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Chapter

Economic Dynamics
and Integral Calculus

The term dyramics, as applied to economic analysis, has had different meanings at differ-
ent times and for different economists.” In standard usage today, however, the term refers to
the type of analysis in which the object is cither to trace and study the specific time paths
of the variables ot to delermine whether, given sufficient time, these variables will tend to
converge to cerlain (equilibriunt) values. This type of information is important becausc it
fills a myjor gap that marred our siudy of statics and comparative statics. In the latter, we
always make the arbitrary assumption that the process of economic adjustment incvitably
leads to an cquilibrium. [n a dynamic analysis, the question of “attainability™ 15 to be
squarely faced, rather than assumcd away.

One salient feature of dynamic analysis is the dating of the variables, which introduces
the cxplicit consideration of time into the picture. This can be done i two ways: time can
be considered either as a continuous variable or as a discrete variable. In the former case,
somcthing is happening to the variable at cach point of time {such as in continuous interest
compounding); whereas in the latter, the variable undergoes a change only once within a
period of time (e.g., interest is added only al the end of cvery 6 months). One of these time
concepts may be more appropriate than the other ip certain contexts.

We shall discuss first the continuous-time case, to which the mathematical techniques of
integral cateulus and differential equarions are pertinent. Later, in Chaps. 17 and 18, we
shall turn to the discrete-time case, which utilizes the methods of difference equations.

14.1 Dynamics and Integration

In a static model, generally speaking, the problem is to find the values of the endogenous
variables that satisfy some specified equilibrium condition(s). Applied to the context of
oplimization models, the task becomes one of finding the values of the choice variubles
that maximize (or minimize) a specific objective function with the first-order condi-
tion serving as the equilibrium condition. In a dynamic model, by contrast, the problem

" Fritz Machlup, “Statics and Dynamics: Kaleidoscopic Words,” Southern Economic Journal, October
1959, pp. 91-110; reprinted in Machlup, Essays on Economic Semarntics, Prentice-Hall, Inc.,
444 Englewood Cliffs, N.J., 1963, pp. 9-42.
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involves instead the delineation of the time path of some variable, on the basis of a known
pattern of change (say, a given instantaneous rate of change).

An cxample should make this clear. Suppose that population size £/ is known to change
over {img at the rate

dH 172
— = 14.1
7 (14.1)
We then try to find what time path{s) ol population # = H(¢) can yicld the rate of change

in (14.1).

You will recognize that, if we know the function F = //(¢) to begin with, the derivative
d H [di can be found by diffcrentiation. But in the prablem now confronting us, the shoc is
on the other foot: we are called upon to uncover the primirive function from a given derived
function, rather than the reverse. Mathematically, we now need the exact opposile of the
method of differentiation, or of differential calcuius.

The relevant method, known as fategration, or integral calculus, will be studied in this
chapter. For the tume being, let us be content with the observation that the function
T1{r) = 21’ does indeed have a derivative of the form in {14.1), thus apparently qualify-
g as 4 solution to our problem. The trouble is that there also cxist similar functions. such
as H(r) = 2¢Y2 115 or H(r) = 2t'% 4 99 or, more generally.

H=2""4+¢  (c=an arbitrary constant) (14.2)

which all posscss exactly the same derivative (14.1). No unique lime path can be deter-
mined, therefore, unless the value of the constant ¢ can somehow be made definite. To
accomplish this, additional information must be introduced into the model, usvally in the
form of what is known as an initiaf condition or boundury condition.

IMwe have knowledge of the initial population H{0)—that is, the valuc of Hat7 = 0, let
us sity, H(0} = 100—then the valuc of the constant ¢ can be made determinate. Setting
t =0 1in(14.2), we get

Oy =207 +c=¢
But if H(0) = 100, then ¢ = 100, and {14.2} bccomes
HH =212 4100 (14.29)

where the constant is no longer arbitrary. More generally, for any given initial population
H{0), the time path will be

H(t) = 2642 4 1H0) (14.29

Thus the population size A at any point of time will, in the present example, consist of the
sum of the initial pepulation [7(0) and another term mvolving the time variable ¢. Such a
time path indeed charts the complete itinerary of the variable # over time, and thus it truly
constitutes the solution o our dynamic model. [Equation (14.1) is also a function ol . Why
can’t it be considered a selution as well?]

Simple as it 15, this population example illustrates the quintessence of the problems of
cconomic dynamies. Given the pattern of behavior of a variable over time, we seek 1o find
a function that describes the time path of the variable. In the process, we shall encounter
one or more arbitrary constants, but if we possess sufficient additional information in the
form of initiaf conditions, it will be possible to definitize these arbitrary constants.
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In the simpler types of problem, such as the one just cited, the solution can be found by
the method of integral calculus, which deals with the process of tracing a given derivative
[unction back to its primitive function. [n more complicated cases, we can also resort to the
known techniques of the closcly related branch of mathematics known as differential equa-
tinns. Since a differential equation is defined as any cquation containing differential or
derivative expressions, (14,1) surely qualifies as one; consequently, by finding its solution,
we have in fact alrcady solved a differential equation, albeit an exceedingly simple one.

Let us now proceed to the study of the basic concepts of integral calculus. Since we dis-
cussed differential calculus with x (rather than ¢) as the independent variable, for the sake
of symmetry we shall use x here, too, For convenience, however, we shall in the present dis-
cussion denote the primitive and derived functions by F(x} and f{(x), respcctively, rather
than distinguish them by the use of a ptime,

14.2 Indefinite Integrals

The Nature of Integrals
It has been mentioned that integration is the reverse of differentiation. 11 differentiation of
a given primitive lunction F(x) yields the derivative f(x). we can “integrate”™ f(x) to find
F(x), provided apprepriate information is available to definitize the arbitrary constant
that will arise in the process of integration. The function #(x) is referred to as an infegral
(or antiderivative) of the function £(x). These two types of process may thus be likened to
two ways of studying a family tree: infegration involves the tracing of the parentage of the
function f(x), whereas differentiation secks out the progeny of the lunction Fix). But note
this difference—while the (differcntiable) primitive function F(x) invariably produces a
lonc offspring, namely, a unique derivative f{x), the derived function /() is traceable to
an infinite number of possible parents through integration, because it F{.x) is an integral of
£{x), then so also must be #(x) plus any constant, as we saw in (14.2).

We necd a special notation to denote the required integration of /() with respect to x.
The standard one is

[ s

The symbol on the left an elongated § (with the connotation of sum, to be explained
latery—is called the integral sign, whereas the fix) part is known as the integrand (the
function to be intcgrated), and the ¢x part—similar to the #x in the differentiation operator
d /dx—reminds us that the operation is to be perlormed with respect 1o the variable .
However, you may also take f(x} &x a8 a single entity and interpret it as the differentia!
of the primitive function F(x) [that is, d #(x) = f{x) dx]. Then, the intcgral sign in {ront
can be viewed as an instruction fo reverse the differentiation process thal gave rise to the
differential, With this new notation, we can write that

d
dx

where the presence of ¢, an arbilrary coastan! of integration, serves to indicate the multiple
parentage of the mtegrand.

Fo) = f(0) = ffmd»c- Fi+c  (143)



Example 1
Example 2

Example 3

Example 4

Example 5

Chapter 14 ficonumic Dynamics and Integral Calenfus 447

The integral [ f(x) dx is, more specifically, known as the indefinite infegral of f(x) {as
against the definite infegral to be discussed in Sec. 14.2), because it has no definite numer-
ical valuc. Because it is equal lo F{x) + ¢, its value will in general vary with the value of
x (even if ¢ 18 definitized). Thus, like a derivative, an indefinite integral is itself a function
of the variable x,

Basic Rules of Integration

Justas there are rules of derivation, we can also develop certain rules of integration, As may
be expected, the lalter arc heavily dependent on the rules of derivation with which we are
already familiar. From the following derivative formula for a power function,

d { x**! \
— =x" n#E—1
dx (n +1 (n# =1

for instance, we see that the expression x"~!/(n + 1) is the primitive function for the

derivative function x”; thus, by substituting these for F(x)and f(x) in (14.3), we may
state the result as a rule of integration.

Rule1 (the power rule)

| 1
N — ‘i‘i' _I
f,x dx ﬂ+11’ +c  {n#E-1)

Find {x*dx. Here, we have n = 3, and therefore

1
Sdx = —xt i
f”‘ i

Find fx dx. Since n =1, we have

.
dx = - x*
fxx zx—i—c

What is f T dx? To find this integral, we recall that x% = 1: so we can let n = Q in the power

rule and get
f1 dx=x+¢

[/ 1dx is sometimes written simply as [ dx, since 1 dx = dx.]
Find [ v'x? dx. Since vx? = x*2, we have n = 3; therefore,
512
oy X 2
f\’x3 dx = T+C:§ 'V!;‘FC
2

1
Find / x—4dx, (x #0). Since 1/x* = x™4, we have n = —4. Thus the integral is

1 —4+1 1
— dx= (=—--=+¢
[ x4 —4+1 + 3x3
Note that the correctness of the results of integration can always be cheeked by differ-
entiation; if the integration process 1s correct, the derivative of the integral must be cqual to
the integrand.
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The derivative formulas for simple exponential and logarithmic functions have heen
shown to be
i

i
Efﬁx =& and (}; Inx = ; (.’C = 0)

£

From these, two other basic rules of integration cmerge.

fex dx=e"+¢

1
f—dlenx+c {(x =0
X

Rule 11 (the exponential rule}
Rule Fll  (the logarithmic rule)

It is of intercst that the integrand involved in Rule Il is 1 /x = x~*, which is a special
form of the power [unction x® with # = — . This particular integrand is inadmissible under
the power rule, but now is duly taken care of by the logarithmic rule.

As stated, the loganthmic rule is placed under the restriclion x > 0, because logarithms
do not cxist for nonpositive values of x. A morc general formulation of the rule, which ¢an
lake carc ol negative values of x, is

fi dx =lIn|x|+¢ (x #40)
x

which also implies that (d/dx)yIn|x| = 1/x, just as (¢/dx) Inx = 1/x. You should con-
vince yoursell that the replacement of x {with the restriction x > 0) by |x| (with the
restriction x # () does not vitiate the formula in any way.

. : , l .
Also, as a malter of notation, it should be pointed out that the integral f dx iy
: . dx .
sometimes also written ag | —.
X

As variants of Rules [I and 111, we also have the following two rules.

Rule [1a
/f’(x)eﬂ"'-‘ dy = e/ 4 ¢
Rule 11z
f'(r) dy =In f(x) +¢ [flx} = 0]
fix)
or Il fl+e¢  [fl)#0]

The bases for these two rules can be found in the derivative rules in (10.20),

Rules of Operation

The three preceding rules amply illustrate the spirit underlying all rules of integration. Each
rule always corresponds to a certain derivative formula. Also, an arbitrary constant is



Example 6

Example 7

Chapter 14 Lcoaomic Dynamics and Integral Calewlus 449

always appended at the end {cven though it is to be definitized later by using a given bound-
ary condition) to indicate that a whole family of primitive [unctions can give rise to the
given integrand.

To be able o deal with more complicated integrands, however, we shall also find the
following two rules ol operation with regard to integrals helplul.

Rule IV  (the integral of a sum) The integral of the sum of a finite number of tunctions
is the sum of the integrals of those functions. For the two-function case, this means that

f[f(x) +glx)] dx = ff().} dx + fg[x} dx

This rule 1s a natural conscquenge of the fact that

dx dx J
L' ('
A B

d d d
LE) + Gl = —Flx) + - G(x) = flx) + g(x)
.dx —_—

o]

Tnasmuch as 4 = C, on the basis of (14.3) we can write
f [flx)+gx)] dx = Flo) + Glx) + ¢ (14.4)
But, [rom the fuct that B = , it follows that
f.f'(-r) dx = F{x)+e¢,  and fg(.r} dx = Glx) + e

Thus we can obtain {by addition}
ff(x) dx + fg(x) dx=Flx)+Gx)+c 4+ (14.5)

Since the constants ¢, ¢y, and ¢; are arbitrary in value, we can let ¢ = ¢| + ¢. Then the
right sides of (14.4) and (14.5) become equal, and as 4 consequence, their left sides must
be equal also. This proves Rule IV.

Find [(x* + x + 1) dx. By Rule IV, this integral can be expressed as a sum of three integrals:
[x¥dx+ [xdx+ {1dx, Since the values of these three integrals have previously been
found in Examples 1, 2, and 3, we can simply combine those results to get

[(x3+x+1)dx— X—4+c)+ x—2+c +(x+c)—ﬂ+x—2+x+c
g 7 7 VTR 3

In the final answer, we have lumped together the three subscripted constants intc a single

constant .

As a general practice, all the additive arbitrary constants of integration that emerge dur-
ing the process can always be combined into a single arbitrary constant in the final answer.

, 14 . " ,
Find f(zezx t o n 5—) dx. By Rule IV, we can integrate the two additive terms in the

integrand separately, and then sum the results. Since the 2e%* term is in the format of
f'(x)e'™ in Rule Ila, with f{x) = 2, the integral is e>* + ¢;. Similarly, the other term,
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Example 8

Example 9

Example 10

14x/(7x% 4 5), takes the form of /(x)/ f(x}, with f(x) = 7x% + 5 = 0. Thus, by Rule llla, the
integral is In (7% + 5) + ¢z. Hence we can write

' 14
f(Ze“Jr 2 is)dx=e2x+ln(7x2+5)-|—c

where we have combined ¢ and ¢; into one arbitrary constant c.

Rule V  (the integral of a multiple) The integral of £ times an integrand (4 being a con-
stant) is & times the infegral of that mtegrand. In symbols,

fkf(x}dx = kf_f'(x]dx

What this rule amounts to, operationally, is that 4 muitiplicative constant can be “factored
out” of the integral sign. (Warning: A variable term cannot be factored out in this fashion")
To prove this rule {for the case where 4 is an tnuteger), we recall that £ times f(x} merely
means adding f(x) & times: therclore, by Rule IV,

f kf(x) dx = f FG) + )+ 4 f(0)] dr

k Lerms

= ff(\) dx + ff(_,r} dx+ -+ ff(x) dy =k f_f(x) dx

k

b dorms

Find { —f(x) dx. Here k = —1, and thus

f—f(x) dx = _jf(x) dx

That is, the integral of the negative of a functicn is the negative of the integral of that
function.

Find §2x? dx. Factoring out the 2 and applying Rule |, we have
. 3
[2x2dx:2]x2dx:2(% +c1) = %x‘*-{-c:
Find f3x? dx. In this case, factoring out the multiplicative constant yields
3
fodeZB[xzdxz?,(%Jrq) =x ¢

Note that, in contrast to the preceding example, the term x3 in the final answer does not
have any fractional expression attached to it. This neat result is due to the fact that 3 (the
muitiplicative constant of the integrand} happens to be precisely equal to 2 (the power of
the functicn) pius 1. Referring to the power rule (Rule 1), we see that the multiplicative con-
stant (n + 1) will in such a case cancel out the fraction 1/(n + 1), thereby vielding (x™' + ¢)
as the answer,

In general, whenever we have an expression (# 4 1)x” as the integrand, there is really
no need to factor out the conslant (n 4 1) and then integrate x”; instead, we may write
x"'U 4 ¢ as the answer right away.
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' 3
Findj (Se" —-x ‘4 ;) dx, (x  0). This example illustrates both Rules IV and V; actually,

it illustrates the first three rules as well:

1 ,
Se*‘——+§ dx=5fe“dx— | x2dx+3 1dx [by Rules IV and V]
X2 x X y

1
:(Se"—l—m)—(x_—1 +52)_|_(3|n|x!+q)

1
=5"+ - 4+3In'x/+c
X
The correctness of the result can again be verified by differentiation.

Rules Involving Substitution

Now we shall introduce two more rules of integration which seek to simplify the process
of integration, when the circumstances are appropriate, by a substitution of the original
variable of integration. Whenever the newly introduced variable of integration makes the
intcgration process easier than under the old. these rules will beeome of service,

Rule ¥1 (the substitation rule) The intcgral of f{u){du/dx) with respect lo the van-
able x 1s the integral ol f{u) with respeet to the variable

ff('u) a’_u dx = ff(u) du= Flu)+¢
dx

where the operation f dfu has been substituted for the operation [ dx.
This rule, the integral-calculus counterpart of the chain rule, may be proved by means of
the chain rule itself, Given a function F{u), where v = u(x), (he chain rule states that
d d du du
—_— F | = e —_— = Hl—
dx () du dx / )d.'c
Since f{u)(cfu/dx) is the derivative of F(u), it follows from (14.3) that the integral (anti-
derivative) of the [ormer must be

dit
ff(u)— dy = Fiy+¢
dx

You may note that this result, in fact, follows also from the cancefing of the two dx cxpres-
sions on the left.

du
F(u)é = F'()

Find { 2x(x? + 1} dx. The answer to this can be obtained by first multiplying out Lhe
integrand:

4
f2x{x2-|-1)dx=[(2x3+2x)dx: 52—+x2+c

but let us now do it by the substitution rule, Let u=x%+1; then du/dx =2x, or
dx = du/2x. Substitution of du/2x for dx will yield

du u?
2 21d=f2 —z[ =+
fx(x-|—)x XUZx ‘udu 2+c1
1
:%(x4+-2x2+-1)+c1:§x4-|-x2-|-c

where ¢ = % +¢1. The same answer can also be obtained by substituting du/dx for 2x
(instead of du/2x for dx),
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Example 13

Example 14

Find [ 6x%(x> + 2)* dx. The integrand of this example is not easily multiplied out, and thus
the substitution rule now has a better opportunity to display its effectiveness. Let
u = x* 4+ 2; then du/dx = 3x2, so that

fﬁxz(f’ +2)% dx = j (2%) W7 dx = / 207 du

_ 2 o, 13 100
_100u +c_50(x +2)" +¢

Find 8223 dx. Let u = 2x + 3; then du/dx = 2, or dx = du/2. Hence,
fBe“'?'dx:fSe“%=4fe”du:4e“+c=4ez“3+c

As these examples show, this rule is of help whenever we can—by the judicious choice
of a function 1 = u(x) -express the integrand (a function of x) as the product of f{x)
(a function of ) and du /dx (the derivative of the & function which we have chosen). How-
ever, as illustrated by the last two examples, this rule can be uscd also when the original
integrand is transformable into a constant multiple of f{x)(du /dx). This would not aftect
the applicability because the constant multipher can be factored out of the integral sign,
which would then leave an integrand of the form f(u)(du/dx), as required in the substitu-
tion rule. When the substitution of variables results in g variable multiple of f{u}{dufdx),
say, x times (he latter, however, factoring is not permissible, and this rule will be of no help.
In fact, there exists no gencral formula giving the integral of a preduct of two functions in
terms of the separate integrals of those functions; nor do we have a general formula giving
the integral of a quotient of two functions in terms of their separate integrals, Herein lies
the reason why integration, on the whole, is more difficult than differentiation and why,
with complicated integrands, it is more convenient to look up the answer in prepared lables
of integration formulas rather than to undertake the integration by oneself,

Rule VII (integration by parts) The integral of v with respect to u is equal to uv less
the integral of # with respect to v:

fvdu :uu—fi{du

The essence of this rule is to replace the operation { di by the operation [ dv.
The rationaic behind this result is relatively simple. First, the product rule of differen-
tials gives us

diuv) =vdu+ udv

If we integrate hoth sides of the equation {i.e., integrate each diflerential), we get a new

gquation
fd(uv): fvdu—k[udv

or Y = f vdu + / udv [no constant is needed on the left (why7)]

Then, by subtracting | # v from both sides, the previously stated result emerges.
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Find f x(x + 1) 2 dx. Unlike Examples 12 and 13, the present example is not amenable to
the type of substitution used in Ruie VI. (Why?) However, we may consider the given inte-
gral to be in the form of {v du, and apply Rule VII. To this end, we shall let v = x, implying
dv = dx, and also let v = 3(x + 1)¥?, so that du = (x + 1)2 dx. Then we can find the
integral to be

fx(x-l—])m dx = / vdu:uv—fudv

2 ;
= {x+ 1)} - f %(X + 1) dx

3
_ 2 3:2 4 552
_3(x+1) X E(HU +c

Find [inxdx, {x = 0). We cannot apply the logarithmic rule here, because that rule deals
with the integrand 1/x, not Inx. Nor can we use Rule V1. But if we let v =In x, implying
dv = (1/x} dx, and also let u = x, so that du = dx, then the integration can be performed

as follows:
flnxdx:fvdu:uv—fudv

:xinxhfdx:xlnx—x+c=x(lnx—1)+c

Find fxe*dx. In this case, we shall simply let v=x, and u = e*, so that dv = dx and
du = e* dx. Applying Rule VII, we then have

[xe*dx: [vdu:uvufudv

=exx—fe"dx:e*x—e"+c:e’((x—1)+c

The validity of this result, like those of the preceding examples, can of course be readily
checked by differentiation.

EXERCISE 14,2

1. Find the following:

(a) f 1652 dx  (x#0) {d) [ 2% dx

b f 9x® dix (@) f xfj - dx

© f(xsn.%x) iy ) [ (2ax + B)(ax? + bx)’ dx
2. Find

(a)fHeX dx (d)f3e"(2"+7) dx

(b) [ (3e* + %) dx (x> 0) {e) [ 4xe™ -3 dx
© f (Se“ + %) g (x20) ) [xe”2 9 dx
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3. Find:
3d
@f e (c)] wis
4, Fingd:
(a) ](x+3)(x+1)‘f’2 dx (b fxtnxdx (x =0}

5. Given n constants & (with i =1,2,..., ny and nfunctions fi{x), deduce from Rules IV
and V that

[ Sonioan=3k [scoan
i S =

14.3 Definite Integrals

Example 1

Meaning of Definite Integrals

All the integrais cited in Sce. 14.2 are of the indefinite variety: each is a function of a vari-
ablc and, hence, possesses no definite numerical value. Now, for a given indefinite integral
of a continuous function f{x),

f}‘(x) dx = F{x)+¢

i we choose two values of x in the domain, say, ¢ and b {a < b), substitute them succes-
sively into the right side of the cquation, and form the difference

[F(b)+c]—[Fila)+ ] = F(b) ~ Fila)

we get a specific numerical value. free of the variable x as well as the arbitrary constant ¢.
This value is called the definite integral of f{x) [rom « to b, We refer to @ as the lower limit
of tmtegration and to b as the upper limit of integration.

In order to indicate the limits of integration, we now modify the integral sign to the form

b
] . The evaluation of the definite integral is then symbolized in the following steps:
£l
h b

Jx)dx = F(ﬂr)] = F{6)— F(a) (14.6)

i it

where the symbol [ (aiso written |2 or [---]7) is an Instruction to substitute & and a. suc-
cessively, for x in the resull of integration to get F{h) and F{a), and then take their
difference, as indicated on the right of (14.6). As the first step, however, we must find the
indefinite integral, although we may omit the constant ¢, since the latter will drop out in the
process of diflerence-taking anyway.

Evaluate { 3x%dx. Since the indefinite integral is x* 4 ¢, this definite integral has the value
}

g 5
f3x2dx:x3} =(5° (1Y’ =125-1=124
1 1
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b
Evaluatef ke* dx. Here, the limits of integration are given in symbals; consequently, the
a

result of integration is also in terms of those symbols:

b b
f ke dx = ke"} ~ k(eb — %)
{a

Q

A
Evaluatef (m +2x) dx, (x # —1). The indefinite integral is In |1 + x| + x* +¢; thus
0

the answer is

fg (13 +2X) dX—[lI"I|]-|—X|-|—X :|0

=(In5-+16)—{In1 +0)
=In5+16  [sinceln1 =0]

It is important to realize that the limits of integration & and b both refer to values of the
variable x. Were we to use the substitution-of-variables technique (Rules VT and VII) dur-
ing integration and introduce a varlable w, care should be taken not to consider ¢ and b as
the limits of i FExample 4 will illustrate this point.

2
Evaluate [ (2x> —1)2(6x") dx. Let u = 25> - 1; then du/dx = 6x2, or du = 6x2 dx. Now
Ll 1

notice that, when x =1, u will be 1 but that, when x = 2, u will be 15; in other words,
the limits of integration in terms of the variable u should be 1 (lower) and 15 (upper).

2
Rewriting the given integral in v will therefore give us notf v du but
1

]52 1 315 1.3 .3 2
Wwdu=—-u =—(15-1Y=1,124<

Alternatively, we may first convert u back to x and then use the criginal limits of 1 and 2 to
get the identical answer:

[11.'3]”_15—[1(2)(3 1)3]X_2—1(153 13y =1,1242
3‘ u=1 3 x=1 3 ’ ’

A Definite Integral as an Area under a Curve

Every definite integral has a definite value. That value may be interpreted geometrically to
be a particular area under a given curve.

The graph of a continuous function v = f(x) is drawn in Fig. 14.1. If we seek to mea-
surc the (shaded) area 4 enclosed by the curve and the x axis between the two points ¢ and b
in the domain, we may proceed in the foliowing manner. First, we divide the interval [a, ]
into n subintervals (not necessarily equal in length). Four of these are drawn in Fig. 14.1¢-—
thatis,n =4 the first being [x1, x2] and the last, [x4, x5]. Since each of these represents
a change in x, we may refer to them as Axy, ..., Axy, respectively, Now, on the subinter-
vals let us construct four rectangular blocks such that the height of each block is equal
to the highest value of the function attained in that block (which happens to occur at
the lefi-side boundary of each rectangle here). The first block thus has the height f(x) and
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FIGURE 14.1
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the width Ax,, and, in general, the ith block has the height f(x;) and the width Ax;. The
iotal area 4* of this set of blocks 1s the sum

"
A* = E_r(m Ax;  (n=4inFig.14.}a)
i=1
This, though, is obvicusly rof the area under the curve we seek, but only a very rough
approximation thereof,

What makes A* deviatc from the true value of 4 is the unshaded portion of the rectan-
gular blocks; these make 4* an overestimate of A. If the unshaded portion can be shrunk
in size and be made to approach zero, however, the approximation value 4™ will corre-
spondingly approach the true value 4. This result will materialize when we try a finer and
finct segmentation of the interval [a, #], so that z is increased and Ax; is shortened indefi-
nitely. Then the blocks will become more slender (il more numerous), and the protrusion
beyond the curve will diminish, as can be scen in Fig. 14.15. Carried to the limnt. this
“slenderizing” operation yields

lim > f(x) Ax; = lim 4" = area 4 (14.7)

NG
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provided this limit exists. (1t does in the present case.) This equation, indeed, constitutes the
formal definition of an area under a curve.

The summation expression in (14,7), Z f{x;) Ax;, bears a certain resembiance (0 the
h f=|
definite integral expression | [{x)dx. Indecd, the latter 1s based on the former, The

i
replacement of Ax; by the differential dx 1s done 1n the same spirit as in our carlicr discus-
ston of "approximation” in Scc. 8,1, Thus, we rewrite f(x;) Ax; into f(x) dx. What aboul

n
the summation sign” Thez notation represents the sum of a finite number of terms, When
i=l
we let v — 00, and take the limit of that sum, the regular notation for such an operation is

I
rather cumbersome. Thus a simpler substitute 1s nceded. That substitute is ] . where the
%)

elongated .S symbol also indicates a sum, and where ¢ and & (just as i = T and ») serve to
specify the lower and upper limits of this sum. In short the definite integral is 4 shorthand
for the limit-of-a-sum expression in (14.7). That is,

h

f{x) dx = lim Z FOx) Ax; = arca A

Thus the said definite integral (referred to as a Riemann integral) now has an areq conno-
h

tation as well as a sum connotation, because f 15 the continupus counterpart of the
i
discrete concept of Z
i=|

In Fig. 14.1, we attempted to approximate area 4 by systematically reducing an over-
estimate A by finer segmentation of the interval [a, b]. The resulting limit of the sum of
block areas 1s called the upper integral—an approximation from above, We could also have
approximated area 4 from below by forming rectangular blocks ingcribed by the curve
rather than protruding beyond it (see Excrcise 14.3-3). The total area 4% of this new set of
blocks will underestimate 4, but as the segmentation of [¢, #] becomes finer and finer, we
shall again find lim A4* = A. The last-cited limit of the sum of block arcas is called the

=20

lower imtegral, 1f, and Dniy il, the upper integral and lower integral are equal in value, then
the Ricmann integral [ J{x) dx is defined, and the function fi{x) is said (o be Riemann

integrable. There exist theorems specifying the conditions under which a function f{x) is
integrable. According to the fundamental theorem of calculus, a function is integrable in
[, b] If it is continuous in that interval. As long as we are working with continuous fune-
tions, therefore, we should have no worries in this regard.

Another point may be noted. Although the area 4 in Fig. 14.1 happens to lic entirely
under a decreasing portion of the curve v = f(x), the conceptual equating of a defimite in-
tegral with an area 1s valid also for upward-sloping portions of the curve. In [act, both types

of slope may be present simultaneously; e.g., we can calculate f F(x)ydx as the area

under the curve in Fig. 14.1 above the line O5.
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FIGURE 14.2
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Note that, if we calculate the area B in Fig. 14.2 by the defimite mtegral f flx)ydx, the

answer will come out negative, because the height of each rectangular block involved in
this area is negative. This gives rise to the notion of a negative area, an arca that lies below
the x axis and above a given curve. [n case we arc interested in the numerical rather than the

algebraic value of such an area, therefore, we should take the absolute value of the relevant
o

definite integral. The area € = | f{(x) dx, on the other hand, has a DOSItIiVe s1gn even
&
though it lies in the negative region of the x axis; this is because each rectangular block has

a positive height as well as a positive width when we are moving from ¢ (o d. From this, the
implication is cleur that interchange of the two limits of integration would, by reversing the
direction of movement, alter the sign of Ax; and of the definite intcgral. Applied to arca B,

aJ
we see that the definite integral ] F(x) dx (from b to @) will give the negative of the area
b

B; this will measure the numerical value of this arca.

Some Properties of Definite Integrals
The discussion in the preceding paragraph leads us to the following property of dcfinitc
integrals.

Property I The interchange ol the limits of integration changes the sign of the definite
integral:

u r
flx)de=— | flx)dx

b a

This can be proved as follows:
B

af(x) dx = Fla) — F{b)y = —[F(bhy = Fla}]=— | f{x)dx

h u

Delinite integrals also possess some other interesting properties,

Property IT A definite integral has a value of zero when the (wo limits of integration are
identical:

faf(x] dx = F(u)— Fla) =
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Under the “arca” interpretation, this means that the area {under a curve) above any sin-
gle poinz n the domain is nil. This 1s as 1t should be, because on top of 4 peint on the x axis,
we can draw only a (one-dimensional) fine, never a (two-dimensional) area.

Property I1I A definite integral can be expressed as a sum of a finite number of definite
subintegrals as follows:

d & e d
f fixyds= | flo)ds+ | flx)dx +/ fixyde (a<h<c<d)
@ i k ¢

Only three subintegrals are shown in this equation, but the extension to the case of n
subintegrals is also valid. This property is sometimes described as the additivity property.

In terms of area, this means that the area (under the curve) lying above the interval [«, &]
on the x axis can be obtained by summing the areas lying above the subintervals in the set
{la, b, [b, c], [c. d]}. Note thal, since we are dealing with closed intervals, the border
points » and ¢ have each been included m fwo areas. Is this not double counting? It indeed
i5. But fortunately no damage 15 done, because by Property 11 the arca above a single point
1s z¢To, so that the double counting produces no effect on the calculation. But, needless to
say, the double counting of any irferval is never permitted.

Earlicr, it was mentioned that all continuous functions are Riemann integrable. Now, by
Property III, we can also find the definite integrals (areas) of certain discontinuous func-
tions. Consider the step function in Tig, 14,34, [n spite of the discontinuity at point & in the
interval [¢, ¢]. we can find the shaded area from the sum

b Iy
[ fdet [ fee ds
Iy I

The same also applies to the curve in Fig. 14.34.

h 5
f —fix)dx = —f f(x)dx

fa ko de— f i

Property IV

Property V

(@ (&)
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Property VI
i

b
flx)dx -I-f glxydx

i il

hr
[ U+ g =
Property V11 (integration by parts) Given z(x) and v{x),

T oh v=h x.—h
vdu = uv — i dv
Jx-u L T

These last four properties, all borrowed from the rules of indefinite integration, should
requite no further explanation.

Another Look at the Indefinite Integral
We introduced the definite integral by way of attaching two limits of integration to an
indefinite integral. Now that we know the meaning of the definite integral, let us sce how
we can revert from the latter to the indefinite integral.

Suppose that, instead of fixing the upper limit of intcgration at &, we allow 1t 1o be a
variable, designated simply as x. Then the integral will take the [orm

f‘-_f'(x.} dy = F(x) — F(a)

which, now being a function of x, denotes a variable arca under the curve of f{x). But
since the last term on the right is a constant, this integral must be a member of the (amily
of primitive functions of #(x ), which we denoted earlicras F(x) + ¢. If we setc = —F{a),
then the above integral becomes exactly the indefinite integtal f f(x) dx.

From this point of view, therefore, we may consider the | symbol to mean the same as

kY
f , provided it is undersiood that in the latter version of the symbol the lower limit of
i

integration is related to the constant of integration by the cquation ¢ = —#(a).

EXERCISE 14.3

1. Evaluate the following:

3 4
(a) f %xi' dx (d) f (x3 — 6x%) dx
2
R ]
(b}f x(x% + 6) dx (e}[ (ax? + bx + ¢) dx
0 4
3 2
C)jl 3% dx (f)£ x? (%ﬂ-l—])dx

2. Evaluate the following:

2
(@) j] e~ dx

el dx
b
()j'| X+2

(c)f e? "+ %)
(d)l (;-I—]lx)dx
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3. In Fig. 14.14, take the lowest value of the function attained in each subinterval as the
height of the rectangular block, i.e., take f(x;} instead of f{x1) as the height of the first
block, though stil! retaining Axy as its width, and do likewise for the other blocks.

(@) Write a summation expression for the total area A** of the new rectangles.

(b) Does A*™ overestimate or underestimate the desired area A7

(€) Would A™ tend to approach or to deviate further from A if a finer segmentation of
fa, b] were introduced? (Hint: Try a diagram.)

(d) In the limit, when the number # of subintervals approaches co, would the approxi-
mation value A* approach the true value 4, just as the approximation value A* did?

(e} What can you conclude from {g) to (d) about the Riemann integrability of the
function f(x)in Fig, 14.1a?

b
4. The definite integral f f{x) dx is said to represent an area under a curve. Does this
a

curve refer to the graph of the integrand f(x), or of the primitive function £{x}? If we
plot the graph of the F(x) function, how can we show the given definite integral on
it—by an area, a line segment, or a point?

5. Verify that a constant ¢ can be equivalently expressed as a definite integral:

b r
(a)cEfﬂ g-.dx (b).c:nm-,fﬁ 1 dr

14.4 Improper Integrals

Certain integrals arc said to be “improper.” We shall briefly discuss two varieties thereol.

Infinite Limits of Integration
When we have definite integrals of the form

x h
f Jx)dx  and f F(x) dx

with onc limit of integration being infinite, we refer to them as improper integrals. In these
cases, 1t 1s not possible to evaluate the integrals as, respectively,

Floo} — F(a} and Flb) — F(—o0)

because o0 15 not a number, and therefore it cannot be substituted for x in the function
F(x). [nstead, we must resort once more to the concept of limits.

The first improper integral we cited can be defined to be the limit of another (proper)
integral as the latter’s upper limit of integration tends to no; that is,

oo h
f f{x)dx = ﬁlim‘f fxydx (14.8)

If this limit exists, the improper integral is said to be convergent (or to converge), and the
limiting process will yield the value of the integral, H the limit does net exist, the improper

integral 15 said to be divergent and is in fact meaningless, By the same token, we can define
h

j feyds = dim | f0x)da (14.8)

- 0
i

with the same criterion of convergence and divergenee.
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Example 1

Example 2

FIGURE 14.4

" odx
Evaluate — . First we note that
1

X2
Pdx -1
1 Xz_T

-1
— +1
'I b

b

Hence, in line with (14.8), the desired integral is

T im fbdx—lim _1+1)-1
; X2 box)y X bom\ b B

This improper integral does converge, and it has a value of 1.
Since the limit expression is cumbersome to write, same people prefer to omit the “lim”
notation and write simply

/ —j:—} —0+1=1
X X 4

Even when written in this form, however, the improper integral should nevertheless be
interpreted with the limit concept in mind.

Graphically, this improper integral still has the connotation of an area. But since the
upper limit of integration is allowed to take on increasingly larger values in this case,
the right-side boundary must be extended eastward indefinitely, as shown in Fig. 14.4a.
Despite this, we are able to consider the area to have the definite {limit) value of 1.

= dx e
Evaluate f ~" As before, we first find
1

b b
f dj—‘-:lnx] —lnb—InT=Inb
1 1

X

When we let b — oc, by (10.16") we have Inb — oo, Thus the given impraper integral is
divergent.

Figure 14.4b shows the graph of the function 1/x, as welt as the area cerresponding to
the given integral. The indefinite eastward extension of the right-side boundary will resuit
this time in an infinite area, even though the shape of the graph displays a superficial
similarity to that of Fig. 14.44.

HEY )
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What if both limits of integration are infinite? A direct extension of (14.8) and (14.8)
would suggest the definition

o h
j f(x) dx = ,1_1_{11‘ f f(x) dx (148”)

N— =

Again, this improper integral is said to converge if and only if the limit in question exists.

Infinite Integrand

Even with fimte limits of integration, an inlegral can still be improper if the integrand be-
comes infinite somewhere in the interval of integration [a, #]. To evaluate such an integral.
we must again rely upon the concept of a timit.

1

1

Evaluate/ " dx. This integral is improper because, as Fig. 14.4b shows, the integrand is
0

infinite at the lower limit of integration (1/x — oc as x — 07). Therefore we should first
find the integral

'|1 1
[—dx:lnx} =nl-Ina=-Ihg [fora= 0]
o X [l

and then evaluate its limitas a — 0 ;

1 1 L
—dx = lim f —dx=Im{-Ina)
g X a—0 fy X g—0F

Since this limit does not exist {as a — 07, Inu — —ov), the given integral is divergent.

9
Evaluatef x~2 dx. When x — 0%, the integrand 1/./x becomes infinite; the integral is
0

improper. Again, we can first find

9 g
] x~112 dx:Zx”Z:| =6-2Ju
4]

I

The limit of this expression as @ — 0% is 6 — 0 = 6, Thus the given integral is convergent
(to 6),

The situation where the integrand becomes infinite at the upper limit of integration is
perfectly similar. It is an altogether different proposition, however, when an infinite valuc
of the integrand occurs in the open interval (a, ) rather than at ¢ or 4. In this eventuality,
it is necessary to take advantage of the additivity of definite integrals and first decomposc
the given integral into subintegrals. Assumc that f{x) — 0o as ¥ — p, where p 18 a poinl
in the interval {a, b); then, by the additivity property, we haye

h 2
fﬂﬂmzfﬂﬂﬁ+

The given integral on the left can be considered as convergent if and only if each subinte-
gral has a limit.

]
Sx)dx

f
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1 ]
Evaluate j 3 dx. The integrand tends to infinity when x approaches zero; thus we must

Example 5 .
write the given integral as the sum
1 0 1
f x Pdx= f x~3 dx ;f xdx  (ay, = h+ 1)
-1 -1 0
The integral ; is divergent, because
lim [bx Ydx = lim 1.2 _ lirm ( ! +1 = o0
b= |3 Cp—0 | 2 o b=0\ 22 2 -
Thus, we can conclude immediately, without having to evaluate !;, that the given integral
is divergent,
EXERCISE 14.4

1. Check the definite integrals given in Exercises 14.3-1 and 14.3-2 to determine whether
any of them is improper, if improper, indicate which variety of improper integral each
one is.

2. Which of the following integrals are improper, and why?

(@) f:e‘” dt (d) f_le” d
() f;_ o dx (e) ﬂ Sx—d_’ii
© [Q 2 gy () f_ Zédx

3, Evaluate all the improper integrals in Prob, 2.

4, Evaluate the integral 1, of Example 5, and show that it is also divergent,

5. (@) Graph the function y = ce! for nonnegative t, {c > 0}, and shade the area under
the curve.
(b} Write a mathematical expression for this area, and determine whether it is a finite
area.

14.5 Some Economic Applications of Integrals

Integrals are used in economic analysis in various ways. We shall illustrate a few simple
applications in the present section and then show the application to the IJomar growth
model in Sec. 14.6.

From a Marginal Function to a Total Function

(Given a total function (c.g., a total-cost function), the process ol differentiation can yicld
the marginal function (e.g., the marginal-cost function). Because the process of integration
is the opposite of differentiation, it should enable us, conversely, to infer the total function
from a given marginal function.
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If the marginal cost (MC) of a firm is the following function of output, C'(Q) = 26°29, and
if the fixed cost is Cr = %0, find the total-cost function C(Q). By integrating C'(Q) with
respect to Q, we find that

1
[280.2(3 dQ:zo..ieU-m+c: 106529 4 ¢ (14.9)

This result may be taken as the desired C(Q) function except that, in view of the arbitrary
constant ¢, the answer appears indeterminate. Fortunately, the information that C; = 90
can be used as an initial condition to definitize the constant. When Q =0, total cost €
will consist solely of Cr. Setting Q@ =0 in the result of (14.9), therefore, we should get a
value of 90; that is, 10® + ¢ = 90. But this would imply that ¢ = 90 — 10 = 80. Hence, the
total-cost function is

C(Q) =106"¢ 1 80

Note that, unlike the case of (14.2), where the arbitrary constant ¢ has the same value as
the initial value of the variable H(0), in the present example we have ¢ =80 but
C{0) = C; =90, so that the two take different values, in general, it should not be assumed
that the arbitrary constant ¢ will always be equal to the initial value of the total function.

If the marginal propensity to save (MPS) is the following function of income, $'(¥)=
0.3 - 0.1Y~1/2, and if the aggregate savings § is nil when income Y is 81, find the saving
function S(¥). As the MPS is the derivative of the § function, the prablem now calls for the
integration of $'(Y):

Y)= f(0.3 —01Y V) dy =03y —02y12 4 ¢

The specific value of the constant ¢ can be found from the fact that § = 0 when ¥ = 81,
Even though, strictly speaking, this is not an initia! condition (not relating to ¥ = 0), substi-
tution of this information into the preceding integral will nevertheless serve to definitize ¢,
Since

0=038D-02(N+c = ¢=-225
the desired saving function is
SEYy=0.3Y —0.2yY2 225

The technique iltustrated in Examples 1 and 2 can be extended directly to other prob-
lems involving the search for total functions (such as total revenue, total consumption)
from given marginal functions. It may alse be reiterated that in problems of this type the va-
lidity of the answer (an integral) can always be checked by differentiation.

Investment and Capital Formation

Capital formation is the process of adding to a given stock of capital. Regarding this
process as continuous over fime, we may cxpress capital stock as a function of time, K (7).
and use the derivative d K /d/ to denole the raic of capital formation.” But the rate of capital

' As a matter of notation, the derivative of a variable with respect to time often is also denoted by a
dot placed over the variable, such as K = dK/dt. In dynamic analysis, where derivatives with respect
to time occur in abundance, this more concise symbol can contribute substantiafly to notational
simplicity. However, a dot, being such a tiny mark, is easily lost sight of or misplaced; thus, great care
is required in using this symbol.
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Example 3

formation at time ¢ is identical with the rate of net invesiment flow al time £, denoted by
{(1). Thus, capital stock K and net investment { are related by the following two equations:

dﬁ’_f
= ()
and K(r):/!(zjdr=f%dr=/di(

The first of the preceding equations is an identity; it shows the synonymity between net
investment and the increment of capital. Since 7(¥) is the derivative of K{¢), it stands to
reason that K'{(¢) is the integral or antiderivative of 7(¢), as shown in the second equation.
The transformation of the integrand in the latter equation is also easy fo comprehend: The
switch from f to d K /dr is by definition, and the next transformation 1s by cancellation of
two identical differcntials, i.c., by the substitution rule.

Sometimes the cencept of gross fivestment is used together with that of net investment
in a model. Denoting gross investment by /, and net investment by 1, we can relate them to
each other by the equation.

I =T+3K

where § tepresents the rate of depreciation of capital and 8K, the rate of replacement
investment.

Suppose that the net investment flow is described by the equation /(t) = 3t'/2 and that the
initial capital stock, at time t = 0, is K(Q). What is the time path of capital K? By integrating
1(t) with respect to {, we obtain

K{t) =f!(r) dt:fj,ﬂf? dt=2821 ¢

Next, letting t = 0 in the leftmost and rightmast expressions, we find K (0) = ¢. Therefore,
the time path of K'is

K(t) = 2632 4 K(0) (14.10)

Observe the basic similarity between the results in (14.10) and in (14.2).

The concept of definite integral enters into the picture when one desires to find the
amount of capital formation during some interval of time (rather than the time path of K).
Since [1(1) dt = K(t), we may write the definite integral

h b
f f{t)dt = K(r}] = K(b) — K(u)
a q
to indicate the total capital accumulation during the time interval [a, b]. Of course, this alse
represents an area under the /(1) curve. It should be noted, however, that in the graph of the
K{(¢) function, this definite integral would appear instead as a vertical distance—more
specifically, as the difference between the two vertical distances K(b) and K(a). (cf. Exer-
cise 14.3-4.)

To appreciate this distinction between X(¢) and /(t) more fully, let us emphasize that
capital K is a sfock concept, whereas investment / is a flow coneept. Accordingly, while
K(1) tells us the amount of K existing at each point of time, /(#) gives us the information
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FIGURE 14.5
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about the rate of (net) investment per year (or per period of time) which is prevailing at
gach point of time. Thus, in order to calculate the amount of net investment undertaken
(capital accumulation), we must first specify the length of the interval involved. This fact
can also be seen when we rewrite the identity dK /dt = 1(t) as d K = 1{1) dt, which states
that /K, the increment in X, is based not only on 7(¢), the rate of flow, but also on 41, the
time that elapsed. It is this need to specify the time interval in the expression 7(¢) Jt that
brings the definite integral mto the picture, and gives rise to the area representation under
the /(t)—as against the K{¢) curve.

i net investment is a constant flow at {{t) = 1,000 {doilars per year), what will be the total
net investrment (capital formation) during a year, from t = 0 to £ = 17 Obwviously, the answer
is $1,000; this can be obtained formally as follows:
1 1 1
f (O dt = / 1,000 dt = 1,ooor] — 1,000

0 0 0
You can verify that the same answer will emerge if, instead, the year involved is from t = 1
tot=2.

If £(t) = 3t'/* (thousands of dollars per year)—a noncenstant flow—what will be the capi-
tal formation during the time interval [, 4], that is, during the second, third, and fourth
years? The answer lies in the definite integral

4

4
u[aﬂﬂdn:m”ﬂ =16—2=14
1 1
On the basis of the preceding examples, we may express the amount of capital accumu-
lation during the time interval [0, {], for any investment rate {(t), by the definite integral
i

ff(r) dt = K(t)] = K(t) - K{O)
0

0
Figure 14.5 illustrates the case of the time interval [0, t¢]. Viewed differently, the preceding
equation yields the following expression for the time path K(f):

ot
k() = K(0)+j .‘

0
The amount of K at any time ¢ is the initial capital plus the total capital accumulation that
has eccurred since.

(t) dt

{

{=1n

f [}"im dt = Kigy) ~ K@)

- ————

<
=
.
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Present Value of a Cash Flow
Our earlier discussion of discounting and present value, limited to the casc of a single
future vatue ¥, led us to the discounting formulas

A=V{i+i) " [discrete case]

and A=Ve™ [continitous case]

Now suppose that we have a stream or flow of future values—a serics of tevenues receiv-
able at various times or of cost outlays payable at various times, How do we compute the
present value of the entire cash stream, or cash flow?

In the discrete case, if we assume three future revenue figures B, (1 =1, 2, 3) available
at the end of the tth year and also assume an interest ratc of i per annum, the present values
of R, will be, respectively,

RO+ R(1+i) 7 EU+n™

It follows that the total present value 13 the sum

3

n :ZRI(IJH)“' (14.17)

t=1

(T is the uppercase Greek letier pu, here signifying present.) This differs from the single-
value formula only in the replacement of by R, and in the insertion of the I sign.

The idea of the sum readily carries over to the case of a continuous cash flow, but in the
latter context the T symbol musi give way, of course, to the definite integral sign, Consider
4 continuous revenue stream at the rate of R(f) dollars per ycar. This means that at ¢ = £,
the rate of flow is R(#) dollars per year, but at another point of time ¢ = f; the rate will
be R(t:) dollars per year—with f taken as a continuous variable. At any point of time,
the amount of revenue during the interval [¢, r + dt] can be written as R(f) dt [cf. the
previous discussion of dK = 1(f) di]. When continuously discounted at the rate of r per
year, its present value should be R{(r)e ™' dt. If we let our problem be that of finding the
total present value of a 3-year stream, our answer is to be found in the following definite
integral:

3
M= f R(t)e " di (14,117
0

This expression, the continuous version of the sum in (14.11), differs from the single-value

formula only in the replacement of ¥ by R(¢} and in the appending of the definite integral
com

sign,

T It may be noted that, whereas the upper summation index and the upper limit of integration are
identical at 3, the [ower summation index 1 differs from the lower limit of integration 0. This is
because the first revenue in the discrete stream, by assumption, will not be forthcoming until ¢ = 1
{end of first year), but the revenue flow in the continuous case is assumed to commence immediately
after { = 0.
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What is the present value of a continuous revenue flow lasting for y years at the constant
rate of D dollars per year and discounted at the rate of r per year? According to {14.11"), we

have
¥ ¥ -1 ¥
mn :f De™" dt = Df et = D[—-e‘”]
0 0 r i

_ t=y _
- =7, ff} 2o =2a ey (1412
r 0 r r

Thus, IT depends on D, r and y. If D = $3,000, r = 0.06, and y = 2, for instance, we have
3,000
- 0.06

The value of IT naturally is always positive; this follows from the positivity of D and r, as well
as (1 —e™*). (The number e raised to any negative pawer will always give a positive frac-
tional value, as can be seen from the second quadrant of Fig. 10.3a.)

n (1 — e ®12) = 50,000(1 — 0.8869) = $5,655  [approximately]

In the wine-storage problem of Sec. 10.6, we assumed zerc sterage cost. That simplifying
assumption was necessitated by our ignorance of a way to compute the present value of a
cost flow. With this ignorance behind us, we are now ready to permil the wine dealer to
incur storage costs.

Let the purchase cost of the case of wine be an amount C, incurred at the present time.
Its (future} sale value, which varies with time, may be generally denoted as V (f)—its present
value being V{t)e . Whereas the sale value represents a single future value (there can be
only one sale transaction on this case of wine), the storage cost is a stream. Assuming this
cost to be a constant stream at the rate of s dollars per year, the total present value of the
storage cost incurred in a total of t years will amount to

t
f se”dt = 2(1 —e ™) (. (14.12)]
0
Thus the net present value—what the dealer would seek to maximize—can be expressed as
rt 3 —rt 57 - 5
- ~- (- —-C= Z - -
N(D = Ve - 2(1 e - C {V(r)+ r]e - ¢

which is an objective function in a single choice variable .
To maximize N({), the value of t must be chosen such that N°(f) = 0. This first derivative is

N = V(e —r [V(t) + ;] e”"  [product rule]
= [V —rV(t)—s]e "
and it will be zero if and only if
Vi =rV{t) +5

Thus, this last equation may be taken as the necessary optimization condition for the choice
of the time of sale *.

The econemic interpretaticn of this condition appeals easily to intuitive reasoning: V'(f)
represents the rate of change of the sale value, or the increment in ¥, if sale is postponed for
a year, while the two terms on the right indicate, respectively, the increments in the interest
cost and the storage cost entailed by such a postponement of sale (revenue and cost are
both reckaned at time {*). So, the idea of the equating of the two sides is to us just some “old
wine in a new bottle,” for it is nothing but the same MC = MR condition in a different guise!
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Example 8

Present Value of a Perpetual Flow

If a cash flow were to persist forcver—a situation exemplified by the intercst from a per-
petual bond or the revenue from an indestructible capital asset such as land  the present
value of the flow would be

2.4
fl :f R(ne™ di
{

which 15 an improper integral.

Find the present value of a perpetual income stream flowing at the uniform rate of D dol-
lars per year, if the continuous rate of discount is 7. Since, in evaluating an improper inte-
gral, we simply take the limit of a proper integral, the result in (14.12) can still be of help.
Specitically, we can write

- . ¥ D I
M= [ De " dt = lim [ De " dt=lm —{1—-e )= —
40 = 0 b= r F
Note that the y parameter (number of years) has disappeared from the final answer. This
is as it should be, for here we are dealing with a perpetual flow. You may also observe that
our result (present value = rate of revenue flow = rate of discount) corresponds precisely to
the familiar formula for the so-called capitalization of an asset with a perpetual yield.

EXERCISE 14.5

1. Given the following marginal-revenue functions:
() R(Q)=28Q-e™? () R(Q) =100+ Q"
find in each case the total-revenue function R(Q). What initial condition can you
introduce to definitize the constant of integration?
2. (0) Given the marginal propensity to import M'(¥) = 0.1 and the information that
M = 20 when Y = G, find the import function M(Y).
(b) Given the marginal propensity to consume C'(Y)=0.8+0.1Y~"2 and the
information that C = ¥ when Y = 100, find the consumption function C(Y).
3. Assume that the rate of investment is described by the function /(t) = 12¢'/? and that
K (0) = 25:
{a@) Find the time path of capital stock K.
{b) Find the amount of capital accumulation during the time intervals [0, 1] and [1, 3],
respectively.
4, Given a continuous income stream at the constant rate of $1,000 per year:
(@) What will be the present value IT if the income stream lasts for 2 years and the
continuous discount rate is 0.05 per year?

(b) What will be the present value I1 if the income stream terminates after exactly
3 years and the discount rate is 0.04?

5. What is the present value of a perpetual cash flow of:
(a) $1,450 per year, discounted at r = 5%/7
(B) $2,460 per year, discounted at r = 8%7



