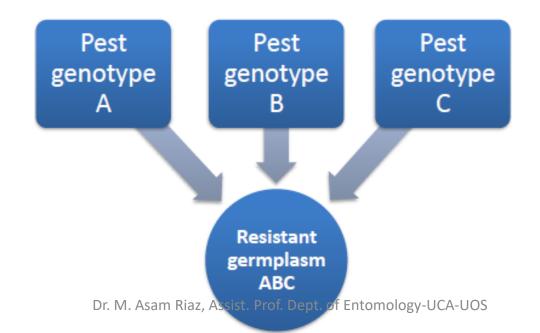


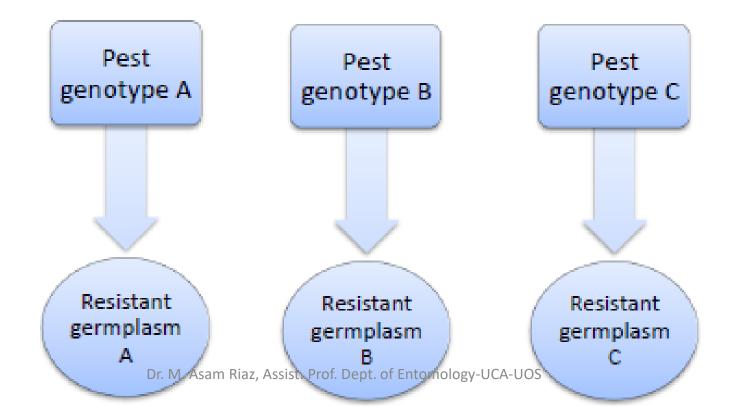
Plant resistance to insect pests


Dr. M. Asam Riaz

Assistant Professor

Entomology, College of Agriculture, University of Sargodha, Sargodha, Pakistan

Type of resistance based on epidemiology/inheritance

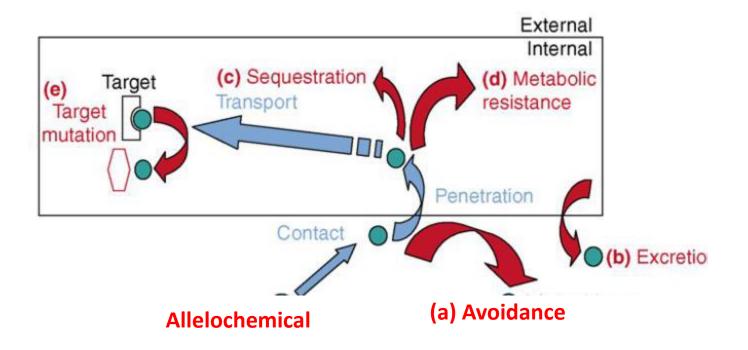

- When a cultivar express resistance against a broad range of pest genotypes
- Confered by many plant genes and also known as polygenic resistance

- In horizontal resistance, stepwise accumulation of genes is done (by selective breeding)
- most desirable to use in pest management. b/c
- Less chances of biotype
- Horizontal resistance has low heritability and is difficult to incorporate but long lasting.

2- Vertical resistance

- When a cultivar express resistance to one or a few genotype of pest
- Confered by one or a few plant genes and also known as oligogenic resistance

- -advantage is that Genes are easier to incorporate in new variety as compare to horizontal resistance (identify the resistance gene, incorporate and released)
- Vertical resistance is not useful as compare to horizontal resistance because of development of biotypes


-e.g.,

- Rice IRRI varieties with bph5, bph6 and bph 7 genes are resistant to brown planthopper.
- •Rice hybrid resistance to green leafhopper and brown planthopper (parent inbred lines have resistant genes) (in china)
- Wheat cultivar resistant to greenbug
- Corn lines resistant to corn rootworm
- Bt variety of cotton resistant to lepidopterous

Mechanism of resistance

- a) Avoidance: insect avoid the contact with all elochemical
 - 1. Avoidance by Genetics (oviposition on specific host)
 - 2. Avoidance by Learning process (larvae learn after bitting)
- b)Excretion: insect excrete out the allelochemical just after ingestion

- c)Sequestration: enzyme binds with the allelochemical without biotransformation (Glutathion S-transferases, UDP-glycosyl transferases)
- d)Metabolic resistance: biotransformation of allelochemicals i.Cytochrome P450 monooxygenases (P450s or CYPs for genes), ii.Glutathione S-transferases (GSTs) and the iii.Carboxylesterases (COEs).
- e)Target site mutation: target site of allelochemical mutate

Example of allelochemicals and their

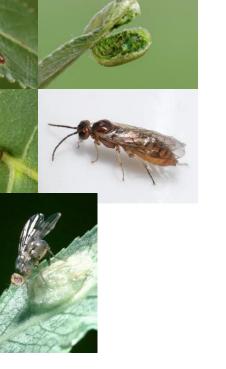
Type of allelochem icals	Target site	Resistance mechanism	Example
Alkaloids	 Neuroreceptors (inhibition); Ion channels (antagonist); Nucleic acids (disruption of DNA synthesis); Feeding (deterrent owing to bitterness); Enzymes (inhibition) 	Modification of nicotine synthesis by salivary glucose oxidase	Helicoverpa zea (Lepidoptera)

 Nervous system (inhibition of acetylcholine esterase); feeding (deterrent owing to pharrier and bitterness); growth and development inhibit (pheromone analog) 	
--	--

Flavonoids and phenolic acids

- Respiration (inhibition);
- Growth (inhibition)

- Ingestion avoidance
- Decrease of toxin levels in gall tissue Glycosylation by UDP -
- sequestration and/or excretion


glycosyl-transferase;

Manduca sexta (Lepidoptera) Pontania sp. (Hymenoptera)

Bombyx mori (Lepidoptera

Pontania sp. Munduca sexta (Tobacco Hornworm) Dr. M. Asam Riaz, Assist. Prof. Dept. of Entomology-UCA-UOS

Bombyx mori (Silkworm)