Continuity of a function:
(i) Continuity at a point:

A function is said to be continuous at a point $x=a$
If $\operatorname{lit}_{x \rightarrow a} f(x)=f(a)$
(ii) Continuity in an interval: / inter mediate, (theorem) A function is said to be continuous in [abb] if satisfies the following three conditions:-

1) $f(x)$ is continuous $\forall \operatorname{HE}[a, b)$
2) $\lim _{\operatorname{lit}_{x \rightarrow a}+f(x)=f(a)}$ 3) $\lim _{x \rightarrow 5} f(x)=f(b)$
3) $\lim _{\operatorname{lit}_{x \rightarrow a}+f(x)=f(a)}$ 3) $\lim _{x \rightarrow 5} f(x)=f(b)$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1 & 3 \\
a & b
\end{array}\right]} \\
& x(-(a) b] \\
& c ; f(c)=y_{0}
\end{aligned}
$$

Example: 01 check continuity at $\mathrm{x}=2$

$$
\operatorname{lin}_{\substack{ \\
\rightarrow 0}} f(\operatorname{cx})=f(a) \quad \checkmark f(x)=\left\{\begin{array}{l}
\sqrt[x^{2}-4]{x-2} \quad \text { if } x \neq 2 \\
2 \quad \text { if } x=2
\end{array}\right.
$$

Sol:-
for $x=2$

$$
\begin{aligned}
& a^{2}-b^{2}=[a+b)[a-b] \\
& \frac{x^{2}-4}{}=[x+1](a-2)
\end{aligned}
$$

Now an $x \neq 2$

$$
\begin{aligned}
& =\lim _{x \rightarrow 2}\left(\frac{x^{2}-4}{x-2}\right)=\left(\frac{0}{0}\right) \\
& =\lim _{x \rightarrow 1}\left(\frac{(x+2)(2-2)}{(x-f)}\right) ; x \neq 0=\lim _{x \rightarrow 2}(x+2)=2+2=4
\end{aligned}
$$

then

$$
\begin{aligned}
& \operatorname{lit}_{x \rightarrow 2} f(x)=f(2) \\
& 4
\end{aligned} \quad \therefore f(x) \text { is not continuous at } x=2
$$

Example: 02 continuity ar $a x=0$

$$
f(x)=\left\{\begin{array}{cc}
(1+3 x)^{\frac{1}{x}} & ; \quad x \neq 0 \\
e^{3} & ; \quad x=0
\end{array}\right.
$$

you:-

$$
\lim _{x \rightarrow a} f(a)=f(a)
$$

(1) $f(x)=e^{3}$
(2)

(9)

$$
\begin{aligned}
\operatorname{lif}_{x \rightarrow 0} f(x) & =f(0) \\
e^{3} & =e^{3} \quad f(x) \text { is continvoul at } x \equiv 0
\end{aligned}
$$

Continuity of Polynomials and Rational Functions:
Every polynomial is continuous at every point of the real lines and every rational number is continuous at every point where its denominator is different from zero.

$$
\infty
$$

\checkmark Example: 03 Rational Function

$$
f(x)=x^{4}+20 ; \quad g(x)=5 x(x-2)
$$

$\because f(x)\{g(x)$ is continuous at avery value of x
But

$$
\begin{aligned}
\frac{f(x)}{g(x)}=\frac{x^{4}+20}{5 x(x-2)} & \quad \begin{array}{l}
\text { is continuous at every value fo } \\
\text { except } x=0 \text { j } x=2(\text { where }
\end{array} \\
x=0 \quad 1 x=1 & \text { dondminator is } 2010)
\end{aligned}
$$

Example: 04

$$
|x|=\left\{\begin{array}{lll}
x & \text { i } x>0 \\
-x & \text { i } x<0
\end{array}\right.
$$

$|x|$ is continues at curs

$$
\text { valurof } x \text { (0, 0) }
$$

But aigion:-

$$
\operatorname{lin}_{x \rightarrow 0}|x|=0
$$

Continuity of Composition function:
Exp:-

$$
\text { a. } \operatorname{lit}_{x \rightarrow \pi} \sin (\vec{n}-\sin x)=?
$$

vol:

$$
\begin{aligned}
\operatorname{lin}_{v i n}^{\sin } \sin (\pi-\sin x) & =\sin [\pi-\sin \pi] \\
& =\sin [\pi-0) \\
& =\sin (\pi) \\
& =0=L \quad \therefore \text { is com tenuous. }
\end{aligned}
$$

(b) $\lim _{x \rightarrow 0} \sin (\pi / 2(\cos [\tan x))$

$$
\text { (c) } \operatorname{live}_{y \rightarrow 1} \sec \left(y \sec ^{2} y-\tan ^{2} y-1\right)
$$

$$
\begin{aligned}
& \operatorname{lit}_{x \rightarrow 0} \sin (\pi / 2(\cos (\tan x)])=\sin (\pi)_{2}[\cos (\tan 101]) \\
& =\sin \left[\pi / 2\left(\cos 1^{01}\right]=\operatorname{scc}^{2} y=\operatorname{tar}_{y \rightarrow 1}^{2} \sec \left(y \sec ^{2} y-\left(\tan ^{2} y+1\right]\right)\right. \\
& =\sin (\pi / 2(1)) \\
& =\sin (x h) \\
& =1=L \text { is continuo. } \\
& \begin{array}{l}
\operatorname{Sec}\left(y \sec ^{2} y-\sec ^{2} y\right) \\
=\sec \left(\sec ^{2}(1)-\sec ^{2}\right)
\end{array} \\
& =5 C C^{(0)} \\
& =B=2 \\
& \text { Sol :- }
\end{aligned}
$$

Continuity from Graph:

$$
\begin{array}{ll}
y^{2} 1:- \\
f(-1)=0.5 \\
f(3)=2
\end{array} \quad \begin{array}{ll}
\operatorname{lin}_{x \rightarrow e} f(x)
\end{array}
$$

$$
f(c)=0.5
$$

is discontin Nous at $x=9$

$$
f(b)=2
$$

3.
4.

(1) $f(b)=$ $\lim _{x \rightarrow 5} f(x)$

$$
f[3]=1.5
$$

$$
\operatorname{win}_{\substack{2 \\ x \rightarrow 3}} f(x)-1
$$

1) $\{|-1|=0$
2) f 间 $=0=\operatorname{litat}_{x \rightarrow 1} f 1 x,=1.5$
,$:$ is emplinuals
$0 \neq 1.5$

$$
\begin{aligned}
& f(a)=f(-1)=2=2-x_{j=1}+f(x)=2 \\
& f(b)=f(3)=a=\lim _{\rightarrow \rightarrow-1}^{-1} \text { f(a) } a
\end{aligned}
$$

15. $y=\frac{1}{x-2}-3 x$

$$
\begin{aligned}
& x-2=0 \\
& x=2
\end{aligned}
$$

is discrontinuar

$$
\text { 17. } y=\frac{x+1}{x^{2}-4 x+3}
$$

$$
\sqrt{x^{2}-4 x+3}=0
$$

$$
x^{2}-32-x+3=0
$$

$$
x(x-3)^{-1}(x-3)=0
$$

$$
[x-1)^{2}(x-3)=0
$$

$$
x-1<0 ; x-3=0
$$

$x=1 ; x=3$

$$
\begin{aligned}
& \frac{1}{(x+2)_{2}^{2}}+4 \\
& (x+2)^{2}=0 \\
& x+2=0
\end{aligned}
$$

$$
r=-1 \text { Dis.cmt. }
$$

$$
18 \cdot y=\frac{1}{|x|+1}-\frac{x^{3}}{2}
$$

$$
|x|+\mid \neq 0
$$

nefined $\forall x$ contin wis

