1. TANGENT LINES AND RATES OF CHANGE

Basic Concept of secant line:

$\left(P\left(x_{1} x+h\right]\right) \quad E\left[x=1 d\left(x_{2}\right)\right)$

Tangent line:

$$
y=y_{0}+m\left(x-x_{0}\right)
$$

Calculate the slope of tangent?
Example:01
Find the slope of the tangent $y=x^{2}$ at the point $(2,4)$, if limit exists find the tangent line? $\rho\left[2 x^{4}\right] \Rightarrow x_{0}=2 ; y_{0}=4$

Sol:

$$
\begin{aligned}
& \begin{array}{l}
m=\operatorname{lin}_{h \rightarrow i} \frac{f(a+h]-f^{2}(a x)}{h} \\
\lim _{h \rightarrow i} \frac{f(2+h)-f(2)}{h}
\end{array} \\
& =\lim _{h \rightarrow 0} \frac{4^{2}+h^{2}+4 h-x}{h} \\
& \begin{aligned}
=\lim _{h \rightarrow 0} \frac{h^{2}+h h}{h}=\operatorname{lit}_{h \rightarrow 0} \frac{h(h+4)}{K} & =\lim _{h \rightarrow 0}(h+4) \\
& =0+4=4
\end{aligned}
\end{aligned}
$$

Eq of Tongutline: $y=y_{0}+m\left(x-x_{0}\right)$

$$
\begin{aligned}
& y=y_{0}+m\left(x-x_{0}\right) \\
& \sqrt{y=4+4(x-1)} \\
& y-4=4^{(x-2)} \\
& u \\
& y-4=4^{x-8} \\
& y-4 x=4^{-} \Rightarrow y-4 x=-4
\end{aligned}
$$

All of these to refer to the same things
ii) The Slope न $y=f[x]$ at $x=x_{\text {, }}$
(2) The slope f tangent $y=f(m)$ of $x=x$.
(3). The rate of change of $f(x)$ w.e.t " x " at $x=x_{0}$
4) The derivation of $f(x)$ at $x=x_{0}$

Questions:01
Find the equation of the tangent to the curve $y=x^{2}+1$; at $(2,5)$
Sol: $\quad p(2,5) \Rightarrow x_{0}=2 ; y_{a}=5 ; m=$

$$
\begin{aligned}
& \text { Eq. Tangent } \\
& y=y_{0}+m\left(x-x_{0}\right) \\
& y=5+4(x-2) \\
& y-y_{0}=m\left(x-x_{0}\right)
\end{aligned}
$$

$m=\lim _{h \rightarrow 0} \frac{\frac{f}{z}\left(x_{0}+x_{0}+h\right)-f\left(x_{0}\right)}{h}$

$$
f\left[(2+h]=[2+h]^{2}+1\right.
$$

$$
\begin{aligned}
& x\left[x^{2}+h\right)=(2+h)^{2}+1 \\
& =5+h^{2}+2 B^{h} \\
& m=\lim _{h \rightarrow \infty}\left(\frac{b+h^{2}+2 a h-5}{h}\right. \\
& =\lim _{h \rightarrow 0} \frac{K(h+4)}{K} \\
& m=4
\end{aligned}
$$

Question:02
Find the slope of the equation, if limit exists then find the tangent line
Where $g(x)=\frac{x}{x-2} ;(3,3) \quad x_{0}=3 ; y_{0}=3$
Sol:

$$
g(x)=\frac{x}{x-2}
$$

$$
\begin{aligned}
& m=\lim _{h \rightarrow 0} \frac{g f^{\left(x_{0}+h\right)}(g(10)}{h} \\
& m=\operatorname{lin}_{h \rightarrow c} \frac{g(3+h)-g(1)}{h} \\
& m=\operatorname{lit}_{h \rightarrow t} \frac{\frac{3+h}{h+1}-s}{h}=\lim _{h \rightarrow 6} \frac{3+h-3(h+1)}{[h+1)^{h}} \\
& m=\lim _{h \rightarrow 1} \frac{x+h-3 h-5}{h[h+1]}=\operatorname{lit}_{h+1} \frac{x(1-3)}{h(h+1)}
\end{aligned}
$$

$$
g(3)=\frac{3}{3-2}=3
$$

$$
g(b)=3
$$

$$
g(x+h)=\frac{x+h}{x+h-2}
$$

$$
m=\frac{1-3}{a+1}=\frac{-2}{m=-2}
$$

$$
\begin{aligned}
& y=y_{0}+m\left(x-x_{0}\right] \\
& y=3+(-2)(x-3)
\end{aligned}
$$

$y=3-2(x-1)$

Question:03

Find the slope of the curve at the point indicate

$$
\begin{aligned}
& y=5 x^{2} \text { at } x=-1 \\
& \text { at } x=-1 \\
& \begin{array}{c}
y=5(-1)^{2}=5 \\
y=5
\end{array} \\
& P(-1,5) \\
& m=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(a_{0}\right)}{h}=\operatorname{lom}_{h \rightarrow \infty} \frac{f+5 h^{2}-10 h-5}{h} \\
& m=\operatorname{lit}_{h \rightarrow t} \frac{r(5 h-1 y)}{\mu}=-10 \\
& p(x, y) \\
& y=? \\
& (-1)^{2}=1 \\
& -1)^{3}=-1 \\
& f(x)=5 x^{2} \\
& f(1)=5 \\
& f(x+h)=5(x+h)^{2} \\
& \begin{aligned}
f(x+h) & =5(x+h)^{2} \\
\neq(1)+h) & =5(-1+h)^{2} \\
& =5+5 h^{2}-10 h
\end{aligned} \\
& m=-11
\end{aligned}
$$

Question 04: $\frac{x-1}{x+1}$ at $x=0$

$$
y=\frac{x-1}{x+1}
$$

$$
a t x=0
$$

$$
y=-1
$$

$m=9$

There are two types of tangent slope
才) Vertical slope
The vertical slope of the tangent curve at point $x=\gamma_{0}$ is

$$
x y=\lim _{h \rightarrow 0} \frac{f\left[x_{1}+h\right]-f(x]}{h}=\infty
$$

2) 'Horizontal slope:

The horizontal slope of the tangent curve at point $\mathrm{x}=1$ is

$$
x=\operatorname{lin}_{n \rightarrow 0} \frac{f_{1}\left(m_{0}+h\right)-f(x)}{h}=0
$$

Hocizontal Atys

