Topic: Polynomial Function

ZEROS OF POLYNOMIAL EQUATIONS
There are three types

1) Remainder Theorem
2) Factor theorem
3) Synthetic division
4) Remainder Theorem:

$$
x-r=0 x=\gamma
$$

If r is any constant and if a polynomial $\underline{P(x)}$ is divided by $(\underline{x-r})$, the remainder is $\mathrm{P}(\mathrm{r})$.

$$
\text { i.e } P(\gamma]=R
$$

Example: 01 Find the remainder when $x^{3}+4 x^{2}-2 x+5$ divided by
$[x-1]$.
Yod:-

$$
\begin{aligned}
& P(x]=x^{3}+4 x^{2}-2 x+5 \\
& P(1)=1^{3}+4 \cdot 1^{2}-2(1)+5 \\
& P(1)=1+4-2+5 \\
& P(1)=8
\end{aligned}
$$

$$
R=8
$$

$$
x-1=x-r
$$

$$
x-1=0
$$

$$
x=1
$$

$$
\begin{aligned}
-1 & =-r \\
1 & =r
\end{aligned}
$$

$$
\begin{aligned}
& x=r \\
& x=1
\end{aligned}
$$

Example:02 Find the value of k, if the polynomial $x^{3}+k x^{2}-7 x+6$
has u $R=-4$ when divided by $(x+2)$
Sol:-

$$
\begin{align*}
P(r) & =R \\
P(-2) & =-4 \rightarrow(1) \tag{1}\\
4 K+12 & =-4 \\
4 K & =-4-12 \\
4 k & =-16 \\
k & =-16 / 4 \quad \Rightarrow K=-4
\end{align*}
$$

$$
\begin{aligned}
& x+2=0 \\
& P=-2 \\
& P(x)=x^{3}+k x^{2}-7 x+6 \\
& \begin{aligned}
& P(-2]=[-2]^{3}+k(-2]^{2}-7(-2]+6 \\
&=-8+4 k+14+6 \\
&P(r 2)]
\end{aligned}
\end{aligned}
$$

Example 03:- When $2 x^{3}-3 x^{2}-x+3$ divided by $(x+1)$
Sol:-

$$
\begin{aligned}
x+1 & =0 \\
y & =-1
\end{aligned}
$$

$$
\begin{aligned}
& P(x)=R \\
& R=2 x^{3}-3 x^{2}-x+8 \\
& =2[-1)^{3}-3[-1]^{2}-[-1]+8=-2-3+1+8 \\
& R=4
\end{aligned}
$$

2) Factor Theorem:

If r is a root of the equation $P(x)=0$, ie. if $P(r)=0$, then $(x-r)$ is a factor of $\mathrm{P}(\mathrm{x})$.
Conversely, if $(x-r)$ is a factor of $P(x)$, then r is a root of $P(x)=0$, or $P(r)=0$

$$
\begin{array}{ll}
P[a]=0 \\
x=a \\
{[x-a)} & \text { is } p(x)
\end{array} \quad\left\{\begin{array}{l}
{[x-a]} \\
p(a)=0
\end{array}\right.
$$

Example:04
show That $(x-2)$ is a factor of $x^{4}-13 x^{2}+36$
yOU 1 :-

$$
\begin{aligned}
& P[x]=x^{4}-13 x^{2}+36 \\
& x-2=0 \\
& x=2
\end{aligned} \begin{aligned}
P(2) & =2^{4}-13 \cdot 2^{2}+36 \\
& =16-52+36 \\
& =52-52
\end{aligned}
$$

$P[2]=0$
$x=2$ is the root of the pirn

Example: 05 Find factor of the polynomial, when

$$
\begin{aligned}
& x^{(3)}+4 x^{2}+x^{2}-6 \\
& \frac{x p 1}{P(x)}=x^{3}+4 x^{2}+x-6 \\
& \text { at } x=0 \\
& P(0)=0+0+0-6=-6 \neq 0 \\
& \text { at } x=1 \\
& P[1]=1+4+1-6=6-6=0 \\
& {[P(1]=0} \\
& \text { at } x=-1
\end{aligned}
$$

3) Synthetic Division:

$$
\begin{aligned}
& \text { of the }-3,-2,-1,011,2,3 \\
& P(-1)=-1+4-1-4=-4 \neq 0 \\
& \frac{a t}{P(2)=2} 8+16+2-6=20 \neq 0 \\
& \text { at } x=-2 \\
& P[-2]=-8+11-1-6=-16+16=0 \\
& P(-2]=0
\end{aligned}
$$

$$
p(1)=0
$$

$$
\Rightarrow x=1
$$

$$
(x-1)=0
$$

$$
p(-2)=0
$$

$$
x=-2
$$

$$
(x+2)=0
$$

$$
p\left[\left[^{3}\right]=0\right.
$$

$$
x=-3
$$

$$
(x+3)=0
$$

Hen $\left.[x-1]^{[x+2}\right)$ $[x+3]$ is factor of
$p(3)$

Synthetic division is a simplified method of dividing a polynomial $P(x)$ by $(x-r)$, where r is any assigned number. By this method the values of the coefficients of the quotient and the value of the remainder can readily be determined.

$$
p x^{3}+a x^{2}+c x+d \text { by }(x-a)
$$

$$
\left\lvert\, \begin{aligned}
& x^{3}+1=0 \\
& x^{3}+0 x^{2}+0 x+1=0
\end{aligned}\right.
$$

Exp:- $x^{4}-10 x^{2}-2 x+4 \div$ by $[x+3]$ $(x-\gamma)=\begin{array}{ll}(x-[-3)] & \begin{array}{l}x+1=0 \\ x=-3 \\ x=-3 \\ a z-3\end{array} \\ a\end{array}$

$$
\begin{aligned}
p(-3) & =-3^{4}-10(-3)^{2}+6+4 \\
& =0
\end{aligned}
$$

Remaindal $=1$
Quctiont =

$$
x^{3}-3 x^{2}-x+1
$$

Exp:- If $[x-2]\left\{\left(x t^{2}\right)\right.$ ale factor of $x^{4}-13 x^{2}+36$;
yout:-

$$
\begin{aligned}
& f:- \\
& f(x)=x^{4}+a x^{3}-13 x^{2}+a x+3 L \\
& x-2=0 \quad \frac{x+2=0}{x=-2} \\
& x=2
\end{aligned}
$$

| S.D:- $2 \|$1 0 -13 0 36

 724 74 -18 -36
 2 -9 -18 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |

$$
\begin{aligned}
\therefore \text { Quotient } & =x^{2}+0 x^{x}-9 \\
& =x^{2}-9 \\
& =(x+3)(x-3) \\
R & =-
\end{aligned}
$$

