1(8316)
(2) 8316 = 3(2604) + 504; or 504 = 8316 — 3(2604)
(3) 2064 = 5(504) + 84; or 84 = 2604 — 5(504)

Equation (3) tells us that 84 is a linear combination of 2604 and 504. We use (2) to replace 504 in (3) so
we can write 84 as a linear combination of 2604 and 8316 as follows:
(4) 84 =12604 — 5[8316 — 3(2604)] = 2604 — 5(8316) + 15(2604)
= 16(2604) — 5(8316)
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We now use (/) to replace 2604 in (4) so we can write 84 as a linear combination of 8316 and 10920 as
follows:
84 = 1610920 — 1(8316)] — 5(8316)
= 16(10920) — 16(8316) — 5(8316)
= —21(8316) + 16(10920)
This is our desired linear combination. Thus m = —21 and n = 16.

By Theorem 2.15,

_ labl  (8316)(10920)
lem (a,b) = ood (@) %4 = 1081080

2.41. Suppose a, b, c are integers. Prove:

()
(i1)
(iif)
(iv)
(v)
(vi)
(1)

(ii)

(ii)

(iv)

)
(vi)

If a|b and b|c, then ac.

If a|b then, for any integer x, a|bx.

If a|b and qc, then a|(b + ¢) and a|(b — ¢).
If a|b and b # 0, then a = b or |a| < |b|.
If a|b and b|a, then |a| = |b|, i.e., a = £b.
If a|l, then a = £1.

If a|b and b|c, then there exist integers x and y such that ax = b and by = ¢. Replacing b by ax, we
obtain axy = ¢. Hence ac.

If a|b, then there exists an integer ¢ such that ac = b. Multiplying the equation by x, we obtain
acx = bx. Hence a|bx.

If a|b and alc, then there exist integers x and y such that ax = b and ay = ¢. Adding the equalities, we
obtain

ax+ay=b+c¢  andso alx+y)=b+c
Hence a|(b + ¢). Subtracting the equalities, we obtain

ax—ay=b—c and so alx—y)=b-c
Hence a|(b — ¢).
If a|b, then there exists ¢ such that ac = b. Then

|b] = lac| = |allc|

By Problem 2.31(b), either |c| =1 or |a| < |a||c| = |b|. If |c| =1, then ¢ = £1; whence a = +b, as
required.
If alb, then a = +b or |a| < |b|. If |a| < |b|, bfa. Hence a = +b.
If a|1, then a = £1 or |a| < |1| = 1. By Problem 2.30, |a| > 1. Therefore, a = £1.

2.42. A nonempty subset J of Z is called an ideal if J has the following two properties:

(1) Ifa,beJ,thena+beJ.
2) IfacJandneZ, thennacJ.

Let d be the least positive integer in an ideal J # {0}. Prove that 4 divides every element of J.

Since J # {0}, there exists a € J with a # 0. Then —a = (—1)a € J. Thus J contains positive elements.

By the well-ordering principle, J contains a least positive integer, so d exists. Now let b € J. Dividing b by
d, the division algorithm tells us there exist ¢ and r such that

b=gqd+r and 0<r<d

Now b, d € J, and J is an ideal; hence b + (—q)d = r also belongs to J. By the minimality of d, we must
have r = 0. Hence d|b, as required.
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2.43. Prove Theorem 2.12: Let d be the smallest positive integer of the form ax + by. Then
d = ged (a,b).
Consider the set J = {ax + yb: x,y € Z}. Then
a=1(a)+0b)eJ and b=0(a)+1(b) €]
Also, suppose s,t € J, say s = xja+ y,b and t = x,a + y,b. Then, for any n € Z,
s+t=(x;+x)a+ () +y)b and  ns= (nx))a+ (ny)b

also belong to J. Thus J is an ideal. Let d be the least positive element in J. We claim d = gcd (a, b).

By the preceding Problem 2.42, d divides every element of J. Thus, in particular, d divides a and b.
Now suppose /4 divides both a and b. Then 4 divides xa + yb for any x and y; that is, A divides every element
of J. Thus 4 divides d, and so & < d. Accordingly, d = ged (a, b).

FUNDAMENTAL THEOREM OF ARITHMETIC
2.44. Find the unique factorization of each number:
(a) 135, (b) 1330, (c) 3105, (d) 211.

(@) 135=5.27=5.3-3.30r 135=13%.5,

(b) 1330=2-665=2-5-133=2.5-7-19.

() 3105=5-621=5-3.207=5-3-3-69=5-3-3-3-23 or 3105 =3*.5.23.

(d) None of the primes 2, 3, 5, 7, 11 and 13 divides 211; hence 211 cannot be factored, that is, 211 is a
prime.

Remark: We need only test those primes less than v/211.

245. Leta=2-3".5*.11°.17 and b =2°.5%.7%. 114.13%. Find gcd (a,b) and Icm (a, b).

Those primes p; which appear in both a and b will also appear in gcd (a,b). Furthermore, the exponent
of p; in ged (a, b) will be the smaller of its exponents in @ and b. Hence

ged (a,b) =20 5% 114

Those primes p; which appear in either a or » will also appear in lcm (a,b). Also, the exponent of p; in
lem (a, b) will be the larger of its exponents in a and . Hence

lem (a,b) =2%.3%.5*.72.115.132.173

2.46. Prove Theorem 2.16: Suppose gcd (a,b) = 1, and @ and b divide ¢. Then ab divides c.

Since ged (a,b) = 1, there exist x and y such that ax + by = 1. Since a|c and b|c, there exist m and n
such that ¢ = ma and ¢ = nb. Multiplying ax + by = 1 by c yields

acx +bey =c or a(nb)x + b(ma)y = ¢ or ab(nx +my) =c¢
Thus ab divides c.

2.47. Prove Corollary 2.18: Suppose a prime p divides a product ab. Then p|a or p|b.

Suppose p does not divide a. Then ged (p,a) = 1 since the only divisors of p are +1 and £p. Thus there
exist integers m and » such that 1 = mp + nq. Multiplying by b yields b = mpb + nab. By hypothesis, p|ab,
say ab = cp. Then

b = mpb + nab = mpb + ncp = p(mb + nc)

Hence p|b, as required.
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2.48.

2.49.

Prove: (a) Suppose p|g where p and q are primes. Then p = gq.
(b) Suppose p|q14; - - - g, where p and the ¢’s are primes. Then p is equal to one of the ¢’s.

(a) The only divisors of ¢ are =1 and +¢q. Since p > 1, p=gq.

(b) Ifr=1, then p = q; by (a). Suppose r > 1. By Problem 2.47 (Corollary 2.18), p|q, or p|(q,---¢,). If
plq1, then p = g, by (a). If not, then p|(g,---g,). We repeat the argument. That is, we get p = ¢, or
pl(g3---¢q,). Finally (or by induction) p must equal one of the ¢’s.

Prove the Fundamental Theorem of Arithmetic (Theorem 2.19): Every integer n > 1 can be
expressed uniquely (except for order) as a product of primes.

We already proved Theorem 2.10 that such a product of primes exists. Hence we need only show that
such a product is unique (except for order). Suppose

n=p\p2: Pk =9192" - 4r

where the p’s and ¢’s are primes. Note that p,|(q; - - - ¢,). By the preceding Problem 2.48, p, equals one of
the g’s. We arrange the ¢’s so that p; = g;. Then

PP Pk=p1g2-°q, andso Py pr=qp---q,

By the same argument, we can rearrange the remaining gs so that p, = ¢,. And so on. Thus n can be
expressed uniquely as a product of primes (except for order).

Supplementary Problems

REAL NUMBER SYSTEM R, SETS OF NUMBERS

2.50.

251,

2.52.

2.53.

Assuming R, Q,Q’,Z, and P denote respectively, the real numbers, rational numbers, irrational numbers,
integers, and positive integers, state whether each of the following is true or false.

(@) T€Q (c) -3€P (e)7eP (g) -6 €Q’ (i) 7€Q
b)V9eQ (d)v5€Q ()V-3eR (h)V2eR ()%eQ’

State whether each is: (a) always true, (b) sometimes true, (c) never true. Here a # 0, b # 0.

(1) aeZ,beQ,anda—-beP. (5) a€Z,beQ,and a/beP.
(2 a€Q,beQ’,andabeQ’. 6) acZ beQ anda/beqQ.
B) ac€Q’,beQ’,and abe Q' (7) aeP,bcR,anda+becP.
4 a€P,becQ,and ab€eP. (8) a€Z,beQ,and abeQ’.

Express each real number as an infinite decimal (without ending in zeros): (a) 5/6, (b) 3/11, (c) 3/5.

Consider the sets
A=1{2,4,8,...,2" ...}, B=1{3,6,9,...,3n,...}, c={...,—6,-3,0,3,6,...}
Which of these sets are closed under the operations of:

(@) addition, (b) subtraction, (c) multiplication?



60 SETS AND ELEMENTARY PROPERTIES OF THE REAL NUMBERS [CHAP. 2

ORDER AND INEQUALITIES, ABSOLUTE VALUE

2.54. Insert the correct symbol, <, >, or =, between each pair of integers:
(@) 2 -6 (c) -7 3 (e) 2} 11 (g) -2 -7
b-3__ -5 @@H-8_ -1 (HN22_ -9 Kk 4__ -9

2.55. Evaluate: (a) |- 6|, |5, 0], ®)13-7, |=-3+7, |-3-17|.

2.56. Evaluate: (a) 2-5|+|3+7|, |l —4|—]2-9];
®) [ -4/ +2-3], |-6-2|—]2-6|

2.57. Find the distance d between each pair of real numbers:

(@) 2and -5, (b) —6and3, (c¢)2and8, (d)—7and —1, (e¢)3and -3, (f)—7and -9.

2.58. Find all integers n such that: (a)3<2n—-4<10, (b) 1 <6-—3n<13.

2.59. Prove Proposition 2.1: (i), a < a, for any real number a.
(fi)Ifa<band b<a, thena=>b

2.60. Prove Proposition 2.2: For any real numbers a and b, exactly one of the following holds:

a<ba=b, ora>hb.

2.61. Prove: (a)2ab<d’+b*, (b)ab+ac+bec<a +b +c
2.62. Prove Proposition 2.4: (i) |a| > 0, and |a] =0 iff a = 0.
(i) ~|a| < a <al.

) llal = 1b]] < |a + 5.

2.63. Show thata—xb > 0if b # 0, and x = —|alb.

INTERVALS
2.64. Rewrite each interval in set-builder form:

(@) A=[-1,6), (b) B=(2,5), (c) C=1[-3,0], (d)D=(1,4]
2.65. Which of the sets in Problem 2.64 is: (a) an open interval, (b) a closed interval?

2.66. Find the interval satisfying each inequality, i.e., rewrite the inequality in terms of x alone:

(@1<x-2<4, () -3<x+4<7, (c)-6<3x<12, (d)-4<-2x<6.

2.67. Find the interval satisfying each inequality:
(@)3<2x-5<7, (b)-8<4-3x<T7.



CHAP. 2] SETS AND ELEMENTARY PROPERTIES OF THE REAL NUMBERS

2.68. Rewrite without the absolute value sign:

@lxl<2 () |x=3<5 (c)]|2x—5<9.

2.69. Write each open interval in the form |x —a| < r:

(@)3<x<9, (b)) -S<x<l

2.70. Rewrite each set using an infinite interval notation:

(@) x>-4, (b)) x<5, (¢)x>2, (d)x<-3.

2.71. Let A =[-4,2), B=(-1,6), C = (—o0,1]. Find, and write in interval notation:
(@) AUB, (¢) A\B, (¢) AUC, (g) A\C, () BUC, (k) B\C,
(b)) AnB, (d)B\4, (f)AnC, (h)C\4, (j)BNnC, (I)C\B.

BOUNDED AND UNBOUNDED SETS
2.72. State whether each set is bounded, bounded below, bounded above, unbounded:

(@A={x:x=LneP} () C={x:x=4%nelZ}, () E={x:x=2",neZ},
B)B={x:x=3",neP}, ([@D={x:xeP,x<2567}, (f) F={x:|x| <6}

2.73. Are the following statements: (1) always true, (2) sometimes true, (3) never true?

(a) If A is finite, then A4 is bounded. (c) If A is a subset of [—23,79], then 4 is finite.
(b) If A is infinite, then A4 is bounded. (d) If A is a subset of [—23,79], then 4 is unbounded.

INTEGERS Z, MATHEMATICAL INDUCTION, WELL-ORDERING PRINCIPLE
2.74. Prove the assertion A that the sum of the first n even positive integers is n(n + 1); that is,

An):24+4+6+---+2n=n(n+1)

2.75. Prove: (a) d'd" =d"*", (b) (@")" =a"™, (c) (ab)" =a"b"

1 1 1 n

2.76. Prove: m+--.+m=n_+1_

3
2.77. Prove: |P(A)| =2" where |A| =n. [Here #(A) is the power set of the finite set 4 with n elements.]

DIVISION ALGORITHM
2.78. For each pair of integers a and b, find integers g and r such that a =bg+rand 0 <r < || :
(@) a=395and b= 14 (¢c)a=-278 and b =12
(b) a=608 and b = —17 (d) a= —417 and b = -8
2.79. Prove each of the following statements:
(a) The product of any three consecutive integers is divisible by 6.
(b) The product of any four consecutive integers is divisible by 24.
2.80. Show that each of the following numbers is not rational: (a) v/3, (b) V2.

2.81. Show that ,/p is not rational, where p is any prime number.

61
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DIVISIBILITY, GREATEST COMMON DIVISORS, PRIMES
2.82. Find all possible divisors of: (a) 24, (b) 19683 =3°, (c) 432 =2%.33.

2.83. List all prime numbers between 100 and 150.

2.84. For each pair of integers a and b, find d = gcd (a,b) and express d as a linear combination of a and &:

(a) a =48, b =356 (c) a=2310, b = 168
() a=165b=1287 (d) a= 195, b=968

2.85. Prove: (a) If a|b, then a| — b, —alb, and —a| — b.
(b) If ac|bc, then bjc.

2.86. Prove: (a) If am+ bn =1, then ged (a,b) =1
(b) If a = bq + r, then gcd (a,b) = ged (b, r).

2.87. Prove: (a) ged (a,a+ k) divides k.
(b) ged (a,a+ 2) equals 1 or 2.

2.88. Prove: If n> 1 is composite, then n has a positive divisor d such that d < /n.

FUNDAMENTAL THEOREM OF ARITHMETIC
2.89. Express as a product of prime numbers:

(a) 2940, (b) 1485, (c) 8712, (d) 319410.

2.90. Suppose a = 5880 and b = 8316.

(a) Express a and b as products of primes.
(b) Find ged (a,b) and lem (a, b).
(¢) Verify that lcm (a,b) = (|abl)/gcd (a, b).

291. Prove: If a\|n and ay|n,...,a|n, then m|n where m = lem (ay, ... a;).

2.92. Let n be a positive integer. Prove:

(a) 3 divides n if and only if 3 divides the sum of the digits of n.
(b) 9 divides n if and only if 9 divides the sum of the digits of ».
(c) 8 divides n if and only if 8 divides the integer formed by the last three digits of ».

Answers to Supplementary Problems
2.50.  Only (b), (e), (h), (i) are true.
251. (Db a )b @b b, (6)c; (b B)c
252, () 5/6=0.8333..., (b)3/11=02727..., (c)3/5=0.5999...

253. (a)Band C; (b) C; (c) 4,B,C
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254, (a)2>-6; (b) =3>-5 (c)-7<3; (d)-8<—1; (e)2°<11; (f)2*> -9,
(g)-2>-7, (h)4>-9

255. (a)6,50; (b)4, 4,10

256. (a)3+10=13,3—-7=-4 (b)4+1=58-4=4
257. (@7 (6)9 ()6 (d)6; (e)6 (f)3

2.58. (a)4,5 6 (b)-2,-1,0,1

264. (@) A={x:-1<x<6} () C={x:-3<x<0}
(b)) B={x:2<x<5} (dyD={x:1<x<4}

2.65. Bis open and C is closed.

266. (a)3<x<6; () -7<x<3; (c)-2<x<4 (d)-3<x<L2
267. (a)4<x<6; (b)-1<x<4

268. (a)-2<x<2; (b)-2<x<8 (c)-2<x<7

2.69. (a)|x—6/<3; (b)|x+2/<3

270. (a) (-4,0); (b) (—00,5]; () [2,00); (d) (—o0,-3)

2.71. (a) [_47 6)’ (C) [_47-11’ (e) (—OO, 2)’ (g) (1’2)’ (l) (—00’6)’ (k) (116)7
() (-1,2), () 2,6), ) [=4,-1, (b)) (-o0,—4), () (-1,1], () (=00, —1].

2.72. (a) bounded; (b) only bounded below; (c) bounded; (d) bounded; (e) unbounded; (f) bounded
273. (@) 1; (b)2; (¢)1; (d)3

2.74-2.77. Hint: Use mathematical induction or well-ordering principle.

278. (a)g=28,r=3 (b)g=-15r=13 (c)g=-24,r=10 (d)g=53,r=7

2.79. (a) One is divisible by 2 and one is divisible by 3.
(b) One is divisible by 4, another is divisible by 2, and one is divisible by 3.

2.82. (a)1,2,3,4,6,12,24; (b)3"forn=01t09; (c)23 forr=0to4ands=0to 3.
2.83. 101, 103, 107, 109, 113, 127, 131, 137, 139, 149

2.84. (a) d =4 = 5(356) — 37(48) (c) d = 42 = 14(168) — 1(2310)
(b) d =33 =8(165) — 1(1287)  (d) d = 1 = 139(195) — 28(968)

2.89. (a) 2940 =22.3-5.7% (b) 1485=3%.5-11; (c)8712=2%-32-11% (d)319410=2.3%.5.7.13?

290. (a)a=2%3.5.7",b=22.3*.7.11; (b) ged (a,b) =2%-3-7, lem (a,b) = 2*-3%.5.72. 11 = 1164240



Chapter 3

Relations

3.1 INTRODUCTION

The reader is familiar with many relations which are used in mathematics and computer science, €.g.,
“less than”, ““is parallel to”, ““is a subset of ”’, and so on. In a certain sense, these relations consider the
existence or nonexistence of certain connections between pairs of objects taken in a definite order.
Formally, we define a relation in terms of these “ordered pairs”.

There are three kinds of relations which play a major role in our theory: (i) equivalence relations,
(ii) order relations, (iii) functions. Equivalence relations are mainly covered in this chapter. Order
relations are introduced here, but will also be discussed in Chapter 7. Functions are covered in the next
chapter.

The connection between relations on finite sets and matrices are also included here for completeness.
These sections, however, can be ignored at a first reading by those with no previous knowledge of matrix
theory.

Ordered Pairs

Relations, as noted above, will be defined in terms of ordered pairs (a, b) of elements, where a is
designated as the first element and b as the second element. Specifically:

(a,b) = (c,d) ifand only if a=cand b=d

In particular, (a,b) # (b,a) unless @ = b. This contrasts with sets studied in Chapter 1 where the order
of elements is irrelevant, for example, {3, 5} = {5, 3}.

3.2 PRODUCT SETS

Let 4 and B be two sets. The product set or cartesian product of A and B, written 4 x B and read “A4
cross B, is the set of all ordered pairs (a,b) such that a € 4 and b € B. Namely:

Ax B={(a,b):a€ A4, be B}

One usually writes 42 instead of 4 x A.

EXAMPLE 3.1 Recall that R denotes the set of real numbers, so R> = R x R is the set of ordered pairs of real
numbers. The reader may be familiar with the geometrical representation of R? as points in the plane as in Fig. 3-1.
Here each point P represents an ordered pair (a, ) of real numbers and vice versa; the vertical line through P meets
the (horizontal) x-axis at a, and the horizontal line through P meets the (vertical) y-axis at b. R? is frequently called
the cartesian plane. ’

sk

b P

Fig. 3-1

64



CHAP. 3] RELATIONS 65

EXAMPLE 3.2 Let 4 = {1,2} and B = {a,b,c}. Then

A x B={(1,a),(1,b),(1,¢),(2,a),(2,b),(2,¢)}
Bx A={(a,1),(a,2),(b,1),(b,2),(c,1),(c,2)}

Also,
AxA={(1,1)(1,2),(2,1),(2,2)}

There are two things worth noting in Example 3.2. First of all, 4 x B # B x A. The cartesian
product deals with ordered pairs, so naturally the order in which the sets are considered is important.
Secondly,

n(Ax B)y=6=2-3=n(A4)-n(B)

[where n(A4) = number of elements in A]. In fact:

n(A x B) = n(A4)-n(B)

for any finite sets 4 and B. This follows from the observation that, for any ordered pair (a,b) in 4 x B,
there are n(A) possibilities for a, and for each of these there are n(B) possibilities for b.

Product of Three or More Sets

The idea of a product of sets can be extended to any finite number of sets. Specifically, for any sets
Ay, Ay, .., A, the set of all m-element lists (a;,ay,...,a,), where each q; € A4, is called the (cartesian)
product of the sets Ay, A,,...,A,; it is denoted by

Ay X Ay x -+ x A, orequivalently []=, 4;

Just as we write 4% instead of A4 x A, so we write 4" for A X A x --- x A where there are n factors. For
example, R? = R x R x R denotes the usual three-dimensional space.

3.3 RELATIONS
We begin with a definition.

Definition: Let 4 and B be sets. A binary relation or, simply, a relation from A to B is a subset of A x B.

Suppose R is a relation from 4 to B. Then R is a set of ordered pairs where each first element comes
from A and each second element comes from B. That is, for each pair a € 4 and b € B, exactly one of
the following is true:

(1) (a,b) € R; we then say “a is R-related to b, written a Rb.
(ii) (a,b) € R; we then say “a is not R-related to b”, written a R b.

The domain of a relation R from A to B is the set of all first elements of the ordered pairs which
belong to R, and so it is a subset of 4; and the range of R is the set of all second elements, and so it is a
subset of B.
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Sometimes R is a relation from a set 4 to itself, that is, R is a subset of 4> = 4 x 4. In such a case,
we say that R is a relation on A.

Although n-ary relations, which involve ordered n-tuples, are introduced in Section 3.11, the term
relation shall mean binary relation unless otherwise stated or implied.

EXAMPLE 3.3

(@) LetA={1,2,3} and B={x,y,z},and let R = {(1,y), (1,2), (3,»)}. Then Ris a relation from 4 to B since R
is a subset of 4 x B. With respect to this relation,

1Ry, 1Rz, 3Ry, but 1Rx, 2Rx, 2Ry, 2Rz, 3Rx, 3Rz
The domain of R is {1,3} and the range is {y,z}.

(b) Suppose we say that two countries are adjacent if they have some part of their boundaries in common. Then “is
adjacent to” is a relation R on the countries of the earth. Thus:

(Italy, Switzerland) € R but (Canada, Mexico) ¢ R

(¢) Set inclusion C is a relation on any collection of sets. For, given any pair of sets 4 and B, either 4 C B or
AZ B.

(d) A familiar relation on the set Z of integers is ““m divides n”’. A common notation for this relation is to write m|n
when m divides n. Thus 6|30 but 7 } 25.

(e) Consider the set L of lines in the plane. Perpendicularity, written L, is a relation on L. That is, given any pair
of lines a and b, either a L b ora £ b. Similarly, ‘“is parallel to”, written ||, is a relation on L since either a || b
oralb.

Universal, Empty, Equality Relations

Let A be any set. Then 4 x 4 and J are subsets of 4 x 4 and hence are relations on A4 called the
universal relation and empty relation, respectively. Thus, for any relation R on 4, we have

FBCRCAxA
An important relation on the set A4 is that of equality, that is, the relation
{(a,a) :a € 4}

which is usually denoted by “="". This relation is also called the identity or diagonal relation on A, and it
may sometimes be denoted by A, or simply A.

Inverse Relation

Let R be any relation from a set 4 to a set B. The inverse of R, denoted by R, is the relation from
B to A which consists of those ordered pairs which, when reversed, belong to R; that is,

R'={(b,a) : (a,b) € R}

For example:

If R={(1y), (1,z), 3,»)}, then R ={(1),(z1), (»3)}

[Here R is the relation from 4 = {1,2,3} to B= {x,y,z} in Example 3.3(a).]
Clearly, if R is any relation, then (R™')™' = R. Also, the domain of R™' is the range of R, and vice
versa. Moreover, if R is a relation on A4, i.e., R is a subset of 4 x A4, then R is also a relation on 4.
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3.4 PICTORIAL REPRESENTATIONS OF RELATIONS

This section discusses a number of ways of picturing and representing binary relations.

Relations on R

Let S be a relation on the set R of real numbers; that is, let S be a subset of R*> = R x R. Since R?
can be represented by the set of points in the plane, we can picture S by emphasizing those points in the
plane which belong to S. This pictorial representation of S is sometimes called the graph of S.

Frequently, the relation S consists of all ordered pairs of real numbers which satisfy some given
equation

E(x,y)=0

We usually identify the relation with the equation, i.e., we speak of the relation E(x,y) = 0.

EXAMPLE 3.4 Consider the relation S defined by the equation
2 2 _ ; 2 2 —
x +y° =25 or equivalently x“+y —-25=0

That is, S consists of all ordered pairs (xg, y9) Which satisfy the given equation. The graph of the equation is a circle
having its center at the origin and radius 5, as shown in Fig. 3-2.

y
5
-5 0 H X
-5
x2+y2=25
Fig. 3-2

Representation of Relations on Finite Sets

Suppose 4 and B are finite sets. The following are two ways of picturing a relation R from 4 to B.

(i) Form a rectangular array whose rows are labeled by the elements of 4 and whose columns are
labeled by the elements of B. Put a 1 or 0 in each position of the array according as a € 4 is or is
not related to b € B. This array is called the matrix of the relation.

(i) Write down the elements of 4 and the elements of B in two disjoint disks, and then draw an arrow
from a € 4 to b € B whenever a is related to b. This picture will be called the arrow diagram of the
relation.

Consider, for example, the following relation R from 4 = {1,2,3} to B = {x,y,z}:
R= {(17Y)v (172)’ (3,)7)}

Figure 3-3 pictures this relation R by the above two ways.
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B
x y z
B »
A 2 0 0 0 ~
0 0

A B
0) @
R= {(l,y)’ (192)’ (3,)’)}

Fig. 3-3

Directed Graphs of Relations on Sets

There is another way of picturing a relation R when R is a relation from a finite set A4 to itself. First
we write down the elements of the set 4, and then we draw an arrow from each element x to each element
y whenever x is related to y. This diagram is called the directed graph of the relation R. Figure 3-4, for
example, shows the directed graph of the following relation R on the set 4 = {1,2,3,4}:

R={(172)’ (272)’ (2’4)’ (3’2)’ (3’4)’ (4’1)’ (4?3)}

Observe that there is an arrow from 2 to itself, since 2 is related to 2 under R.

Fig. 3-4

3.5 COMPOSITION OF RELATIONS

Let A, B, C be sets, and let R be a relation from A4 to B and let S be a relation from B to C. Then R
and S give rise to a relation from 4 to C denoted by R o S and defined as follows:

Ro S ={(a,c): there exists b € B for which (a,b) € R and (b,c) € S}

That is,

a(R o S)c whenever there exists b € B such that aRb and bS¢

This relation R o S is called the composition of R and S; it is sometimes denoted by RS.

Our first theorem (proved in Problem 3.10) tells us that the composition of relations is associative.
Namely:

Theorem 3.1: Let 4, B, C,D be sets. Suppose R is a relation from A to B, S is a relation from B to C,
and T is a relation from C to D. Then

(RoS)oT=Ro(SoT)
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The arrow diagrams of relations give us a geometrical interpretation of the composition Ro S as
seen in the following example.

EXAMPLE 3.5 Let 4 = {1,2,3,4}, B={a,b,c,d}, C = {x,y,z) and let
R={(L,a), (2,d), (3,a), (3,b), 3,d)} and  S={(bx), (b2), (¢,y), (d,2)}

Consider the arrow diagrams of R and S as in Fig. 3-5. Observe there is an arrow from 2 to d which is followed by
an arrow from d to x. We can view these two arrows as a “‘path” which ‘“‘connects” the element 2 € 4 to the element
z € C. Thus

2(Ro S)z since 2Rd and dSz
Similarly there are paths from 3 to x and from 3 to z. Hence

3(RoS)x and 3(Ro S)z

zs

R N

Fig. 3-5

No other element of 4 is connected to an element of C. Accordingly,
RoS={(2,2), (3,x), (3,2)}

Suppose R is a relation on a set A4, that is, R is a relation from a set A4 to itself. Then Ro R, the
composition of R with itself, is always defined, and Ro R is sometimes denoted by R’. Similarly,
R*=R*oR=RoRoR, and so on. Thus R" is defined for all positive ».

Warning: Many texts denote the composition of relations R and S by S o R rather than Ro S. This
is done in order to conform with the usual use of g o f to denote the composition of f and g where f and
g are functions. Thus the reader may have to adjust his notation when using this text as a supplement
with another text. However, when a relation R is composed with itself, then the meaning of Ro R is
unambiguous.

Composition of Relations and Matrices

There is a way of finding the composition R o S of relations using matrices. Specifically, let Mz and
Mg denote respectively the matrices of the relations R and S in Example 3.5. Then:

a b ¢ d X y z

1{1 0 0 O af0 0 O

Mg = 210 0 0 1 and Mg = b1 0 1
311 1 01 cl0 1 0

4\0 0 0 O d\0 0 1
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Multiplying M and Mg we obtain the matrix

x y z
1{0 0 0
210 0 1

M= MM =
57311 0 2
4\0 0 0

The nonzero entries in this matrix tell us which elements are related by Ro S. Thus M = MzMg and
M p.s have the same nonzero entries.

3.6 TYPES OF RELATIONS

Consider a given set 4. This section discusses a number of important types of relations which are
defined on 4.

(1) Reflexive Relations: A relation R on a set A4 is reflexive if a Ra for every a € A, that is, if (a,a) € R
for every a € A. Thus R is not reflexive if there exists an a € 4 such that (a,a) € R.

(2) Symmetric Relations: A relation R on a set 4 is symmetric if whenever a R b then b R a, that is, if
whenever (a,b) € R, then (b,a) € R. Thus R is not symmetric if there exists a,b € 4 such that
(a,b) € R but (b,a) € R.

(3) Antisymmetric Relations: A relation R on a set A4 is antisymmetric if whenever a Rb and b Ra then
a = b, that is, if whenever (g, b) and (b, a) belong to R then a = b. Thus R is not antisymmetric if
there exist a,b € 4 such that (a,b) and (b,a) belong to R, but a # b.

(4) Transitive Relations: A relation R on a set A4 is transitive if whenever a Rb and b Rc then aRc,
that is, if whenever (a,b), (b,c) € R then (a,c) € R. Thus R is not transitive if there exist a,b,c € 4
such that (a,b), (b,c) € R, but (a,¢) € R.

EXAMPLE 3.6 Consider the following five relations on the set 4 = {1,2,3,4}:

R, :{(171)» (1,2), (273)7 (1’3), (474)}

Ry, = {(1’ l)’ (1,2), (2» l) (21 2)» (3v3)7 (474)}
Ry ={(1,3), (2,1)}

R4 = J, the empty relation

Rs = A x A, the universal relation

Determine which of the relations are: (a) reflexive, (b) symmetric, (c) antisymmetric, (d) transitive.

(a) Since A contains the four elements 1, 2, 3, 4, a relation R on 4 is reflexive if it contains the four pairs (1, 1),
(2,2), (3,3), and (4,4). Thus only R, and the universal relation Rs = A x A are reflexive. Note that R, Rs,
and R, are not reflexive since, for example, (2,2) does not belong to any of them.

(b) R, is not symmetric since (1,2) € R, but (2,1) & R;. Rj is not symmetric since (1,3) € R3 but (3,1) ¢ R;. The
other relations are symmetric.

(¢) R, isnot antisymmetric since (1,2) and (2, 1) belong to Ry, but 1 # 2. Similarly, the universal relation R; is not
antisymmetric. All the other relations are antisymmetric.

(d) The relation R; is not transitive since (2,1), (1,3) € R; but (2,3) ¢ R;. All the other relations are transitive.
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EXAMPLE 3.7 Consider the following five relations:

(1) Relation < (less than or equal) on the set Z of integers.

(2) Set inclusion C on a collection € of sets.

(3) Relation L (perpendicular) on the set L of lines in the plane.

(4) Relation || (parallel) on the set L of lines in the plane.

(5) Relation | of divisibility on the set P of positive integers. (Recall that x|y if there exists z such that xz = y.)

Determine which of the relations are: (a) reflexive, (b) symmetric, (c) antisymmetric, (d) transitive.
(a) The relation (3) is not reflexive since no line is perpendicular to itself. Also, (4) is not reflexive since no line is

parallel to itself. The other relations are reflexive; that is, x < x for every integer x in Z, A C A for any set 4 in
€, and n|n for every positive integer n in P.

(b) The relation L is symmetric since if line a is perpendicular to line b then b is perpendicular to a. Also, || is
symmetric since if line a is parallel to line b then b is parallel to a. The other relations are not symmetric. For
example, 3 < 4 but 4 < 3; {1,2} C{l1,2,3} but {1,2,3} Z {1,2}; and 2|6 but 6|2.

(¢) The relation < is antisymmetric since whenever a < b and b < a then a = b. Set inclusion C is antisymmetric
since whenever 4 C Band B C 4 then 4 = B. Also, divisibility on P is antisymmetric since whenever m|n and
n|m then m = n. (Note that divisibility on Z is not antisymmetric since 3|— 3 and —3|3 but 3 # —3.) The
relation L is not antisymmetric since we can have distinct lines a and b such that a L b and b | a. Similarly, || is
not antisymmetric.

(d) The relations <, C and | are transitive. That is:
(i) Ifa<band b<c,thena<ec.

(i) If ACBand BC C,then A C C.
(iii) If a|b and b|c, then a]c.

On the other hand, the relation L is not transitive. If a L b and b L ¢, then it is not true that a L ¢. Since no line
is parallel to itself, we can have a || b and b || @, but a }f a. Thus || is not transitive. (We note that the relation *‘is
parallel or equal to” is a transitive relation on the set L of lines in the plane.)

Remark 1: The properties of being symmetric and antisymmetric are not negatives of each other.
For example, the relation R = {(1,3), (3,1), (2,3)} is neither symmetric nor antisymmetric. On the
other hand, the relation R’ = {(1,1), (2,2)} is both symmetric and antisymmetric.

Remark 2: The property of transitivity can also be expressed in terms of the composition of
relations. Recall that, for a relation R on a set 4, we defined
R*=RoR and, more generally, R'=R"T"oR

Then one can show (Problem 3.66) that a relation R is transitive if and only if R" C R for every n > 1.

3.7 CLOSURE PROPERTIES

Let 2 denote a property of relations on a set 4 such as being symmetric or transitive. A relation on
A with property 2 will be called a 2-relation.

Now let R be a given relation on 4 with or without property 2. The 2-closure of R, written 2(R), is
a relation on A4 containing R such that

RCPR)CS

for any other 2-relation S containing R. Clearly R = Z(R) if R itself has property 2.
The reflexive, symmetric, and transitive closures of a relation R will be denoted respectively by:

reflexive(R), symmetric(R), transitive(R)
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Reflexive and Symmetric Closures

The next theorem tells us how to easily obtain the reflexive and symmetric closures of a relation.
Here A4 = {(a,a): a € A} is the diagonal or equality relation on A.

Theorem 3.2: Let R be a relation on a set 4. Then:

(i) RU A, is the reflexive closure of R.
(i) RUR7!is the symmetric closure of R.

In other words, reflexive(R) is obtained by simply adding to R those elements (a, a) in the diagonal
which do not already belong to R, and symmetric(R) is obtained by adding to R all pairs (b,a) whenever
(a,b) belongs to R.

EXAMPLE 3.8 Consider the following relation R on the set 4 = {1,2,3,4}:
R={(L1), (1,3), (2,4), 3,1), 3,3), (4,3)}

Then

reflexive(R) = RU{(2,2), (4,4)}

={(1,1), (1,3), (2,4), 3,1), (3,3), (4,3), (2,2), (4,4)}

and

symmetric(R) = RU {(4,2), (3,4)}

={(1,1), (1,3),(2,4), (3,1), (3,3), (4,3), (4,2), (3,4)}

Transitive Closure

Let R be a relation on a set 4. Recall that R> = Ro R and R" = R" ! o R. We define

(e8] .
R* — U Rl
i=1

The following theorem applies.
Theorem 3.3: R* is the transitive closure of a relation R.

Suppose A is a finite set with n elements. Using graph theory, one can easily show that

R*=RUR*U---UR"
This gives us the following result.
Theorem 3.4: Let R be a relation on a set 4 with n elements. Then
transitive(R) = RUR*U---UR"

Finding transitive(R) can take a lot of time when A4 has a large number of elements. Here we give a
simple example where A has only three elements.
EXAMPLE 3.9 Consider the following relation R on 4 = {1,2,3}:

R=1{(1,2), (2,3), (3,3)}
Then
R*=RoR={(1,3), (2,3),(3,3)} and R =R*oR={(1,3), (2,3), (3,3)}
Accordingly,
transitive(R) = RU R UR® = {(1,2), (2,3), (3,3), (1,3)}
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3.8 PARTITIONS

Let S be a nonempty set. A partition of S is a subdivision of S into nonoverlapping, nonempty
subsets. Precisely, a partition of S is a collection P = {4;} of nonempty subsets of S such that

(i) Each a € S belongs to one of the 4;.
(i) The sets {4;} are mutually disjoint; that is,

If A,‘ # Aj, then A,‘ ﬂA} = Q

The subsets in a partition are called cells. Thus each a € S belongs to exactly one of the cells. Figure 3-6
is a Venn diagram of a partition of the rectangular set S of points into five cells: 4, A,, 43, Ay, As.

Fig. 3-6

EXAMPLE 3.10 Consider the following collections of subsets of S = {1,2,...,8,9}:
(1) Pl = [{1a3, 5}1 {2$6}v {4’ 819}]
(11) P2= [{113v5}7 {2741678}7 {57739}]
("l) P3 = [{1)375}7 {2747618}1 {719}]

Then P, is not a partition of S since 7 € S does not belong to any of the subsets. P, is not a partition of S since
{1,3,5} and {5,7,9} are not disjoint. On the other hand, P; is a partition of S.

Remark: Given a partition P = {4,} of a set S, any element b € 4; is called a representative of the
cell 4;, and a subset B of S is called a system of representatives if B contains exactly one element of each
of the cells of P. Note B = {1,2,7} is a system of representatives of the partition P; in Example 3.10.

3.9 EQUIVALENCE RELATIONS

Consider a nonempty set S. A relation R on S is an equivalence relation if R is reflexive, symmetric,
and transitive. That is, R is an equivalence relation on S if it has the following three properties:

(1) Foreverya€ S, aRa.
(2) IfaRb, then bRa.
(3) IfaRband bRc,thenaRec.

The general idea behind an equivalence relation is that it is a classification of objects which are in some
way “alike”. In fact, the relation = of equality on any set S is an equivalence relation; that is,

(1) a=aforeveryacsS.
(2) Ifa=b, then b =a.
(3) Ifa=band b=c, thena=c.

For this reason, one frequently uses ~ or = to denote an equivalence relation.
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Examples of equivalence relations other than equality follow.

EXAMPLE 3.11

(a) Consider the set L of lines and the set T of triangles in the Euclidean plane. The relation “is parallel to or
identical to” is an equivalence relation on L, and congruence and similarity are equivalence relations on T.

(b) The classification of animals by species, that is, the relation ‘‘is of the same species as,” is an equivalence
relation on the set of animals.

(¢) The relation C of set inclusion is not an equivalence relation. It is reflexive and transitive, but it is not
symmetric since 4 C B does not imply B C 4.

(d) Let m be a fixed positive integer. Two integers a and b are said to be congruent modulo m, written

a=b (mod m)

if m divides a — b. For example, for m = 4 we have 11 = 3 (mod 4) since 4 divides 11 — 3, and 22 = 6 (mod 4)
since 4 divides 22 — 6. This relation of congruence modulo m is an equivalence relation.

Equivalence Relations and Partitions

Suppose R is an equivalence relation on a set S. For each ain S, let [a] denote the set of elements of
S to which a is related under R; that is,

[a] = {x: (a,x) € R}

We call [q] the equivalence class of a in S under R. The collection of all such equivalence classes is
denoted by S/R, that is,

S/R={[d]:a € S}
It is called the quotient set of S by R.

The fundamental property of an equivalence relation and its quotient set is contained in the follow-
ing theorem (which is proved in Problem 3.28).

Theorem 3.5: Let R be an equivalence relation on a set S. Then the quotient set S/R is a partition of S.
Specifically:
(i) For each a in S, we have a € [d].
(i) [a] = [b] if and only if (a,b) € R.
(iii) If [a] # [b], then [a] and [b] are disjoint.

The converse of the above theorem (proved in Problem 3.29) is also true. That is,

Theorem 3.6: Suppose P = {4;} is a partition of a set S. Then there is an equivalence relation ~ on S
such that the set S/~ of equivalence classes is the same as the partition P = {4,}.

Specifically, for a, b € S, the equivalence ~ in Theorem 3.6 is defined by a ~ b if a and b belong to
the same cell in P.

Thus we see there is a one-to-one correspondence between the equivalence relations on a set S and
the partitions of S. Accordingly, for a given equivalence relation R on a set S, we can talk about a system
B of representatives of the quotient set S/R which would contain exactly one representative from each
equivalence class.
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EXAMPLE 3.12
(a) Consider the following relation R on S = {1,2,3,4}:
R={(1,1), (2,2), (1,3), (3,1), (3,3), (4,4)}

One can show that R is reflexive, symmetric and transitive, that is, that R is an equivalence relation. Under the
relation R,

[1] = {1,3}, (2] = {2}, 3] ={1,3}, [4] = {4}

Observe that [1] = [3] and that S/R = {[1], [2], [4]} is a partition of S. One can choose either {1,2,4} or
{2,3,4} as a system of representatives of the equivalence classes.

(b) Let Rs be the relation on the set Z of integers defined by
x =y (mod 5)

which reads “x is congruent to y modulo 5 and which means that the difference x — y is divisible by 5. Then
Rs is an equivalence relation on Z. There are exactly five equivalence classes in the quotient set Z/Rs as
follows:

Ao =1{...,—10,-5,0,5,10,...}

Ay =1{...,-9,-4,1,6,11,...}
Ay=1{...,-8,-3,2,7,12,...}
Ay=1{...,—7,-2,3,8,13,...}
Ag={..,—6,-1,4,9,14,...}

Observe that any integer x, which can be uniquely expressed in the form x = 5¢ +r where 0 <r< 5, is a
member of the equivalence class 4, where r is the remainder. As expected, the equivalence classes are disjoint
and

Z=A0UA1 UA2UA3UA4
This quotient set Z/Rs is usually denoted by
Z/5Z or simply Zs

Usually one chooses {0, 1,2,3,4} or {—2,-1,0,1,2} as a system of representatives of the equivalence classes.

3.10 PARTIAL ORDERING RELATIONS

This section defines another important class of relations. A relation R on a set S is called a partial
ordering of S or a partial order on S if it has the following three properties:

(1) For every a € S, we have aRa.
(2) IfaRband bRa, then a = b.
(3 IfaRband bRc, then aRc.

That is, R is a partial ordering of S if R is reflexive, antisymmetric, and transitive.
A set S together with a partial ordering R is called a partially ordered set or poset. Partially ordered
sets will be studied in more detail in Chapter 7, so here we simply give some examples.

EXAMPLE 3.13

(@) The relation C of set inclusion is a partial ordering of any collection of sets since set inclusion has the three
desired properties. That is,

(1) A C A for any set A.
(2) IfACBand BC 4, then 4 = B.
(3) IfACBand BC C, then 4 C C.
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(b) The relation < on the set R of real numbers is reflexive, antisymmetric, and transitive. Thus < is a partial
ordering.

(¢) The relation ““a divides b” is a partial ordering of the set p of positive integers. However, “a divides 5 is not a
partial ordering of the set Z of integers since a|b and b|a does not imply a = b. For example, 3|— 3 and -3|3
but 3 # —3.

3.11 n-ARY RELATIONS

All the relations discussed above were binary relations. By an n-ary relation, we mean a set of
ordered n-tuples. For any set S, a subset of the product set S” is called an n-ary relation on S. In
particular, a subset of S> is called a ternary relation on S.

EXAMPLE 3.14

(a) Let L be a line in the plane. Then “betweenness” is a ternary relation R on the points of L; that is, (a,b,c) € R
if b lies between a and ¢ on L.

(b) The equation X+ y2 + 2> = 1 determines a ternary relation T on the set R of real numbers. That is, a triple
(x,y,z) belongs to T if (x, y, z) satisfies the equation which means that (x, y, z) is the coordinates of a point in
R® on the sphere S with radius 1 and center at the origin 0 = (0,0,0).

Solved Problems

ORDERED PAIRS AND PRODUCT SETS
31. Let A={1,2}, B={x,y,z}, C={3,4}. Find 4 x B x C.

A x B x C consists of all ordered triplets (a,b,c) where a€ 4, b€ B, c€ C. These elements of
A X B x C can be systematically obtained by a so-called tree diagram (Fig. 3-7). The elements of
A x B x C are precisely the 12 ordered triplets to the right of the tree diagram.

Observe that n(A4) = 2, n(B) = 3, and n(C) = 2 and, as expected,
n(A x Bx C) =12 =n(A4)-n(B)-n(C)

3 (1,x3)

<, xe

3 (Lyd)

! <y (4

< 0T
<7, ary
: <4 are
5 5

Fig. 3-7
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3.2,

3.3.

34.

Find x and y given (2x, x +y) = (6,2).

Two ordered pa{rs are equal if and only if the corresponding components are equal. Hence we obtain
the equations

2x =16 and x+y=2

from which we derive the answer x =3 and y = —1.

Let 4 ={1,2}, B={a,b,c}, C={c,d}. Find (4 x B)N (4 x C)and 4 x (BNC).
We have

A x B={(1,a), (1,b), (1,¢), (2,a), (2,b),(2,¢)}
A x C={(l,c), (1,d), (2,c), (2,d)}

Hence
(4 x B)N (4% C) ={(1,0), (2,0)}

Si BNnC= »
1nce {C} A x (Bﬂ C) = {(I,C)y (2,6’)}

Observe that (4 x B)N (4 x C) = A x (BN C). This is true for any sets 4, B, and C (see Problem 3.4).

Prove (A x B)N (A x C) = A x (BN C).

(AxB)N(AxC)={(x,»): (x,y) € Ax Band (x,y) € 4 x C}
={(x,y): x€A,ye Band x€ A4,y € C}
={(x,y): x€ed,ye BNC} =4 x(BNC)

RELATIONS AND THEIR GRAPHS

3.5.

3.6.

Find the number of relations from 4 = {a,b,c} to B ={1,2}.

There are 3-2 = 6 elements in 4 x B, and hence there are m = 2% = 64 subsets of 4 x B. Thus there are
m = 64 relations from A4 to B.

Given 4 = {1,2,3,4} and B = {x,y,z}. Let R be the following relation from 4 to B:

R={(l,y), (1,2), (3,y)a (4’x)a (4’2)}

(@) Determine the matrix of the relation. (¢) Find the inverse relation R™' of R.
(b) Draw the arrow diagram of R. (d) Determine the domain and range of R.
(a) See Fig. 3-8(a). Observe that the rows of the matrix are labeled by the elements of 4 and the columns

by the elements of B. Also observe that the entry in the matrix correspondingto a € 4 and b € Bis 1 if
a is related to b and 0 otherwise.

(b) See Fig. 3-8(b). Observe that there is an arrow from a € 4 to b € B iff a is related to b, i.e., iff
(a,b) € R.

(¢) Reverse the ordered pairs of R to obtain R™":
R = {0 1), (1), 153), (x,4), (z,4)}
Observe that by reversing the arrows in Fig. 3-8(b) we obtain the arrow diagram of R™'.
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(d) The domain of R, Dom(R), consists of the first elements of the ordered pairs of R, and the range of R,
Ran(R), consists of the second elements. Thus,

Dom(R) ={1,3,4} and  Ran(R)={x,y,z}

x y x
1/0 1 1 “....»
<]
2[0 0 o '...m!=
3o 1 0 AHiill..\
a\1 0 1
(@) ®)

Fig. 3-8

37. Let 4=1{1,2,3,4,6}, and let R be the relation on 4 defined by “x divides y”, written x|y.

b

(a) Write R as a set of ordered pairs.

(b)

(¢) Find the inverse relation R™' of R. Can R™' be described in words?
(@)

Draw its directed graph.

a) Find those numbers in A4 divisible by 1, 2, 3, 4, and then 6. These are:

11, 112, 1|3, 1|4, 1]6, 2|2, 2|4, 2|6, 3|3, 3|6, 4|4, 6|6
Hence
R={(1,1), (1,2), (1,3), (1,4), (1,6), (2,2), (2,4), (2,6), (3,3), (3,6), (4,4), (6,6)}
(b) See Fig. 3-9.

(¢) Reverse the ordered pairs of R to obtain R™':

R_l = {(171)? (2’1)’ (3’1)7 (4’1)7 (67])7 (272)7 (472)’ (672)7 (313)7 (673)’ (474)7 (6’6)}

R7! can be described by the statement *“x is a multiple of »”.

Fig. 3-9
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38. Letd=1{1,2,3}, B={a,b,c}, C = {x,y,z}. Consider the following relation R from 4 to B and
relation S from B to C:

R:{(l,b), (2"1)’ (2,0)} and S= {(aay)a (b, x), (c,y), (C,Z)}

(a) Find the composition relation Ro S.

(b) Find the matrices Mg, Mg, and Mp,s of the respective relations R, S, and Ro S, and
compare Mp,s to the product MpMsg.

(a) Draw the arrow diagram of the relations R and S as in Fig. 3-10. Observe that 1 in A4 is “‘connected” to

xin C by the path 1 — b — x; hence (1, x) belongs to Ro S. Similarly, (2,y) and (2, z) belong to Ro S.
We have (as in Example 3.5)

RoS§={(1,x), (2,»), (272)}

| = | <]
-
Fig. 3-10

(b) The matrices of Mz, Mg, and Mg, follow:

a b ¢ X y z X y z

1/0 1 0 af0 1 0 1/{1 00
Mrg=2{1 0 1 Ms=p[1 0 0 Mrs=210 1 1
3\0 0 0 c\0 1 1 3\0 0 0

Multiplying M, and Mg we obtain

1 00
MRMS'__ 0 2 1
00 0

Observe that M g,s and MzxMg have the same zero entries.

3.9. Let Rand S be the following relations on 4 = {1,2,3}:
R"—‘{(l,l), (172)7 (273)1 (371)? (3»)}’ S= {(172)7 (113)7 (2»1)7 (3v3)}
Find: (a) RNS, RUS, R; (b) RoS; (c) S?=SoS.

(a) Treat Rand S simply as sets, and take the usual intersection and union. For R, use the fact that 4 x 4
is the universal relation on 4.

RNS=1{(1,2),(3,3)}, RUS={(1,1),(1,2),(1,3),(2,1),(2,3),(3,1),(3,3)}
R = {(173)7(2’1)7(2»2),(3w2)}

(b) For each pair (a,b) € R, find all pairs (b,c) € S. Then (a,c) € Ro S. For example, (1,1) € R and
(1,2),(1,3) € S; hence (1,2) and (1, 3) belong to Ro S. Thus,

RoS= {(1!2)» (173)7 (17 l), (21 3)7 (372)1 (3,3)}
(¢) Following the algorithm in (b), we get S = So S = {(1,1),(1,3),(2,2),(2,3), (3,3)}.
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3.10.
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Prove Theorem 3.1: Let A4, B, C, D be sets. Suppose R is a relation from A to B, S is a relation
from B to C, and T is a relation from C to D. Then (RoS)oT =Ro(SoT).

We need to show that each ordered pair in (RoS)oT belongs to Ro(SoT), ie. that
(RoS)oT C Ro(SoT), and vice versa.

Suppose (a,d) belongs to (Ro S) o T. Then there exists a ¢ in C such that (a,c¢) € Ro S and (¢c,d) € T.
Since (a,c) € Ro S, there exists a b in B such that (a,b) € Rand (b,c) € S. Since (b,c) € Sand (c,d) € T,
we have (b,d) € So T; and since (a,b) € R and (b,d) € So T, we have (a,d) € Ro(SoT). Thus

(RoS)oT CRo(SoT)
Similarly, Ro (So T) C (Ro S) o T. Both inclusion relations prove (RoS)oT = Ro(SoT)

TYPES OF RELATIONS AND CLOSURE PROPERTIES

3.11.

3.12.

Determine when a relation R on a set 4 is:
(a) not reflexive, (b) not symmetric, (c) not transitive, (d) not antisymmetric.

(a) There exists a € 4 such that (a,a) does not belong to R.

(b) There exists (a,b) in R such that (b, a) does not belong to R.

(¢) There exists (a,b) and (b,c) in R such that (a,c) does not belong to R.

(d) There exists distinct elements a, b € 4 such that (a,b) and (b, a) belong to R.

Let 4 ={1,2,3,4}. Consider the following relation R on 4:
R=1{(1,1),(2,2),(2,3),(3,2),(4,2),(4,4)}
Draw its directed graph.

Is R (i) reflexive? (ii) symmetric? (iii) transitive? (iv) antisymmetric?
Find R = Ro R.

)
- = &

a) See Fig. 3-11.

(b) (1) R is not reflexive because 3 € 4 but 3R3, i.e,, (3,3) € R.
(ii) R is not symmetric because 4R2 but 24, i.e., (4,2) € R but (2,4)¢ R.
(iii) R is not transitive because 4R2 and 2R3 but 4R3, i.e., (4,2) € R and (2,3) € R but (4,3)¢ R.
(iv) R is not antisymmetric because 2R3 and 3R2 but 2 # 3.

(¢) For each pair (a,b) € R, find all (b,c) € R. Since (a,c) € R?,

R2 = {(l’ 1)’ (27 2)7 (27 3)7 (37 2)’ (37 3)7 (4’ 2)7 (4’ 3)7 (474)}
O

Fig. 3-11
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3.13.

3.14.

3.15.

Give examples of relations R on 4 = {1,2,3} having the stated property.
(a) R is both symmetric and antisymmetric.
(b) R is neither symmetric nor antisymmetric.
(¢) Ris transitive but RU R~ is not transitive.
There are several possible examples for each answer. One possible set of examples follows:
(@ R={(1,1),(2,2)}
(b) R= {(1’2)7(2a1))(213)}
(o) R={(1,2)}

Suppose ¥ is a collection of relations S on a set 4 and let T be the intersection of the relations S,
thatis, T =N(S: S € ¥). Prove:

(@) If every S is symmetric, then T is symmetric.

(b) If every S is transitive, then T is transitive.

(a) Suppose (a,b) € T. Then (a,b) € S for every S. Since each S is symmetric, (b,a) € S for every S.
Hence (b,a) € T and T is symmetric.

(b) Suppose (a,b) and (b, c) belong to T. Then (a,b) and (b, c) belong to S for every S. Since each S is
transitive, (a,c) belongs to S for every S. Hence, (a,c) € T and T is transitive.

Let A = {a,b,c} and let R be defined by
R = {(a,a), (a,b), (b,¢), (¢c,¢)}
Find: (a) reflexive(R), (b) symmetric(R), (c) transitive(R).
(a) The reflexive closure of R is obtained by adding all diagonal pairs of 4 x A to R which are not
currently in R. Hence
reflexive(R) = RU {(b,b)} = {(a,a), (a,b), (b,c), (c,c), (b,b)}
(b) The symmetric closure of R is obtained by adding all pairs in R~! which are not currently in R. Hence
symmetric(R) = RU {(b,a), (c,b)}
={(a,a), (a,b), (b,a), (b,c), (c;b), (¢c,c)}

(¢) Since A has three elements, the transitive closure of R is obtained by taking the union of R with
R*=RoRand R’ = RoRoR. We have:

R* = RoR={(a,a), (a,b), (a,c), (bc), (c,c)}
R} =R*o R={(a,a), (a,b), (a,c), (b,c), (c,c)}
Hence transitive(R) = RU R U R® = {(a,a), (a,b), (a,c¢), (b,c), (c,c)}.

PARTITIONS

3.16.

Let S ={1,2,3,4,5,6}. Determine which of the following are partitions of .S:

(a) Py =[{1,2,3}, {1,4,5,6}]  (c) Py=[{1,3,5}, {2,4}, {6}]
(b) P, = [{1 2} {3,5, 6}] (d) Py = [{1’3’5}’ {2’4’6’7}]
(a)
(b) No, since 4 € S does not belong to any cell.
(¢) Psis a partition of S.

(d) No, since {2,4,6,7} is not a subset of S.

No, since 1 € S belongs to two cells.
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3.17.

3.18.

3.19.

3.20.

3.21.
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Find all partitions of S = {a,b,¢,d}.

Note first that each partition of S contains either 1, 2, 3, or 4 distinct cells. The partitions are as follows:

M [S);
@ [a}, {b,c,d}], [{b}, {a,c,d}], [{c}, {a,b,d}], [{d}, {a,b,c}], [{a, b}, {c,d}], [{a,c}, {b,d}],
[{av d}’ {bv c}]§

3 [{a}, {8}, {c.d}], [{a}, {c}, {b,d}], [{a}, {a}, {b,c}), [{B}, {c}, {a, d}], [{}, {d}, {a,c});
[{c}, {a}, {a,b}];
@ [{a}, {b}, {c}, {a}].

There are 15 different partitions of S.

Let [4,,4,,...,A4,,) and [By, B,, ..., B,] be partitions of X. Show that the collection of sets
P=[{4;,nB}\J

is also a partition (called the cross partition) of X. (Observe that we have deleted the empty set

)

Let x € X. Then x belongs to 4, for some r, and to B, for some s; hence x belongs to 4, N B;. Thus the
union of the 4; N B; is equal to X. Now suppose 4, N B; and 4, N By are not disjoint, say y belongs to both
sets. Then y belongs to 4, and A,/; hence 4, = A4,.. Similarly y belongs to B, and By; hence B; = By.
Accordingly, 4, N B, = A, N By:. Thus the cells are mutually disjoint or equal. Accordingly, P is a partition
of X.

Let X ={1,2,3,...,8,9}. Find the cross partition P of the following partitions of X:
Py =[{1,3,5,7,9}, {2,4,6,8}] and P, =1[{1,2,3,4}, {57}, {6,8,9}]
Intersect each cell in P, with each cell in P, (omitting empty intersections) to obtain

P=[{1,3}, {5,7}, {9}, {2,4}, {8}]

Let f(n,k) represent the number of partitions of a set S with n elements into k cells (for
k=1,2,...,n). Find a recursion formula for f(n, k).

Note first that f(n, 1) = 1 and f(n, n) = 1 since there is only one way to partition S with » elements into
either one cell or n cells. Now suppose n > 1 and 1 < k < n. Let b be some distinguished element of S. If
{b} constitutes a cell, then S\{b} can be partitioned into k — 1 cells in f(n — 1, kK — 1) ways. On the other
hand, each partition of S\{b} into k cells allows b to be admitted into a cell in kK ways. We have thus shown
that

fmk)=f(n—1,k=1)+kf(n—1,k)

which is the desired recursion formula.

Consider the recursion formula in Problem 3.20. (a) Find the solution forn =1,2,...,6 in a
form similar to Pascal’s triangle. (b) Find the number m of partitions of a set with m =6
elements.
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(a) Use the recursion formula to obtain the triangle in Fig. 3-12, for example:
f(6,4) =1(5,3) +4/(5,4) = 25 + 4(10) = 65
(b) Use row 6 in Fig. 3-12 to obtain m = 1431490+ 65+ 15+ 1 = 203.

1

1 1

1 3 1

1 7 6 1
115 25 10 1
1

31 90 65 15 1

Fig. 3-12

EQUIVALENCE RELATIONS AND PARTITIONS

3.22. Consider the set Z of integers and any integer m > 1. We say that x is congruent to y modulo m,
written

x =y (mod m)
if x — y is divisible by m. Show that this defines an equivalence relation on Z.
We must show that the relation is reflexive, symmetric, and transitive.

(i) For any x in Z we have x = x (mod m) because x — x = 0 is divisible by m. Hence the relation is
reflexive.

(ii) Suppose x =y (mod m), so x — y is divisible by m. Then —(x — y) = y — x is also divisible by m, so
y = x (mod m). Thus the relation is symmetric.

(ili) Now suppose x = y (mod m) and y = z (mod m), so x — y and y — z are each divisible by m. Then the
sum

(x=»)+0-2)=x-z
is also divisible by m; hence x = z (mod m). Thus the relation is transitive.

Accordingly, the relation of congruence modulo m on Z is an equivalence relation.

3.23. Let R be the following equivalence relation on the set 4 = {1,2,3,4,5,6}:
R={(L1), (1,5), 2,2), (2,3), (2,6), (3,2), (3,3), (3,6), (4,9), (5,1),
(5,5), (6,2), (6,3), (6,6)}
Find the partition of A4 induced by R, i.e., find the equivalence classes of R.

Those elements related to 1 are 1 and 5, hence

(1= {1,5}
We pick an element which does not belong to [1], say 2. Those elements related to 2 are 2, 3, and 6, hence
2] =1{2,3,6}
The only element which does not belong to [1] or [2] is 4. The only element related to 4 is 4. Thus
[4] = {4}

Accordingly,
cordingly [{1,5}, {2,3,6}, {4}]

is the partition of A4 induced by R.
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3.24. Let 4={1,2,3,...,14,15}. Let R be the equivalence relation on A defined by congruence

3.25.

3.26.

3.27.

modulo 4.

(a) Find the equivalence classes determined by R.

(b) Find a system B of equivalence class representatives which are multiples of 3.

(a) Recall (Problem 3.22) that a = b (mod 4) if 4 divides a — b or, equivalently, if a = b + 4k for some

(b)

integer k. Accordingly:

(1) Add multiples of 4 to 1 to obtain [1] = {1,5,9,13}.
(2) Add multiples of 4 to 2 to obtain [2] = {2, 6,10, 14}.
(3) Add multiples of 4 to 3 to obtain [3] = {3,7,11, 15}
(4) Add multiples of 4 to 4 to obtain [4] = {4,8,12}.

Then [1], [2], [3], [4] are all the equivalence classes since they include all the elements of A.

Choose an element in each equivalence class which is a multiple of 3. Thus B = {9,6,3,12} or
B={9,6,15,12}.

Consider the set of words W = {sheet, last, sky, wash, wind, sit}. Find W/R where R is the
equivalence relation defined by:

(a) “has the same number of letters”, (b) “‘begins with the same letter”.

(a)

(b)

Let

Those words with the same number of letters belong to the same cell; hence
W /R = [{sheet}, {last, wash, wind}, {sky, sit}]
Those words beginning with the same letter belong to the same cell; hence

W /R = [{sheet, sky, sit}, {last}, {wash, wind}]

A be a set of nonzero integers and let ~ be the relation on A4 x A defined as follows:

(a,b) = (c,d) whenever ad = bc

Prove that = is an equivalence relation.

)
(ii)

(iii)

We must show that = is reflexive, symmetric, and transitive.

Reflexivity: We have (a, b) = (a,b) since ab = ba. Hence = is reflexive.

Symmetry: Suppose (a,b) = (c,d). Then ad = bec. Accordingly, cb = da and hence (c,d) = (a,b).
Thus, =~ is symmetric.

Transitivity: Suppose (a,b) =~ (¢,d) and (c,d) =~ (e,f). Then ad =bc and c¢f =de. Multiplying
corresponding terms of the equations gives (ad)(cf) = (bc)(de). Canceling ¢ # 0 and d # 0 from
both sides of the equation yields af = be, and hence (a,b) =~ (e,f). Thus = is transitive.

Accordingly, = is an equivalence relation.

Let 4 = {1,2,3,...,14,15}. Let ~ be the equivalence relation on 4 x A4 defined by (a,b) = (c,d)
if ad = bc. (See Problem 3.26.) Find the equivalence class of (3,2).

We seek all (m, n) such that (3,2) = (m, n), that is, such that 3n = 2m or 3/2 = m/n. [In other words, if

(3,2) is written as the fraction 3/2, then we seek all fractions m/n which are equal to 3/2.] Thus:

[3,2)] ={(3,2), (6:4), (5,6), (12,8), (15,10)}
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3.28. Prove Theorem 3.5: Let R be an equivalence relation on a set S. Then the quotient set S/Ris a
partition of S. Specifically:
(i) Foreach a € S, we have a € [a].
(i) [a] = [b] if and only if (a,b) € R.
(iii) If [a] # [b], then [a] and [b] are disjoint.

Proof of (i): Since R is reflexive, (a,a) € R for every a € S and therefore a € [a].

Proof of (ii): Suppose (a,b) € R. We want to show that [a] = [b]. Let x € [b]; then (b, x) € R. But by
hypothesis (@, b) € R and so, by transitivity, (a,x) € R. Accordingly x € [a]. Thus [b] C [a]. To prove that
[a] C [b], we observe that (a,b) € R implies, by symmetry, that (b,a) € R. Then, by a similar argument, we
obtain [q] C [b]. Consequently, [a] = [b].

On the other hand, if [a] = [b], then, by (i), b € [b] = |a]; hence (a,b) € R.

Proof of (iii): We prove the equivalent contrapositive statement:

IflggN[b]# &  then  [a] =[b]

If [a) N [<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>