FUNDAMENTALS OF SICS Halliday \& Resnick 10ht edition JEARL WALKER

EXTENDED

WILEY

MATHEMATICAL FORMULAS*

Quadratic Formula

If $a x^{2}+b x+c=0$, then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Binomial Theorem

$(1+x)^{n}=1+\frac{n x}{1!}+\frac{n(n-1) x^{2}}{2!}+\cdots \quad\left(x^{2}<1\right)$

Products of Vectors

Let θ be the smaller of the two angles between \vec{a} and \vec{b}.
Then

$$
\begin{gathered}
\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}=a b \cos \theta \\
\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}=\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right| \\
=\hat{\mathrm{i}}\left|\begin{array}{ll}
a_{y} & a_{z} \\
b_{y} & b_{z}
\end{array}\right|-\hat{\mathrm{j}}\left|\begin{array}{cc}
a_{x} & a_{z} \\
b_{x} & b_{z}
\end{array}\right|+\hat{\mathrm{k}}\left|\begin{array}{ll}
a_{x} & a_{y} \\
b_{x} & b_{y}
\end{array}\right| \\
=\left(a_{y} b_{z}-b_{y} a_{z}\right) \hat{\mathrm{i}}+\left(a_{z} b_{x}-b_{z} a_{x}\right) \hat{\mathrm{j}}+\left(a_{x} b_{y}-b_{x} a_{y}\right) \hat{\mathrm{k}} \\
|\vec{a} \times \vec{b}|=a b \sin \theta
\end{gathered}
$$

Trigonometric Identities

$\sin \alpha \pm \sin \beta=2 \sin \frac{1}{2}(\alpha \pm \beta) \cos \frac{1}{2}(\alpha \mp \beta)$
$\cos \alpha+\cos \beta=2 \cos \frac{1}{2}(\alpha+\beta) \cos \frac{1}{2}(\alpha-\beta)$
*See Appendix E for a more complete list.

Derivatives and Integrals

$\frac{d}{d x} \sin x=\cos x$
$\int \sin x d x=-\cos x$
$\frac{d}{d x} \cos x=-\sin x$
$\int \cos x d x=\sin x$
$\frac{d}{d x} e^{x}=e^{x}$
$\int e^{x} d x=e^{x}$
$\int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)$
$\int \frac{x d x}{\left(x^{2}+a^{2}\right)^{3 / 2}}=-\frac{1}{\left(x^{2}+a^{2}\right)^{1 / 2}}$
$\int \frac{d x}{\left(x^{2}+a^{2}\right)^{3 / 2}}=\frac{x}{a^{2}\left(x^{2}+a^{2}\right)^{1 / 2}}$

Cramer's Rule

Two simultaneous equations in unknowns x and y,

$$
a_{1} x+b_{1} y=c_{1} \quad \text { and } \quad a_{2} x+b_{2} y=c_{2},
$$

have the solutions

$$
x=\frac{\left|\begin{array}{ll}
c_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}=\frac{c_{1} b_{2}-c_{2} b_{1}}{a_{1} b_{2}-a_{2} b_{1}}
$$

and

$$
y=\frac{\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}=\frac{a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}} .
$$

SI PREFIXES*

Factor	Prefix	Symbol	Factor	Prefix	Symbol
10^{24}	yotta	Y	10^{-1}	deci	d
10^{21}	zetta	Z	10^{-2}	centi	c
10^{18}	exa	E	10^{-3}	milli	m
10^{15}	peta	P	10^{-6}	micro	μ
10^{12}	tera	T	10^{-9}	nano	n
10^{9}	giga	G	10^{-12}	pico	p
10^{6}	mega	M	10^{-15}	femto	f
10^{3}	kilo	k	10^{-18}	atto	a
10^{2}	hecto	h	10^{-21}	zepto	Z
10^{1}	deka	da	10^{-24}	yocto	y

[^0]
E X T E N D E D
 FUNDAMENTALS OF PHYSICS
 T E N T H E D I T I O N

This page intentionally left blank

FUNDAMENTALS OF PHYSICS

CLEVELAND STATE UNIVERSITY

EXECUTIVE EDITOR Stuart Johnson
 SENIOR PRODUCT DESIGNER Geraldine Osnato
 CONTENT EDITOR Alyson Rentrop
 ASSOCIATE MARKETING DIRECTOR Christine Kushner
 TEXT and COVER DESIGNER Madelyn Lesure
 PAGE MAKE-UP Lee Goldstein
 PHOTO EDITOR Jennifer Atkins
 COPYEDITOR Helen Walden
 PROOFREADER Lilian Brady
 SENIOR PRODUCTION EDITOR Elizabeth Swain

COVER IMAGE © 2007 CERN

This book was set in 10/12 Times Ten by cMPreparé, CSR Francesca Monaco, and was printed and bound by Quad Graphics.The cover was printed by Quad Graphics.

This book is printed on acid free paper.

Copyright © 2014, 2011, 2008, 2005 John Wiley \& Sons, Inc. All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222 Rosewood Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley \& Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201)748-6011, fax (201)748-6008, or online at http://www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in their courses during the next academic year.These copies are licensed and may not be sold or transferred to a third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return instructions and a free of charge return shipping label are available at www.wiley.com/go/returnlabel. Outside of the United States, please contact your local representative.

Library of Congress Cataloging-in-Publication Data
Walker, Jearl
Fundamentals of physics / Jearl Walker, David Halliday, Robert Resnick—10th edition. volumes cm
Includes index.
ISBN 978-1-118-23072-5 (Extended edition)
Binder-ready version ISBN 978-1-118-23061-9 (Extended edition)

1. Physics-Textbooks. I. Resnick, Robert. II. Halliday, David. III. Title. QC21.3.H35 2014
530-dc23

BRIEFCONTENTS

L U M E 1

1 Measurement
2 Motion Along a Straight Line
3 Vectors
4 Motion in Two and Three Dimensions
5 Force and Motion-I
6 Force and Motion-II
7 Kinetic Energy and Work
8 Potential Energy and Conservation of Energy
9 Center of Mass and Linear Momentum
10 Rotation
11 Rolling, Torque, and Angular Momentum
12 Equilibrium and Elasticity
13 Gravitation
14 Fluids
15 Oscillations
16 Waves-I
17 Waves-II
18 Temperature, Heat, and the First Law of Thermodynamics
19 The Kinetic Theory of Gases
20 Entropy and the Second Law of Thermodynamics

L U M E 2
21 Coulomb's Law
22 Electric Fields
23 Gauss' Law
24 Electric Potential
25 Capacitance
26 Current and Resistance
27 Circuits
28 Magnetic Fields
29 Magnetic Fields Due to Currents
30 Induction and Inductance
31 Electromagnetic Oscillations and Alternating Current
32 Maxwell's Equations; Magnetism of Matter
33 Electromagnetic Waves
34 Images
35 Interference
36 Diffraction
37 Relativity
38 Photons and Matter Waves
39 More About Matter Waves
40 All About Atoms
41 Conduction of Electricity in Solids
42 Nuclear Physics
43 Energy from the Nucleus
44 Quarks, Leptons, and the Big Bang

```
1 Mlmasurement 1
1-1 MEASURING THINGS, INCLUDING LENGTHS 1
What Is Physics? 1
Measuring Things 1
The International System of Units 2
Changing Units 3
Length 3
Significant Figures and Decimal Places 4
1-2 TIME 5
Time 5
1-3 MASS 6
Mass 6
REVIEW & SUMMARY 8 PROBLEMS 8
2.allotion Along a Straight Line 13
2-1 POSITION, DISPLACEMENT, AND AVERAGE VELOCITY 13
What Is Physics? 13
Motion 14
Position and Displacement 14
Average Velocity and Average Speed 15
2-2 INSTANTANEOUS VELOCITY AND SPEED 18
Instantaneous Velocity and Speed 18
2-3 ACCELERATION 20
Acceleration 20
2-4 CONSTANT ACCELERATION 23
Constant Acceleration: A Special Case 23
Another Look at Constant Acceleration 26
2-5 FREE-FALL ACCELERATION 27
Free-Fall Acceleration 27
2-6 GRAPHICAL INTEGRATION IN MOTION ANALYSIS 29
Graphical Integration in Motion Analysis 29
REVIEW \& SUMMARY зо QUESTIONS \(\mathbf{3 1}\) PROBLEMS \(\mathbf{3 2}\)
3. Jicictors 40
3-1 VECTORS AND THEIR COMPONENTS 40
What Is Physics? 40
Vectors and Scalars 40
Adding Vectors Geometrically 41
Components of Vectors 42
3-2 UNIT VECTORS, AODING VECTORS BY COMPONENTS 46 Unit Vectors 46
Adding Vectors by Components ..... 46
Vectors and the Laws of Physics ..... 47
3-3 MULTIPLYING VECTORS ..... 50
Multiplying Vectors ..... 50
REVIEW \& SUMMARY 55 QUESTIONS 56 PROBLEMS 57
4-Mllotion in Two and Three Dimensions ..... 62
4-1 POSITION AND DISPLACEMENT ..... 62
What Is Physics? 6
Position and Displacement 63
4-2 AVERAGE VELOCITY AND INSTANTANEOUS VELOCITY ..... 64
Average Velocity and Instantaneous Velocity 65
4-3 AVERAGE ACCELERATION AND INSTANTANEOUS ACCELERATION ..... 67
Average Acceleration and Instantaneous Acceleration 68
4-4 PROJECTILE MOTION ..... 70
Projectile Motion 7
4-5 UNIFORM CIRCULAR MOTION ..... 76
Uniform Circular Motion ..... 76
4-6 RELATIVE MOTION IN ONE DIMENSION ..... 78
Relative Motion in One Dimension ..... 78
4-7 RELATIVE MOTION IN TWO DIMENSIONS ..... 80
Relative Motion in Two Dimensions ..... 80
REVIEW \& SUMMARY \(\mathbf{8 1}\) QUESTIONS \(\mathbf{8 2}\) PROBLEMS \(\mathbf{8 4}\)
5 - Force and Motion-I ..... 94
5-1 NEWTON'S FIRST AND SECOND LAWS ..... 94
What Is Physics? ..... 94
Newtonian Mechanics
Newton's First Law 95
Force 96
Mass 97
Newton's Second Law 98
5-2 SOME PARTICULAR FORCES ..... 102
Some Particular Forces ..... 102
5-3 APPLYING NEWTON'S LAWS ..... 106Newton's Third Law 106
Applying Newton's Laws ..... 108
\begin{tabular}{|c|c|}
\hline 6 Force and Motion-I| 124 & 8-4 WORK DONE ON A SYSTEM BY AN EXTERNAL FORCE 191 \\
\hline 6-1 FRICTION 124 & Work Done on a System by an External Force 192 \\
\hline What Is Physics? 124 & 8-5 CONSERVATION OF ENERGY 195 \\
\hline Friction 124 & Conservation of Energy 195 \\
\hline Properties of Friction 127 & REVIEW \& SUMMARY 199 QUESTIONS 200 PROBLEMS 202 \\
\hline 6-2 THE DRAG FORCE AND TERMINAL SPEED \(\mathbf{1 3 0}\) & \\
\hline The Drag Force and Terminal Speed \(\mathbf{1 3 0}\) & 9 Penter of Mass and Linear Momentum 214 \\
\hline 6-3 UNIFORM CIRCULAR MOTION 133 & 9-1 CENTER OF MASS 214 \\
\hline Uniform Circular Motion \(1 \mathbf{3 3}\) & What Is Physics? 214 \\
\hline REVIEW \& SUMMARY \(\mathbf{1 3 8}\) QUESTIONS \(\mathbf{1 3 9}\) PROBLEMS \(\mathbf{1 4 0}\) & The Center of Mass 215 \\
\hline & 9-2 NEWTON'S SECOND LAW FOR A SYSTEM OF PARTICLES 220 \\
\hline 7-6knetic Energy and Work 149 & Newton's Second Law for a System of Particles 220 \\
\hline 7-1 KINETIC ENERGY 149 & 9-3 LINEAR MOMENTUM 224 \\
\hline What Is Physics? 149 & Linear Momentum 224 \\
\hline What Is Energy? 149 & The Linear Momentum of a System of Particles 225 \\
\hline Kinetic Energy 150 & 9-4 COLLISION AND IMPULSE 226 \\
\hline 7-2 WORK AND KINETIC ENERGY 151 & Collision and Impulse 226 \\
\hline Work 151 & 9-5 CONSERVATION OF LINEAR MOMENTUM 230 \\
\hline Work and Kinetic Energy 152 & Conservation of Linear Momentum \(\mathbf{2 3 0}\) \\
\hline 7-3 WORK DONE BY THE GRAVITATIONAL FORCE \(\mathbf{1 5 5}\) & 9-6 momentum nnd kinetic energy in Colisions 233 \\
\hline Work Done by the Gravitational Force 156 & Momentum and Kinetic Energy in Collisions 233 \\
\hline 7-4 WORK DONE BY A SPRING FORCE 159 & Inelastic Collisions in One Dimension 234 \\
\hline Work Done by a Spring Force 159 & 9-7 ELASTIC COLLISIONS IN ONE DIMENSION 237 \\
\hline 7-5 WORK DONE BY A general variable force 162 & Elastic Collisions in One Dimension 237 \\
\hline Work Done by a General Variable Force 162 & 9-8 COLLISIONS IN TWO DIMENSIONS 240 \\
\hline 7-6 POWER 166 & Collisions in Two Dimensions 240 \\
\hline & 9-9 SYSTEMS WITH VARYING MASS: A ROCKET 241 \\
\hline REVIEW \& SUMMMARY 168 QUESTIONS \(\mathbf{1 6 9}\) PROBLEMS \(\mathbf{1 7 0}\) & Systems with Varying Mass: A Rocket 241 \\
\hline & REVIEW \& SUMMARY 243 QUESTIONS 245 PROBLEMS 246 \\
\hline 8 8Potential Energy and Conservation of Energy \(\mathbf{1 7 7}\) & \\
\hline 8-1 POTENTIAL ENERGY 177 & (10) Rotation 257 \\
\hline What Is Physics? 177 & 10-1 ROTATIONAL VARIABLES 257 \\
\hline Work and Potential Energy 178 & What Is Physics? 258 \\
\hline Path Independence of Conservative Forces 179 & Rotational Variables 259 \\
\hline Determining Potential Energy Values 181 & Are Angular Quantities Vectors? 264 \\
\hline 8-2 CONSERVATION OF MECHANICAL ENERGY 184 & 10-2 ROTATION WITH CONSTANT ANGULAR ACCELERATION 266 \\
\hline Conservation of Mechanical Energy 184 & Rotation with Constant Angular Acceleration 266 \\
\hline 8-3 READING A POTENTIAL ENERGY CURVE 187 & 10-3 RELATING THE LINEAR AND ANGULAR VARIABLES 268 \\
\hline Reading a Potential Energy Curve 187 & Relating the Linear and Angular Variables 268 \\
\hline
\end{tabular}
10-4 KINETIC ENERGY OF ROTATION ..... 271
Kinetic Energy of Rotation 27
10-5 CALCULATING THE ROTATIONAL INERTIA ..... 273
Calculating the Rotational Inertia ..... 273
10-6 TORQUE ..... 277
Torque 278
10-7 NEWTON'S SECOND LAW FOR ROTATION ..... 279
Newton's Second Law for Rotation ..... 279
10-8 WORK AND ROTATIONAL KINETIC ENERGY ..... 282
Work and Rotational Kinetic Energy ..... 282
REVIEW \& SUMMARY 285 QUESTIONS 286 PROBLEMS 287
(11) Rolling, Torque, and Angular Momentum ..... 295
11-1 ROLLING AS TRANSLATION AND ROTATION COMBINED ..... 295
What Is Physics? 295
Rolling as Translation and Rotation Combined ..... 295
11-2 FORCES AND KINETIC ENERGY OF ROLLING ..... 298
The Kinetic Energy of Rolling ..... 298
The Forces of Rolling 29
11-3 THE YO-YO ..... 301
The \(\mathrm{Y}_{0}-\mathrm{Y}_{0}\) ..... 302
11-4 TORQUUE REVISITED ..... 302
Torque Revisited \(\mathbf{3 0 з}\)
11-5 ANGULAR MOMENTUM ..... 305
Angular Momentum ..... 305
11-6 NEWTON'S SECOND LAW IN ANGULAR FORM ..... 307
Newton's Second Law in Angular Form 30
11-7 ANGULAR MOMENTUM OF A RIGID BODY ..... 310
The Angular Momentum of a System of Particles 310
The Angular Momentum of a Rigid Body Rotating About a Fixed Axis ..... 311
11-8 CONSERVATION OF ANGULAR MOMENTUM ..... 312
Conservation of Angular Momentum ..... 312
11-9 PRECESSION OF A GYROSCOPE ..... 317
Precession of a Gyroscope ..... 317
REVIEW \& SUMMARY \(\mathbf{3 1 8}\) QUESTIONS \(\mathbf{3 1 9}\) PROBLEMS \(\mathbf{3 2 0}\)
12) Equilibrium and Elasticity ..... 327
12-1 EQUILIBRIUM ..... 327
Equilibrium ..... 327
The Requirements of Equilibrium ..... 329
The Center of Gravity ..... 330
12-2 SOME EXAMPLES OF STATIC EQUILIBRIUM ..... 332
Some Examples of Static Equilibrium ..... 332
12-3 ELASTICITY ..... 338
Indeterminate Structures ..... 338
Elasticity ..... 339
REVIEW \& SUMMMARY 343 QUESTIONS 343 PROBLEMS \(\mathbf{3 4 5}\)
13) Gravitation ..... 354
13-1 NEWTON'S LAW OF GRAVITATION ..... 354
What Is Physics? ..... 354
Newton's Law of Gravitation ..... 355
13-2 GRAVITATION AND THE PRINCIPLE OF SUPERPOSITION ..... 357
Gravitation and the Principle of Superposition ..... 357
13-3 GRAVITATION NEAR EARTH'S SURFACE ..... 359
Gravitation Near Earth's Surface ..... 360
13-4 GRAVITATION INSIDE EARTH ..... 362
Gravitation Inside Earth ..... 363
13-5 GRAVITATIONAL POTENTIAL ENERGY ..... 364
Gravitational Potential Energy ..... 364
13-6 PLANETS AND SATELLITES: KEPLER'S LAWS ..... 368
Planets and Satellites: Kepler's Laws ..... 369
13-7 SATELLITES: ORBITS AND ENERGY ..... 371
Satellites: Orbits and Energy ..... 371
13-8 EINSTEIN AND GRAVITATION ..... 374
Einstein and Gravitation 374REVIEW \& SUMMARY 376 QUESTIONS \(\mathbf{3 7 7}\) PROBLEMS \(\mathbf{3 7 8}\)
14) Fluids 386
14-1 FLUIDS, DENSITY, AND PRESSURE ..... 386
What Is Physics? ..... 386
What Is a Fluid? ..... 386
Density and Pressure ..... 387
14-2 FLUIDS AT RES ..... 388
Fluids at Rest 389
14-3 MEASURING PRESSURE ..... 392
Measuring Pressure 392

\section*{14-4 PASCAL'S PRINCIPLE 393}

Pascal's Principle 393
14-5 ARCHIMEDES' PRINCIPLE 394
Archimedes' Principle 395
14-6 THE EQUATION OF CONTINUITY 398
Ideal Fluids in Motion 398
The Equation of Continuity 399
14-7 BERNOULLI'S EQUATION 401
Bernoulli's Equation 401
REVIEW \& SUMMARY 405 QUESTIONS 405 PROBLEMS 406

\section*{15 Oscillations 413}

15-1 SIMPLE HARMONIC MOTION \(\mathbf{4 1 3}\)
What Is Physics? 414
Simple Harmonic Motion 414
The Force Law for Simple Harmonic Motion 419
15-2 ENERGY IN SIMPLE HARMIONIC MOTION 421
Energy in Simple Harmonic Motion 421
15-3 AN ANGULAR SIMPLE HARMONIC OSCILLATOR 423
An Angular Simple Harmonic Oscillator 423
15-4 PENDULUMS, CIRCULAR MOTION 424
Pendulums 425
Simple Harmonic Motion and Uniform Circular Motion 428
15-5 DAMPED SIMPLE HARMONIC MOTION 430
Damped Simple Harmonic Motion \(\mathbf{4 3 0}\)
15-6 FORCED OSCILLATIONS AND RESONANCE 432
Forced Oscillations and Resonance 432
REVIEW \& SUMMARY \(\mathbf{4 3 4}\) QUESTIONS \(\mathbf{4 3 4}\) PROBLEMS \(\mathbf{4 3 6}\)
16)Naves-I 444

16-1 TRANSVERSE WAVES 444
What Is Physics? 445
Types of Waves 445
Transverse and Longitudinal Waves 445
Wavelength and Frequency 446
The Speed of a Traveling Wave 449
16-2 WAVE SPEED ON A STRETCHED STRING 452
Wave Speed on a Stretched String \(\mathbf{4 5 2}\)

\section*{16-3 ENERGY AND POWER OF A Wave traveling along A STRING 454}

Energy and Power of a Wave Traveling Along a String 454

\section*{16-4 The Wave equation \\ 456}

The Wave Equation 456
16-5 INTERFERENCE OF WAVES 458
The Principle of Superposition for Waves 458
Interference of Waves 459
16-6 PHASORS 462
Phasors 462
16-7 STANDING WAVES AND RESONANCE 465
Standing Waves 465
Standing Waves and Resonance 467
REVIEW \& SUMMARY 470 QUESTIONS 471 PROBLEMS 472
17) Naves-11 479

17-1 SPEED OF SOUND 479
What Is Physics? 479
Sound Waves 479
The Speed of Sound 480
17-2 TRAVELING SOUND WAVES 482
Traveling Sound Waves 482
17-3 INTERFERENCE 485
Interference 485
17-4 INTENSITY AND SOUND LEVEL 488
Intensity and Sound Level 489
17-5 SOURCES OF MUSICAL SOUND 492
Sources of Musical Sound 493
17-6 BEATS 496
Beats 497
17-7 THE DOPPLER EFFECT 498
The Doppler Effect 499
17-8 SUPERSONIC SPEEDS, SHOCK WAVES 503
Supersonic Speeds, Shock Waves 503
REVIEW \& SUMMARY 504 QUESTIONS 505 PROBLEMS 506
18 Temperature, Heat, and the First Law of Thermodynamics 514
18-1 TEMPERATURE 514
What Is Physics? 514
Temperature 515
The Zeroth Law of Thermodynamics \(\mathbf{5 1 5}\)
Measuring Temperature 516
18-2 THE CELSIUS AND FAHRENHEIT SCALES 518
The Celsius and Fahrenheit Scales 518
18-3 THERMAL EXPANSION ..... 520
Thermal Expansion 520
18-4 ABSORPTION OF HEAT ..... 522
Temperature and Heat 523
The Absorption of Heat by Solids and Liquids ..... 524
18-5 THE FIRST LAW OF THERMODYNAMICS ..... 528
A Closer Look at Heat and Work ..... 528
The First Law of Thermodynamics 531
Some Special Cases of the First Law of
Thermodynamics 532
18-6 HEAT TRANSFER MECHANISMS ..... 534
Heat Transfer Mechanisms 534
REVIEW \& SUMMARY 538 QUESTIONS 540 PROBLEMS 541
19) The Kinetic Theory of Gases ..... 549
19-1 AVOGADRO'S NUMBER 549
What Is Physics? 549
Avogadro's Number 550
19-2 IDEAL GASES 550
Ideal Gases 551
19-3 PRESSURE, TEMPERATURE, AND RMS SPEED 554
Pressure, Temperature, and RMS Speed 554
19-4 TRANSLATIONAL KINETIC ENERGY 557
Translational Kinetic Energy 557
19-5 MEAN FREE PATH 558
Mean Free Path 558
19-6 THE DISTRIBUTION OF MOLECULAR SPEEDS ..... 560
The Distribution of Molecular Speeds 561
19-7 THE MOLAR SPECIFIC HEATS OF AN IDEAL GAS 564
The Molar Specific Heats of an Ideal Gas 564
19-8 DEGREES OF FREEDOM AND MOLAR SPECIFIC HEATS ..... 568
Degrees of Freedom and Molar Specific Heats ..... 568
A Hint of Quantum Theory 570
19-9 THE ADIABATIC EXPANSION OF AN IDEAL GAS ..... 571
The Adiabatic Expansion of an Ideal Gas 571
REVIEW \& SUMMARY 575 QUESTIONS 576 PROBLEMS 577
20) Entropy and the Second Law of Thermodynamics ..... 583
20-1 ENTROPY ..... 583
What Is Physics? 584
Change in Entropy 585
The Second Law of Thermodynamics 588
20-2 ENTROPY IN THE REAL WORLD: ENGINES ..... 590
Entropy in the Real World: Engines ..... 590
20-3 REFRIGERATORS AND REAL ENGINES 595
Entropy in the Real World: Refrigerators ..... 596
The Efficiencies of Real Engines ..... 597
20-4 A STATISTICAL VIEW OF ENTROPY ..... 598
A Statistical View of Entropy 598
REVIEW \& SUMMMARY \(\mathbf{6 0 2}\) QUESTIONS \(\mathbf{6 0 3}\) PROBLEMS \(\mathbf{6 0 4}\)
21) Coulomb's Law 609
21-1 COULOMB'S LAW 609
What Is Physics? 610
Electric Charge ..... 610
Conductors and Insulators ..... 612
Coulomb's Law 613
21-2 CHARGE IS QUANTIZED ..... 619
Charge Is Quantized ..... 619
21-3 CHARGE IS CONSERVED ..... 621
Charge Is Conserved 621
REVIEW \& SUMMARY \(\mathbf{6 2 2}\) QUESTIONS \(\mathbf{6 2 3}\) PROBLEMS \(\mathbf{6 2 4}\)
22) Electric Fields ..... 630
22-1 THE ELECTRIC FIELD ..... 630
What Is Physics? ..... 630
The Electric Field ..... 631
Electric Field Lines 63
22-2 THE ELECTRIC FIELD DUE TO A CHARGED PARTICLE 633
The Electric Field Due to a Point Charge ..... 633
22-3 THE ELECTRIC FIELD DUE TO A DIPOLE ..... 635
The Electric Field Due to an Electric Dipole \(\mathbf{6 3}\)
22-4 The electric field due to a line of charge ..... 638The Electric Field Due to Line of Charge 638
22-5 THE ELECTRIC FIELD DUE TO A CHARGED DISK ..... 643
The Electric Field Due to a Charged Disk ..... 643
22-6 A POINT CHARGE IN AN ELECTRIC FIELD ..... 645
A Point Charge in an Electric Field 645
22-7 A DIPOLE IN AN ELECTRIC FIELD ..... 647
A Dipole in an Electric Field ..... 648
23) Gauss' Law 659
23-1 ELECTRIC FLUX 659
What Is Physics 659
Electric Flux 660
23-2 GAUSS' LAW 664
Gauss' Law 664
Gauss' Law and Coulomb's Law 666
23-3 A CHARGED ISOLATED CONDUCTOR ..... 668
A Charged Isolated Conductor 668
23-4 APPLYING GAUSS' LAW: CYLINDRICAL SYMMETRY ..... 671
Applying Gauss' Law: Cylindrical Symmetry 67
23-5 APPLYING GAUSS' LAW: PLANAR SYMMETRY ..... 673
Applying Gauss' Law: Planar Symmetry ..... 673
23-6 APPLYING GAUSS' LAW: SPHERICAL SYMMETRY ..... 675
Applying Gauss' Law: Spherical Symmetry ..... 675
REVIEW \& SUMMARY \(\mathbf{6 7 7}\) QUESTIONS \(\mathbf{6 7 7}\) PROBLEMS \(\mathbf{6 7 9}\)
24) Electric Potential 685
24-1 ELECTRIC POTENTIAL 685
What Is Physics? 685
Electric Potential and Electric Potential Energy \(\mathbf{6 8 6}\)
24-2 EQUIPOTENTIAL SURFACES AND THE ELECTRIC FIELD 690
Equipotential Surfaces 690
Calculating the Potential from the Field 691
24-3 POTENTIAL DUE TO A CHARGED PARTICLE 694
Potential Due to a Charged Particle 694
Potential Due a Group of Charged Particles ..... 695
24-4 POTENTIAL DUE TO AN ELECTRIC DIPOLE ..... 697
Potential Due to an Electric Dipole 697
24-5 POtential due to a continuous charge distribution ..... 698
Potential Due to a Continuous Charge Distribution 698
24-6 CALCULATING THE FIELD FROM THE POTENTIAL ..... 701
Calculating the Field from the Potential 70
24-7 ELECTRIC POTENTIAL ENERGY OF A SYSTEM OFCHARGED PARTICLES703
Electric Potential Energy of a System of Charged Particles 703 ..... 703
24-8 POTENTIAL OF A CHARGED ISOLATED CONDUCTOR 706
Potential of Charged Isolated Conductor \(\mathbf{7 0 6}\)
25 Capacitance ..... 717
25-1 CAPACITANCE ..... 717
What Is Physics? ..... 717
Capacitance ..... 717
25-2 CALCULATING THE CAPACITANCE ..... 719
Calculating the Capacitance ..... 720
25-3 CAPACITORS IN PARALLEL AND IN SERIES ..... 723
Capacitors in Parallel and in Series 724
25-4 ENERGY STORED IN AN ELECTRIC FIELD ..... 728
Energy Stored in an Electric Field ..... 728
25-5 CAPACITOR WITH A DIELECTRIC ..... 731
Capacitor with a Dielectric ..... 731
Dielectrics: An Atomic View ..... 733
25-6 DIELECTRICS AND GAUSS' LAW ..... 735
Dielectrics and Gauss' Law 735
REVIEW \& SUMMARY \(\mathbf{7 3 8}\) QUESTIONS 738 PROBLEMS \(\mathbf{7 3 9}\)
26 Current and Resistance ..... 745
26-1 ELECTRIC CURRENT ..... 745
What Is Physics? ..... 745
Electric Current 746
26-2 CURRENT DENSITY ..... 748
Current Density ..... 749
26-3 RESISTANCE AND RESISTIVITY ..... 752
Resistance and Resistivity ..... 753
26-4 OHM'S LAW ..... 756
Ohm's Law 756
A Microscopic View of Ohm's Law 758
26-5 POWER, SEMICONDUCTORS, SUPERCONDUCTORS ..... 760
Power in Electric Circuits ..... 760
Semiconductors ..... 762
Superconductors 763
REVIEW \& SUMMARY \(\mathbf{7 6 3}\) OUESTIONS \(\mathbf{7 6 4}\) PROBLEMS \(\mathbf{7 6 5}\)
27) Circuits ..... 771
27-1 SINGLE-LOOP CIRCUITS ..... 771
What Is Physics? ..... 772
"Pumping" Charges 772
Work, Energy, and Emf ..... 773
Calculating the Current in a Single-Loop Circuit ..... 774
Other Single-Loop Circuits 7
Potential Difference Between Two Points ..... 777
27-2 MULIILOOP CIRCUITS ..... 781
Multiloop Circuits 78
27-3 THE AMMETER AND THE VOLTMETER ..... 788
The Ammeter and the Voltmeter ..... 788
27-4 RC CIRCUITS ..... 788
RC Circuits ..... 789
REVIEW \& SUMMARY 793 QUESTIONS 793 PROBLEMS \(\mathbf{7 9 5}\)
28) Magnetic Fields ..... 803
28-1 MAGNETIC FIELDS AND THE DEFINITION OF \(\vec{B}\) ..... 803
What Is Physics? \(\mathbf{8 0 3}\)
What Produces a Magnetic Field? 804
The Definition of \(\vec{B} 804\)
28-2 CROSSED FIELDS: DISCOVERY OF THE ELECTRON \(\mathbf{8 0 8}\)
Crossed Fields: Discovery of the Electron \(\mathbf{8 0 9}\)
28-3 CROSSED FIELDS: THE HALL EFFECT \(\mathbf{8 1 0}\)
Crossed Fields: The Hall Effect \(\mathbf{8 1 1}\)
28-4 A CIRCULATING CHARGED PARTICLE \(\mathbf{8 1 4}\)
A Circulating Charged Particle ..... 814
28-5 CYCLOTRONS AND SYNCHROTRONS ..... 817
Cyclotrons and Synchrotrons ..... 818
28-6 MAGNETIC FORCE ON A CURRENT-CARRYING WIRE ..... 820
Magnetic Force on a Current-Carrying Wire ..... 820
28-7 TORQUE ON A CURRENT LOOP ..... 822
Torque on a Current Loop 822
28-8 THE MAGNETIC DIPOLE MOMENT ..... 824
The Magnetic Dipole Moment ..... 825
REVIEW \& SUMMARY \(\mathbf{8 2 7}\) QUESTIONS \(\mathbf{8 2 7}\) PROBLEMS \(\mathbf{8 2 9}\)
29. Magnetic Fields Due to Currents ..... 836
29-1 MAGNETIC FIELD DUE TO A CURREN ..... 836
What Is Physics? \(\mathbf{8 3 6}\)
Calculating the Magnetic Field Due to a Current \(\mathbf{8 3 7}\)
29-2 FORCE bETWEEN TWO PARALLEL CURRENTS ..... 842
Force Between Two Parallel Currents ..... 842
29-3 AMPERE'S LAI ..... 844
Ampere's Law \(\mathbf{8 4 4}\)
29-4 SOLENOIDS AND TOROIDS ..... 848
Solenoids and Toroids 8 ..... 848
29-5 A CURRENT-CARRYING COIL AS A MAGNETIC DIPOLE 851
A Current-Carrying Coil as a Magnetic Dipole \(\mathbf{8 5 1}\)
REVIEW \& SUMMARY \(\mathbf{8 5 4}\) QUESTIONS \(\mathbf{8 5 5}\) PROBLEMS \(\mathbf{8 5 6}\)
30 Induction and Inductance ..... 864
30-1 FARADAY'S LAW AND LENZ'S LAW ..... 864
What Is Physics 864
Two Experiments 865
Faraday's Law of Induction 865
Lenz's Law \(\mathbf{8 6 8}\)
30-2 INDUCTION AND ENERGY TRANSFERS ..... 871
Induction and Energy Transfers 871
30-3 INDUCED ELECTRIC FIELDS ..... 874
Induced Electric Fields \(\mathbf{8 7}\)
30-4 INDUCTORS AND INDUCTANCE ..... 879
Inductors and Inductance ..... 879
30-5 SELF-INDUCTION ..... 881
Self-Induction \(\mathbf{8 8 1}\)
30-6 RL CIRCUITS ..... 882RL Circuits \(\mathbf{8 8 3}\)30-7 ENERGY STORED IN A MAGNETIC FIELD 887Energy Stored in a Magnetic Field \(\mathbf{8 8 7}\)
30-8 ENERGY DENSITY OF A MAGNETIC FIELD 889
Energy Density of a Magnetic Field \(\mathbf{8 8}\)
30-9 MUTUAL INDUCTION ..... 890
Mutual Induction 890
REVIEW \& SUMMARY \(\mathbf{8 9 3}\) QUESTIONS \(\mathbf{8 9 3}\) PROBLEMS \(\mathbf{8 9 5}\)
31) Electromagnetic Oscillations and Alternating Current \(9 \mathbf{9}\)
31-1 LC OSCILLATIONS 903
What Is Physics? 904
LC Oscillations, Qualitatively 904
The Electrica-Mechanical Analogy 906
LC Oscillations, Quantitatively 907
31-2 DAMPED OSCILLATIONS IN AN RLC CIRCUIT ..... 910
Damped Oscillations in an RLC Circuit 911
31-3 FORCED OSCILLATIONS OF THREE SIMPLE CIRCUITS ..... 912
Alternating Current ..... 913
Forced Oscillations ..... 914
Three Simple Circuits 914
31-4 THE SERIES RLC CIRCUIT ..... 921
The Series RLC Circuit ..... 921
31-5 POWER IN ALTERNATING-CURRENT CIRCUITS ..... 927
Power in Alternating-Current Circuits ..... 927
31-6 TRANSFORMERS ..... 930
930
REVIEW \& SUMMARY \(9 \mathbf{3 3}\) QUESTIONS \(9 \mathbf{9 3}\) PROBLEMS 935
32) Maxwell's Equations; Magnetism of Matter ..... 941
32-1 GAUSS' LAW FOR MAGNETIC FIELDS ..... 941
What Is Physics? ..... 941
Gauss' Law for Magnetic Fields 942
32-2 INDUCED MAGNETIC FIELDS 943
Induced Magnetic Fields 943
32-3 DISPLACEMENT CURRENT ..... 946
Displacement Current ..... 947
Maxwell's Equations 949
32-4 MAGNETS 950
Magnets 950
32-5 MAGNETISM AND ELECTRONS ..... 952
Magnetism and Electrons 953
Magnetic Materials 956
32-6 DIAMAGNETISM 957
Diamagnetism 957
32-7 PARAMAGNETISM ..... 959
Paramagnetism 959
32-8 FERROMAGNETISM ..... 961
Ferromagnetism ..... 961
REVIEW \& SUMMARY 964 QUESTIONS 965 PROBLEMS 967
33. Electromagnetic Waves 972
33-1 ELECTROMAGNETIC WAVES 972
What Is Physics? 972Maxwell's Rainbow 973
The Traveling Electromagnetic Wave, Qualitatively ..... 974
The Traveling Electromagnetic Wave, Quantitatively 977
33-2 ENERGY TRANSPORT AND THE POYNTING VECTOR ..... 980
Energy Transport and the Poynting Vector ..... 981
33-3 RADIATION PRESSUR ..... 983
Radiation Pressure ..... 983
33-4 POLARIZATION ..... 985
Polarization ..... 985
33-5 REFLECTION AND REFRAGTION ..... 990
Reflection and Refraction ..... 991
33-6 TOTAL INTERNAL REFLECTION ..... 996
Total Internal Reflection 996
33-7 POLARIZATION BY REFLECTION ..... 997
Polarization by Reflection 998
REVIEW \& SUMMARY 999 QUESTIONS \(\mathbf{1 0 0 0}\) PROBLEMS 1001
34 Images 1010
34-1 IMAGES AND PLANE MIRRORS ..... 1010
What Is Physics? 1010
Two Types of Image 1010
Plane Mirrors 1012
34-2 SPHERICAL MIRRORS ..... 1014
Spherical Mirrors 1015
Images from Spherical Mirrors ..... 1016
34-3 SPHERICAL REFRACTING SURFACES ..... 1020
Spherical Refracting Surfaces 1020
34-4 THIN LENSES ..... 1023
Thin Lenses ..... 1023
34-5 OPTICAL INSTRUMENTS ..... 1030
Optical Instruments ..... 1030
34-6 THREE PROOFS 1033
REVIEW \& SUMMARY \(\mathbf{1 0 3 6}\) QUESTIONS \(\mathbf{1 0 3 7}\) PROBLEMS \(\mathbf{1 0 3 8}\)
35 Interference 1047
35-1 LIGHT AS A WAVE 1047
What Is Physics? 1047
Light as a Wave ..... 1048
35-2 YOUNG'S INTERFERENCE EXPERIMENT ..... 1053
Diffraction ..... 1053
Young's Interference Experiment ..... 1054
35-3 INTERFERENCE AND DOUBLE-SLIT INTENSITY ..... 1059
Coherence 1059
Intensity in Double-Slit Interference ..... 1060
35-4 INTERFERENCE FROM THIN FILMS ..... 1063
Interference from Thin Films 1064
35-5 MICHELSON'S INTERFEROMETER ..... 1070
Michelson's Interferometer ..... 1071
36) iffraction 1081

36-1 SINGLE-SLIT DIFFRACTION \(\mathbf{1 0 8 1}\)
What Is Physics? 1081
Diffraction and the Wave Theory of Light 1081
Diffraction by a Single Slit: Locating the Minima 1083
36-2 INTENSITY IN SINGLE-SLIT DIFFRACTION \(\mathbf{1 0 8 6}\)
Intensity in Single-Slit Diffraction 1086
Intensity in Single-Slit Diffraction, Quantitatively 1088
36-3 DIFFRACTION BY A CIRCULAR APERTURE \(\mathbf{1 0 9 0}\)
Diffraction by a Circular Aperture 1091
36-4 DIFFRACTION BY A DOUBLE SLIT 1094
Diffraction by a Double Slit 1095
36-5 DIFFRACTION GRATINGS \(\mathbf{1 0 9 8}\)
Diffraction Gratings 1098
36-6 GRatings: DISPERSION AND RESOLVING POWER \(\mathbf{1 1 0 1}\)
Gratings: Dispersion and Resolving Power 1101
36-7 X-RAY DIFFRACTION 1104
X-Ray Diffraction 1104
REVIEW \& SUMMARY 1107 QUESTIONS \(\mathbf{1 1 0 7}\) PROBLEMS \(\mathbf{1 1 0 8}\)

\section*{(37) Relativity 1116}

37-1 SImultaneity and time dilation \(\mathbf{1 1 1 6}\)
What Is Physics? 1116
The Postulates \(\mathbf{1 1 1 7}\)
Measuring an Event 1118
The Relativity of Simultaneity 1120
The Relativity of Time 1121
37-2 The relativity of Lengit \(\mathbf{1 1 2 5}\)
The Relativity of Length \(\mathbf{1 1 2 6}\)
37-3 THE LORENTZ TRANSFORMATION \(\mathbf{1 1 2 9}\)
The Lorentz Transformation 1129
Some Consequences of the Lorentz Equations \(\mathbf{1 1 3 1}\)
37-4 THE RELATIVITY OF VELOCITIES \(\mathbf{1 1 3 3}\)
The Relativity of Velocities 1133
37-5 DOPPLER EFFECT FOR LIGHT \(\mathbf{1 1 3 4}\)
Doppler Effect for Light \(\mathbf{1 1 3 5}\)
37-6 MOMENTUM AND ENERGY \(\mathbf{1 1 3 7}\)
A New Look at Momentum \(11 \mathbf{3 8}\)
A New Look at Energy 1138
REVIEW \& SUMMARY \(\mathbf{1 1 4 3}\) QUESTIONS \(\mathbf{1 1 4 4}\) PROBLEMS \(\mathbf{1 1 4 5}\)
38) Photons and Matter Waves 1153
38-1 THE PHOTON, THE QUANTUM OF LIGHT \(\mathbf{1 1 5 3}\)
What Is Physics? 1153
The Photon, the Quantum of Light 1154
38-2 THE PHOTOELECTRIC EFFECT ..... 1155
The Photoelectric Effect \(\mathbf{1 1 5 6}\)
38-3 PHOTONS, MOMENTUM, COMPTON SCATTERING, LIGHTINTERFERENCE1158
Photons Have Momentum 1159
Light as a Probability Wave 1162
38-4 THE BIRTH OF QUANTUM PHYSICS ..... 1164
The Birth of Quantum Physics 1165
38-5 ELECTRONS AND MATTER WAVES ..... 1166
Electrons and Matter Waves \(\mathbf{1 1 6 7}\)
38-6 SCHRÖDINGER'S EQUATION \(\mathbf{1 1 7 0}\)
Schrödinger's Equation 1170
38-7 HEISENBERG'S UNCERTAINTY PRINCIPLE ..... 1172
Heisenberg's Uncertainty Principle 1173
38-8 REFLECTION FROM A POTENTIAL STEP \(\mathbf{1 1 7 4}\)
Reflection from a Potential Step 1174
38-9 TUNNELING THROUGH A POTENTIAL BARRIER ..... 1176
Tunneling Through a Potential Barrier ..... 1176
REVIEW \& SUMMARY \(\mathbf{1 1 7 9}\) QUESTIONS \(\mathbf{1 1 8 0}\) PROBLEMS \(\mathbf{1 1 8 1}\)
39 More About Matter Waves ..... 1186
39-1 ENERGIES OF A TRAPPED ELECTRON \(\mathbf{1 1 8 6}\)
What Is Physics? ..... 1186
String Waves and Matter Waves 1187
Energies of a Trapped Electron \(\mathbf{1 1 8 7}\)
39-2 Wave functions of a trapped electron ..... 1191
Wave Functions of a Trapped Electron ..... 1192
39-3 AN ELECTRON IN A FINITE WELL ..... 1195
An Electron in a Finite Well 1195
39-4 TWO- AND THREE-DIMENSIONAL ELECTRON TRAPS ..... 1197
More Electron Traps ..... 1197
Two- and Three-Dimensional Electron Traps \(\mathbf{1 2 0 0}\)
39-5 THE HYDROGEN ATON ..... 1201
The Hydrogen Atom Is an Electron Trap 1202
The Bohr Model of Hydrogen, a Lucky Break 1203
Schrödinger's Equation and the Hydrogen Atom 1205
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{40)All About Atoms 1219} \\
\hline \multicolumn{3}{|l|}{40-1 PROPERTIES OF ATOMS 1219} \\
\hline \multicolumn{3}{|l|}{What Is Physics? 1220} \\
\hline \multicolumn{3}{|l|}{Some Properties of Atoms 1220} \\
\hline \multicolumn{3}{|l|}{Angular Momentum, Magnetic Dipole Moments 1222} \\
\hline \multicolumn{3}{|l|}{40-2 THE STERN-GERLACH EXPERIMENT 1226} \\
\hline \multicolumn{3}{|l|}{The Stern-Gerlach Experiment 1226} \\
\hline \multicolumn{3}{|l|}{40-3 MAGNETIC RESONANCE 1229} \\
\hline \multicolumn{3}{|l|}{Magnetic Resonance 1229} \\
\hline \multicolumn{3}{|l|}{40-4 EXCLUSION PRINGIPLE AND MULTIPLE ELECTRONS IN A TRAP \(\mathbf{1 2 3 0}\)} \\
\hline \multicolumn{3}{|l|}{The Pauli Exclusion Principle 1230} \\
\hline \multicolumn{3}{|l|}{Multiple Electrons in Rectangular Traps 1231} \\
\hline \multicolumn{3}{|l|}{40-5 BUILDING THE PERIODIC TABLE 1234} \\
\hline \multicolumn{3}{|l|}{Building the Periodic Table 1234} \\
\hline \multicolumn{3}{|l|}{40-6 X RaYs and the ordering of the elements 1236} \\
\hline \multicolumn{3}{|l|}{X Rays and the Ordering of the Elements 1237} \\
\hline \multicolumn{3}{|l|}{40-7 LASERS 1240} \\
\hline \multicolumn{3}{|l|}{Lasers and Laser Light 1241} \\
\hline \multicolumn{3}{|l|}{How Lasers Work 1242} \\
\hline \multicolumn{3}{|l|}{REVIEW \& SUMMARY 1245 QUESTIONS 1246 PROBLEMS 1247} \\
\hline \multicolumn{3}{|l|}{414)Conduction of Electricity in Solids 1252} \\
\hline \multicolumn{3}{|l|}{41-1 THE ELECTRICAL PROPERTIES OF METALS \(\mathbf{1 2 5 2}\)} \\
\hline \multicolumn{3}{|l|}{What Is Physics? 1252} \\
\hline \multicolumn{3}{|l|}{The Electrical Properties of Solids 1253} \\
\hline \multicolumn{3}{|l|}{Energy Levels in a Crystalline Solid 1254} \\
\hline \multicolumn{3}{|l|}{Insulators 1254} \\
\hline \multicolumn{3}{|l|}{Metals 1255} \\
\hline \multicolumn{3}{|l|}{41-2 SEMICONDUCTORS AND DOPING 1261} \\
\hline \multicolumn{3}{|l|}{Semiconductors 1262} \\
\hline \multicolumn{3}{|l|}{Doped Semiconductors 1263} \\
\hline \multicolumn{3}{|l|}{41-3 THE p-n JUNCTION AND THE TRANSISTOR \(\mathbf{1 2 6 5}\)} \\
\hline \multicolumn{3}{|l|}{The \(p-n\) Junction 1266} \\
\hline \multicolumn{3}{|l|}{The Junction Rectifier 1267} \\
\hline \multicolumn{3}{|l|}{The Light-Emitting Diode (LED) 1268} \\
\hline \multicolumn{3}{|l|}{The Transistor 1270} \\
\hline \multicolumn{3}{|l|}{REVIEW \& SUMMARY 1271 QUESTIONS 1272 PROBLEMS 1272} \\
\hline \multicolumn{3}{|l|}{42 Nuclear Physics 1276} \\
\hline \multicolumn{3}{|l|}{42-1 DISCOVERING THE NUCLEUS 1276} \\
\hline \multicolumn{3}{|l|}{What Is Physics? 1276} \\
\hline Discovering the Nucleus 1276 & & \\
\hline
\end{tabular}40-1 PROPERTIES OF ATOMS 1219Same Properties of Atom40-2 THE STERN-GERLACH EXPERIMENT 122640-3 magnetic reconange1229
Magnetic Resonance 1229The Pauli Exclusion Principle 1230
Multiple Electrons in Rectangular Traps 1231Building the Periodic Table1234
40-6 XIAR ANU THE OHUERING OF THE ELEMENTS1237
40-7 LASERSLasers and Laser Light 1241
WorkQUESTIONS 1246 PROBLEMS 1247
41) Conduction of Electricity in Solids ..... 1252What Is Physics? 1252
Insulators 1254
41-2 SEMICONDUCTORS AND DOPING ..... 1261Doped Semicanductors1263The \(p-n\) Junction1266Th LiREVIEW \& SUMMARY 1271 QUESTIONS 1272 PROBLEMS 1272
1276What Is Physics? 1276
42-2 SOME NUCLEAR PROPERTIES 1279
Some Nuclear Properties ..... 1280
42-3 RADIOACTIVE DECAY ..... 1286
Radioactive Decay 1286
42-4 ALPHA DECAY ..... 1289
Alpha Decay 1289
42-5 BETA DECAY ..... 1292
Beta Decay 1292
42-6 RADIOACTIVE DATING ..... 1295
Radioactive Dating 1295
42-7 MEASURING RADIATION DOSAGE ..... 1296
Measuring Radiation Dosage 1296
42-8 NUCLEAR MODELS ..... 1297
Nuclear Models 1
REVIEW \& SUMMARY \(\mathbf{1 3 0 0}\) QUESTIONS \(\mathbf{1 3 0 1}\) PROBLEMS \(\mathbf{1 3 0 2}\)
43) Energy from the Nucleus ..... 1309
43-1 NUCLEAR FISSION ..... 1309
What Is Physics? 1309
Nuclear Fission: The Basic Process 1310
A Model for Nuclear Fission 1312
43-2 THE NUCLEAR REACTOR ..... 1316
The Nuclear Reactor ..... 1316
43-3 A NATURAL NUCLEAR REACTOR ..... 1320
A Natural Nuclear Reactor 1320
43-4 THERMONUCLEAR FUSION: THE BASIC PROCESS \(\mathbf{1 3 2 2}\)
Thermonuclear Fusion: The Basic Process ..... 1322
43-5 THERMONUCLEAR FUSION IN THE SUN AND OTHER STARS ..... 1324
Thermonuclear Fusion in the Sun and Other Stars 1324
43-6 CONTROLLED THERMONUCLEAR FUSION ..... 1326
Controlled Thermonuclear Fusion ..... 1326
REVIEW \& SUMMARY 1329 QUESTIONS 1329 PROBLEMS \(\mathbf{1 3 3 0}\)
44) Quarks, Leptons, and the Big Bang \(\mathbf{1 3 3 4}\)
44-1 GENERAL PROPERTIES OF ELEMENTARY PARTICLES 1334
What Is Physics? 1334
Particles, Particles, Particles ..... 1335
An Interlude 1339
44-2 LEPTONS, HADRONS, AND STRANGENESS ..... 1343
The Leptons \(\mathbf{1 3 4 3}\)

The Hadrons 1345
Still Another Conservation Law 1346
The Eightfold Way 1347
44-3 QUARKS AND MESSENGER PARTICLES 1349
The Quark Model 1349
Basic Forces and Messenger Particles \(\mathbf{1 3 5 2}\)
44-4 COSMOLOGY 1355
A Pause for Reflection 1355
The Universe Is Expanding 1356
The Cosmic Background Radiation 1357
Dark Matter 1358
The Big Bang 1358
A Summing Up 1361
REVIEW \& SUMMARY 1362 QUESTIONS 1362 PROBLEMS 1363

\author{
APPENDICES \\ A The International System of Units (SI) A-1 \\ B Some Fundamental Constants of Physics A-3 \\ C Some Astronomical Data A-4 \\ D Conversion Factors A-5 \\ E Mathematical Formulas A-9 \\ F Properties of The Elements A-12 \\ G Periodic Table of The Elements A-15
}

\section*{ANSWERS}
to Checkpoints and Odd-Numbered Questions and Problems AN-1

\section*{INDEX I-1}

\section*{WHY I WROTE THIS BOOK}

Fun with a big challenge. That is how I have regarded physics since the day when Sharon, one of the students in a class I taught as a graduate student, suddenly demanded of me, "What has any of this got to do with my life?" Of course I immediately responded, "Sharon, this has everything to do with your life-this is physics."

She asked me for an example. I thought and thought but could not come up with a single one.That night I began writing the book The Flying Circus of Physics (John Wiley \& Sons Inc., 1975) for Sharon but also for me because I realized her complaint was mine. I had spent six years slugging my way through many dozens of physics textbooks that were carefully written with the best of pedagogical plans, but there was something missing. Physics is the most interesting subject in the world because it is about how the world works, and yet the textbooks had been thoroughly wrung of any connection with the real world. The fun was missing.

I have packed a lot of real-world physics into Fundamentals of Physics, connecting it with the new edition of The Flying Circus of Physics. Much of the material comes from the introductory physics classes I teach, where I can judge from the faces and blunt comments what material and presentations work and what do not. The notes I make on my successes and failures there help form the basis of this book. My message here is the same as I had with every student I've met since Sharon so long ago: "Yes, you can reason from basic physics concepts all the way to valid conclusions about the real world, and that understanding of the real world is where the fun is."

I have many goals in writing this book but the overriding one is to provide in-
 structors with tools by which they can teach students how to effectively read scientific material, identify fundamental concepts, reason through scientific questions, and solve quantitative problems. This process is not easy for either students or instructors. Indeed, the course associated with this book may be one of the most challenging of all the courses taken by a student. However, it can also be one of the most rewarding because it reveals the world's fundamental clockwork from which all scientific and engineering applications spring.

Many users of the ninth edition (both instructors and students) sent in comments and suggestions to improve the book. These improvements are now incorporated into the narrative and problems throughout the book. The publisher John Wiley \& Sons and I regard the book as an ongoing project and encourage more input from users. You can send suggestions, corrections, and positive or negative comments to John Wiley \& Sons or Jearl Walker (mail address: Physics Department, Cleveland State University, Cleveland, OH 44115 USA; or the blog site at www.flyingcircusofphysics.com). We may not be able to respond to all suggestions, but we keep and study each of them.

\section*{WHAT'S NEW?}

Modules and Learning Objectives "What was I supposed to learn from this section?" Students have asked me this question for decades, from the weakest student to the strongest. The problem is that even a thoughtful student may not feel confident that the important points were captured while reading a section. I felt the same way back when I was using the first edition of Halliday and Resnick while taking first-year physics.

To ease the problem in this edition, I restructured the chapters into concept modules based on a primary theme and begin each module with a list of the module's learning objectives. The list is an explicit statement of the skills and learning points that should be gathered in reading the module. Each list is following by a brief summary of the key ideas that should also be gathered. For example, check out the first module in Chapter 16, where a student faces a truck load of concepts and terms. Rather than depending on the student's ability to gather and sort those ideas, I now provide an explicit checklist that functions somewhat like the checklist a pilot works through before taxiing out to the runway for takeoff.

Links Between Homework Problems and Learning Objectives In WileyPLUS, every question and problem at the end of the chapter is linked to a learning objective, to answer the (usually unspoken) questions, "Why am I working this problem? What am I supposed to learn from it?" By being explicit about a problem's purpose, I believe that a student might better transfer the learning objective to other problems with a different wording but the same key idea. Such transference would help defeat the common trouble that a student learns to work a particular problem but cannot then apply its key idea to a problem in a different setting.

Rewritten Chapters My students have continued to be challenged by several key chapters and by spots in several other chapters and so, in this edition, I rewrote a lot of the material. For example, I redesigned the chapters on Gauss' law and electric potential, which have proved to be tough-going for my students. The presentations are now smoother and more direct to the key points. In the quantum chapters, I expanded the coverage of the Schrödinger equation, including reflection of matter waves from a step potential. At the request of several instructors, I decoupled the discussion of the Bohr atom from the Schrödinger solution for the hydrogen atom so that the historical account of Bohr's work can be bypassed. Also, there is now a module on Planck's blackbody radiation.

New Sample Problems and Homework Questions and Problems Sixteen new sample problems have been added to the chapters, written so as to spotlight some of the difficult areas for my students. Also, about 250 problems and 50 questions have been added to the homework sections of the chapters. Some of these problems come from earlier editions of the book, as requested by several instructors.

Video Illustrations In the eVersion of the text available in WileyPLUS, David Maiullo of Rutgers University has created video versions of approximately 30 of the photographs and figures from the text. Much of physics is the study of things that move and video can often provide a better representation than a static photo or figure.
Online Aid WileyPLUS is not just an online grading pro-
 gram. Rather, it is a dynamic learning center stocked with many different learning aids, including just-in-time problem-solving tutorials, embedded reading quizzes to encourage reading, animated figures, hundreds of sample problems, loads of simulations and demonstrations, and over 1500 videos ranging from math reviews to mini-lectures to examples. More of these learning aids are added every semester. For this 10th edition of HRW, some of the photos involving motion have been converted into videos so that the motion can be slowed and analyzed.

These thousands of learning aids are available \(24 / 7\) and can be repeated as many times as desired. Thus, if a student gets stuck on a homework problem at, say, 2:00 AM (which appears to be a popular time for doing physics homework), friendly and helpful resources are available at the click of a mouse.

\section*{LEARNINGS TOOLS}

When I learned first-year physics in the first edition of Halliday and Resnick, I caught on by repeatedly rereading a chapter. These days we better understand that students have a wide range of learning styles. So, I have produced a wide range of learning tools, both in this new edition and online in WileyPLUS:

Animations of one of the key figures in each chapter. Here in the book, those figures are flagged with the swirling icon. In the online chapter in WileyPLUS, a mouse click begins the animation. I have chosen the figures that are rich in information so that a student can see the physics in action and played out over a minute or two

instead of just being flat on a printed page. Not only does this give life to the physics, but the animation can be repeated as many times as a student wants.
PLUS Videos I have made well over 1500 instructional videos, with more coming each semester. Students can watch me draw or type on the screen as they hear me talk about a solution, tutorial, sample problem, or review, very much as they would experience were they sitting next to me in my office while I worked out something on a notepad. An instructor's lectures and tutoring will always be the most valuable learning tools, but my videos are available 24 hours a day, 7 days a week, and can be repeated indefinitely.
- Video tutorials on subjects in the chapters. I chose the subjects that challenge the students the most, the ones that my students scratch their heads about.
- Video reviews of high school math, such as basic algebraic manipulations, trig functions, and simultaneous equations.
- Video introductions to math, such as vector multiplication, that will be new to the students.
- Video presentations of every Sample Problem in the textbook chapters. My intent is to work out the physics, starting with the Key Ideas instead of just grabbing a formula. However, I also want to demonstrate how to read a sample problem, that is, how to read technical material to learn problem-solving procedures that can be transferred to other types of problems.
- Video solutions to \(\mathbf{2 0} \%\) of the end-of chapter problems. The availability and timing of these solutions are controlled by the instructor. For example, they might be available after a homework deadline or a quiz. Each solution is not simply a plug-and-chug recipe. Rather I build a solution from the Key Ideas to the first step of reasoning and to a final solution. The student learns not just how to solve a particular problem but how to tackle any problem, even those that require physics courage.
- Video examples of how to read data from graphs (more than simply reading off a number with no comprehension of the physics).

Problem-Solving Help I have written a large number of resources for WileyPLUS designed to help build the students' problem-solving skills.
- Every sample problem in the textbook is available online in both reading and video formats.
- Hundreds of additional sample problems. These are available as standalone resources but (at the discretion of the instructor) they are also linked out of the homework problems. So, if a homework problem deals with, say, forces on a block on a ramp, a link to a related sample problem is provided. However, the sample problem is not just a replica of the homework problem and thus does not provide a solution that can be merely duplicated without comprehension.
- GO Tutorials for \(15 \%\) of the end-of-chapter homework problems. In multiple steps, I lead a student through a homework problem, starting with the Key Ideas and giving hints when wrong answers are submitted. However, I purposely leave the last step (for the final answer) to the student so that they are responsible at the end. Some online tutorial systems trap a student when wrong answers are given, which can generate a lot of frustration. My GO Tutorials are not traps, because at any step along the way, a student can return to the main problem.
- Hints on every end-of-chapter homework problem are available (at the discretion of the instructor). I wrote these as true hints about the main ideas


Go Tutorial
This \(G 0\) Tutorial will provide you with a step-by-step guide on how to spproach this problem.
 consists of 4 steps).
Step 1: Solution Step 1 of Go Tutorial 10-30
KEY IDEAS:
(1) When si object rotates at constant angular sccevieration, we can use the constant-
accelereation equavions of Tobbe 10.1 modified for angular motion:
(1) \(\omega=\omega_{0}+\alpha t\)
(2) \(\theta-\theta_{0}=\omega_{0} t+1 \alpha t^{2}\)
(3) \(\omega^{2}=\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right)\)
(4) \(\theta-\theta_{0}=\frac{1}{2}\left(\omega_{0}+\omega\right) t\)
(5) \(\theta-\theta_{0}=\omega t-1 \alpha t^{2}\)

 (ecentripetal) sccoleration ar st ary moment is related to the trangentiol speed \(V\) (the speed
along the circuibr pati) and its anoular speed ot that moment ty \(\mathrm{a}_{r}=\frac{v^{2}}{r}=\omega^{2} r\)
 \(\mathrm{a}_{t}=r \alpha\)
(4) If a particle moves around a rotation axis at radius \(r\), the angular displacement through
which ik rotates is relited to the ditance is meves along is circular pati by which it roteten
\(s=r \Delta \theta\)

GETTING STARTED: What is the radius of rotation (in meters) of \(a\) point on the rim of the

exact number, no tolerance
 and the general procedure for a solution, not as recipes that provide an answer without any comprehension.

\section*{Evaluation Materials}
- Reading questions are available within each online section. I wrote these so that they do not require analysis or any deep understanding; rather they simply test whether a student has read the section. When a student opens up a section, a randomly chosen reading question (from a bank of questions) appears at the end. The instructor can decide whether the question is part of the grading for that section or whether it is just for the benefit of the student.
- Checkpoints are available within most sections. I wrote these so that they require analysis and decisions about the physics in the section. Answers to all checkpoints are in the back of the book.

\section*{Checkpoint 1}

Here are three pairs of initial and final positions, respectively, along an \(x\) axis. Which pairs give a negative displacement: (a) \(-3 \mathrm{~m},+5 \mathrm{~m}\); (b) \(-3 \mathrm{~m},-7 \mathrm{~m}\); (c) \(7 \mathrm{~m},-3 \mathrm{~m}\) ?
- All end-of-chapter homework Problems in the book (and many more problems) are available in WileyPLUS. The instructor can construct a homework assignment and control how it is graded when the answers are submitted online. For example, the instructor controls the deadline for submission and how many attempts a student is allowed on an answer. The instructor also controls which, if any, learning aids are available with each homework problem. Such links can include hints, sample problems, in-chapter reading materials, video tutorials, video math reviews, and even video solutions (which can be made available to the students after, say, a homework deadline).
- Symbolic notation problems that require algebraic answers are available in every chapter.
- All end-of-chapter homework Questions in the book are available for assignment in WileyPLUS. These Questions (in a multiple choice format) are designed to evaluate the students' conceptual understanding.

Icons for Additional Help When worked-out solutions are provided either in print or electronically for certain of the odd-numbered problems, the statements for those problems include an icon to alert both student and instructor as to where the solutions are located. There are also icons indicating which problems have GO Tutorial, an Interactive LearningWare, or a link to the The Flying Circus of Physics. An icon guide is provided here and at the beginning of each set of problems.
```

Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign
SSM
- ... Number of dots indicates level of problem difficulty ILW Interactive solution is a
Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

```

\section*{VERSIONS OF THE TEXT}

To accommodate the individual needs of instructors and students, the ninth edition of Fundamentals of Physics is available in a number of different versions.
The Regular Edition consists of Chapters 1 through 37 (ISBN 9781118230718).
The Extended Edition contains seven additional chapters on quantum physics and cosmology, Chapters 1-44 (ISBN 9781118230725 ).
Volume 1 - Chapters 1-20 (Mechanics and Thermodynamics), hardcover, ISBN 9781118233764
Volume 2 - Chapters 21-44 (E\&M, Optics, and Quantum Physics), hardcover, ISBN 9781118230732

\section*{INSTRUCTOR SUPPLEMENTS}

Instructor's Solutions Manual by Sen-Ben Liao, Lawrence Livermore National Laboratory. This manual provides worked-out solutions for all problems found at the end of each chapter. It is available in both MSWord and PDF.

Instructor Companion Site http://www.wiley.com/college/halliday
- Instructor's Manual This resource contains lecture notes outlining the most important topics of each chapter; demonstration experiments; laboratory and computer projects; film and video sources; answers to all Questions, Exercises, Problems, and Checkpoints; and a correlation guide to the Questions, Exercises, and Problems in the previous edition. It also contains a complete list of all problems for which solutions are available to students (SSM,WWW, and ILW).
- Lecture PowerPoint Slides These PowerPoint slides serve as a helpful starter pack for instructors, outlining key concepts and incorporating figures and equations from the text.
- Classroom Response Systems ("Clicker") Questions by David Marx, Illinois State University. There are two sets of questions available: Reading Quiz questions and Interactive Lecture questions. The Reading Quiz questions are intended to be relatively straightforward for any student who reads the assigned material.The Interactive Lecture questions are intended for use in an interactive lecture setting.
- Willey Physics Simulations by Andrew Duffy, Boston University and John Gastineau, Vernier Software. This is a collection of 50 interactive simulations (Java applets) that can be used for classroom demonstrations.
- Wiley Physics Demonstrations by David Maiullo, Rutgers University. This is a collection of digital videos of 80 standard physics demonstrations. They can be shown in class or accessed from WileyPLUS. There is an accompanying Instructor's Guide that includes "clicker" questions.
- Test Bank For the 10th edition, the Test Bank has been completely over-hauled by Suzanne Willis, Northern Illinois University. The Test Bank includes more than 2200 multiple-choice questions. These items are also available in the Computerized Test Bank which provides full editing features to help you customize tests (available in both IBM and Macintosh versions).
- All text illustrations suitable for both classroom projection and printing.

Online Homework and Quizzing. In addition to WileyPLUS, Fundamentals of Physics, tenth edition, also supports WebAssignPLUS and LON-CAPA, which are other programs that give instructors the ability to deliver and grade homework and quizzes online. WebAssign PLUS also offers students an online version of the text.

\section*{STUDENT SUPPLEMENTS}

Student Companion Site. The web site http://www.wiley.com/college/halliday was developed specifically for Fundamentals of Physics, tenth edition, and is designed to further assist students in the study of physics. It includes solutions to selected end-of-chapter problems (which are identified with a www icon in the text); simulation exercises; tips on how to make best use of a programmable calculator; and the Interactive LearningWare tutorials that are described below.

Student Study Guide (ISBN 9781118230787) by Thomas Barrett of Ohio State University. The Student Study Guide consists of an overview of the chapter's important concepts, problem solving techniques and detailed examples.

Student Solutions Manual (ISBN 9781118230664) by Sen-Ben Liao, Lawrence Livermore National Laboratory. This manual provides students with complete worked-out solutions to 15 percent of the problems found at the end of each chapter within the text. The Student Solutions Manual for the 10th edition is written using an innovative approach called TEAL which stands for Think, Express, Analyze, and Learn. This learning strategy was originally developed at the Massachusetts Institute of Technology and has proven to be an effective learning tool for students. These problems with TEAL solutions are indicated with an SSM icon in the text.

Interactive Learningware. This software guides students through solutions to 200 of the end-of-chapter problems. These problems are indicated with an ILW icon in the text. The solutions process is developed interactively, with appropriate feedback and access to error-specific help for the most common mistakes.

Introductory Physics with Calculus as a Second Language: (ISBN 9780471739104) Mastering Problem Solving by Thomas Barrett of Ohio State University. This brief paperback teaches the student how to approach problems more efficiently and effectively. The student will learn how to recognize common patterns in physics problems, break problems down into manageable steps, and apply appropriate techniques. The book takes the student step by step through the solutions to numerous examples.

A great many people have contributed to this book. Sen-Ben Liao of Lawrence Livermore National Laboratory, James Whitenton of Southern Polytechnic State University, and Jerry Shi, of Pasadena City College, performed the Herculean task of working out solutions for every one of the homework problems in the book. At John Wiley publishers, the book received support from Stuart Johnson, Geraldine Osnato and Aly Rentrop, the editors who oversaw the entire project from start to finish. We thank Elizabeth Swain, the production editor, for pulling all the pieces together during the complex production process. We also thank Maddy Lesure for her design of the text and the cover; Lee Goldstein for her page make-up; Helen Walden for her copyediting; and Lilian Brady for her proofreading. Jennifer Atkins was inspired in the search for unusual and interesting photographs. Both the publisher John Wiley \& Sons, Inc. and Jearl Walker would like to thank the following for comments and ideas about the recent editions:

Jonathan Abramson, Portland State University; Omar Adawi, Parkland College; Edward Adelson, The Ohio State University; Steven R. Baker, Naval Postgraduate School; George Caplan, Wellesley College; Richard Kass, The Ohio State University; M. R. Khoshbin-e-Khoshnazar, Research Institution for Curriculum Development \& Educational Innovations (Tehran); Craig Kletzing, University of Iowa, Stuart Loucks, American River College; Laurence Lurio, Northern Illinois University; Ponn Maheswaranathan, Winthrop University; Joe McCullough, Cabrillo College; Carl E. Mungan, U. S. Naval Academy, Don N. Page, University of Alberta; Elie Riachi, Fort Scott Community College; Andrew G. Rinzler, University of Florida; Dubravka Rupnik, Louisiana State University; Robert Schabinger, Rutgers University; Ruth Schwartz, Milwaukee School of Engineering; Carol Strong, University of Alabama at Huntsville, Nora Thornber, Raritan Valley Community College; Frank Wang, LaGuardia Community College; Graham W. Wilson, University of Kansas; Roland Winkler, Northern Illinois University; William Zacharias, Cleveland State University; Ulrich Zurcher, Cleveland State University.

Finally, our external reviewers have been outstanding and we acknowledge here our debt to each member of that team.

Maris A. Abolins, Michigan State University
Edward Adelson, Ohio State University
Nural Akchurin, Texas Tech
Yildirim Aktas, University of North Carolina-Charlotte Barbara Andereck, Ohio Wesleyan University Tetyana Antimirova, Ryerson University
Mark Arnett, Kirkwood Community College
Arun Bansil, Northeastern University
Richard Barber, Santa Clara University
Neil Basecu, Westchester Community College
Anand Batra, Howard University
Kenneth Bolland, The Ohio State University
Richard Bone, Florida International University
Michael E. Browne, University of Idaho
Timothy J. Burns, Leeward Community College
Joseph Buschi, Manhattan College
Philip A. Casabella, Rensselaer Polytechnic Institute
Randall Caton, Christopher Newport College
Roger Clapp, University of South Florida
W. R. Conkie, Queen's University

Renate Crawford, University of Massachusetts-Dartmouth Mike Crivello, San Diego State University Robert N. Davie, Jr., St. Petersburg Junior College Cheryl K. Dellai, Glendale Community College
Eric R. Dietz, California State University at Chico

\author{
N. John DiNardo, Drexel University \\ Eugene Dunnam, University of Florida \\ Robert Endorf, University of Cincinnati \\ F. Paul Esposito, University of Cincinnati \\ Jerry Finkelstein, San Jose State University \\ Robert H. Good, California State University-Hayward \\ Michael Gorman, University of Houston \\ Benjamin Grinstein, University of California, San Diego \\ John B. Gruber, San Jose State University \\ Ann Hanks, American River College \\ Randy Harris, University of California-Davis \\ Samuel Harris, Purdue University \\ Harold B. Hart, Western Illinois University \\ Rebecca Hartzler, Seattle Central Community College \\ John Hubisz, North Carolina StateUniversity \\ Joey Huston, Michigan State University \\ David Ingram, Ohio University \\ Shawn Jackson, University of Tulsa \\ Hector Jimenez, University of Puerto Rico \\ Sudhakar B. Joshi, York University \\ Leonard M. Kahn, University of Rhode Island \\ Sudipa Kirtley, Rose-Hulman Institute \\ Leonard Kleinman, University of Texas at Austin \\ Craig Kletzing, University of Iowa \\ Peter F. Koehler, University of Pittsburgh
}

\author{
Arthur Z. Kovacs, Rochester Institute of Technology Kenneth Krane, Oregon State University Hadley Lawler, Vanderbilt University Priscilla Laws, Dickinson College Edbertho Leal, Polytechnic University of Puerto Rico Vern Lindberg, Rochester Institute of Technology Peter Loly, University of Manitoba James MacLaren, Tulane University Andreas Mandelis, University of Toronto Robert R. Marchini, Memphis State University Andrea Markelz, University at Buffalo, SUNY Paul Marquard, Caspar College David Marx, Illinois State University Dan Mazilu, Washington and LeeUniversity James H. McGuire, Tulane University David M. McKinstry, Eastern Washington University Jordon Morelli, Queen's University
}

\section*{Measurement}

\section*{1-1 measuring things, including lengths}

\section*{Learning Objectives}

After reading this module, you should be able to
1.01 Identify the base quantities in the SI system.
1.02 Name the most frequently used prefixes for SI units.

\section*{Key Ideas}
- Physics is based on measurement of physical quantities. Certain physical quantities have been chosen as base quantities (such as length, time, and mass); each has been defined in terms of a standard and given a unit of measure (such as meter, second, and kilogram). Other physical quantities are defined in terms of the base quantities and their standards and units.
- The unit system emphasized in this book is the International System of Units (SI). The three physical quantities displayed in Table 1-1 are used in the early chapters. Standards, which must be both accessible and invariable, have been established for these base quantities by international agreement.
1.03 Change units (here for length, area, and volume) by using chain-link conversions.
1.04 Explain that the meter is defined in terms of the speed of light in vacuum.

These standards are used in all physical measurement, for both the base quantities and the quantities derived from them. Scientific notation and the prefixes of Table 1-2 are used to simplify measurement notation.
- Conversion of units may be performed by using chain-link conversions in which the original data are multiplied successively by conversion factors written as unity and the units are manipulated like algebraic quantities until only the desired units remain.
- The meter is defined as the distance traveled by light during a precisely specified time interval.

\section*{What Is Physics?}

Science and engineering are based on measurements and comparisons. Thus, we need rules about how things are measured and compared, and we need experiments to establish the units for those measurements and comparisons. One purpose of physics (and engineering) is to design and conduct those experiments.

For example, physicists strive to develop clocks of extreme accuracy so that any time or time interval can be precisely determined and compared. You may wonder whether such accuracy is actually needed or worth the effort. Here is one example of the worth: Without clocks of extreme accuracy, the Global Positioning System (GPS) that is now vital to worldwide navigation would be useless.

\section*{Measuring Things}

We discover physics by learning how to measure the quantities involved in physics. Among these quantities are length, time, mass, temperature, pressure, and electric current.

We measure each physical quantity in its own units, by comparison with a standard. The unit is a unique name we assign to measures of that quantity-for example, meter ( m ) for the quantity length. The standard corresponds to exactly 1.0 unit of the quantity. As you will see, the standard for length, which corresponds

Table 1-1 Units for Three SI
Base Quantities
\begin{tabular}{llc}
\hline Quantity & Unit Name & Unit Symbol \\
\hline Length & meter & m \\
Time & second & s \\
Mass & kilogram & kg \\
\hline
\end{tabular}

\section*{Table 1-2 Prefixes for SI Units}
\begin{tabular}{llc}
\hline Factor & Prefix \(^{a}\) & Symbol \\
\hline \(10^{24}\) & yotta- & Y \\
\(10^{21}\) & zetta- & Z \\
\(10^{18}\) & exa- & E \\
\(10^{15}\) & peta- & P \\
\(10^{12}\) & tera- & T \\
\(\mathbf{1 0}^{\mathbf{9}}\) & giga- & \(\mathbf{G}\) \\
\(\mathbf{1 0}^{\mathbf{6}}\) & mega- & \(\mathbf{M}\) \\
\(\mathbf{1 0}^{\mathbf{3}}\) & kilo- & \(\mathbf{k}\) \\
\(10^{2}\) & hecto- & h \\
\(10^{1}\) & deka- & da \\
\(10^{-1}\) & deci- & d \\
\(\mathbf{1 0}^{\mathbf{- 2}}\) & centi- & \(\mathbf{c}\) \\
\(\mathbf{1 0}^{-\mathbf{3}}\) & milli- & \(\mathbf{m}\) \\
\(\mathbf{1 0}^{-\mathbf{6}}\) & micro- & \(\boldsymbol{\mu}\) \\
\(\mathbf{1 0}^{-\mathbf{9}}\) & nano- & \(\mathbf{n}\) \\
\(\mathbf{1 0}^{-\mathbf{1 2}}\) & pico- & \(\mathbf{p}\) \\
\(10^{-15}\) & femto- & f \\
\(10^{-18}\) & atto- & a \\
\(10^{-21}\) & zepto- & Z \\
\(10^{-24}\) & yocto- & y \\
\hline
\end{tabular}
\({ }^{a}\) The most frequently used prefixes are shown in bold type.
to exactly 1.0 m , is the distance traveled by light in a vacuum during a certain fraction of a second. We can define a unit and its standard in any way we care to. However, the important thing is to do so in such a way that scientists around the world will agree that our definitions are both sensible and practical.

Once we have set up a standard-say, for length-we must work out procedures by which any length whatever, be it the radius of a hydrogen atom, the wheelbase of a skateboard, or the distance to a star, can be expressed in terms of the standard. Rulers, which approximate our length standard, give us one such procedure for measuring length. However, many of our comparisons must be indirect. You cannot use a ruler, for example, to measure the radius of an atom or the distance to a star.

Base Quantities. There are so many physical quantities that it is a problem to organize them. Fortunately, they are not all independent; for example, speed is the ratio of a length to a time. Thus, what we do is pick out-by international agree-ment-a small number of physical quantities, such as length and time, and assign standards to them alone. We then define all other physical quantities in terms of these base quantities and their standards (called base standards). Speed, for example, is defined in terms of the base quantities length and time and their base standards.

Base standards must be both accessible and invariable. If we define the length standard as the distance between one's nose and the index finger on an outstretched arm, we certainly have an accessible standard-but it will, of course, vary from person to person. The demand for precision in science and engineering pushes us to aim first for invariability. We then exert great effort to make duplicates of the base standards that are accessible to those who need them.

\section*{The International System of Units}

In 1971, the 14th General Conference on Weights and Measures picked seven quantities as base quantities, thereby forming the basis of the International System of Units, abbreviated SI from its French name and popularly known as the metric system. Table 1-1 shows the units for the three base quantities-length, mass, and time-that we use in the early chapters of this book. These units were defined to be on a "human scale."

Many SI derived units are defined in terms of these base units. For example, the SI unit for power, called the watt (W), is defined in terms of the base units for mass, length, and time. Thus, as you will see in Chapter 7,
\[
\begin{equation*}
1 \mathrm{watt}=1 \mathrm{~W}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{3}, \tag{1-1}
\end{equation*}
\]
where the last collection of unit symbols is read as kilogram-meter squared per second cubed.

To express the very large and very small quantities we often run into in physics, we use scientific notation, which employs powers of 10. In this notation,
\[
\begin{align*}
& 3560000000 \mathrm{~m}=3.56 \times 10^{9} \mathrm{~m}  \tag{1-2}\\
& 0.000000492 \mathrm{~s}=4.92 \times 10^{-7} \mathrm{~s} . \tag{1-3}
\end{align*}
\]

Scientific notation on computers sometimes takes on an even briefer look, as in 3.56 E9 and 4.92 E-7, where E stands for "exponent of ten." It is briefer still on some calculators, where \(E\) is replaced with an empty space.

As a further convenience when dealing with very large or very small measurements, we use the prefixes listed in Table 1-2. As you can see, each prefix represents a certain power of 10 , to be used as a multiplication factor. Attaching a prefix to an SI unit has the effect of multiplying by the associated factor. Thus, we can express a particular electric power as
\[
\begin{equation*}
1.27 \times 10^{9} \text { watts }=1.27 \text { gigawatts }=1.27 \mathrm{GW} \tag{1-4}
\end{equation*}
\]
or a particular time interval as
\[
\begin{equation*}
2.35 \times 10^{-9} \mathrm{~s}=2.35 \text { nanoseconds }=2.35 \mathrm{~ns} \tag{1-5}
\end{equation*}
\]

Some prefixes, as used in milliliter, centimeter, kilogram, and megabyte, are probably familiar to you.

\section*{Changing Units}

We often need to change the units in which a physical quantity is expressed. We do so by a method called chain-link conversion. In this method, we multiply the original measurement by a conversion factor (a ratio of units that is equal to unity). For example, because 1 min and 60 s are identical time intervals, we have
\[
\frac{1 \mathrm{~min}}{60 \mathrm{~s}}=1 \quad \text { and } \quad \frac{60 \mathrm{~s}}{1 \mathrm{~min}}=1
\]

Thus, the ratios \((1 \mathrm{~min}) /(60 \mathrm{~s})\) and \((60 \mathrm{~s}) /(1 \mathrm{~min})\) can be used as conversion factors. This is not the same as writing \(\frac{1}{60}=1\) or \(60=1\); each number and its unit must be treated together.

Because multiplying any quantity by unity leaves the quantity unchanged, we can introduce conversion factors wherever we find them useful. In chain-link conversion, we use the factors to cancel unwanted units. For example, to convert 2 min to seconds, we have
\[
\begin{equation*}
2 \min =(2 \mathrm{~min})(1)=(2 \mathrm{~min})\left(\frac{60 \mathrm{~s}}{1 \mathrm{~min}}\right)=120 \mathrm{~s} \tag{1-6}
\end{equation*}
\]

If you introduce a conversion factor in such a way that unwanted units do not cancel, invert the factor and try again. In conversions, the units obey the same algebraic rules as variables and numbers.

Appendix D gives conversion factors between SI and other systems of units, including non-SI units still used in the United States. However, the conversion factors are written in the style of " \(1 \mathrm{~min}=60 \mathrm{~s}\) " rather than as a ratio. So, you need to decide on the numerator and denominator in any needed ratio.

\section*{Length}

In 1792 , the newborn Republic of France established a new system of weights and measures. Its cornerstone was the meter, defined to be one ten-millionth of the distance from the north pole to the equator. Later, for practical reasons, this Earth standard was abandoned and the meter came to be defined as the distance between two fine lines engraved near the ends of a platinum-iridium bar, the standard meter bar, which was kept at the International Bureau of Weights and Measures near Paris. Accurate copies of the bar were sent to standardizing laboratories throughout the world. These secondary standards were used to produce other, still more accessible standards, so that ultimately every measuring device derived its authority from the standard meter bar through a complicated chain of comparisons.

Eventually, a standard more precise than the distance between two fine scratches on a metal bar was required. In 1960, a new standard for the meter, based on the wavelength of light, was adopted. Specifically, the standard for the meter was redefined to be 1650763.73 wavelengths of a particular orange-red light emitted by atoms of krypton-86 (a particular isotope, or type, of krypton) in a gas discharge tube that can be set up anywhere in the world. This awkward number of wavelengths was chosen so that the new standard would be close to the old meter-bar standard.

Table 1-3 Some Approximate Lengths
\begin{tabular}{lc}
\hline Measurement & Length in Meters \\
\hline \begin{tabular}{l} 
Distance to the first \\
galaxies formed
\end{tabular} & \(2 \times 10^{26}\) \\
\begin{tabular}{l} 
Distance to the
\end{tabular} & \(2 \times 10^{22}\) \\
\(\quad\) Andromeda galaxy & \\
\begin{tabular}{l} 
Distance to the nearby \\
star Proxima Centauri
\end{tabular} & \(4 \times 10^{16}\) \\
\begin{tabular}{l} 
Distance to Pluto
\end{tabular} & \(6 \times 10^{12}\) \\
Radius of Earth & \(6 \times 10^{6}\) \\
Height of Mt. Everest & \(9 \times 10^{3}\) \\
Thickness of this page & \(1 \times 10^{-4}\) \\
Length of a typical virus & \(1 \times 10^{-8}\) \\
Radius of a hydrogen atom & \(5 \times 10^{-11}\) \\
Radius of a proton & \(1 \times 10^{-15}\) \\
\hline
\end{tabular}

By 1983, however, the demand for higher precision had reached such a point that even the krypton- 86 standard could not meet it, and in that year a bold step was taken. The meter was redefined as the distance traveled by light in a specified time interval. In the words of the 17th General Conference on Weights and Measures:

The meter is the length of the path traveled by light in a vacuum during a time interval of 1/299 792458 of a second.

This time interval was chosen so that the speed of light \(c\) is exactly
\[
c=299792458 \mathrm{~m} / \mathrm{s}
\]

Measurements of the speed of light had become extremely precise, so it made sense to adopt the speed of light as a defined quantity and to use it to redefine the meter.

Table 1-3 shows a wide range of lengths, from that of the universe (top line) to those of some very small objects.

\section*{Significant Figures and Decimal Places}

Suppose that you work out a problem in which each value consists of two digits. Those digits are called significant figures and they set the number of digits that you can use in reporting your final answer. With data given in two significant figures, your final answer should have only two significant figures. However, depending on the mode setting of your calculator, many more digits might be displayed. Those extra digits are meaningless.

In this book, final results of calculations are often rounded to match the least number of significant figures in the given data. (However, sometimes an extra significant figure is kept.) When the leftmost of the digits to be discarded is 5 or more, the last remaining digit is rounded up; otherwise it is retained as is. For example, 11.3516 is rounded to three significant figures as 11.4 and 11.3279 is rounded to three significant figures as 11.3. (The answers to sample problems in this book are usually presented with the symbol \(=\) instead of \(\approx\) even if rounding is involved.)

When a number such as 3.15 or \(3.15 \times 10^{3}\) is provided in a problem, the number of significant figures is apparent, but how about the number 3000 ? Is it known to only one significant figure \(\left(3 \times 10^{3}\right)\) ? Or is it known to as many as four significant figures \(\left(3.000 \times 10^{3}\right)\) ? In this book, we assume that all the zeros in such given numbers as 3000 are significant, but you had better not make that assumption elsewhere.

Don't confuse significant figures with decimal places. Consider the lengths \(35.6 \mathrm{~mm}, 3.56 \mathrm{~m}\), and 0.00356 m . They all have three significant figures but they have one, two, and five decimal places, respectively.

\section*{Sample Problem 1.01 Estimating order of magnitude, ball of string}

The world's largest ball of string is about 2 m in radius. To the nearest order of magnitude, what is the total length \(L\) of the string in the ball?

\section*{KEY IDEA}

We could, of course, take the ball apart and measure the total length \(L\), but that would take great effort and make the
ball's builder most unhappy. Instead, because we want only the nearest order of magnitude, we can estimate any quantities required in the calculation.

Calculations: Let us assume the ball is spherical with radius \(R=2 \mathrm{~m}\). The string in the ball is not closely packed (there are uncountable gaps between adjacent sections of string). To allow for these gaps, let us somewhat overestimate
the cross-sectional area of the string by assuming the cross section is square, with an edge length \(d=4 \mathrm{~mm}\). Then, with a cross-sectional area of \(d^{2}\) and a length \(L\), the string occupies a total volume of
\[
V=(\text { cross-sectional area })(\text { length })=d^{2} L .
\]

This is approximately equal to the volume of the ball, given by \(\frac{4}{3} \pi R^{3}\), which is about \(4 R^{3}\) because \(\pi\) is about 3 . Thus, we have the following
\[
d^{2} L=4 R^{3}
\]
or
\[
\begin{aligned}
L=\frac{4 R^{3}}{d^{2}} & =\frac{4(2 \mathrm{~m})^{3}}{\left(4 \times 10^{-3} \mathrm{~m}\right)^{2}} \\
& =2 \times 10^{6} \mathrm{~m} \approx 10^{6} \mathrm{~m}=10^{3} \mathrm{~km}
\end{aligned}
\]
(Answer)
(Note that you do not need a calculator for such a simplified calculation.) To the nearest order of magnitude, the ball contains about 1000 km of string!

\section*{1-2 TIME}

\section*{Learning Objectives}

After reading this module, you should be able to ...
1.05 Change units for time by using chain-link conversions.
1.06 Use various measures of time, such as for motion or as determined on different clocks.

\section*{Key Idea}
- The second is defined in terms of the oscillations of light emitted by an atomic (cesium-133) source. Accurate time
signals are sent worldwide by radio signals keyed to atomic clocks in standardizing laboratories.

\section*{Time}

Time has two aspects. For civil and some scientific purposes, we want to know the time of day so that we can order events in sequence. In much scientific work, we want to know how long an event lasts. Thus, any time standard must be able to answer two questions: "When did it happen?" and "What is its duration?" Table 1-4 shows some time intervals.

Any phenomenon that repeats itself is a possible time standard. Earth's rotation, which determines the length of the day, has been used in this way for centuries; Fig. 1-1 shows one novel example of a watch based on that rotation. A quartz clock, in which a quartz ring is made to vibrate continuously, can be calibrated against Earth's rotation via astronomical observations and used to measure time intervals in the laboratory. However, the calibration cannot be carried out with the accuracy called for by modern scientific and engineering technology.

Table 1-4 Some Approximate Time Intervals
\begin{tabular}{|c|c|c|c|}
\hline Measurement Tin & Time Interval in Seconds & Measurement T & Time Interval in Seconds \\
\hline \multirow[t]{2}{*}{Lifetime of the proton (predicted)} & \multirow[b]{2}{*}{\(3 \times 10^{40}\)} & \multirow[t]{2}{*}{Time between human heartbeats Lifetime of the muon} & \(8 \times 10^{-1}\) \\
\hline & & & \(2 \times 10^{-6}\) \\
\hline Age of the universe & \(5 \times 10^{17}\) & Shortest lab light pulse & \(1 \times 10^{-16}\) \\
\hline Age of the pyramid of Cheops & s \(1 \times 10^{11}\) & Lifetime of the most & \\
\hline Human life expectancy & \(2 \times 10^{9}\) & unstable particle & \(1 \times 10^{-23}\) \\
\hline Length of a day & \(9 \times 10^{4}\) & The Planck time \({ }^{a}\) & \(1 \times 10^{-43}\) \\
\hline
\end{tabular}


Figure 1-1 When the metric system was proposed in 1792, the hour was redefined to provide a 10 -hour day. The idea did not catch on. The maker of this 10 -hour watch wisely provided a small dial that kept conventional 12-hour time. Do the two dials indicate the same time?


Figure 1-2 Variations in the length of the day over a 4-year period. Note that the entire vertical scale amounts to only \(3 \mathrm{~ms}(=0.003 \mathrm{~s})\).

To meet the need for a better time standard, atomic clocks have been developed. An atomic clock at the National Institute of Standards and Technology (NIST) in Boulder, Colorado, is the standard for Coordinated Universal Time (UTC) in the United States. Its time signals are available by shortwave radio (stations WWV and WWVH) and by telephone (303-499-7111). Time signals (and related information) are also available from the United States Naval Observatory at website http://tycho.usno.navy.mil/time.html. (To set a clock extremely accurately at your particular location, you would have to account for the travel time required for these signals to reach you.)

Figure 1-2 shows variations in the length of one day on Earth over a 4 -year period, as determined by comparison with a cesium (atomic) clock. Because the variation displayed by Fig. 1-2 is seasonal and repetitious, we suspect the rotating Earth when there is a difference between Earth and atom as timekeepers. The variation is due to tidal effects caused by the Moon and to large-scale winds.

The 13th General Conference on Weights and Measures in 1967 adopted a standard second based on the cesium clock:


Atomic clocks are so consistent that, in principle, two cesium clocks would have to run for 6000 years before their readings would differ by more than 1 s . Even such accuracy pales in comparison with that of clocks currently being developed; their precision may be 1 part in \(10^{18}\) - that is, 1 s in \(1 \times 10^{18} \mathrm{~s}\) (which is about \(3 \times 10^{10} \mathrm{y}\) ).

\section*{1-3 mass}

\section*{Learning Objectives}

After reading this module, you should be able to ...
1.07 Change units for mass by using chain-link conversions.
1.08 Relate density to mass and volume when the mass is uniformly distributed.

\section*{Key Ideas}
- The kilogram is defined in terms of a platinum-iridium standard mass kept near Paris. For measurements on an atomic scale, the atomic mass unit, defined in terms of the atom carbon-12, is usually used.

The density \(\rho\) of a material is the mass per unit volume:
\[
\rho=\frac{m}{V}
\]

\section*{Mass}

\section*{The Standard Kilogram}

The SI standard of mass is a cylinder of platinum and iridium (Fig. 1-3) that is kept at the International Bureau of Weights and Measures near Paris and assigned, by

Figure 1-3 The international 1 kg standard of mass, a platinum-iridium cylinder 3.9 cm in height and in diameter.

international agreement, a mass of 1 kilogram. Accurate copies have been sent to standardizing laboratories in other countries, and the masses of other bodies can be determined by balancing them against a copy. Table 1-5 shows some masses expressed in kilograms, ranging over about 83 orders of magnitude.

The U.S. copy of the standard kilogram is housed in a vault at NIST. It is removed, no more than once a year, for the purpose of checking duplicate copies that are used elsewhere. Since 1889, it has been taken to France twice for recomparison with the primary standard.

\section*{A Second Mass Standard}

The masses of atoms can be compared with one another more precisely than they can be compared with the standard kilogram. For this reason, we have a second mass standard. It is the carbon-12 atom, which, by international agreement, has been assigned a mass of 12 atomic mass units (u). The relation between the two units is
\[
\begin{equation*}
1 \mathrm{u}=1.66053886 \times 10^{-27} \mathrm{~kg}, \tag{1-7}
\end{equation*}
\]
with an uncertainty of \(\pm 10\) in the last two decimal places. Scientists can, with reasonable precision, experimentally determine the masses of other atoms relative to the mass of carbon-12. What we presently lack is a reliable means of extending that precision to more common units of mass, such as a kilogram.

\section*{Density}

As we shall discuss further in Chapter 14, density \(\rho\) (lowercase Greek letter rho) is the mass per unit volume:
\[
\begin{equation*}
\rho=\frac{m}{V} . \tag{1-8}
\end{equation*}
\]

Densities are typically listed in kilograms per cubic meter or grams per cubic centimeter. The density of water ( 1.00 gram per cubic centimeter) is often used as a comparison. Fresh snow has about \(10 \%\) of that density; platinum has a density that is about 21 times that of water.

Table 1-5 Some Approximate Masses
\begin{tabular}{ll} 
Object & \begin{tabular}{l} 
Mass in \\
Kilograms
\end{tabular} \\
\hline Known universe & \(1 \times 10^{53}\) \\
Our galaxy & \(2 \times 10^{41}\) \\
Sun & \(2 \times 10^{30}\) \\
Moon & \(7 \times 10^{22}\) \\
Asteroid Eros & \(5 \times 10^{15}\) \\
Small mountain & \(1 \times 10^{12}\) \\
Ocean liner & \(7 \times 10^{7}\) \\
Elephant & \(5 \times 10^{3}\) \\
Grape & \(3 \times 10^{-3}\) \\
Speck of dust & \(7 \times 10^{-10}\) \\
Penicillin molecule & \(5 \times 10^{-17}\) \\
Uranium atom & \(4 \times 10^{-25}\) \\
Proton & \(2 \times 10^{-27}\) \\
Electron & \(9 \times 10^{-31}\) \\
\hline
\end{tabular}

From Eq. 1-8, the total mass \(m_{\text {sand }}\) of the sand grains is the product of the density of silicon dioxide and the total volume of the sand grains:
\[
\begin{equation*}
m_{\text {sand }}=\rho_{\mathrm{SiO}_{2}} V_{\text {grains }} . \tag{1-12}
\end{equation*}
\]

Substituting this expression into Eq. 1-10 and then substituting for \(V_{\text {grains }}\) from Eq. 1-11 lead to
\[
\begin{equation*}
\rho_{\text {sand }}=\frac{\rho_{\mathrm{siO}_{2}}}{V_{\text {total }}} \frac{V_{\text {total }}}{1+e}=\frac{\rho_{\mathrm{SiO}_{2}}}{1+e} . \tag{1-13}
\end{equation*}
\]

Substituting \(\rho_{\mathrm{SiO}_{2}}=2.600 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\) and the critical value of \(e=0.80\), we find that liquefaction occurs when the sand density is less than
\[
\rho_{\text {sand }}=\frac{2.600 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}}{1.80}=1.4 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}
\]
(Answer)
A building can sink several meters in such liquefaction.

\section*{\& Review \& Summary}

Measurement in Physics Physics is based on measurement of physical quantities. Certain physical quantities have been chosen as base quantities (such as length, time, and mass); each has been defined in terms of a standard and given a unit of measure (such as meter, second, and kilogram). Other physical quantities are defined in terms of the base quantities and their standards and units.

SI Units The unit system emphasized in this book is the International System of Units (SI). The three physical quantities displayed in Table 1-1 are used in the early chapters. Standards, which must be both accessible and invariable, have been established for these base quantities by international agreement. These standards are used in all physical measurement, for both the base quantities and the quantities derived from them. Scientific notation and the prefixes of Table 1-2 are used to simplify measurement notation.

Changing Units Conversion of units may be performed by using chain-link conversions in which the original data are multiplied
successively by conversion factors written as unity and the units are manipulated like algebraic quantities until only the desired units remain.

Length The meter is defined as the distance traveled by light during a precisely specified time interval.

Time The second is defined in terms of the oscillations of light emitted by an atomic (cesium-133) source. Accurate time signals are sent worldwide by radio signals keyed to atomic clocks in standardizing laboratories.

Mass The kilogram is defined in terms of a platinumiridium standard mass kept near Paris. For measurements on an atomic scale, the atomic mass unit, defined in terms of the atom carbon- 12 , is usually used.

Density The density \(\rho\) of a material is the mass per unit volume:
\[
\begin{equation*}
\rho=\frac{m}{V} \tag{1-8}
\end{equation*}
\]

\section*{Problems}


\section*{Module 1-1 Measuring Things, Including Lengths}
\(\cdot 1\) SSM Earth is approximately a sphere of radius \(6.37 \times 10^{6} \mathrm{~m}\). What are (a) its circumference in kilometers, (b) its surface area in square kilometers, and (c) its volume in cubic kilometers?
-2 A gry is an old English measure for length, defined as \(1 / 10\) of a line, where line is another old English measure for length, defined as \(1 / 12\) inch. A common measure for length in the publishing business is a point, defined as \(1 / 72\) inch. What is an area of 0.50 gry \(^{2}\) in points squared (points \({ }^{2}\) )?
-3 The micrometer \((1 \mu \mathrm{~m})\) is often called the micron. (a) How
many microns make up 1.0 km ? (b) What fraction of a centimeter equals \(1.0 \mu \mathrm{~m}\) ? (c) How many microns are in 1.0 yd ?
-4 Spacing in this book was generally done in units of points and picas: 12 points \(=1\) pica, and 6 picas \(=1\) inch. If a figure was misplaced in the page proofs by 0.80 cm , what was the misplacement in (a) picas and (b) points?
-5 SSM www Horses are to race over a certain English meadow for a distance of 4.0 furlongs. What is the race distance in (a) rods and (b) chains? ( 1 furlong \(=201.168 \mathrm{~m}, 1 \operatorname{rod}=5.0292 \mathrm{~m}\), and 1 chain \(=20.117 \mathrm{~m}\).)
-•6 You can easily convert common units and measures electronically, but you still should be able to use a conversion table, such as those in Appendix D. Table 1-6 is part of a conversion table for a system of volume measures once common in Spain; a volume of 1 fanega is equivalent to \(55.501 \mathrm{dm}^{3}\) (cubic decimeters). To complete the table, what numbers (to three significant figures) should be entered in (a) the cahiz column, (b) the fanega column, (c) the cuartilla column, and (d) the almude column, starting with the top blank? Express 7.00 almudes in (e) medios, (f) cahizes, and (g) cubic centimeters \(\left(\mathrm{cm}^{3}\right)\).

\section*{Table 1-6 Problem 6}
\begin{tabular}{lccccc}
\hline & cahiz & fanega & cuartilla & almude & medio \\
\hline 1 cahiz \(=\) & 1 & 12 & 48 & 144 & 288 \\
1 fanega \(=\) & & 1 & 4 & 12 & 24 \\
1 cuartilla \(=\) & & & 1 & 3 & 6 \\
1 almude \(=\) & & & 1 & 2 \\
1 medio \(=\) & & & & 1
\end{tabular}
-•7 ILw Hydraulic engineers in the United States often use, as a unit of volume of water, the acre-foot, defined as the volume of water that will cover 1 acre of land to a depth of 1 ft . A severe thunderstorm dumped 2.0 in . of rain in 30 min on a town of area 26 \(\mathrm{km}^{2}\). What volume of water, in acre-feet, fell on the town?
-०8 ©0 Harvard Bridge, which connects MIT with its fraternities across the Charles River, has a length of 364.4 Smoots plus one ear. The unit of one Smoot is based on the length of Oliver Reed Smoot, Jr., class of 1962, who was carried or dragged length by length across the bridge so that other pledge members of the Lambda Chi Alpha fraternity could mark off (with paint) 1-Smoot lengths along the bridge. The marks have been repainted biannually by fraternity pledges since the initial measurement, usually during times of traffic congestion so that the police cannot easily interfere. (Presumably, the police were originally upset because the Smoot is not an SI base unit, but these days they seem to have accepted the unit.) Figure 1-4 shows three parallel paths, measured in Smoots (S), Willies (W), and Zeldas (Z). What is the length of 50.0 Smoots in (a) Willies and (b) Zeldas?


Figure 1-4 Problem 8.
\(\bullet \bullet 9\) Antarctica is roughly semicircular, with a radius of 2000 km (Fig. 1-5). The average thickness of its ice cover is 3000 m . How many cubic centimeters of ice does Antarctica contain? (Ignore the curvature of Earth.)


Figure 1-5 Problem 9.

\section*{Module 1-2 Time}
-10 Until 1883, every city and town in the United States kept its own local time. Today, travelers reset their watches only when the time change equals 1.0 h . How far, on the average, must you travel in degrees of longitude between the time-zone boundaries at which your watch must be reset by 1.0 h ? (Hint: Earth rotates \(360^{\circ}\) in about 24 h .)
-11 For about 10 years after the French Revolution, the French government attempted to base measures of time on multiples of ten: One week consisted of 10 days, one day consisted of 10 hours, one hour consisted of 100 minutes, and one minute consisted of 100 seconds. What are the ratios of (a) the French decimal week to the standard week and (b) the French decimal second to the standard second?
-12 The fastest growing plant on record is a Hesperoyucca whipplei that grew 3.7 m in 14 days. What was its growth rate in micrometers per second?
-13 ©0 Three digital clocks \(A, B\), and \(C\) run at different rates and do not have simultaneous readings of zero. Figure 1-6 shows simultaneous readings on pairs of the clocks for four occasions. (At the earliest occasion, for example, \(B\) reads 25.0 s and \(C\) reads 92.0 s.) If two events are 600 s apart on clock \(A\), how far apart are they on (a) clock \(B\) and (b) clock \(C\) ? (c) When clock \(A\) reads 400 s , what does clock \(B\) read? (d) When clock \(C\) reads 15.0 s , what does clock \(B\) read? (Assume negative readings for prezero times.)


Figure 1-6 Problem 13.
-14 A lecture period ( 50 min ) is close to 1 microcentury. (a) How long is a microcentury in minutes? (b) Using
\[
\text { percentage difference }=\left(\frac{\text { actual }- \text { approximation }}{\text { actual }}\right) 100
\]
find the percentage difference from the approximation.
-15 A fortnight is a charming English measure of time equal to 2.0 weeks (the word is a contraction of "fourteen nights"). That is a nice amount of time in pleasant company but perhaps a painful string of microseconds in unpleasant company. How many microseconds are in a fortnight?
-16 Time standards are now based on atomic clocks. A promising second standard is based on pulsars, which are rotating neutron stars (highly compact stars consisting only of neutrons). Some rotate at a rate that is highly stable, sending out a radio beacon that sweeps briefly across Earth once with each rotation, like a lighthouse beacon. Pulsar PSR \(1937+21\) is an example; it rotates once every \(1.55780644887275 \pm 3 \mathrm{~ms}\), where the trailing \(\pm 3\) indicates the uncertainty in the last decimal place (it does not mean \(\pm 3 \mathrm{~ms}\) ). (a) How many rotations does PSR \(1937+21\) make in 7.00 days? (b) How much time does the pulsar take to rotate exactly one million times and (c) what is the associated uncertainty?
\(\cdot 17\) SSM Five clocks are being tested in a laboratory. Exactly at noon, as determined by the WWV time signal, on successive days of a week the clocks read as in the following table. Rank the five clocks according to their relative value as good timekeepers, best to worst. Justify your choice.
\begin{tabular}{lccccccc}
\hline Clock & Sun. & Mon. & Tues. & Wed. & Thurs. & Fri. & Sat. \\
\hline A & \(12: 36: 40\) & \(12: 36: 56\) & \(12: 37: 12\) & \(12: 37: 27\) & \(12: 37: 44\) & \(12: 37: 59\) & \(12: 38: 14\) \\
B & \(11: 59: 59\) & \(12: 00: 02\) & \(11: 59: 57\) & \(12: 00: 07\) & \(12: 00: 02\) & \(11: 59: 56\) & \(12: 00: 03\) \\
C & \(15: 50: 45\) & \(15: 51: 43\) & \(15: 52: 41\) & \(15: 53: 39\) & \(15: 54: 37\) & \(15: 55: 35\) & \(15: 56: 33\) \\
D & \(12: 03: 59\) & \(12: 02: 52\) & \(12: 01: 45\) & \(12: 00: 38\) & \(11: 59: 31\) & \(11: 58: 24\) & \(11: 57: 17\) \\
E & \(12: 03: 59\) & \(12: 02: 49\) & \(12: 01: 54\) & \(12: 01: 52\) & \(12: 01: 32\) & \(12: 01: 22\) & \(12: 01: 12\) \\
\hline
\end{tabular}
\(\bullet 18\) Because Earth's rotation is gradually slowing, the length of each day increases: The day at the end of 1.0 century is 1.0 ms longer than the day at the start of the century. In 20 centuries, what is the total of the daily increases in time?
\(\because 0019\) Suppose that, while lying on a beach near the equator watching the Sun set over a calm ocean, you start a stopwatch just as the top of the Sun disappears. You then stand, elevating your eyes by a height \(H=1.70 \mathrm{~m}\), and stop the watch when the top of the Sun again disappears. If the elapsed time is \(t=11.1 \mathrm{~s}\), what is the radius \(r\) of Earth?

\section*{Module 1-3 Mass}
-20 © The record for the largest glass bottle was set in 1992 by a team in Millville, New Jersey-they blew a bottle with a volume of 193 U.S. fluid gallons. (a) How much short of 1.0 million cubic centimeters is that? (b) If the bottle were filled with water at the leisurely rate of \(1.8 \mathrm{~g} / \mathrm{min}\), how long would the filling take? Water has a density of \(1000 \mathrm{~kg} / \mathrm{m}^{3}\).
-21 Earth has a mass of \(5.98 \times 10^{24} \mathrm{~kg}\). The average mass of the atoms that make up Earth is 40 u . How many atoms are there in Earth?
-22 Gold, which has a density of \(19.32 \mathrm{~g} / \mathrm{cm}^{3}\), is the most ductile metal and can be pressed into a thin leaf or drawn out into a long fiber. (a) If a sample of gold, with a mass of 27.63 g , is pressed into a leaf of \(1.000 \mu \mathrm{~m}\) thickness, what is the area of the leaf? (b) If, instead, the gold is drawn out into a cylindrical fiber of radius 2.500 \(\mu \mathrm{m}\), what is the length of the fiber?
\(\cdot 23\) SSM (a) Assuming that water has a density of exactly \(1 \mathrm{~g} / \mathrm{cm}^{3}\), find the mass of one cubic meter of water in kilograms. (b) Suppose that it takes 10.0 h to drain a container of \(5700 \mathrm{~m}^{3}\) of water. What is the "mass flow rate," in kilograms per second, of water from the container?
-24 ©0 Grains of fine California beach sand are approximately spheres with an average radius of \(50 \mu \mathrm{~m}\) and are made of silicon dioxide, which has a density of \(2600 \mathrm{~kg} / \mathrm{m}^{3}\). What mass of sand grains would have a total surface area (the total area of all the individual spheres) equal to the surface area of a cube 1.00 m on an edge?
\(\bullet 25\) During heavy rain, a section of a mountainside measuring 2.5 km horizontally, 0.80 km up along the slope, and 2.0 m deep slips into a valley in a mud slide. Assume that the mud ends up uniformly distributed over a surface area of the valley measuring \(0.40 \mathrm{~km} \times 0.40 \mathrm{~km}\) and that mud has a density of \(1900 \mathrm{~kg} / \mathrm{m}^{3}\). What is the mass of the mud sitting above a \(4.0 \mathrm{~m}^{2}\) area of the valley floor?
\(\bullet 26\) One cubic centimeter of a typical cumulus cloud contains 50 to 500 water drops, which have a typical radius of \(10 \mu \mathrm{~m}\). For
that range, give the lower value and the higher value, respectively, for the following. (a) How many cubic meters of water are in a cylindrical cumulus cloud of height 3.0 km and radius 1.0 km ? (b) How many 1-liter pop bottles would that water fill? (c) Water has a density of \(1000 \mathrm{~kg} / \mathrm{m}^{3}\). How much mass does the water in the cloud have?
\(\bullet 27\) Iron has a density of \(7.87 \mathrm{~g} / \mathrm{cm}^{3}\), and the mass of an iron atom is \(9.27 \times 10^{-26} \mathrm{~kg}\). If the atoms are spherical and tightly packed, (a) what is the volume of an iron atom and (b) what is the distance between the centers of adjacent atoms?
\(\bullet 28\) A mole of atoms is \(6.02 \times 10^{23}\) atoms. To the nearest order of magnitude, how many moles of atoms are in a large domestic cat? The masses of a hydrogen atom, an oxygen atom, and a carbon atom are \(1.0 \mathrm{u}, 16 \mathrm{u}\), and 12 u , respectively. (Hint: Cats are sometimes known to kill a mole.)
-29 On a spending spree in Malaysia, you buy an ox with a weight of 28.9 piculs in the local unit of weights: 1 picul \(=\) 100 gins, 1 gin \(=16\) tahils, 1 tahil \(=10\) chees, and 1 chee \(=\) 10 hoons. The weight of 1 hoon corresponds to a mass of 0.3779 g . When you arrange to ship the ox home to your astonished family, how much mass in kilograms must you declare on the shipping manifest? (Hint: Set up multiple chain-link conversions.)
-30 © Water is poured into a container that has a small leak. The mass \(m\) of the water is given as a function of time \(t\) by \(m=5.00 t^{0.8}-3.00 t+20.00\), with \(t \geq 0, m\) in grams, and \(t\) in seconds. (a) At what time is the water mass greatest, and (b) what is that greatest mass? In kilograms per minute, what is the rate of mass change at (c) \(t=2.00 \mathrm{~s}\) and (d) \(t=5.00 \mathrm{~s}\) ?
00031 A vertical container with base area measuring 14.0 cm by 17.0 cm is being filled with identical pieces of candy, each with a volume of \(50.0 \mathrm{~mm}^{3}\) and a mass of 0.0200 g . Assume that the volume of the empty spaces between the candies is negligible. If the height of the candies in the container increases at the rate of \(0.250 \mathrm{~cm} / \mathrm{s}\), at what rate (kilograms per minute) does the mass of the candies in the container increase?

\section*{Additional Problems}

32 In the United States, a doll house has the scale of 1:12 of a real house (that is, each length of the doll house is \(\frac{1}{12}\) that of the real house) and a miniature house (a doll house to fit within a doll house) has the scale of 1:144 of a real house. Suppose a real house (Fig. 1-7) has a front length of 20 m , a depth of 12 m , a height of 6.0 m , and a standard sloped roof (vertical triangular faces on the ends) of height 3.0 m . In cubic meters, what are the volumes of the corresponding (a) doll house and (b) miniature house?


Figure 1-7 Problem 32.

33 SSM A ton is a measure of volume frequently used in shipping, but that use requires some care because there are at least three types of tons: A displacement ton is equal to 7 barrels bulk, a freight ton is equal to 8 barrels bulk, and a register ton is equal to 20 barrels bulk. A barrel bulk is another measure of volume: 1 barrel bulk \(=0.1415 \mathrm{~m}^{3}\). Suppose you spot a shipping order for "73 tons" of M\&M candies, and you are certain that the client who sent the order intended "ton" to refer to volume (instead of weight or mass, as discussed in Chapter 5). If the client actually meant displacement tons, how many extra U.S. bushels of the candies will you erroneously ship if you interpret the order as (a) 73 freight tons and (b) 73 register tons? \(\left(1 \mathrm{~m}^{3}=28.378\right.\) U.S. bushels.)
34 Two types of barrel units were in use in the 1920s in the United States. The apple barrel had a legally set volume of \(7056 \mathrm{cu}-\) bic inches; the cranberry barrel, 5826 cubic inches. If a merchant sells 20 cranberry barrels of goods to a customer who thinks he is receiving apple barrels, what is the discrepancy in the shipment volume in liters?

35 An old English children's rhyme states, "Little Miss Muffet sat on a tuffet, eating her curds and whey, when along came a spider who sat down beside her. . . ." The spider sat down not because of the curds and whey but because Miss Muffet had a stash of 11 tuffets of dried flies. The volume measure of a tuffet is given by 1 tuffet \(=2\) pecks \(=0.50\) Imperial bushel, where 1 Imperial bushel \(=36.3687\) liters (L). What was Miss Muffet's stash in (a) pecks, (b) Imperial bushels, and (c) liters?

36 Table 1-7 shows some old measures of liquid volume. To complete the table, what numbers (to three significant figures) should be entered in (a) the wey column, (b) the chaldron column, (c) the bag column, (d) the pottle column, and (e) the gill column, starting from the top down? (f) The volume of 1 bag is equal to \(0.1091 \mathrm{~m}^{3}\). If an old story has a witch cooking up some vile liquid in a cauldron of volume 1.5 chaldrons, what is the volume in cubic meters?

\section*{Table 1-7 Problem 36}
\begin{tabular}{lccccc}
\hline & wey & chaldron & bag & pottle & gill \\
\hline 1 wey \(=\) & 1 & \(10 / 9\) & \(40 / 3\) & 640 & 120240 \\
1 chaldron \(=\) & & & & & \\
1 bag \(=\) \\
1 pottle \(=\) \\
& & & & & \\
1 gill \(=\)
\end{tabular}

37 A typical sugar cube has an edge length of 1 cm . If you had a cubical box that contained a mole of sugar cubes, what would its edge length be? \(\left(\right.\) One mole \(=6.02 \times 10^{23}\) units. \()\)

38 An old manuscript reveals that a landowner in the time of King Arthur held 3.00 acres of plowed land plus a livestock area of 25.0 perches by 4.00 perches. What was the total area in (a) the old unit of roods and (b) the more modern unit of square meters? Here, 1 acre is an area of 40 perches by 4 perches, 1 rood is an area of 40 perches by 1 perch, and 1 perch is the length 16.5 ft .

39 SSM A tourist purchases a car in England and ships it home to the United States. The car sticker advertised that the car's fuel consumption was at the rate of 40 miles per gallon on the open road.

The tourist does not realize that the U.K. gallon differs from the U.S. gallon:
\[
\begin{aligned}
1 \text { U.K. gallon } & =4.5460900 \text { liters } \\
1 \text { U.S. gallon } & =3.7854118 \text { liters. }
\end{aligned}
\]

For a trip of 750 miles (in the United States), how many gallons of fuel does (a) the mistaken tourist believe she needs and (b) the car actually require?
40 Using conversions and data in the chapter, determine the number of hydrogen atoms required to obtain 1.0 kg of hydrogen. A hydrogen atom has a mass of 1.0 u .
41 SSIM A cord is a volume of cut wood equal to a stack 8 ft long, 4 ft wide, and 4 ft high. How many cords are in \(1.0 \mathrm{~m}^{3}\) ?

42 One molecule of water \(\left(\mathrm{H}_{2} \mathrm{O}\right)\) contains two atoms of hydrogen and one atom of oxygen. A hydrogen atom has a mass of 1.0 u and an atom of oxygen has a mass of 16 u , approximately. (a) What is the mass in kilograms of one molecule of water? (b) How many molecules of water are in the world's oceans, which have an estimated total mass of \(1.4 \times 10^{21} \mathrm{~kg}\) ?
43 A person on a diet might lose 2.3 kg per week. Express the mass loss rate in milligrams per second, as if the dieter could sense the second-by-second loss.

44 What mass of water fell on the town in Problem 7? Water has a density of \(1.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\).

45 (a) A unit of time sometimes used in microscopic physics is the shake. One shake equals \(10^{-8} \mathrm{~s}\). Are there more shakes in a second than there are seconds in a year? (b) Humans have existed for about \(10^{6}\) years, whereas the universe is about \(10^{10}\) years old. If the age of the universe is defined as 1 "universe day," where a universe day consists of "universe seconds" as a normal day consists of normal seconds, how many universe seconds have humans existed?

46 A unit of area often used in measuring land areas is the hectare, defined as \(10^{4} \mathrm{~m}^{2}\). An open-pit coal mine consumes 75 hectares of land, down to a depth of 26 m , each year. What volume of earth, in cubic kilometers, is removed in this time?

47 SSM An astronomical unit (AU) is the average distance between Earth and the Sun, approximately \(1.50 \times 10^{8} \mathrm{~km}\). The speed of light is about \(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\). Express the speed of light in astronomical units per minute.

48 The common Eastern mole, a mammal, typically has a mass of 75 g , which corresponds to about 7.5 moles of atoms. (A mole of atoms is \(6.02 \times 10^{23}\) atoms.) In atomic mass units (u), what is the average mass of the atoms in the common Eastern mole?
49 A traditional unit of length in Japan is the ken (1 ken = 1.97 m ). What are the ratios of (a) square kens to square meters and (b) cubic kens to cubic meters? What is the volume of a cylindrical water tank of height 5.50 kens and radius 3.00 kens in (c) cubic kens and (d) cubic meters?

50 You receive orders to sail due east for 24.5 mi to put your salvage ship directly over a sunken pirate ship. However, when your divers probe the ocean floor at that location and find no evidence of a ship, you radio back to your source of information, only to discover that the sailing distance was supposed to be 24.5 nautical miles, not regular miles. Use the Length table in Appendix D to calculate how far horizontally you are from the pirate ship in kilometers.

51 The cubit is an ancient unit of length based on the distance between the elbow and the tip of the middle finger of the measurer. Assume that the distance ranged from 43 to 53 cm , and suppose that ancient drawings indicate that a cylindrical pillar was to have a length of 9 cubits and a diameter of 2 cubits. For the stated range, what are the lower value and the upper value, respectively, for (a) the cylinder's length in meters, (b) the cylinder's length in millimeters, and (c) the cylinder's volume in cubic meters?

52 As a contrast between the old and the modern and between the large and the small, consider the following: In old rural England 1 hide (between 100 and 120 acres) was the area of land needed to sustain one family with a single plough for one year. (An area of 1 acre is equal to \(4047 \mathrm{~m}^{2}\).) Also, 1 wapentake was the area of land needed by 100 such families. In quantum physics, the cross-sectional area of a nucleus (defined in terms of the chance of a particle hitting and being absorbed by it) is measured in units of barns, where 1 barn is \(1 \times 10^{-28} \mathrm{~m}^{2}\). (In nuclear physics jargon, if a nucleus is "large," then shooting a particle at it is like shooting a bullet at a barn door, which can hardly be missed.) What is the ratio of 25 wapentakes to 11 barns?
53 SSM An astronomical unit (AU) is equal to the average distance from Earth to the Sun, about \(92.9 \times 10^{6} \mathrm{mi}\). A parsec (pc) is the distance at which a length of 1 AU would subtend an angle of exactly 1 second of arc (Fig. 1-8). A light-year (ly) is the distance that light, traveling through a vacuum with a speed of \(186000 \mathrm{mi} / \mathrm{s}\), would cover in 1.0 year. Express the Earth-Sun distance in (a) parsecs and (b) light-years.


Figure 1-8 Problem 53.

54 The description for a certain brand of house paint claims a coverage of \(460 \mathrm{ft}^{2} / \mathrm{gal}\). (a) Express this quantity in square meters per liter. (b) Express this quantity in an SI unit (see Appendices A and D). (c) What is the inverse of the original quantity, and (d) what is its physical significance?
55 Strangely, the wine for a large wedding reception is to be served in a stunning cut-glass receptacle with the interior dimensions of \(40 \mathrm{~cm} \times 40 \mathrm{~cm} \times 30 \mathrm{~cm}\) (height). The receptacle is to be initially filled to the top. The wine can be purchased in bottles of the sizes given in the following table. Purchasing a larger bottle instead of multiple smaller bottles decreases the overall cost of the wine. To minimize the cost, (a) which bottle sizes should be purchased and how many of each should be purchased and, once the receptacle is filled, how much wine is left over in terms of (b) standard bottles and (c) liters?

\section*{1 standard bottle}

1 magnum \(=2\) standard bottles
1 jeroboam \(=4\) standard bottles
1 rehoboam \(=6\) standard bottles
1 methuselah \(=8\) standard bottles
1 salmanazar \(=12\) standard bottles
1 balthazar \(=16\) standard bottles \(=11.356 \mathrm{~L}\)
1 nebuchadnezzar \(=20\) standard bottles

56 The corn-hog ratio is a financial term used in the pig market and presumably is related to the cost of feeding a pig until it is large enough for market. It is defined as the ratio of the market price of a pig with a mass of 3.108 slugs to the market price of a U.S. bushel of corn. (The word "slug" is derived from an old German word that means "to hit"; we have the same meaning for "slug" as a verb in modern English.) A U.S. bushel is equal to 35.238 L . If the corn-hog ratio is listed as 5.7 on the market exchange, what is it in the metric units of
\[
\frac{\text { price of } 1 \text { kilogram of pig }}{\text { price of } 1 \text { liter of corn }} ?
\]

\section*{(Hint: See the Mass table in Appendix D.)}

57 You are to fix dinners for 400 people at a convention of Mexican food fans. Your recipe calls for 2 jalapeño peppers per serving (one serving per person). However, you have only habanero peppers on hand. The spiciness of peppers is measured in terms of the scoville heat unit (SHU). On average, one jalapeño pepper has a spiciness of 4000 SHU and one habanero pepper has a spiciness of 300000 SHU . To get the desired spiciness, how many habanero peppers should you substitute for the jalapeño peppers in the recipe for the 400 dinners?

58 A standard interior staircase has steps each with a rise (height) of 19 cm and a run (horizontal depth) of 23 cm . Research suggests that the stairs would be safer for descent if the run were, instead, 28 cm . For a particular staircase of total height 4.57 m , how much farther into the room would the staircase extend if this change in run were made?
59 In purchasing food for a political rally, you erroneously order shucked medium-size Pacific oysters (which come 8 to 12 per U.S. pint) instead of shucked medium-size Atlantic oysters (which come 26 to 38 per U.S. pint). The filled oyster container shipped to you has the interior measure of \(1.0 \mathrm{~m} \times 12 \mathrm{~cm} \times 20 \mathrm{~cm}\), and a U.S. pint is equivalent to 0.4732 liter. By how many oysters is the order short of your anticipated count?

60 An old English cookbook carries this recipe for cream of netthe soup: "Boil stock of the following amount: 1 breakfastcup plus 1 teacup plus 6 tablespoons plus 1 dessertspoon. Using gloves, separate nettle tops until you have 0.5 quart; add the tops to the boiling stock. Add 1 tablespoon of cooked rice and 1 saltspoon of salt. Simmer for 15 min ." The following table gives some of the conversions among old (premetric) British measures and among common (still premetric) U.S. measures. (These measures just scream for metrication.) For liquid measures, 1 British teaspoon = 1 U.S. teaspoon. For dry measures, 1 British teaspoon \(=2\) U.S. teaspoons and 1 British quart \(=1\) U.S. quart. In U.S. measures, how much (a) stock, (b) nettle tops, (c) rice, and (d) salt are required in the recipe?
\begin{tabular}{ll}
\hline Old British Measures & U.S. Measures \\
\hline teaspoon \(=2\) saltspoons & tablespoon \(=3\) teaspoons \\
dessertspoon \(=2\) teaspoons & half cup \(=8\) tablespoons \\
tablespoon \(=2\) dessertspoons & cup \(=2\) half cups \\
teacup \(=8\) tablespoons & \\
breakfastcup \(=2\) teacups & \\
\hline
\end{tabular}

\section*{C H A P T E R 2}

\section*{Motion Along a Straight Line}

\section*{2-1 POSITION, DISPLACEMENT, AND AVERAGE VELOCITY}

\section*{Learning Objectives}

After reading this module, you should be able to ...
2.01 Identify that if all parts of an object move in the same direction and at the same rate, we can treat the object as if it were a (point-like) particle. (This chapter is about the motion of such objects.)
2.02 Identify that the position of a particle is its location as read on a scaled axis, such as an \(x\) axis.
2.03 Apply the relationship between a particle's displacement and its initial and final positions.
2.04 Apply the relationship between a particle's average velocity, its displacement, and the time interval for that displacement.
2.05 Apply the relationship between a particle's average speed, the total distance it moves, and the time interval for the motion.
2.06 Given a graph of a particle's position versus time, determine the average velocity between any two particular times.
- When a particle has moved from position \(x_{1}\) to position \(x_{2}\) during a time interval \(\Delta t=t_{2}-t_{1}\), its average velocity during that interval is
\[
v_{\text {avg }}=\frac{\Delta x}{\Delta t}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}
\]
- The algebraic sign of \(v_{\text {avg }}\) indicates the direction of motion ( \(v_{\text {avg }}\) is a vector quantity). Average velocity does not depend on the actual distance a particle moves, but instead depends on its original and final positions.
- On a graph of \(x\) versus \(t\), the average velocity for a time interval \(\Delta t\) is the slope of the straight line connecting the points on the curve that represent the two ends of the interval.
- The average speed \(s_{\text {avg }}\) of a particle during a time interval \(\Delta t\) depends on the total distance the particle moves in that time interval:
\[
s_{\mathrm{avg}}=\frac{\text { total distance }}{\Delta t}
\]

\section*{What Is Physics?}

One purpose of physics is to study the motion of objects-how fast they move, for example, and how far they move in a given amount of time. NASCAR engineers are fanatical about this aspect of physics as they determine the performance of their cars before and during a race. Geologists use this physics to measure tectonic-plate motion as they attempt to predict earthquakes. Medical researchers need this physics to map the blood flow through a patient when diagnosing a partially closed artery, and motorists use it to determine how they might slow sufficiently when their radar detector sounds a warning. There are countless other examples. In this chapter, we study the basic physics of motion where the object (race car, tectonic plate, blood cell, or any other object) moves along a single axis. Such motion is called one-dimensional motion.


Figure 2-1 Position is determined on an axis that is marked in units of length (here meters) and that extends indefinitely in opposite directions. The axis name, here \(x\), is always on the positive side of the origin.

\section*{Motion}

The world, and everything in it, moves. Even seemingly stationary things, such as a roadway, move with Earth's rotation, Earth's orbit around the Sun, the Sun's orbit around the center of the Milky Way galaxy, and that galaxy's migration relative to other galaxies. The classification and comparison of motions (called kinematics) is often challenging. What exactly do you measure, and how do you compare?

Before we attempt an answer, we shall examine some general properties of motion that is restricted in three ways.
1. The motion is along a straight line only. The line may be vertical, horizontal, or slanted, but it must be straight.
2. Forces (pushes and pulls) cause motion but will not be discussed until Chapter 5. In this chapter we discuss only the motion itself and changes in the motion. Does the moving object speed up, slow down, stop, or reverse direction? If the motion does change, how is time involved in the change?
3. The moving object is either a particle (by which we mean a point-like object such as an electron) or an object that moves like a particle (such that every portion moves in the same direction and at the same rate). A stiff pig slipping down a straight playground slide might be considered to be moving like a particle; however, a tumbling tumbleweed would not.

\section*{Position and Displacement}

To locate an object means to find its position relative to some reference point, often the origin (or zero point) of an axis such as the \(x\) axis in Fig. 2-1. The positive direction of the axis is in the direction of increasing numbers (coordinates), which is to the right in Fig. 2-1. The opposite is the negative direction.

For example, a particle might be located at \(x=5 \mathrm{~m}\), which means it is 5 m in the positive direction from the origin. If it were at \(x=-5 \mathrm{~m}\), it would be just as far from the origin but in the opposite direction. On the axis, a coordinate of -5 m is less than a coordinate of -1 m , and both coordinates are less than a coordinate of +5 m . A plus sign for a coordinate need not be shown, but a minus sign must always be shown.

A change from position \(x_{1}\) to position \(x_{2}\) is called a displacement \(\Delta x\), where
\[
\begin{equation*}
\Delta x=x_{2}-x_{1} . \tag{2-1}
\end{equation*}
\]
(The symbol \(\Delta\), the Greek uppercase delta, represents a change in a quantity, and it means the final value of that quantity minus the initial value.) When numbers are inserted for the position values \(x_{1}\) and \(x_{2}\) in Eq. 2-1, a displacement in the positive direction (to the right in Fig. 2-1) always comes out positive, and a displacement in the opposite direction (left in the figure) always comes out negative. For example, if the particle moves from \(x_{1}=5 \mathrm{~m}\) to \(x_{2}=12 \mathrm{~m}\), then the displacement is \(\Delta x=(12 \mathrm{~m})-(5 \mathrm{~m})=+7 \mathrm{~m}\). The positive result indicates that the motion is in the positive direction. If, instead, the particle moves from \(x_{1}=5 \mathrm{~m}\) to \(x_{2}=1 \mathrm{~m}\), then \(\Delta x=(1 \mathrm{~m})-(5 \mathrm{~m})=-4 \mathrm{~m}\). The negative result indicates that the motion is in the negative direction.

The actual number of meters covered for a trip is irrelevant; displacement involves only the original and final positions. For example, if the particle moves from \(x=5 \mathrm{~m}\) out to \(x=200 \mathrm{~m}\) and then back to \(x=5 \mathrm{~m}\), the displacement from start to finish is \(\Delta x=(5 \mathrm{~m})-(5 \mathrm{~m})=0\).

Signs. A plus sign for a displacement need not be shown, but a minus sign must always be shown. If we ignore the sign (and thus the direction) of a displacement, we are left with the magnitude (or absolute value) of the displacement. For example, a displacement of \(\Delta x=-4 \mathrm{~m}\) has a magnitude of 4 m .

Figure 2-2 The graph of \(x(t)\) for an armadillo that is stationary at \(x=-2 \mathrm{~m}\). The value of \(x\) is -2 m for all times \(t\).


Displacement is an example of a vector quantity, which is a quantity that has both a direction and a magnitude. We explore vectors more fully in Chapter 3, but here all we need is the idea that displacement has two features: (1) Its magnitude is the distance (such as the number of meters) between the original and final positions. (2) Its direction, from an original position to a final position, can be represented by a plus sign or a minus sign if the motion is along a single axis.
Here is the first of many checkpoints where you can check your understanding with a bit of reasoning. The answers are in the back of the book.

\section*{Checkpoint 1}

Here are three pairs of initial and final positions, respectively, along an \(x\) axis. Which pairs give a negative displacement: (a) \(-3 \mathrm{~m},+5 \mathrm{~m}\); (b) \(-3 \mathrm{~m},-7 \mathrm{~m}\); (c) \(7 \mathrm{~m},-3 \mathrm{~m}\) ?

\section*{Average Velocity and Average Speed}

A compact way to describe position is with a graph of position \(x\) plotted as a function of time \(t\)-a graph of \(x(t)\). (The notation \(x(t)\) represents a function \(x\) of \(t\), not the product \(x\) times \(t\).) As a simple example, Fig. 2-2 shows the position function \(x(t)\) for a stationary armadillo (which we treat as a particle) over a 7 s time interval. The animal's position stays at \(x=-2 \mathrm{~m}\).

Figure 2-3 is more interesting, because it involves motion. The armadillo is apparently first noticed at \(t=0\) when it is at the position \(x=-5 \mathrm{~m}\). It moves


Figure 2-3 The graph of \(x(t)\) for a moving armadillo. The path associated with the graph is also shown, at three times.
toward \(x=0\), passes through that point at \(t=3 \mathrm{~s}\), and then moves on to increasingly larger positive values of \(x\). Figure 2-3 also depicts the straight-line motion of the armadillo (at three times) and is something like what you would see. The graph in Fig. 2-3 is more abstract, but it reveals how fast the armadillo moves.

Actually, several quantities are associated with the phrase "how fast." One of them is the average velocity \(v_{\text {avg }}\), which is the ratio of the displacement \(\Delta x\) that occurs during a particular time interval \(\Delta t\) to that interval:
\[
\begin{equation*}
v_{\text {avg }}=\frac{\Delta x}{\Delta t}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}} . \tag{2-2}
\end{equation*}
\]

The notation means that the position is \(x_{1}\) at time \(t_{1}\) and then \(x_{2}\) at time \(t_{2}\). A common unit for \(v_{\text {avg }}\) is the meter per second ( \(\mathrm{m} / \mathrm{s}\) ). You may see other units in the problems, but they are always in the form of length/time.

Graphs. On a graph of \(x\) versus \(t, v_{\text {avg }}\) is the slope of the straight line that connects two particular points on the \(x(t)\) curve: one is the point that corresponds to \(x_{2}\) and \(t_{2}\), and the other is the point that corresponds to \(x_{1}\) and \(t_{1}\). Like displacement, \(v_{\text {avg }}\) has both magnitude and direction (it is another vector quantity). Its magnitude is the magnitude of the line's slope. A positive \(v_{\text {avg }}\) (and slope) tells us that the line slants upward to the right; a negative \(v_{\text {avg }}\) (and slope) tells us that the line slants downward to the right. The average velocity \(v_{\text {avg }}\) always has the same sign as the displacement \(\Delta x\) because \(\Delta t\) in Eq. 2-2 is always positive.

Figure 2-4 shows how to find \(v_{\text {avg }}\) in Fig. 2-3 for the time interval \(t=1 \mathrm{~s}\) to \(t=4 \mathrm{~s}\). We draw the straight line that connects the point on the position curve at the beginning of the interval and the point on the curve at the end of the interval. Then we find the slope \(\Delta x / \Delta t\) of the straight line. For the given time interval, the average velocity is
\[
v_{\mathrm{avg}}=\frac{6 \mathrm{~m}}{3 \mathrm{~s}}=2 \mathrm{~m} / \mathrm{s}
\]

Average speed \(s_{\text {avg }}\) is a different way of describing "how fast" a particle moves. Whereas the average velocity involves the particle's displacement \(\Delta x\), the average speed involves the total distance covered (for example, the number of meters moved), independent of direction; that is,
\[
\begin{equation*}
s_{\mathrm{avg}}=\frac{\text { total distance }}{\Delta t} \tag{2-3}
\end{equation*}
\]

Because average speed does not include direction, it lacks any algebraic sign. Sometimes \(s_{\text {avg }}\) is the same (except for the absence of a sign) as \(v_{\text {avg }}\). However, the two can be quite different.

Figure 2-4 Calculation of the average velocity between \(t=1 \mathrm{~s}\) and \(t=4 \mathrm{~s}\) as the slope of the line that connects the points on the \(x(t)\) curve representing those times. The swirling icon indicates that a figure is available in WileyPLUS as an animation with voiceover.

This is a graph of position \(x\) versus time \(t\).

To find average velocity, first draw a straight line, start to end, and then find the slope of the line.

\section*{Sample Problem 2.01 Average velocity, beat-up pickup truck}

You drive a beat-up pickup truck along a straight road for 8.4 km at \(70 \mathrm{~km} / \mathrm{h}\), at which point the truck runs out of gasoline and stops. Over the next 30 min , you walk another 2.0 km farther along the road to a gasoline station.
(a) What is your overall displacement from the beginning of your drive to your arrival at the station?

\section*{KEY IDEA}

Assume, for convenience, that you move in the positive direction of an \(x\) axis, from a first position of \(x_{1}=0\) to a second position of \(x_{2}\) at the station. That second position must be at \(x_{2}=8.4 \mathrm{~km}+2.0 \mathrm{~km}=10.4 \mathrm{~km}\). Then your displacement \(\Delta x\) along the \(x\) axis is the second position minus the first position.

Calculation: From Eq. 2-1, we have
\[
\Delta x=x_{2}-x_{1}=10.4 \mathrm{~km}-0=10.4 \mathrm{~km}
\]
(Answer)
Thus, your overall displacement is 10.4 km in the positive direction of the \(x\) axis.
(b) What is the time interval \(\Delta t\) from the beginning of your drive to your arrival at the station?

\section*{KEY IDEA}

We already know the walking time interval \(\Delta t_{\mathrm{wlk}}(=0.50 \mathrm{~h})\), but we lack the driving time interval \(\Delta t_{\mathrm{dr}}\). However, we know that for the drive the displacement \(\Delta x_{\mathrm{dr}}\) is 8.4 km and the average velocity \(v_{\text {avg,dr }}\) is \(70 \mathrm{~km} / \mathrm{h}\). Thus, this average velocity is the ratio of the displacement for the drive to the time interval for the drive.

Calculations: We first write
\[
v_{\mathrm{avg}, \mathrm{dr}}=\frac{\Delta x_{\mathrm{dr}}}{\Delta t_{\mathrm{dr}}}
\]

Rearranging and substituting data then give us
\[
\Delta t_{\mathrm{dr}}=\frac{\Delta x_{\mathrm{dr}}}{v_{\mathrm{arg}, \mathrm{dr}}}=\frac{8.4 \mathrm{~km}}{70 \mathrm{~km} / \mathrm{h}}=0.12 \mathrm{~h} .
\]

So,
\[
\begin{aligned}
\Delta t & =\Delta t_{\mathrm{dr}}+\Delta t_{\mathrm{wlk}} \\
& =0.12 \mathrm{~h}+0.50 \mathrm{~h}=0.62 \mathrm{~h}
\end{aligned}
\]
(Answer)
(c) What is your average velocity \(v_{\text {avg }}\) from the beginning of your drive to your arrival at the station? Find it both numerically and graphically.

\section*{KEY IDEA}

From Eq. 2-2 we know that \(v_{\text {avg }}\) for the entire trip is the ratio of the displacement of 10.4 km for the entire trip to the time interval of 0.62 h for the entire trip.

Calculation: Here we find
\[
\begin{aligned}
v_{\mathrm{avg}} & =\frac{\Delta x}{\Delta t}=\frac{10.4 \mathrm{~km}}{0.62 \mathrm{~h}} \\
& =16.8 \mathrm{~km} / \mathrm{h} \approx 17 \mathrm{~km} / \mathrm{h}
\end{aligned}
\]
(Answer)
To find \(v_{\text {avg }}\) graphically, first we graph the function \(x(t)\) as shown in Fig. 2-5, where the beginning and arrival points on the graph are the origin and the point labeled as "Station." Your average velocity is the slope of the straight line connecting those points; that is, \(v_{\text {avg }}\) is the ratio of the rise \((\Delta x=10.4 \mathrm{~km})\) to the \(\operatorname{run}\left(\Delta t=0.62 \mathrm{~h}\right.\) ), which gives us \(v_{\text {avg }}=16.8 \mathrm{~km} / \mathrm{h}\).
(d) Suppose that to pump the gasoline, pay for it, and walk back to the truck takes you another 45 min . What is your average speed from the beginning of your drive to your return to the truck with the gasoline?

KEY IDEA
Your average speed is the ratio of the total distance you move to the total time interval you take to make that move.
Calculation: The total distance is \(8.4 \mathrm{~km}+2.0 \mathrm{~km}+2.0\) \(\mathrm{km}=12.4 \mathrm{~km}\). The total time interval is \(0.12 \mathrm{~h}+0.50 \mathrm{~h}+\) \(0.75 \mathrm{~h}=1.37 \mathrm{~h}\). Thus, Eq. 2-3 gives us
\[
s_{\mathrm{avg}}=\frac{12.4 \mathrm{~km}}{1.37 \mathrm{~h}}=9.1 \mathrm{~km} / \mathrm{h} .
\]
(Answer)


Figure 2-5 The lines marked "Driving" and "Walking" are the position-time plots for the driving and walking stages. (The plot for the walking stage assumes a constant rate of walking.) The slope of the straight line joining the origin and the point labeled "Station" is the average velocity for the trip, from the beginning to the station.

Additional examples, video, and practice available at WileyPLUS

\section*{2-2 instantaneous velocity and speed}

\section*{Learning Objectives}

After reading this module, you should be able to ...
2.07 Given a particle's position as a function of time, calculate the instantaneous velocity for any particular time.
2.08 Given a graph of a particle's position versus time, determine the instantaneous velocity for any particular time. 2.09 Identify speed as the magnitude of the instantaneous velocity.

\section*{Key Ideas}
- The instantaneous velocity (or simply velocity) \(v\) of a moving particle is
\[
v=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t}
\]
where \(\Delta x=x_{2}-x_{1}\) and \(\Delta t=t_{2}-t_{1}\).

The instantaneous velocity (at a particular time) may be found as the slope (at that particular time) of the graph of \(x\) versus \(t\).
- Speed is the magnitude of instantaneous velocity.

\section*{Instantaneous Velocity and Speed}

You have now seen two ways to describe how fast something moves: average velocity and average speed, both of which are measured over a time interval \(\Delta t\). However, the phrase "how fast" more commonly refers to how fast a particle is moving at a given instant-its instantaneous velocity (or simply velocity) \(v\).

The velocity at any instant is obtained from the average velocity by shrinking the time interval \(\Delta t\) closer and closer to 0 . As \(\Delta t\) dwindles, the average velocity approaches a limiting value, which is the velocity at that instant:
\[
\begin{equation*}
v=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t} \tag{2-4}
\end{equation*}
\]

Note that \(v\) is the rate at which position \(x\) is changing with time at a given instant; that is, \(v\) is the derivative of \(x\) with respect to \(t\). Also note that \(v\) at any instant is the slope of the position-time curve at the point representing that instant. Velocity is another vector quantity and thus has an associated direction.

Speed is the magnitude of velocity; that is, speed is velocity that has been stripped of any indication of direction, either in words or via an algebraic sign. (Caution: Speed and average speed can be quite different.) A velocity of \(+5 \mathrm{~m} / \mathrm{s}\) and one of \(-5 \mathrm{~m} / \mathrm{s}\) both have an associated speed of \(5 \mathrm{~m} / \mathrm{s}\). The speedometer in a car measures speed, not velocity (it cannot determine the direction).

\section*{Checkpoint 2}

The following equations give the position \(x(t)\) of a particle in four situations (in each equation, \(x\) is in meters, \(t\) is in seconds, and \(t>0\) ): (1) \(x=3 t-2\); (2) \(x=-4 t^{2}-2\);
(3) \(x=2 / t^{2}\); and (4) \(x=-2\). (a) In which situation is the velocity \(v\) of the particle constant? (b) In which is \(v\) in the negative \(x\) direction?

\section*{Sample Problem 2.02 Velocity and slope of \(x\) versus \(t\), elevator cab}

Figure 2-6a is an \(x(t)\) plot for an elevator cab that is initially stationary, then moves upward (which we take to be the positive direction of \(x\) ), and then stops. Plot \(v(t)\).

\section*{KEY IDEA}

We can find the velocity at any time from the slope of the \(x(t)\) curve at that time.

Calculations: The slope of \(x(t)\), and so also the velocity, is zero in the intervals from 0 to 1 s and from 9 s on, so then the cab is stationary. During the interval \(b c\), the slope is constant and nonzero, so then the cab moves with constant velocity. We calculate the slope of \(x(t)\) then as
\[
\begin{equation*}
\frac{\Delta x}{\Delta t}=v=\frac{24 \mathrm{~m}-4.0 \mathrm{~m}}{8.0 \mathrm{~s}-3.0 \mathrm{~s}}=+4.0 \mathrm{~m} / \mathrm{s} . \tag{2-5}
\end{equation*}
\]

Figure 2-6 (a) The \(x(t)\) curve for an elevator cab that moves upward along an \(x\) axis. (b) The \(v(t)\) curve for the cab. Note that it is the derivative of the \(x(t)\) curve \((v=d x / d t)\). (c) The \(a(t)\) curve for the cab. It is the derivative of the \(v(t)\) curve ( \(a=d v / d t\) ). The stick figures along the bottom suggest how a passenger's body might feel during the accelerations.

(c)

The plus sign indicates that the cab is moving in the positive \(x\) direction. These intervals (where \(v=0\) and \(v=\) \(4 \mathrm{~m} / \mathrm{s}\) ) are plotted in Fig. 2-6b. In addition, as the cab initially begins to move and then later slows to a stop, \(v\) varies as indicated in the intervals 1 s to 3 s and 8 s to 9 s . Thus, Fig. \(2-6 b\) is the required plot. (Figure \(2-6 c\) is considered in Module 2-3.)

Given a \(v(t)\) graph such as Fig. 2-6b, we could "work backward" to produce the shape of the associated \(x(t)\) graph (Fig. 2-6a). However, we would not know the actual values for \(x\) at various times, because the \(v(t)\) graph indicates only changes in \(x\). To find such a change in \(x\) during any in-
terval, we must, in the language of calculus, calculate the area "under the curve" on the \(v(t)\) graph for that interval. For example, during the interval 3 s to 8 s in which the cab has a velocity of \(4.0 \mathrm{~m} / \mathrm{s}\), the change in \(x\) is
\[
\begin{equation*}
\Delta x=(4.0 \mathrm{~m} / \mathrm{s})(8.0 \mathrm{~s}-3.0 \mathrm{~s})=+20 \mathrm{~m} \tag{2-6}
\end{equation*}
\]
(This area is positive because the \(v(t)\) curve is above the \(t\) axis.) Figure \(2-6 a\) shows that \(x\) does indeed increase by 20 m in that interval. However, Fig. 2-6b does not tell us the values of \(x\) at the beginning and end of the interval. For that, we need additional information, such as the value of \(x\) at some instant.

\section*{2-3 acceleration}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
2.10 Apply the relationship between a particle's average acceleration, its change in velocity, and the time interval for that change.
2.11 Given a particle's velocity as a function of time, calculate the instantaneous acceleration for any particular time.
2.12 Given a graph of a particle's velocity versus time, determine the instantaneous acceleration for any particular time and the average acceleration between any two particular times.

\section*{Key Ideas}
- Average acceleration is the ratio of a change in velocity \(\Delta v\) to the time interval \(\Delta t\) in which the change occurs:
\[
a_{\mathrm{avg}}=\frac{\Delta v}{\Delta t}
\]

The algebraic sign indicates the direction of \(a_{\text {avg }}\).
- Instantaneous acceleration (or simply acceleration) \(a\) is the first time derivative of velocity \(v(t)\) and the second time derivative of position \(x(t)\) :
\[
a=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}} .
\]
- On a graph of \(v\) versus \(t\), the acceleration \(a\) at any time \(t\) is the slope of the curve at the point that represents \(t\).

\section*{Acceleration}

When a particle's velocity changes, the particle is said to undergo acceleration (or to accelerate). For motion along an axis, the average acceleration \(a_{\text {avg }}\) over a time interval \(\Delta t\) is
\[
\begin{equation*}
a_{\mathrm{avg}}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}=\frac{\Delta v}{\Delta t}, \tag{2-7}
\end{equation*}
\]
where the particle has velocity \(v_{1}\) at time \(t_{1}\) and then velocity \(v_{2}\) at time \(t_{2}\). The instantaneous acceleration (or simply acceleration) is
\[
\begin{equation*}
a=\frac{d v}{d t} \tag{2-8}
\end{equation*}
\]

In words, the acceleration of a particle at any instant is the rate at which its velocity is changing at that instant. Graphically, the acceleration at any point is the slope of the curve of \(v(t)\) at that point. We can combine Eq. 2-8 with Eq. 2-4 to write
\[
\begin{equation*}
a=\frac{d v}{d t}=\frac{d}{d t}\left(\frac{d x}{d t}\right)=\frac{d^{2} x}{d t^{2}} . \tag{2-9}
\end{equation*}
\]

In words, the acceleration of a particle at any instant is the second derivative of its position \(x(t)\) with respect to time.

A common unit of acceleration is the meter per second per second: \(\mathrm{m} /(\mathrm{s} \cdot \mathrm{s})\) or \(\mathrm{m} / \mathrm{s}^{2}\). Other units are in the form of length/(time \(\cdot\) time) or length/time \({ }^{2}\). Acceleration has both magnitude and direction (it is yet another vector quantity). Its algebraic sign represents its direction on an axis just as for displacement and velocity; that is, acceleration with a positive value is in the positive direction of an axis, and acceleration with a negative value is in the negative direction.

Figure 2-6 gives plots of the position, velocity, and acceleration of an elevator moving up a shaft. Compare the \(a(t)\) curve with the \(v(t)\) curve-each point on the \(a(t)\) curve shows the derivative (slope) of the \(v(t)\) curve at the corresponding time. When \(v\) is constant (at either 0 or \(4 \mathrm{~m} / \mathrm{s}\) ), the derivative is zero and so also is the acceleration. When the cab first begins to move, the \(v(t)\)
curve has a positive derivative (the slope is positive), which means that \(a(t)\) is positive. When the cab slows to a stop, the derivative and slope of the \(v(t)\) curve are negative; that is, \(a(t)\) is negative.

Next compare the slopes of the \(v(t)\) curve during the two acceleration periods. The slope associated with the cab's slowing down (commonly called "deceleration") is steeper because the cab stops in half the time it took to get up to speed. The steeper slope means that the magnitude of the deceleration is larger than that of the acceleration, as indicated in Fig. 2-6c.

Sensations. The sensations you would feel while riding in the cab of Fig. 2-6 are indicated by the sketched figures at the bottom. When the cab first accelerates, you feel as though you are pressed downward; when later the cab is braked to a stop, you seem to be stretched upward. In between, you feel nothing special. In other words, your body reacts to accelerations (it is an accelerometer) but not to velocities (it is not a speedometer). When you are in a car traveling at \(90 \mathrm{~km} / \mathrm{h}\) or an airplane traveling at \(900 \mathrm{~km} / \mathrm{h}\), you have no bodily awareness of the motion. However, if the car or plane quickly changes velocity, you may become keenly aware of the change, perhaps even frightened by it. Part of the thrill of an amusement park ride is due to the quick changes of velocity that you undergo (you pay for the accelerations, not for the speed). A more extreme example is shown in the photographs of Fig. 2-7, which were taken while a rocket sled was rapidly accelerated along a track and then rapidly braked to a stop.
\(\boldsymbol{g}\) Units. Large accelerations are sometimes expressed in terms of \(g\) units, with
\[
\begin{equation*}
1 g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad(g \text { unit }) . \tag{2-10}
\end{equation*}
\]
(As we shall discuss in Module 2-5, \(g\) is the magnitude of the acceleration of a falling object near Earth's surface.) On a roller coaster, you may experience brief accelerations up to \(3 g\), which is \((3)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\), or about \(29 \mathrm{~m} / \mathrm{s}^{2}\), more than enough to justify the cost of the ride.

Signs. In common language, the sign of an acceleration has a nonscientific meaning: positive acceleration means that the speed of an object is increasing, and negative acceleration means that the speed is decreasing (the object is decelerating). In this book, however, the sign of an acceleration indicates a direction, not

Figure 2-7
Colonel J. P. Stapp in a rocket sled as it is brought up to high speed (acceleration out of the page) and then very rapidly braked (acceleration into the page).


whether an object's speed is increasing or decreasing. For example, if a car with an initial velocity \(v=-25 \mathrm{~m} / \mathrm{s}\) is braked to a stop in 5.0 s , then \(a_{\mathrm{avg}}=+5.0 \mathrm{~m} / \mathrm{s}^{2}\). The acceleration is positive, but the car's speed has decreased. The reason is the difference in signs: the direction of the acceleration is opposite that of the velocity.

Here then is the proper way to interpret the signs:

If the signs of the velocity and acceleration of a particle are the same, the speed of the particle increases. If the signs are opposite, the speed decreases.

\section*{Checkpoint 3}

A wombat moves along an \(x\) axis. What is the sign of its acceleration if it is moving (a) in the positive direction with increasing speed, (b) in the positive direction with decreasing speed, (c) in the negative direction with increasing speed, and (d) in the negative direction with decreasing speed?

\section*{Sample Problem 2.03 Acceleration and \(d v / d t\)}

A particle's position on the \(x\) axis of Fig. 2-1 is given by
\[
x=4-27 t+t^{3},
\]
with \(x\) in meters and \(t\) in seconds.
(a) Because position \(x\) depends on time \(t\), the particle must be moving. Find the particle's velocity function \(v(t)\) and acceleration function \(a(t)\).

\section*{KEY IDEAS}
(1) To get the velocity function \(v(t)\), we differentiate the position function \(x(t)\) with respect to time. (2) To get the acceleration function \(a(t)\), we differentiate the velocity function \(v(t)\) with respect to time.

Calculations: Differentiating the position function, we find
\[
v=-27+3 t^{2}
\]
(Answer)
with \(v\) in meters per second. Differentiating the velocity function then gives us
\[
a=+6 t,
\]
(Answer)
with \(a\) in meters per second squared.
(b) Is there ever a time when \(v=0\) ?

Calculation: Setting \(v(t)=0\) yields
\[
0=-27+3 t^{2}
\]
which has the solution
\[
t= \pm 3 \mathrm{~s} .
\]
(Answer)
Thus, the velocity is zero both 3 s before and 3 s after the clock reads 0 .
(c) Describe the particle's motion for \(t \geq 0\).

Reasoning: We need to examine the expressions for \(x(t)\), \(v(t)\), and \(a(t)\).

At \(t=0\), the particle is at \(x(0)=+4 \mathrm{~m}\) and is moving with a velocity of \(v(0)=-27 \mathrm{~m} / \mathrm{s}\) - that is, in the negative direction of the \(x\) axis. Its acceleration is \(a(0)=0\) because just then the particle's velocity is not changing (Fig. 2-8a).

For \(0<t<3 \mathrm{~s}\), the particle still has a negative velocity, so it continues to move in the negative direction. However, its acceleration is no longer 0 but is increasing and positive. Because the signs of the velocity and the acceleration are opposite, the particle must be slowing (Fig. 2-8b).

Indeed, we already know that it stops momentarily at \(t=3 \mathrm{~s}\). Just then the particle is as far to the left of the origin in Fig. 2-1 as it will ever get. Substituting \(t=3 \mathrm{~s}\) into the expression for \(x(t)\), we find that the particle's position just then is \(x=-50 \mathrm{~m}\) (Fig. 2-8c). Its acceleration is still positive.

For \(t>3 \mathrm{~s}\), the particle moves to the right on the axis. Its acceleration remains positive and grows progressively larger in magnitude. The velocity is now positive, and it too grows progressively larger in magnitude (Fig. 2-8d).


Figure 2-8 Four stages of the particle's motion.

\section*{2-4 constant acceleration}

\section*{Learning Objectives}

After reading this module, you should be able to ...
2.13 For constant acceleration, apply the relationships between position, displacement, velocity, acceleration, and elapsed time (Table 2-1).
2.14 Calculate a particle's change in velocity by integrating its acceleration function with respect to time.
2.15 Calculate a particle's change in position by integrating its velocity function with respect to time.

\section*{Key Ideas}
- The following five equations describe the motion of a particle with constant acceleration:
\[
\begin{aligned}
& v=v_{0}+a t, \\
& x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}, \\
& x-x_{0}=\frac{1}{2}\left(v_{0}+v\right) t, \quad x-x_{0}=v t-\frac{1}{2} a t^{2} .
\end{aligned}
\]

These are not valid when the acceleration is not constant.

\section*{Constant Acceleration: A Special Case}

In many types of motion, the acceleration is either constant or approximately so. For example, you might accelerate a car at an approximately constant rate when a traffic light turns from red to green. Then graphs of your position, velocity, and acceleration would resemble those in Fig. 2-9. (Note that \(a(t)\) in Fig. 2-9c is constant, which requires that \(v(t)\) in Fig. 2-9b have a constant slope.) Later when you brake the car to a stop, the acceleration (or deceleration in common language) might also be approximately constant.

Such cases are so common that a special set of equations has been derived for dealing with them. One approach to the derivation of these equations is given in this section. A second approach is given in the next section. Throughout both sections and later when you work on the homework problems, keep in mind that these equations are valid only for constant acceleration (or situations in which you can approximate the acceleration as being constant).

First Basic Equation. When the acceleration is constant, the average acceleration and instantaneous acceleration are equal and we can write Eq. 2-7, with some changes in notation, as
\[
a=a_{\mathrm{avg}}=\frac{v-v_{0}}{t-0} .
\]

Here \(v_{0}\) is the velocity at time \(t=0\) and \(v\) is the velocity at any later time \(t\). We can recast this equation as
\[
\begin{equation*}
v=v_{0}+a t . \tag{2-11}
\end{equation*}
\]

As a check, note that this equation reduces to \(v=v_{0}\) for \(t=0\), as it must. As a further check, take the derivative of Eq. 2-11. Doing so yields \(d v / d t=a\), which is the definition of \(a\). Figure \(2-9 b\) shows a plot of Eq. 2-11, the \(v(t)\) function; the function is linear and thus the plot is a straight line.

Second Basic Equation. In a similar manner, we can rewrite Eq. 2-2 (with a few changes in notation) as
\[
v_{\mathrm{avg}}=\frac{x-x_{0}}{t-0}
\]
(a)


Slopes of the position graph are plotted on the velocity graph.


Slope of the velocity graph is plotted on the acceleration graph.
(c)


Figure 2-9 (a) The position \(x(t)\) of a particle moving with constant acceleration. (b) Its velocity \(v(t)\), given at each point by the slope of the curve of \(x(t)\). (c) Its (constant) acceleration, equal to the (constant) slope of the curve of \(v(t)\).

Table 2-1 Equations for Motion with Constant Acceleration \({ }^{a}\)
\begin{tabular}{ccc}
\hline \begin{tabular}{c} 
Equation \\
Number
\end{tabular} & Equation & \begin{tabular}{c} 
Missing \\
Quantity
\end{tabular} \\
\hline \(2-11\) & \(v=v_{0}+a t\) & \(x-x_{0}\) \\
\(2-15\) & \(x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}\) & \(v\) \\
\(2-16\) & \(v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)\) & \(t\) \\
\(2-17\) & \(x-x_{0}=\frac{1}{2}\left(v_{0}+v\right) t\) & \(a\) \\
\(2-18\) & \(x-x_{0}=v t-\frac{1}{2} a t t^{2}\) & \(v_{0}\) \\
\hline
\end{tabular}
\({ }^{a}\) Make sure that the acceleration is indeed constant before using the equations in this table.
and then as
\[
\begin{equation*}
x=x_{0}+v_{\mathrm{avg}} t \tag{2-12}
\end{equation*}
\]
in which \(x_{0}\) is the position of the particle at \(t=0\) and \(v_{\text {avg }}\) is the average velocity between \(t=0\) and a later time \(t\).

For the linear velocity function in Eq. 2-11, the average velocity over any time interval (say, from \(t=0\) to a later time \(t\) ) is the average of the velocity at the beginning of the interval \(\left(=v_{0}\right)\) and the velocity at the end of the interval \((=v)\). For the interval from \(t=0\) to the later time \(t\) then, the average velocity is
\[
\begin{equation*}
v_{\text {avg }}=\frac{1}{2}\left(v_{0}+v\right) . \tag{2-13}
\end{equation*}
\]

Substituting the right side of Eq. 2-11 for \(v\) yields, after a little rearrangement,
\[
\begin{equation*}
v_{\text {avg }}=v_{0}+\frac{1}{2} a t . \tag{2-14}
\end{equation*}
\]

Finally, substituting Eq. 2-14 into Eq. 2-12 yields
\[
\begin{equation*}
x-x_{0}=v_{0} t+\frac{1}{2} a t^{2} \tag{2-15}
\end{equation*}
\]

As a check, note that putting \(t=0\) yields \(x=x_{0}\), as it must. As a further check, taking the derivative of Eq. 2-15 yields Eq. 2-11, again as it must. Figure 2-9a shows a plot of Eq. 2-15; the function is quadratic and thus the plot is curved.

Three Other Equations. Equations 2-11 and 2-15 are the basic equations for constant acceleration; they can be used to solve any constant acceleration problem in this book. However, we can derive other equations that might prove useful in certain specific situations. First, note that as many as five quantities can possibly be involved in any problem about constant acceleration- namely, \(x-x_{0}, v, t\), \(a\), and \(v_{0}\). Usually, one of these quantities is not involved in the problem, either as a given or as an unknown. We are then presented with three of the remaining quantities and asked to find the fourth.

Equations 2-11 and 2-15 each contain four of these quantities, but not the same four. In Eq. 2-11, the "missing ingredient" is the displacement \(x-x_{0}\). In Eq. \(2-15\), it is the velocity \(v\). These two equations can also be combined in three ways to yield three additional equations, each of which involves a different "missing variable." First, we can eliminate \(t\) to obtain
\[
\begin{equation*}
v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right) . \tag{2-16}
\end{equation*}
\]

This equation is useful if we do not know \(t\) and are not required to find it. Second, we can eliminate the acceleration \(a\) between Eqs. 2-11 and 2-15 to produce an equation in which \(a\) does not appear:
\[
\begin{equation*}
x-x_{0}=\frac{1}{2}\left(v_{0}+v\right) t \tag{2-17}
\end{equation*}
\]

Finally, we can eliminate \(v_{0}\), obtaining
\[
\begin{equation*}
x-x_{0}=v t-\frac{1}{2} a t^{2} \tag{2-18}
\end{equation*}
\]

Note the subtle difference between this equation and Eq. 2-15. One involves the initial velocity \(v_{0}\); the other involves the velocity \(v\) at time \(t\).

Table 2-1 lists the basic constant acceleration equations (Eqs. 2-11 and 2-15) as well as the specialized equations that we have derived. To solve a simple constant acceleration problem, you can usually use an equation from this list (if you have the list with you). Choose an equation for which the only unknown variable is the variable requested in the problem. A simpler plan is to remember only Eqs. 2-11 and 2-15, and then solve them as simultaneous equations whenever needed.

\section*{Checkpoint 4}

The following equations give the position \(x(t)\) of a particle in four situations: (1) \(x=\) \(3 t-4\); (2) \(x=-5 t^{3}+4 t^{2}+6\); (3) \(x=2 / t^{2}-4 / t\); (4) \(x=5 t^{2}-3\). To which of these situations do the equations of Table 2-1 apply?

\section*{Sample Problem 2.04 Drag race of car and motorcycle}

A popular web video shows a jet airplane, a car, and a motorcycle racing from rest along a runway (Fig. 2-10). Initially the motorcycle takes the lead, but then the jet takes the lead, and finally the car blows past the motorcycle. Here let's focus on the car and motorcycle and assign some reasonable values to the motion. The motorcycle first takes the lead because its (constant) acceleration \(a_{m}=8.40 \mathrm{~m} / \mathrm{s}^{2}\) is greater than the car's (constant) acceleration \(a_{c}=5.60 \mathrm{~m} / \mathrm{s}^{2}\), but it soon loses to the car because it reaches its greatest speed \(v_{m}=58.8 \mathrm{~m} / \mathrm{s}\) before the car reaches its greatest speed \(v_{c}=106 \mathrm{~m} / \mathrm{s}\). How long does the car take to reach the motorcycle?

\section*{KEY IDEAS}

We can apply the equations of constant acceleration to both vehicles, but for the motorcycle we must consider the motion in two stages: (1) First it travels through distance \(x_{m 1}\) with zero initial velocity and acceleration \(a_{m}=8.40 \mathrm{~m} / \mathrm{s}^{2}\), reaching speed \(v_{m}=58.8 \mathrm{~m} / \mathrm{s}\). (2) Then it travels through distance \(x_{m 2}\) with constant velocity \(v_{m}=58.8 \mathrm{~m} / \mathrm{s}\) and zero acceleration (that, too, is a constant acceleration). (Note that we symbolized the distances even though we do not know their values. Symbolizing unknown quantities is often helpful in solving physics problems, but introducing such unknowns sometimes takes physics courage.)
Calculations: So that we can draw figures and do calculations, let's assume that the vehicles race along the positive direction of an \(x\) axis, starting from \(x=0\) at time \(t=0\). (We can


Figure 2-10 A jet airplane, a car, and a motorcycle just after accelerating from rest.
choose any initial numbers because we are looking for the elapsed time, not a particular time in, say, the afternoon, but let's stick with these easy numbers.) We want the car to pass the motorcycle, but what does that mean mathematically?

It means that at some time \(t\), the side-by-side vehicles are at the same coordinate: \(x_{c}\) for the car and the sum \(x_{m 1}+\) \(x_{m 2}\) for the motorcycle. We can write this statement mathematically as
\[
\begin{equation*}
x_{c}=x_{m 1}+x_{m 2} . \tag{2-19}
\end{equation*}
\]
(Writing this first step is the hardest part of the problem. That is true of most physics problems. How do you go from the problem statement (in words) to a mathematical expression? One purpose of this book is for you to build up that ability of writing the first step - it takes lots of practice just as in learning, say, tae-kwon-do.)

Now let's fill out both sides of Eq. 2-19, left side first. To reach the passing point at \(x_{c}\), the car accelerates from rest. From Eq. 2-15 \(\left(x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}\right)\), with \(x_{0}\) and \(v_{0}=0\), we have
\[
\begin{equation*}
x_{c}=\frac{1}{2} a_{c} t^{2} . \tag{2-20}
\end{equation*}
\]

To write an expression for \(x_{m 1}\) for the motorcycle, we first find the time \(t_{m}\) it takes to reach its maximum speed \(v_{m}\), using Eq. 2-11 \(\left(v=v_{0}+a t\right)\). Substituting \(v_{0}=0, v=v_{m}=\) \(58.8 \mathrm{~m} / \mathrm{s}\), and \(a=a_{m}=8.40 \mathrm{~m} / \mathrm{s}^{2}\), that time is
\[
\begin{align*}
t_{m} & =\frac{v_{m}}{a_{m}}  \tag{2-21}\\
& =\frac{58.8 \mathrm{~m} / \mathrm{s}}{8.40 \mathrm{~m} / \mathrm{s}^{2}}=7.00 \mathrm{~s}
\end{align*}
\]

To get the distance \(x_{m 1}\) traveled by the motorcycle during the first stage, we again use Eq. 2-15 with \(x_{0}=0\) and \(v_{0}=0\), but we also substitute from Eq. 2-21 for the time. We find
\[
\begin{equation*}
x_{m 1}=\frac{1}{2} a_{m} t_{m}^{2}=\frac{1}{2} a_{m}\left(\frac{v_{m}}{a_{m}}\right)^{2}=\frac{1}{2} \frac{v_{m}^{2}}{a_{m}} \tag{2-22}
\end{equation*}
\]

For the remaining time of \(t-t_{m}\), the motorcycle travels at its maximum speed with zero acceleration. To get the distance, we use Eq. 2-15 for this second stage of the motion, but now the initial velocity is \(v_{0}=v_{m}\) (the speed at the end of the first stage) and the acceleration is \(a=0\). So, the distance traveled during the second stage is
\[
\begin{equation*}
x_{m 2}=v_{m}\left(t-t_{m}\right)=v_{m}(t-7.00 \mathrm{~s}) \tag{2-23}
\end{equation*}
\]

To finish the calculation, we substitute Eqs. 2-20, 2-22, and 2-23 into Eq. 2-19, obtaining
\[
\begin{equation*}
\frac{1}{2} a_{c} t^{2}=\frac{1}{2} \frac{v_{m}^{2}}{a_{m}}+v_{m}(t-7.00 \mathrm{~s}) \tag{2-24}
\end{equation*}
\]

This is a quadratic equation. Substituting in the given data, we solve the equation (by using the usual quadratic-equation formula or a polynomial solver on a calculator), finding \(t=4.44 \mathrm{~s}\) and \(t=16.6 \mathrm{~s}\).

But what do we do with two answers? Does the car pass the motorcycle twice? No, of course not, as we can see in the video. So, one of the answers is mathematically correct but not physically meaningful. Because we know that the car passes the motorcycle after the motorcycle reaches its maximum speed at \(t=7.00 \mathrm{~s}\), we discard the solution with \(t<\) 7.00 s as being the unphysical answer and conclude that the passing occurs at
\[
t=16.6 \mathrm{~s} .
\]
(Answer)
Figure 2-11 is a graph of the position versus time for the two vehicles, with the passing point marked. Notice
that at \(t=7.00 \mathrm{~s}\) the plot for the motorcycle switches from being curved (because the speed had been increasing) to being straight (because the speed is thereafter constant).


Figure 2-11 Graph of position versus time for car and motorcycle.

\section*{Another Look at Constant Acceleration*}

The first two equations in Table 2-1 are the basic equations from which the others are derived. Those two can be obtained by integration of the acceleration with the condition that \(a\) is constant. To find Eq. 2-11, we rewrite the definition of acceleration (Eq. 2-8) as
\[
d v=a d t
\]

We next write the indefinite integral (or antiderivative) of both sides:
\[
\int d v=\int a d t
\]

Since acceleration \(a\) is a constant, it can be taken outside the integration. We obtain
\[
\int d v=a \int d t
\]
or
\[
\begin{equation*}
v=a t+C \tag{2-25}
\end{equation*}
\]

To evaluate the constant of integration \(C\), we let \(t=0\), at which time \(v=v_{0}\). Substituting these values into Eq. 2-25 (which must hold for all values of \(t\), including \(t=0\) ) yields
\[
v_{0}=(a)(0)+C=C .
\]

Substituting this into Eq. 2-25 gives us Eq. 2-11.
To derive Eq. 2-15, we rewrite the definition of velocity (Eq. 2-4) as
\[
d x=v d t
\]
and then take the indefinite integral of both sides to obtain
\[
\int d x=\int v d t
\]

\footnotetext{
*This section is intended for students who have had integral calculus.
}

Next, we substitute for \(v\) with Eq. 2-11:
\[
\int d x=\int\left(v_{0}+a t\right) d t
\]

Since \(v_{0}\) is a constant, as is the acceleration \(a\), this can be rewritten as
\[
\int d x=v_{0} \int d t+a \int t d t
\]

Integration now yields
\[
\begin{equation*}
x=v_{0} t+\frac{1}{2} a t^{2}+C^{\prime} \tag{2-26}
\end{equation*}
\]
where \(C^{\prime}\) is another constant of integration. At time \(t=0\), we have \(x=x_{0}\). Substituting these values in Eq. 2-26 yields \(x_{0}=C^{\prime}\). Replacing \(C^{\prime}\) with \(x_{0}\) in Eq. 2-26 gives us Eq. 2-15.

\section*{2-5 free-fall acceleration}

\section*{Learning Objectives}

After reading this module, you should be able to ...
2.16 Identify that if a particle is in free flight (whether upward or downward) and if we can neglect the effects of air on its motion, the particle has a constant
downward acceleration with a magnitude \(g\) that we take to be \(9.8 \mathrm{~m} / \mathrm{s}^{2}\).
2.17 Apply the constant-acceleration equations (Table 2-1) to free-fall motion.

\section*{Key Ideas}
- An important example of straight-line motion with constant acceleration is that of an object rising or falling freely near Earth's surface. The constant acceleration equations describe this motion, but we make two changes in notation:
(1) we refer the motion to the vertical \(y\) axis with \(+y\) vertically up; (2) we replace \(a\) with \(-g\), where \(g\) is the magnitude of the free-fall acceleration. Near Earth's surface,
\[
g=9.8 \mathrm{~m} / \mathrm{s}^{2}=32 \mathrm{ft} / \mathrm{s}^{2}
\]

\section*{Free-Fall Acceleration}

If you tossed an object either up or down and could somehow eliminate the effects of air on its flight, you would find that the object accelerates downward at a certain constant rate. That rate is called the free-fall acceleration, and its magnitude is represented by \(g\). The acceleration is independent of the object's characteristics, such as mass, density, or shape; it is the same for all objects.

Two examples of free-fall acceleration are shown in Fig. 2-12, which is a series of stroboscopic photos of a feather and an apple. As these objects fall, they accelerate downward - both at the same rate \(g\). Thus, their speeds increase at the same rate, and they fall together.

The value of \(g\) varies slightly with latitude and with elevation. At sea level in Earth's midlatitudes the value is \(9.8 \mathrm{~m} / \mathrm{s}^{2}\) ( or \(32 \mathrm{ft} / \mathrm{s}^{2}\) ), which is what you should use as an exact number for the problems in this book unless otherwise noted.

The equations of motion in Table 2-1 for constant acceleration also apply to free fall near Earth's surface; that is, they apply to an object in vertical flight, either up or down, when the effects of the air can be neglected. However, note that for free fall: (1) The directions of motion are now along a vertical \(y\) axis instead of the \(x\) axis, with the positive direction of \(y\) upward. (This is important for later chapters when combined horizontal and vertical motions are examined.) (2) The free-fall acceleration is negative - that is, downward on the \(y\) axis, toward Earth's center - and so it has the value \(-g\) in the equations.


Figure 2-12 A feather and an apple free fall in vacuum at the same magnitude of acceleration \(g\). The acceleration increases the distance between successive images. In the absence of air, the feather and apple fall together.

The free-fall acceleration near Earth's surface is \(a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}\), and the magnitude of the acceleration is \(g=9.8 \mathrm{~m} / \mathrm{s}^{2}\). Do not substitute \(-9.8 \mathrm{~m} / \mathrm{s}^{2}\) for \(g\).

Suppose you toss a tomato directly upward with an initial (positive) velocity \(v_{0}\) and then catch it when it returns to the release level. During its free-fall flight (from just after its release to just before it is caught), the equations of Table 2-1 apply to its motion. The acceleration is always \(a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}\), negative and thus downward. The velocity, however, changes, as indicated by Eqs. 2-11 and 2-16: during the ascent, the magnitude of the positive velocity decreases, until it momentarily becomes zero. Because the tomato has then stopped, it is at its maximum height. During the descent, the magnitude of the (now negative) velocity increases.

\section*{Checkpoint 5}
(a) If you toss a ball straight up, what is the sign of the ball's displacement for the ascent, from the release point to the highest point? (b) What is it for the descent, from the highest point back to the release point? (c) What is the ball's acceleration at its highest point?

\section*{Sample Problem 2.05 Time for full up-down flight, baseball toss}

In Fig. 2-13, a pitcher tosses a baseball up along a \(y\) axis, with an initial speed of \(12 \mathrm{~m} / \mathrm{s}\).
\(\$\)
(a) How long does the ball take to reach its maximum height?

\section*{KEY IDEAS}
(1) Once the ball leaves the pitcher and before it returns to his hand, its acceleration is the free-fall acceleration \(a=-g\). Because this is constant, Table 2-1 applies to the motion. (2) The velocity \(v\) at the maximum height must be 0 .

Calculation: Knowing \(v, a\), and the initial velocity \(v_{0}=12 \mathrm{~m} / \mathrm{s}\), and seeking \(t\), we solve Eq. 2-11, which contains those four variables. This yields
\[
t=\frac{v-v_{0}}{a}=\frac{0-12 \mathrm{~m} / \mathrm{s}}{-9.8 \mathrm{~m} / \mathrm{s}^{2}}=1.2 \mathrm{~s}
\]
(Answer)
(b) What is the ball's maximum height above its release point?

Calculation: We can take the ball's release point to be \(y_{0}=0\). We can then write Eq. 2-16 in \(y\) notation, set \(y-y_{0}=y\) and \(v=\) 0 (at the maximum height), and solve for \(y\). We get
\[
y=\frac{v^{2}-v_{0}^{2}}{2 a}=\frac{0-(12 \mathrm{~m} / \mathrm{s})^{2}}{2\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=7.3 \mathrm{~m} .
\]
(Answer)
(c) How long does the ball take to reach a point 5.0 m above its release point?
Calculations: We know \(v_{0}, a=-g\), and displacement \(y-\) \(y_{0}=5.0 \mathrm{~m}\), and we want \(t\), so we choose Eq. 2-15. Rewriting it for \(y\) and setting \(y_{0}=0\) give us
\[
y=v_{0} t-\frac{1}{2} g t^{2}
\]

Figure 2-13 A pitcher tosses a baseball straight up into the air. The equations of free fall apply for rising as well as for falling objects, provided any effects from the air can be neglected.

or \(\quad 5.0 \mathrm{~m}=(12 \mathrm{~m} / \mathrm{s}) t-\left(\frac{1}{2}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2}\).
If we temporarily omit the units (having noted that they are consistent), we can rewrite this as
\[
4.9 t^{2}-12 t+5.0=0
\]

Solving this quadratic equation for \(t\) yields
\[
t=0.53 \mathrm{~s} \quad \text { and } \quad t=1.9 \mathrm{~s} .
\]
(Answer)
There are two such times! This is not really surprising because the ball passes twice through \(y=5.0 \mathrm{~m}\), once on the way up and once on the way down.

\section*{2-6 graphical integration in motion analysis}

\section*{Learning Objectives}

After reading this module, you should be able to ...
2.18 Determine a particle's change in velocity by graphical integration on a graph of acceleration versus time.
2.19 Determine a particle's change in position by graphical integration on a graph of velocity versus time.

\section*{Key Ideas}
- On a graph of acceleration \(a\) versus time \(t\), the change in the velocity is given by
\[
v_{1}-v_{0}=\int_{t_{0}}^{t_{1}} a d t .
\]

The integral amounts to finding an area on the graph:
\[
\int_{t_{0}}^{t_{1}} a d t=\binom{\text { area between acceleration curve }}{\text { and time axis, from } t_{0} \text { to } t_{1}} .
\]
- On a graph of velocity \(v\) versus time \(t\), the change in the position is given by
\[
x_{1}-x_{0}=\int_{t_{0}}^{t_{1}} v d t
\]
where the integral can be taken from the graph as
\[
\int_{t_{0}}^{t_{1}} v d t=\binom{\text { area between velocity curve }}{\text { and time axis, from } t_{0} \text { to } t_{1}} .
\]

\section*{Graphical Integration in Motion Analysis}

Integrating Acceleration. When we have a graph of an object's acceleration \(a\) versus time \(t\), we can integrate on the graph to find the velocity at any given time. Because \(a\) is defined as \(a=d v / d t\), the Fundamental Theorem of Calculus tells us that
\[
\begin{equation*}
v_{1}-v_{0}=\int_{t_{0}}^{t_{1}} a d t \tag{2-27}
\end{equation*}
\]

The right side of the equation is a definite integral (it gives a numerical result rather than a function), \(v_{0}\) is the velocity at time \(t_{0}\), and \(v_{1}\) is the velocity at later time \(t_{1}\). The definite integral can be evaluated from an \(a(t)\) graph, such as in Fig. 2-14a. In particular,
\[
\begin{equation*}
\int_{t_{0}}^{t_{1}} a d t=\binom{\text { area between acceleration curve }}{\text { and time axis, from } t_{0} \text { to } t_{1}} \tag{2-28}
\end{equation*}
\]

If a unit of acceleration is \(1 \mathrm{~m} / \mathrm{s}^{2}\) and a unit of time is 1 s , then the corresponding unit of area on the graph is
\[
\left(1 \mathrm{~m} / \mathrm{s}^{2}\right)(1 \mathrm{~s})=1 \mathrm{~m} / \mathrm{s},
\]
which is (properly) a unit of velocity. When the acceleration curve is above the time axis, the area is positive; when the curve is below the time axis, the area is negative.

Integrating Velocity. Similarly, because velocity \(v\) is defined in terms of the position \(x\) as \(v=d x / d t\), then
\[
\begin{equation*}
x_{1}-x_{0}=\int_{t_{0}}^{t_{1}} v d t \tag{2-29}
\end{equation*}
\]
where \(x_{0}\) is the position at time \(t_{0}\) and \(x_{1}\) is the position at time \(t_{1}\). The definite integral on the right side of Eq. 2-29 can be evaluated from a \(v(t)\) graph, like that shown in Fig. 2-14b. In particular,
\[
\begin{equation*}
\int_{t_{0}}^{t_{1}} v d t=\binom{\text { area between velocity curve }}{\text { and time axis, from } t_{0} \text { to } t_{1}} . \tag{2-30}
\end{equation*}
\]

If the unit of velocity is \(1 \mathrm{~m} / \mathrm{s}\) and the unit of time is 1 s , then the corresponding unit of area on the graph is
\[
(1 \mathrm{~m} / \mathrm{s})(1 \mathrm{~s})=1 \mathrm{~m},
\]
which is (properly) a unit of position and displacement. Whether this area is positive or negative is determined as described for the \(a(t)\) curve of Fig. 2-14a.


This area gives the change in velocity.

(b)

This area gives the change in position.

Figure 2-14 The area between a plotted curve and the horizontal time axis, from time \(t_{0}\) to time \(t_{1}\), is indicated for (a) a graph of acceleration \(a\) versus \(t\) and (b) a graph of velocity \(v\) versus \(t\).

\section*{Sample Problem 2.06 Graphical integration a versus \(t\), whiplash injury}
"Whiplash injury" commonly occurs in a rear-end collision where a front car is hit from behind by a second car. In the 1970s, researchers concluded that the injury was due to the occupant's head being whipped back over the top of the seat as the car was slammed forward. As a result of this finding, head restraints were built into cars, yet neck injuries in rearend collisions continued to occur.

In a recent test to study neck injury in rear-end collisions, a volunteer was strapped to a seat that was then moved abruptly to simulate a collision by a rear car moving at \(10.5 \mathrm{~km} / \mathrm{h}\). Figure 2-15a gives the accelerations of the volunteer's torso and head during the collision, which began at time \(t=0\). The torso acceleration was delayed by 40 ms because during that time interval the seat back had to compress against the volunteer. The head acceleration was delayed by an additional 70 ms . What was the torso speed when the head began to accelerate?

\section*{KEY IDEA}

We can calculate the torso speed at any time by finding an area on the torso \(a(t)\) graph.
Calculations: We know that the initial torso speed is \(v_{0}=0\) at time \(t_{0}=0\), at the start of the "collision." We want the torso speed \(v_{1}\) at time \(t_{1}=110 \mathrm{~ms}\), which is when the head begins to accelerate.
(a)


Combining Eqs. 2-27 and 2-28, we can write
\[
\begin{equation*}
v_{1}-v_{0}=\binom{\text { area between acceleration curve }}{\text { and time axis, from } t_{0} \text { to } t_{1}} . \tag{2-31}
\end{equation*}
\]

For convenience, let us separate the area into three regions (Fig. 2-15b). From 0 to 40 ms , region \(A\) has no area:
\[
\operatorname{area}_{A}=0 .
\]

From 40 ms to 100 ms , region \(B\) has the shape of a triangle, with area
\[
\operatorname{area}_{B}=\frac{1}{2}(0.060 \mathrm{~s})\left(50 \mathrm{~m} / \mathrm{s}^{2}\right)=1.5 \mathrm{~m} / \mathrm{s}
\]

From 100 ms to 110 ms , region \(C\) has the shape of a rectangle, with area
\[
\operatorname{area}_{C}=(0.010 \mathrm{~s})\left(50 \mathrm{~m} / \mathrm{s}^{2}\right)=0.50 \mathrm{~m} / \mathrm{s}
\]

Substituting these values and \(v_{0}=0\) into Eq. 2-31 gives us
\[
\begin{aligned}
v_{1}-0 & =0+1.5 \mathrm{~m} / \mathrm{s}+0.50 \mathrm{~m} / \mathrm{s} \\
v_{1} & =2.0 \mathrm{~m} / \mathrm{s}=7.2 \mathrm{~km} / \mathrm{h}
\end{aligned}
\]
(Answer)
Comments: When the head is just starting to move forward, the torso already has a speed of \(7.2 \mathrm{~km} / \mathrm{h}\). Researchers argue that it is this difference in speeds during the early stage of a rear-end collision that injures the neck. The backward whipping of the head happens later and could, especially if there is no head restraint, increase the injury.
(b)


The total area gives the change in velocity.

Figure 2-15 (a) The \(a(t)\) curve of the torso and head of a volunteer in a simulation of a rear-end collision. (b) Breaking up the region between the plotted curve and the time axis to calculate the area.

Additional examples, video, and practice available at WileyPLUS

\section*{Beview \& Summary}

Position The position \(x\) of a particle on an \(x\) axis locates the particle with respect to the origin, or zero point, of the axis. The position is either positive or negative, according to which side of the origin the particle is on, or zero if the particle is at the origin. The positive direction on an axis is the direction of increasing positive numbers; the opposite direction is the negative direction on the axis.

Displacement The displacement \(\Delta x\) of a particle is the change in its position:
\[
\begin{equation*}
\Delta x=x_{2}-x_{1} . \tag{2-1}
\end{equation*}
\]

Displacement is a vector quantity. It is positive if the particle has moved in the positive direction of the \(x\) axis and negative if the particle has moved in the negative direction.

Average Velocity When a particle has moved from position \(x_{1}\) to position \(x_{2}\) during a time interval \(\Delta t=t_{2}-t_{1}\), its average velocity during that interval is
\[
\begin{equation*}
v_{\text {avg }}=\frac{\Delta x}{\Delta t}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}} \tag{2-2}
\end{equation*}
\]

The algebraic sign of \(v_{\text {avg }}\) indicates the direction of motion ( \(v_{\text {avg }}\) is a vector quantity). Average velocity does not depend on the actual distance a particle moves, but instead depends on its original and final positions.

On a graph of \(x\) versus \(t\), the average velocity for a time interval \(\Delta t\) is the slope of the straight line connecting the points on the curve that represent the two ends of the interval.

Average Speed The average speed \(s_{\text {avg }}\) of a particle during a time interval \(\Delta t\) depends on the total distance the particle moves in that time interval:
\[
\begin{equation*}
s_{\text {avg }}=\frac{\text { total distance }}{\Delta t} \tag{2-3}
\end{equation*}
\]

Instantaneous Velocity The instantaneous velocity (or simply velocity) \(v\) of a moving particle is
\[
\begin{equation*}
v=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t} \tag{2-4}
\end{equation*}
\]
where \(\Delta x\) and \(\Delta t\) are defined by Eq. 2-2. The instantaneous velocity (at a particular time) may be found as the slope (at that particular time) of the graph of \(x\) versus \(t\). Speed is the magnitude of instantaneous velocity.

Average Acceleration Average acceleration is the ratio of a change in velocity \(\Delta v\) to the time interval \(\Delta t\) in which the change occurs:
\[
\begin{equation*}
a_{\mathrm{avg}}=\frac{\Delta v}{\Delta t} . \tag{2-7}
\end{equation*}
\]

The algebraic sign indicates the direction of \(a_{\text {avg }}\).
Instantaneous Acceleration Instantaneous acceleration (or simply acceleration) \(a\) is the first time derivative of velocity \(v(t)\)
and the second time derivative of position \(x(t)\) :
\[
\begin{equation*}
a=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}} . \tag{2-8,2-9}
\end{equation*}
\]

On a graph of \(v\) versus \(t\), the acceleration \(a\) at any time \(t\) is the slope of the curve at the point that represents \(t\).

Constant Acceleration The five equations in Table 2-1 describe the motion of a particle with constant acceleration:
\[
\begin{gather*}
v=v_{0}+a t,  \tag{2-11}\\
x-x_{0}=v_{0} t+\frac{1}{2} a t^{2},  \tag{2-15}\\
v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right),  \tag{2-16}\\
x-x_{0}=\frac{1}{2}\left(v_{0}+v\right) t,  \tag{2-17}\\
x-x_{0}=v t-\frac{1}{2} a t^{2} . \tag{2-18}
\end{gather*}
\]

These are not valid when the acceleration is not constant.
Free-Fall Acceleration An important example of straightline motion with constant acceleration is that of an object rising or falling freely near Earth's surface. The constant acceleration equations describe this motion, but we make two changes in notation: (1) we refer the motion to the vertical \(y\) axis with \(+y\) vertically \(u p\); (2) we replace \(a\) with \(-g\), where \(g\) is the magnitude of the free-fall acceleration. Near Earth's surface, \(g=9.8 \mathrm{~m} / \mathrm{s}^{2}\left(=32 \mathrm{ft} / \mathrm{s}^{2}\right)\).

\section*{Questions}

1 Figure 2-16 gives the velocity of a particle moving on an \(x\) axis. What are (a) the initial and (b) the final directions of travel? (c) Does the particle stop momentarily? (d) Is the acceleration positive or negative? (e) Is it constant or varying?
2 Figure 2-17 gives the acceleration \(a(t)\) of a Chihuahua as it chases a German shepherd along an axis. In which of the time periods indicated does the Chihuahua move at constant speed?

Figure 2-16 Question 1.

Figure 2-17 Question 2.


3 Figure 2-18 shows four paths along which objects move from a starting point to a final point, all in the same time interval. The paths pass over a grid of equally spaced straight lines. Rank the paths according to (a) the average velocity of the objects and (b) the average speed of the objects, greatest first.


Figure 2-18 Question 3.

4 Figure 2-19 is a graph of a parti-
cle's position along an \(x\) axis versus time. (a) At time \(t=0\), what
is the sign of the particle's position? Is the particle's velocity positive, negative, or 0 at (b) \(t=1 \mathrm{~s}\), (c) \(t=2\) s , and (d) \(t=3 \mathrm{~s}\) ? (e) How many times does the particle go through the point \(x=0\) ?

5 Figure 2-20 gives the velocity of a particle moving along an axis. Point 1 is at the highest point on the curve; point 4 is at the lowest point; and points 2 and 6 are at the same height. What is the direction of travel at (a) time \(t=0\) and (b) point 4? (c) At which of the six numbered points does the particle reverse its direction of travel? (d) Rank the six points according to the magnitude of the acceleration, greatest first.

6 At \(t=0\), a particle moving along an \(x\) axis is at position \(x_{0}=-20 \mathrm{~m}\). The signs of the particle's initial velocity \(v_{0}\) (at time \(t_{0}\) ) and constant acceleration \(a\) are, respectively, for four situations: (1) ,\(++;(2)+,-\); (3) -, +; (4) -, -. In which situations will the particle (a) stop momentarily, (b) pass through the origin, and (c) never pass through the origin?
7 Hanging over the railing of a bridge, you drop an egg (no initial velocity) as you throw a second egg downward. Which curves in Fig. 2-21


Figure 2-19 Question 4.


Figure 2-20 Question 5.


Figure 2-21 Question 7.
give the velocity \(v(t)\) for (a) the dropped egg and (b) the thrown egg? (Curves \(A\) and \(B\) are parallel; so are \(C, D\), and \(E\); so are \(F\) and \(G\).)
8 The following equations give the velocity \(v(t)\) of a particle in four situations: (a) \(v=3\); (b) \(v=4 t^{2}+2 t-6\); (c) \(v=3 t-4\); (d) \(v=5 t^{2}-3\). To which of these situations do the equations of Table 2-1 apply?

9 In Fig. 2-22, a cream tangerine is thrown directly upward past three evenly spaced windows of equal heights. Rank the windows according to (a) the average speed of the cream tangerine while passing them, (b) the time the cream tangerine takes to pass them, (c) the magnitude of the acceleration of the cream tangerine while passing them, and (d) the change \(\Delta v\) in the speed of the cream tangerine during the passage, greatest first.

10 Suppose that a passenger intent on lunch during his first ride in a hot-air balloon accidently drops an apple over the side during the balloon's liftoff. At the moment of the
apple's release, the balloon is accelerating upward with a magnitude of \(4.0 \mathrm{~m} / \mathrm{s}^{2}\) and has an upward velocity of magnitude \(2 \mathrm{~m} / \mathrm{s}\). What are the (a) magnitude and (b) direction of the acceleration of the apple just after it is released? (c) Just then, is the apple moving upward or downward, or is it stationary? (d) What is the magnitude of its velocity just then? (e) In the next few moments, does the speed of the apple increase, decrease, or remain constant?
11 Figure 2-23 shows that a particle moving along an \(x\) axis undergoes three periods of acceleration. Without written computation, rank the acceleration periods according to the increases they produce in the particle's velocity, greatest first.


Figure 2-23 Question 11.

\section*{8roblems}

\section*{Module 2-1 Position, Displacement, and Average Velocity}
-1 While driving a car at \(90 \mathrm{~km} / \mathrm{h}\), how far do you move while your eyes shut for 0.50 s during a hard sneeze?
-2 Compute your average velocity in the following two cases: (a) You walk 73.2 m at a speed of \(1.22 \mathrm{~m} / \mathrm{s}\) and then run 73.2 m at a speed of \(3.05 \mathrm{~m} / \mathrm{s}\) along a straight track. (b) You walk for 1.00 min at a speed of \(1.22 \mathrm{~m} / \mathrm{s}\) and then run for 1.00 min at \(3.05 \mathrm{~m} / \mathrm{s}\) along a straight track. (c) Graph \(x\) versus \(t\) for both cases and indicate how the average velocity is found on the graph.
-3 SSM www An automobile travels on a straight road for 40 km at \(30 \mathrm{~km} / \mathrm{h}\). It then continues in the same direction for another 40 km at \(60 \mathrm{~km} / \mathrm{h}\). (a) What is the average velocity of the car during the full 80 km trip? (Assume that it moves in the positive \(x\) direction.) (b) What is the average speed? (c) Graph \(x\) versus \(t\) and indicate how the average velocity is found on the graph.
-4 A car moves uphill at \(40 \mathrm{~km} / \mathrm{h}\) and then back downhill at 60 \(\mathrm{km} / \mathrm{h}\). What is the average speed for the round trip?
\(\cdot 5\) SSM The position of an object moving along an \(x\) axis is given by \(x=3 t-4 t^{2}+t^{3}\), where \(x\) is in meters and \(t\) in seconds. Find the position of the object at the following values of \(t\) : (a) 1 s , (b) 2 s , (c) 3 s , and (d) 4 s . (e) What is the object's displacement between \(t=0\) and \(t=4 \mathrm{~s}\) ? (f) What is its average velocity for the time interval from \(t=2 \mathrm{~s}\) to \(t=4 \mathrm{~s}\) ? (g) Graph \(x\) versus \(t\) for \(0 \leq t \leq 4 \mathrm{~s}\) and indicate how the answer for (f) can be found on the graph.
-6 The 1992 world speed record for a bicycle (human-powered vehicle) was set by Chris Huber. His time through the measured 200 m stretch was a sizzling 6.509 s , at which he commented,
"Cogito ergo zoom!" (I think, therefore I go fast!). In 2001, Sam Whittingham beat Huber's record by \(19.0 \mathrm{~km} / \mathrm{h}\). What was Whittingham's time through the 200 m ?
\(\bullet 7\) Two trains, each having a speed of \(30 \mathrm{~km} / \mathrm{h}\), are headed at each other on the same straight track. A bird that can fly \(60 \mathrm{~km} / \mathrm{h}\) flies off the front of one train when they are 60 km apart and heads directly for the other train. On reaching the other train, the (crazy) bird flies directly back to the first train, and so forth. What is the total distance the bird travels before the trains collide?
००8 ©o Panic escape. Figure 2-24 shows a general situation in which a stream of people attempt to escape through an exit door that turns out to be locked. The people move toward the door at speed \(v_{s}=3.50 \mathrm{~m} / \mathrm{s}\), are each \(d=0.25 \mathrm{~m}\) in depth, and are separated by \(L=1.75 \mathrm{~m}\). The arrangement in Fig. 2-24 occurs at time \(t=0\). (a) At what average rate does the layer of people at the door increase? (b) At what time does the layer's depth reach 5.0 m ? (The answers reveal how quickly such a situation


Figure 2-24 Problem 8. becomes dangerous.)
-•9 ILW In 1 km races, runner 1 on track 1 (with time \(2 \mathrm{~min}, 27.95 \mathrm{~s}\) ) appears to be faster than runner 2 on track \(2(2 \mathrm{~min}, 28.15 \mathrm{~s})\). However, length \(L_{2}\) of track 2 might be slightly greater than length \(L_{1}\) of track 1. How large can \(L_{2}-L_{1}\) be for us still to conclude that runner 1 is faster?
-•10 To set a speed record in a measured (straight-line) distance \(d\), a race car must be driven first in one direction (in time \(t_{1}\) ) and then in the opposite direction (in time \(t_{2}\) ). (a) To eliminate the effects of the wind and obtain the car's speed \(v_{c}\) in a windless situation, should we find the average of \(d / t_{1}\) and \(d / t_{2}(\operatorname{method} 1)\) or should we divide \(d\) by the average of \(t_{1}\) and \(t_{2}\) ? (b) What is the fractional difference in the two methods when a steady wind blows along the car's route and the ratio of the wind speed \(v_{w}\) to the car's speed \(v_{c}\) is 0.0240 ?
\(\bullet 11\) ©o You are to drive 300 km to an interview. The interview is at \(11: 15\) A.m. You plan to drive at \(100 \mathrm{~km} / \mathrm{h}\), so you leave at \(8: 00\) A.M. to allow some extra time. You drive at that speed for the first 100 km , but then construction work forces you to slow to \(40 \mathrm{~km} / \mathrm{h}\) for 40 km . What would be the least speed needed for the rest of the trip to arrive in time for the interview?
\(\bullet 12\) Traffic shock wave. An abrupt slowdown in concentrated traffic can travel as a pulse, termed a shock wave, along the line of cars, either downstream (in the traffic direction) or upstream, or it can be stationary. Figure 2-25 shows a uniformly spaced line of cars moving at speed \(v=25.0 \mathrm{~m} / \mathrm{s}\) toward a uniformly spaced line of slow cars moving at speed \(v_{s}=5.00 \mathrm{~m} / \mathrm{s}\). Assume that each faster car adds length \(L=12.0 \mathrm{~m}\) (car length plus buffer zone) to the line of slow cars when it joins the line, and assume it slows abruptly at the last instant. (a) For what separation distance \(d\) between the faster cars does the shock wave remain stationary? If the separation is twice that amount, what are the (b) speed and (c) direction (upstream or downstream) of the shock wave?


Figure 2-25 Problem 12.
-•13 ILW You drive on Interstate 10 from San Antonio to Houston, half the time at \(55 \mathrm{~km} / \mathrm{h}\) and the other half at \(90 \mathrm{~km} / \mathrm{h}\). On the way back you travel half the distance at \(55 \mathrm{~km} / \mathrm{h}\) and the other half at \(90 \mathrm{~km} / \mathrm{h}\). What is your average speed (a) from San Antonio to Houston, (b) from Houston back to San Antonio, and (c) for the entire trip? (d) What is your average velocity for the entire trip? (e) Sketch \(x\) versus \(t\) for (a), assuming the motion is all in the positive \(x\) direction. Indicate how the average velocity can be found on the sketch.

\section*{Module 2-2 Instantaneous Velocity and Speed}
-14 ©0 An electron moving along the \(x\) axis has a position given by \(x=16 t e^{-t} \mathrm{~m}\), where \(t\) is in seconds. How far is the electron from the origin when it momentarily stops?
-15 (6o (a) If a particle's position is given by \(x=4-12 t+3 t^{2}\) (where \(t\) is in seconds and \(x\) is in meters), what is its velocity at \(t=1 \mathrm{~s}\) ? (b) Is it moving in the positive or negative direction of \(x\) just then? (c) What is its speed just then? (d) Is the speed increasing or decreasing just then? (Try answering the next two questions without further calculation.) (e) Is there ever an instant when the velocity is zero? If so, give the time \(t\); if not, answer no. (f) Is there a time after \(t=3 \mathrm{~s}\) when the particle is moving in the negative direction of \(x\) ? If so, give the time \(t\); if not, answer no.
-16 The position function \(x(t)\) of a particle moving along an \(x\) axis is \(x=4.0-6.0 t^{2}\), with \(x\) in meters and \(t\) in seconds. (a) At what time and (b) where does the particle (momentarily) stop? At what (c) negative time and (d) positive time does the particle pass through the origin? (e) Graph \(x\) versus \(t\) for the range -5 s to +5 s . (f) To shift the curve rightward on the graph, should we include the
term \(+20 t\) or the term \(-20 t\) in \(x(t) ?(\mathrm{~g})\) Does that inclusion increase or decrease the value of \(x\) at which the particle momentarily stops?
\(\bullet 17\) The position of a particle moving along the \(x\) axis is given in centimeters by \(x=9.75+1.50 t^{3}\), where \(t\) is in seconds. Calculate (a) the average velocity during the time interval \(t=2.00 \mathrm{~s}\) to \(t=3.00 \mathrm{~s}\); (b) the instantaneous velocity at \(t=2.00 \mathrm{~s}\); (c) the instantaneous velocity at \(t=3.00 \mathrm{~s}\); (d) the instantaneous velocity at \(t=2.50 \mathrm{~s}\); and (e) the instantaneous velocity when the particle is midway between its positions at \(t=2.00 \mathrm{~s}\) and \(t=3.00 \mathrm{~s}\). (f) Graph \(x\) versus \(t\) and indicate your answers graphically.

\section*{Module 2-3 Acceleration}
-18 The position of a particle moving along an \(x\) axis is given by \(x=12 t^{2}-2 t^{3}\), where \(x\) is in meters and \(t\) is in seconds. Determine (a) the position, (b) the velocity, and (c) the acceleration of the particle at \(t=3.0 \mathrm{~s}\). (d) What is the maximum positive coordinate reached by the particle and (e) at what time is it reached? (f) What is the maximum positive velocity reached by the particle and \((\mathrm{g})\) at what time is it reached? (h) What is the acceleration of the particle at the instant the particle is not moving (other than at \(t=0\) )? (i) Determine the average velocity of the particle between \(t=0\) and \(t=3 \mathrm{~s}\).
-19 SSIM At a certain time a particle had a speed of \(18 \mathrm{~m} / \mathrm{s}\) in the positive \(x\) direction, and 2.4 s later its speed was \(30 \mathrm{~m} / \mathrm{s}\) in the opposite direction. What is the average acceleration of the particle during this 2.4 s interval?
-20 (a) If the position of a particle is given by \(x=20 t-5 t^{3}\), where \(x\) is in meters and \(t\) is in seconds, when, if ever, is the particle's velocity zero? (b) When is its acceleration a zero? (c) For what time range (positive or negative) is \(a\) negative? (d) Positive? (e) Graph \(x(t), v(t)\), and \(a(t)\).
\(\bullet 21\) From \(t=0\) to \(t=5.00 \mathrm{~min}\), a man stands still, and from \(t=5.00 \mathrm{~min}\) to \(t=10.0 \mathrm{~min}\), he walks briskly in a straight line at a constant speed of \(2.20 \mathrm{~m} / \mathrm{s}\). What are (a) his average velocity \(v_{\text {avg }}\) and (b) his average acceleration \(a_{\text {avg }}\) in the time interval 2.00 min to 8.00 min ? What are (c) \(v_{\text {avg }}\) and (d) \(a_{\text {avg }}\) in the time interval 3.00 min to 9.00 min ? (e) Sketch \(x\) versus \(t\) and \(v\) versus \(t\), and indicate how the answers to (a) through (d) can be obtained from the graphs.
-22 The position of a particle moving along the \(x\) axis depends on the time according to the equation \(x=c t^{2}-b t^{3}\), where \(x\) is in meters and \(t\) in seconds. What are the units of (a) constant \(c\) and (b) constant \(b\) ? Let their numerical values be 3.0 and 2.0, respectively. (c) At what time does the particle reach its maximum positive \(x\) position? From \(t=0.0 \mathrm{~s}\) to \(t=4.0 \mathrm{~s}\), (d) what distance does the particle move and (e) what is its displacement? Find its velocity at times (f) 1.0 s , (g) 2.0 s , (h) 3.0 s , and (i) 4.0 s . Find its acceleration at times (j) 1.0 s , (k) 2.0 s , (l) 3.0 s , and (m) 4.0 s .

\section*{Module 2-4 Constant Acceleration}
-23 SSIM An electron with an initial velocity \(v_{0}=1.50 \times 10^{5} \mathrm{~m} / \mathrm{s}\) enters a region of length \(L=1.00\) cm where it is electrically accelerated (Fig. 2-26). It emerges with \(v=5.70 \times 10^{6} \mathrm{~m} / \mathrm{s}\). What is its acceleration, assumed constant?
-24 Catapulting mushrooms. Certain mushrooms launch their spores by a catapult mechanism. As water condenses from the air onto a spore that is attached to


Figure 2-26 Problem 23.
the mushroom, a drop grows on one side of the spore and a film grows on the other side. The spore is bent over by the drop's weight, but when the film reaches the drop, the drop's water suddenly spreads into the film and the spore springs upward so rapidly that it is slung off into the air. Typically, the spore reaches a speed of 1.6 \(\mathrm{m} / \mathrm{s}\) in a \(5.0 \mu \mathrm{~m}\) launch; its speed is then reduced to zero in 1.0 mm by the air. Using those data and assuming constant accelerations, find the acceleration in terms of \(g\) during (a) the launch and (b) the speed reduction.
-25 An electric vehicle starts from rest and accelerates at a rate of \(2.0 \mathrm{~m} / \mathrm{s}^{2}\) in a straight line until it reaches a speed of \(20 \mathrm{~m} / \mathrm{s}\). The vehicle then slows at a constant rate of \(1.0 \mathrm{~m} / \mathrm{s}^{2}\) until it stops. (a) How much time elapses from start to stop? (b) How far does the vehicle travel from start to stop?
-26 A muon (an elementary particle) enters a region with a speed of \(5.00 \times 10^{6} \mathrm{~m} / \mathrm{s}\) and then is slowed at the rate of \(1.25 \times 10^{14} \mathrm{~m} / \mathrm{s}^{2}\).
(a) How far does the muon take to stop? (b) Graph \(x\) versus \(t\) and \(v\) versus \(t\) for the muon.
-27 An electron has a constant acceleration of \(+3.2 \mathrm{~m} / \mathrm{s}^{2}\). At a certain instant its velocity is \(+9.6 \mathrm{~m} / \mathrm{s}\). What is its velocity (a) 2.5 s earlier and (b) 2.5 s later?
-28 On a dry road, a car with good tires may be able to brake with a constant deceleration of \(4.92 \mathrm{~m} / \mathrm{s}^{2}\). (a) How long does such a car, initially traveling at \(24.6 \mathrm{~m} / \mathrm{s}\), take to stop? (b) How far does it travel in this time? (c) Graph \(x\) versus \(t\) and \(v\) versus \(t\) for the deceleration.
-29 ILW A certain elevator cab has a total run of 190 m and a maximum speed of \(305 \mathrm{~m} / \mathrm{min}\), and it accelerates from rest and then back to rest at \(1.22 \mathrm{~m} / \mathrm{s}^{2}\). (a) How far does the cab move while accelerating to full speed from rest? (b) How long does it take to make the nonstop 190 m run, starting and ending at rest?
-30 The brakes on your car can slow you at a rate of \(5.2 \mathrm{~m} / \mathrm{s}^{2}\). (a) If you are going \(137 \mathrm{~km} / \mathrm{h}\) and suddenly see a state trooper, what is the minimum time in which you can get your car under the \(90 \mathrm{~km} / \mathrm{h}\) speed limit? (The answer reveals the futility of braking to keep your high speed from being detected with a radar or laser gun.) (b) Graph \(x\) versus \(t\) and \(v\) versus \(t\) for such a slowing.
-31 SSM Suppose a rocket ship in deep space moves with constant acceleration equal to \(9.8 \mathrm{~m} / \mathrm{s}^{2}\), which gives the illusion of normal gravity during the flight. (a) If it starts from rest, how long will it take to acquire a speed one-tenth that of light, which travels at \(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\) ? (b) How far will it travel in so doing?
-32 A world's land speed record was set by Colonel John P. Stapp when in March 1954 he rode a rocket-propelled sled that moved along a track at \(1020 \mathrm{~km} / \mathrm{h}\). He and the sled were brought to a stop in 1.4 s . (See Fig. 2-7.) In terms of \(g\), what acceleration did he experience while stopping?
-33 SSM ILW A car traveling \(56.0 \mathrm{~km} / \mathrm{h}\) is 24.0 m from a barrier when the driver slams on the brakes. The car hits the barrier 2.00 s later. (a) What is the magnitude of the car's constant acceleration before impact? (b) How fast is the car traveling at impact?
-•34 ©0 In Fig. 2-27, a red car and a green car, identical except for the color, move toward each other in adjacent lanes and parallel to an \(x\) axis. At time \(t=0\), the red car is at \(x_{r}=0\) and the green car is at \(x_{g}=\) 220 m . If the red car has a constant velocity of \(20 \mathrm{~km} / \mathrm{h}\), the cars pass each other at \(x=44.5 \mathrm{~m}\), and if it has a constant velocity of \(40 \mathrm{~km} / \mathrm{h}\), they pass each other at \(x=76.6 \mathrm{~m}\). What are (a) the initial velocity and (b) the constant acceleration of the green car?


Figure 2-27 Problems 34 and 35.
-035 Figure 2-27 shows a red car and a green car that move toward each other. Figure 2-28 is a graph of their motion, showing the positions \(x_{g 0}=270 \mathrm{~m}\) and \(x_{r 0}=-35.0 \mathrm{~m}\) at time \(t=0\). The green car has a constant speed of \(20.0 \mathrm{~m} / \mathrm{s}\) and the red car begins from rest. What is the acceleration magnitude of the red car?


Figure 2-28 Problem 35. -•36 A car moves along an \(x\) axis through a distance of 900 m , starting at rest (at \(x=0\) ) and ending at rest (at \(x=900 \mathrm{~m}\) ). Through the first \(\frac{1}{4}\) of that distance, its acceleration is \(+2.25 \mathrm{~m} / \mathrm{s}^{2}\). Through the rest of that distance, its acceleration is \(-0.750 \mathrm{~m} / \mathrm{s}^{2}\). What are (a) its travel time through the 900 m and (b) its maximum speed? (c) Graph position \(x\), velocity \(v\), and acceleration \(a\) versus time \(t\) for the trip.
-•37 Figure 2-29 depicts the motion of a particle moving along an \(x\) axis with a constant acceleration. The figure's vertical scaling is set by \(x_{s}=6.0 \mathrm{~m}\). What are the (a) magnitude and (b) direction of the particle's acceleration?
-•38 (a) If the maximum acceleration that is tolerable for passengers in a subway train is \(1.34 \mathrm{~m} / \mathrm{s}^{2}\) and subway stations are located 806 m apart, what is the maximum speed a subway train


Figure 2-29 Problem 37. can attain between stations? (b) What is the travel time between stations? (c) If a subway train stops for 20 s at each station, what is the maximum average speed of the train, from one start-up to the next? (d) Graph \(x, v\), and \(a\) versus \(t\) for the interval from one start-up to the next.
-.39 Cars \(A\) and \(B\) move in the same direction in adjacent lanes. The position \(x\) of car \(A\) is given in Fig. 2-30, from time \(t=0\) to \(t=7.0 \mathrm{~s}\). The figure's vertical scaling is set by \(x_{s}=\) 32.0 m . At \(t=0, \operatorname{car} B\) is at \(x=\) 0 , with a velocity of \(12 \mathrm{~m} / \mathrm{s}\) and a negative constant acceleration \(a_{B}\). (a) What must \(a_{B}\) be


Figure 2-30 Problem 39. such that the cars are (momentarily) side by side (momentarily at the same value of \(x\) ) at \(t=4.0 \mathrm{~s}\) ? (b) For that value of \(a_{B}\), how many times are the cars side by side? (c) Sketch the position \(x\) of car \(B\) versus time \(t\) on Fig. 2-30. How many times will the cars be side by side if the magnitude of acceleration \(a_{B}\) is (d) more than and (e) less than the answer to part (a)?
\(\bullet 40\) You are driving toward a traffic signal when it turns yellow. Your speed is the legal speed limit of \(v_{0}=55 \mathrm{~km} / \mathrm{h}\); your best deceleration rate has the magnitude \(a=5.18 \mathrm{~m} / \mathrm{s}^{2}\). Your best reaction time to begin braking is \(T=0.75 \mathrm{~s}\). To avoid having the front of your car enter the intersection after the light turns red, should you brake to a stop or continue to move at \(55 \mathrm{~km} / \mathrm{h}\) if the distance to
the intersection and the duration of the yellow light are (a) 40 m and 2.8 s , and (b) 32 m and 1.8 s ? Give an answer of brake, continue, either (if either strategy works), or neither (if neither strategy works and the yellow duration is inappropriate).
\(\bullet 41\) © © As two trains move along a track, their conductors suddenly notice that they are headed toward each other. Figure 2-31 gives their velocities \(v\) as functions of time \(t\) as the conductors slow the trains. The figure's vertical scaling is set by
 \(v_{s}=40.0 \mathrm{~m} / \mathrm{s}\). The slowing processes begin when the trains are 200 m apart. What is their separation when both trains have stopped?
\(\bullet \bullet 42\) ©o You are arguing over a cell phone while trailing an unmarked police car by 25 m ; both your car and the police car are traveling at \(110 \mathrm{~km} / \mathrm{h}\). Your argument diverts your attention from the police car for 2.0 s (long enough for you to look at the phone and yell, "I won't do that!"). At the beginning of that 2.0 s , the police officer begins braking suddenly at \(5.0 \mathrm{~m} / \mathrm{s}^{2}\). (a) What is the separation between the two cars when your attention finally returns? Suppose that you take another 0.40 s to realize your danger and begin braking. (b) If you too brake at \(5.0 \mathrm{~m} / \mathrm{s}^{2}\), what is your speed when you hit the police car?
\(\bullet \bullet 43\) ©o When a high-speed passenger train traveling at \(161 \mathrm{~km} / \mathrm{h}\) rounds a bend, the engineer is shocked to see that a locomotive has improperly entered onto the track from a siding and is a distance \(D=676 \mathrm{~m}\) ahead (Fig. 2-32). The locomotive is moving at \(29.0 \mathrm{~km} / \mathrm{h}\). The engineer of the high-speed train immediately applies the brakes. (a) What must be the magnitude of the resulting constant deceleration if a collision is to be just avoided? (b) Assume that the engineer is at \(x=0\) when, at \(t=0\), he first spots the locomotive. Sketch \(x(t)\) curves for the locomotive and high-speed train for the cases in which a collision is just avoided and is not quite avoided.


Figure 2-32 Problem 43.

\section*{Module 2-5 Free-Fall Acceleration}
-44 When startled, an armadillo will leap upward. Suppose it rises 0.544 m in the first 0.200 s . (a) What is its initial speed as it leaves the ground? (b) What is its speed at the height of 0.544 m ? (c) How much higher does it go?
-45 SSM Www (a) With what speed must a ball be thrown vertically from ground level to rise to a maximum height of 50 m ? (b) How long will it be in the air? (c) Sketch graphs of \(y\), \(v\), and \(a\) versus \(t\) for the ball. On the first two graphs, indicate the time at which 50 m is reached.
-46 Raindrops fall 1700 m from a cloud to the ground. (a) If they were not slowed by air resistance, how fast would the drops be moving when they struck the ground? (b) Would it be safe to walk outside during a rainstorm?
-47 SSM At a construction site a pipe wrench struck the ground with a speed of \(24 \mathrm{~m} / \mathrm{s}\). (a) From what height was it inadvertently dropped? (b) How long was it falling? (c) Sketch graphs of \(y, v\), and \(a\) versus \(t\) for the wrench.
-48 A hoodlum throws a stone vertically downward with an initial speed of \(12.0 \mathrm{~m} / \mathrm{s}\) from the roof of a building, 30.0 m above the ground. (a) How long does it take the stone to reach the ground? (b) What is the speed of the stone at impact?
-49 SSM A hot-air balloon is ascending at the rate of \(12 \mathrm{~m} / \mathrm{s}\) and is 80 m above the ground when a package is dropped over the side. (a) How long does the package take to reach the ground? (b) With what speed does it hit the ground?
\(\bullet 50\) At time \(t=0\), apple 1 is dropped from a bridge onto a roadway beneath the bridge; somewhat later, apple 2 is thrown down from the same height. Figure 2-33 gives the vertical positions \(y\) of the apples versus \(t\) during the falling, until both apples have hit the roadway. The scaling is set by \(t_{s}=2.0 \mathrm{~s}\). With approximately what speed is apple 2 thrown down?


Figure 2-33 Problem 50.
-•51 As a runaway scientific balloon ascends at \(19.6 \mathrm{~m} / \mathrm{s}\), one of its instrument packages breaks free of a harness and free-falls. Figure 2-34 gives the vertical velocity of the package versus time, from before it breaks free to when it reaches the ground. (a) What maximum height above the break-free point does it


Figure 2-34 Problem 51. rise? (b) How high is the break-free point above the ground?
\(\bullet 52\) © © A bolt is dropped from a bridge under construction, falling 90 m to the valley below the bridge. (a) In how much time does it pass through the last \(20 \%\) of its fall? What is its speed (b) when it begins that last \(20 \%\) of its fall and (c) when it reaches the valley beneath the bridge?
-•53 SSM ILW A key falls from a bridge that is 45 m above the water. It falls directly into a model boat, moving with constant velocity, that is 12 m from the point of impact when the key is released. What is the speed of the boat?
\(\bullet 54\) © A stone is dropped into a river from a bridge 43.9 m above the water. Another stone is thrown vertically down 1.00 s after the first is dropped. The stones strike the water at the same time. (a) What is the initial speed of the second stone? (b) Plot velocity versus time on a graph for each stone, taking zero time as the instant the first stone is released.
\(\bullet 55\) SSM A ball of moist clay falls 15.0 m to the ground. It is in contact with the ground for 20.0 ms before stopping. (a) What is the magnitude of the average acceleration of the ball during the time it is in contact with the ground? (Treat the ball as a particle.) (b) Is the average acceleration up or down?
-•56
Figure 2-35 shows the speed \(v\) versus height \(y\) of a ball tossed directly upward, along a \(y\) axis. Distance \(d\) is 0.40 m . The speed at height \(y_{A}\) is \(v_{A}\). The speed at height \(y_{B}\) is \(\frac{1}{3} v_{A}\). What is speed \(v_{A}\) ? \(\bullet 57\) To test the quality of a tennis ball, you drop it onto the floor from a


Figure 2-35 Problem 56. height of 4.00 m . It rebounds to a height of 2.00 m . If the ball is in contact with the floor for 12.0 ms , (a) what is the magnitude of its average acceleration during that contact and (b) is the average acceleration up or down?
-058 An object falls a distance \(h\) from rest. If it travels \(0.50 h\) in the last 1.00 s , find (a) the time and (b) the height of its fall. (c) Explain the physically unacceptable solution of the quadratic equation in \(t\) that you obtain.
-059 Water drips from the nozzle of a shower onto the floor 200 cm below. The drops fall at regular (equal) intervals of time, the first drop striking the floor at the instant the fourth drop begins to fall. When the first drop strikes the floor, how far below the nozzle are the (a) second and (b) third drops?
-•60 ©0 A rock is thrown vertically upward from ground level at time \(t=0\). At \(t=1.5 \mathrm{~s}\) it passes the top of a tall tower, and 1.0 s later it reaches its maximum height. What is the height of the tower?
-0061 (60 A steel ball is dropped from a building's roof and passes a window, taking 0.125 s to fall from the top to the bottom of the window, a distance of 1.20 m . It then falls to a sidewalk and bounces back past the window, moving from bottom to top in 0.125 s . Assume that the upward flight is an exact reverse of the fall. The time the ball spends below the bottom of the window is 2.00 s. How tall is the building?

0062 A basketball player grabbing a rebound jumps 76.0 cm vertically. How much total time (ascent and descent) does the player spend (a) in the top 15.0 cm of this jump and (b) in the bottom 15.0 cm ? (The player seems to hang in the air at the top.)
-⿰氵63 © A drowsy cat spots a flowerpot that sails first up and then down past an open window. The pot is in view for a total of 0.50 s , and the top-to-bottom height of the window is 2.00 m . How high above the window top does the flowerpot go?
\({ }^{00064}\) A ball is shot vertically upward from the surface of another planet. A plot of \(y\) versus \(t\) for the ball is shown in Fig. 2-36, where \(y\) is the height of the ball above its starting point and \(t=0\) at the instant the ball is shot. The figure's vertical scaling is set by \(y_{s}=30.0 \mathrm{~m}\). What are the magnitudes of (a) the free-fall acceleration on the planet and (b) the initial velocity of the ball?


Figure 2-36 Problem 64.

\section*{Module 2-6 Graphical Integration in Motion Analysis}
-65 Figure 2-15a gives the acceleration of a volunteer's head and torso during a rear-end collision. At maximum head acceleration, what is the speed of (a) the head and (b) the torso?
-066 In a forward punch in karate, the fist begins at rest at the waist and is brought rapidly forward until the arm is fully extended. The speed \(v(t)\) of the fist is given in Fig. 2-37 for someone skilled in karate. The vertical scaling is set by \(v_{s}=8.0 \mathrm{~m} / \mathrm{s}\). How far has the fist moved at (a) time \(t=50 \mathrm{~ms}\) and (b) when the speed of the fist is maximum?


Figure 2-37 Problem 66.
-•67 When a soccer ball is kicked toward a player and the player deflects the ball by "heading" it, the acceleration of the head during the collision can be significant. Figure 2-38 gives the meas-


Figure 2-38 Problem 67. ured acceleration \(a(t)\) of a soccer player's head for a bare head and a helmeted head, starting from rest. The scaling on the vertical axis is set by \(a_{s}=200\) \(\mathrm{m} / \mathrm{s}^{2}\). At time \(t=7.0 \mathrm{~ms}\), what is the difference in the speed acquired by the bare head and the speed acquired by the helmeted head?
\(\bullet 68\) A salamander of the genus Hydromantes captures prey by launching its tongue as a projectile: The skeletal part of the tongue is shot forward, unfolding the rest of the tongue, until the outer portion lands on the prey, sticking to it. Figure 2-39 shows the acceleration magnitude \(a\) versus time \(t\) for the acceleration phase of the launch in a typical situation. The indicated accelerations are \(a_{2}=400 \mathrm{~m} / \mathrm{s}^{2}\) and \(a_{1}=100 \mathrm{~m} / \mathrm{s}^{2}\). What is the outward speed of the tongue at the end of the acceleration phase?
-069 ILW How far does the runner whose velocity-time graph is shown in Fig. 2-40 travel in 16 s? The figure's vertical scaling is set by \(v_{s}=8.0 \mathrm{~m} / \mathrm{s}\).


Figure 2-39 Problem 68.


Figure 2-40 Problem 69.
©o०70 Two particles move along an \(x\) axis. The position of particle 1 is given by \(x=6.00 t^{2}+3.00 t+2.00\) (in meters and seconds); the acceleration of particle 2 is given by \(a=-8.00 t\) (in meters per second squared and seconds) and, at \(t=0\), its velocity is \(20 \mathrm{~m} / \mathrm{s}\). When the velocities of the particles match, what is their velocity?

\section*{Additional Problems}

71 In an arcade video game, a spot is programmed to move across the screen according to \(x=9.00 t-0.750 t^{3}\), where \(x\) is distance in centimeters measured from the left edge of the screen and \(t\) is time in seconds. When the spot reaches a screen edge, at either \(x=0\) or \(x=15.0 \mathrm{~cm}, t\) is reset to 0 and the spot starts moving again according to \(x(t)\). (a) At what time after starting is the spot instantaneously at rest? (b) At what value of \(x\) does this occur? (c) What is the spot's acceleration (including sign) when this occurs? (d) Is it moving right or left just prior to coming to rest? (e) Just after? (f) At what time \(t>0\) does it first reach an edge of the screen?

72 A rock is shot vertically upward from the edge of the top of a tall building. The rock reaches its maximum height above the top of the building 1.60 s after being shot. Then, after barely missing the edge of the building as it falls downward, the rock strikes the ground 6.00 s after it is launched. In SI units: (a) with what upward velocity is the rock shot, (b) what maximum height above the top of the building is reached by the rock, and (c) how tall is the building?
73 (6) At the instant the traffic light turns green, an automobile starts with a constant acceleration \(a\) of \(2.2 \mathrm{~m} / \mathrm{s}^{2}\). At the same instant a truck, traveling with a constant speed of \(9.5 \mathrm{~m} / \mathrm{s}\), overtakes and passes the automobile. (a) How far beyond the traffic signal will the automobile overtake the truck? (b) How fast will the automobile be traveling at that instant?
74 A pilot flies horizontally at \(1300 \mathrm{~km} / \mathrm{h}\), at height \(h=35 \mathrm{~m}\) above initially level ground. However, at time \(t=0\), the pilot begins to fly over ground sloping upward at angle \(\theta=4.3^{\circ}\) (Fig. 2-41). If the pilot does not change the airplane's heading, at what time \(t\) does the plane strike the ground?


Figure 2-41 Problem 74.
75 © To stop a car, first you require a certain reaction time to begin braking; then the car slows at a constant rate. Suppose that the total distance moved by your car during these two phases is 56.7 m when its initial speed is \(80.5 \mathrm{~km} / \mathrm{h}\), and 24.4 m when its initial speed is \(48.3 \mathrm{~km} / \mathrm{h}\). What are (a) your reaction time and (b) the magnitude of the acceleration?
76 Figure 2-42 shows part of a street where traffic flow is to be controlled to allow a platoon of cars to move smoothly along the street. Suppose that the platoon leaders have just


Figure 2-42 Problem 76.
reached intersection 2 , where the green appeared when they were distance \(d\) from the intersection. They continue to travel at a certain speed \(v_{p}\) (the speed limit) to reach intersection 3 , where the green appears when they are distance \(d\) from it. The intersections are separated by distances \(D_{23}\) and \(D_{12}\). (a) What should be the time delay of the onset of green at intersection 3 relative to that at intersection 2 to keep the platoon moving smoothly?

Suppose, instead, that the platoon had been stopped by a red light at intersection 1 . When the green comes on there, the leaders require a certain time \(t_{r}\) to respond to the change and an additional time to accelerate at some rate \(a\) to the cruising speed \(v_{p}\). (b) If the green at intersection 2 is to appear when the leaders are distance \(d\) from that intersection, how long after the light at intersection 1 turns green should the light at intersection 2 turn green?
77 SSM A hot rod can accelerate from 0 to \(60 \mathrm{~km} / \mathrm{h}\) in 5.4 s . (a) What is its average acceleration, in \(\mathrm{m} / \mathrm{s}^{2}\), during this time? (b) How far will it travel during the 5.4 s , assuming its acceleration is constant? (c) From rest, how much time would it require to go a distance of 0.25 km if its acceleration could be maintained at the value in (a)?
78 © A red train traveling at \(72 \mathrm{~km} / \mathrm{h}\) and a green train traveling at \(144 \mathrm{~km} / \mathrm{h}\) are headed toward each other along a straight, level track. When they are 950 m apart, each engineer sees the other's train and applies the brakes. The brakes slow each train at the rate of \(1.0 \mathrm{~m} / \mathrm{s}^{2}\). Is there a collision? If so, answer yes and give the speed of the red train and the speed of the green train at impact, respectively. If not, answer no and give the separation between the trains when they stop.
79 At time \(t=0\), a rock climber accidentally allows a piton to fall freely from a high point on the rock wall to the valley below him. Then, after a short delay, his climbing partner, who is 10 m higher on the wall, throws a piton downward. The positions \(y\) of the pitons versus \(t\) during the


Figure 2-43 Problem 79. falling are given in Fig. 2-43. With what speed is the second piton thrown?

80 A train started from rest and moved with constant acceleration. At one time it was traveling \(30 \mathrm{~m} / \mathrm{s}\), and 160 m farther on it was traveling \(50 \mathrm{~m} / \mathrm{s}\). Calculate (a) the acceleration, (b) the time required to travel the 160 m mentioned, (c) the time required to attain the speed of \(30 \mathrm{~m} / \mathrm{s}\), and (d) the distance moved from rest to the time the train had a speed of \(30 \mathrm{~m} / \mathrm{s}\). (e) Graph \(x\) versus \(t\) and \(v\) versus \(t\) for the train, from rest.

81 SSM A particle's acceleration along an \(x\) axis is \(a=5.0 t\), with \(t\) in seconds and \(a\) in meters per second squared. At \(t=2.0 \mathrm{~s}\), its velocity is \(+17 \mathrm{~m} / \mathrm{s}\). What is its velocity at \(t=4.0 \mathrm{~s}\) ?
82 Figure 2-44 gives the acceleration \(a\) versus time \(t\) for a particle moving along an \(x\) axis. The \(a\)-axis scale is set by \(a_{s}=12.0 \mathrm{~m} / \mathrm{s}^{2}\). At \(t=-2.0 \mathrm{~s}\), the particle's velocity is 7.0 \(\mathrm{m} / \mathrm{s}\). What is its velocity at \(t=\) 6.0 s?


Figure 2-44 Problem 82.

83 Figure 2-45 shows a simple device for measuring your reaction time. It consists of a cardboard strip marked with a scale and two large dots. A friend holds the strip vertically, with thumb and forefinger at the dot on the right in Fig. 2-45. You then position your thumb and forefinger at the other dot (on the left in Fig. 2-45), being careful not to touch the strip. Your friend releases the strip, and you try to pinch it as soon as possible after you see it begin to fall. The mark at the place where you pinch the strip gives your reaction time. (a) How far from the lower dot should you place the 50.0 ms mark? How much higher should you place the marks for (b) 100 , (c) 150 , (d) 200 , and (e) 250 ms ? (For example, should the 100 ms marker be 2 times as far from the dot as the 50 ms marker? If so, give an answer of 2 times. Can you find any pattern in the answers?)


84 A rocket-driven sled running on a straight, level track is used to investigate the effects of large accelerations on humans. One such sled can attain a speed of \(1600 \mathrm{~km} / \mathrm{h}\) in 1.8 s , starting from rest. Find (a) the acceleration (assumed constant) in terms of \(g\) and (b) the distance traveled.
85 A mining cart is pulled up a hill at \(20 \mathrm{~km} / \mathrm{h}\) and then pulled back down the hill at \(35 \mathrm{~km} / \mathrm{h}\) through its original level. (The time required for the cart's reversal at the top of its climb is negligible.) What is the average speed of the cart for its round trip, from its original level back to its original level?
86 A motorcyclist who is moving along an \(x\) axis directed toward the east has an acceleration given by \(a=(6.1-1.2 t) \mathrm{m} / \mathrm{s}^{2}\) for \(0 \leq t \leq 6.0 \mathrm{~s}\). At \(t=0\), the velocity and position of the cyclist are \(2.7 \mathrm{~m} / \mathrm{s}\) and 7.3 m . (a) What is the maximum speed achieved by the cyclist? (b) What total distance does the cyclist travel between \(t=0\) and 6.0 s ?
87 SSM When the legal speed limit for the New York Thruway was increased from \(55 \mathrm{mi} / \mathrm{h}\) to \(65 \mathrm{mi} / \mathrm{h}\), how much time was saved by a motorist who drove the 700 km between the Buffalo entrance and the New York City exit at the legal speed limit?
88 A car moving with constant acceleration covered the distance between two points 60.0 m apart in 6.00 s . Its speed as it passed the second point was \(15.0 \mathrm{~m} / \mathrm{s}\). (a) What was the speed at the first point? (b) What was the magnitude of the acceleration? (c) At what prior distance from the first point was the car at rest? (d) Graph \(x\) versus \(t\) and \(v\) versus \(t\) for the car, from rest \((t=0)\).
89 SSM A certain juggler usually tosses balls vertically to a height \(H\). To what height must they be tossed if they are to spend twice as much time in the air?
90 A particle starts from the origin at \(t=0\) and moves along the positive \(x\) axis. A graph of the velocity of the particle as a function of the time is shown in Fig. 2-46; the \(v\)-axis scale is set by \(v_{s}=4.0 \mathrm{~m} / \mathrm{s}\). (a) What is the coordinate of the particle at \(t=5.0 \mathrm{~s}\) ? (b) What is the velocity of the particle at \(t=5.0 \mathrm{~s}\) ? (c) What is


Figure 2-46 Problem 90.
the acceleration of the particle at \(t=5.0 \mathrm{~s}\) ? (d) What is the average velocity of the particle between \(t=1.0 \mathrm{~s}\) and \(t=5.0 \mathrm{~s}\) ? (e) What is the average acceleration of the particle between \(t=1.0 \mathrm{~s}\) and \(t=5.0 \mathrm{~s}\) ?
91 A rock is dropped from a \(100-\mathrm{m}\)-high cliff. How long does it take to fall (a) the first 50 m and (b) the second 50 m ?
92 Two subway stops are separated by 1100 m . If a subway train accelerates at \(+1.2 \mathrm{~m} / \mathrm{s}^{2}\) from rest through the first half of the distance and decelerates at \(-1.2 \mathrm{~m} / \mathrm{s}^{2}\) through the second half, what are (a) its travel time and (b) its maximum speed? (c) Graph \(x, v\), and \(a\) versus \(t\) for the trip.
93 A stone is thrown vertically upward. On its way up it passes point \(A\) with speed \(v\), and point \(B, 3.00 \mathrm{~m}\) higher than \(A\), with speed \(\frac{1}{2} v\). Calculate (a) the speed \(v\) and (b) the maximum height reached by the stone above point \(B\).
94 A rock is dropped (from rest) from the top of a \(60-\mathrm{m}\)-tall building. How far above the ground is the rock 1.2 s before it reaches the ground?
95 SSM An iceboat has a constant velocity toward the east when a sudden gust of wind causes the iceboat to have a constant acceleration toward the east for a period of 3.0 s . A plot of \(x\) versus \(t\) is shown in Fig. 2-47, where \(t=0\) is taken to be the instant the wind starts to blow and the positive \(x\) axis is toward the east. (a) What is the acceleration of the iceboat during the 3.0 s interval? (b) What is the velocity of the iceboat at the end of the 3.0 s interval? (c) If the acceleration remains constant for an additional 3.0 s , how far does the iceboat travel during this second 3.0 s interval?


Figure 2-47 Problem 95.
96 A lead ball is dropped in a lake from a diving board 5.20 m above the water. It hits the water with a certain velocity and then sinks to the bottom with this same constant velocity. It reaches the bottom 4.80 s after it is dropped. (a) How deep is the lake? What are the (b) magnitude and (c) direction (up or down) of the average velocity of the ball for the entire fall? Suppose that all the water is drained from the lake. The ball is now thrown from the diving board so that it again reaches the bottom in 4.80 s . What are the (d) magnitude and (e) direction of the initial velocity of the ball?

97 The single cable supporting an unoccupied construction elevator breaks when the elevator is at rest at the top of a 120 -m-high building. (a) With what speed does the elevator strike the ground? (b) How long is it falling? (c) What is its speed when it passes the halfway point on the way down? (d) How long has it been falling when it passes the halfway point?
98 Two diamonds begin a free fall from rest from the same height, 1.0 s apart. How long after the first diamond begins to fall will the two diamonds be 10 m apart?
99 A ball is thrown vertically downward from the top of a 36.6m -tall building. The ball passes the top of a window that is 12.2 m above the ground 2.00 s after being thrown. What is the speed of the ball as it passes the top of the window?

100 A parachutist bails out and freely falls 50 m . Then the parachute opens, and thereafter she decelerates at \(2.0 \mathrm{~m} / \mathrm{s}^{2}\). She reaches the ground with a speed of \(3.0 \mathrm{~m} / \mathrm{s}\). (a) How long is the parachutist in the air? (b) At what height does the fall begin?

101 A ball is thrown down vertically with an initial speed of \(v_{0}\) from a height of \(h\). (a) What is its speed just before it strikes the ground? (b) How long does the ball take to reach the ground? What would be the answers to (c) part a and (d) part b if the ball were thrown upward from the same height and with the same initial speed? Before solving any equations, decide whether the answers to (c) and (d) should be greater than, less than, or the same as in (a) and (b).
102 The sport with the fastest moving ball is jai alai, where measured speeds have reached \(303 \mathrm{~km} / \mathrm{h}\). If a professional jai alai player faces a ball at that speed and involuntarily blinks, he blacks out the scene for 100 ms . How far does the ball move during the blackout?
103 If a baseball pitcher throws a fastball at a horizontal speed of \(160 \mathrm{~km} / \mathrm{h}\), how long does the ball take to reach home plate 18.4 m away?
104 A proton moves along the \(x\) axis according to the equation \(x=50 t+10 t^{2}\), where \(x\) is in meters and \(t\) is in seconds. Calculate (a) the average velocity of the proton during the first 3.0 s of its motion, (b) the instantaneous velocity of the proton at \(t=3.0 \mathrm{~s}\), and (c) the instantaneous acceleration of the proton at \(t=3.0 \mathrm{~s}\). (d) Graph \(x\) versus \(t\) and indicate how the answer to (a) can be obtained from the plot. (e) Indicate the answer to (b) on the graph. (f) Plot \(v\) versus \(t\) and indicate on it the answer to (c).

105 A motorcycle is moving at \(30 \mathrm{~m} / \mathrm{s}\) when the rider applies the brakes, giving the motorcycle a constant deceleration. During the 3.0 s interval immediately after braking begins, the speed decreases to \(15 \mathrm{~m} / \mathrm{s}\). What distance does the motorcycle travel from the instant braking begins until the motorcycle stops?
106 A shuffleboard disk is accelerated at a constant rate from rest to a speed of \(6.0 \mathrm{~m} / \mathrm{s}\) over a 1.8 m distance by a player using a cue. At this point the disk loses contact with the cue and slows at a constant rate of \(2.5 \mathrm{~m} / \mathrm{s}^{2}\) until it stops. (a) How much time elapses from when the disk begins to accelerate until it stops? (b) What total distance does the disk travel?

107 The head of a rattlesnake can accelerate at \(50 \mathrm{~m} / \mathrm{s}^{2}\) in striking a victim. If a car could do as well, how long would it take to reach a speed of \(100 \mathrm{~km} / \mathrm{h}\) from rest?
108 A jumbo jet must reach a speed of \(360 \mathrm{~km} / \mathrm{h}\) on the runway for takeoff. What is the lowest constant acceleration needed for takeoff from a 1.80 km runway?
109 An automobile driver increases the speed at a constant rate from \(25 \mathrm{~km} / \mathrm{h}\) to \(55 \mathrm{~km} / \mathrm{h}\) in 0.50 min . A bicycle rider speeds up at a constant rate from rest to \(30 \mathrm{~km} / \mathrm{h}\) in 0.50 min . What are the magnitudes of (a) the driver's acceleration and (b) the rider's acceleration?
110 On average, an eye blink lasts about 100 ms . How far does a MiG-25 "Foxbat" fighter travel during a pilot's blink if the plane's average velocity is \(3400 \mathrm{~km} / \mathrm{h}\) ?
111 A certain sprinter has a top speed of \(11.0 \mathrm{~m} / \mathrm{s}\). If the sprinter starts from rest and accelerates at a constant rate, he is able to reach his top speed in a distance of 12.0 m . He is then able to maintain this top speed for the remainder of a 100 m race. (a) What is his time for the 100 m race? (b) In order to improve his time, the sprinter tries to decrease the distance required for him to reach his
top speed. What must this distance be if he is to achieve a time of 10.0 s for the race?

112 The speed of a bullet is measured to be \(640 \mathrm{~m} / \mathrm{s}\) as the bullet emerges from a barrel of length 1.20 m . Assuming constant acceleration, find the time that the bullet spends in the barrel after it is fired.
113 The Zero Gravity Research Facility at the NASA Glenn Research Center includes a 145 m drop tower. This is an evacuated vertical tower through which, among other possibilities, a 1-m-diameter sphere containing an experimental package can be dropped. (a) How long is the sphere in free fall? (b) What is its speed just as it reaches a catching device at the bottom of the tower? (c) When caught, the sphere experiences an average deceleration of 25 g as its speed is reduced to zero. Through what distance does it travel during the deceleration?
114 A car can be braked to a stop from the autobahn-like speed of \(200 \mathrm{~km} / \mathrm{h}\) in 170 m . Assuming the acceleration is constant, find its magnitude in (a) SI units and (b) in terms of \(g\). (c) How much time \(T_{b}\) is required for the braking? Your reaction time \(T_{r}\) is the time you require to perceive an emergency, move your foot to the brake, and begin the braking. If \(T_{r}=400 \mathrm{~ms}\), then (d) what is \(T_{b}\) in terms of \(T_{r}\), and (e) is most of the full time required to stop spent in reacting or braking? Dark sunglasses delay the visual signals sent from the eyes to the visual cortex in the brain, increasing \(T_{r}\). (f) In the extreme case in which \(T_{r}\) is increased by 100 ms , how much farther does the car travel during your reaction time?
115 In 1889, at Jubbulpore, India, a tug-of-war was finally won after 2 h 41 min , with the winning team displacing the center of the rope 3.7 m . In centimeters per minute, what was the magnitude of the average velocity of that center point during the contest?

116 Most important in an investigation of an airplane crash by the U.S. National Transportation Safety Board is the data stored on the airplane's flight-data recorder, commonly called the "black box" in spite of its orange coloring and reflective tape. The recorder is engineered to withstand a crash with an average deceleration of magnitude 3400 g during a time interval of 6.50 ms . In such a crash, if the recorder and airplane have zero speed at the end of that time interval, what is their speed at the beginning of the interval?
117 From January 26, 1977, to September 18, 1983, George Meegan of Great Britain walked from Ushuaia, at the southern tip of South America, to Prudhoe Bay in Alaska, covering 30600 km . In meters per second, what was the magnitude of his average velocity during that time period?
118 The wings on a stonefly do not flap, and thus the insect cannot fly. However, when the insect is on a water surface, it can sail across the surface by lifting its wings into a breeze. Suppose that you time stoneflies as they move at constant speed along a straight path of a certain length. On average, the trips each take 7.1 s with the wings set as sails and 25.0 s with the wings tucked in. (a) What is the ratio of the sailing speed \(v_{s}\) to the nonsailing speed \(v_{n s}\) ? (b) In terms of \(v_{s}\), what is the difference in the times the insects take to travel the first 2.0 m along the path with and without sailing?

119 The position of a particle as it moves along a \(y\) axis is given by
\[
y=(2.0 \mathrm{~cm}) \sin (\pi t / 4)
\]
with \(t\) in seconds and \(y\) in centimeters. (a) What is the average velocity of the particle between \(t=0\) and \(t=2.0 \mathrm{~s}\) ? (b) What is the instantaneous velocity of the particle at \(t=0,1.0\), and 2.0 s ? (c) What is the average acceleration of the particle between \(t=0\) and \(t=2.0 \mathrm{~s}\) ? (d) What is the instantaneous acceleration of the particle at \(t=0\), 1.0 , and 2.0 s ?

\section*{Vectors}

\section*{3-1 vectors and their components}

\section*{Learning Objectives}

After reading this module, you should be able to
3.01 Add vectors by drawing them in head-to-tail arrangements, applying the commutative and associative laws.
3.02 Subtract a vector from a second one.
3.03 Calculate the components of a vector on a given coordinate system, showing them in a drawing.
3.04 Given the components of a vector, draw the vector and determine its magnitude and orientation.
3.05 Convert angle measures between degrees and radians.

\section*{Key Ideas}
- Scalars, such as temperature, have magnitude only. They are specified by a number with a unit \(\left(10^{\circ} \mathrm{C}\right)\) and obey the rules of arithmetic and ordinary algebra. Vectors, such as displacement, have both magnitude and direction ( 5 m , north) and obey the rules of vector algebra.
- Two vectors \(\vec{a}\) and \(\vec{b}\) may be added geometrically by drawing them to a common scale and placing them head to tail. The vector connecting the tail of the first to the head of the second is the vector sum \(\vec{s}\). To subtract \(\vec{b}\) from \(\vec{a}\), reverse the direction of \(\vec{b}\) to get \(-\vec{b}\); then add \(-\vec{b}\) to \(\vec{a}\). Vector addition is commutative and obeys the associative law.

The (scalar) components \(a_{x}\) and \(a_{y}\) of any two-dimensional vector \(\vec{a}\) along the coordinate axes are found by dropping perpendicular lines from the ends of \(\vec{a}\) onto the coordinate axes. The components are given by
\[
a_{x}=a \cos \theta \quad \text { and } \quad a_{y}=a \sin \theta,
\]
where \(\theta\) is the angle between the positive direction of the \(x\) axis and the direction of \(\vec{a}\). The algebraic sign of a component indicates its direction along the associated axis. Given its components, we can find the magnitude and orientation of the vector \(\vec{a}\) with
\[
a=\sqrt{a_{x}^{2}+a_{y}^{2}} \quad \text { and } \quad \tan \theta=\frac{a_{y}}{a_{x}} .
\]

\section*{What Is Physics?}

Physics deals with a great many quantities that have both size and direction, and it needs a special mathematical language - the language of vectors - to describe those quantities. This language is also used in engineering, the other sciences, and even in common speech. If you have ever given directions such as "Go five blocks down this street and then hang a left," you have used the language of vectors. In fact, navigation of any sort is based on vectors, but physics and engineering also need vectors in special ways to explain phenomena involving rotation and magnetic forces, which we get to in later chapters. In this chapter, we focus on the basic language of vectors.

\section*{Vectors and Scalars}

A particle moving along a straight line can move in only two directions. We can take its motion to be positive in one of these directions and negative in the other. For a particle moving in three dimensions, however, a plus sign or minus sign is no longer enough to indicate a direction. Instead, we must use a vector.

A vector has magnitude as well as direction, and vectors follow certain (vector) rules of combination, which we examine in this chapter. A vector quantity is a quantity that has both a magnitude and a direction and thus can be represented with a vector. Some physical quantities that are vector quantities are displacement, velocity, and acceleration. You will see many more throughout this book, so learning the rules of vector combination now will help you greatly in later chapters.

Not all physical quantities involve a direction. Temperature, pressure, energy, mass, and time, for example, do not "point" in the spatial sense. We call such quantities scalars, and we deal with them by the rules of ordinary algebra. A single value, with a sign (as in a temperature of \(-40^{\circ} \mathrm{F}\) ), specifies a scalar.

The simplest vector quantity is displacement, or change of position. A vector that represents a displacement is called, reasonably, a displacement vector. (Similarly, we have velocity vectors and acceleration vectors.) If a particle changes its position by moving from \(A\) to \(B\) in Fig. 3-1 \(a\), we say that it undergoes a displacement from \(A\) to \(B\), which we represent with an arrow pointing from \(A\) to \(B\). The arrow specifies the vector graphically. To distinguish vector symbols from other kinds of arrows in this book, we use the outline of a triangle as the arrowhead.

In Fig. 3-1 \(a\), the arrows from \(A\) to \(B\), from \(A^{\prime}\) to \(B^{\prime}\), and from \(A^{\prime \prime}\) to \(B^{\prime \prime}\) have the same magnitude and direction. Thus, they specify identical displacement vectors and represent the same change of position for the particle. A vector can be shifted without changing its value if its length and direction are not changed.

The displacement vector tells us nothing about the actual path that the particle takes. In Fig. 3-1b, for example, all three paths connecting points \(A\) and \(B\) correspond to the same displacement vector, that of Fig. 3-1a. Displacement vectors represent only the overall effect of the motion, not the motion itself.

\section*{Adding Vectors Geometrically}

Suppose that, as in the vector diagram of Fig. 3-2a, a particle moves from \(A\) to \(B\) and then later from \(B\) to \(C\). We can represent its overall displacement (no matter what its actual path) with two successive displacement vectors, \(A B\) and \(B C\). The net displacement of these two displacements is a single displacement from \(A\) to \(C\). We call \(A C\) the vector sum (or resultant) of the vectors \(A B\) and \(B C\). This sum is not the usual algebraic sum.

In Fig. 3-2b, we redraw the vectors of Fig. 3-2a and relabel them in the way that we shall use from now on, namely, with an arrow over an italic symbol, as in \(\vec{a}\). If we want to indicate only the magnitude of the vector (a quantity that lacks a sign or direction), we shall use the italic symbol, as in \(a, b\), and \(s\). (You can use just a handwritten symbol.) A symbol with an overhead arrow always implies both properties of a vector, magnitude and direction.

We can represent the relation among the three vectors in Fig. 3-2b with the vector equation
\[
\begin{equation*}
\vec{s}=\vec{a}+\vec{b}, \tag{3-1}
\end{equation*}
\]
which says that the vector \(\vec{s}\) is the vector sum of vectors \(\vec{a}\) and \(\vec{b}\). The symbol + in Eq. 3-1 and the words "sum" and "add" have different meanings for vectors than they do in the usual algebra because they involve both magnitude and direction.

Figure 3-2 suggests a procedure for adding two-dimensional vectors \(\vec{a}\) and \(\vec{b}\) geometrically. (1) On paper, sketch vector \(\vec{a}\) to some convenient scale and at the proper angle. (2) Sketch vector \(\vec{b}\) to the same scale, with its tail at the head of vector \(\vec{a}\), again at the proper angle. (3) The vector sum \(\vec{s}\) is the vector that extends from the tail of \(\vec{a}\) to the head of \(\vec{b}\).

Properties. Vector addition, defined in this way, has two important properties. First, the order of addition does not matter. Adding \(\vec{a}\) to \(\vec{b}\) gives the same


Figure 3-1 (a) All three arrows have the same magnitude and direction and thus represent the same displacement. (b) All three paths connecting the two points correspond to the same displacement vector.


Figure 3-2 (a) \(A C\) is the vector sum of the vectors \(A B\) and \(B C\). (b) The same vectors relabeled.


You get the same vector result for either order of adding vectors.

Figure 3-3 The two vectors \(\vec{a}\) and \(\vec{b}\) can be added in either order; see Eq. 3-2.


Figure 3-5 The vectors \(\vec{b}\) and \(-\vec{b}\) have the same magnitude and opposite directions.


Figure 3-6 (a) Vectors \(\vec{a}, \vec{b}\), and \(-\vec{b}\). (b) To subtract vector \(\vec{b}\) from vector \(\vec{a}\), add vector \(-\vec{b}\) to vector \(\vec{a}\).
result as adding \(\vec{b}\) to \(\vec{a}\) (Fig. 3-3); that is,
\[
\begin{equation*}
\vec{a}+\vec{b}=\vec{b}+\vec{a} \quad \text { (commutative law). } \tag{3-2}
\end{equation*}
\]

Second, when there are more than two vectors, we can group them in any order as we add them. Thus, if we want to add vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\), we can add \(\vec{a}\) and \(\vec{b}\) first and then add their vector sum to \(\vec{c}\). We can also add \(\vec{b}\) and \(\vec{c}\) first and then add that sum to \(\vec{a}\). We get the same result either way, as shown in Fig. 3-4. That is,
\[
\begin{equation*}
(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c}) \quad \text { (associative law) } \tag{3-3}
\end{equation*}
\]


You get the same vector result for any order of adding the vectors.


Figure 3-4 The three vectors \(\vec{a}, \vec{b}\), and \(\vec{c}\) can be grouped in any way as they are added; see Eq. 3-3.

The vector \(-\vec{b}\) is a vector with the same magnitude as \(\vec{b}\) but the opposite direction (see Fig. 3-5). Adding the two vectors in Fig. 3-5 would yield
\[
\vec{b}+(-\vec{b})=0
\]

Thus, adding \(-\vec{b}\) has the effect of subtracting \(\vec{b}\). We use this property to define the difference between two vectors: let \(\vec{d}=\vec{a}-\vec{b}\). Then
\[
\begin{equation*}
\vec{d}=\vec{a}-\vec{b}=\vec{a}+(-\vec{b}) \quad \text { (vector subtraction) } \tag{3-4}
\end{equation*}
\]
that is, we find the difference vector \(\vec{d}\) by adding the vector \(-\vec{b}\) to the vector \(\vec{a}\). Figure 3-6 shows how this is done geometrically.

As in the usual algebra, we can move a term that includes a vector symbol from one side of a vector equation to the other, but we must change its sign. For example, if we are given Eq. 3-4 and need to solve for \(\vec{a}\), we can rearrange the equation as
\[
\vec{d}+\vec{b}=\vec{a} \quad \text { or } \quad \vec{a}=\vec{d}+\vec{b}
\]

Remember that, although we have used displacement vectors here, the rules for addition and subtraction hold for vectors of all kinds, whether they represent velocities, accelerations, or any other vector quantity. However, we can add only vectors of the same kind. For example, we can add two displacements, or two velocities, but adding a displacement and a velocity makes no sense. In the arithmetic of scalars, that would be like trying to add 21 s and 12 m .

\section*{Checkpoint 1}

The magnitudes of displacements \(\vec{a}\) and \(\vec{b}\) are 3 m and 4 m , respectively, and \(\vec{c}=\vec{a}+\vec{b}\). Considering various orientations of \(\vec{a}\) and \(\vec{b}\), what are (a) the maximum possible magnitude for \(\vec{c}\) and (b) the minimum possible magnitude?

\section*{Components of Vectors}

Adding vectors geometrically can be tedious. A neater and easier technique involves algebra but requires that the vectors be placed on a rectangular coordinate system. The \(x\) and \(y\) axes are usually drawn in the plane of the page, as shown
in Fig. 3-7a. The \(z\) axis comes directly out of the page at the origin; we ignore it for now and deal only with two-dimensional vectors.

A component of a vector is the projection of the vector on an axis. In Fig. 3-7a, for example, \(a_{x}\) is the component of vector \(\vec{a}\) on (or along) the \(x\) axis and \(a_{y}\) is the component along the \(y\) axis. To find the projection of a vector along an axis, we draw perpendicular lines from the two ends of the vector to the axis, as shown. The projection of a vector on an \(x\) axis is its \(x\) component, and similarly the projection on the \(y\) axis is the \(y\) component. The process of finding the components of a vector is called resolving the vector.

A component of a vector has the same direction (along an axis) as the vector. In Fig. 3-7, \(a_{x}\) and \(a_{y}\) are both positive because \(\vec{a}\) extends in the positive direction of both axes. (Note the small arrowheads on the components, to indicate their direction.) If we were to reverse vector \(\vec{a}\), then both components would be negative and their arrowheads would point toward negative \(x\) and \(y\). Resolving vector \(\vec{b}\) in Fig. 3-8 yields a positive component \(b_{x}\) and a negative component \(b_{y}\).

In general, a vector has three components, although for the case of Fig. 3-7a the component along the \(z\) axis is zero. As Figs. 3-7a and \(b\) show, if you shift a vector without changing its direction, its components do not change.

Finding the Components. We can find the components of \(\vec{a}\) in Fig. 3-7a geometrically from the right triangle there:
\[
\begin{equation*}
a_{x}=a \cos \theta \quad \text { and } \quad a_{y}=a \sin \theta \tag{3-5}
\end{equation*}
\]
where \(\theta\) is the angle that the vector \(\vec{a}\) makes with the positive direction of the \(x\) axis, and \(a\) is the magnitude of \(\vec{a}\). Figure 3-7c shows that \(\vec{a}\) and its \(x\) and \(y\) components form a right triangle. It also shows how we can reconstruct a vector from its components: we arrange those components head to tail. Then we complete a right triangle with the vector forming the hypotenuse, from the tail of one component to the head of the other component.

Once a vector has been resolved into its components along a set of axes, the components themselves can be used in place of the vector. For example, \(\vec{a}\) in Fig. 3-7a is given (completely determined) by \(a\) and \(\theta\). It can also be given by its components \(a_{x}\) and \(a_{y}\). Both pairs of values contain the same information. If we know a vector in component notation ( \(a_{x}\) and \(a_{y}\) ) and want it in magnitude-angle notation ( \(a\) and \(\theta\) ), we can use the equations
\[
\begin{equation*}
a=\sqrt{a_{x}^{2}+a_{y}^{2}} \quad \text { and } \quad \tan \theta=\frac{a_{y}}{a_{x}} \tag{3-6}
\end{equation*}
\]
to transform it.
In the more general three-dimensional case, we need a magnitude and two angles (say, \(a, \theta\), and \(\phi\) ) or three components ( \(a_{x}, a_{y}\), and \(a_{z}\) ) to specify a vector.


Figure 3-7 (a) The components \(a_{x}\) and \(a_{y}\) of vector \(\vec{a}\). (b) The components are unchanged if the vector is shifted, as long as the magnitude and orientation are maintained. (c) The components form the legs of a right triangle whose hypotenuse is the magnitude of the vector.


Figure 3-8 The component of \(\vec{b}\) on the \(x\) axis is positive, and that on the \(y\) axis is negative.

\section*{Checkpoint 2}

In the figure, which of the indicated methods for combining the \(x\) and \(y\) components of vector \(\vec{a}\) are proper to determine that vector?


\section*{Sample Problem 3.01 Adding vectors in a drawing, orienteering}

In an orienteering class, you have the goal of moving as far (straight-line distance) from base camp as possible by making three straight-line moves. You may use the following displacements in any order: (a) \(\vec{a}, 2.0 \mathrm{~km}\) due east (directly toward the east); (b) \(\vec{b}, 2.0 \mathrm{~km} 30^{\circ}\) north of east (at an angle of \(30^{\circ}\) toward the north from due east); (c) \(\vec{c}, 1.0 \mathrm{~km}\) due west. Alternatively, you may substitute either \(-\vec{b}\) for \(\vec{b}\) or \(-\vec{c}\) for \(\vec{c}\). What is the greatest distance you can be from base camp at the end of the third displacement? (We are not concerned about the direction.)

Reasoning: Using a convenient scale, we draw vectors \(\vec{a}\), \(\vec{b}, \vec{c},-\vec{b}\), and \(-\vec{c}\) as in Fig. 3-9a. We then mentally slide the vectors over the page, connecting three of them at a time in head-to-tail arrangements to find their vector sum \(\vec{d}\). The tail of the first vector represents base camp. The head of the third vector represents the point at which you stop. The vector sum \(\vec{d}\) extends from the tail of the first vector to the head of the third vector. Its magnitude \(d\) is your distance from base camp. Our goal here is to maximize that base-camp distance.

We find that distance \(d\) is greatest for a head-to-tail arrangement of vectors \(\vec{a}, \vec{b}\), and \(-\vec{c}\). They can be in any


Figure 3-9 (a) Displacement vectors; three are to be used. (b) Your distance from base camp is greatest if you undergo displacements \(\vec{a}, \vec{b}\), and \(-\vec{c}\), in any order.
order, because their vector sum is the same for any order. (Recall from Eq. 3-2 that vectors commute.) The order shown in Fig. 3-9b is for the vector sum
\[
\vec{d}=\vec{b}+\vec{a}+(-\vec{c}) .
\]

Using the scale given in Fig. 3-9a, we measure the length \(d\) of this vector sum, finding
\[
d=4.8 \mathrm{~m} .
\]
(Answer)

\section*{Sample Problem 3.02 Finding components, airplane flight}

A small airplane leaves an airport on an overcast day and is later sighted 215 km away, in a direction making an angle of \(22^{\circ}\) east of due north. This means that the direction is not due north (directly toward the north) but is rotated \(22^{\circ}\) toward the east from due north. How far east and north is the airplane from the airport when sighted?


Figure 3-10 A plane takes off from an airport at the origin and is later sighted at \(P\).

\section*{KEY IDEA}

We are given the magnitude ( 215 km ) and the angle ( \(22^{\circ}\) east of due north) of a vector and need to find the components of the vector.

Calculations: We draw an \(x y\) coordinate system with the positive direction of \(x\) due east and that of \(y\) due north (Fig. \(3-10\) ). For convenience, the origin is placed at the airport. (We don't have to do this. We could shift and misalign the coordinate system but, given a choice, why make the problem more difficult?) The airplane's displacement \(\vec{d}\) points from the origin to where the airplane is sighted.

To find the components of \(\vec{d}\), we use Eq. 3-5 with \(\theta=\) \(68^{\circ}\left(=90^{\circ}-22^{\circ}\right)\) :
\[
\begin{aligned}
d_{x} & =d \cos \theta=(215 \mathrm{~km})\left(\cos 68^{\circ}\right) \\
& =81 \mathrm{~km} \\
d_{y} & =d \sin \theta=(215 \mathrm{~km})\left(\sin 68^{\circ}\right) \\
& =199 \mathrm{~km} \approx 2.0 \times 10^{2} \mathrm{~km} .
\end{aligned}
\]
(Answer)
(Answer)
Thus, the airplane is 81 km east and \(2.0 \times 10^{2} \mathrm{~km}\) north of the airport.

\section*{Problem-Solving Tactics Angles, trig functions, and inverse trig functions}

Tactic 1: Angles-Degrees and Radians Angles that are measured relative to the positive direction of the \(x\) axis are positive if they are measured in the counterclockwise direction and negative if measured clockwise. For example, \(210^{\circ}\) and \(-150^{\circ}\) are the same angle.

Angles may be measured in degrees or radians (rad). To relate the two measures, recall that a full circle is \(360^{\circ}\) and \(2 \pi \mathrm{rad}\). To convert, say, \(40^{\circ}\) to radians, write
\[
40^{\circ} \frac{2 \pi \mathrm{rad}}{360^{\circ}}=0.70 \mathrm{rad}
\]

Tactic 2: Trig Functions You need to know the definitions of the common trigonometric functions-sine, cosine, and tangent - because they are part of the language of science and engineering. They are given in Fig. 3-11 in a form that does not depend on how the triangle is labeled.

You should also be able to sketch how the trig functions vary with angle, as in Fig. 3-12, in order to be able to judge whether a calculator result is reasonable. Even knowing the signs of the functions in the various quadrants can be of help.

Tactic 3: Inverse Trig Functions When the inverse trig functions \(\sin ^{-1}, \cos ^{-1}\), and \(\tan ^{-1}\) are taken on a calculator, you must consider the reasonableness of the answer you get, because there is usually another possible answer that the calculator does not give. The range of operation for a calculator in taking each inverse trig function is indicated in Fig. 3-12. As an example, \(\sin ^{-1} 0.5\) has associated angles of \(30^{\circ}\) (which is displayed by the calculator, since \(30^{\circ}\) falls within its range of operation) and \(150^{\circ}\). To see both values, draw a horizontal line through 0.5 in Fig. 3-12a and note where it cuts the sine curve. How do you distinguish a correct answer? It is the one that seems more reasonable for the given situation.

Tactic 4: Measuring Vector Angles The equations for \(\cos \theta\) and \(\sin \theta\) in Eq. 3-5 and for \(\tan \theta\) in Eq. 3-6 are valid only if the angle is measured from the positive direction of
\[
\begin{aligned}
& \sin \theta=\frac{\text { leg opposite } \theta}{\text { hypotenuse }} \\
& \cos \theta=\frac{\text { leg adjacent to } \theta}{\text { hypotenuse }} \\
& \tan \theta=\frac{\text { leg opposite } \theta}{\text { leg adjacent to } \theta}
\end{aligned}
\]


Figure 3-11 A triangle used to define the trigonometric functions. See also Appendix E.


Figure 3-12 Three useful curves to remember. A calculator's range of operation for taking inverse trig functions is indicated by the darker portions of the colored curves.
the \(x\) axis. If it is measured relative to some other direction, then the trig functions in Eq. 3-5 may have to be interchanged and the ratio in Eq. 3-6 may have to be inverted. A safer method is to convert the angle to one measured from the positive direction of the \(x\) axis. In WileyPLUS, the system expects you to report an angle of direction like this (and positive if counterclockwise and negative if clockwise).

\section*{3-2 unit VEctors, adding VEctors by components}

\section*{Learning Objectives}

After reading this module, you should be able to .
3.06 Convert a vector between magnitude-angle and unitvector notations.
3.07 Add and subtract vectors in magnitude-angle notation and in unit-vector notation.
3.08 Identify that, for a given vector, rotating the coordinate system about the origin can change the vector's components but not the vector itself.

\section*{Key Ideas}
- Unit vectors \(\hat{i}, \hat{\mathrm{j}}\), and \(\hat{\mathrm{k}}\) have magnitudes of unity and are directed in the positive directions of the \(x, y\), and \(z\) axes, respectively, in a right-handed coordinate system. We can write a vector \(\vec{a}\) in terms of unit vectors as
\[
\vec{a}=a_{x} \hat{\mathrm{i}}+a_{y} \hat{\mathrm{j}}+a_{z} \hat{\mathrm{k}},
\]
in which \(a_{x} \hat{\mathrm{i}}, a_{y} \hat{\mathrm{j}}\), and \(a_{z} \hat{\mathrm{k}}\) are the vector components of \(\vec{a}\) and \(a_{x}, a_{y}\), and \(a_{z}\) are its scalar components.
- To add vectors in component form, we use the rules
\[
r_{x}=a_{x}+b_{x} \quad r_{y}=a_{y}+b_{y} \quad r_{z}=a_{z}+b_{z} .
\]

Here \(\vec{a}\) and \(\vec{b}\) are the vectors to be added, and \(\vec{r}\) is the vector sum. Note that we add components axis by axis.

The unit vectors point along axes.


Figure 3.13 Unit vectors \(\hat{i}, \hat{\mathrm{j}}\), and \(\hat{\mathrm{k}}\) define the directions of a right-handed coordinate system.

Figure 3-14 (a) The vector components of vector \(\vec{a}\). (b) The vector components of vector \(\vec{b}\).

\section*{Unit Vectors}

A unit vector is a vector that has a magnitude of exactly 1 and points in a particular direction. It lacks both dimension and unit. Its sole purpose is to point -that is, to specify a direction. The unit vectors in the positive directions of the \(x, y\), and \(z\) axes are labeled \(\hat{\mathrm{i}}, \hat{\mathrm{j}}\), and \(\hat{\mathrm{k}}\), where the hat \({ }^{\wedge}\) is used instead of an overhead arrow as for other vectors (Fig. 3-13). The arrangement of axes in Fig. 3-13 is said to be a right-handed coordinate system. The system remains right-handed if it is rotated rigidly. We use such coordinate systems exclusively in this book.

Unit vectors are very useful for expressing other vectors; for example, we can express \(\vec{a}\) and \(\vec{b}\) of Figs. 3-7 and 3-8 as
\[
\begin{align*}
& \vec{a}=a_{x} \hat{i}+a_{y} \hat{\mathrm{j}}  \tag{3-7}\\
& \vec{b}=b_{x} \hat{\mathrm{i}}+b_{y} \hat{\mathrm{j}} . \tag{3-8}
\end{align*}
\]
and
These two equations are illustrated in Fig. 3-14. The quantities \(a_{x} \hat{i}\) and \(a_{y} \hat{j}\) are vectors, called the vector components of \(\vec{a}\). The quantities \(a_{x}\) and \(a_{y}\) are scalars, called the scalar components of \(\vec{a}\) (or, as before, simply its components).

(a) component.

(b)

\section*{Adding Vectors by Components}

We can add vectors geometrically on a sketch or directly on a vector-capable calculator. A third way is to combine their components axis by axis.

To start, consider the statement
\[
\begin{equation*}
\vec{r}=\vec{a}+\vec{b} \tag{3-9}
\end{equation*}
\]
which says that the vector \(\vec{r}\) is the same as the vector \((\vec{a}+\vec{b})\). Thus, each component of \(\vec{r}\) must be the same as the corresponding component of \((\vec{a}+\vec{b})\) :
\[
\begin{align*}
& r_{x}=a_{x}+b_{x}  \tag{3-10}\\
& r_{y}=a_{y}+b_{y}  \tag{3-11}\\
& r_{z}=a_{z}+b_{z} \tag{3-12}
\end{align*}
\]

In other words, two vectors must be equal if their corresponding components are equal. Equations 3-9 to 3-12 tell us that to add vectors \(\vec{a}\) and \(\vec{b}\), we must (1) resolve the vectors into their scalar components; (2) combine these scalar components, axis by axis, to get the components of the sum \(\vec{r}\); and (3) combine the components of \(\vec{r}\) to get \(\vec{r}\) itself. We have a choice in step 3 . We can express \(\vec{r}\) in unit-vector notation or in magnitude-angle notation.

This procedure for adding vectors by components also applies to vector subtractions. Recall that a subtraction such as \(\vec{d}=\vec{a}-\vec{b}\) can be rewritten as an addition \(\vec{d}=\vec{a}+(-\vec{b})\). To subtract, we add \(\vec{a}\) and \(-\vec{b}\) by components, to get
\[
d_{x}=a_{x}-b_{x}, \quad d_{y}=a_{y}-b_{y}, \quad \text { and } \quad d_{z}=a_{z}-b_{z},
\]
where
\[
\begin{equation*}
\vec{d}=d_{x} \hat{\mathrm{i}}+d_{y} \hat{\mathrm{j}}+d_{z} \hat{\mathrm{k}} \tag{3-13}
\end{equation*}
\]

\section*{Checkpoint 3}
(a) In the figure here, what are the signs of the \(x\) components of \(\vec{d}_{1}\) and \(\vec{d}_{2}\) ? (b) What are the signs of the \(y\) components of \(\vec{d}_{1}\) and \(\vec{d}_{2}\) ? (c) What are the signs of the \(x\) and \(y\) components of \(\vec{d}_{1}+\vec{d}_{2}\) ?


\section*{Vectors and the Laws of Physics}

So far, in every figure that includes a coordinate system, the \(x\) and \(y\) axes are parallel to the edges of the book page. Thus, when a vector \(\vec{a}\) is included, its components \(a_{x}\) and \(a_{y}\) are also parallel to the edges (as in Fig. 3-15a). The only reason for that orientation of the axes is that it looks "proper"; there is no deeper reason. We could, instead, rotate the axes (but not the vector \(\vec{a}\) ) through an angle \(\phi\) as in Fig. 3-15b, in which case the components would have new values, call them \(a_{x}^{\prime}\) and \(a_{y}^{\prime}\). Since there are an infinite number of choices of \(\phi\), there are an infinite number of different pairs of components for \(\vec{a}\).

Which then is the "right" pair of components? The answer is that they are all equally valid because each pair (with its axes) just gives us a different way of describing the same vector \(\vec{a}\); all produce the same magnitude and direction for the vector. In Fig. 3-15 we have
\[
\begin{equation*}
a=\sqrt{a_{x}^{2}+a_{y}^{2}}=\sqrt{a_{x}^{\prime 2}+a_{y}^{\prime 2}} \tag{3-14}
\end{equation*}
\]
and
\[
\begin{equation*}
\theta=\theta^{\prime}+\phi \tag{3-15}
\end{equation*}
\]

The point is that we have great freedom in choosing a coordinate system, because the relations among vectors do not depend on the location of the origin or on the orientation of the axes. This is also true of the relations of physics; they are all independent of the choice of coordinate system. Add to that the simplicity and richness of the language of vectors and you can see why the laws of physics are almost always presented in that language: one equation, like Eq. 3-9, can represent three (or even more) relations, like Eqs. 3-10, 3-11, and 3-12.


Figure 3-15 (a) The vector \(\vec{a}\) and its components. (b) The same vector, with the axes of the coordinate system rotated through an angle \(\phi\).

\section*{Sample Problem 3.03 Searching through a hedge maze}

A hedge maze is a maze formed by tall rows of hedge. After entering, you search for the center point and then for the exit. Figure \(3-16 a\) shows the entrance to such a maze and the first two choices we make at the junctions we encounter in moving from point \(i\) to point \(c\). We undergo three displacements as indicated in the overhead view of Fig. 3-16b:
\[
\begin{array}{ll}
d_{1}=6.00 \mathrm{~m} & \theta_{1}=40^{\circ} \\
d_{2}=8.00 \mathrm{~m} & \theta_{2}=30^{\circ} \\
d_{3}=5.00 \mathrm{~m} & \theta_{3}=0^{\circ},
\end{array}
\]
where the last segment is parallel to the superimposed \(x\) axis. When we reach point \(c\), what are the magnitude and angle of our net displacement \(\vec{d}_{\text {net }}\) from point \(i\) ?

\section*{KEY IDEAS}
(1) To find the net displacement \(\vec{d}_{\text {net }}\), we need to sum the three individual displacement vectors:
\[
\vec{d}_{\mathrm{net}}=\vec{d}_{1}+\vec{d}_{2}+\vec{d}_{3}
\]
(2) To do this, we first evaluate this sum for the \(x\) components alone,
\[
\begin{equation*}
d_{\mathrm{net}, x}=d_{1 x}+d_{2 x}+d_{3 x}, \tag{3-16}
\end{equation*}
\]
and then the \(y\) components alone,
\[
\begin{equation*}
d_{\mathrm{net}, y}=d_{1 y}+d_{2 y}+d_{3 y} . \tag{3-17}
\end{equation*}
\]
(3) Finally, we construct \(\vec{d}_{\text {net }}\) from its \(x\) and \(y\) components.

Calculations: To evaluate Eqs. 3-16 and 3-17, we find the \(x\) and \(y\) components of each displacement. As an example, the components for the first displacement are shown in Fig. 3-16c. We draw similar diagrams for the other two displacements and then we apply the \(x\) part of Eq. 3-5 to each displacement, using angles relative to the positive direction of the \(x\) axis:
\[
\begin{aligned}
& d_{1 x}=(6.00 \mathrm{~m}) \cos 40^{\circ}=4.60 \mathrm{~m} \\
& d_{2 x}=(8.00 \mathrm{~m}) \cos \left(-60^{\circ}\right)=4.00 \mathrm{~m} \\
& d_{3 x}=(5.00 \mathrm{~m}) \cos 0^{\circ}=5.00 \mathrm{~m} .
\end{aligned}
\]

Equation 3-16 then gives us
\[
\begin{aligned}
d_{\text {net }, x} & =+4.60 \mathrm{~m}+4.00 \mathrm{~m}+5.00 \mathrm{~m} \\
& =13.60 \mathrm{~m} .
\end{aligned}
\]

Similarly, to evaluate Eq. 3-17, we apply the \(y\) part of Eq. 3-5 to each displacement:
\[
\begin{aligned}
& d_{1 y}=(6.00 \mathrm{~m}) \sin 40^{\circ}=3.86 \mathrm{~m} \\
& d_{2 y}=(8.00 \mathrm{~m}) \sin \left(-60^{\circ}\right)=-6.93 \mathrm{~m} \\
& d_{3 y}=(5.00 \mathrm{~m}) \sin 0^{\circ}=0 \mathrm{~m} .
\end{aligned}
\]

Equation 3-17 then gives us
\[
\begin{aligned}
d_{\text {net }, y} & =+3.86 \mathrm{~m}-6.93 \mathrm{~m}+0 \mathrm{~m} \\
& =-3.07 \mathrm{~m} .
\end{aligned}
\]

Next we use these components of \(\vec{d}_{\text {net }}\) to construct the vector as shown in Fig. 3-16d: the components are in a head-totail arrangement and form the legs of a right triangle, and


Figure 3-16 (a) Three displacements through a hedge maze. (b) The displacement vectors. (c) The first displacement vector and its components. (d) The net displacement vector and its components.
the vector forms the hypotenuse. We find the magnitude and angle of \(\vec{d}_{\text {net }}\) with Eq. 3-6. The magnitude is
\[
\begin{align*}
d_{\mathrm{net}} & =\sqrt{d_{\mathrm{net}, x}^{2}+d_{\mathrm{net}, y}^{2}}  \tag{3-18}\\
& =\sqrt{(13.60 \mathrm{~m})^{2}+(-3.07 \mathrm{~m})^{2}}=13.9 \mathrm{~m}
\end{align*}
\]
(Answer)
To find the angle (measured from the positive direction of \(x\) ), we take an inverse tangent:
\[
\begin{align*}
\theta & =\tan ^{-1}\left(\frac{d_{\mathrm{net}, y}}{d_{\mathrm{net}, x}}\right)  \tag{3-19}\\
& =\tan ^{-1}\left(\frac{-3.07 \mathrm{~m}}{13.60 \mathrm{~m}}\right)=-12.7^{\circ} .
\end{align*}
\]
(Answer)
The angle is negative because it is measured clockwise from positive \(x\). We must always be alert when we take an inverse
tangent on a calculator. The answer it displays is mathematically correct but it may not be the correct answer for the physical situation. In those cases, we have to add \(180^{\circ}\) to the displayed answer, to reverse the vector. To check, we always need to draw the vector and its components as we did in Fig. 3-16d. In our physical situation, the figure shows us that \(\theta=-12.7^{\circ}\) is a reasonable answer, whereas \(-12.7^{\circ}+180^{\circ}=167^{\circ}\) is clearly not.

We can see all this on the graph of tangent versus angle in Fig. 3-12c. In our maze problem, the argument of the inverse tangent is \(-3.07 / 13.60\), or -0.226 . On the graph draw a horizontal line through that value on the vertical axis. The line cuts through the darker plotted branch at \(-12.7^{\circ}\) and also through the lighter branch at \(167^{\circ}\). The first cut is what a calculator displays.

\section*{Sample Problem 3.04 Adding vectors, unit-vector components}

Figure 3-17a shows the following three vectors:
\[
\begin{aligned}
& \vec{a}=(4.2 \mathrm{~m}) \hat{\mathrm{i}}-(1.5 \mathrm{~m}) \hat{\mathrm{j}}, \\
& \vec{b}=(-1.6 \mathrm{~m}) \hat{\mathrm{i}}+(2.9 \mathrm{~m}), \\
& \overrightarrow{\mathrm{c}}=(-3.7 \mathrm{~m}) \hat{\mathrm{j}} .
\end{aligned}
\]
and
What is their vector sum \(\vec{r}\) which is also shown?


Figure 3-17 Vector \(\vec{r}\) is the vector sum of the other three vectors.

\section*{KEY IDEA}

We can add the three vectors by components, axis by axis, and then combine the components to write the vector sum \(\vec{r}\).
Calculations: For the \(x\) axis, we add the \(x\) components of \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\), to get the \(x\) component of the vector sum \(\vec{r}\) :
\[
\begin{aligned}
r_{x} & =a_{x}+b_{x}+c_{x} \\
& =4.2 \mathrm{~m}-1.6 \mathrm{~m}+0=2.6 \mathrm{~m}
\end{aligned}
\]

Similarly, for the \(y\) axis,
\[
\begin{aligned}
r_{y} & =a_{y}+b_{y}+c_{y} \\
& =-1.5 \mathrm{~m}+2.9 \mathrm{~m}-3.7 \mathrm{~m}=-2.3 \mathrm{~m}
\end{aligned}
\]

We then combine these components of \(\vec{r}\) to write the vector in unit-vector notation:
\[
\vec{r}=(2.6 \mathrm{~m}) \hat{\mathrm{i}}-(2.3 \mathrm{~m}) \hat{\mathrm{j}},
\]
(Answer)
where \((2.6 \mathrm{~m}) \hat{\mathrm{i}}\) is the vector component of \(\vec{r}\) along the \(x\) axis and \(-(2.3 \mathrm{~m}) \hat{\mathrm{j}}\) is that along the \(y\) axis. Figure \(3-17 b\) shows one way to arrange these vector components to form \(\vec{r}\). (Can you sketch the other way?)

We can also answer the question by giving the magnitude and an angle for \(\vec{r}\). From Eq.3-6, the magnitude is
\[
r=\sqrt{(2.6 \mathrm{~m})^{2}+(-2.3 \mathrm{~m})^{2}} \approx 3.5 \mathrm{~m}
\]
(Answer)
and the angle (measured from the \(+x\) direction) is
\[
\theta=\tan ^{-1}\left(\frac{-2.3 \mathrm{~m}}{2.6 \mathrm{~m}}\right)=-41^{\circ}
\]
(Answer)
where the minus sign means clockwise.

\section*{3-3 multiplying VECTORS}

\section*{Learning Objectives}

After reading this module, you should be able to .
3.09 Multiply vectors by scalars.
3.10 Identify that multiplying a vector by a scalar gives a vector, taking the dot (or scalar) product of two vectors gives a scalar, and taking the cross (or vector) product gives a new vector that is perpendicular to the original two.
3.11 Find the dot product of two vectors in magnitude-angle notation and in unit-vector notation.
3.12 Find the angle between two vectors by taking their dot product in both magnitude-angle notation and unit-vector notation.
3.13 Given two vectors, use a dot product to find how much of one vector lies along the other vector.
3.14 Find the cross product of two vectors in magnitudeangle and unit-vector notations.
3.15 Use the right-hand rule to find the direction of the vector that results from a cross product.
3.16 In nested products, where one product is buried inside another, follow the normal algebraic procedure by starting with the innermost product and working outward.

\section*{Key Ideas}
- The product of a scalar \(s\) and a vector \(\vec{v}\) is a new vector whose magnitude is \(s v\) and whose direction is the same as that of \(\vec{v}\) if \(s\) is positive, and opposite that of \(\vec{v}\) if \(s\) is negative. To divide \(\vec{v}\) by \(s\), multiply \(\vec{v}\) by \(1 / s\).
- The scalar (or dot) product of two vectors \(\vec{a}\) and \(\vec{b}\) is written \(\vec{a} \cdot \vec{b}\) and is the scalar quantity given by
\[
\vec{a} \cdot \vec{b}=a b \cos \phi,
\]
in which \(\phi\) is the angle between the directions of \(\vec{a}\) and \(\vec{b}\). A scalar product is the product of the magnitude of one vector and the scalar component of the second vector along the direction of the first vector. In unit-vector notation,
\[
\vec{a} \cdot \vec{b}=\left(a_{x} \hat{i}+a_{y} \hat{\mathrm{j}}+a_{z} \hat{\mathrm{k}}\right) \cdot\left(b_{x} \hat{\mathrm{i}}+b_{y} \hat{\mathrm{j}}+b_{z} \hat{\mathrm{k}}\right)
\]
which may be expanded according to the distributive law. Note that \(\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}\).
- The vector (or cross) product of two vectors \(\vec{a}\) and \(\vec{b}\) is written \(\vec{a} \times \vec{b}\) and is a vector \(\vec{c}\) whose magnitude \(c\) is given by
\[
c=a b \sin \phi,
\]
in which \(\phi\) is the smaller of the angles between the directions of \(\vec{a}\) and \(\vec{b}\). The direction of \(\vec{c}\) is perpendicular to the plane defined by \(\vec{a}\) and \(\vec{b}\) and is given by a right-hand rule, as shown in Fig. 3-19. Note that \(\vec{a} \times \vec{b}=-(\vec{b} \times \vec{a})\). In unit-vector notation,
\[
\vec{a} \times \vec{b}=\left(a_{x} \hat{i}+a_{y} \hat{\mathrm{j}}+a_{z} \hat{\mathrm{k}}\right) \times\left(b_{x} \hat{\mathrm{i}}+b_{y} \hat{\mathrm{j}}+b_{z} \hat{\mathrm{k}}\right)
\]
which we may expand with the distributive law.
- In nested products, where one product is buried inside another, follow the normal algebraic procedure by starting with the innermost product and working outward.

\section*{Multiplying Vectors*}

There are three ways in which vectors can be multiplied, but none is exactly like the usual algebraic multiplication. As you read this material, keep in mind that a vector-capable calculator will help you multiply vectors only if you understand the basic rules of that multiplication.

\section*{Multiplying a Vector by a Scalar}

If we multiply a vector \(\vec{a}\) by a scalar \(s\), we get a new vector. Its magnitude is the product of the magnitude of \(\vec{a}\) and the absolute value of \(s\). Its direction is the direction of \(\vec{a}\) if \(s\) is positive but the opposite direction if \(s\) is negative. To divide \(\vec{a}\) by \(s\), we multiply \(\vec{a}\) by \(1 / s\).

\section*{Multiplying a Vector by a Vector}

There are two ways to multiply a vector by a vector: one way produces a scalar (called the scalar product), and the other produces a new vector (called the vector product). (Students commonly confuse the two ways.)

\footnotetext{
*This material will not be employed until later (Chapter 7 for scalar products and Chapter 11 for vector products), and so your instructor may wish to postpone it.
}

\section*{The Scalar Product}

The scalar product of the vectors \(\vec{a}\) and \(\vec{b}\) in Fig. 3-18a is written as \(\vec{a} \cdot \vec{b}\) and defined to be
\[
\begin{equation*}
\vec{a} \cdot \vec{b}=a b \cos \phi \tag{3-20}
\end{equation*}
\]
where \(a\) is the magnitude of \(\vec{a}, b\) is the magnitude of \(\vec{b}\), and \(\phi\) is the angle between \(\vec{a}\) and \(\vec{b}\) (or, more properly, between the directions of \(\vec{a}\) and \(\vec{b}\) ). There are actually two such angles: \(\phi\) and \(360^{\circ}-\phi\). Either can be used in Eq. 3-20, because their cosines are the same.

Note that there are only scalars on the right side of Eq. 3-20 (including the value of \(\cos \phi\) ). Thus \(\vec{a} \cdot \vec{b}\) on the left side represents a scalar quantity. Because of the notation, \(\vec{a} \cdot \vec{b}\) is also known as the dot product and is spoken as "a dot b."

A dot product can be regarded as the product of two quantities: (1) the magnitude of one of the vectors and (2) the scalar component of the second vector along the direction of the first vector. For example, in Fig. 3-18b, \(\vec{a}\) has a scalar component \(a \cos \phi\) along the direction of \(\vec{b}\); note that a perpendicular dropped from the head of \(\vec{a}\) onto \(\vec{b}\) determines that component. Similarly, \(\vec{b}\) has a scalar component \(b \cos \phi\) along the direction of \(\vec{a}\).

If the angle \(\phi\) between two vectors is \(0^{\circ}\), the component of one vector along the other is maximum, and so also is the dot product of the vectors. If, instead, \(\phi\) is \(90^{\circ}\), the component of one vector along the other is zero, and so is the dot product.

Equation 3-20 can be rewritten as follows to emphasize the components:
\[
\begin{equation*}
\vec{a} \cdot \vec{b}=(a \cos \phi)(b)=(a)(b \cos \phi) \tag{3-21}
\end{equation*}
\]

The commutative law applies to a scalar product, so we can write
\[
\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}
\]

When two vectors are in unit-vector notation, we write their dot product as
\[
\begin{equation*}
\vec{a} \cdot \vec{b}=\left(a_{x} \hat{\mathrm{i}}+a_{y} \hat{\mathrm{j}}+a_{z} \hat{\mathrm{k}}\right) \cdot\left(b_{x} \hat{\mathrm{i}}+b_{y} \hat{\mathrm{j}}+b_{z} \hat{\mathrm{k}}\right) \tag{3-22}
\end{equation*}
\]
which we can expand according to the distributive law: Each vector component of the first vector is to be dotted with each vector component of the second vector. By doing so, we can show that
\[
\begin{equation*}
\vec{a} \cdot \vec{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z} \tag{3-23}
\end{equation*}
\]

(a)

Figure 3-18 (a) Two vectors \(\vec{a}\) and \(\vec{b}\), with an angle \(\phi\) between them. (b) Each vector has a component along the direction of the other vector.


\section*{Checkpoint 4}

Vectors \(\vec{C}\) and \(\vec{D}\) have magnitudes of 3 units and 4 units, respectively. What is the angle between the directions of \(\vec{C}\) and \(\vec{D}\) if \(\vec{C} \cdot \vec{D}\) equals (a) zero, (b) 12 units, and (c) -12 units?

\section*{The Vector Product}

The vector product of \(\vec{a}\) and \(\vec{b}\), written \(\vec{a} \times \vec{b}\), produces a third vector \(\vec{c}\) whose magnitude is
\[
\begin{equation*}
c=a b \sin \phi \tag{3-24}
\end{equation*}
\]
where \(\phi\) is the smaller of the two angles between \(\vec{a}\) and \(\vec{b}\). (You must use the smaller of the two angles between the vectors because \(\sin \phi\) and \(\sin \left(360^{\circ}-\phi\right)\) differ in algebraic sign.) Because of the notation, \(\vec{a} \times \vec{b}\) is also known as the cross product, and in speech it is "a cross b."

If \(\vec{a}\) and \(\vec{b}\) are parallel or antiparallel, \(\vec{a} \times \vec{b}=0\). The magnitude of \(\vec{a} \times \vec{b}\), which can be written as \(|\vec{a} \times \vec{b}|\), is maximum when \(\vec{a}\) and \(\vec{b}\) are perpendicular to each other.

The direction of \(\vec{c}\) is perpendicular to the plane that contains \(\vec{a}\) and \(\vec{b}\). Figure 3-19a shows how to determine the direction of \(\vec{c}=\vec{a} \times \vec{b}\) with what is known as a right-hand rule. Place the vectors \(\vec{a}\) and \(\vec{b}\) tail to tail without altering their orientations, and imagine a line that is perpendicular to their plane where they meet. Pretend to place your right hand around that line in such a way that your fingers would sweep \(\vec{a}\) into \(\vec{b}\) through the smaller angle between them. Your outstretched thumb points in the direction of \(\vec{c}\).

The order of the vector multiplication is important. In Fig. 3-19b, we are determining the direction of \(\vec{c}^{\prime}=\vec{b} \times \vec{a}\), so the fingers are placed to sweep \(\vec{b}\) into \(\vec{a}\) through the smaller angle. The thumb ends up in the opposite direction from previously, and so it must be that \(\vec{c}^{\prime}=-\vec{c}\); that is,
\[
\begin{equation*}
\vec{b} \times \vec{a}=-(\vec{a} \times \vec{b}) \tag{3-25}
\end{equation*}
\]

In other words, the commutative law does not apply to a vector product.
In unit-vector notation, we write
\[
\begin{equation*}
\vec{a} \times \vec{b}=\left(a_{x} \hat{\mathrm{i}}+a_{y} \hat{\mathrm{j}}+a_{z} \hat{\mathrm{k}}\right) \times\left(b_{x} \hat{\mathrm{i}}+b_{y} \hat{\mathrm{j}}+b_{z} \hat{\mathrm{k}}\right) \tag{3-26}
\end{equation*}
\]
which can be expanded according to the distributive law; that is, each component of the first vector is to be crossed with each component of the second vector. The cross products of unit vectors are given in Appendix E (see "Products of Vectors"). For example, in the expansion of Eq. 3-26, we have
\[
a_{x} \hat{\mathrm{i}} \times b_{x} \hat{\mathrm{i}}=a_{x} b_{x}(\hat{\mathrm{i}} \times \hat{\mathrm{i}})=0
\]
because the two unit vectors \(\hat{i}\) and \(\hat{i}\) are parallel and thus have a zero cross product. Similarly, we have
\[
a_{x} \hat{\mathrm{i}} \times b_{y} \hat{\mathrm{j}}=a_{x} b_{y}(\hat{\mathrm{i}} \times \hat{\mathrm{j}})=a_{x} b_{y} \hat{\mathrm{k}} .
\]

In the last step we used Eq. 3-24 to evaluate the magnitude of \(\hat{i} \times \hat{j}\) as unity. (These vectors \(\hat{i}\) and \(\hat{j}\) each have a magnitude of unity, and the angle between them is \(90^{\circ}\).) Also, we used the right-hand rule to get the direction of \(\hat{i} \times \hat{j}\) as being in the positive direction of the \(z\) axis (thus in the direction of \(\hat{\mathrm{k}}\) ).

Continuing to expand Eq. 3-26, you can show that
\[
\begin{equation*}
\vec{a} \times \vec{b}=\left(a_{y} b_{z}-b_{y} a_{z}\right) \hat{\mathrm{i}}+\left(a_{z} b_{x}-b_{z} a_{x}\right) \hat{\mathrm{j}}+\left(a_{x} b_{y}-b_{x} a_{y}\right) \hat{\mathrm{k}} \tag{3-27}
\end{equation*}
\]

A determinant (Appendix E) or a vector-capable calculator can also be used.
To check whether any \(x y z\) coordinate system is a right-handed coordinate system, use the right-hand rule for the cross product \(\hat{\mathrm{i}} \times \hat{\mathrm{j}}=\hat{\mathrm{k}}\) with that system. If your fingers sweep \(\hat{i}\) (positive direction of \(x\) ) into \(\hat{j}\) (positive direction of \(y\) ) with the outstretched thumb pointing in the positive direction of \(z\) (not the negative direction), then the system is right-handed.

\section*{Checkpoint 5}

Vectors \(\vec{C}\) and \(\vec{D}\) have magnitudes of 3 units and 4 units, respectively. What is the angle between the directions of \(\vec{C}\) and \(\vec{D}\) if the magnitude of the vector product \(\vec{C} \times \vec{D}\) is (a) zero and (b) 12 units?

(a)

(b)

Figure 3-19 Illustration of the right-hand rule for vector products. (a) Sweep vector \(\vec{a}\) into vector \(\vec{b}\) with the fingers of your right hand. Your outstretched thumb shows the direction of vector \(\vec{c}=\vec{a} \times \vec{b}\). (b) Showing that \(\vec{b} \times \vec{a}\) is the reverse of \(\vec{a} \times \vec{b}\).

\section*{Sample Problem 3.05 Angle between two vectors using dot products}

What is the angle \(\phi\) between \(\vec{a}=3.0 \hat{\mathrm{i}}-4.0 \hat{\mathrm{j}}\) and \(\vec{b}=\) \(-2.0 \hat{\mathrm{i}}+3.0 \hat{\mathrm{k}}\) ? (Caution: Although many of the following steps can be bypassed with a vector-capable calculator, you will learn more about scalar products if, at least here, you use these steps.)

\section*{KEY IDEA}

The angle between the directions of two vectors is included in the definition of their scalar product (Eq. 3-20):
\[
\begin{equation*}
\vec{a} \cdot \vec{b}=a b \cos \phi \tag{3-28}
\end{equation*}
\]

Calculations: In Eq. 3-28, \(a\) is the magnitude of \(\vec{a}\), or
\[
\begin{equation*}
a=\sqrt{3.0^{2}+(-4.0)^{2}}=5.00 \tag{3-29}
\end{equation*}
\]
and \(b\) is the magnitude of \(\vec{b}\), or
\[
\begin{equation*}
b=\sqrt{(-2.0)^{2}+3.0^{2}}=3.61 \tag{3-30}
\end{equation*}
\]

We can separately evaluate the left side of Eq. 3-28 by writing the vectors in unit-vector notation and using the distributive law:
\[
\begin{aligned}
\vec{a} \cdot \vec{b}= & (3.0 \hat{\mathrm{i}}-4.0 \hat{\mathrm{j}}) \cdot(-2.0 \hat{\mathrm{i}}+3.0 \hat{\mathrm{k}}) \\
= & (3.0 \hat{\mathrm{i}}) \cdot(-2.0 \hat{\mathrm{i}})+(3.0 \hat{\mathrm{i}}) \cdot(3.0 \hat{\mathrm{k}}) \\
& +(-4.0 \hat{\mathrm{j}}) \cdot(-2.0 \hat{\mathrm{i}})+(-4.0 \hat{\mathrm{j}}) \cdot(3.0 \hat{\mathrm{k}}) .
\end{aligned}
\]

We next apply Eq. 3-20 to each term in this last expression. The angle between the unit vectors in the first term ( \(\hat{i}\) and \(\hat{i}\) ) is \(0^{\circ}\), and in the other terms it is \(90^{\circ}\). We then have
\[
\begin{aligned}
\vec{a} \cdot \vec{b} & =-(6.0)(1)+(9.0)(0)+(8.0)(0)-(12)(0) \\
& =-6.0
\end{aligned}
\]

Substituting this result and the results of Eqs. 3-29 and 3-30 into Eq. 3-28 yields
\[
\begin{gathered}
-6.0=(5.00)(3.61) \cos \phi, \\
\text { so } \quad \phi=\cos ^{-1} \frac{-6.0}{(5.00)(3.61)}=109^{\circ} \approx 110^{\circ} .
\end{gathered}
\]
(Answer)

\section*{Sample Problem 3.06 Cross product, right-hand rule}

In Fig. 3-20, vector \(\vec{a}\) lies in the \(x y\) plane, has a magnitude of 18 units, and points in a direction \(250^{\circ}\) from the positive direction of the \(x\) axis. Also, vector \(\vec{b}\) has a magnitude of 12 units and points in the positive direction of the \(z\) axis. What is the vector product \(\vec{c}=\vec{a} \times \vec{b}\) ?

\section*{KEY IDEA}

When we have two vectors in magnitude-angle notation, we find the magnitude of their cross product with Eq. 3-24 and the direction of their cross product with the right-hand rule of Fig. 3-19.

Calculations: For the magnitude we write
\[
c=a b \sin \phi=(18)(12)\left(\sin 90^{\circ}\right)=216
\]
(Answer)
To determine the direction in Fig. 3-20, imagine placing the fingers of your right hand around a line perpendicular to the plane of \(\vec{a}\) and \(\vec{b}\) (the line on which \(\vec{c}\) is shown) such that your fingers sweep \(\vec{a}\) into \(\vec{b}\). Your outstretched thumb then


Figure 3-20 Vector \(\vec{c}\) (in the \(x y\) plane) is the vector (or cross) product of vectors \(\vec{a}\) and \(\vec{b}\).
gives the direction of \(\vec{c}\). Thus, as shown in the figure, \(\vec{c}\) lies in the \(x y\) plane. Because its direction is perpendicular to the direction of \(\vec{a}\) (a cross product always gives a perpendicular vector), it is at an angle of
\[
250^{\circ}-90^{\circ}=160^{\circ}
\]
(Answer)
from the positive direction of the \(x\) axis.

\section*{Sample Problem 3.07 Cross product, unit-vector notation}

If \(\vec{a}=3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}\) and \(\vec{b}=-2 \hat{\mathrm{i}}+3 \hat{\mathrm{k}}\), what is \(\vec{c}=\vec{a} \times \vec{b}\) ?

\section*{KEY IDEA}

When two vectors are in unit-vector notation, we can find their cross product by using the distributive law.

Calculations: Here we write
\[
\begin{aligned}
\vec{c}= & (3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}) \times(-2 \hat{\mathrm{i}}+3 \hat{\mathrm{k}}) \\
= & 3 \hat{\mathrm{i}} \times(-2 \hat{\mathrm{i}})+3 \hat{\mathrm{i}} \times 3 \hat{\mathrm{k}}+(-4 \hat{\mathrm{j}}) \times(-2 \hat{\mathrm{i}}) \\
& +(-4 \hat{\mathrm{j}}) \times 3 \hat{\mathrm{k}} .
\end{aligned}
\]

We next evaluate each term with Eq. 3-24, finding the direction with the right-hand rule. For the first term here, the angle \(\phi\) between the two vectors being crossed is 0 . For the other terms, \(\phi\) is \(90^{\circ}\). We find
\[
\begin{aligned}
\vec{c} & =-6(0)+9(-\hat{\mathrm{j}})+8(-\hat{\mathrm{k}})-12 \hat{\mathrm{i}} \\
& =-12 \hat{\mathrm{i}}-9 \hat{\mathrm{j}}-8 \hat{\mathrm{k}}
\end{aligned}
\]
(Answer)

This vector \(\vec{c}\) is perpendicular to both \(\vec{a}\) and \(\vec{b}\), a fact you can check by showing that \(\vec{c} \cdot \vec{a}=0\) and \(\vec{c} \cdot \vec{b}=0\); that is, there is no component of \(\vec{c}\) along the direction of either \(\vec{a}\) or \(\vec{b}\).

In general: A cross product gives a perpendicular vector, two perpendicular vectors have a zero dot product, and two vectors along the same axis have a zero cross product.

\section*{8eview \& Summary}

Scalars and Vectors Scalars, such as temperature, have magnitude only. They are specified by a number with a unit \(\left(10^{\circ} \mathrm{C}\right)\) and obey the rules of arithmetic and ordinary algebra. Vectors, such as displacement, have both magnitude and direction ( 5 m , north) and obey the rules of vector algebra.

Adding Vectors Geometrically Two vectors \(\vec{a}\) and \(\vec{b}\) may be added geometrically by drawing them to a common scale and placing them head to tail. The vector connecting the tail of the first to the head of the second is the vector sum \(\vec{s}\). To subtract \(\vec{b}\) from \(\vec{a}\), reverse the direction of \(\vec{b}\) to get \(-\vec{b}\); then add \(-\vec{b}\) to \(\vec{a}\). Vector addition is commutative
\[
\begin{equation*}
\vec{a}+\vec{b}=\vec{b}+\vec{a} \tag{3-2}
\end{equation*}
\]
and obeys the associative law
\[
\begin{equation*}
(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c}) . \tag{3-3}
\end{equation*}
\]

Components of a Vector The (scalar) components \(a_{x}\) and \(a_{y}\) of any two-dimensional vector \(\vec{a}\) along the coordinate axes are found by dropping perpendicular lines from the ends of \(\vec{a}\) onto the coordinate axes. The components are given by
\[
\begin{equation*}
a_{x}=a \cos \theta \quad \text { and } \quad a_{y}=a \sin \theta, \tag{3-5}
\end{equation*}
\]
where \(\theta\) is the angle between the positive direction of the \(x\) axis and the direction of \(\vec{a}\). The algebraic sign of a component indicates its direction along the associated axis. Given its components, we can find the magnitude and orientation (direction) of the vector \(\vec{a}\) by using
\[
\begin{equation*}
a=\sqrt{a_{x}^{2}+a_{y}^{2}} \quad \text { and } \tan \theta=\frac{a_{y}}{a_{x}} \tag{3-6}
\end{equation*}
\]

Unit-Vector Notation Unit vectors \(\hat{i}, \hat{\mathrm{j}}\), and \(\hat{\mathrm{k}}\) have magnitudes of unity and are directed in the positive directions of the \(x, y\), and \(z\) axes, respectively, in a right-handed coordinate system (as defined by the vector products of the unit vectors). We can write a vector \(\vec{a}\) in terms of unit vectors as
\[
\begin{equation*}
\vec{a}=a_{x} \hat{\mathrm{i}}+a_{y} \hat{\mathrm{j}}+a_{z} \hat{\mathrm{k}}, \tag{3-7}
\end{equation*}
\]
in which \(a_{x} \hat{i}, a_{y} \hat{\mathrm{j}}\), and \(a_{z} \hat{\mathrm{k}}\) are the vector components of \(\vec{a}\) and \(a_{x}, a_{y}\), and \(a_{z}\) are its scalar components.

Adding Vectors in Component Form To add vectors in component form, we use the rules
\[
\begin{equation*}
r_{x}=a_{x}+b_{x} \quad r_{y}=a_{y}+b_{y} \quad r_{z}=a_{z}+b_{z} . \tag{3-10to3-12}
\end{equation*}
\]

Here \(\vec{a}\) and \(\vec{b}\) are the vectors to be added, and \(\vec{r}\) is the vector sum. Note that we add components axis by axis.We can then express the sum in unit-vector notation or magnitude-angle notation.

Product of a Scalar and a Vector The product of a scalar \(s\) and a vector \(\vec{v}\) is a new vector whose magnitude is \(s v\) and whose direction is the same as that of \(\vec{v}\) if \(s\) is positive, and opposite that of \(\vec{v}\) if \(s\) is negative. (The negative sign reverses the vector.) To divide \(\vec{v}\) by \(s\), multiply \(\vec{v}\) by \(1 / s\).

The Scalar Product The scalar (or dot) product of two vectors \(\vec{a}\) and \(\vec{b}\) is written \(\vec{a} \cdot \vec{b}\) and is the scalar quantity given by
\[
\begin{equation*}
\vec{a} \cdot \vec{b}=a b \cos \phi, \tag{3-20}
\end{equation*}
\]
in which \(\phi\) is the angle between the directions of \(\vec{a}\) and \(\vec{b}\). A scalar product is the product of the magnitude of one vector and the scalar component of the second vector along the direction of the first vector. Note that \(\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}\), which means that the scalar product obeys the commutative law.

In unit-vector notation,
\[
\begin{equation*}
\vec{a} \cdot \vec{b}=\left(a_{x} \hat{i}+a_{y} \hat{\mathrm{j}}+a_{z} \hat{\mathrm{k}}\right) \cdot\left(b_{x} \hat{\mathrm{i}}+b_{y} \hat{\mathrm{j}}+b_{z} \hat{\mathrm{k}}\right), \tag{3-22}
\end{equation*}
\]
which may be expanded according to the distributive law.
The Vector Product The vector (or cross) product of two vectors \(\vec{a}\) and \(\vec{b}\) is written \(\vec{a} \times \vec{b}\) and is a vector \(\vec{c}\) whose magnitude \(c\) is given by
\[
\begin{equation*}
c=a b \sin \phi, \tag{3-24}
\end{equation*}
\]
in which \(\phi\) is the smaller of the angles between the directions of \(\vec{a}\) and \(\vec{b}\). The direction of \(\vec{c}\) is perpendicular to the plane defined by \(\vec{a}\) and \(\vec{b}\) and is given by a right-hand rule, as shown in Fig. 3-19. Note that \(\vec{a} \times \vec{b}=-(\vec{b} \times \vec{a})\), which means that the vector product does not obey the commutative law.

In unit-vector notation,
\[
\begin{equation*}
\vec{a} \times \vec{b}=\left(a_{x} \hat{i}+a_{y} \hat{\mathrm{j}}+a_{z} \hat{\mathrm{k}}\right) \times\left(b_{x} \hat{\mathrm{i}}+b_{y} \hat{\mathrm{j}}+b_{z} \hat{\mathrm{k}}\right) \tag{3-26}
\end{equation*}
\]
which we may expand with the distributive law.

\section*{Questions}

1 Can the sum of the magnitudes of two vectors ever be equal to the magnitude of the sum of the same two vectors? If no, why not? If yes, when?
2 The two vectors shown in Fig. 3-21 lie in an \(x y\) plane. What are the signs of the \(x\) and \(y\) components, respectively, of (a) \(\vec{d}_{1}+\vec{d}_{2}\), (b) \(\vec{d}_{1}-\vec{d}_{2}\), and (c) \(\vec{d}_{2}-\vec{d}_{1}\) ?

3 Being part of the "Gators," the University of Florida golfing team must play on a putting green with an alligator pit. Figure 3-22 shows an overhead view of one putting challenge of the team; an \(x y\) coordinate system is superimposed. Team members must putt from the origin to the hole, which is at \(x y\) coordinates ( 8 m , 12 m ), but they can putt the golf ball using only one or more of the following displacements, one or more times:
\[
\vec{d}_{1}=(8 \mathrm{~m}) \hat{\mathrm{i}}+(6 \mathrm{~m}) \hat{\mathrm{j}}, \quad \vec{d}_{2}=(6 \mathrm{~m}) \hat{\mathrm{j}}, \quad \vec{d}_{3}=(8 \mathrm{~m}) \hat{\mathrm{i}} .
\]

The pit is at coordinates \((8 \mathrm{~m}, 6 \mathrm{~m})\). If a team member putts the ball into or through the pit, the member is automatically transferred to Florida State University, the arch rival. What sequence of displacements should a team member use to avoid the pit and the school transfer?
4 Equation 3-2 shows that the addition of two vectors \(\vec{a}\) and \(\vec{b}\) is commutative. Does that mean subtraction is commutative, so that \(\vec{a}-\vec{b}=\vec{b}-\vec{a}\) ?
5 Which of the arrangements of axes in Fig. 3-23 can be labeled "right-handed coordinate system"? As usual, each axis label indicates the positive side of the axis.



Figure 3-21 Question 2.


Figure 3-22 Question 3.

10 Figure 3-25 shows vector \(\vec{A}\) and four other vectors that have the same magnitude but differ in orientation. (a) Which of those other four vectors have the same dot product with \(\vec{A}\) ? (b) Which have a negative dot product with \(\vec{A}\) ?

11 In a game held within a threedimensional maze, you must move


Figure 3-25 Question 10. your game piece from start, at \(x y z\) coordinates \((0,0,0)\), to finish, at coordinates ( \(-2 \mathrm{~cm}, 4 \mathrm{~cm},-4 \mathrm{~cm}\) ). The game piece can undergo only the displacements (in centimeters) given below. If, along the way, the game piece lands at coordinates ( \(-5 \mathrm{~cm},-1 \mathrm{~cm},-1 \mathrm{~cm}\) ) or ( \(5 \mathrm{~cm}, 2 \mathrm{~cm},-1 \mathrm{~cm}\) ), you lose the game. Which displacements and in what sequence will get your game piece to finish?
\[
\begin{array}{ll}
\vec{p}=-7 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}} & \vec{r}=2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}} \\
\vec{q}=2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+4 \hat{\mathrm{k}} & \vec{s}=3 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}-3 \hat{\mathrm{k}} .
\end{array}
\]

12 The \(x\) and \(y\) components of four vectors \(\vec{a}, \vec{b}, \vec{c}\), and \(\vec{d}\) are given below. For which vectors will your calculator give you the correct angle \(\theta\) when you use it to find \(\theta\) with Eq. 3-6? Answer first by examining Fig. 3-12, and then check your answers with your calculator.
\[
\begin{array}{llll}
a_{x}=3 & a_{y}=3 & c_{x}=-3 & c_{y}=-3 \\
b_{x}=-3 & b_{y}=3 & d_{x}=3 & d_{y}=-3 .
\end{array}
\]

13 Which of the following are correct (meaningful) vector expressions? What is wrong with any incorrect expression?
(a) \(\vec{A} \cdot(\vec{B} \cdot \vec{C})\)
(f) \(\vec{A}+(\vec{B} \times \vec{C})\)
(b) \(\vec{A} \times(\vec{B} \cdot \vec{C})\)
(g) \(5+\vec{A}\)
(c) \(\vec{A} \cdot(\vec{B} \times \vec{C})\)
(h) \(5+(\vec{B} \cdot \vec{C})\)
(d) \(\vec{A} \times(\vec{B} \times \vec{C})\)
(i) \(5+(\vec{B} \times \vec{C})\)
(e) \(\vec{A}+(\vec{B} \cdot \vec{C})\)
(j) \((\vec{A} \cdot \vec{B})+(\vec{B} \times \vec{C})\)

\section*{8roblems}


\section*{Module 3-1 Vectors and Their Components}
\(\bullet 1\) SSM What are (a) the \(x\) component and (b) the \(y\) component of a vector \(\vec{a}\) in the \(x y\) plane if its direction is \(250^{\circ}\) counterclockwise from the positive direction of the \(x\) axis and its magnitude is 7.3 m ?
-2 A displacement vector \(\vec{r}\) in the \(x y\) plane is 15 m long and directed at angle \(\theta=30^{\circ}\) in Fig. 3-26. Determine (a) the \(x\) component and (b) the \(y\) component of the vector.


Figure 3-26
Problem 2.
\(\cdot 3\) sSm The \(x\) component of vector \(\vec{A}\) is
-25.0 m and the \(y\) component is +40.0 m . (a) What is the magnitude of \(\vec{A}\) ? (b) What is the angle between the direction of \(\vec{A}\) and the positive direction of \(x\) ?
-4 Express the following angles in radians: (a) \(20.0^{\circ}\), (b) \(50.0^{\circ}\), (c) \(100^{\circ}\). Convert the following angles to degrees: (d) 0.330 rad , (e) 2.10 rad , (f) 7.70 rad .
-5 A ship sets out to sail to a point 120 km due north. An unexpected storm blows the ship to a point 100 km due east of its starting point. (a) How far and (b) in what direction must it now sail to reach its original destination?
-6 In Fig. 3-27, a heavy piece of machinery is raised by sliding it a distance \(d=12.5 \mathrm{~m}\) along a plank oriented at angle \(\theta=20.0^{\circ}\) to the horizontal. How far is it moved (a) vertically and (b) horizontally?
-7 Consider two displacements, one of magnitude 3 m and another


Figure 3-27 Problem 6. of magnitude 4 m . Show how the displacement vectors may be combined to get a resultant displacement of magnitude (a) 7 m , (b) 1 m , and (c) 5 m .

\section*{Module 3-2 Unit Vectors, Adding Vectors by Components}
-8 A person walks in the following pattern: 3.1 km north, then 2.4 km west, and finally 5.2 km south. (a) Sketch the vector diagram that represents this motion. (b) How far and (c) in what direction would a bird fly in a straight line from the same starting point to the same final point?
-9 Two vectors are given by
and \(\quad \vec{b}=(-1.0 \mathrm{~m}) \hat{\mathrm{i}}+(1.0 \mathrm{~m}) \hat{\mathrm{j}}+(4.0 \mathrm{~m}) \hat{\mathrm{k}}\).
In unit-vector notation, find (a) \(\vec{a}+\vec{b}\), (b) \(\vec{a}-\vec{b}\), and (c) a third vector \(\vec{c}\) such that \(\vec{a}-\vec{b}+\vec{c}=0\).
-10 Find the (a) \(x\), (b) \(y\), and (c) \(z\) components of the sum \(\vec{r}\) of the displacements \(\vec{c}\) and \(\vec{d}\) whose components in meters are \(c_{x}=7.4, c_{y}=-3.8, c_{z}=-6.1 ; d_{x}=4.4, d_{y}=-2.0, d_{z}=3.3\).
\(\cdot 11\) SSM (a) In unit-vector notation, what is the sum \(\vec{a}+\vec{b}\) if \(\vec{a}=(4.0 \mathrm{~m}) \hat{\mathrm{i}}+(3.0 \mathrm{~m}) \hat{\mathrm{j}}\) and \(\vec{b}=(-13.0 \mathrm{~m}) \hat{\mathrm{i}}+(7.0 \mathrm{~m}) \hat{\mathrm{j}}\) ? What are the (b) magnitude and (c) direction of \(\vec{a}+\vec{b}\) ?
-12 A car is driven east for a distance of 50 km , then north for 30 km , and then in a direction \(30^{\circ}\) east of north for 25 km . Sketch the vector diagram and determine (a) the magnitude and (b) the angle of the car's total displacement from its starting point.
-13 A person desires to reach a point that is 3.40 km from her present location and in a direction that is \(35.0^{\circ}\) north of east. However, she must travel along streets that are oriented either north-south or east-west. What is the minimum distance she could travel to reach her destination?
-14 You are to make four straight-line moves over a flat desert floor, starting at the origin of an \(x y\) coordinate system and ending at the \(x y\) coordinates \((-140 \mathrm{~m}, 30 \mathrm{~m})\). The \(x\) component and \(y\) component of your moves are the following, respectively, in meters: (20 and 60), then ( \(b_{x}\) and -70 ), then ( -20 and \(c_{y}\) ), then \((-60\) and -70 ). What are (a) component \(b_{x}\) and (b) component \(c_{y}\) ? What are (c) the magnitude and (d) the angle (relative to the positive direction of the \(x\) axis) of the overall displacement?
-15 SSm ILw www The two vectors \(\vec{a}\) and \(\vec{b}\) in Fig. 3-28 have equal magnitudes of 10.0 m and the angles are \(\theta_{1}=30^{\circ}\) and \(\theta_{2}=105^{\circ}\). Find the (a) \(x\) and (b) \(y\) components of their vector sum \(\vec{r}\), (c) the magnitude of \(\vec{r}\), and (d) the angle \(\vec{r}\) makes with the positive direction of the \(x\) axis.
-16 For the displacement vectors \(\vec{a}=(3.0 \mathrm{~m}) \hat{\mathrm{i}}+(4.0 \mathrm{~m}) \hat{\mathrm{j}}\) and \(\vec{b}=\) \((5.0 \mathrm{~m}) \hat{\mathrm{i}}+(-2.0 \mathrm{~m}) \hat{\mathrm{j}}\), give \(\vec{a}+\vec{b}\) in (a) unit-vector notation, and as (b) a


Figure 3-28 Problem 15. magnitude and (c) an angle (relative to \(\hat{\mathrm{i}}\) ). Now give \(\vec{b}-\vec{a}\) in (d) unit-vector notation, and as (e) a magnitude and (f) an angle.
-17 ๘0 ILw Three vectors \(\vec{a}, \vec{b}\), and \(\vec{c}\) each have a magnitude of 50 m and lie in an \(x y\) plane. Their directions relative to the positive direction of the \(x\) axis are \(30^{\circ}, 195^{\circ}\), and \(315^{\circ}\), respectively. What are
(a) the magnitude and (b) the angle of the vector \(\vec{a}+\vec{b}+\vec{c}\), and
(c) the magnitude and (d) the angle of \(\vec{a}-\vec{b}+\vec{c}\) ? What are the (e) magnitude and (f) angle of a fourth vector \(\vec{d}\) such that \((\vec{a}+\vec{b})-(\vec{c}+\vec{d})=0\) ?
-18 In the sum \(\vec{A}+\vec{B}=\vec{C}\), vector \(\vec{A}\) has a magnitude of 12.0 m and is angled \(40.0^{\circ}\) counterclockwise from the \(+x\) direction, and vector \(\vec{C}\) has a magnitude of 15.0 m and is angled \(20.0^{\circ}\) counterclockwise from the \(-x\) direction. What are (a) the magnitude and (b) the angle (relative to \(+x\) ) of \(\vec{B}\) ?
-19 In a game of lawn chess, where pieces are moved between the centers of squares that are each 1.00 m on edge, a knight is moved in the following way: (1) two squares forward, one square rightward; (2) two squares leftward, one square forward; (3) two squares forward, one square leftward. What are (a) the magnitude and (b) the angle (relative to "forward") of the knight's overall displacement for the series of three moves?
-20 An explorer is caught in a whiteout (in which the snowfall is so thick that the ground cannot be distinguished from the sky) while returning to base camp. He was supposed to travel due north for 5.6 km , but when the snow clears, he discovers that he actually traveled 7.8 km at \(50^{\circ}\) north of due east. (a) How far and (b) in what direction must he now travel to reach base camp?
-•21 ©0 An ant, crazed by the Sun on a hot Texas afternoon, darts over an \(x y\) plane scratched in the dirt. The \(x\) and \(y\) components of four consecutive darts are the following, all in centimeters: (30.0, \(40.0),\left(b_{x},-70.0\right),\left(-20.0, c_{y}\right),(-80.0,-70.0)\). The overall displacement of the four darts has the \(x y\) components \((-140,-20.0)\). What are (a) \(b_{x}\) and (b) \(c_{y}\) ? What are the (c) magnitude and (d) angle (relative to the positive direction of the \(x\) axis) of the overall displacement?
0022 (a) What is the sum of the following four vectors in unitvector notation? For that sum, what are (b) the magnitude, (c) the angle in degrees, and (d) the angle in radians?
\[
\begin{array}{ll}
\vec{E}: 6.00 \mathrm{~m} \text { at }+0.900 \mathrm{rad} & \vec{F}: 5.00 \mathrm{~m} \text { at }-75.0^{\circ} \\
\vec{G}: 4.00 \mathrm{~m} \text { at }+1.20 \mathrm{rad} & \vec{H}: 6.00 \mathrm{~m} \text { at }-210^{\circ}
\end{array}
\]
-23 If \(\vec{B}\) is added to \(\vec{C}=3.0 \hat{\mathrm{i}}+4.0 \hat{\mathrm{j}}\), the result is a vector in the positive direction of the \(y\) axis, with a magnitude equal to that of \(\vec{C}\). What is the magnitude of \(\vec{B}\) ?
\(\bullet 24\) ©o Vector \(\vec{A}\), which is directed along an \(x\) axis, is to be added to vector \(\vec{B}\), which has a magnitude of 7.0 m . The sum is a third vector that is directed along the \(y\) axis, with a magnitude that is 3.0 times that of \(\vec{A}\). What is that magnitude of \(\vec{A}\) ?
\(\bullet 25\) ©0 Oasis \(B\) is 25 km due east of oasis \(A\). Starting from oasis \(A\), a camel walks 24 km in a direction \(15^{\circ}\) south of east and then walks 8.0 km due north. How far is the camel then from oasis \(B\) ?
\(\bullet 26\) What is the sum of the following four vectors in (a) unitvector notation, and as (b) a magnitude and (c) an angle?
\[
\begin{array}{ll}
\vec{A}=(2.00 \mathrm{~m}) \hat{\mathrm{i}}+(3.00 \mathrm{~m}) \hat{\mathrm{j}} & \vec{B}: 4.00 \mathrm{~m}, \text { at }+65.0^{\circ} \\
\vec{C}=(-4.00 \mathrm{~m}) \hat{\mathrm{i}}+(-6.00 \mathrm{~m}) \hat{\mathrm{j}} & \vec{D}: 5.00 \mathrm{~m}, \text { at }-235^{\circ}
\end{array}
\]
-27 ๔๐ If \(\vec{d}_{1}+\vec{d}_{2}=5 \vec{d}_{3}, \vec{d}_{1}-\vec{d}_{2}=3 \vec{d}_{3}\), and \(\vec{d}_{3}=2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}\), then what are, in unit-vector notation, (a) \(\vec{d}_{1}\) and (b) \(\vec{d}_{2}\) ?
\(\bullet 28\) Two beetles run across flat sand, starting at the same point. Beetle 1 runs 0.50 m due east, then 0.80 m at \(30^{\circ}\) north of due east. Beetle 2 also makes two runs; the first is 1.6 m at \(40^{\circ}\) east of due north. What must be (a) the magnitude and (b) the direction of its second run if it is to end up at the new location of beetle 1 ?
\(\bullet 29\) © Typical backyard ants often create a network of chemical trails for guidance. Extending outward from the nest, a trail branches (bifurcates) repeatedly, with \(60^{\circ}\) between the branches. If a roaming ant chances upon a trail, it can tell the way to the nest at any branch point: If it is moving away from the nest, it has two choices of path requiring a small turn in its travel direction, either \(30^{\circ}\) leftward or \(30^{\circ}\) rightward. If it is moving toward the nest, it has only one such choice. Figure 3-29 shows a typical ant trail, with lettered straight sections of 2.0 cm length and symmetric bifurcation of \(60^{\circ}\). Path \(v\) is parallel to the \(y\) axis. What are the (a) magnitude and (b) angle (relative to the positive direction of the superimposed \(x\) axis) of
an ant's displacement from the nest (find it in the figure) if the ant enters the trail at point \(A\) ? What are the (c) magnitude and (d) angle if it enters at point \(B\) ?


Figure 3-29 Problem 29.
-030 © Here are two vectors:
\[
\vec{a}=(4.0 \mathrm{~m}) \hat{\mathrm{i}}-(3.0 \mathrm{~m}) \hat{\mathrm{j}} \quad \text { and } \quad \vec{b}=(6.0 \mathrm{~m}) \hat{\mathrm{i}}+(8.0 \mathrm{~m}) \hat{\mathrm{j}} .
\]

What are (a) the magnitude and (b) the angle (relative to \(\hat{i}\) ) of \(\vec{a}\) ? What are (c) the magnitude and (d) the angle of \(\vec{b}\) ? What are (e) the magnitude and (f) the angle of \(\vec{a}+\vec{b}\); (g) the magnitude and (h) the angle of \(\vec{b}-\vec{a}\); and (i) the magnitude and (j) the angle of \(\vec{a}-\vec{b}\) ? (k) What is the angle between the directions of \(\vec{b}-\vec{a}\) and \(\vec{a}-\vec{b}\) ?
-031 In Fig. 3-30, a vector \(\vec{a}\) with a magnitude of 17.0 m is directed at angle \(\theta=56.0^{\circ}\) counterclockwise from the \(+x\) axis. What are the components (a) \(a_{x}\) and (b) \(a_{y}\) of the vector? A second coordinate system is inclined by angle \(\theta^{\prime}=18.0^{\circ}\) with respect to the first. What are the components (c) \(a_{x}^{\prime}\) and (d) \(a_{y}^{\prime}\) in this primed coordinate system?


Figure 3-30 Problem 31.
\({ }^{\circ 0032}\) In Fig. 3-31, a cube of edge length \(a\) sits with one corner at the origin of an \(x y z\) coordinate system. A body diagonal is a line that extends from one corner to another through the center. In unit-vector notation, what is the body diagonal that extends from the corner at (a) coordinates ( 0 , \(0,0)\), (b) coordinates ( \(a, 0,0\) ), (c) coordinates \((0, a, 0)\), and (d) coordinates \((a, a, 0)\) ? (e) Determine the


Figure 3-31 Problem 32.
angles that the body diagonals make with the adjacent edges. (f) Determine the length of the body diagonals in terms of \(a\).

\section*{Module 3-3 Multiplying Vectors}
-33 For the vectors in Fig. 3-32, with \(a=4, b=3\), and \(c=5\), what are (a) the magnitude and (b) the direction of \(\vec{a} \times \vec{b}\), (c) the magnitude and (d) the direction of \(\vec{a} \times \vec{c}\), and (e) the magnitude and (f) the direction of \(\vec{b} \times \vec{c}\) ? (The \(z\) axis is not shown.)
-34 Two vectors are presented as \(\vec{a}=3.0 \hat{\mathrm{i}}+5.0 \hat{\mathrm{j}}\) and \(\vec{b}=2.0 \hat{\mathrm{i}}+4.0 \hat{\mathrm{j}}\). Find (a) \(\vec{a} \times \vec{b}\), (b) \(\vec{a} \cdot \vec{b}\), (c) \((\vec{a}+\vec{b}) \cdot \vec{b}\), and (d) the component of \(\vec{a}\) along the direction of \(\vec{b}\). (Hint: For (d), consider Eq. 3-20


Figure 3-32
Problems 33 and 54. and Fig. 3-18.)
-35 Two vectors, \(\vec{r}\) and \(\vec{s}\), lie in the \(x y\) plane. Their magnitudes are 4.50 and 7.30 units, respectively, and their directions are \(320^{\circ}\) and \(85.0^{\circ}\), respectively, as measured counterclockwise from the positive \(x\) axis. What are the values of (a) \(\vec{r} \cdot \vec{s}\) and (b) \(\vec{r} \times \vec{s}\) ?
-36 If \(\vec{d}_{1}=3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}\) and \(\vec{d}_{2}=-5 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}}\), then what is \(\left(\vec{d}_{1}+\vec{d}_{2}\right) \cdot\left(\vec{d}_{1} \times 4 \vec{d}_{2}\right)\) ?
-37 Three vectors are given by \(\vec{a}=3.0 \hat{\mathrm{i}}+3.0 \hat{\mathrm{j}}-2.0 \hat{\mathrm{k}}\), \(\vec{b}=-1.0 \hat{\mathrm{i}}-4.0 \hat{\mathrm{j}}+2.0 \hat{\mathrm{k}}\), and \(\vec{c}=2.0 \hat{\mathrm{i}}+2.0 \hat{\mathrm{j}}+1.0 \hat{\mathrm{k}}\). Find (a) \(\vec{a} \cdot(\vec{b} \times \vec{c}),(\mathrm{b}) \vec{a} \cdot(\vec{b}+\vec{c})\), and (c) \(\vec{a} \times(\vec{b}+\vec{c})\).
-038 (60 For the following three vectors, what is \(3 \vec{C} \cdot(2 \vec{A} \times \vec{B})\) ?
\[
\begin{aligned}
& \vec{A}=2.00 \hat{\mathrm{i}}+3.00 \hat{\mathrm{j}}-4.00 \hat{\mathrm{k}} \\
& \vec{B}=-3.00 \hat{\mathrm{i}}+4.00 \hat{\mathrm{j}}+2.00 \hat{\mathrm{k}} \quad \vec{C}=7.00 \hat{\mathrm{i}}-8.00 \hat{\mathrm{j}}
\end{aligned}
\]
-039 Vector \(\vec{A}\) has a magnitude of 6.00 units, vector \(\vec{B}\) has a magnitude of 7.00 units, and \(\vec{A} \cdot \vec{B}\) has a value of 14.0 . What is the angle between the directions of \(\vec{A}\) and \(\vec{B}\) ?
๑40 ©0 Displacement \(\vec{d}_{1}\) is in the \(y z\) plane \(63.0^{\circ}\) from the positive direction of the \(y\) axis, has a positive \(z\) component, and has a magnitude of 4.50 m . Displacement \(\vec{d}_{2}\) is in the \(x z\) plane \(30.0^{\circ}\) from the positive direction of the \(x\) axis, has a positive \(z\) component, and has magnitude 1.40 m . What are (a) \(\vec{d}_{1} \cdot \vec{d}_{2}\), (b) \(\vec{d}_{1} \times \vec{d}_{2}\), and (c) the angle between \(\vec{d}_{1}\) and \(\vec{d}_{2}\) ?
\(\bullet 41\) SSM ILw www Use the definition of scalar product, \(\vec{a} \cdot \vec{b}=a b \cos \theta\), and the fact that \(\vec{a} \cdot \vec{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}\) to calculate the angle between the two vectors given by \(\vec{a}=3.0 \hat{\mathrm{i}}+\) \(3.0 \hat{\mathrm{j}}+3.0 \hat{\mathrm{k}}\) and \(\vec{b}=2.0 \hat{\mathrm{i}}+1.0 \hat{\mathrm{j}}+3.0 \hat{\mathbf{k}}\).
\({ }_{\rightarrow}^{\bullet 042}\) In a meeting of mimes, mime 1 goes through a displacement \(\vec{d}_{1}=(4.0 \mathrm{~m}) \hat{\mathrm{i}}+(5.0 \mathrm{~m}) \hat{\mathrm{j}}\) and mime 2 goes through a displacement \(\vec{d}_{2}=(-3.0 \mathrm{~m}) \hat{\mathrm{i}}+(4.0 \mathrm{~m}) \hat{\mathrm{j}}\). What are (a) \(\vec{d}_{1} \times \vec{d}_{2}\), (b) \(\vec{d}_{1} \cdot \vec{d}_{2}\), (c) \(\left(\vec{d}_{1}+\vec{d}_{2}\right) \cdot \vec{d}_{2}\), and (d) the component of \(\vec{d}_{1}\) along the direction of \(\vec{d}_{2}\) ? (Hint: For (d), see Eq. 3-20 and Fig. 3-18.)
\(\bullet 43\) SSM ILW The three vectors in Fig. 3-33 have magnitudes \(a=3.00 \mathrm{~m}\), \(b=4.00 \mathrm{~m}\), and \(c=10.0 \mathrm{~m}\) and angle \(\theta=30.0^{\circ}\). What are (a) the \(x\) component and (b) the \(y\) component of \(\vec{a}\); (c) the \(x\) component and (d) the \(y\) com-
ponent of \(\vec{b}\); and (e) the \(x\) component and (f) the \(y\) component of \(\vec{c}\) ? If \(\vec{c}=p \vec{a}+q \vec{b}\), what are the values of \((\mathrm{g}) p\) and (h) \(q\) ?
-044 © In the product \(\vec{F}=q \vec{v} \times \vec{B}\), take \(q=2\),
\[
\vec{v}=2.0 \hat{\mathrm{i}}+4.0 \hat{\mathrm{j}}+6.0 \hat{\mathrm{k}} \quad \text { and } \quad \vec{F}=4.0 \hat{\mathrm{i}}-20 \hat{\mathrm{j}}+12 \hat{\mathrm{k}} .
\]

What then is \(\vec{B}\) in unit-vector notation if \(B_{x}=B_{y}\) ?

\section*{Additional Problems}

45 Vectors \(\vec{A}\) and \(\vec{B}\) lie in an \(x y\) plane. \(\vec{A}\) has magnitude 8.00 and angle \(130^{\circ}\); \(\vec{B}\) has components \(B_{x}=-7.72\) and \(B_{y}=-9.20\). (a) What is \(5 \vec{A} \cdot \vec{B}\) ? What is \(4 \vec{A} \times 3 \vec{B}\) in (b) unit-vector notation and (c) magnitude-angle notation with spherical coordinates (see Fig. 3-34)? (d) What is the angle between the directions of \(\vec{A}\) and \(4 \vec{A} \times 3 \vec{B} ?\) (Hint: Think a bit before you resort to a calculation.) What is \(\vec{A}+3.00 \hat{\mathrm{k}}\) in (e) unit-vector notation and (f) magnitudeangle notation with spherical coordinates?


\section*{Figure 3-34 Problem 45.}

46 . Vector \(\vec{a}\) has a magnitude of 5.0 m and is directed east. Vector \(\vec{b}\) has a magnitude of 4.0 m and is directed \(35^{\circ}\) west of due north. What are (a) the magnitude and (b) the direction of \(\vec{a}+\vec{b}\) ? What are (c) the magnitude and (d) the direction of \(\vec{b}-\vec{a}\) ? (e) Draw a vector diagram for each combination.
47 Vectors \(\vec{A}\) and \(\vec{B}\) lie in an \(x y\) plane. \(\vec{A}\) has magnitude 8.00 and angle \(130^{\circ} ; \vec{B}\) has components \(B_{x}=-7.72\) and \(B_{y}=-9.20\). What are the angles between the negative direction of the \(y\) axis and (a) the direction of \(\vec{A}\), (b) the direction of the product \(\vec{A} \times \vec{B}\), and (c) the direction of \(\vec{A} \times(\vec{B}+3.00 \hat{\mathrm{k}})\) ?
48 © Two vectors \(\vec{a}\) and \(\vec{b}\) have the components, in meters, \(a_{x}=3.2, a_{y}=1.6, b_{x}=0.50, b_{y}=4.5\). (a) Find the angle between the directions of \(\vec{a}\) and \(\vec{b}\). There are two vectors in the \(x y\) plane that are perpendicular to \(\vec{a}\) and have a magnitude of 5.0 m . One, vector \(\vec{c}\), has a positive \(x\) component and the other, vector \(\vec{d}\), a negative \(x\) component. What are (b) the \(x\) component and (c) the \(y\) component of vector \(\vec{c}\), and (d) the \(x\) component and (e) the \(y\) component of vector \(\vec{d}\) ?

49 SSM A sailboat sets out from the U.S. side of Lake Erie for a point on the Canadian side, 90.0 km due north. The sailor, however, ends up 50.0 km due east of the starting point. (a) How far and (b) in what direction must the sailor now sail to reach the original destination?
50 Vector \(\vec{d}_{1}\) is in the negative direction of a \(y\) axis, and vector \(\vec{d}_{2}\) is in the positive direction of an \(x\) axis. What are the directions of (a) \(\vec{d}_{2} / 4\) and (b) \(\vec{d}_{1} /(-4)\) ? What are the magnitudes of products (c) \(\vec{d}_{1} \cdot \vec{d}_{2}\) and (d) \(\vec{d}_{1} \cdot\left(\vec{d}_{2} / 4\right)\) ? What is the direction of the vector resulting from (e) \(\vec{d}_{1} \times \vec{d}_{2}\) and (f) \(\vec{d}_{2} \times \vec{d}_{1}\) ? What is the magnitude of the vector product in (g) part (e) and (h) part (f)? What are the (i) magnitude and (j) direction of \(\vec{d}_{1} \times\left(\vec{d}_{2} / 4\right)\) ?

51 Rock faults are ruptures along which opposite faces of rock have slid past each other. In Fig. 3-35, points \(A\) and \(B\) coincided before the rock in the foreground slid down to the right. The net displacement \(\overrightarrow{A B}\) is along the plane of the fault. The horizontal component of \(\overrightarrow{A B}\) is the strike-slip \(A C\). The component of \(\overrightarrow{A B}\) that is directed down the plane of the fault is the dip-slip \(A D\). (a) What is the magnitude of the net displacement \(\overrightarrow{A B}\) if the strike-slip is 22.0 m and the dip-slip is 17.0 m ? (b) If the plane of the fault is inclined at angle \(\phi=52.0^{\circ}\) to the horizontal, what is the vertical component of \(\overrightarrow{A B}\) ?


Figure 3-35 Problem 51.
52 Here are three displacements, each measured in meters: \(\vec{d}_{1}=4.0 \hat{\mathrm{i}}+5.0 \hat{\mathrm{j}}-6.0 \hat{\mathrm{k}}, \quad \vec{d}_{2}=-1.0 \hat{\mathrm{i}}+2.0 \hat{\mathrm{j}}+3.0 \hat{\mathrm{k}}, \quad\) and \(\quad \vec{d}_{3}=\) \(4.0 \hat{\mathrm{i}}+3.0 \hat{\mathrm{j}}+2.0 \hat{\mathrm{k}}\). (a) What is \(\vec{r}=\vec{d}_{1}-\vec{d}_{2}+\vec{d}_{3}\) ? (b) What is the angle between \(\vec{r}\) and the positive \(z\) axis? (c) What is the component of \(\vec{d}_{1}\) along the direction of \(\vec{d}_{2}\) ? (d) What is the component of \(\vec{d}_{1}\) that is perpendicular to the direction of \(\vec{d}_{2}\) and in the plane of \(\vec{d}_{1}\) and \(\vec{d}_{2}\) ? (Hint: For (c), consider Eq. 3-20 and Fig. 3-18; for (d), consider Eq. 3-24.)
53 SSM A vector \(\vec{a}\) of magnitude 10 units and another vector \(\vec{b}\) of magnitude 6.0 units differ in directions by \(60^{\circ}\). Find (a) the scalar product of the two vectors and (b) the magnitude of the vector product \(\vec{a} \times \vec{b}\).
54 For the vectors in Fig. 3-32, with \(a=4, b=3\), and \(c=5\), calculate (a) \(\vec{a} \cdot \vec{b}\), (b) \(\vec{a} \cdot \vec{c}\), and (c) \(\vec{b} \cdot \vec{c}\).

55 A particle undergoes three successive displacements in a plane, as follows: \(\vec{d}_{1}, 4.00 \mathrm{~m}\) southwest; then \(\vec{d}_{2}, 5.00 \mathrm{~m}\) east; and finally \(\vec{d}_{3}, 6.00 \mathrm{~m}\) in a direction \(60.0^{\circ}\) north of east. Choose a coordinate system with the \(y\) axis pointing north and the \(x\) axis pointing east. What are (a) the \(x\) component and (b) the \(y\) component of \(\vec{d}_{1}\) ? What are (c) the \(x\) component and (d) the \(y\) component of \(\vec{d}_{2}\) ? What are (e) the \(x\) component and (f) the \(y\) component of \(\vec{d}_{3}\) ? Next, consider the net displacement of the particle for the three successive displacements. What are (g) the \(x\) component, (h) the \(y\) component, (i) the magnitude, and (j) the direction of the net displacement? If the particle is to return directly to the starting point, (k) how far and ( 1 ) in what direction should it move?

56 Find the sum of the following four vectors in (a) unit-vector notation, and as (b) a magnitude and (c) an angle relative to \(+x\).
\(\vec{P}: 10.0 \mathrm{~m}\), at \(25.0^{\circ}\) counterclockwise from \(+x\)
\(\vec{Q}: 12.0 \mathrm{~m}\), at \(10.0^{\circ}\) counterclockwise from \(+y\)
\(\vec{R}: 8.00 \mathrm{~m}\), at \(20.0^{\circ}\) clockwise from \(-y\)
\(\vec{S}: 9.00 \mathrm{~m}\), at \(40.0^{\circ}\) counterclockwise from \(-y\)
57 SSM If \(\vec{B}\) is added to \(\vec{A}\), the result is \(6.0 \hat{\mathrm{i}}+1.0 \hat{\mathrm{j}}\). If \(\vec{B}\) is subtracted from \(\vec{A}\), the result is \(-4.0 \hat{\mathrm{i}}+7.0 \hat{\mathrm{j}}\). What is the magnitude of \(\vec{A}\) ?

58 A vector \(\vec{d}\) has a magnitude of 2.5 m and points north. What are (a) the magnitude and (b) the direction of \(4.0 \vec{d}\) ? What are (c) the magnitude and (d) the direction of \(-3.0 \vec{d}\) ?
\(59 \vec{A}\) has the magnitude 12.0 m and is angled \(60.0^{\circ}\) counterclockwise from the positive direction of the \(x\) axis of an \(x y\) coordinate system. Also, \(\vec{B}=(12.0 \mathrm{~m}) \hat{\mathrm{i}}+(8.00 \mathrm{~m}) \hat{\mathrm{j}}\) on that same coordinate system. We now rotate the system counterclockwise about the origin by \(20.0^{\circ}\) to form an \(x^{\prime} y^{\prime}\) system. On this new system, what are (a) \(\vec{A}\) and (b) \(\vec{B}\), both in unit-vector notation?
60 If \(\vec{a}-\vec{b}=2 \vec{c}, \vec{a}+\vec{b}=4 \vec{c}\), and \(\vec{c}=3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}\), then what are (a) \(\vec{a}\) and (b) \(\vec{b}\) ?

61 (a) In unit-vector notation, what is \(\vec{r}=\vec{a}-\vec{b}+\vec{c}\) if \(\vec{a}=5.0 \hat{\mathrm{i}}+4.0 \hat{\mathrm{j}}-6.0 \hat{\mathrm{k}}, \vec{b}=-2.0 \hat{\mathrm{i}}+2.0 \hat{\mathrm{j}}+3.0 \hat{\mathrm{k}}\), and \(\vec{c}=4.0 \hat{\mathrm{i}}+\) \(3.0 \hat{\mathrm{j}}+2.0 \hat{\mathrm{k}}\) ? (b) Calculate the angle between \(\vec{r}\) and the positive \(z\) axis. (c) What is the component of \(\vec{a}\) along the direction of \(\vec{b}\) ? (d) What is the component of \(\vec{a}\) perpendicular to the direction of \(\vec{b}\) but in the plane of \(\vec{a}\) and \(\vec{b}\) ? (Hint: For (c), see Eq. 3-20 and Fig. 3-18; for (d), see Eq. 3-24.)
62 A golfer takes three putts to get the ball into the hole. The first putt displaces the ball 3.66 m north, the second 1.83 m southeast, and the third 0.91 m southwest. What are (a) the magnitude and (b) the direction of the displacement needed to get the ball into the hole on the first putt?
63 Here are three vectors in meters:
\[
\begin{aligned}
& \vec{d}_{1}=-3.0 \hat{\mathrm{i}}+3.0 \hat{\mathrm{j}}+2.0 \hat{\mathrm{k}} \\
& \vec{d}_{2}=-2.0 \hat{\mathrm{i}}-4.0 \hat{\mathrm{j}}+2.0 \hat{\mathrm{k}} \\
& \vec{d}_{3}=2.0 \hat{\mathrm{i}}+3.0 \hat{\mathrm{j}}+1.0 \hat{\mathrm{k}} .
\end{aligned}
\]

What results from (a) \(\vec{d}_{1} \cdot\left(\vec{d}_{2}+\vec{d}_{3}\right)\), (b) \(\vec{d}_{1} \cdot\left(\vec{d}_{2} \times \vec{d}_{3}\right)\), and (c) \(\vec{d}_{1} \times\left(\vec{d}_{2}+\vec{d}_{3}\right)\) ?

64 SSM Www A room has dimensions 3.00 m (height) \(\times\) \(3.70 \mathrm{~m} \times 4.30 \mathrm{~m}\). A fly starting at one corner flies around, ending up at the diagonally opposite corner. (a) What is the magnitude of its displacement? (b) Could the length of its path be less than this magnitude? (c) Greater? (d) Equal? (e) Choose a suitable coordinate system and express the components of the displacement vector in that system in unit-vector notation. (f) If the fly walks, what is the length of the shortest path? (Hint: This can be answered without calculus. The room is like a box. Unfold its walls to flatten them into a plane.)
65 A protester carries his sign of protest, starting from the origin of an \(x y z\) coordinate system, with the \(x y\) plane horizontal. He moves 40 m in the negative direction of the \(x\) axis, then 20 m along a perpendicular path to his left, and then 25 m up a water tower. (a) In unit-vector notation, what is the displacement of the sign from start to end? (b) The sign then falls to the foot of the tower. What is the magnitude of the displacement of the sign from start to this new end?
66 Consider \(\vec{a}\) in the positive direction of \(x, \vec{b}\) in the positive direction of \(y\), and a scalar \(d\). What is the direction of \(\vec{b} / d\) if \(d\) is (a) positive and (b) negative? What is the magnitude of (c) \(\vec{a} \cdot \vec{b}\) and (d) \(\vec{a} \cdot \vec{b} / d\) ? What is the direction of the vector resulting from (e) \(\vec{a} \times \vec{b}\) and (f) \(\vec{b} \times \vec{a}\) ? (g) What is the magnitude of the vector product in (e)? (h) What is the magnitude of the vector product in (f)? What are (i) the magnitude and (j) the direction of \(\vec{a} \times \vec{b} / d\) if \(d\) is positive?

67 Let \(\hat{i}\) be directed to the east, \(\hat{j}\) be directed to the north, and \(\hat{k}\) be directed upward. What are the values of products (a) \(\hat{\mathrm{i}} \cdot \hat{\mathrm{k}}\), (b) \((-\hat{k}) \cdot(-\hat{j})\), and \((c) \hat{j} \cdot(-\hat{j})\) ? What are the directions (such as east or down) of products \((\mathrm{d}) \hat{\mathrm{k}} \times \hat{\mathrm{j}},(\mathrm{e})(-\hat{\mathrm{i}}) \times(-\hat{\mathrm{j}})\), and \((\mathrm{f})(-\hat{\mathrm{k}}) \times(-\hat{\mathrm{j}})\) ?
68 A bank in downtown Boston is robbed (see the map in Fig. 3-36). To elude police, the robbers escape by helicopter, making three successive flights described by the following displacements: \(32 \mathrm{~km}, 45^{\circ}\) south of east; \(53 \mathrm{~km}, 26^{\circ}\) north of west; \(26 \mathrm{~km}, 18^{\circ}\) east of south. At the end of the third flight they are captured. In what town are they apprehended?


Figure 3-36 Problem 68.
69 A wheel with a radius of 45.0 cm rolls without slipping along a horizontal floor (Fig. 3-37). At time \(t_{1}\), the \(\operatorname{dot} P\) painted on the rim of the wheel is at the point of contact between the wheel and the floor. At a later time \(t_{2}\), the wheel has rolled through one-half of a revolution. What are (a) the magnitude and (b)


Figure 3-37 Problem 69.

72 A fire ant, searching for hot sauce in a picnic area, goes through three displacements along level ground: \(\vec{d}_{1}\) for 0.40 m southwest (that is, at \(45^{\circ}\) from directly south and from directly west), \(\vec{d}_{2}\) for 0.50 m due east, \(\vec{d}_{3}\) for 0.60 m at \(60^{\circ}\) north of east. Let the positive \(x\) direction be east and the positive \(y\) direction be north. What are (a) the \(x\) component and (b) the \(y\) component of \(\vec{d}_{1}\) ? Next, what are (c) the \(x\) component and (d) the \(y\) component of \(\vec{d}_{2}\) ? Also, what are (e) the \(x\) component and (f) the \(y\) component of \(\vec{d}_{3}\) ?

What are (g) the \(x\) component, (h) the \(y\) component, (i) the magnitude, and ( j ) the direction of the ant's net displacement? If the ant is to return directly to the starting point, (k) how far and (1) in what direction should it move?
73 Two vectors are given by \(\vec{a}=3.0 \hat{\mathrm{i}}+5.0 \hat{\mathrm{j}}\) and \(\vec{b}=2.0 \hat{\mathrm{i}}+4.0 \hat{\mathrm{j}}\). Find (a) \(\vec{a} \times \vec{b}\), (b) \(\vec{a} \cdot \vec{b}\), (c) \((\vec{a}+\vec{b}) \cdot \vec{b}\), and (d) the component of \(\vec{a}\) along the direction of \(\vec{b}\).
74 Vector \(\vec{a}\) lies in the \(y z\) plane \(63.0^{\circ}\) from the positive direction of the \(y\) axis, has a positive \(z\) component, and has magnitude 3.20 units. Vector \(\vec{b}\) lies in the \(x z\) plane \(48.0^{\circ}\) from the positive direction of the \(x\) axis, has a positive \(z\) component, and has magnitude 1.40 units. Find (a) \(\vec{a} \cdot \vec{b}\), (b) \(\vec{a} \times \vec{b}\), and (c) the angle between \(\vec{a}\) and \(\vec{b}\).
75 Find (a) "north cross west," (b) "down dot south," (c) "east cross up," (d) "west dot west," and (e) "south cross south." Let each "vector" have unit magnitude.
76 A vector \(\vec{B}\), with a magnitude of 8.0 m , is added to a vector \(\vec{A}\), which lies along an \(x\) axis. The sum of these two vectors is a third vector that lies along the \(y\) axis and has a magnitude that is twice the magnitude of \(\vec{A}\). What is the magnitude of \(\vec{A}\) ?
77 A man goes for a walk, starting from the origin of an \(x y z\) coordinate system, with the \(x y\) plane horizontal and the \(x\) axis eastward. Carrying a bad penny, he walks 1300 m east, 2200 m north, and then drops the penny from a cliff 410 m high. (a) In unit-vector notation, what is the displacement of the penny from start to its landing point? (b) When the man returns to the origin, what is the magnitude of his displacement for the return trip?
78 What is the magnitude of \(\vec{a} \times(\vec{b} \times \vec{a})\) if \(a=3.90, b=2.70\), and the angle between the two vectors is \(63.0^{\circ}\) ?
79 In Fig. 3-38, the magnitude of \(\vec{a}\) is 4.3, the magnitude of \(\vec{b}\) is 5.4 , and \(\phi=46^{\circ}\). Find the area of the triangle contained between the two vectors and the thin diagonal line.


Figure 3-38 Problem 79.

\section*{C H A P T \(\quad \mathbf{H} \quad \mathbf{R} \quad 4\)}

\section*{Motion in Two and Three Dimensions}

\section*{4-1 position and displacement}

\section*{Learning Objectives}

After reading this module, you should be able to
4.01 Draw two-dimensional and three-dimensional position vectors for a particle, indicating the components along the axes of a coordinate system.
4.02 On a coordinate system, determine the direction and
magnitude of a particle's position vector from its components, and vice versa.
4.03 Apply the relationship between a particle's displacement vector and its initial and final position vectors.

\section*{Key Ideas}
- The location of a particle relative to the origin of a coordinate system is given by a position vector \(\vec{r}\), which in unitvector notation is
\[
\vec{r}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}} .
\]

Here \(x \hat{\mathrm{i}}, y \hat{\mathrm{j}}\), and \(z \hat{\mathrm{k}}\) are the vector components of position vector \(\vec{r}\), and \(x, y\), and \(z\) are its scalar components (as well as the coordinates of the particle).

A position vector is described either by a magnitude and
one or two angles for orientation, or by its vector or scalar components.
- If a particle moves so that its position vector changes from \(\vec{r}_{1}\) to \(\vec{r}_{2}\), the particle's displacement \(\Delta \vec{r}\) is
\[
\Delta \vec{r}=\vec{r}_{2}-\vec{r}_{1} .
\]

The displacement can also be written as
\[
\begin{aligned}
\Delta \vec{r} & =\left(x_{2}-x_{1}\right) \hat{\mathrm{i}}+\left(y_{2}-y_{1}\right) \hat{\mathrm{j}}+\left(z_{2}-z_{1}\right) \hat{\mathrm{k}} \\
& =\Delta x \hat{\mathrm{i}}+\Delta y \hat{\mathrm{j}}+\Delta z \hat{\mathrm{k}} .
\end{aligned}
\]

\section*{What Is Physics?}

In this chapter we continue looking at the aspect of physics that analyzes motion, but now the motion can be in two or three dimensions. For example, medical researchers and aeronautical engineers might concentrate on the physics of the two- and three-dimensional turns taken by fighter pilots in dogfights because a modern high-performance jet can take a tight turn so quickly that the pilot immediately loses consciousness. A sports engineer might focus on the physics of basketball. For example, in a free throw (where a player gets an uncontested shot at the basket from about 4.3 m ), a player might employ the overhand push shot, in which the ball is pushed away from about shoulder height and then released. Or the player might use an underhand loop shot, in which the ball is brought upward from about the belt-line level and released. The first technique is the overwhelming choice among professional players, but the legendary Rick Barry set the record for free-throw shooting with the underhand technique.
\(\$\)
Motion in three dimensions is not easy to understand. For example, you are probably good at driving a car along a freeway (one-dimensional motion) but would probably have a difficult time in landing an airplane on a runway (threedimensional motion) without a lot of training.

In our study of two- and three-dimensional motion, we start with position and displacement.

\section*{Position and Displacement}

One general way of locating a particle (or particle-like object) is with a position vector \(\vec{r}\), which is a vector that extends from a reference point (usually the origin) to the particle. In the unit-vector notation of Module 3-2, \(\vec{r}\) can be written
\[
\begin{equation*}
\vec{r}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}} \tag{4-1}
\end{equation*}
\]
where \(x \hat{\mathrm{i}}, y \hat{\mathrm{j}}\), and \(z \hat{\mathrm{k}}\) are the vector components of \(\vec{r}\) and the coefficients \(x, y\), and \(z\) are its scalar components.

The coefficients \(x, y\), and \(z\) give the particle's location along the coordinate axes and relative to the origin; that is, the particle has the rectangular coordinates \((x, y, z)\). For instance, Fig. 4-1 shows a particle with position vector
\[
\vec{r}=(-3 \mathrm{~m}) \hat{\mathrm{i}}+(2 \mathrm{~m}) \hat{\mathrm{j}}+(5 \mathrm{~m}) \hat{\mathrm{k}}
\]
and rectangular coordinates \((-3 \mathrm{~m}, 2 \mathrm{~m}, 5 \mathrm{~m})\). Along the \(x\) axis the particle is 3 m from the origin, in the \(-\hat{\mathrm{i}}\) direction. Along the \(y\) axis it is 2 m from the origin, in the \(+\hat{\mathrm{j}}\) direction. Along the \(z\) axis it is 5 m from the origin, in the \(+\hat{\mathrm{k}}\) direction.

As a particle moves, its position vector changes in such a way that the vector always extends to the particle from the reference point (the origin). If the position vector changes-say, from \(\vec{r}_{1}\) to \(\vec{r}_{2}\) during a certain time interval-then the particle's displacement \(\Delta \vec{r}\) during that time interval is
\[
\begin{equation*}
\Delta \vec{r}=\vec{r}_{2}-\vec{r}_{1} \tag{4-2}
\end{equation*}
\]

Using the unit-vector notation of Eq. 4-1, we can rewrite this displacement as
\[
\Delta \vec{r}=\left(x_{2} \hat{i}+y_{2} \hat{\mathrm{j}}+z_{2} \hat{\mathrm{k}}\right)-\left(x_{1} \hat{\mathrm{i}}+y_{1} \hat{\mathrm{j}}+z_{1} \hat{\mathrm{k}}\right)
\]
or as
\[
\begin{equation*}
\Delta \vec{r}=\left(x_{2}-x_{1}\right) \hat{\mathrm{i}}+\left(y_{2}-y_{1}\right) \hat{\mathrm{j}}+\left(z_{2}-z_{1}\right) \hat{\mathrm{k}} \tag{4-3}
\end{equation*}
\]
where coordinates \(\left(x_{1}, y_{1}, z_{1}\right)\) correspond to position vector \(\vec{r}_{1}\) and coordinates \(\left(x_{2}, y_{2}, z_{2}\right)\) correspond to position vector \(\vec{r}_{2}\). We can also rewrite the displacement by substituting \(\Delta x\) for \(\left(x_{2}-x_{1}\right), \Delta y\) for \(\left(y_{2}-y_{1}\right)\), and \(\Delta z\) for \(\left(z_{2}-z_{1}\right)\) :
\[
\begin{equation*}
\Delta \vec{r}=\Delta x \hat{\mathrm{i}}+\Delta y \hat{\mathrm{j}}+\Delta z \hat{\mathrm{k}} \tag{4-4}
\end{equation*}
\]


Figure 4-1 The position vector \(\vec{r}\) for a particle is the vector sum of its vector components.

\section*{Sample Problem 4.01 Two-dimensional position vector, rabbit run}

A rabbit runs across a parking lot on which a set of coordinate axes has, strangely enough, been drawn. The coordinates (meters) of the rabbit's position as functions of time \(t\) (seconds) are given by
\[
\begin{align*}
& x  \tag{4-5}\\
\text { and } & =-0.31 t^{2}+7.2 t+28 \\
y & =0.22 t^{2}-9.1 t+30 .
\end{align*}
\]
(a) At \(t=15 \mathrm{~s}\), what is the rabbit's position vector \(\vec{r}\) in unitvector notation and in magnitude-angle notation?

\section*{KEY IDEA}

The \(x\) and \(y\) coordinates of the rabbit's position, as given by Eqs. 4-5 and 4-6, are the scalar components of the rabbit's
position vector \(\vec{r}\). Let's evaluate those coordinates at the given time, and then we can use Eq. 3-6 to evaluate the magnitude and orientation of the position vector.

\section*{Calculations: We can write}
\[
\begin{equation*}
\vec{r}(t)=x(t) \hat{\mathrm{i}}+y(t) \hat{\mathrm{j}} \tag{4-7}
\end{equation*}
\]
(We write \(\vec{r}(t)\) rather than \(\vec{r}\) because the components are functions of \(t\), and thus \(\vec{r}\) is also.)

At \(t=15 \mathrm{~s}\), the scalar components are
\[
\begin{aligned}
& x=(-0.31)(15)^{2}+(7.2)(15)+28=66 \mathrm{~m} \\
& y=(0.22)(15)^{2}-(9.1)(15)+30=-57 \mathrm{~m}
\end{aligned}
\]
and
so
\[
\vec{r}=(66 \mathrm{~m}) \hat{\mathrm{i}}-(57 \mathrm{~m}) \hat{\mathrm{j}}
\]
(Answer)

Figure 4-2 (a) A rabbit's position vector \(\vec{r}\) at time \(t=15 \mathrm{~s}\). The scalar components of \(\vec{r}\) are shown along the axes. (b) The rabbit's path and its position at six values of \(t\).

which is drawn in Fig. 4-2a. To get the magnitude and angle of \(\vec{r}\), notice that the components form the legs of a right triangle and \(r\) is the hypotenuse. So, we use Eq. 3-6:
\[
\begin{aligned}
r & =\sqrt{x^{2}+y^{2}}=\sqrt{(66 \mathrm{~m})^{2}+(-57 \mathrm{~m})^{2}} \\
& =87 \mathrm{~m}
\end{aligned}
\]
(Answer)
and
\[
\theta=\tan ^{-1} \frac{y}{x}=\tan ^{-1}\left(\frac{-57 \mathrm{~m}}{66 \mathrm{~m}}\right)=-41^{\circ}
\]

Check: Although \(\theta=139^{\circ}\) has the same tangent as \(-41^{\circ}\), the components of position vector \(\vec{r}\) indicate that the desired angle is \(139^{\circ}-180^{\circ}=-41^{\circ}\).
(b) Graph the rabbit's path for \(t=0\) to \(t=25 \mathrm{~s}\).

Graphing: We have located the rabbit at one instant, but to see its path we need a graph. So we repeat part (a) for several values of \(t\) and then plot the results. Figure \(4-2 b\) shows the plots for six values of \(t\) and the path connecting them.

PLUS Additional examples, video, and practice available at WileyPLUS

\section*{4-2 average velocity and instantaneous velocity}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
4.04 Identify that velocity is a vector quantity and thus has both magnitude and direction and also has components.
4.05 Draw two-dimensional and three-dimensional velocity vectors for a particle, indicating the components along the axes of the coordinate system.
4.06 In magnitude-angle and unit-vector notations, relate a particle's initial and final position vectors, the time interval between those positions, and the particle's average velocity vector.
4.07 Given a particle's position vector as a function of time, determine its (instantaneous) velocity vector.

\section*{Key Ideas}
- If a particle undergoes a displacement \(\Delta \vec{r}\) in time interval \(\Delta t\), its average velocity \(\vec{v}_{\text {avg }}\) for that time interval is
\[
\vec{v}_{\mathrm{avg}}=\frac{\Delta \vec{r}}{\Delta t}
\]
- As \(\Delta t\) is shrunk to \(0, \vec{v}_{\text {avg }}\) reaches a limit called either the velocity or the instantaneous velocity \(\vec{v}\) :
\[
\vec{v}=\frac{d \vec{r}}{d t}
\]
which can be rewritten in unit-vector notation as
\[
\vec{v}=v_{x} \hat{i}+v_{y} \hat{\mathrm{j}}+v_{z} \hat{\mathrm{k}},
\]
where \(v_{x}=d x / d t, v_{y}=d y / d t\), and \(v_{z}=d z / d t\).
- The instantaneous velocity \(\vec{v}\) of a particle is always directed along the tangent to the particle's path at the particle's position.

\section*{Average Velocity and Instantaneous Velocity}

If a particle moves from one point to another, we might need to know how fast it moves. Just as in Chapter 2, we can define two quantities that deal with "how fast": average velocity and instantaneous velocity. However, here we must consider these quantities as vectors and use vector notation.

If a particle moves through a displacement \(\Delta \vec{r}\) in a time interval \(\Delta t\), then its average velocity \(\vec{v}_{\text {avg }}\) is
\[
\text { average velocity }=\frac{\text { displacement }}{\text { time interval }}
\]
or
\[
\begin{equation*}
\vec{v}_{\mathrm{avg}}=\frac{\Delta \vec{r}}{\Delta t} . \tag{4-8}
\end{equation*}
\]

This tells us that the direction of \(\vec{v}_{\text {avg }}\) (the vector on the left side of Eq. 4-8) must be the same as that of the displacement \(\Delta \vec{r}\) (the vector on the right side). Using Eq. 4-4, we can write Eq. 4-8 in vector components as
\[
\begin{equation*}
\vec{v}_{\text {avg }}=\frac{\Delta x \hat{\mathrm{i}}+\Delta y \hat{\mathrm{j}}+\Delta z \hat{\mathrm{k}}}{\Delta t}=\frac{\Delta x}{\Delta t} \hat{\mathrm{i}}+\frac{\Delta y}{\Delta t} \hat{\mathrm{j}}+\frac{\Delta z}{\Delta t} \hat{\mathrm{k}} \tag{4-9}
\end{equation*}
\]

For example, if a particle moves through displacement \((12 \mathrm{~m}) \hat{\mathrm{i}}+(3.0 \mathrm{~m}) \hat{\mathrm{k}}\) in 2.0 s , then its average velocity during that move is
\[
\vec{v}_{\text {avg }}=\frac{\Delta \vec{r}}{\Delta t}=\frac{(12 \mathrm{~m}) \hat{\mathrm{i}}+(3.0 \mathrm{~m}) \hat{\mathrm{k}}}{2.0 \mathrm{~s}}=(6.0 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(1.5 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{k}}
\]

That is, the average velocity (a vector quantity) has a component of \(6.0 \mathrm{~m} / \mathrm{s}\) along the \(x\) axis and a component of \(1.5 \mathrm{~m} / \mathrm{s}\) along the \(z\) axis.

When we speak of the velocity of a particle, we usually mean the particle's instantaneous velocity \(\vec{v}\) at some instant. This \(\vec{v}\) is the value that \(\vec{v}_{\text {avg }}\) approaches in the limit as we shrink the time interval \(\Delta t\) to 0 about that instant. Using the language of calculus, we may write \(\vec{v}\) as the derivative
\[
\begin{equation*}
\vec{v}=\frac{d \vec{r}}{d t} \tag{4-10}
\end{equation*}
\]

Figure 4-3 shows the path of a particle that is restricted to the \(x y\) plane. As the particle travels to the right along the curve, its position vector sweeps to the right. During time interval \(\Delta t\), the position vector changes from \(\vec{r}_{1}\) to \(\vec{r}_{2}\) and the particle's displacement is \(\Delta \vec{r}\).

To find the instantaneous velocity of the particle at, say, instant \(t_{1}\) (when the particle is at position 1 ), we shrink interval \(\Delta t\) to 0 about \(t_{1}\). Three things happen as we do so. (1) Position vector \(\vec{r}_{2}\) in Fig. 4-3 moves toward \(\vec{r}_{1}\) so that \(\Delta \vec{r}\) shrinks

Figure 4-3 The displacement \(\Delta \vec{r}\) of a particle during a time interval \(\Delta t\), from position 1 with position vector \(\vec{r}_{1}\) at time \(t_{1}\) to position 2 with position vector \(\vec{r}_{2}\) at time \(t_{2}\). The tangent to the particle's path at position 1 is shown.

toward zero. (2) The direction of \(\Delta \vec{r} / \Delta t\) (and thus of \(\vec{v}_{\text {avg }}\) ) approaches the direction of the line tangent to the particle's path at position 1. (3) The average velocity \(\vec{v}_{\text {avg }}\) approaches the instantaneous velocity \(\vec{v}\) at \(t_{1}\).

In the limit as \(\Delta t \rightarrow 0\), we have \(\vec{v}_{\text {avg }} \rightarrow \vec{v}\) and, most important here, \(\vec{v}_{\text {avg }}\) takes on the direction of the tangent line. Thus, \(\vec{v}\) has that direction as well:

The direction of the instantaneous velocity \(\vec{v}\) of a particle is always tangent to the particle's path at the particle's position.

The result is the same in three dimensions: \(\vec{v}\) is always tangent to the particle's path. To write Eq. 4-10 in unit-vector form, we substitute for \(\vec{r}\) from Eq. 4-1:
\[
\vec{v}=\frac{d}{d t}(x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}})=\frac{d x}{d t} \hat{\mathrm{i}}+\frac{d y}{d t} \hat{\mathrm{j}}+\frac{d z}{d t} \hat{\mathrm{k}} .
\]

This equation can be simplified somewhat by writing it as
\[
\begin{equation*}
\vec{v}=v_{x} \hat{\mathrm{i}}+v_{y} \hat{\mathrm{j}}+v_{z} \hat{\mathrm{k}}, \tag{4-11}
\end{equation*}
\]
where the scalar components of \(\vec{v}\) are
\[
\begin{equation*}
v_{x}=\frac{d x}{d t}, \quad v_{y}=\frac{d y}{d t}, \quad \text { and } \quad v_{z}=\frac{d z}{d t} . \tag{4-12}
\end{equation*}
\]

For example, \(d x / d t\) is the scalar component of \(\vec{v}\) along the \(x\) axis. Thus, we can find the scalar components of \(\vec{v}\) by differentiating the scalar components of \(\vec{r}\).

Figure \(4-4\) shows a velocity vector \(\vec{v}\) and its scalar \(x\) and \(y\) components. Note that \(\vec{v}\) is tangent to the particle's path at the particle's position. Caution: When a position vector is drawn, as in Figs. 4-1 through 4-3, it is an arrow that extends from one point (a "here") to another point (a "there"). However, when a velocity vector is drawn, as in Fig. 4-4, it does not extend from one point to another. Rather, it shows the instantaneous direction of travel of a particle at the tail, and its length (representing the velocity magnitude) can be drawn to any scale.

Figure 4-4 The velocity \(\vec{v}\) of a particle, along with the scalar components of \(\vec{v}\).

The velocity vector is always tangent to the path.


\section*{Checkpoint 1}

The figure shows a circular path taken by a particle. If the instantaneous velocity of the particle is \(\vec{v}=\) \((2 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}-(2 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}\), through which quadrant is the particle moving at that instant if it is traveling (a) clockwise and (b) counterclockwise around the circle? For both cases, draw \(\vec{v}\) on the figure.


\section*{Sample Problem 4.02 Two-dimensional velocity, rabbit run}

For the rabbit in the preceding sample problem, find the velocity \(\vec{v}\) at time \(t=15 \mathrm{~s}\).

\section*{KEY IDEA}

We can find \(\vec{v}\) by taking derivatives of the components of the rabbit's position vector.

Calculations: Applying the \(v_{x}\) part of Eq. 4-12 to Eq. 4-5, we find the \(x\) component of \(\vec{v}\) to be
\[
\begin{align*}
v_{x} & =\frac{d x}{d t}=\frac{d}{d t}\left(-0.31 t^{2}+7.2 t+28\right) \\
& =-0.62 t+7.2 \tag{4-13}
\end{align*}
\]

At \(t=15 \mathrm{~s}\), this gives \(v_{x}=-2.1 \mathrm{~m} / \mathrm{s}\). Similarly, applying the \(v_{y}\) part of Eq. 4-12 to Eq. 4-6, we find
\[
\begin{align*}
v_{y} & =\frac{d y}{d t}=\frac{d}{d t}\left(0.22 t^{2}-9.1 t+30\right) \\
& =0.44 t-9.1 \tag{4-14}
\end{align*}
\]

At \(t=15 \mathrm{~s}\), this gives \(v_{y}=-2.5 \mathrm{~m} / \mathrm{s}\). Equation 4-11 then yields
\[
\vec{v}=(-2.1 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(-2.5 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}, \quad \text { (Answer) }
\]
which is shown in Fig. 4-5, tangent to the rabbit's path and in the direction the rabbit is running at \(t=15 \mathrm{~s}\).

To get the magnitude and angle of \(\vec{v}\), either we use a vector-capable calculator or we follow Eq. 3-6 to write
\[
\begin{aligned}
v= & \sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{(-2.1 \mathrm{~m} / \mathrm{s})^{2}+(-2.5 \mathrm{~m} / \mathrm{s})^{2}} \\
= & 3.3 \mathrm{~m} / \mathrm{s} \\
& \theta=\tan ^{-1} \frac{v_{y}}{v_{x}}=\tan ^{-1}\left(\frac{-2.5 \mathrm{~m} / \mathrm{s}}{-2.1 \mathrm{~m} / \mathrm{s}}\right) \\
& =\tan ^{-1} 1.19=-130^{\circ} .
\end{aligned}
\]
(Answer)
(Answer)
Check: Is the angle \(-130^{\circ}\) or \(-130^{\circ}+180^{\circ}=50^{\circ}\) ?


These are the \(x\) and \(y\) components of the vector at this instant.

Figure 4-5 The rabbit's velocity \(\vec{v}\) at \(t=15 \mathrm{~s}\).

\section*{4-3 average acceleration and instantaneous acceleration}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
4.08 Identify that acceleration is a vector quantity and thus has both magnitude and direction and also has components.
4.09 Draw two-dimensional and three-dimensional acceleration vectors for a particle, indicating the components.
4.10 Given the initial and final velocity vectors of a particle and the time interval between those velocities, determine
the average acceleration vector in magnitude-angle and unit-vector notations.
4.11 Given a particle's velocity vector as a function of time, determine its (instantaneous) acceleration vector.
4.12 For each dimension of motion, apply the constantacceleration equations (Chapter 2) to relate acceleration, velocity, position, and time.

\section*{Key Ideas}
- If a particle's velocity changes from \(\vec{v}_{1}\) to \(\vec{v}_{2}\) in time interval \(\Delta t\), its average acceleration during \(\Delta t\) is
\[
\vec{a}_{\mathrm{avg}}=\frac{\vec{v}_{2}-\vec{v}_{1}}{\Delta t}=\frac{\Delta \vec{v}}{\Delta t}
\]
- As \(\Delta t\) is shrunk to \(0, \vec{a}_{\text {avg }}\) reaches a limiting value called
either the acceleration or the instantaneous acceleration \(\vec{a}\) :
\[
\vec{a}=\frac{d \vec{v}}{d t}
\]
- In unit-vector notation,
\[
\vec{a}=a_{x} \hat{\mathrm{i}}+a_{y} \hat{\mathrm{j}}+a_{z} \hat{\mathrm{k}}
\]
where \(a_{x}=d v_{x} / d t, a_{y}=d v_{y} / d t\), and \(a_{z}=d v_{z} / d t\).

\section*{Average Acceleration and Instantaneous Acceleration}

When a particle's velocity changes from \(\vec{v}_{1}\) to \(\vec{v}_{2}\) in a time interval \(\Delta t\), its average acceleration \(\vec{a}_{\text {avg }}\) during \(\Delta t\) is
\[
\begin{gathered}
\text { average } \\
\text { acceleration }
\end{gathered}=\frac{\text { change in velocity }}{\text { time interval }}
\]
or
\[
\begin{equation*}
\vec{a}_{\mathrm{avg}}=\frac{\vec{v}_{2}-\vec{v}_{1}}{\Delta t}=\frac{\Delta \vec{v}}{\Delta t} . \tag{4-15}
\end{equation*}
\]

If we shrink \(\Delta t\) to zero about some instant, then in the limit \(\vec{a}_{\text {avg }}\) approaches the instantaneous acceleration (or acceleration) \(\vec{a}\) at that instant; that is,
\[
\begin{equation*}
\vec{a}=\frac{d \vec{v}}{d t} \tag{4-16}
\end{equation*}
\]

If the velocity changes in either magnitude or direction (or both), the particle must have an acceleration.

We can write Eq. 4-16 in unit-vector form by substituting Eq. \(4-11\) for \(\vec{v}\) to obtain
\[
\begin{aligned}
\vec{a} & =\frac{d}{d t}\left(v_{x} \hat{\mathrm{i}}+v_{y} \hat{\mathrm{j}}+v_{z} \hat{\mathrm{k}}\right) \\
& =\frac{d v_{x}}{d t} \hat{\mathrm{i}}+\frac{d v_{y}}{d t} \hat{\mathrm{j}}+\frac{d v_{z}}{d t} \hat{\mathrm{k}}
\end{aligned}
\]

We can rewrite this as
\[
\begin{equation*}
\vec{a}=a_{x} \hat{\mathrm{i}}+a_{y} \hat{\mathrm{j}}+a_{z} \hat{\mathrm{k}}, \tag{4-17}
\end{equation*}
\]
where the scalar components of \(\vec{a}\) are
\[
\begin{equation*}
a_{x}=\frac{d v_{x}}{d t}, \quad a_{y}=\frac{d v_{y}}{d t}, \quad \text { and } \quad a_{z}=\frac{d v_{z}}{d t} . \tag{4-18}
\end{equation*}
\]

To find the scalar components of \(\vec{a}\), we differentiate the scalar components of \(\vec{v}\).
Figure 4-6 shows an acceleration vector \(\vec{a}\) and its scalar components for a particle moving in two dimensions. Caution: When an acceleration vector is drawn, as in Fig. 4-6, it does not extend from one position to another. Rather, it shows the direction of acceleration for a particle located at its tail, and its length (representing the acceleration magnitude) can be drawn to any scale.

Figure 4-6 The acceleration \(\vec{a}\) of a particle and the scalar components of \(\vec{a}\).


\section*{Checkpoint 2}

Here are four descriptions of the position (in meters) of a puck as it moves in an \(x y\) plane:
(1) \(x=-3 t^{2}+4 t-2\) and \(y=6 t^{2}-4 t\)
(3) \(\vec{r}=2 t^{2} \hat{\mathrm{i}}-(4 t+3) \hat{\mathrm{j}}\)
(2) \(x=-3 t^{3}-4 t\) and \(y=-5 t^{2}+6\)
(4) \(\vec{r}=\left(4 t^{3}-2 t\right) \hat{\mathrm{i}}+3 \hat{\mathrm{j}}\)

Are the \(x\) and \(y\) acceleration components constant? Is acceleration \(\vec{a}\) constant?

\section*{Sample Problem 4.03 Two-dimensional acceleration, rabbit run}

For the rabbit in the preceding two sample problems, find the acceleration \(\vec{a}\) at time \(t=15 \mathrm{~s}\).

\section*{KEY IDEA}

We can find \(\vec{a}\) by taking derivatives of the rabbit's velocity components.

Calculations: Applying the \(a_{x}\) part of Eq. \(4-18\) to Eq. 4-13, we find the \(x\) component of \(\vec{a}\) to be
\[
a_{x}=\frac{d v_{x}}{d t}=\frac{d}{d t}(-0.62 t+7.2)=-0.62 \mathrm{~m} / \mathrm{s}^{2}
\]

Similarly, applying the \(a_{y}\) part of Eq. 4-18 to Eq. 4-14 yields the \(y\) component as
\[
a_{y}=\frac{d v_{y}}{d t}=\frac{d}{d t}(0.44 t-9.1)=0.44 \mathrm{~m} / \mathrm{s}^{2}
\]

We see that the acceleration does not vary with time (it is a constant) because the time variable \(t\) does not appear in the expression for either acceleration component. Equation 4-17 then yields
\[
\vec{a}=\left(-0.62 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}+\left(0.44 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}, \quad \text { (Answer) }
\] which is superimposed on the rabbit's path in Fig. 4-7.

To get the magnitude and angle of \(\vec{a}\), either we use a vector-capable calculator or we follow Eq. 3-6. For the magnitude we have
\[
\begin{aligned}
a & =\sqrt{a_{x}^{2}+a_{y}^{2}}=\sqrt{\left(-0.62 \mathrm{~m} / \mathrm{s}^{2}\right)^{2}+\left(0.44 \mathrm{~m} / \mathrm{s}^{2}\right)^{2}} \\
& =0.76 \mathrm{~m} / \mathrm{s}^{2} .
\end{aligned} \text { (Answer) }
\]

For the angle we have
\[
\theta=\tan ^{-1} \frac{a_{y}}{a_{x}}=\tan ^{-1}\left(\frac{0.44 \mathrm{~m} / \mathrm{s}^{2}}{-0.62 \mathrm{~m} / \mathrm{s}^{2}}\right)=-35^{\circ} .
\]

However, this angle, which is the one displayed on a calculator, indicates that \(\vec{a}\) is directed to the right and downward in Fig. 4-7. Yet, we know from the components that \(\vec{a}\) must be directed to the left and upward. To find the other angle that
has the same tangent as \(-35^{\circ}\) but is not displayed on a calculator, we add \(180^{\circ}\) :
\[
-35^{\circ}+180^{\circ}=145^{\circ}
\]
(Answer)
This is consistent with the components of \(\vec{a}\) because it gives a vector that is to the left and upward. Note that \(\vec{a}\) has the same magnitude and direction throughout the rabbit's run because the acceleration is constant. That means that we could draw the very same vector at any other point along the rabbit's path (just shift the vector to put its tail at some other point on the path without changing the length or orientation).

This has been the second sample problem in which we needed to take the derivative of a vector that is written in unit-vector notation. One common error is to neglect the unit vectors themselves, with a result of only a set of numbers and symbols. Keep in mind that a derivative of a vector is always another vector.


Figure 4-7 The acceleration \(\vec{a}\) of the rabbit at \(t=15 \mathrm{~s}\). The rabbit happens to have this same acceleration at all points on its path.

\section*{4-4 PROJECTILE MOTION}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
4.13 On a sketch of the path taken in projectile motion, explain the magnitudes and directions of the velocity and acceleration components during the flight.
4.14 Given the launch velocity in either magnitude-angle or unit-vector notation, calculate the particle's position, displacement, and velocity at a given instant during the flight.
4.15 Given data for an instant during the flight, calculate the launch velocity.

\section*{Key Ideas}
- In projectile motion, a particle is launched into the air with a speed \(v_{0}\) and at an angle \(\theta_{0}\) (as measured from a horizontal \(x\) axis). During flight, its horizontal acceleration is zero and its vertical acceleration is \(-g\) (downward on a vertical \(y\) axis).
- The equations of motion for the particle (while in flight) can be written as
\[
\begin{aligned}
x-x_{0} & =\left(v_{0} \cos \theta_{0}\right) t \\
y-y_{0} & =\left(v_{0} \sin \theta_{0}\right) t-\frac{1}{2} g t^{2} \\
v_{y} & =v_{0} \sin \theta_{0}-g t \\
v_{y}^{2} & =\left(v_{0} \sin \theta_{0}\right)^{2}-2 g\left(y-y_{0}\right)
\end{aligned}
\]
- The trajectory (path) of a particle in projectile motion is parabolic and is given by
\[
y=\left(\tan \theta_{0}\right) x-\frac{g x^{2}}{2\left(v_{0} \cos \theta_{0}\right)^{2}}
\]
if \(x_{0}\) and \(y_{0}\) are zero.
- The particle's horizontal range \(R\), which is the horizontal distance from the launch point to the point at which the particle returns to the launch height, is
\[
R=\frac{v_{0}^{2}}{g} \sin 2 \theta_{0}
\]


Figure 4-8 A stroboscopic photograph of a yellow tennis ball bouncing off a hard surface. Between impacts, the ball has projectile motion.

\section*{Projectile Motion}

We next consider a special case of two-dimensional motion: A particle moves in a vertical plane with some initial velocity \(\vec{v}_{0}\) but its acceleration is always the freefall acceleration \(\vec{g}\), which is downward. Such a particle is called a projectile (meaning that it is projected or launched), and its motion is called projectile motion. A projectile might be a tennis ball (Fig. 4-8) or baseball in flight, but it is not a duck in flight. Many sports involve the study of the projectile motion of a ball. For example, the racquetball player who discovered the Z-shot in the 1970s easily won his games because of the ball's perplexing flight to the rear of the court.

Our goal here is to analyze projectile motion using the tools for twodimensional motion described in Module 4-1 through 4-3 and making the assumption that air has no effect on the projectile. Figure 4-9, which we shall analyze soon, shows the path followed by a projectile when the air has no effect. The projectile is launched with an initial velocity \(\vec{v}_{0}\) that can be written as
\[
\begin{equation*}
\vec{v}_{0}=v_{0 x} \hat{\mathrm{i}}+v_{0 y} \hat{\mathrm{j}} \tag{4-19}
\end{equation*}
\]

The components \(v_{0 x}\) and \(v_{0 y}\) can then be found if we know the angle \(\theta_{0}\) between \(\vec{v}_{0}\) and the positive \(x\) direction:
\[
\begin{equation*}
v_{0 x}=v_{0} \cos \theta_{0} \quad \text { and } \quad v_{0 y}=v_{0} \sin \theta_{0} . \tag{4-20}
\end{equation*}
\]

During its two-dimensional motion, the projectile's position vector \(\vec{r}\) and velocity vector \(\vec{v}\) change continuously, but its acceleration vector \(\vec{a}\) is constant and always directed vertically downward. The projectile has no horizontal acceleration.

Projectile motion, like that in Figs. 4-8 and 4-9, looks complicated, but we have the following simplifying feature (known from experiment):

In projectile motion, the horizontal motion and the vertical motion are independent of each other; that is, neither motion affects the other.






Figure 4-9 The projectile motion of an object launched into the air at the origin of a coordinate system and with launch velocity \(\vec{v}_{0}\) at angle \(\theta_{0}\). The motion is a combination of vertical motion (constant acceleration) and horizontal motion (constant velocity), as shown by the velocity components.


Figure 4-10 One ball is released from rest at the same instant that another ball is shot horizontally to the right. Their vertical motions are identical.


Figure 4-11 The projectile ball always hits the falling can. Each falls a distance \(h\) from where it would be were there no free-fall acceleration.

This feature allows us to break up a problem involving two-dimensional motion into two separate and easier one-dimensional problems, one for the horizontal motion (with zero acceleration) and one for the vertical motion (with constant downward acceleration). Here are two experiments that show that the horizontal motion and the vertical motion are independent.

\section*{Two Golf Balls}

Figure 4-10 is a stroboscopic photograph of two golf balls, one simply released and the other shot horizontally by a spring. The golf balls have the same vertical motion, both falling through the same vertical distance in the same interval of time. The fact that one ball is moving horizontally while it is falling has no effect on its vertical motion; that is, the horizontal and vertical motions are independent of each other.

\section*{A Great Student Rouser}

In Fig. 4-11, a blowgun G using a ball as a projectile is aimed directly at a can suspended from a magnet M. Just as the ball leaves the blowgun, the can is released. If \(g\) (the magnitude of the free-fall acceleration) were zero, the ball would follow the straight-line path shown in Fig. 4-11 and the can would float in place after the magnet released it. The ball would certainly hit the can. However, \(g\) is not zero, but the ball still hits the can! As Fig. 4-11 shows, during the time of flight of the ball, both ball and can fall the same distance \(h\) from their zero- \(g\) locations. The harder the demonstrator blows, the greater is the ball's initial speed, the shorter the flight time, and the smaller the value of \(h\).

\section*{Checkpoint 3}

At a certain instant, a fly ball has velocity \(\vec{v}=25 \hat{\mathrm{i}}-4.9 \hat{\mathrm{j}}\) (the \(x\) axis is horizontal, the \(y\) axis is upward, and \(\vec{v}\) is in meters per second). Has the ball passed its highest point?

\section*{The Horizontal Motion}

Now we are ready to analyze projectile motion, horizontally and vertically. We start with the horizontal motion. Because there is no acceleration in the horizontal direction, the horizontal component \(v_{x}\) of the projectile's velocity remains unchanged from its initial value \(v_{0 x}\) throughout the motion, as demonstrated in Fig. 4-12. At any time \(t\), the projectile's horizontal displacement \(x-x_{0}\) from an initial position \(x_{0}\) is given by Eq. 2-15 with \(a=0\), which we write as
\[
x-x_{0}=v_{0 x} t .
\]

Because \(v_{0 x}=v_{0} \cos \theta_{0}\), this becomes
\[
\begin{equation*}
x-x_{0}=\left(v_{0} \cos \theta_{0}\right) t . \tag{4-21}
\end{equation*}
\]

\section*{The Vertical Motion}

The vertical motion is the motion we discussed in Module 2-5 for a particle in free fall. Most important is that the acceleration is constant. Thus, the equations of Table 2-1 apply, provided we substitute \(-g\) for \(a\) and switch to \(y\) notation. Then, for example, Eq. 2-15 becomes
\[
\begin{align*}
y-y_{0} & =v_{0 y} t-\frac{1}{2} g t^{2} \\
& =\left(v_{0} \sin \theta_{0}\right) t-\frac{1}{2} g t^{2}, \tag{4-22}
\end{align*}
\]
where the initial vertical velocity component \(v_{0 y}\) is replaced with the equivalent \(v_{0} \sin \theta_{0}\). Similarly, Eqs. 2-11 and 2-16 become
\[
\begin{equation*}
v_{y}=v_{0} \sin \theta_{0}-g t \tag{4-23}
\end{equation*}
\]
and
\[
\begin{equation*}
v_{y}^{2}=\left(v_{0} \sin \theta_{0}\right)^{2}-2 g\left(y-y_{0}\right) . \tag{4-24}
\end{equation*}
\]

As is illustrated in Fig. 4-9 and Eq. 4-23, the vertical velocity component behaves just as for a ball thrown vertically upward. It is directed upward initially, and its magnitude steadily decreases to zero, which marks the maximum height of the path. The vertical velocity component then reverses direction, and its magnitude becomes larger with time.

\section*{The Equation of the Path}

We can find the equation of the projectile's path (its trajectory) by eliminating time \(t\) between Eqs. 4-21 and 4-22. Solving Eq. 4-21 for \(t\) and substituting into Eq. 4-22, we obtain, after a little rearrangement,
\[
\begin{equation*}
y=\left(\tan \theta_{0}\right) x-\frac{g x^{2}}{2\left(v_{0} \cos \theta_{0}\right)^{2}} \quad \text { (trajectory). } \tag{4-25}
\end{equation*}
\]

This is the equation of the path shown in Fig. 4-9. In deriving it, for simplicity we let \(x_{0}=0\) and \(y_{0}=0\) in Eqs. 4-21 and 4-22, respectively. Because \(g, \theta_{0}\), and \(v_{0}\) are constants, Eq. \(4-25\) is of the form \(y=a x+b x^{2}\), in which \(a\) and \(b\) are constants. This is the equation of a parabola, so the path is parabolic.

\section*{The Horizontal Range}

The horizontal range \(R\) of the projectile is the horizontal distance the projectile has traveled when it returns to its initial height (the height at which it is launched). To find range \(R\), let us put \(x-x_{0}=R\) in Eq. 4-21 and \(y-y_{0}=0\) in Eq. 4-22, obtaining
\[
R=\left(v_{0} \cos \theta_{0}\right) t
\]
and
\[
0=\left(v_{0} \sin \theta_{0}\right) t-\frac{1}{2} g t^{2}
\]

Eliminating \(t\) between these two equations yields
\[
R=\frac{2 v_{0}^{2}}{g} \sin \theta_{0} \cos \theta_{0}
\]

Using the identity \(\sin 2 \theta_{0}=2 \sin \theta_{0} \cos \theta_{0}\) (see Appendix E), we obtain
\[
\begin{equation*}
R=\frac{v_{0}^{2}}{g} \sin 2 \theta_{0} \tag{4-26}
\end{equation*}
\]

This equation does not give the horizontal distance traveled by a projectile when the final height is not the launch height. Note that \(R\) in Eq. 4-26 has its maximum value when \(\sin 2 \theta_{0}=1\), which corresponds to \(2 \theta_{0}=90^{\circ}\) or \(\theta_{0}=45^{\circ}\).

The horizontal range \(R\) is maximum for a launch angle of \(45^{\circ}\).

However, when the launch and landing heights differ, as in many sports, a launch angle of \(45^{\circ}\) does not yield the maximum horizontal distance.

\section*{The Effects of the Air}

We have assumed that the air through which the projectile moves has no effect on its motion. However, in many situations, the disagreement between our calculations and the actual motion of the projectile can be large because the air resists (opposes) the motion. Figure 4-13, for example, shows two paths for a fly ball that leaves the bat at an angle of \(60^{\circ}\) with the horizontal and an initial speed of \(44.7 \mathrm{~m} / \mathrm{s}\). Path I (the baseball player's fly ball) is a calculated path that approximates normal conditions of play, in air. Path II (the physics professor's fly ball) is the path the ball would follow in a vacuum.


Figure 4-12 The vertical component of this skateboarder's velocity is changing but not the horizontal component, which matches the skateboard's velocity. As a result, the skateboard stays underneath him, allowing him to land on it.


Figure 4-13 (I) The path of a fly ball calculated by taking air resistance into account. (II) The path the ball would follow in a vacuum, calculated by the methods of this chapter. See Table 4-1 for corresponding data. (Based on "The Trajectory of a Fly Ball," by Peter J. Brancazio, The Physics Teacher, January 1985.)

Table 4-1 Two Fly Balls \({ }^{a}\)
\begin{tabular}{lcc}
\hline & \begin{tabular}{c} 
Path I \\
(Air)
\end{tabular} & \begin{tabular}{c} 
Path II \\
(Vacuum)
\end{tabular} \\
\hline \begin{tabular}{l} 
Range \\
Maximum \\
height
\end{tabular} & 98.5 m & 177 m \\
\begin{tabular}{c} 
Time \\
of flight
\end{tabular} & 6.6 m & 76.8 m \\
\hline
\end{tabular}
\({ }^{a}\) See Fig. 4-13. The launch angle is \(60^{\circ}\) and the launch speed is \(44.7 \mathrm{~m} / \mathrm{s}\).

\section*{Checkpoint 4}

A fly ball is hit to the outfield. During its flight (ignore the effects of the air), what happens to its (a) horizontal and (b) vertical components of velocity? What are the (c) horizontal and (d) vertical components of its acceleration during ascent, during descent, and at the topmost point of its flight?

\section*{Sample Problem 4.04 Projectile dropped from airplane}

In Fig. 4-14, a rescue plane flies at \(198 \mathrm{~km} / \mathrm{h}(=55.0 \mathrm{~m} / \mathrm{s})\) and constant height \(h=500 \mathrm{~m}\) toward a point directly over a victim, where a rescue capsule is to land.
(a) What should be the angle \(\phi\) of the pilot's line of sight to the victim when the capsule release is made?

\section*{KEY IDEAS}

Once released, the capsule is a projectile, so its horizontal and vertical motions can be considered separately (we need not consider the actual curved path of the capsule).

Calculations: In Fig. 4-14, we see that \(\phi\) is given by
\[
\begin{equation*}
\phi=\tan ^{-1} \frac{x}{h}, \tag{4-27}
\end{equation*}
\]
where \(x\) is the horizontal coordinate of the victim (and of the capsule when it hits the water) and \(h=500 \mathrm{~m}\). We should be able to find \(x\) with Eq. 4-21:
\[
\begin{equation*}
x-x_{0}=\left(v_{0} \cos \theta_{0}\right) t . \tag{4-28}
\end{equation*}
\]

Here we know that \(x_{0}=0\) because the origin is placed at the point of release. Because the capsule is released and not shot from the plane, its initial velocity \(\vec{v}_{0}\) is equal to the plane's velocity. Thus, we know also that the initial velocity has magnitude \(v_{0}=55.0 \mathrm{~m} / \mathrm{s}\) and angle \(\theta_{0}=0^{\circ}\) (measured relative to the positive direction of the \(x\) axis). However, we do not know the time \(t\) the capsule takes to move from the plane to the victim.

To find \(t\), we next consider the vertical motion and specifically Eq. 4-22:
\[
\begin{equation*}
y-y_{0}=\left(v_{0} \sin \theta_{0}\right) t-\frac{1}{2} g t^{2} . \tag{4-29}
\end{equation*}
\]

Here the vertical displacement \(y-y_{0}\) of the capsule is -500 m (the negative value indicates that the capsule moves downward). So,
\[
\begin{equation*}
-500 \mathrm{~m}=(55.0 \mathrm{~m} / \mathrm{s})\left(\sin 0^{\circ}\right) t-\frac{1}{2}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2} \tag{4-30}
\end{equation*}
\]

Solving for \(t\), we find \(t=10.1 \mathrm{~s}\). Using that value in Eq. 4-28 yields
\[
\begin{equation*}
x-0=(55.0 \mathrm{~m} / \mathrm{s})\left(\cos 0^{\circ}\right)(10.1 \mathrm{~s}) \tag{4-31}
\end{equation*}
\]
or
\[
x=555.5 \mathrm{~m} .
\]


Figure 4-14 A plane drops a rescue capsule while moving at constant velocity in level flight. While falling, the capsule remains under the plane.

Then Eq. 4-27 gives us
\[
\phi=\tan ^{-1} \frac{555.5 \mathrm{~m}}{500 \mathrm{~m}}=48.0^{\circ}
\]
(Answer)
(b) As the capsule reaches the water, what is its velocity \(\vec{v}\) ?

\section*{KEY IDEAS}
(1) The horizontal and vertical components of the capsule's velocity are independent. (2) Component \(v_{x}\) does not change from its initial value \(v_{0 x}=v_{0} \cos \theta_{0}\) because there is no horizontal acceleration. (3) Component \(v_{y}\) changes from its initial value \(v_{0 y}=v_{0} \sin \theta_{0}\) because there is a vertical acceleration.

Calculations: When the capsule reaches the water,
\[
v_{x}=v_{0} \cos \theta_{0}=(55.0 \mathrm{~m} / \mathrm{s})\left(\cos 0^{\circ}\right)=55.0 \mathrm{~m} / \mathrm{s} .
\]

Using Eq. 4-23 and the capsule's time of fall \(t=10.1 \mathrm{~s}\), we also find that when the capsule reaches the water,
\[
\begin{aligned}
v_{y} & =v_{0} \sin \theta_{0}-g t \\
& =(55.0 \mathrm{~m} / \mathrm{s})\left(\sin 0^{\circ}\right)-\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(10.1 \mathrm{~s}) \\
& =-99.0 \mathrm{~m} / \mathrm{s} .
\end{aligned}
\]

Thus, at the water
\[
\vec{v}=(55.0 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}-(99.0 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}} .
\]
(Answer)
From Eq. 3-6, the magnitude and the angle of \(\vec{v}\) are
\[
v=113 \mathrm{~m} / \mathrm{s} \quad \text { and } \quad \theta=-60.9^{\circ} .
\]
(Answer)

\section*{Sample Problem 4.05 Launched into the air from a water slide}

One of the most dramatic videos on the web (but entirely fictitious) supposedly shows a man sliding along a long water slide and then being launched into the air to land in a water pool. Let's attach some reasonable numbers to such a flight to calculate the velocity with which the man would have hit the water. Figure 4-15a indicates the launch and landing sites and includes a superimposed coordinate system with its origin conveniently located at the launch site. From the video we take the horizontal flight distance as \(D=20.0 \mathrm{~m}\), the flight time as \(t=2.50 \mathrm{~s}\), and the launch angle as \(\theta_{0}=40.0^{\circ}\). Find the magnitude of the velocity at launch and at landing.

\section*{KEY IDEAS}
(1) For projectile motion, we can apply the equations for constant acceleration along the horizontal and vertical axes separately. (2) Throughout the flight, the vertical acceleration is \(a_{y}=-g=-9.8 \mathrm{~m} / \mathrm{s}\) and the horizontal acceleration is \(a_{x}=0\).

Calculations: In most projectile problems, the initial challenge is to figure out where to start. There is nothing wrong with trying out various equations, to see if we can somehow get to the velocities. But here is a clue. Because we are going to apply the constant-acceleration equations separately to the \(x\) and \(y\) motions, we should find the horizontal and vertical components of the velocities at launch and at landing. For each site, we can then combine the velocity components to get the velocity.

Because we know the horizontal displacement \(D=\) 20.0 m , let's start with the horizontal motion. Since \(a_{x}=0\),


Figure 4-15 (a) Launch from a water slide, to land in a water pool. The velocity at (b) launch and (c) landing.
we know that the horizontal velocity component \(v_{x}\) is constant during the flight and thus is always equal to the horizontal component \(v_{0 x}\) at launch. We can relate that component, the displacement \(x-x_{0}\), and the flight time \(t=2.50 \mathrm{~s}\) with Eq. 2-15:
\[
\begin{equation*}
x-x_{0}=v_{0 x} t+\frac{1}{2} a_{x} t^{2} \tag{4-32}
\end{equation*}
\]

Substituting \(a_{x}=0\), this becomes Eq. 4-21. With \(x-x_{0}=D\), we then write
\[
\begin{aligned}
20 \mathrm{~m} & =v_{0 x}(2.50 \mathrm{~s})+\frac{1}{2}(0)(2.50 \mathrm{~s})^{2} \\
v_{0 x} & =8.00 \mathrm{~m} / \mathrm{s} .
\end{aligned}
\]

That is a component of the launch velocity, but we need the magnitude of the full vector, as shown in Fig. 4-15b, where the components form the legs of a right triangle and the full vector forms the hypotenuse. We can then apply a trig definition to find the magnitude of the full velocity at launch:
\[
\cos \theta_{0}=\frac{v_{0 x}}{v_{0}}
\]
and so
\[
\begin{aligned}
v_{0} & =\frac{v_{0 x}}{\cos \theta_{0}}=\frac{8.00 \mathrm{~m} / \mathrm{s}}{\cos 40^{\circ}} \\
& =10.44 \mathrm{~m} / \mathrm{s} \approx 10.4 \mathrm{~m} / \mathrm{s} \quad \text { (Answer) }
\end{aligned}
\]

Now let's go after the magnitude \(v\) of the landing velocity. We already know the horizontal component, which does not change from its initial value of \(8.00 \mathrm{~m} / \mathrm{s}\). To find the vertical component \(v_{y}\) and because we know the elapsed time \(t=\) 2.50 s and the vertical acceleration \(a_{y}=-9.8 \mathrm{~m} / \mathrm{s}^{2}\), let's rewrite Eq. 2-11 as
\[
v_{y}=v_{0 y}+a_{y} t
\]
and then (from Fig. 4-15b) as
\[
\begin{equation*}
v_{y}=v_{0} \sin \theta_{0}+a_{y} t \tag{4-33}
\end{equation*}
\]

Substituting \(a_{y}=-g\), this becomes Eq. 4-23. We can then write
\[
\begin{aligned}
v_{y} & =(10.44 \mathrm{~m} / \mathrm{s}) \sin \left(40.0^{\circ}\right)-\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(2.50 \mathrm{~s}) \\
& =-17.78 \mathrm{~m} / \mathrm{s}
\end{aligned}
\]

Now that we know both components of the landing velocity, we use Eq. 3-6 to find the velocity magnitude:
\[
\begin{aligned}
v & =\sqrt{v_{x}^{2}+v_{y}^{2}} \\
& =\sqrt{(8.00 \mathrm{~m} / \mathrm{s})^{2}+(-17.78 \mathrm{~m} / \mathrm{s})^{2}} \\
& =19.49 \mathrm{~m} / \mathrm{s}^{2} \approx 19.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
\]
(Answer)

\section*{4-5 UNIFORM CIRCULAR MOTION}

\section*{Learning Objectives}

After reading this module, you should be able to ...
4.16 Sketch the path taken in uniform circular motion and explain the velocity and acceleration vectors (magnitude and direction) during the motion.
4.17 Apply the relationships between the radius of the circular path, the period, the particle's speed, and the particle's acceleration magnitude.

\section*{Key Ideas}
- If a particle travels along a circle or circular arc of radius \(r\) at constant speed \(v\), it is said to be in uniform circular motion and has an acceleration \(\vec{a}\) of constant magnitude
\[
a=\frac{v^{2}}{r} .
\]

The direction of \(\vec{a}\) is toward the center of the circle or circular
arc, and \(\vec{a}\) is said to be centripetal. The time for the particle to complete a circle is
\[
T=\frac{2 \pi r}{v} .
\]
\(T\) is called the period of revolution, or simply the period, of the motion.

The acceleration vector always points toward the center.

The velocity vector is always tangent to the path.

Figure 4-16 Velocity and acceleration vectors for uniform circular motion.

\section*{Uniform Circular Motion}

A particle is in uniform circular motion if it travels around a circle or a circular arc at constant (uniform) speed. Although the speed does not vary, the particle is accelerating because the velocity changes in direction.

Figure 4-16 shows the relationship between the velocity and acceleration vectors at various stages during uniform circular motion. Both vectors have constant magnitude, but their directions change continuously. The velocity is always directed tangent to the circle in the direction of motion. The acceleration is always directed radially inward. Because of this, the acceleration associated with uniform circular motion is called a centripetal (meaning "center seeking") acceleration. As we prove next, the magnitude of this acceleration \(\vec{a}\) is
\[
\begin{equation*}
a=\frac{v^{2}}{r} \quad \text { (centripetal acceleration) } \tag{4-34}
\end{equation*}
\]
where \(r\) is the radius of the circle and \(v\) is the speed of the particle.
In addition, during this acceleration at constant speed, the particle travels the circumference of the circle (a distance of \(2 \pi r\) ) in time
\[
\begin{equation*}
T=\frac{2 \pi r}{v} \quad \text { (period) } \tag{4-35}
\end{equation*}
\]
\(T\) is called the period of revolution, or simply the period, of the motion. It is, in general, the time for a particle to go around a closed path exactly once.

\section*{Proof of Eq. 4-34}

To find the magnitude and direction of the acceleration for uniform circular motion, we consider Fig. 4-17. In Fig. 4-17a, particle \(p\) moves at constant speed \(v\) around a circle of radius \(r\). At the instant shown, \(p\) has coordinates \(x_{p}\) and \(y_{p}\).

Recall from Module 4-2 that the velocity \(\vec{v}\) of a moving particle is always tangent to the particle's path at the particle's position. In Fig. 4-17a, that means \(\vec{v}\) is perpendicular to a radius \(r\) drawn to the particle's position. Then the angle \(\theta\) that \(\vec{v}\) makes with a vertical at \(p\) equals the angle \(\theta\) that radius \(r\) makes with the \(x\) axis.

The scalar components of \(\vec{v}\) are shown in Fig. 4-17b. With them, we can write the velocity \(\vec{v}\) as
\[
\begin{equation*}
\vec{v}=v_{x} \hat{\mathrm{i}}+v_{y} \hat{\mathrm{j}}=(-v \sin \theta) \hat{\mathrm{i}}+(v \cos \theta) \hat{\mathrm{j}} \tag{4-36}
\end{equation*}
\]

Now, using the right triangle in Fig. 4-17a, we can replace \(\sin \theta\) with \(y_{p} / r\) and \(\cos \theta\) with \(x_{p} / r\) to write
\[
\begin{equation*}
\vec{v}=\left(-\frac{v y_{p}}{r}\right) \hat{\mathrm{i}}+\left(\frac{v x_{p}}{r}\right) \hat{\mathrm{j}} . \tag{4-37}
\end{equation*}
\]

To find the acceleration \(\vec{a}\) of particle \(p\), we must take the time derivative of this equation. Noting that speed \(v\) and radius \(r\) do not change with time, we obtain
\[
\begin{equation*}
\vec{a}=\frac{d \vec{v}}{d t}=\left(-\frac{v}{r} \frac{d y_{p}}{d t}\right) \hat{\mathrm{i}}+\left(\frac{v}{r} \frac{d x_{p}}{d t}\right) \hat{\mathrm{j}} . \tag{4-38}
\end{equation*}
\]

Now note that the rate \(d y_{p} / d t\) at which \(y_{p}\) changes is equal to the velocity component \(v_{y}\). Similarly, \(d x_{p} / d t=v_{x}\), and, again from Fig. 4-17b, we see that \(v_{x}=\) \(-v \sin \theta\) and \(v_{y}=v \cos \theta\). Making these substitutions in Eq. 4-38, we find
\[
\begin{equation*}
\vec{a}=\left(-\frac{v^{2}}{r} \cos \theta\right) \hat{\mathrm{i}}+\left(-\frac{v^{2}}{r} \sin \theta\right) \hat{\mathrm{j}} . \tag{4-39}
\end{equation*}
\]

This vector and its components are shown in Fig. 4-17c. Following Eq. 3-6, we find
\[
a=\sqrt{a_{x}^{2}+a_{y}^{2}}=\frac{v^{2}}{r} \sqrt{(\cos \theta)^{2}+(\sin \theta)^{2}}=\frac{v^{2}}{r} \sqrt{1}=\frac{v^{2}}{r},
\]
as we wanted to prove. To orient \(\vec{a}\), we find the angle \(\phi\) shown in Fig. 4-17c:
\[
\tan \phi=\frac{a_{y}}{a_{x}}=\frac{-\left(v^{2} / r\right) \sin \theta}{-\left(v^{2} / r\right) \cos \theta}=\tan \theta
\]

Thus, \(\phi=\theta\), which means that \(\vec{a}\) is directed along the radius \(r\) of Fig. 4-17a, toward the circle's center, as we wanted to prove.

\section*{Checkpoint 5}

An object moves at constant speed along a circular path in a horizontal \(x y\) plane, with the center at the origin. When the object is at \(x=-2 \mathrm{~m}\), its velocity is \(-(4 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}\). Give the object's (a) velocity and (b) acceleration at \(y=2 \mathrm{~m}\).


Figure 4-17 Particle \(p\) moves in counterclockwise uniform circular motion. (a) Its position and velocity \(\vec{v}\) at a certain instant. (b) Velocity \(\vec{v}\). (c) Acceleration \(\vec{a}\).

\section*{Sample Problem 4.06 Top gun pilots in turns}
"Top gun" pilots have long worried about taking a turn too tightly. As a pilot's body undergoes centripetal acceleration, with the head toward the center of curvature, the blood pressure in the brain decreases, leading to loss of brain function.

There are several warning signs. When the centripetal acceleration is \(2 g\) or \(3 g\), the pilot feels heavy. At about \(4 g\), the pilot's vision switches to black and white and narrows to "tunnel vision." If that acceleration is sustained or increased, vision ceases and, soon after, the pilot is uncon-scious-a condition known as \(g\)-LOC for " \(g\)-induced loss of consciousness."

What is the magnitude of the acceleration, in \(g\) units, of a pilot whose aircraft enters a horizontal circular turn with a velocity of \(\vec{v}_{i}=(400 \hat{\mathrm{i}}+500 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}\) and 24.0 s later leaves the turn with a velocity of \(\vec{v}_{f}=(-400 \hat{\mathrm{i}}-500 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}\) ?

\section*{KEY IDEAS}

We assume the turn is made with uniform circular motion. Then the pilot's acceleration is centripetal and has magnitude \(a\) given by Eq. 4-34 \(\left(a=v^{2} / R\right)\), where \(R\) is the circle's radius. Also, the time required to complete a full circle is the period given by Eq. \(4-35(T=2 \pi R / v)\).
Calculations: Because we do not know radius \(R\), let's solve Eq. 4-35 for \(R\) and substitute into Eq. 4-34. We find
\[
a=\frac{2 \pi v}{T}
\]

To get the constant speed \(v\), let's substitute the components of the initial velocity into Eq. 3-6:
\[
v=\sqrt{(400 \mathrm{~m} / \mathrm{s})^{2}+(500 \mathrm{~m} / \mathrm{s})^{2}}=640.31 \mathrm{~m} / \mathrm{s}
\]

To find the period \(T\) of the motion, first note that the final velocity is the reverse of the initial velocity. This means the aircraft leaves on the opposite side of the circle from the initial point and must have completed half a circle in the given
24.0 s . Thus a full circle would have taken \(T=48.0 \mathrm{~s}\). Substituting these values into our equation for \(a\), we find
\[
a=\frac{2 \pi(640.31 \mathrm{~m} / \mathrm{s})}{48.0 \mathrm{~s}}=83.81 \mathrm{~m} / \mathrm{s}^{2} \approx 8.6 g
\]
(Answer)

\section*{4-6 RELATIVE MOTION IN ONE DIMENSION}

\section*{Learning Objective}

After reading this module, you should be able to ...
4.18 Apply the relationship between a particle's position, velocity, and acceleration as measured from two reference
frames that move relative to each other at constant velocity and along a single axis.

\section*{Key Idea}
- When two frames of reference \(A\) and \(B\) are moving relative to each other at constant velocity, the velocity of a particle \(P\) as measured by an observer in frame \(A\) usually differs from that measured from frame \(B\). The two measured velocities are related by
\[
\vec{v}_{P A}=\vec{v}_{P B}+\vec{v}_{B A},
\]
where \(\vec{v}_{B A}\) is the velocity of \(B\) with respect to \(A\). Both observers measure the same acceleration for the particle:
\[
\vec{a}_{P A}=\vec{a}_{P B} .
\]

Frame \(B\) moves past frame \(A\) while both observe \(P\).


Figure 4-18 Alex (frame \(A\) ) and Barbara (frame \(B\) ) watch car \(P\), as both \(B\) and \(P\) move at different velocities along the common \(x\) axis of the two frames. At the instant shown, \(x_{B A}\) is the coordinate of \(B\) in the \(A\) frame. Also, \(P\) is at coordinate \(x_{P B}\) in the \(B\) frame and coordinate \(x_{P A}=x_{P B}+\) \(x_{B A}\) in the \(A\) frame.

\section*{Relative Motion in One Dimension}

Suppose you see a duck flying north at \(30 \mathrm{~km} / \mathrm{h}\). To another duck flying alongside, the first duck seems to be stationary. In other words, the velocity of a particle depends on the reference frame of whoever is observing or measuring the velocity. For our purposes, a reference frame is the physical object to which we attach our coordinate system. In everyday life, that object is the ground. For example, the speed listed on a speeding ticket is always measured relative to the ground. The speed relative to the police officer would be different if the officer were moving while making the speed measurement.

Suppose that Alex (at the origin of frame \(A\) in Fig. 4-18) is parked by the side of a highway, watching car \(P\) (the "particle") speed past. Barbara (at the origin of frame \(B\) ) is driving along the highway at constant speed and is also watching car \(P\). Suppose that they both measure the position of the car at a given moment. From Fig. 4-18 we see that
\[
\begin{equation*}
x_{P A}=x_{P B}+x_{B A} . \tag{4-40}
\end{equation*}
\]

The equation is read: "The coordinate \(x_{P A}\) of \(P\) as measured by \(A\) is equal to the coordinate \(x_{P B}\) of \(P\) as measured by \(B\) plus the coordinate \(x_{B A}\) of \(B\) as measured by \(A\)." Note how this reading is supported by the sequence of the subscripts.

Taking the time derivative of Eq. 4-40, we obtain
\[
\frac{d}{d t}\left(x_{P A}\right)=\frac{d}{d t}\left(x_{P B}\right)+\frac{d}{d t}\left(x_{B A}\right) .
\]

Thus, the velocity components are related by
\[
\begin{equation*}
v_{P A}=v_{P B}+v_{B A} . \tag{4-41}
\end{equation*}
\]

This equation is read: "The velocity \(v_{P A}\) of \(P\) as measured by \(A\) is equal to the
velocity \(v_{P B}\) of \(P\) as measured by \(B\) plus the velocity \(v_{B A}\) of \(B\) as measured by \(A . "\)
The term \(v_{B A}\) is the velocity of frame \(B\) relative to frame \(A\).
Here we consider only frames that move at constant velocity relative to each other. In our example, this means that Barbara (frame \(B\) ) drives always at constant velocity \(v_{B A}\) relative to Alex (frame \(A\) ). Car \(P\) (the moving particle), however, can change speed and direction (that is, it can accelerate).

To relate an acceleration of \(P\) as measured by Barbara and by Alex, we take the time derivative of Eq. 4-41:
\[
\frac{d}{d t}\left(v_{P A}\right)=\frac{d}{d t}\left(v_{P B}\right)+\frac{d}{d t}\left(v_{B A}\right)
\]

Because \(v_{B A}\) is constant, the last term is zero and we have
\[
\begin{equation*}
a_{P A}=a_{P B} \tag{4-42}
\end{equation*}
\]

In other words,
Observers on different frames of reference that move at constant velocity relative to each other will measure the same acceleration for a moving particle.

\section*{Sample Problem 4.07 Relative motion, one dimensional, Alex and Barbara}

In Fig. 4-18, suppose that Barbara's velocity relative to Alex is a constant \(v_{B A}=52 \mathrm{~km} / \mathrm{h}\) and car \(P\) is moving in the negative direction of the \(x\) axis.
(a) If Alex measures a constant \(v_{P A}=-78 \mathrm{~km} / \mathrm{h}\) for car \(P\), what velocity \(v_{P B}\) will Barbara measure?

\section*{KEY IDEAS}

We can attach a frame of reference \(A\) to Alex and a frame of reference \(B\) to Barbara. Because the frames move at constant velocity relative to each other along one axis, we can use Eq. 4-41 \(\left(v_{P A}=v_{P B}+v_{B A}\right)\) to relate \(v_{P B}\) to \(v_{P A}\) and \(v_{B A}\).
Calculation: We find
\[
-78 \mathrm{~km} / \mathrm{h}=v_{P B}+52 \mathrm{~km} / \mathrm{h}
\]

Thus,
\[
v_{P B}=-130 \mathrm{~km} / \mathrm{h} .
\]
(Answer)
Comment: If car \(P\) were connected to Barbara's car by a cord wound on a spool, the cord would be unwinding at a speed of \(130 \mathrm{~km} / \mathrm{h}\) as the two cars separated.
(b) If car \(P\) brakes to a stop relative to Alex (and thus relative to the ground) in time \(t=10 \mathrm{~s}\) at constant acceleration, what is its acceleration \(a_{P A}\) relative to Alex?

\section*{KEY IDEAS}

To calculate the acceleration of car \(P\) relative to Alex, we must use the car's velocities relative to Alex. Because the acceleration is constant, we can use Eq. 2-11 \(\left(v=v_{0}+a t\right)\)
to relate the acceleration to the initial and final velocities of \(P\).
Calculation: The initial velocity of \(P\) relative to Alex is \(v_{P A}=-78 \mathrm{~km} / \mathrm{h}\) and the final velocity is 0 . Thus, the acceleration relative to Alex is
\[
\begin{aligned}
a_{P A} & =\frac{v-v_{0}}{t}=\frac{0-(-78 \mathrm{~km} / \mathrm{h})}{10 \mathrm{~s}} \frac{1 \mathrm{~m} / \mathrm{s}}{3.6 \mathrm{~km} / \mathrm{h}} \\
& =2.2 \mathrm{~m} / \mathrm{s}^{2} .
\end{aligned}
\]
(Answer)
(c) What is the acceleration \(a_{P B}\) of car \(P\) relative to Barbara during the braking?

\section*{KEY IDEA}

To calculate the acceleration of car P relative to Barbara, we must use the car's velocities relative to Barbara.
Calculation: We know the initial velocity of \(P\) relative to Barbara from part (a) \(\left(v_{P B}=-130 \mathrm{~km} / \mathrm{h}\right)\). The final velocity of \(P\) relative to Barbara is \(-52 \mathrm{~km} / \mathrm{h}\) (because this is the velocity of the stopped car relative to the moving Barbara). Thus,
\[
\begin{aligned}
a_{P B} & =\frac{v-v_{0}}{t}=\frac{-52 \mathrm{~km} / \mathrm{h}-(-130 \mathrm{~km} / \mathrm{h})}{10 \mathrm{~s}} \frac{1 \mathrm{~m} / \mathrm{s}}{3.6 \mathrm{~km} / \mathrm{h}} \\
& =2.2 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
\]

Comment: We should have foreseen this result: Because Alex and Barbara have a constant relative velocity, they must measure the same acceleration for the car.

\section*{4-7 RELATIVE MOTION IN TWO DIMENSIONS}

\section*{Learning Objective}

After reading this module, you should be able to ...
4.19 Apply the relationship between a particle's position, velocity, and acceleration as measured from two reference
frames that move relative to each other at constant velocity and in two dimensions.

\section*{Key Idea}
- When two frames of reference \(A\) and \(B\) are moving relative to each other at constant velocity, the velocity of a particle \(P\) as measured by an observer in frame \(A\) usually differs from that measured from frame \(B\). The two measured velocities are related by
\[
\vec{v}_{P A}=\vec{v}_{P B}+\vec{v}_{B A}
\]
where \(\vec{v}_{B A}\) is the velocity of \(B\) with respect to \(A\). Both observers measure the same acceleration for the particle:
\[
\vec{a}_{P A}=\vec{a}_{P B} .
\]


Figure 4-19 Frame \(B\) has the constant two-dimensional velocity \(\vec{v}_{B A}\) relative to frame \(A\). The position vector of \(B\) relative to \(A\) is \(\vec{r}_{B A}\). The position vectors of particle \(P\) are \(\vec{r}_{P A}\) relative to \(A\) and \(\vec{r}_{P B}\) relative to \(B\).

\section*{Relative Motion in Two Dimensions}

Our two observers are again watching a moving particle \(P\) from the origins of reference frames \(A\) and \(B\), while \(B\) moves at a constant velocity \(\vec{v}_{B A}\) relative to \(A\). (The corresponding axes of these two frames remain parallel.) Figure 4-19 shows a certain instant during the motion. At that instant, the position vector of the origin of \(B\) relative to the origin of \(A\) is \(\vec{r}_{B A}\). Also, the position vectors of particle \(P\) are \(\vec{r}_{P A}\) relative to the origin of \(A\) and \(\vec{r}_{P B}\) relative to the origin of \(B\). From the arrangement of heads and tails of those three position vectors, we can relate the vectors with
\[
\begin{equation*}
\vec{r}_{P A}=\vec{r}_{P B}+\vec{r}_{B A} . \tag{4-43}
\end{equation*}
\]

By taking the time derivative of this equation, we can relate the velocities \(\vec{v}_{P A}\) and \(\vec{v}_{P B}\) of particle \(P\) relative to our observers:
\[
\begin{equation*}
\vec{v}_{P A}=\vec{v}_{P B}+\vec{v}_{B A} . \tag{4-44}
\end{equation*}
\]

By taking the time derivative of this relation, we can relate the accelerations \(\vec{a}_{P A}\) and \(\vec{a}_{P B}\) of the particle \(P\) relative to our observers. However, note that because \(\vec{v}_{B A}\) is constant, its time derivative is zero. Thus, we get
\[
\begin{equation*}
\vec{a}_{P A}=\vec{a}_{P B} . \tag{4-45}
\end{equation*}
\]

As for one-dimensional motion, we have the following rule: Observers on different frames of reference that move at constant velocity relative to each other will measure the same acceleration for a moving particle.

\section*{Sample Problem 4.08 Relative motion, two dimensional, airplanes}

In Fig. 4-20a, a plane moves due east while the pilot points the plane somewhat south of east, toward a steady wind that blows to the northeast. The plane has velocity \(\vec{v}_{P W}\) relative to the wind, with an airspeed (speed relative to the wind) of \(215 \mathrm{~km} / \mathrm{h}\), directed at angle \(\theta\) south of east. The wind has velocity \(\vec{v}_{W G}\) relative to the ground with speed \(65.0 \mathrm{~km} / \mathrm{h}\), directed \(20.0^{\circ}\) east of north. What is the magnitude of the velocity \(\vec{v}_{P G}\) of the plane relative to the ground, and what is \(\theta\) ?

\section*{KEY IDEAS}

The situation is like the one in Fig. 4-19. Here the moving particle \(P\) is the plane, frame \(A\) is attached to the ground (call it \(G\) ), and frame \(B\) is "attached" to the wind (call it \(W\) ). We need a vector diagram like Fig. 4-19 but with three velocity vectors.

Calculations: First we construct a sentence that relates the three vectors shown in Fig. 4-20b:
velocity of plane \(=\) velocity of plane + velocity of wind relative to ground \({ }^{=}\)relative to wind \({ }^{+}\)relative to ground.
\((P G)\)
( \(P W\) )
(WG)
This relation is written in vector notation as
\[
\begin{equation*}
\vec{v}_{P G}=\vec{v}_{P W}+\vec{v}_{W G} \tag{4-46}
\end{equation*}
\]

We need to resolve the vectors into components on the coordinate system of Fig. 4-20b and then solve Eq. 4-46 axis by axis. For the \(y\) components, we find
\[
v_{P G, y}=v_{P W, y}+v_{W G, y}
\]
or \(\quad 0=-(215 \mathrm{~km} / \mathrm{h}) \sin \theta+(65.0 \mathrm{~km} / \mathrm{h})\left(\cos 20.0^{\circ}\right)\).
Solving for \(\theta\) gives us
\[
\theta=\sin ^{-1} \frac{(65.0 \mathrm{~km} / \mathrm{h})\left(\cos 20.0^{\circ}\right)}{215 \mathrm{~km} / \mathrm{h}}=16.5^{\circ}
\]
(Answer)
Similarly, for the \(x\) components we find
\[
v_{P G, x}=v_{P W, x}+v_{W G, x} .
\]

Here, because \(\vec{v}_{P G}\) is parallel to the \(x\) axis, the component \(v_{P G, x}\) is equal to the magnitude \(v_{P G}\). Substituting this notation and the value \(\theta=16.5^{\circ}\), we find
\[
\begin{aligned}
v_{P G} & =(215 \mathrm{~km} / \mathrm{h})\left(\cos 16.5^{\circ}\right)+(65.0 \mathrm{~km} / \mathrm{h})\left(\sin 20.0^{\circ}\right) \\
& =228 \mathrm{~km} / \mathrm{h} . \quad \text { (Answer) }
\end{aligned}
\]


Figure 4-20 A plane flying in a wind.
PLUS Additional examples, video, and practice available at WileyPLUS

\section*{8Review \& Summary}

Position Vector The location of a particle relative to the origin of a coordinate system is given by a position vector \(\vec{r}\), which in unit-vector notation is
\[
\begin{equation*}
\vec{r}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}} \tag{4-1}
\end{equation*}
\]

Here \(x \hat{\mathrm{i}}, y \hat{\mathrm{j}}\), and \(z \hat{\mathrm{k}}\) are the vector component of position vector \(\vec{r}\), and \(x, y\), and \(z\) are its scalar components (as well as the coordinates of the particle). A position vector is described either by a magnitude and one or two angles for orientation, or by its vector or scalar components.

Displacement If a particle moves so that its position vector changes from \(\vec{r}_{1}\) to \(\vec{r}_{2}\), the particle's displacement \(\Delta \vec{r}\) is
\[
\begin{equation*}
\Delta \vec{r}=\vec{r}_{2}-\vec{r}_{1} . \tag{4-2}
\end{equation*}
\]

The displacement can also be written as
\[
\begin{align*}
\Delta \vec{r} & =\left(x_{2}-x_{1}\right) \hat{\mathrm{i}}+\left(y_{2}-y_{1}\right) \hat{\mathrm{j}}+\left(z_{2}-z_{1}\right) \hat{\mathrm{k}}  \tag{4-3}\\
& =\Delta x \hat{\mathrm{i}}+\Delta y \hat{\mathrm{j}}+\Delta z \hat{\mathrm{k}} . \tag{4-4}
\end{align*}
\]

Average Velocity and Instantaneous Velocity If a particle undergoes a displacement \(\Delta \vec{r}\) in time interval \(\Delta t\), its average velocity \(\vec{v}_{\text {avg }}\) for that time interval is
\[
\begin{equation*}
\vec{v}_{\text {avg }}=\frac{\Delta \vec{r}}{\Delta t} . \tag{4-8}
\end{equation*}
\]

As \(\Delta t\) in Eq. \(4-8\) is shrunk to \(0, \vec{v}_{\text {avg }}\) reaches a limit called either the velocity or the instantaneous velocity \(\vec{v}\) :
\[
\begin{equation*}
\vec{v}=\frac{d \vec{r}}{d t} \tag{4-10}
\end{equation*}
\]
which can be rewritten in unit-vector notation as
\[
\begin{equation*}
\vec{v}=v_{x} \hat{i}+v_{y} \hat{\mathrm{j}}+v_{z} \hat{\mathrm{k}}, \tag{4-11}
\end{equation*}
\]
where \(v_{x}=d x / d t, v_{y}=d y / d t\), and \(v_{z}=d z / d t\). The instantaneous velocity \(\vec{v}\) of a particle is always directed along the tangent to the particle's path at the particle's position.

\section*{Average Acceleration and Instantaneous Acceleration}

If a particle's velocity changes from \(\vec{v}_{1}\) to \(\vec{v}_{2}\) in time interval \(\Delta t\), its average acceleration during \(\Delta t\) is
\[
\begin{equation*}
\vec{a}_{\mathrm{avg}}=\frac{\vec{v}_{2}-\vec{v}_{1}}{\Delta t}=\frac{\Delta \vec{v}}{\Delta t} \tag{4-15}
\end{equation*}
\]

As \(\Delta t\) in Eq. \(4-15\) is shrunk to \(0, \vec{a}_{\text {avg }}\) reaches a limiting value called either the acceleration or the instantaneous acceleration \(\vec{a}\) :
\[
\begin{equation*}
\vec{a}=\frac{d \vec{v}}{d t} \tag{4-16}
\end{equation*}
\]

In unit-vector notation,
\[
\begin{equation*}
\vec{a}=a_{x} \hat{i}+a_{y} \hat{\mathrm{j}}+a_{z} \hat{\mathrm{k}} \tag{4-17}
\end{equation*}
\]
where \(a_{x}=d v_{x} / d t, a_{y}=d v_{y} / d t\), and \(a_{z}=d v_{z} / d t\).

Projectile Motion Projectile motion is the motion of a particle that is launched with an initial velocity \(\vec{v}_{0}\). During its flight, the particle's horizontal acceleration is zero and its vertical acceleration is the free-fall acceleration \(-g\). (Upward is taken to be a positive direction.) If \(\vec{v}_{0}\) is expressed as a magnitude (the speed \(v_{0}\) ) and an angle \(\theta_{0}\) (measured from the horizontal), the particle's equations of motion along the horizontal \(x\) axis and vertical \(y\) axis are
\[
\begin{align*}
x-x_{0} & =\left(v_{0} \cos \theta_{0}\right) t  \tag{4-21}\\
y-y_{0} & =\left(v_{0} \sin \theta_{0}\right) t-\frac{1}{2} g t^{2},  \tag{4-22}\\
v_{y} & =v_{0} \sin \theta_{0}-g t  \tag{4-23}\\
v_{y}^{2} & =\left(v_{0} \sin \theta_{0}\right)^{2}-2 g\left(y-y_{0}\right) \tag{4-24}
\end{align*}
\]

The trajectory (path) of a particle in projectile motion is parabolic and is given by
\[
\begin{equation*}
y=\left(\tan \theta_{0}\right) x-\frac{g x^{2}}{2\left(v_{0} \cos \theta_{0}\right)^{2}} \tag{4-25}
\end{equation*}
\]
if \(x_{0}\) and \(y_{0}\) of Eqs. 4-21 to 4-24 are zero. The particle's horizontal range \(R\), which is the horizontal distance from the launch point to the point at which the particle returns to the launch height, is
\[
\begin{equation*}
R=\frac{v_{0}^{2}}{g} \sin 2 \theta_{0} \tag{4-26}
\end{equation*}
\]

\section*{Questions}

1 Figure 4-21 shows the path taken by a skunk foraging for trash food, from initial point \(i\). The skunk took the same time \(T\) to go from each labeled point to the next along its path. Rank points \(a, b\), and \(c\) according to the magnitude of the average velocity of the skunk to reach them from initial point \(i\), greatest first.
2 Figure 4-22 shows the initial position \(i\) and the final position \(f\) of a parti-


Figure 4-21 Question 1. cle. What are the (a) initial position vector \(\vec{r}_{i}\) and (b) final position vector \(\vec{r}_{f}\), both in unit-vector notation? (c) What is the \(x\) component of displacement \(\Delta \vec{r}\) ?


Figure 4-22 Question 2.
3 When Paris was shelled from 100 km away with the WWI long-range artillery piece "Big Bertha," the shells were fired at an angle greater than \(45^{\circ}\) to give them a greater range, possibly even

Uniform Circular Motion If a particle travels along a circle or circular arc of radius \(r\) at constant speed \(v\), it is said to be in uniform circular motion and has an acceleration \(\vec{a}\) of constant magnitude
\[
\begin{equation*}
a=\frac{v^{2}}{r} \tag{4-34}
\end{equation*}
\]

The direction of \(\vec{a}\) is toward the center of the circle or circular arc, and \(\vec{a}\) is said to be centripetal. The time for the particle to complete a circle is
\[
\begin{equation*}
T=\frac{2 \pi r}{v} \tag{4-35}
\end{equation*}
\]
\(T\) is called the period of revolution, or simply the period, of the motion.

Relative Motion When two frames of reference \(A\) and \(B\) are moving relative to each other at constant velocity, the velocity of a particle \(P\) as measured by an observer in frame \(A\) usually differs from that measured from frame \(B\). The two measured velocities are related by
\[
\begin{equation*}
\vec{v}_{P A}=\vec{v}_{P B}+\vec{v}_{B A} \tag{4-44}
\end{equation*}
\]
where \(\vec{v}_{B A}\) is the velocity of \(B\) with respect to \(A\). Both observers measure the same acceleration for the particle:
\[
\begin{equation*}
\vec{a}_{P A}=\vec{a}_{P B} . \tag{4-45}
\end{equation*}
\]
twice as long as at \(45^{\circ}\). Does that result mean that the air density at high altitudes increases with altitude or decreases?
4 You are to launch a rocket, from just above the ground, with one of the following initial velocity vectors: (1) \(\vec{v}_{0}=20 \hat{\mathrm{i}}+70 \hat{\mathrm{j}}\), (2) \(\vec{v}_{0}=-20 \hat{\mathrm{i}}+70 \hat{\mathrm{j}}\), (3) \(\vec{v}_{0}=20 \hat{\mathrm{i}}-70 \hat{\mathrm{j}}\), (4) \(\vec{v}_{0}=-20 \hat{\mathrm{i}}-70 \hat{\mathrm{j}}\). In your coordinate system, \(x\) runs along level ground and \(y\) increases upward. (a) Rank the vectors according to the launch speed of the projectile, greatest first. (b) Rank the vectors according to the time of flight of the projectile, greatest first.
5 Figure 4-23 shows three situations in which identical projectiles are launched (at the same level) at identical initial speeds and angles. The projectiles do not land on the same terrain, however. Rank the situations according to the final speeds of the projectiles just before they land, greatest first.


Figure 4-23 Question 5.
6 The only good use of a fruitcake is in catapult practice. Curve 1 in Fig. 4-24 gives the height \(y\) of a catapulted fruitcake versus the angle \(\theta\) between its velocity vector and its acceleration vector during flight. (a) Which of the lettered points on that curve corresponds to the landing of the fruitcake on the ground? (b) Curve 2 is a similar plot for the same


Figure 4-24 Question 6.
launch speed but for a different launch angle. Does the fruitcake now land farther away or closer to the launch point?
7 An airplane flying horizontally at a constant speed of \(350 \mathrm{~km} / \mathrm{h}\) over level ground releases a bundle of food supplies. Ignore the effect of the air on the bundle. What are the bundle's initial (a) vertical and (b) horizontal components of velocity? (c) What is its horizontal component of velocity just before hitting the ground? (d) If the airplane's speed were, instead, \(450 \mathrm{~km} / \mathrm{h}\), would the time of fall be longer, shorter, or the same?
8 In Fig. 4-25, a cream tangerine is thrown up past windows 1, 2, and 3 , which are identical in size and regularly spaced vertically. Rank those three windows according to (a) the time the cream tangerine takes to pass them and (b) the average speed of the cream tangerine during the passage, greatest first.

The cream tangerine then moves down past windows 4, 5, and 6 , which are identical in size and irregularly spaced horizontally. Rank those three windows according to (c) the time the cream tangerine takes to pass them and (d) the average speed of the cream tangerine during the passage, greatest first.


Figure 4-25 Question 8.
9 Figure 4-26 shows three paths for a football kicked from ground level. Ignoring the effects of air, rank the paths according to (a) time of flight, (b) initial vertical velocity component, (c) initial horizontal velocity component, and (d) initial speed, greatest first.


Figure 4-26 Question 9.
10 A ball is shot from ground level over level ground at a certain initial speed. Figure \(4-27\) gives the range \(R\) of the ball versus its launch angle \(\theta_{0}\). Rank the three lettered points on the plot according to (a) the total flight time of the ball and (b) the ball's speed at maximum height, greatest first.


Figure 4-27 Question 10.

11 Figure 4-28 shows four tracks (either half- or quarter-circles) that can be taken by a train, which moves at a constant speed. Rank the tracks according to the magnitude of a train's acceleration on the curved portion, greatest first.


Figure 4-28 Question 11.
12 In Fig. 4-29, particle \(P\) is in uniform circular motion, centered on the origin of an \(x y\) coordinate system. (a) At what values of \(\theta\) is the vertical component \(r_{y}\) of the position vector greatest in magnitude? (b) At what values of \(\theta\) is the vertical component \(v_{y}\) of the particle's velocity greatest in magnitude? (c) At what values of \(\theta\) is the vertical component \(a_{y}\) of the particle's acceleration greatest in magnitude?


Figure 4-29 Question 12.
13 (a) Is it possible to be accelerating while traveling at constant speed? Is it possible to round a curve with (b) zero acceleration and (c) a constant magnitude of acceleration?

14 While riding in a moving car, you toss an egg directly upward. Does the egg tend to land behind you, in front of you, or back in your hands if the car is (a) traveling at a constant speed, (b) increasing in speed, and (c) decreasing in speed?
15 A snowball is thrown from ground level (by someone in a hole) with initial speed \(v_{0}\) at an angle of \(45^{\circ}\) relative to the (level) ground, on which the snowball later lands. If the launch angle is increased, do (a) the range and (b) the flight time increase, decrease, or stay the same?
16 You are driving directly behind a pickup truck, going at the same speed as the truck. A crate falls from the bed of the truck to the road. (a) Will your car hit the crate before the crate hits the road if you neither brake nor swerve? (b) During the fall, is the horizontal speed of the crate more than, less than, or the same as that of the truck?

17 At what point in the path of a projectile is the speed a minimum?
18 In shot put, the shot is put (thrown) from above the athlete's shoulder level. Is the launch angle that produces the greatest range \(45^{\circ}\), less than \(45^{\circ}\), or greater than \(45^{\circ}\) ?

\section*{9 roblems}
```

\epsilon0 Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign
SSIM Worked-out solution available in Student Solutions Manual WWW Worked-out solution is a
-- Number of dots indicates level of problem difficulty ILW Interactive solution is at
Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

```

\section*{Module 4-1 Position and Displacement}
-1 The position vector for an electron is \(\vec{r}=(5.0 \mathrm{~m}) \hat{\mathrm{i}}-\) \((3.0 \mathrm{~m}) \hat{\mathrm{j}}+(2.0 \mathrm{~m}) \hat{\mathrm{k}}\). (a) Find the magnitude of \(\vec{r}\). (b) Sketch the vector on a right-handed coordinate system.
-2 A watermelon seed has the following coordinates: \(x=-5.0 \mathrm{~m}\), \(y=8.0 \mathrm{~m}\), and \(z=0 \mathrm{~m}\). Find its position vector (a) in unit-vector notation and as (b) a magnitude and (c) an angle relative to the positive direction of the \(x\) axis. (d) Sketch the vector on a right-handed coordinate system. If the seed is moved to the \(x y z\) coordinates \((3.00 \mathrm{~m}\), \(0 \mathrm{~m}, 0 \mathrm{~m}\) ), what is its displacement (e) in unit-vector notation and as (f) a magnitude and (g) an angle relative to the positive \(x\) direction?
-3 A positron undergoes a displacement \(\Delta \vec{r}=2.0 \hat{\mathrm{i}}-3.0 \hat{\mathrm{j}}+6.0 \hat{\mathrm{k}}\), ending with the position vector \(\vec{r}=3.0 \hat{\mathrm{j}}-4.0 \hat{\mathrm{k}}\), in meters. What was the positron's initial position vector?
\(\bullet 4\) The minute hand of a wall clock measures 10 cm from its tip to the axis about which it rotates. The magnitude and angle of the displacement vector of the tip are to be determined for three time intervals. What are the (a) magnitude and (b) angle from a quarter after the hour to half past, the (c) magnitude and (d) angle for the next half hour, and the (e) magnitude and (f) angle for the hour after that?

\section*{Module 4-2 Average Velocity and Instantaneous Velocity}
\({ }^{\circ} 5\) SSM A train at a constant \(60.0 \mathrm{~km} / \mathrm{h}\) moves east for 40.0 min , then in a direction \(50.0^{\circ}\) east of due north for 20.0 min , and then west for 50.0 min . What are the (a) magnitude and (b) angle of its average velocity during this trip?
-6 An electron's position is given by \(\vec{r}=3.00 t \hat{i}-4.00 t 2 \hat{j}+2.00 \hat{\mathrm{k}}\), with \(t\) in seconds and \(\vec{r}\) in meters. (a) In unit-vector notation, what is the electron's velocity \(\vec{v}(t)\) ? At \(t=2.00 \mathrm{~s}\), what is \(\vec{v}(\mathrm{~b})\) in unitvector notation and as (c) a magnitude and (d) an angle relative to the positive direction of the \(x\) axis?
-7 An ion's position vector is initially \(\vec{r}=5.0 \hat{\mathrm{i}}-6.0 \hat{\mathrm{j}}+2.0 \hat{\mathrm{k}}\), and 10 s later it is \(\vec{r}=-2.0 \hat{\mathrm{i}}+8.0 \hat{\mathrm{j}}-2.0 \hat{\mathrm{k}}\), all in meters. In unitvector notation, what is its \(\vec{\nu}_{\text {avg }}\) during the 10 s ?
-•8 A plane flies 483 km east from city \(A\) to city \(B\) in 45.0 min and then 966 km south from city \(B\) to city \(C\) in 1.50 h . For the total trip, what are the (a) magnitude and (b) direction of the plane's displacement, the (c) magnitude and (d) direction of its average velocity, and (e) its average speed?
-09 Figure 4-30 gives the path of a squirrel moving about on level ground, from point \(A\) (at time \(t=0\) ), to points \(B\) (at \(t=5.00 \mathrm{~min}\) ), \(C\) (at \(t=10.0 \mathrm{~min}\) ), and finally \(D\) (at \(t=15.0 \mathrm{~min}\) ). Consider the average velocities of the squirrel from point \(A\) to each of the other three points. Of them, what are the (a) magnitude


Figure 4-30 Problem 9.
and (b) angle of the one with the least magnitude and the (c) magnitude and (d) angle of the one with the greatest magnitude?
-•०10 The position vector \(\vec{r}=5.00 t \hat{i}+\left(e t+f t^{2}\right) \hat{\mathrm{j}}\) locates a particle as a function of time \(t\). Vector \(\vec{r}\) is in meters, \(t\) is in seconds, and factors \(e\) and \(f\) are constants. Figure 4-31 gives the angle \(\theta\) of the particle's direction of travel as a function of \(t\) ( \(\theta\) is measured from the positive \(x\) direction). What are (a) \(e\) and (b) \(f\), including units?

\section*{Module 4-3 Average Acceleration and}

\section*{Instantaneous Acceleration}
-11 © The position \(\vec{r}\) of a particle moving in an \(x y\) plane is given by \(\vec{r}=\left(2.00 t^{3}-5.00 t\right) \hat{\mathrm{i}}+\left(6.00-7.00 t^{4}\right) \hat{\mathrm{j}}\), with \(\vec{r}\) in meters and \(t\) in seconds. In unit-vector notation, calculate (a) \(\vec{r}\), (b) \(\vec{v}\), and (c) \(\vec{a}\) for \(t=2.00 \mathrm{~s}\). (d) What is the angle between the positive direction of the \(x\) axis and a line tangent to the particle's path at \(t=2.00 \mathrm{~s}\) ?
-12 At one instant a bicyclist is 40.0 m due east of a park's flagpole, going due south with a speed of \(10.0 \mathrm{~m} / \mathrm{s}\). Then 30.0 s later, the cyclist is 40.0 m due north of the flagpole, going due east with a speed of \(10.0 \mathrm{~m} / \mathrm{s}\). For the cyclist in this 30.0 s interval, what are the (a) magnitude and (b) direction of the displacement, the (c) magnitude and (d) direction of the average velocity, and the (e) magnitude and (f) direction of the average acceleration?
-13 SSM A particle moves so that its position (in meters) as a function of time (in seconds) is \(\vec{r}=\hat{\mathrm{i}}+4 t^{2} \hat{\mathrm{j}}+t \hat{\mathrm{k}}\). Write expressions for (a) its velocity and (b) its acceleration as functions of time. - 14 A proton initially has \(\vec{v}=4.0 \hat{\mathrm{i}}-2.0 \hat{\mathrm{j}}+3.0 \hat{\mathrm{k}}\) and then 4.0 s later has \(\vec{v}=-2.0 \hat{\mathrm{i}}-2.0 \hat{\mathrm{j}}+5.0 \hat{\mathrm{k}}\) (in meters per second). For that 4.0 s , what are (a) the proton's average acceleration \(\vec{a}_{\text {avg }}\) in unitvector notation, (b) the magnitude of \(\vec{a}_{\text {avg }}\), and (c) the angle between \(\vec{a}_{\text {avg }}\) and the positive direction of the \(x\) axis?
\(\because 15\) SSM ILW A particle leaves the origin with an initial velocity \(\vec{v}=(3.00 \hat{\mathrm{i}}) \mathrm{m} / \mathrm{s}\) and a constant acceleration \(\vec{a}=(-1.00 \hat{\mathrm{i}}-\) \(0.500 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}^{2}\). When it reaches its maximum \(x\) coordinate, what are its (a) velocity and (b) position vector?
-16 ©0 The velocity \(\vec{v}\) of a particle moving in the \(x y\) plane is given by \(\vec{v}=\left(6.0 t-4.0 t^{2}\right) \hat{\mathrm{i}}+8.0 \hat{\mathrm{j}}\), with \(\vec{v}\) in meters per second and \(t(>0)\) in seconds. (a) What is the acceleration when \(t=3.0 \mathrm{~s}\) ? (b) When (if ever) is the acceleration zero? (c) When (if ever) is the velocity zero? (d) When (if ever) does the speed equal \(10 \mathrm{~m} / \mathrm{s}\) ?
-11 A cart is propelled over an \(x y\) plane with acceleration components \(a_{x}=4.0 \mathrm{~m} / \mathrm{s}^{2}\) and \(a_{y}=-2.0 \mathrm{~m} / \mathrm{s}^{2}\). Its initial velocity has components \(v_{0 x}=8.0 \mathrm{~m} / \mathrm{s}\) and \(v_{0 y}=12 \mathrm{~m} / \mathrm{s}\). In unit-vector notation, what is the velocity of the cart when it reaches its greatest \(y\) coordinate? \(\bullet 18\) A moderate wind accelerates a pebble over a horizontal \(x y\) plane with a constant acceleration \(\vec{a}=\left(5.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}+\left(7.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}\).

At time \(t=0\), the velocity is \((4.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}\). What are the (a) magnitude and (b) angle of its velocity when it has been displaced by 12.0 m parallel to the \(x\) axis?
\(\because 0019\) The acceleration of a particle moving only on a horizontal \(x y\) plane is given by \(\vec{a}=3 t \hat{\mathrm{i}}+4 t \hat{\mathrm{j}}\), where \(\vec{a}\) is in meters per secondsquared and \(t\) is in seconds. At \(t=0\), the position vector \(\vec{r}=(20.0 \mathrm{~m}) \hat{\mathrm{i}}+(40.0 \mathrm{~m}) \hat{\mathrm{j}}\) locates the particle, which then has the velocity vector \(\vec{v}=(5.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(2.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}\). At \(t=4.00 \mathrm{~s}\), what are (a) its position vector in unit-vector notation and (b) the angle between its direction of travel and the positive direction of the \(x\) axis?
-0.20 6o In Fig. 4-32, particle \(A\) moves along the line \(y=30 \mathrm{~m}\) with a constant velocity \(\vec{v}\) of magnitude \(3.0 \mathrm{~m} / \mathrm{s}\) and parallel to the \(x\) axis. At the instant particle \(A\) passes the \(y\) axis, particle \(B\) leaves the origin with a zero initial speed and a constant acceleration \(\vec{a}\) of magnitude \(0.40 \mathrm{~m} / \mathrm{s}^{2}\). What angle \(\theta\) between \(\vec{a}\) and the positive direction of the \(y\) axis would result in a


Figure 4-32 Problem 20. collision?

\section*{Module 4-4 Projectile Motion}
-21 A dart is thrown horizontally with an initial speed of \(10 \mathrm{~m} / \mathrm{s}\) toward point \(P\), the bull's-eye on a dart board. It hits at point \(Q\) on the rim, vertically below \(P, 0.19 \mathrm{~s}\) later. (a) What is the distance \(P Q\) ? (b) How far away from the dart board is the dart released?
-22 A small ball rolls horizontally off the edge of a tabletop that is 1.20 m high. It strikes the floor at a point 1.52 m horizontally from the table edge. (a) How long is the ball in the air? (b) What is its speed at the instant it leaves the table?
-23 A projectile is fired horizontally from a gun that is 45.0 m above flat ground, emerging from the gun with a speed of \(250 \mathrm{~m} / \mathrm{s}\). (a) How long does the projectile remain in the air? (b) At what horizontal distance from the firing point does it strike the ground? (c) What is the magnitude of the vertical component of its velocity as it strikes the ground?
-24 In the 1991 World Track and Field Championships in Tokyo, Mike Powell jumped 8.95 m , breaking by a full 5 cm the 23 -year long-jump record set by Bob Beamon. Assume that Powell's speed on takeoff was \(9.5 \mathrm{~m} / \mathrm{s}\) (about equal to that of a sprinter) and that \(g=9.80 \mathrm{~m} / \mathrm{s}^{2}\) in Tokyo. How much less was Powell's range than the maximum possible range for a particle launched at the same speed?
\(\cdot 25\) The current world-record motorcycle jump is 77.0 m , set by Jason Renie. Assume that he left the take-off ramp at \(12.0^{\circ}\) to the horizontal and that the take-off and landing heights are the same. Neglecting air drag, determine his take-off speed.
-26 A stone is catapulted at time \(t=0\), with an initial velocity of magnitude \(20.0 \mathrm{~m} / \mathrm{s}\) and at an angle of \(40.0^{\circ}\) above the horizontal. What are the magnitudes of the (a) horizontal and (b) vertical components of its displacement from the catapult site at \(t=1.10 \mathrm{~s}\) ? Repeat for the (c) horizontal and (d) vertical components at \(t=1.80 \mathrm{~s}\), and for the (e) horizontal and (f) vertical components at \(t=5.00 \mathrm{~s}\).
-27 ILW A certain airplane has a speed of \(290.0 \mathrm{~km} / \mathrm{h}\) and is diving at an angle of \(\theta=30.0^{\circ}\) below the horizontal when the pilot releases a radar decoy (Fig. 4-33). The horizontal distance between the release point and the point where the decoy strikes the ground is \(d=\) 700 m . (a) How long is the decoy in the air? (b) How high was the release point?


Figure 4-33 Problem 27.
\(\bullet 28\) © In Fig. 4-34, a stone is projected at a cliff of height \(h\) with an initial speed of \(42.0 \mathrm{~m} / \mathrm{s}\) directed at angle \(\theta_{0}=60.0^{\circ}\) above the horizontal. The stone strikes at \(A\), 5.50 s after launching. Find (a) the height \(h\) of the cliff, (b) the speed of the stone just before impact at \(A\), and (c) the maximum height \(H\) reached above the ground.


Figure 4-34 Problem 28.
-029 A projectile's launch speed is five times its speed at maximum height. Find launch angle \(\theta_{0}\).
-30 60 A soccer ball is kicked from the ground with an initial speed of \(19.5 \mathrm{~m} / \mathrm{s}\) at an upward angle of \(45^{\circ}\). A player 55 m away in the direction of the kick starts running to meet the ball at that instant. What must be his average speed if he is to meet the ball just before it hits the ground?
-•31 In a jump spike, a volleyball player slams the ball from overhead and toward the opposite floor. Controlling the angle of the spike is difficult. Suppose a ball is spiked from a height of 2.30 m with an initial speed of \(20.0 \mathrm{~m} / \mathrm{s}\) at a downward angle of \(18.00^{\circ}\). How much farther on the opposite floor would it have landed if the downward angle were, instead, \(8.00^{\circ}\) ?
-•32 © You throw a ball toward a wall at speed \(25.0 \mathrm{~m} / \mathrm{s}\) and at angle \(\theta_{0}=40.0^{\circ}\) above the horizontal (Fig. 4-35). The wall is distance \(d=\) 22.0 m from the release point of the ball. (a) How far above the release point does the ball hit the wall?


Figure 4-35 Problem 32. What are the (b) horizontal and
(c) vertical components of its velocity as it hits the wall? (d) When it hits, has it passed the highest point on its trajectory?
\(\because 33\) SSM A plane, diving with constant speed at an angle of \(53.0^{\circ}\) with the vertical, releases a projectile at an altitude of 730 m . The projectile hits the ground 5.00 s after release. (a) What is the speed of the plane? (b) How far does the projectile travel horizontally during its flight? What are the (c) horizontal and (d) vertical components of its velocity just before striking the ground?
-034 A trebuchet was a hurling machine built to attack the walls of a castle under siege. A large stone could be hurled against a wall to break apart the wall. The machine was not placed near the
wall because then arrows could reach it from the castle wall. Instead, it was positioned so that the stone hit the wall during the second half of its flight. Suppose a stone is launched with a speed of \(v_{0}=28.0 \mathrm{~m} / \mathrm{s}\) and at an angle of \(\theta_{0}=40.0^{\circ}\). What is the speed of the stone if it hits the wall (a) just as it reaches the top of its parabolic path and (b) when it has descended to half that height? (c) As a percentage, how much faster is it moving in part (b) than in part (a)?
-•35 SSM A rifle that shoots bullets at \(460 \mathrm{~m} / \mathrm{s}\) is to be aimed at a target 45.7 m away. If the center of the target is level with the rifle, how high above the target must the rifle barrel be pointed so that the bullet hits dead center?
-•36 ©0 During a tennis match, a player serves the ball at \(23.6 \mathrm{~m} / \mathrm{s}\), with the center of the ball leaving the racquet horizontally 2.37 m above the court surface. The net is 12 m away and 0.90 m high. When the ball reaches the net, (a) does the ball clear it and (b) what is the distance between the center of the ball and the top of the net? Suppose that, instead, the ball is served as before but now it leaves the racquet at \(5.00^{\circ}\) below the horizontal. When the ball reaches the net, (c) does the ball clear it and (d) what now is the distance between the center of the ball and the top of the net?
-•37 SSM Www A lowly high diver pushes off horizontally with a speed of \(2.00 \mathrm{~m} / \mathrm{s}\) from the platform edge 10.0 m above the surface of the water. (a) At what horizontal distance from the edge is the diver 0.800 s after pushing off? (b) At what vertical distance above the surface of the water is the diver just then? (c) At what horizontal distance from the edge does the diver strike the water?
-•38 A golf ball is struck at ground level. The speed of the golf ball as a function of the time is shown in Fig. 4-36, where \(t=0\) at the instant the ball is struck. The scaling on the vertical axis is set by \(v_{a}=19 \mathrm{~m} / \mathrm{s}\) and \(v_{b}=31 \mathrm{~m} / \mathrm{s}\). (a) How far does the golf ball travel horizontally be-


Figure 4-36 Problem 38. fore returning to ground level? (b) What is the maximum height above ground level attained by the ball?
-•39 In Fig. 4-37, a ball is thrown leftward from the left edge of the roof, at height \(h\) above the ground. The ball hits the ground 1.50 s later, at distance \(d=25.0 \mathrm{~m}\) from the building and at angle \(\theta=60.0^{\circ}\) with the horizontal. (a) Find \(h\). (Hint: One way is to reverse the motion, as if on video.) What are the (b) magnitude and (c) angle relative to the horizontal of the velocity at which the ball is thrown? (d) Is the angle above or below the horizontal?


Figure 4-37 Problem 39.
\(\bullet 40\) Suppose that a shot putter can put a shot at the worldclass speed \(v_{0}=15.00 \mathrm{~m} / \mathrm{s}\) and at a height of 2.160 m . What horizontal distance would the shot travel if the launch angle \(\theta_{0}\) is (a) \(45.00^{\circ}\) and (b) \(42.00^{\circ}\) ? The answers indicate that the angle of \(45^{\circ}\), which maximizes the range of projectile motion, does not maximize the horizontal distance when the launch and landing are at different heights.
-41 ©o Upon spotting an insect on a twig overhanging water, an archer fish squirts water drops at the insect to knock it into the water (Fig. 4-38). Although the fish sees the insect along a straight-line path at angle \(\phi\) and distance \(d\), a drop must be launched at a different angle \(\theta_{0}\) if its parabolic path is to intersect the insect. If \(\phi=36.0^{\circ}\) and \(d=0.900 \mathrm{~m}\), what launch angle \(\theta_{0}\) is required for the drop to be at the top of the parabolic path when it reaches the insect?
\(\bullet 42\) In 1939 or 1940, Emanuel Zacchini took his humancannonball act to an extreme: After being shot from a cannon, he soared over three Ferris wheels and into a net (Fig. 4-39). Assume that he is launched with a speed of \(26.5 \mathrm{~m} / \mathrm{s}\) and at an angle of \(53.0^{\circ}\). (a) Treating him as a particle, calculate his clearance over the first wheel. (b) If he reached maximum height over the middle wheel, by how much did he clear it? (c) How far from the cannon should the net's center have been positioned (neglect air drag)?

\(\bullet 43\) ILW A ball is shot from the ground into the air. At a height of 9.1 m , its velocity is \(\vec{v}=(7.6 \hat{\mathrm{i}}+6.1 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}\), with \(\hat{\mathrm{i}}\) horizontal and \(\hat{\mathrm{j}}\) upward. (a) To what maximum height does the ball rise? (b) What total horizontal distance does the ball travel? What are the (c) magnitude and (d) angle (below the horizontal) of the ball's velocity just before it hits the ground?
-•44 A baseball leaves a pitcher's hand horizontally at a speed of \(161 \mathrm{~km} / \mathrm{h}\). The distance to the batter is 18.3 m . (a) How long does the ball take to travel the first half of that distance? (b) The second half? (c) How far does the ball fall freely during the first half? (d) During the second half? (e) Why aren't the quantities in (c) and (d) equal?
\(\bullet 45\) In Fig. 4-40, a ball is launched with a velocity of magnitude \(10.0 \mathrm{~m} / \mathrm{s}\), at an angle of \(50.0^{\circ}\) to the horizontal. The launch point is at the base of a ramp of horizontal length \(d_{1}=6.00 \mathrm{~m}\) and height \(d_{2}=3.60 \mathrm{~m}\). A plateau is located at the top of the ramp. (a) Does the ball land on the ramp or the plateau? When it lands, what are the (b) mag-


Figure 4-40 Problem 45. nitude and (c) angle of its displacement from the launch point?
-•46 ©o In basketball, hang is an illusion in which a player seems to weaken the gravitational acceleration while in midair. The illusion depends much on a skilled player's ability to rapidly shift
the ball between hands during the flight, but it might also be supported by the longer horizontal distance the player travels in the upper part of the jump than in the lower part. If a player jumps with an initial speed of \(v_{0}=7.00 \mathrm{~m} / \mathrm{s}\) at an angle of \(\theta_{0}=35.0^{\circ}\), what percent of the jump's range does the player spend in the upper half of the jump (between maximum height and half maximum height)?
-•47 SSM www A batter hits a pitched ball when the center of the ball is 1.22 m above the ground. The ball leaves the bat at an angle of \(45^{\circ}\) with the ground. With that launch, the ball should have a horizontal range (returning to the launch level) of 107 m . (a) Does the ball clear a \(7.32-\mathrm{m}\)-high fence that is 97.5 m horizontally from the launch point? (b) At the fence, what is the distance between the fence top and the ball center?
\(\bullet 48\) ©o In Fig. 4-41, a ball is thrown up onto a roof, landing 4.00 s later at height \(h=20.0 \mathrm{~m}\) above the release level. The ball's path just before landing is angled at \(\theta=60.0^{\circ}\) with the roof. (a) Find the horizontal distance \(d\) it travels. (See the hint to Problem 39.) What are the (b) magnitude and (c) angle (relative to the horizontal) of


Figure 4-41 Problem 48. the ball's initial velocity?
-0049 SSM A football kicker can give the ball an initial speed of \(25 \mathrm{~m} / \mathrm{s}\). What are the (a) least and (b) greatest elevation angles at which he can kick the ball to score a field goal from a point 50 m in front of goalposts whose horizontal bar is 3.44 m above the ground?
-•050 © Two seconds after being projected from ground level, a projectile is displaced 40 m horizontally and 53 m vertically above its launch point. What are the (a) horizontal and (b) vertical components of the initial velocity of the projectile? (c) At the instant the projectile achieves its maximum height above ground level, how far is it displaced horizontally from the launch point?
-•051 A skilled skier knows to jump upward before reaching a downward slope. Consider a jump in which the launch speed is \(v_{0}=10 \mathrm{~m} / \mathrm{s}\), the launch angle is \(\theta_{0}=11.3^{\circ}\), the initial course is approximately flat, and the steeper track has a slope of \(9.0^{\circ}\). Figure 4-42a shows a prejump that allows the skier to land on the top portion of the steeper track. Figure \(4-42 b\) shows a jump at the edge of the steeper track. In Fig. 4-42a, the skier lands at approximately the launch level. (a) In the landing, what is the angle \(\phi\) between the skier's path and the slope? In Fig. 4-42b, (b) how far below the launch level does the skier land and (c) what is \(\phi\) ? (The greater fall and greater \(\phi\) can result in loss of control in the landing.)

(a)

(b)

Figure 4-42 Problem 51.
\({ }^{\circ 0052}\) A ball is to be shot from level ground toward a wall at distance \(x\) (Fig. 4-43a). Figure 4-43b shows the \(y\) component \(v_{y}\) of the ball's velocity just as it would reach the wall, as a function of that
distance \(x\). The scaling is set by \(v_{y s}=5.0 \mathrm{~m} / \mathrm{s}\) and \(x_{s}=20 \mathrm{~m}\). What is the launch angle?


Figure 4-43 Problem 52.

00053 ©0 In Fig. 4-44, a baseball is hit at a height \(h=1.00 \mathrm{~m}\) and then caught at the same height. It travels alongside a wall, moving up past the top of the wall 1.00 s after it is hit and then down past the top of the wall 4.00 s later, at distance \(D=50.0 \mathrm{~m}\) farther along the wall. (a) What horizontal distance is traveled by the ball from hit to catch? What are the (b) magnitude and (c) angle (relative to the horizontal) of the ball's velocity just after being hit? (d) How high is the wall?


Figure 4-44 Problem 53.
00554 ©0 A ball is to be shot from level ground with a certain speed. Figure \(4-45\) shows the range \(R\) it will have versus the launch angle \(\theta_{0}\). The value of \(\theta_{0}\) determines the flight time; let \(t_{\text {max }}\) represent the maximum flight time. What is the least speed the ball will have during its flight if \(\theta_{0}\) is chosen such that the flight time is \(0.500 t_{\max }\) ?


Figure 4-45 Problem 54.
-o055 SSM A ball rolls horizontally off the top of a stairway with a speed of \(1.52 \mathrm{~m} / \mathrm{s}\). The steps are 20.3 cm high and 20.3 cm wide. Which step does the ball hit first?

\section*{Module 4-5 Uniform Circular Motion}
-56 An Earth satellite moves in a circular orbit 640 km (uniform circular motion) above Earth's surface with a period of 98.0 min . What are (a) the speed and (b) the magnitude of the centripetal acceleration of the satellite?
-57 A carnival merry-go-round rotates about a vertical axis at a constant rate. A man standing on the edge has a constant speed of \(3.66 \mathrm{~m} / \mathrm{s}\) and a centripetal acceleration \(\vec{a}\) of magnitude \(1.83 \mathrm{~m} / \mathrm{s}^{2}\). Position vector \(\vec{r}\) locates him relative to the rotation axis. (a) What is the magnitude of \(\vec{r}\) ? What is the direction of \(\vec{r}\) when \(\vec{a}\) is directed (b) due east and (c) due south?
-58 A rotating fan completes 1200 revolutions every minute. Consider the tip of a blade, at a radius of 0.15 m . (a) Through what distance does the tip move in one revolution? What are (b) the
tip's speed and (c) the magnitude of its acceleration? (d) What is the period of the motion?
-59 ILW A woman rides a carnival Ferris wheel at radius 15 m , completing five turns about its horizontal axis every minute. What are (a) the period of the motion, the (b) magnitude and (c) direction of her centripetal acceleration at the highest point, and the (d) magnitude and (e) direction of her centripetal acceleration at the lowest point?
-60 A centripetal-acceleration addict rides in uniform circular motion with radius \(r=3.00 \mathrm{~m}\). At one instant his acceleration is \(\vec{a}=\left(6.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}+\left(-4.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}\). At that instant, what are the values of (a) \(\vec{v} \cdot \vec{a}\) and (b) \(\vec{r} \times \vec{a}\) ?
-61 When a large star becomes a supernova, its core may be compressed so tightly that it becomes a neutron star, with a radius of about 20 km (about the size of the San Francisco area). If a neutron star rotates once every second, (a) what is the speed of a particle on the star's equator and (b) what is the magnitude of the particle's centripetal acceleration? (c) If the neutron star rotates faster, do the answers to (a) and (b) increase, decrease, or remain the same?
-62 What is the magnitude of the acceleration of a sprinter running at \(10 \mathrm{~m} / \mathrm{s}\) when rounding a turn of radius 25 m ?
-63 ©0 At \(t_{1}=2.00 \mathrm{~s}\), the acceleration of a particle in counterclockwise circular motion is \(\left(6.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}+\left(4.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}\). It moves at constant speed. At time \(t_{2}=5.00 \mathrm{~s}\), the particle's acceleration is \(\left(4.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}+\left(-6.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}\). What is the radius of the path taken by the particle if \(t_{2}-t_{1}\) is less than one period?
-•64 ©o A particle moves horizontally in uniform circular motion, over a horizontal \(x y\) plane. At one instant, it moves through the point at coordinates \((4.00 \mathrm{~m}, 4.00 \mathrm{~m})\) with a velocity of \(-5.00 \hat{\mathrm{i}} \mathrm{m} / \mathrm{s}\) and an acceleration of \(+12.5 \hat{\mathrm{j}} \mathrm{m} / \mathrm{s}^{2}\). What are the (a) \(x\) and (b) \(y\) coordinates of the center of the circular path?
-•65 A purse at radius 2.00 m and a wallet at radius 3.00 m travel in uniform circular motion on the floor of a merry-go-round as the ride turns. They are on the same radial line. At one instant, the acceleration of the purse is \(\left(2.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}+\left(4.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}}\). At that instant and in unit-vector notation, what is the acceleration of the wallet?
-•66 A particle moves along a circular path over a horizontal \(x y\) coordinate system, at constant speed. At time \(t_{1}=4.00 \mathrm{~s}\), it is at point \((5.00 \mathrm{~m}, 6.00 \mathrm{~m})\) with velocity \((3.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}\) and acceleration in the positive \(x\) direction. At time \(t_{2}=10.0 \mathrm{~s}\), it has velocity \((-3.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}\) and acceleration in the positive \(y\) direction. What are the (a) \(x\) and (b) \(y\) coordinates of the center of the circular path if \(t_{2}-t_{1}\) is less than one period?
-•067 SSM WWW A boy whirls a stone in a horizontal circle of radius 1.5 m and at height 2.0 m above level ground. The string breaks, and the stone flies off horizontally and strikes the ground after traveling a horizontal distance of 10 m . What is the magnitude of the centripetal acceleration of the stone during the circular motion?
-•068 ©0 A cat rides a merry-go-round turning with uniform circular motion. At time \(t_{1}=2.00 \mathrm{~s}\), the cat's velocity is \(\vec{v}_{1}=\) \((3.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(4.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}\), measured on a horizontal \(x y\) coordinate system. At \(t_{2}=5.00 \mathrm{~s}\), the cat's velocity is \(\vec{v}_{2}=(-3.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+\) \((-4.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}\). What are (a) the magnitude of the cat's centripetal acceleration and (b) the cat's average acceleration during the time interval \(t_{2}-t_{1}\), which is less than one period?

\section*{Module 4-6 Relative Motion in One Dimension}
-69 A cameraman on a pickup truck is traveling westward at \(20 \mathrm{~km} / \mathrm{h}\) while he records a cheetah that is moving westward \(30 \mathrm{~km} / \mathrm{h}\) faster than the truck. Suddenly, the cheetah stops, turns, and then runs at \(45 \mathrm{~km} / \mathrm{h}\) eastward, as measured by a suddenly nervous crew member who stands alongside the cheetah's path. The change in the animal's velocity takes 2.0 s . What are the (a) magnitude and (b) direction of the animal's acceleration according to the cameraman and the (c) magnitude and (d) direction according to the nervous crew member?
-70 A boat is traveling upstream in the positive direction of an \(x\) axis at \(14 \mathrm{~km} / \mathrm{h}\) with respect to the water of a river. The water is flowing at \(9.0 \mathrm{~km} / \mathrm{h}\) with respect to the ground. What are the (a) magnitude and (b) direction of the boat's velocity with respect to the ground? A child on the boat walks from front to rear at \(6.0 \mathrm{~km} / \mathrm{h}\) with respect to the boat. What are the (c) magnitude and (d) direction of the child's velocity with respect to the ground?
-•71 A suspicious-looking man runs as fast as he can along a moving sidewalk from one end to the other, taking 2.50 s . Then security agents appear, and the man runs as fast as he can back along the sidewalk to his starting point, taking 10.0 s . What is the ratio of the man's running speed to the sidewalk's speed?

\section*{Module 4-7 Relative Motion in Two Dimensions}
-72 A rugby player runs with the ball directly toward his opponent's goal, along the positive direction of an \(x\) axis. He can legally pass the ball to a teammate as long as the ball's velocity relative to the field does not have a positive \(x\) component. Suppose the player runs at speed \(4.0 \mathrm{~m} / \mathrm{s}\) relative to the field while he passes the ball with velocity \(\vec{v}_{B P}\) relative to himself. If \(\vec{v}_{B P}\) has magnitude \(6.0 \mathrm{~m} / \mathrm{s}\), what is the smallest angle it can have for the pass to be legal?
-•73 Two highways intersect as shown in Fig. 4-46. At the instant shown, a police car \(P\) is distance \(d_{P}=800 \mathrm{~m}\) from the intersection and moving at speed \(v_{P}=80 \mathrm{~km} / \mathrm{h}\). Motorist \(M\) is distance \(d_{M}=\) 600 m from the intersection and moving at speed \(v_{M}=60 \mathrm{~km} / \mathrm{h}\).


Figure 4-46 Problem 73.
(a) In unit-vector notation, what is the velocity of the motorist with respect to the police car? (b) For the instant shown in Fig. 4-46, what is the angle between the velocity found in (a) and the line of sight between the two cars? (c) If the cars maintain their velocities, do the answers to (a) and (b) change as the cars move nearer the intersection?
\(\bullet 74\) After flying for 15 min in a wind blowing \(42 \mathrm{~km} / \mathrm{h}\) at an angle of \(20^{\circ}\) south of east, an airplane pilot is over a town that is 55 km due north of the starting point. What is the speed of the airplane relative to the air?
\(\bullet 75\) SSM A train travels due south at \(30 \mathrm{~m} / \mathrm{s}\) (relative to the ground) in a rain that is blown toward the south by the wind. The path of each raindrop makes an angle of \(70^{\circ}\) with the vertical, as measured by an observer stationary on the ground. An observer on the train, however, sees the drops fall perfectly vertically. Determine the speed of the raindrops relative to the ground.
\(\bullet 76\) A light plane attains an airspeed of \(500 \mathrm{~km} / \mathrm{h}\). The pilot sets out for a destination 800 km due north but discovers that the plane must be headed \(20.0^{\circ}\) east of due north to fly there directly. The plane arrives in 2.00 h . What were the (a) magnitude and (b) direction of the wind velocity?
-077 SSM Snow is falling vertically at a constant speed of \(8.0 \mathrm{~m} / \mathrm{s}\). At what angle from the vertical do the snowflakes appear to be falling as viewed by the driver of a car traveling on a straight, level road with a speed of \(50 \mathrm{~km} / \mathrm{h}\) ?
-.78 In the overhead view of Fig. 4-47, Jeeps \(P\) and \(B\) race along straight lines, across flat terrain, and past stationary border guard \(A\). Relative to the guard, \(B\) travels at a constant speed of \(20.0 \mathrm{~m} / \mathrm{s}\), at the angle \(\theta_{2}=30.0^{\circ}\). Relative to the guard, \(P\) has accelerated from rest at a constant rate of \(0.400 \mathrm{~m} / \mathrm{s}^{2}\) at the


Figure 4-47 Problem 78. angle \(\theta_{1}=60.0^{\circ}\). At a certain time during the acceleration, \(P\) has a speed of \(40.0 \mathrm{~m} / \mathrm{s}\). At that time, what are the (a) magnitude and (b) direction of the velocity of \(P\) relative to \(B\) and the (c) magnitude and (d) direction of the acceleration of \(P\) relative to \(B\) ?
-079 SSM ILw Two ships, \(A\) and \(B\), leave port at the same time. Ship \(A\) travels northwest at 24 knots, and ship \(B\) travels at 28 knots in a direction \(40^{\circ}\) west of south. ( 1 knot \(=1\) nautical mile per hour; see Appendix D.) What are the (a) magnitude and (b) direction of the velocity of ship \(A\) relative to \(B\) ? (c) After what time will the ships be 160 nautical miles apart? (d) What will be the bearing of \(B\) (the direction of \(B\) 's position) relative to \(A\) at that time?
-080 © A 200-m-wide river flows due east at a uniform speed of \(2.0 \mathrm{~m} / \mathrm{s}\). A boat with a speed of \(8.0 \mathrm{~m} / \mathrm{s}\) relative to the water leaves the south bank pointed in a direction \(30^{\circ}\) west of north. What are the (a) magnitude and (b) direction of the boat's velocity relative to the ground? (c) How long does the boat take to cross the river?
-0081 60 Ship \(A\) is located 4.0 km north and 2.5 km east of ship \(B\). Ship \(A\) has a velocity of \(22 \mathrm{~km} / \mathrm{h}\) toward the south, and ship \(B\) has a velocity of \(40 \mathrm{~km} / \mathrm{h}\) in a direction \(37^{\circ}\) north of east. (a) What is the velocity of \(A\) relative to \(B\) in unit-vector notation with \(\hat{i}\) toward the east? (b) Write an expression (in terms of \(\hat{\mathrm{i}}\) and \(\hat{\mathrm{j}}\) ) for the position of \(A\) relative to \(B\) as a function of \(t\), where \(t=0\) when the ships are in the positions described above. (c) At what time is the separation between the ships least? (d) What is that least separation?
-0082 © A 200-m-wide river has a uniform flow speed of \(1.1 \mathrm{~m} / \mathrm{s}\) through a jungle and toward the east. An explorer wishes to
leave a small clearing on the south bank and cross the river in a powerboat that moves at a constant speed of \(4.0 \mathrm{~m} / \mathrm{s}\) with respect to the water. There is a clearing on the north bank 82 m upstream from a point directly opposite the clearing on the south bank. (a) In what direction must the boat be pointed in order to travel in a straight line and land in the clearing on the north bank? (b) How long will the boat take to cross the river and land in the clearing?

\section*{Additional Problems}

83 A woman who can row a boat at \(6.4 \mathrm{~km} / \mathrm{h}\) in still water faces a long, straight river with a width of 6.4 km and a current of \(3.2 \mathrm{~km} / \mathrm{h}\). Let \(\hat{i}\) point directly across the river and \(\hat{j}\) point directly downstream. If she rows in a straight line to a point directly opposite her starting position, (a) at what angle to \(\hat{i}\) must she point the boat and (b) how long will she take? (c) How long will she take if, instead, she rows 3.2 km down the river and then back to her starting point? (d) How long if she rows 3.2 km up the river and then back to her starting point? (e) At what angle to \(\hat{i}\) should she point the boat if she wants to cross the river in the shortest possible time? (f) How long is that shortest time?
84 In Fig. 4-48a, a sled moves in the negative \(x\) direction at constant speed \(v_{s}\) while a ball of ice is shot from the sled with a velocity \(\vec{v}_{0}=v_{0 x} \hat{i}+v_{0, y} \hat{j}\) relative to the sled. When the ball lands, its horizontal displacement \(\Delta x_{b g}\) relative to the ground (from its launch position to its landing position) is measured. Figure \(4-48 b\) gives \(\Delta x_{b g}\) as a function of \(v_{s}\). Assume the ball lands at approximately its launch height. What are the values of (a) \(v_{0 x}\) and (b) \(v_{0 y}\) ? The ball's displacement \(\Delta x_{b s}\) relative to the sled can also be measured. Assume that the sled's velocity is not changed when the ball is shot. What is \(\Delta x_{b s}\) when \(v_{s}\) is (c) \(5.0 \mathrm{~m} / \mathrm{s}\) and (d) \(15 \mathrm{~m} / \mathrm{s}\) ?


Figure 4-48 Problem 84.

85 You are kidnapped by political-science majors (who are upset because you told them political science is not a real science). Although blindfolded, you can tell the speed of their car (by the whine of the engine), the time of travel (by mentally counting off seconds), and the direction of travel (by turns along the rectangular street system). From these clues, you know that you are taken along the following course: \(50 \mathrm{~km} / \mathrm{h}\) for 2.0 min , turn \(90^{\circ}\) to the right, \(20 \mathrm{~km} / \mathrm{h}\) for 4.0 min , turn \(90^{\circ}\) to the right, \(20 \mathrm{~km} / \mathrm{h}\) for 60 s , turn \(90^{\circ}\) to the left, \(50 \mathrm{~km} / \mathrm{h}\) for 60 s , turn \(90^{\circ}\) to the right, \(20 \mathrm{~km} / \mathrm{h}\) for 2.0 min , turn \(90^{\circ}\) to the left, \(50 \mathrm{~km} / \mathrm{h}\) for 30 s . At that point, (a) how far are you from your starting point, and (b) in what direction relative to your initial direction of travel are you?

86 A radar station detects an airplane approaching directly from the east. At first observation, the airplane is at distance \(d_{1}=360 \mathrm{~m}\) from the station and at angle \(\theta_{1}=40^{\circ}\) above the horizon (Fig. 4-49). The airplane is tracked through an angular change \(\Delta \theta=123^{\circ}\) in the vertical east-west plane; its distance is then \(d_{2}=790 \mathrm{~m}\). Find the (a) magnitude and (b) direction of the airplane's displacement during this period.


Figure 4-49 Problem 86.

87 SSM A baseball is hit at ground level. The ball reaches its maximum height above ground level 3.0 s after being hit. Then 2.5 s after reaching its maximum height, the ball barely clears a fence that is 97.5 m from where it was hit. Assume the ground is level. (a) What maximum height above ground level is reached by the ball? (b) How high is the fence? (c) How far beyond the fence does the ball strike the ground?

88 Long flights at midlatitudes in the Northern Hemisphere encounter the jet stream, an eastward airflow that can affect a plane's speed relative to Earth's surface. If a pilot maintains a certain speed relative to the air (the plane's airspeed), the speed relative to the surface (the plane's ground speed) is more when the flight is in the direction of the jet stream and less when the flight is opposite the jet stream. Suppose a round-trip flight is scheduled between two cities separated by 4000 km , with the outgoing flight in the direction of the jet stream and the return flight opposite it. The airline computer advises an airspeed of \(1000 \mathrm{~km} / \mathrm{h}\), for which the difference in flight times for the outgoing and return flights is 70.0 min . What jet-stream speed is the computer using?

89 SSM A particle starts from the origin at \(t=0\) with a velocity of \(8.0 \hat{\mathrm{j}} \mathrm{m} / \mathrm{s}\) and moves in the \(x y\) plane with constant acceleration \((4.0 \hat{\mathrm{i}}+2.0 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}^{2}\). When the particle's \(x\) coordinate is 29 m , what are its (a) \(y\) coordinate and (b) speed?
90 At what initial speed must the basketball player in Fig. 4-50 throw the ball, at angle \(\theta_{0}=55^{\circ}\) above the horizontal, to make the foul shot? The horizontal distances are \(d_{1}=1.0 \mathrm{ft}\) and \(d_{2}=14 \mathrm{ft}\), and the heights are \(h_{1}=7.0 \mathrm{ft}\) and \(h_{2}=10 \mathrm{ft}\).
91 During volcanic eruptions, chunks of solid rock can be blasted out of the vol-


Figure 4-50 Problem 90. cano; these projectiles are called volcanic bombs. Figure 4-51 shows a cross section of Mt. Fuji, in Japan. (a) At what initial speed would a bomb have to be ejected, at angle \(\theta_{0}=35^{\circ}\) to the horizontal, from the vent at \(A\) in order to fall at the foot of the volcano at \(B\), at vertical distance \(h=3.30 \mathrm{~km}\) and horizontal distance \(d=9.40 \mathrm{~km}\) ? Ignore, for the
moment, the effects of air on the bomb's travel. (b) What would be the time of flight? (c) Would the effect of the air increase or decrease your answer in (a)?


Figure 4-51 Problem 91.
92 An astronaut is rotated in a horizontal centrifuge at a radius of 5.0 m . (a) What is the astronaut's speed if the centripetal acceleration has a magnitude of \(7.0 g\) ? (b) How many revolutions per minute are required to produce this acceleration? (c) What is the period of the motion?
93 ssm Oasis \(A\) is 90 km due west of oasis \(B\). A desert camel leaves \(A\) and takes 50 h to walk 75 km at \(37^{\circ}\) north of due east. Next it takes 35 h to walk 65 km due south. Then it rests for 5.0 h . What are the (a) magnitude and (b) direction of the camel's displacement relative to \(A\) at the resting point? From the time the camel leaves \(A\) until the end of the rest period, what are the (c) magnitude and (d) direction of its average velocity and (e) its average speed? The camel's last drink was at \(A\); it must be at \(B\) no more than 120 h later for its next drink. If it is to reach \(B\) just in time, what must be the (f) magnitude and (g) direction of its average velocity after the rest period?
94 Curtain of death. A large metallic asteroid strikes Earth and quickly digs a crater into the rocky material below ground level by launching rocks upward and outward. The following table gives five pairs of launch speeds and angles (from the horizontal) for such rocks, based on a model of crater formation. (Other rocks, with intermediate speeds and angles, are also launched.) Suppose that you are at \(x=20 \mathrm{~km}\) when the asteroid strikes the ground at time \(t=0\) and position \(x=0\) (Fig. 4-52). (a) At \(t=20 \mathrm{~s}\), what are the \(x\) and \(y\) coordinates of the rocks headed in your direction from launches \(A\) through \(E\) ? (b) Plot these coordinates and then sketch a curve through the points to include rocks with intermediate launch speeds and angles. The curve should indicate what you would see as you look up into the approaching rocks.
\begin{tabular}{lcc}
\hline Launch & Speed (m/s) & Angle (degrees) \\
\hline\(A\) & 520 & 14.0 \\
\(B\) & 630 & 16.0 \\
\(C\) & 750 & 18.0 \\
\(D\) & 870 & 20.0 \\
\(E\) & 1000 & 22.0 \\
\hline & & \\
\hline
\end{tabular}

95 Figure 4-53 shows the straight path of a particle across an \(x y\) coordinate system as the particle is accelerated from rest during time interval \(\Delta t_{1}\). The acceleration is constant. The \(x y\) coordinates for point \(A\) are \((4.00 \mathrm{~m}, 6.00 \mathrm{~m})\); those for point \(B\) are ( 12.0 \(\mathrm{m}, 18.0 \mathrm{~m}\) ). (a) What is the ratio \(a_{y} / a_{x}\) of the acceleration components? (b) What are the coordinates of the particle if the motion is continued for another interval equal to \(\Delta t_{1}\) ?
96 For women's volleyball the top of the net is 2.24 m above the floor and the court measures 9.0 m by 9.0 m on each side of the net. Using a jump serve, a player strikes the ball at a point that is 3.0 m above the floor and a horizontal distance of 8.0 m from the net. If the initial velocity of the ball is horizontal, (a) what minimum magnitude must it have if the ball is to clear the net and (b) what maximum magnitude can it have if the ball is to strike the floor inside the back line on the other side of the net?

97 SSM A rifle is aimed horizontally at a target 30 m away. The bullet hits the target 1.9 cm below the aiming point. What are (a) the bullet's time of flight and (b) its speed as it emerges from the rifle?
98 A particle is in uniform circular motion about the origin of an \(x y\) coordinate system, moving clockwise with a period of 7.00 s . At one instant, its position vector (measured from the origin) is \(\vec{r}=(2.00 \mathrm{~m}) \hat{\mathrm{i}}-(3.00 \mathrm{~m}) \hat{\mathrm{j}}\). At that instant, what is its velocity in unit-vector notation?

99 In Fig. 4-54, a lump of wet putty moves in uniform circular motion as it rides at a radius of 20.0 cm on the rim of a wheel rotating counterclockwise with a period of 5.00 ms . The lump then happens to fly off the rim at the 5 o'clock position (as if on a clock face). It leaves the rim


Figure 4-54 Problem 99. at a height of \(h=1.20 \mathrm{~m}\) from the floor and at a distance \(d=2.50\) m from a wall. At what height on the wall does the lump hit?
100 An iceboat sails across the surface of a frozen lake with constant acceleration produced by the wind. At a certain instant the boat's velocity is ( \(6.30 \hat{\mathrm{i}}-8.42 \hat{\mathrm{j}}\) ) m/s. Three seconds later, because of a wind shift, the boat is instantaneously at rest. What is its average acceleration for this 3.00 s interval?
101 In Fig. 4-55, a ball is shot directly upward from the ground with an initial speed of \(v_{0}=7.00 \mathrm{~m} / \mathrm{s}\). Simultaneously, a construction elevator cab begins to move upward from the ground with a constant speed of \(v_{c}=3.00 \mathrm{~m} / \mathrm{s}\). What maximum height


Figure 4-55 Problem 101. does the ball reach relative to (a) the ground and (b) the cab floor? At what rate does the speed of the ball change relative to (c) the ground and (d) the cab floor?
102 A magnetic field forces an electron to move in a circle with radial acceleration \(3.0 \times 10^{14} \mathrm{~m} / \mathrm{s}^{2}\). (a) What is the speed of the electron if the radius of its circular path is 15 cm ? (b) What is the period of the motion?
103 In 3.50 h , a balloon drifts 21.5 km north, 9.70 km east, and 2.88 km upward from its release point on the ground. Find (a) the magnitude of its average velocity and (b) the angle its average velocity makes with the horizontal.

104 A ball is thrown horizontally from a height of 20 m and hits the ground with a speed that is three times its initial speed. What is the initial speed?
105 A projectile is launched with an initial speed of \(30 \mathrm{~m} / \mathrm{s}\) at an angle of \(60^{\circ}\) above the horizontal. What are the (a) magnitude and (b) angle of its velocity 2.0 s after launch, and (c) is the angle above or below the horizontal? What are the (d) magnitude and (e) angle of its velocity 5.0 s after launch, and (f) is the angle above or below the horizontal?
106 The position vector for a proton is initially \(\vec{r}=\) \(5.0 \hat{\mathrm{i}}-6.0 \hat{\mathrm{j}}+2.0 \hat{\mathrm{k}}\) and then later is \(\vec{r}=-2.0 \hat{\mathrm{i}}+6.0 \hat{\mathrm{j}}+2.0 \hat{\mathrm{k}}\), all in meters. (a) What is the proton's displacement vector, and (b) to what plane is that vector parallel?
107 A particle \(P\) travels with constant speed on a circle of radius \(r=\) 3.00 m (Fig. 4-56) and completes one revolution in 20.0 s . The particle passes through \(O\) at time \(t=0\). State the following vectors in magnitudeangle notation (angle relative to the positive direction of \(x\) ). With respect to \(O\), find the particle's position vector at the times \(t\) of (a) 5.00 s , (b) 7.50 s , and (c) 10.0 s . (d) For the 5.00 s interval from the end of


Figure 4-56 Problem 107. the fifth second to the end of the tenth second, find the particle's displacement. For that interval, find (e) its average velocity and its velocity at the (f) beginning and (g) end. Next, find the acceleration at the (h) beginning and (i) end of that interval.

108 The fast French train known as the TGV (Train à Grande Vitesse) has a scheduled average speed of \(216 \mathrm{~km} / \mathrm{h}\). (a) If the train goes around a curve at that speed and the magnitude of the acceleration experienced by the passengers is to be limited to 0.050 g , what is the smallest radius of curvature for the track that can be tolerated? (b) At what speed must the train go around a curve with a 1.00 km radius to be at the acceleration limit?
109 (a) If an electron is projected horizontally with a speed of \(3.0 \times 10^{6} \mathrm{~m} / \mathrm{s}\), how far will it fall in traversing 1.0 m of horizontal distance? (b) Does the answer increase or decrease if the initial speed is increased?

110 A person walks up a stalled 15 -m-long escalator in 90 s . When standing on the same escalator, now moving, the person is carried up in 60 s. How much time would it take that person to walk up the moving escalator? Does the answer depend on the length of the escalator?
111 (a) What is the magnitude of the centripetal acceleration of an object on Earth's equator due to the rotation of Earth? (b) What would Earth's rotation period have to be for objects on the equator to have a centripetal acceleration of magnitude \(9.8 \mathrm{~m} / \mathrm{s}^{2}\) ?
112 The range of a projectile depends not only on \(v_{0}\) and \(\theta_{0}\) but also on the value \(g\) of the free-fall acceleration, which varies from place to place. In 1936, Jesse Owens established a world's running broad jump record of 8.09 m at the Olympic Games at Berlin (where \(g=9.8128 \mathrm{~m} / \mathrm{s}^{2}\) ). Assuming the same values of \(v_{0}\) and \(\theta_{0}\), by how much would his record have differed if he had competed instead in 1956 at Melbourne (where \(g=9.7999 \mathrm{~m} / \mathrm{s}^{2}\) )?

113 Figure 4-57 shows the path taken by a drunk skunk over level ground, from initial point \(i\) to final point \(f\). The angles are \(\theta_{1}=30.0^{\circ}\), \(\theta_{2}=50.0^{\circ}\), and \(\theta_{3}=80.0^{\circ}\), and the distances are \(d_{1}=5.00 \mathrm{~m}, d_{2}=8.00\) m , and \(d_{3}=12.0 \mathrm{~m}\). What are the (a) magnitude and (b) angle of the skunk's displacement from \(i\) to \(f\) ?
114 The position vector \(\vec{r}\) of a particle moving in the \(x y\) plane is \(\vec{r}=2 \hat{\mathrm{i}}+2 \sin [(\pi / 4 \mathrm{rad} / \mathrm{s}) t] \hat{\mathrm{j}}\), with \(\vec{r}\) in meters and \(t\) in seconds. (a)


Figure 4-57 Problem 113. Calculate the \(x\) and \(y\) components of the particle's position at \(t=0,1.0,2.0,3.0\), and 4.0 s and sketch the particle's path in the \(x y\) plane for the interval \(0 \leq t \leq\) 4.0 s . (b) Calculate the components of the particle's velocity at \(t=1.0,2.0\), and 3.0 s . Show that the velocity is tangent to the path of the particle and in the direction the particle is moving at each time by drawing the velocity vectors on the plot of the particle's path in part (a). (c) Calculate the components of the particle's acceleration at \(t=1.0,2.0\), and 3.0 s .

115 An electron having an initial horizontal velocity of magnitude \(1.00 \times 10^{9} \mathrm{~cm} / \mathrm{s}\) travels into the region between two horizontal metal plates that are electrically charged. In that region, the electron travels a horizontal distance of 2.00 cm and has a constant downward acceleration of magnitude \(1.00 \times 10^{17} \mathrm{~cm} / \mathrm{s}^{2}\) due to the charged plates. Find (a) the time the electron takes to travel the 2.00 cm , (b) the vertical distance it travels during that time, and the magnitudes of its (c) horizontal and (d) vertical velocity components as it emerges from the region.
116 An elevator without a ceiling is ascending with a constant speed of \(10 \mathrm{~m} / \mathrm{s}\). A boy on the elevator shoots a ball directly upward, from a height of 2.0 m above the elevator floor, just as the elevator floor is 28 m above the ground. The initial speed of the ball with respect to the elevator is \(20 \mathrm{~m} / \mathrm{s}\). (a) What maximum height above the ground does the ball reach? (b) How long does the ball take to return to the elevator floor?
117 A football player punts the football so that it will have a "hang time" (time of flight) of 4.5 s and land 46 m away. If the ball leaves the player's foot 150 cm above the ground, what must be the (a) magnitude and (b) angle (relative to the horizontal) of the ball's initial velocity?
118 An airport terminal has a moving sidewalk to speed passengers through a long corridor. Larry does not use the moving sidewalk; he takes 150 s to walk through the corridor. Curly, who simply stands on the moving sidewalk, covers the same distance in 70 s . Moe boards the sidewalk and walks along it. How long does Moe take to move through the corridor? Assume that Larry and Moe walk at the same speed.
119 A wooden boxcar is moving along a straight railroad track at speed \(v_{1}\). A sniper fires a bullet (initial speed \(v_{2}\) ) at it from a high-powered rifle. The bullet passes through both lengthwise walls of the car, its entrance and exit holes being exactly opposite each other as viewed from within the car. From what direction, relative to the track, is the bullet fired? Assume that the bullet is not deflected upon entering the car, but that its speed decreases by \(20 \%\). Take \(v_{1}=85 \mathrm{~km} / \mathrm{h}\) and \(v_{2}=650 \mathrm{~m} / \mathrm{s}\). (Why don't you need to know the width of the boxcar?)

120 A sprinter running on a circular track has a velocity of constant magnitude \(9.20 \mathrm{~m} / \mathrm{s}\) and a centripetal acceleration of magnitude \(3.80 \mathrm{~m} / \mathrm{s}^{2}\). What are (a) the track radius and (b) the period of the circular motion?

121 Suppose that a space probe can withstand the stresses of a \(20 g\) acceleration. (a) What is the minimum turning radius of such a craft moving at a speed of one-tenth the speed of light? (b) How long would it take to complete a \(90^{\circ}\) turn at this speed?
122 (so You are to throw a ball with a speed of \(12.0 \mathrm{~m} / \mathrm{s}\) at a target that is height \(h=5.00 \mathrm{~m}\) above the level at which you release the ball (Fig. 4-58). You want the ball's velocity to be horizontal at the instant it reaches the target. (a) At what angle \(\theta\) above the horizontal must you throw the ball? (b) What is the horizontal distance from the release point to the target? (c) What is the speed of the ball just as it reaches the target?
123 A projectile is fired with an initial speed \(v_{0}=30.0 \mathrm{~m} / \mathrm{s}\) from level ground at a target that is on the ground, at distance \(R=20.0 \mathrm{~m}\), as shown in Fig. 4-59. What are the (a) least and (b) greatest launch angles that will allow the projectile to hit the


Figure 4-58 Problem 122.


Figure 4-59 Problem 123. target?
124 A graphing surprise. At time \(t=0\), a burrito is launched from level ground, with an initial speed of \(16.0 \mathrm{~m} / \mathrm{s}\) and launch angle \(\theta_{0}\). Imagine a position vector \(\vec{r}\) continuously directed from the launching point to the burrito during the flight. Graph the magnitude \(r\) of the position vector for (a) \(\theta_{0}=40.0^{\circ}\) and (b) \(\theta_{0}=80.0^{\circ}\). For \(\theta_{0}=40.0^{\circ}\), (c) when does \(r\) reach its maximum value, (d) what is that value, and how far (e) horizontally and (f) vertically is the burrito from the launch point? For \(\theta_{0}=80.0^{\circ},(\mathrm{g})\) when does \(r\) reach its maximum value, \((\mathrm{h})\) what is that value, and how far (i) horizontally and ( j ) vertically is the burrito from the launch point?

125 A cannon located at sea level fires a ball with initial speed \(82 \mathrm{~m} / \mathrm{s}\) and initial angle \(45^{\circ}\). The ball lands in the water after traveling a horizontal distance 686 m . How much greater would the horizontal distance have been had the cannon been 30 m higher?

126 The magnitude of the velocity of a projectile when it is at its maximum height above ground level is \(10.0 \mathrm{~m} / \mathrm{s}\). (a) What is the magnitude of the velocity of the projectile 1.00 s before it achieves its maximum height? (b) What is the magnitude of the velocity of the projectile 1.00 s after it achieves its maximum height? If we take \(x=0\) and \(y=0\) to be at the point of maximum height and positive \(x\) to be in the direction of the velocity there, what are the (c) \(x\) coordinate and (d) \(y\) coordinate of the projectile 1.00 s before it reaches its maximum height and the (e) \(x\) coordinate and (f) \(y\) coordinate 1.0 s after it reaches its maximum height?
127 A frightened rabbit moving at \(6.00 \mathrm{~m} / \mathrm{s}\) due east runs onto a large area of level ice of negligible friction. As the rabbit slides across the ice, the force of the wind causes it to have a constant acceleration of \(1.40 \mathrm{~m} / \mathrm{s}^{2}\), due north. Choose a coordinate system with the origin at the rabbit's initial position on the ice and the positive \(x\) axis directed toward the east. In unit-vector notation, what are the rabbit's (a) velocity and (b) position when it has slid for 3.00 s ?

128 The pilot of an aircraft flies due east relative to the ground in a wind blowing \(20.0 \mathrm{~km} / \mathrm{h}\) toward the south. If the speed of the aircraft in the absence of wind is \(70.0 \mathrm{~km} / \mathrm{h}\), what is the speed of the aircraft relative to the ground?
129 The pitcher in a slow-pitch softball game releases the ball at a point 3.0 ft above ground level. A stroboscopic plot of the position of the ball is shown in Fig. 4-60, where the readings are 0.25 s apart and the ball is released at \(t=0\). (a) What is the initial speed of the ball? (b) What is the speed of the ball at the instant it reaches its maximum height above ground level? (c) What is that maximum height?


Figure 4-60 Problem 129.
130 Some state trooper departments use aircraft to enforce highway speed limits. Suppose that one of the airplanes has a speed of \(135 \mathrm{mi} / \mathrm{h}\) in still air. It is flying straight north so that it is at all times directly above a north-south highway. A ground observer tells the pilot by radio that a \(70.0 \mathrm{mi} / \mathrm{h}\) wind is blowing but neglects to give the wind direction. The pilot observes that in spite of the wind the plane can travel 135 mi along the highway in 1.00 h . In other words, the ground speed is the same as if there were no wind. (a) From what direction is the wind blowing? (b) What is the heading of the plane; that is, in what direction does it point?
131 A golfer tees off from the top of a rise, giving the golf ball an initial velocity of \(43.0 \mathrm{~m} / \mathrm{s}\) at an angle of \(30.0^{\circ}\) above the horizontal. The ball strikes the fairway a horizontal distance of 180 m from the tee. Assume the fairway is level. (a) How high is the rise above the fairway? (b) What is the speed of the ball as it strikes the fairway?

132 A track meet is held on a planet in a distant solar system. A shot-putter releases a shot at a point 2.0 m above ground level. A stroboscopic plot of the position of the shot is shown in Fig. 4-61,


Figure 4-61 Problem 132.
where the readings are 0.50 s apart and the shot is released at time \(t=0\). (a) What is the initial velocity of the shot in unit-vector notation? (b) What is the magnitude of the free-fall acceleration on the planet? (c) How long after it is released does the shot reach the ground? (d) If an identical throw of the shot is made on the surface of Earth, how long after it is released does it reach the ground?
133 A helicopter is flying in a straight line over a level field at a constant speed of \(6.20 \mathrm{~m} / \mathrm{s}\) and at a constant altitude of 9.50 m . A package is ejected horizontally from the helicopter with an initial velocity of \(12.0 \mathrm{~m} / \mathrm{s}\) relative to the helicopter and in a direction opposite the helicopter's motion. (a) Find the initial speed of the package relative to the ground. (b) What is the horizontal distance between the helicopter and the package at the instant the package strikes the ground? (c) What angle does the velocity vector of the package make with the ground at the instant before impact, as seen from the ground?
134 A car travels around a flat circle on the ground, at a constant speed of \(12.0 \mathrm{~m} / \mathrm{s}\). At a certain instant the car has an acceleration of \(3.00 \mathrm{~m} / \mathrm{s}^{2}\) toward the east. What are its distance and direction from the center of the circle at that instant if it is traveling (a) clockwise around the circle and (b) counterclockwise around the circle?
135 You throw a ball from a cliff with an initial velocity of \(15.0 \mathrm{~m} / \mathrm{s}\) at an angle of \(20.0^{\circ}\) below the horizontal. Find (a) its horizontal displacement and (b) its vertical displacement 2.30 s later.

136 A baseball is hit at Fenway Park in Boston at a point 0.762 m above home plate with an initial velocity of \(33.53 \mathrm{~m} / \mathrm{s}\) directed \(55.0^{\circ}\) above the horizontal. The ball is observed to clear the 11.28 -m-high wall in left field (known as the "green monster") 5.00 s after it is hit, at a point just inside the left-field foulline pole. Find (a) the horizontal distance down the left-field foul line from home plate to the wall; (b) the vertical distance by which the ball clears the wall; (c) the horizontal and vertical displacements of the ball with respect to home plate 0.500 s before it clears the wall.
137 A transcontinental flight of 4350 km is scheduled to take 50 min longer westward than eastward. The airspeed of the airplane is \(966 \mathrm{~km} / \mathrm{h}\), and the jet stream it will fly through is presumed to move due east. What is the assumed speed of the jet stream?
138 A woman can row a boat at \(6.40 \mathrm{~km} / \mathrm{h}\) in still water. (a) If she is crossing a river where the current is \(3.20 \mathrm{~km} / \mathrm{h}\), in what direction must her boat be headed if she wants to reach a point directly opposite her starting point? (b) If the river is 6.40 km wide, how long will she take to cross the river? (c) Suppose that instead of crossing the river she rows 3.20 km down the river and then back to her starting point. How long will she take? (d) How long will she take to row 3.20 km up the river and then back to her starting point? (e) In what direction should she head the boat if she wants to cross in the shortest possible time, and what is that time?

\section*{Force and Motion-I}

\section*{5-1 newton's first and second laws}

\section*{Learning Objectives}

After reading this module, you should be able to .
5.01 Identify that a force is a vector quantity and thus has both magnitude and direction and also components.
5.02 Given two or more forces acting on the same particle, add the forces as vectors to get the net force.
5.03 Identify Newton's first and second laws of motion.
5.04 Identify inertial reference frames.
5.05 Sketch a free-body diagram for an object, showing the
object as a particle and drawing the forces acting on it as vectors with their tails anchored on the particle.
5.06 Apply the relationship (Newton's second law) between the net force on an object, the mass of the object, and the acceleration produced by the net force.
5.07 Identify that only external forces on an object can cause the object to accelerate.

\section*{Key Ideas}
- The velocity of an object can change (the object can accelerate) when the object is acted on by one or more forces (pushes or pulls) from other objects. Newtonian mechanics relates accelerations and forces.
- Forces are vector quantities. Their magnitudes are defined in terms of the acceleration they would give the standard kilogram. A force that accelerates that standard body by exactly \(1 \mathrm{~m} / \mathrm{s}^{2}\) is defined to have a magnitude of 1 N . The direction of a force is the direction of the acceleration it causes. Forces are combined according to the rules of vector algebra. The net force on a body is the vector sum of all the forces acting on the body.
- If there is no net force on a body, the body remains at rest if it is initially at rest or moves in a straight line at constant speed if it is in motion.
- Reference frames in which Newtonian mechanics holds are called inertial reference frames or inertial frames. Reference frames in which Newtonian mechanics does not hold are called noninertial reference frames or noninertial frames.
- The mass of a body is the characteristic of that body that relates the body's acceleration to the net force causing the acceleration. Masses are scalar quantities.
- The net force \(\vec{F}_{\text {net }}\) on a body with mass \(m\) is related to the body's acceleration \(\vec{a}\) by
\[
\vec{F}_{\mathrm{net}}=m \vec{a},
\]
which may be written in the component versions
\[
F_{\text {net }, x}=m a_{x} \quad F_{\text {net }, y}=m a_{y} \quad \text { and } \quad F_{\text {net }, z}=m a_{z} .
\]

The second law indicates that in SI units
\[
1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}
\]
- A free-body diagram is a stripped-down diagram in which only one body is considered. That body is represented by either a sketch or a dot. The external forces on the body are drawn, and a coordinate system is superimposed, oriented so as to simplify the solution.

\section*{What Is Physics?}

We have seen that part of physics is a study of motion, including accelerations, which are changes in velocities. Physics is also a study of what can cause an object to accelerate. That cause is a force, which is, loosely speaking, a push or pull on the object. The force is said to act on the object to change its velocity. For example, when a dragster accelerates, a force from the track acts on the rear tires to cause the dragster's acceleration. When a defensive guard knocks down a quarterback, a force from the guard acts on the quarterback to cause the quarterback's backward acceleration. When a car slams into a telephone pole, a force on the car from the
pole causes the car to stop. Science, engineering, legal, and medical journals are filled with articles about forces on objects, including people.

A Heads Up. Many students find this chapter to be more challenging than the preceding ones. One reason is that we need to use vectors in setting up equationswe cannot just sum some scalars. So, we need the vector rules from Chapter 3. Another reason is that we shall see a lot of different arrangements: objects will move along floors, ceilings, walls, and ramps. They will move upward on ropes looped around pulleys or by sitting in ascending or descending elevators. Sometimes, objects will even be tied together.

However, in spite of the variety of arrangements, we need only a single key idea (Newton's second law) to solve most of the homework problems. The purpose of this chapter is for us to explore how we can apply that single key idea to any given arrangement. The application will take experience-we need to solve lots of problems, not just read words. So, let's go through some of the words and then get to the sample problems.

\section*{Newtonian Mechanics}

The relation between a force and the acceleration it causes was first understood by Isaac Newton (1642-1727) and is the subject of this chapter. The study of that relation, as Newton presented it, is called Newtonian mechanics. We shall focus on its three primary laws of motion.

Newtonian mechanics does not apply to all situations. If the speeds of the interacting bodies are very large - an appreciable fraction of the speed of light - we must replace Newtonian mechanics with Einstein's special theory of relativity, which holds at any speed, including those near the speed of light. If the interacting bodies are on the scale of atomic structure (for example, they might be electrons in an atom), we must replace Newtonian mechanics with quantum mechanics. Physicists now view Newtonian mechanics as a special case of these two more comprehensive theories. Still, it is a very important special case because it applies to the motion of objects ranging in size from the very small (almost on the scale of atomic structure) to astronomical (galaxies and clusters of galaxies).

\section*{Newton's First Law}

Before Newton formulated his mechanics, it was thought that some influence, a "force," was needed to keep a body moving at constant velocity. Similarly, a body was thought to be in its "natural state" when it was at rest. For a body to move with constant velocity, it seemingly had to be propelled in some way, by a push or a pull. Otherwise, it would "naturally" stop moving.

These ideas were reasonable. If you send a puck sliding across a wooden floor, it does indeed slow and then stop. If you want to make it move across the floor with constant velocity, you have to continuously pull or push it.

Send a puck sliding over the ice of a skating rink, however, and it goes a lot farther. You can imagine longer and more slippery surfaces, over which the puck would slide farther and farther. In the limit you can think of a long, extremely slippery surface (said to be a frictionless surface), over which the puck would hardly slow. (We can in fact come close to this situation by sending a puck sliding over a horizontal air table, across which it moves on a film of air.)

From these observations, we can conclude that a body will keep moving with constant velocity if no force acts on it. That leads us to the first of Newton's three laws of motion:

Newton's First Law: If no force acts on a body, the body's velocity cannot change; that is, the body cannot accelerate.


Figure 5-1 A force \(\vec{F}\) on the standard kilogram gives that body an acceleration \(\vec{a}\).

In other words, if the body is at rest, it stays at rest. If it is moving, it continues to move with the same velocity (same magnitude and same direction).

\section*{Force}

Before we begin working problems with forces, we need to discuss several features of forces, such as the force unit, the vector nature of forces, the combining of forces, and the circumstances in which we can measure forces (without being fooled by a fictitious force).

Unit. We can define the unit of force in terms of the acceleration a force would give to the standard kilogram (Fig. 1-3), which has a mass defined to be exactly 1 kg . Suppose we put that body on a horizontal, frictionless surface and pull horizontally (Fig. 5-1) such that the body has an acceleration of \(1 \mathrm{~m} / \mathrm{s}^{2}\). Then we can define our applied force as having a magnitude of 1 newton (abbreviated N ). If we then pulled with a force magnitude of 2 N , we would find that the acceleration is \(2 \mathrm{~m} / \mathrm{s}^{2}\). Thus, the acceleration is proportional to the force. If the standard body of 1 kg has an acceleration of magnitude \(a\) (in meters per second per second), then the force (in newtons) producing the acceleration has a magnitude equal to \(a\). We now have a workable definition of the force unit.

Vectors. Force is a vector quantity and thus has not only magnitude but also direction. So, if two or more forces act on a body, we find the net force (or resultant force) by adding them as vectors, following the rules of Chapter 3. A single force that has the same magnitude and direction as the calculated net force would then have the same effect as all the individual forces. This fact, called the principle of superposition for forces, makes everyday forces reasonable and predictable. The world would indeed be strange and unpredictable if, say, you and a friend each pulled on the standard body with a force of 1 N and somehow the net pull was 14 N and the resulting acceleration was \(14 \mathrm{~m} / \mathrm{s}^{2}\).

In this book, forces are most often represented with a vector symbol such as \(\vec{F}\), and a net force is represented with the vector symbol \(\vec{F}_{\text {net }}\). As with other vectors, a force or a net force can have components along coordinate axes. When forces act only along a single axis, they are single-component forces. Then we can drop the overhead arrows on the force symbols and just use signs to indicate the directions of the forces along that axis.

The First Law. Instead of our previous wording, the more proper statement of Newton's First Law is in terms of a net force:

Newton's First Law: If no net force acts on a body ( \(\left.\vec{F}_{\text {net }}=0\right)\), the body's velocity cannot change; that is, the body cannot accelerate.

There may be multiple forces acting on a body, but if their net force is zero, the body cannot accelerate. So, if we happen to know that a body's velocity is constant, we can immediately say that the net force on it is zero.

\section*{Inertial Reference Frames}

Newton's first law is not true in all reference frames, but we can always find reference frames in which it (as well as the rest of Newtonian mechanics) is true. Such special frames are referred to as inertial reference frames, or simply inertial frames.

An inertial reference frame is one in which Newton's laws hold.
For example, we can assume that the ground is an inertial frame provided we can neglect Earth's astronomical motions (such as its rotation).

That assumption works well if, say, a puck is sent sliding along a short strip of frictionless ice - we would find that the puck's motion obeys Newton's laws. However, suppose the puck is sent sliding along a long ice strip extending from the north pole (Fig. 5-2a). If we view the puck from a stationary frame in space, the puck moves south along a simple straight line because Earth's rotation around the north pole merely slides the ice beneath the puck. However, if we view the puck from a point on the ground so that we rotate with Earth, the puck's path is not a simple straight line. Because the eastward speed of the ground beneath the puck is greater the farther south the puck slides, from our ground-based view the puck appears to be deflected westward (Fig. 5-2b). However, this apparent deflection is caused not by a force as required by Newton's laws but by the fact that we see the puck from a rotating frame. In this situation, the ground is a noninertial frame, and trying to explain the deflection in terms of a force would lead us to a fictitious force. A more common example of inventing such a nonexistent force can occur in a car that is rapidly increasing in speed. You might claim that a force to the rear shoves you hard into the seat back.

In this book we usually assume that the ground is an inertial frame and that measured forces and accelerations are from this frame. If measurements are made in, say, a vehicle that is accelerating relative to the ground, then the measurements are being made in a noninertial frame and the results can be surprising.

\section*{Checkpoint 1}

Which of the figure's six arrangements correctly show the vector addition of forces \(\vec{F}_{1}\) and \(\vec{F}_{2}\) to yield the third vector, which is meant to represent their net force \(\vec{F}_{\text {net }}\) ?
(a)

(b)

(c)

(d)

(e)

(f)


\section*{Mass}

From everyday experience you already know that applying a given force to bodies (say, a baseball and a bowling ball) results in different accelerations. The common explanation is correct: The object with the larger mass is accelerated less. But we can be more precise. The acceleration is actually inversely related to the mass (rather than, say, the square of the mass).

Let's justify that inverse relationship. Suppose, as previously, we push on the standard body (defined to have a mass of exactly 1 kg ) with a force of magnitude 1 N . The body accelerates with a magnitude of \(1 \mathrm{~m} / \mathrm{s}^{2}\). Next we push on body \(X\) with the same force and find that it accelerates at \(0.25 \mathrm{~m} / \mathrm{s}^{2}\). Let's make the (correct) assumption that with the same force,
\[
\frac{m_{X}}{m_{0}}=\frac{a_{0}}{a_{X}},
\]


Figure 5-2 (a) The path of a puck sliding from the north pole as seen from a stationary point in space. Earth rotates to the east. (b) The path of the puck as seen from the ground.
and thus
\[
m_{X}=m_{0} \frac{a_{0}}{a_{X}}=(1.0 \mathrm{~kg}) \frac{1.0 \mathrm{~m} / \mathrm{s}^{2}}{0.25 \mathrm{~m} / \mathrm{s}^{2}}=4.0 \mathrm{~kg} .
\]

Defining the mass of \(X\) in this way is useful only if the procedure is consistent. Suppose we apply an 8.0 N force first to the standard body (getting an acceleration of \(8.0 \mathrm{~m} / \mathrm{s}^{2}\) ) and then to body \(X\) (getting an acceleration of \(2.0 \mathrm{~m} / \mathrm{s}^{2}\) ). We would then calculate the mass of \(X\) as
\[
m_{X}=m_{0} \frac{a_{0}}{a_{X}}=(1.0 \mathrm{~kg}) \frac{8.0 \mathrm{~m} / \mathrm{s}^{2}}{2.0 \mathrm{~m} / \mathrm{s}^{2}}=4.0 \mathrm{~kg},
\]
which means that our procedure is consistent and thus usable.
The results also suggest that mass is an intrinsic characteristic of a body-it automatically comes with the existence of the body. Also, it is a scalar quantity. However, the nagging question remains: What, exactly, is mass?

Since the word mass is used in everyday English, we should have some intuitive understanding of it, maybe something that we can physically sense. Is it a body's size, weight, or density? The answer is no, although those characteristics are sometimes confused with mass. We can say only that the mass of a body is the characteristic that relates a force on the body to the resulting acceleration. Mass has no more familiar definition; you can have a physical sensation of mass only when you try to accelerate a body, as in the kicking of a baseball or a bowling ball.

\section*{Newton's Second Law}

All the definitions, experiments, and observations we have discussed so far can be summarized in one neat statement:

Newton's Second Law: The net force on a body is equal to the product of the body's mass and its acceleration.

In equation form,
\[
\begin{equation*}
\vec{F}_{\text {net }}=m \vec{a} \quad \text { (Newton's second law). } \tag{5-1}
\end{equation*}
\]

Identify the Body. This simple equation is the key idea for nearly all the homework problems in this chapter, but we must use it cautiously. First, we must be certain about which body we are applying it to. Then \(\vec{F}_{\text {net }}\) must be the vector sum of all the forces that act on that body. Only forces that act on that body are to be included in the vector sum, not forces acting on other bodies that might be involved in the given situation. For example, if you are in a rugby scrum, the net force on you is the vector sum of all the pushes and pulls on your body. It does not include any push or pull on another player from you or from anyone else. Every time you work a force problem, your first step is to clearly state the body to which you are applying Newton's law.

Separate Axes. Like other vector equations, Eq. 5-1 is equivalent to three component equations, one for each axis of an \(x y z\) coordinate system:
\[
\begin{equation*}
F_{\text {net }, x}=m a_{x}, \quad F_{\text {net }, y}=m a_{y}, \quad \text { and } \quad F_{\text {net }, z}=m a_{z} . \tag{5-2}
\end{equation*}
\]

Each of these equations relates the net force component along an axis to the acceleration along that same axis. For example, the first equation tells us that the sum of all the force components along the \(x\) axis causes the \(x\) component \(a_{x}\) of the body's acceleration, but causes no acceleration in the \(y\) and \(z\) directions. Turned around, the acceleration component \(a_{x}\) is caused only by the sum of the
force components along the \(x\) axis and is completely unrelated to force components along another axis. In general,

The acceleration component along a given axis is caused only by the sum of the force components along that same axis, and not by force components along any other axis.

Forces in Equilibrium. Equation 5-1 tells us that if the net force on a body is zero, the body's acceleration \(\vec{a}=0\). If the body is at rest, it stays at rest; if it is moving, it continues to move at constant velocity. In such cases, any forces on the body balance one another, and both the forces and the body are said to be in equilibrium. Commonly, the forces are also said to cancel one another, but the term "cancel" is tricky. It does not mean that the forces cease to exist (canceling forces is not like canceling dinner reservations). The forces still act on the body but cannot change the velocity.

Units. For SI units, Eq. 5-1 tells us that
\[
\begin{equation*}
1 \mathrm{~N}=(1 \mathrm{~kg})\left(1 \mathrm{~m} / \mathrm{s}^{2}\right)=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2} \tag{5-3}
\end{equation*}
\]

Some force units in other systems of units are given in Table 5-1 and Appendix D.
Diagrams. To solve problems with Newton's second law, we often draw a free-body diagram in which the only body shown is the one for which we are summing forces. A sketch of the body itself is preferred by some teachers but, to save space in these chapters, we shall usually represent the body with a dot. Also, each force on the body is drawn as a vector arrow with its tail anchored on the body. A coordinate system is usually included, and the acceleration of the body is sometimes shown with a vector arrow (labeled as an acceleration). This whole procedure is designed to focus our attention on the body of interest.

Table 5-1 Units in Newton's Second Law (Eqs. 5-1 and 5-2)
\begin{tabular}{lllc}
\hline System & \multicolumn{1}{c}{ Force } & \multicolumn{1}{c}{ Mass } & Acceleration \\
\hline SI & newton (N) & kilogram \((\mathrm{kg})\) & \(\mathrm{m} / \mathrm{s}^{2}\) \\
\(\mathrm{CGS}^{a}\) & dyne & gram \((\mathrm{g})\) & \(\mathrm{cm} / \mathrm{s}^{2}\) \\
British \(^{b}\) & pound (lb) & slug & \(\mathrm{ft} / \mathrm{s}^{2}\) \\
\hline
\end{tabular}
\({ }^{a} 1\) dyne \(=1 \mathrm{~g} \cdot \mathrm{~cm} / \mathrm{s}^{2}\).
\({ }^{5} 1 \mathrm{lb}=1\) slug \(\cdot \mathrm{ft} / \mathrm{s}^{2}\).
External Forces Only. A system consists of one or more bodies, and any force on the bodies inside the system from bodies outside the system is called an external force. If the bodies making up a system are rigidly connected to one another, we can treat the system as one composite body, and the net force \(\vec{F}_{\text {net }}\) on it is the vector sum of all external forces. (We do not include internal forces-that is, forces between two bodies inside the system. Internal forces cannot accelerate the system.) For example, a connected railroad engine and car form a system. If, say, a tow line pulls on the front of the engine, the force due to the tow line acts on the whole engine-car system. Just as for a single body, we can relate the net external force on a system to its acceleration with Newton's second law, \(\vec{F}_{\text {net }}=m \vec{a}\), where \(m\) is the total mass of the system.

\section*{Checkpoint 2}

The figure here shows two horizontal forces acting on a block on a frictionless floor. If a third horizontal force \(\vec{F}_{3}\) also acts on the block, what are the magnitude and direction of \(\vec{F}_{3}\) when the block is (a) stationary and (b) moving to the left with a constant speed of \(5 \mathrm{~m} / \mathrm{s}\) ?

\section*{Sample Problem 5.01 One- and two-dimensional forces, puck}

Here are examples of how to use Newton's second law for a puck when one or two forces act on it. Parts A, B, and C of Fig. 5-3 show three situations in which one or two forces act on a puck that moves over frictionless ice along an \(x\) axis, in one-dimensional motion. The puck's mass is \(m=0.20 \mathrm{~kg}\). Forces \(\vec{F}_{1}\) and \(\vec{F}_{2}\) are directed along the axis and have magnitudes \(F_{1}=4.0 \mathrm{~N}\) and \(F_{2}=2.0 \mathrm{~N}\). Force \(\vec{F}_{3}\) is directed at angle \(\theta=30^{\circ}\) and has magnitude \(F_{3}=1.0 \mathrm{~N}\). In each situation, what is the acceleration of the puck?

\section*{KEY IDEA}

In each situation we can relate the acceleration \(\vec{a}\) to the net force \(\vec{F}_{\text {net }}\) acting on the puck with Newton's second law, \(\vec{F}_{\text {net }}=m \vec{a}\). However, because the motion is along only the \(x\) axis, we can simplify each situation by writing the second law for \(x\) components only:
\[
\begin{equation*}
F_{\mathrm{net}, x}=m a_{x} . \tag{5-4}
\end{equation*}
\]

The free-body diagrams for the three situations are also given in Fig. 5-3, with the puck represented by a dot.

Situation A: For Fig. 5-3b, where only one horizontal force acts, Eq. 5-4 gives us
\[
F_{1}=m a_{x},
\]
which, with given data, yields
\[
a_{x}=\frac{F_{1}}{m}=\frac{4.0 \mathrm{~N}}{0.20 \mathrm{~kg}}=20 \mathrm{~m} / \mathrm{s}^{2}
\]
(Answer)
The positive answer indicates that the acceleration is in the positive direction of the \(x\) axis.

Situation B: In Fig. 5-3d, two horizontal forces act on the puck, \(\vec{F}_{1}\) in the positive direction of \(x\) and \(\vec{F}_{2}\) in the negative direction. Now Eq. 5-4 gives us
\[
F_{1}-F_{2}=m a_{x},
\]
which, with given data, yields
\[
a_{x}=\frac{F_{1}-F_{2}}{m}=\frac{4.0 \mathrm{~N}-2.0 \mathrm{~N}}{0.20 \mathrm{~kg}}=10 \mathrm{~m} / \mathrm{s}^{2} .
\]
(Answer)
Thus, the net force accelerates the puck in the positive direction of the \(x\) axis.

Situation C: In Fig. 5-3f, force \(\vec{F}_{3}\) is not directed along the direction of the puck's acceleration; only \(x\) component \(F_{3, x}\) is. (Force \(\vec{F}_{3}\) is two-dimensional but the motion is only one-


Figure 5-3 In three situations, forces act on a puck that moves along an \(x\) axis. Free-body diagrams are also shown.
dimensional.) Thus, we write Eq. 5-4 as
\[
\begin{equation*}
F_{3, x}-F_{2}=m a_{x} \tag{5-5}
\end{equation*}
\]

From the figure, we see that \(F_{3, x}=F_{3} \cos \theta\). Solving for the acceleration and substituting for \(F_{3, x}\) yield
\[
\begin{aligned}
a_{x} & =\frac{F_{3, x}-F_{2}}{m}=\frac{F_{3} \cos \theta-F_{2}}{m} \\
& =\frac{(1.0 \mathrm{~N})\left(\cos 30^{\circ}\right)-2.0 \mathrm{~N}}{0.20 \mathrm{~kg}}=-5.7 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
\]
(Answer)
Thus, the net force accelerates the puck in the negative direction of the \(x\) axis.

\section*{Sample Problem 5.02 Two-dimensional forces, cookie tin}

Here we find a missing force by using the acceleration. In the overhead view of Fig. \(5-4 a\), a 2.0 kg cookie tin is accelerated at \(3.0 \mathrm{~m} / \mathrm{s}^{2}\) in the direction shown by \(\vec{a}\), over a frictionless horizontal surface. The acceleration is caused by three horizontal forces, only two of which are shown: \(\vec{F}_{1}\) of magnitude 10 N and \(\vec{F}_{2}\) of magnitude 20 N . What is the third force \(\vec{F}_{3}\) in unit-vector notation and in magnitude-angle notation?

\section*{KEY IDEA}

The net force \(\vec{F}_{\text {net }}\) on the tin is the sum of the three forces and is related to the acceleration \(\vec{a}\) via Newton's second law \(\left(\vec{F}_{\text {net }}=m \vec{a}\right)\). Thus,
\[
\begin{equation*}
\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}=m \vec{a} \tag{5-6}
\end{equation*}
\]
which gives us
\[
\begin{equation*}
\vec{F}_{3}=m \vec{a}-\vec{F}_{1}-\vec{F}_{2} \tag{5-7}
\end{equation*}
\]

Calculations: Because this is a two-dimensional problem, we cannot find \(\vec{F}_{3}\) merely by substituting the magnitudes for the vector quantities on the right side of Eq. 5-7. Instead, we must vectorially add \(m \vec{a},-\vec{F}_{1}\) (the reverse of \(\vec{F}_{1}\) ), and \(-\vec{F}_{2}\) (the reverse of \(\vec{F}_{2}\) ), as shown in Fig. 5-4b. This addition can be done directly on a vector-capable calculator because we know both magnitude and angle for all three vectors. However, here we shall evaluate the right side of Eq. 5-7 in terms of components, first along the \(x\) axis and then along the \(y\) axis. Caution: Use only one axis at a time.
\(x\) components: Along the \(x\) axis we have
\[
\begin{aligned}
F_{3, x} & =m a_{x}-F_{1, x}-F_{2, x} \\
& =m\left(a \cos 50^{\circ}\right)-F_{1} \cos \left(-150^{\circ}\right)-F_{2} \cos 90^{\circ} .
\end{aligned}
\]

Then, substituting known data, we find
\[
\begin{aligned}
F_{3, x}= & (2.0 \mathrm{~kg})\left(3.0 \mathrm{~m} / \mathrm{s}^{2}\right) \cos 50^{\circ}-(10 \mathrm{~N}) \cos \left(-150^{\circ}\right) \\
& -(20 \mathrm{~N}) \cos 90^{\circ} \\
= & 12.5 \mathrm{~N} .
\end{aligned}
\]
\(y\) components: Similarly, along the \(y\) axis we find
\[
\begin{aligned}
F_{3, y}= & m a_{y}-F_{1, y}-F_{2, y} \\
= & m\left(a \sin 50^{\circ}\right)-F_{1} \sin \left(-150^{\circ}\right)-F_{2} \sin 90^{\circ} \\
= & (2.0 \mathrm{~kg})\left(3.0 \mathrm{~m} / \mathrm{s}^{2}\right) \sin 50^{\circ}-(10 \mathrm{~N}) \sin \left(-150^{\circ}\right) \\
& -(20 \mathrm{~N}) \sin 90^{\circ} \\
= & -10.4 \mathrm{~N} .
\end{aligned}
\]

Vector: In unit-vector notation, we can write
\[
\begin{aligned}
\vec{F}_{3} & =F_{3, x} \hat{\mathrm{i}}+F_{3, y} \hat{\mathrm{j}}=(12.5 \mathrm{~N}) \hat{\mathrm{i}}-(10.4 \mathrm{~N}) \hat{\mathrm{j}} \\
& \approx(13 \mathrm{~N}) \hat{\mathrm{i}}-(10 \mathrm{~N}) \hat{\mathrm{j}} .
\end{aligned}
\]
(Answer)
We can now use a vector-capable calculator to get the magnitude and the angle of \(\vec{F}_{3}\). We can also use Eq. 3-6 to obtain the magnitude and the angle (from the positive direction of the \(x\) axis) as
\[
F_{3}=\sqrt{F_{3, x}^{2}+F_{3, y}^{2}}=16 \mathrm{~N}
\]
and
\[
\theta=\tan ^{-1} \frac{F_{3, y}}{F_{3, x}}=-40^{\circ} .
\]
(Answer)

(b)

We draw the product


Then we can add the three vectors to find the missing third force vector.

Figure 5-4 (a) An overhead view of two of three horizontal forces that act on a cookie tin, resulting in acceleration \(\vec{a} \cdot \vec{F}_{3}\) is not shown. (b) An arrangement of vectors \(m \vec{a},-\vec{F}_{1}\), and \(-\vec{F}_{2}\) to find force \(\vec{F}_{3}\).

\section*{5-2 some particular forces}

\section*{Learning Objectives}

After reading this module, you should be able to ...
5.08 Determine the magnitude and direction of the gravitational force acting on a body with a given mass, at a location with a given free-fall acceleration.
5.09 Identify that the weight of a body is the magnitude of the net force required to prevent the body from falling freely, as measured from the reference frame of the ground.
5.10 Identify that a scale gives an object's weight when the measurement is done in an inertial frame but not in an accelerating frame, where it gives an apparent weight.
5.11 Determine the magnitude and direction of the normal force on an object when the object is pressed or pulled onto a surface.
5.12 Identify that the force parallel to the surface is a frictional force that appears when the object slides or attempts to slide along the surface.
5.13 Identify that a tension force is said to pull at both ends of a cord (or a cord-like object) when the cord is taut.

\section*{Key Ideas}
- A gravitational force \(\vec{F}_{g}\) on a body is a pull by another body. In most situations in this book, the other body is Earth or some other astronomical body. For Earth, the force is directed down toward the ground, which is assumed to be an inertial frame. With that assumption, the magnitude of \(\vec{F}_{g}\) is
\[
F_{g}=m g,
\]
where \(m\) is the body's mass and \(g\) is the magnitude of the free-fall acceleration.
- The weight \(W\) of a body is the magnitude of the upward force needed to balance the gravitational force on the body. A body's weight is related to the body's mass by
\[
W=m g .
\]
- A normal force \(\overrightarrow{F_{N}}\) is the force on a body from a surface against which the body presses. The normal force is always perpendicular to the surface.
- A frictional force \(\vec{f}\) is the force on a body when the body slides or attempts to slide along a surface. The force is always parallel to the surface and directed so as to oppose the sliding. On a frictionless surface, the frictional force is negligible.
- When a cord is under tension, each end of the cord pulls on a body. The pull is directed along the cord, away from the point of attachment to the body. For a massless cord (a cord with negligible mass), the pulls at both ends of the cord have the same magnitude \(T\), even if the cord runs around a massless, frictionless pulley (a pulley with negligible mass and negligible friction on its axle to oppose its rotation).

\section*{Some Particular Forces}

\section*{The Gravitational Force}

A gravitational force \(\vec{F}_{g}\) on a body is a certain type of pull that is directed toward a second body. In these early chapters, we do not discuss the nature of this force and usually consider situations in which the second body is Earth. Thus, when we speak of the gravitational force \(\vec{F}_{g}\) on a body, we usually mean a force that pulls on it directly toward the center of Earth - that is, directly down toward the ground. We shall assume that the ground is an inertial frame.

Free Fall. Suppose a body of mass \(m\) is in free fall with the free-fall acceleration of magnitude \(g\). Then, if we neglect the effects of the air, the only force acting on the body is the gravitational force \(\vec{F}_{g}\). We can relate this downward force and downward acceleration with Newton's second law \((\vec{F}=m \vec{a})\). We place a vertical \(y\) axis along the body's path, with the positive direction upward. For this axis, Newton's second law can be written in the form \(F_{\text {net, } y}=m a_{y}\), which, in our situation, becomes
\[
-F_{g}=m(-g)
\]
or
\[
\begin{equation*}
F_{g}=m g \tag{5-8}
\end{equation*}
\]

In words, the magnitude of the gravitational force is equal to the product \(m g\).

At Rest. This same gravitational force, with the same magnitude, still acts on the body even when the body is not in free fall but is, say, at rest on a pool table or moving across the table. (For the gravitational force to disappear, Earth would have to disappear.)

We can write Newton's second law for the gravitational force in these vector forms:
\[
\begin{equation*}
\vec{F}_{g}=-F_{g} \hat{j}=-m g \hat{j}=m \vec{g} \tag{5-9}
\end{equation*}
\]
where \(\hat{j}\) is the unit vector that points upward along a \(y\) axis, directly away from the ground, and \(\vec{g}\) is the free-fall acceleration (written as a vector), directed downward.

\section*{Weight}

The weight \(W\) of a body is the magnitude of the net force required to prevent the body from falling freely, as measured by someone on the ground. For example, to keep a ball at rest in your hand while you stand on the ground, you must provide an upward force to balance the gravitational force on the ball from Earth. Suppose the magnitude of the gravitational force is 2.0 N . Then the magnitude of your upward force must be 2.0 N , and thus the weight \(W\) of the ball is 2.0 N . We also say that the ball weighs 2.0 N and speak about the ball weighing 2.0 N .

A ball with a weight of 3.0 N would require a greater force from younamely, a 3.0 N force - to keep it at rest. The reason is that the gravitational force you must balance has a greater magnitude - namely, 3.0 N. We say that this second ball is heavier than the first ball.

Now let us generalize the situation. Consider a body that has an acceleration \(\vec{a}\) of zero relative to the ground, which we again assume to be an inertial frame. Two forces act on the body: a downward gravitational force \(\vec{F}_{g}\) and a balancing upward force of magnitude \(W\). We can write Newton's second law for a vertical \(y\) axis, with the positive direction upward, as
\[
F_{\text {net }, y}=m a_{y} .
\]

In our situation, this becomes
\[
\begin{equation*}
W-F_{g}=m(0) \tag{5-10}
\end{equation*}
\]
or \(\quad W=F_{g} \quad\) (weight, with ground as inertial frame).
This equation tells us (assuming the ground is an inertial frame) that

The weight \(W\) of a body is equal to the magnitude \(F_{g}\) of the gravitational force on the body.

Substituting \(m g\) for \(F_{g}\) from Eq. 5-8, we find
\[
\begin{equation*}
W=m g \quad(\text { weight }) \tag{5-12}
\end{equation*}
\]
which relates a body's weight to its mass.
Weighing. To weigh a body means to measure its weight. One way to do this is to place the body on one of the pans of an equal-arm balance (Fig. 5-5) and then place reference bodies (whose masses are known) on the other pan until we strike a balance (so that the gravitational forces on the two sides match). The masses on the pans then match, and we know the mass of the body. If we know the value of \(g\) for the location of the balance, we can also find the weight of the body with Eq. 5-12.

We can also weigh a body with a spring scale (Fig. 5-6). The body stretches a spring, moving a pointer along a scale that has been calibrated and marked in


Figure 5-5 An equal-arm balance. When the device is in balance, the gravitational force \(\vec{F}_{g L}\) on the body being weighed (on the left pan) and the total gravitational force \(\vec{F}_{g R}\) on the reference bodies (on the right pan) are equal. Thus, the mass \(m_{L}\) of the body being weighed is equal to the total mass \(m_{R}\) of the reference bodies.


Figure 5-6 A spring scale. The reading is proportional to the weight of the object on the pan, and the scale gives that weight if marked in weight units. If, instead, it is marked in mass units, the reading is the object's weight only if the value of \(g\) at the location where the scale is being used is the same as the value of \(g\) at the location where the scale was calibrated.
either mass or weight units. (Most bathroom scales in the United States work this way and are marked in the force unit pounds.) If the scale is marked in mass units, it is accurate only where the value of \(g\) is the same as where the scale was calibrated.

The weight of a body must be measured when the body is not accelerating vertically relative to the ground. For example, you can measure your weight on a scale in your bathroom or on a fast train. However, if you repeat the measurement with the scale in an accelerating elevator, the reading differs from your weight because of the acceleration. Such a measurement is called an apparent weight.

Caution: A body's weight is not its mass. Weight is the magnitude of a force and is related to mass by Eq. 5-12. If you move a body to a point where the value of \(g\) is different, the body's mass (an intrinsic property) is not different but the weight is. For example, the weight of a bowling ball having a mass of 7.2 kg is 71 N on Earth but only 12 N on the Moon. The mass is the same on Earth and Moon, but the free-fall acceleration on the Moon is only \(1.6 \mathrm{~m} / \mathrm{s}^{2}\).

\section*{The Normal Force}

If you stand on a mattress, Earth pulls you downward, but you remain stationary. The reason is that the mattress, because it deforms downward due to you, pushes up on you. Similarly, if you stand on a floor, it deforms (it is compressed, bent, or buckled ever so slightly) and pushes up on you. Even a seemingly rigid concrete floor does this (if it is not sitting directly on the ground, enough people on the floor could break it).

The push on you from the mattress or floor is a normal force \(\vec{F}_{N}\). The name comes from the mathematical term normal, meaning perpendicular: The force on you from, say, the floor is perpendicular to the floor.

When a body presses against a surface, the surface (even a seemingly rigid one) deforms and pushes on the body with a normal force \(\vec{F}_{N}\) that is perpendicular to the surface.

Figure 5-7a shows an example. A block of mass \(m\) presses down on a table, deforming it somewhat because of the gravitational force \(\vec{F}_{g}\) on the block. The table pushes up on the block with normal force \(\vec{F}_{N}\). The free-body diagram for the block is given in Fig. 5-7b. Forces \(\vec{F}_{g}\) and \(\vec{F}_{N}\) are the only two forces on the block and they are both vertical. Thus, for the block we can write Newton's second law for a positive-upward \(y\) axis \(\left(F_{\text {net }, y}=m a_{y}\right)\) as
\[
F_{N}-F_{g}=m a_{y}
\]


Figure 5-7 (a) A block resting on a table experiences a normal force \(\vec{F}_{N}\) perpendicular to the tabletop. (b) The free-body diagram for the block.

From Eq. 5-8, we substitute \(m g\) for \(F_{g}\), finding
\[
F_{N}-m g=m a_{y} .
\]

Then the magnitude of the normal force is
\[
\begin{equation*}
F_{N}=m g+m a_{y}=m\left(g+a_{y}\right) \tag{5-13}
\end{equation*}
\]
for any vertical acceleration \(a_{y}\) of the table and block (they might be in an accelerating elevator). (Caution: We have already included the sign for \(g\) but \(a_{y}\) can be positive or negative here.) If the table and block are not accelerating relative to the ground, then \(a_{y}=0\) and Eq. \(5-13\) yields
\[
\begin{equation*}
F_{N}=m g \tag{5-14}
\end{equation*}
\]

\section*{Checkpoint 3}

In Fig. 5-7, is the magnitude of the normal force \(\vec{F}_{N}\) greater than, less than, or equal to \(m g\) if the block and table are in an elevator moving upward (a) at constant speed and (b) at increasing speed?

\section*{Friction}

If we either slide or attempt to slide a body over a surface, the motion is resisted by a bonding between the body and the surface. (We discuss this bonding more in the next chapter.) The resistance is considered to be a single force \(\vec{f}\), called either the frictional force or simply friction. This force is directed along the surface, opposite the direction of the intended motion (Fig. 5-8). Sometimes, to simplify a situation, friction is assumed to be negligible (the surface, or even the body, is said to be frictionless).

\section*{Tension}

When a cord (or a rope, cable, or other such object) is attached to a body and pulled taut, the cord pulls on the body with a force \(\vec{T}\) directed away from the body and along the cord (Fig. 5-9a). The force is often called a tension force because the cord is said to be in a state of tension (or to be under tension), which means that it is being pulled taut. The tension in the cord is the magnitude \(T\) of the force on the body. For example, if the force on the body from the cord has magnitude \(T=50 \mathrm{~N}\), the tension in the cord is 50 N .

A cord is often said to be massless (meaning its mass is negligible compared to the body's mass) and unstretchable. The cord then exists only as a connection between two bodies. It pulls on both bodies with the same force magnitude \(T\),


Figure 5-9 (a) The cord, pulled taut, is under tension. If its mass is negligible, the cord pulls on the body and the hand with force \(\vec{T}\), even if the cord runs around a massless, frictionless pulley as in \((b)\) and \((c)\).


Figure 5-8 A frictional force \(\vec{f}\) opposes the attempted slide of a body over a surface.
even if the bodies and the cord are accelerating and even if the cord runs around a massless, frictionless pulley (Figs. 5-9b and \(c\) ). Such a pulley has negligible mass compared to the bodies and negligible friction on its axle opposing its rotation. If the cord wraps halfway around a pulley, as in Fig. 5-9c, the net force on the pulley from the cord has the magnitude \(2 T\).

\section*{Checkpoint 4}

The suspended body in Fig. \(5-9 c\) weighs 75 N . Is \(T\) equal to, greater than, or less than 75 N when the body is moving upward (a) at constant speed, (b) at increasing speed, and (c) at decreasing speed?

\section*{5-3 applying newtons Laws}

\section*{Learning Objectives}

After reading this module, you should be able to .
5.14 Identify Newton's third law of motion and third-law force pairs.
5.15 For an object that moves vertically or on a horizontal or inclined plane, apply Newton's second law to a free-body diagram of the object.
5.16 For an arrangement where a system of several objects moves rigidly together, draw a free-body diagram and apply Newton's second law for the individual objects and also for the system taken as a composite object.

\section*{Key Ideas}
- The net force \(\vec{F}_{\text {net }}\) on a body with mass \(m\) is related to the body's acceleration \(\vec{a}\) by
\[
\vec{F}_{\text {net }}=m \vec{a},
\]
which may be written in the component versions
\[
F_{\text {net }, x}=m a_{x} \quad F_{\text {net }, y}=m a_{y} \quad \text { and } \quad F_{\text {net }, z}=m a_{z} .
\]
- If a force \(\vec{F}_{B C}\) acts on body \(B\) due to body \(C\), then there is a force \(\vec{F}_{C B}\) on body \(C\) due to body \(B\) :
\[
\vec{F}_{B C}=-\vec{F}_{C B} .
\]

\section*{Newton's Third Law}

Two bodies are said to interact when they push or pull on each other-that is, when a force acts on each body due to the other body. For example, suppose you position a book \(B\) so it leans against a crate \(C\) (Fig. 5-10a). Then the book and crate interact: There is a horizontal force \(\vec{F}_{B C}\) on the book from the crate (or due to the crate) and a horizontal force \(\vec{F}_{C B}\) on the crate from the book (or due to the book). This pair of forces is shown in Fig. 5-10b. Newton's third law states that

Newton's Third Law: When two bodies interact, the forces on the bodies from each other are always equal in magnitude and opposite in direction.

For the book and crate, we can write this law as the scalar relation
\[
F_{B C}=F_{C B} \quad \text { (equal magnitudes) }
\]
or as the vector relation
\[
\begin{equation*}
\vec{F}_{B C}=-\vec{F}_{C B} \quad \text { (equal magnitudes and opposite directions), } \tag{5-15}
\end{equation*}
\]
where the minus sign means that these two forces are in opposite directions. We can call the forces between two interacting bodies a third-law force pair. When


Figure 5-11 (a) A cantaloupe lies on a table that stands on Earth. (b) The forces on the cantaloupe are \(\vec{F}_{C T}\) and \(\vec{F}_{C E}\). (c) The third-law force pair for the cantaloupe-Earth interaction. (d) The third-law force pair for the cantaloupe-table interaction.
any two bodies interact in any situation, a third-law force pair is present. The book and crate in Fig. 5-10a are stationary, but the third law would still hold if they were moving and even if they were accelerating.

As another example, let us find the third-law force pairs involving the cantaloupe in Fig. 5-11a, which lies on a table that stands on Earth. The cantaloupe interacts with the table and with Earth (this time, there are three bodies whose interactions we must sort out).

Let's first focus on the forces acting on the cantaloupe (Fig. 5-11b). Force \(\vec{F}_{C T}\) is the normal force on the cantaloupe from the table, and force \(\vec{F}_{C E}\) is the gravitational force on the cantaloupe due to Earth. Are they a third-law force pair? No, because they are forces on a single body, the cantaloupe, and not on two interacting bodies.

To find a third-law pair, we must focus not on the cantaloupe but on the interaction between the cantaloupe and one other body. In the cantaloupe-Earth interaction (Fig. 5-11c), Earth pulls on the cantaloupe with a gravitational force \(\vec{F}_{C E}\) and the cantaloupe pulls on Earth with a gravitational force \(\vec{F}_{E C}\). Are these forces a third-law force pair? Yes, because they are forces on two interacting bodies, the force on each due to the other. Thus, by Newton's third law,
\[
\vec{F}_{C E}=-\vec{F}_{E C} \quad \text { (cantaloupe-Earth interaction). }
\]

Next, in the cantaloupe-table interaction, the force on the cantaloupe from the table is \(\vec{F}_{C T}\) and, conversely, the force on the table from the cantaloupe is \(\vec{F}_{T C}\) (Fig. 5-11d). These forces are also a third-law force pair, and so
\[
\vec{F}_{C T}=-\vec{F}_{T C} \quad \text { (cantaloupe-table interaction) }
\]

\section*{Checkpoint 5}

Suppose that the cantaloupe and table of Fig. 5-11 are in an elevator cab that begins to accelerate upward. (a) Do the magnitudes of \(\vec{F}_{T C}\) and \(\vec{F}_{C T}\) increase, decrease, or stay the same? (b) Are those two forces still equal in magnitude and opposite in direction? (c) Do the magnitudes of \(\vec{F}_{C E}\) and \(\vec{F}_{E C}\) increase, decrease, or stay the same? (d) Are those two forces still equal in magnitude and opposite in direction?

\section*{Applying Newton's Laws}

The rest of this chapter consists of sample problems. You should pore over them, learning their procedures for attacking a problem. Especially important is knowing how to translate a sketch of a situation into a free-body diagram with appropriate axes, so that Newton's laws can be applied.

\section*{Sample Problem 5.03 Block on table, block hanging}

Figure 5-12 shows a block \(S\) (the sliding block) with mass \(M=3.3 \mathrm{~kg}\). The block is free to move along a horizontal frictionless surface and connected, by a cord that wraps over a frictionless pulley, to a second block \(H\) (the hanging block), with mass \(m=2.1 \mathrm{~kg}\). The cord and pulley have negligible masses compared to the blocks (they are "massless"). The hanging block \(H\) falls as the sliding block \(S\) accelerates to the right. Find (a) the acceleration of block \(S\), (b) the acceleration of block \(H\), and (c) the tension in the cord.

\section*{Q What is this problem all about?}

You are given two bodies - sliding block and hanging block - but must also consider Earth, which pulls on both bodies. (Without Earth, nothing would happen here.) A total of five forces act on the blocks, as shown in Fig. 5-13:
1. The cord pulls to the right on sliding block \(S\) with a force of magnitude \(T\).
2. The cord pulls upward on hanging block \(H\) with a force of the same magnitude \(T\). This upward force keeps block \(H\) from falling freely.
3. Earth pulls down on block \(S\) with the gravitational force \(\vec{F}_{g S}\), which has a magnitude equal to \(M g\).
4. Earth pulls down on block \(H\) with the gravitational force \(\vec{F}_{g H}\), which has a magnitude equal to \(m g\).
5. The table pushes up on block \(S\) with a normal force \(\vec{F}_{N}\).

There is another thing you should note. We assume that the cord does not stretch, so that if block \(H\) falls 1 mm in a


Figure 5-12 A block \(S\) of mass \(M\) is connected to a block \(H\) of mass \(m\) by a cord that wraps over a pulley.


Figure 5-13 The forces acting on the two blocks of Fig. 5-12.
certain time, block \(S\) moves 1 mm to the right in that same time. This means that the blocks move together and their accelerations have the same magnitude \(a\).

Q How do I classify this problem? Should it suggest a particular law of physics to me?
Yes. Forces, masses, and accelerations are involved, and they should suggest Newton's second law of motion, \(\vec{F}_{\text {net }}=\) \(m \vec{a}\). That is our starting key idea.

Q If I apply Newton's second law to this problem, to which body should I apply it?
We focus on two bodies, the sliding block and the hanging block. Although they are extended objects (they are not points), we can still treat each block as a particle because every part of it moves in exactly the same way. A second key idea is to apply Newton's second law separately to each block.

\section*{Q What about the pulley?}

We cannot represent the pulley as a particle because different parts of it move in different ways. When we discuss rotation, we shall deal with pulleys in detail. Meanwhile, we eliminate the pulley from consideration by assuming its mass to be negligible compared with the masses of the two blocks. Its only function is to change the cord's orientation.

Q OK. Now how do I apply \(\vec{F}_{\text {net }}=m \vec{a}\) to the sliding block?
Represent block \(S\) as a particle of mass \(M\) and draw all the forces that act on it, as in Fig. 5-14a. This is the block's free-body diagram. Next, draw a set of axes. It makes sense


Figure 5-14 (a) A free-body diagram for block \(S\) of Fig. 5-12. (b) A free-body diagram for block \(H\) of Fig. 5-12.
to draw the \(x\) axis parallel to the table, in the direction in which the block moves.

Q Thanks, but you still haven't told me how to apply \(\vec{F}_{\text {net }}=m \vec{a}\) to the sliding block. All you've done is explain how to draw a free-body diagram.
You are right, and here's the third key idea: The expression \(\vec{F}_{\text {net }}=M \vec{a}\) is a vector equation, so we can write it as three component equations:
\[
\begin{equation*}
F_{\text {net }, x}=M a_{x} \quad F_{\text {net }, y}=M a_{y} \quad F_{\text {net }, z}=M a_{z} \tag{5-16}
\end{equation*}
\]
in which \(F_{\text {net }, x}, F_{\text {net }, y}\), and \(F_{\text {net }, z}\) are the components of the net force along the three axes. Now we apply each component equation to its corresponding direction. Because block \(S\) does not accelerate vertically, \(F_{\text {net }, y}=M a_{y}\) becomes
\[
\begin{equation*}
F_{N}-F_{g S}=0 \quad \text { or } \quad F_{N}=F_{g s} \tag{5-17}
\end{equation*}
\]

Thus in the \(y\) direction, the magnitude of the normal force is equal to the magnitude of the gravitational force.

No force acts in the \(z\) direction, which is perpendicular to the page.

In the \(x\) direction, there is only one force component, which is \(T\). Thus, \(F_{\text {net }, x}=M a_{x}\) becomes
\[
\begin{equation*}
T=M a \tag{5-18}
\end{equation*}
\]

This equation contains two unknowns, \(T\) and \(a\); so we cannot yet solve it. Recall, however, that we have not said anything about the hanging block.
Q I agree. How do I apply \(\vec{F}_{\text {net }}=m \vec{a}\) to the hanging block?
We apply it just as we did for block \(S\) : Draw a free-body diagram for block \(H\), as in Fig. 5-14b. Then apply \(\vec{F}_{\text {net }}=m \vec{a}\) in component form. This time, because the acceleration is along the \(y\) axis, we use the \(y\) part of Eq. 5-16 \(\left(F_{\text {net, } y}=m a_{y}\right)\) to write
\[
\begin{equation*}
T-F_{g H}=m a_{y} \tag{5-19}
\end{equation*}
\]

We can now substitute \(m g\) for \(F_{g H}\) and \(-a\) for \(a_{y}\) (negative
because block \(H\) accelerates in the negative direction of the \(y\) axis). We find
\[
\begin{equation*}
T-m g=-m a . \tag{5-20}
\end{equation*}
\]

Now note that Eqs. 5-18 and 5-20 are simultaneous equations with the same two unknowns, \(T\) and \(a\). Subtracting these equations eliminates \(T\). Then solving for \(a\) yields
\[
\begin{equation*}
a=\frac{m}{M+m} g . \tag{5-21}
\end{equation*}
\]

Substituting this result into Eq. 5-18 yields
\[
\begin{equation*}
T=\frac{M m}{M+m} g . \tag{5-22}
\end{equation*}
\]

Putting in the numbers gives, for these two quantities,
\[
\begin{aligned}
a & =\frac{m}{M+m} g=\frac{2.1 \mathrm{~kg}}{3.3 \mathrm{~kg}+2.1 \mathrm{~kg}}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =3.8 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
\]
(Answer)
and \(T=\frac{M m}{M+m} g=\frac{(3.3 \mathrm{~kg})(2.1 \mathrm{~kg})}{3.3 \mathrm{~kg}+2.1 \mathrm{~kg}}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\)
\[
=13 \mathrm{~N}
\]
(Answer)

\section*{Q The problem is now solved, right?}

That's a fair question, but the problem is not really finished until we have examined the results to see whether they make sense. (If you made these calculations on the job, wouldn't you want to see whether they made sense before you turned them in?)

Look first at Eq. 5-21. Note that it is dimensionally correct and that the acceleration \(a\) will always be less than \(g\) (because of the cord, the hanging block is not in free fall).

Look now at Eq. 5-22, which we can rewrite in the form
\[
\begin{equation*}
T=\frac{M}{M+m} m g \tag{5-23}
\end{equation*}
\]

In this form, it is easier to see that this equation is also dimensionally correct, because both \(T\) and \(m g\) have dimensions of forces. Equation 5-23 also lets us see that the tension in the cord is always less than \(m g\), and thus is always less than the gravitational force on the hanging block. That is a comforting thought because, if \(T\) were greater than \(m g\), the hanging block would accelerate upward.

We can also check the results by studying special cases, in which we can guess what the answers must be. A simple example is to put \(g=0\), as if the experiment were carried out in interstellar space. We know that in that case, the blocks would not move from rest, there would be no forces on the ends of the cord, and so there would be no tension in the cord. Do the formulas predict this? Yes, they do. If you put \(g=0\) in Eqs. 5-21 and 5-22, you find \(a=0\) and \(T=0\). Two more special cases you might try are \(M=0\) and \(m \rightarrow \infty\).

\section*{Sample Problem 5.04 Cord accelerates box up a ramp}

Many students consider problems involving ramps (inclined planes) to be especially hard. The difficulty is probably visual because we work with (a) a tilted coordinate system and (b) the components of the gravitational force, not the full force. Here is a typical example with all the tilting and angles explained. (In WileyPLUS, the figure is available as an animation with voiceover.) In spite of the tilt, the key idea is to apply Newton's second law to the axis along which the motion occurs.

In Fig. 5-15a, a cord pulls a box of sea biscuits up along a frictionless plane inclined at angle \(\theta=30.0^{\circ}\). The box has mass \(m=5.00 \mathrm{~kg}\), and the force from the cord has magnitude \(T=25.0 \mathrm{~N}\). What is the box's acceleration \(a\) along the inclined plane?

\section*{KEY IDEA}

The acceleration along the plane is set by the force components along the plane (not by force components perpendi-
cular to the plane), as expressed by Newton's second law (Eq. 5-1).

Calculations: We need to write Newton's second law for motion along an axis. Because the box moves along the inclined plane, placing an \(x\) axis along the plane seems reasonable (Fig. 5-15b). (There is nothing wrong with using our usual coordinate system, but the expressions for components would be a lot messier because of the misalignment of the \(x\) axis with the motion.)

After choosing a coordinate system, we draw a freebody diagram with a dot representing the box (Fig. 5-15b). Then we draw all the vectors for the forces acting on the box, with the tails of the vectors anchored on the dot. (Drawing the vectors willy-nilly on the diagram can easily lead to errors, especially on exams, so always anchor the tails.)

Force \(\vec{T}\) from the cord is up the plane and has magnitude \(T=25.0 \mathrm{~N}\). The gravitational force \(\vec{F}_{g}\) is downward (of

Figure 5-15 (a) A box is pulled up a plane by a cord. (b) The three forces acting on the \(\xrightarrow{\vec{F}}\) box: the cord's force \(\vec{T}\), the gravitational force \(\vec{F}_{g}\), and the normal force \(\vec{F}_{N}\). \((c)-(i)\) Finding the force components along the plane and perpendicular to it. In WileyPLUS, this figure is available as an animation with voiceover.


(c)

(d)

(e)
\(\xrightarrow{\rightarrow}\) component of \(\overrightarrow{F_{g}}\)

(g)

(i)
course) and has magnitude \(m g=(5.00 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=49.0 \mathrm{~N}\). That direction means that only a component of the force is along the plane, and only that component (not the full force) affects the box's acceleration along the plane. Thus, before we can write Newton's second law for motion along the \(x\) axis, we need to find an expression for that important component.

Figures \(5-15 c\) to \(h\) indicate the steps that lead to the expression. We start with the given angle of the plane and work our way to a triangle of the force components (they are the legs of the triangle and the full force is the hypotenuse). Figure \(5-15 c\) shows that the angle between the ramp and \(\vec{F}_{g}\) is \(90^{\circ}-\theta\). (Do you see a right triangle there?) Next, Figs. 5-15d to \(f\) show \(\vec{F}_{g}\) and its components: One component is parallel to the plane (that is the one we want) and the other is perpendicular to the plane.

Because the perpendicular component is perpendicular, the angle between it and \(\vec{F}_{g}\) must be \(\theta\) (Fig. 5-15d). The component we want is the far leg of the component right triangle. The magnitude of the hypotenuse is \(m g\) (the magnitude of the gravitational force). Thus, the component we want has magnitude \(m g \sin \theta\) (Fig. 5-15g).

We have one more force to consider, the normal force \(\vec{F}_{N}\) shown in Fig. 5-15b. However, it is perpendicular to the

\section*{Sample Problem 5.05 Reading a force graph}

Here is an example of where you must dig information out of a graph, not just read off a number. In Fig. 5-16a, two forces are applied to a 4.00 kg block on a frictionless floor, but only force \(\vec{F}_{1}\) is indicated. That force has a fixed magnitude but can be applied at an adjustable angle \(\theta\) to the positive direction of the \(x\) axis. Force \(\vec{F}_{2}\) is horizontal and fixed in both magnitude and angle. Figure 5-16b gives the horizontal acceleration \(a_{x}\) of the block for any given value of \(\theta\) from \(0^{\circ}\) to \(90^{\circ}\). What is the value of \(a_{x}\) for \(\theta=180^{\circ}\) ?

\section*{KEY IDEAS}
(1) The horizontal acceleration \(a_{x}\) depends on the net horizontal force \(F_{\text {net, } x}\), as given by Newton's second law. (2) The net horizontal force is the sum of the horizontal components of forces \(\vec{F}_{1}\) and \(\vec{F}_{2}\).

Calculations: The \(x\) component of \(\vec{F}_{2}\) is \(F_{2}\) because the vector is horizontal. The \(x\) component of \(\vec{F}_{1}\) is \(F_{1} \cos \theta\). Using these expressions and a mass \(m\) of 4.00 kg , we can write Newton's second law \(\left(\vec{F}_{\text {net }}=m \vec{a}\right)\) for motion along the \(x\) axis as
\[
\begin{equation*}
F_{1} \cos \theta+F_{2}=4.00 a_{x} . \tag{5-25}
\end{equation*}
\]

From this equation we see that when angle \(\theta=90^{\circ}, F_{1} \cos \theta\) is zero and \(F_{2}=4.00 a_{x}\). From the graph we see that the
plane and thus cannot affect the motion along the plane. (It has no component along the plane to accelerate the box.)

We are now ready to write Newton's second law for motion along the tilted \(x\) axis:
\[
F_{\text {net }, x}=m a_{x} .
\]

The component \(a_{x}\) is the only component of the acceleration (the box is not leaping up from the plane, which would be strange, or descending into the plane, which would be even stranger). So, let's simply write \(a\) for the acceleration along the plane. Because \(\vec{T}\) is in the positive \(x\) direction and the component \(m g \sin \theta\) is in the negative \(x\) direction, we next write
\[
\begin{equation*}
T-m g \sin \theta=m a . \tag{5-24}
\end{equation*}
\]

Substituting data and solving for \(a\), we find
\[
a=0.100 \mathrm{~m} / \mathrm{s}^{2} .
\]
(Answer)
The result is positive, indicating that the box accelerates up the inclined plane, in the positive direction of the tilted \(x\) axis. If we decreased the magnitude of \(\vec{T}\) enough to make \(a=0\), the box would move up the plane at constant speed. And if we decrease the magnitude of \(\vec{T}\) even more, the acceleration would be negative in spite of the cord's pull.


Figure 5-16 (a) One of the two forces applied to a block is shown. Its angle \(\theta\) can be varied. (b) The block's acceleration component \(a_{x}\) versus \(\theta\).
corresponding acceleration is \(0.50 \mathrm{~m} / \mathrm{s}^{2}\). Thus, \(F_{2}=2.00 \mathrm{~N}\) and \(\vec{F}_{2}\) must be in the positive direction of the \(x\) axis.

From Eq. 5-25, we find that when \(\theta=0^{\circ}\),
\[
\begin{equation*}
F_{1} \cos 0^{\circ}+2.00=4.00 a_{x} . \tag{5-26}
\end{equation*}
\]

From the graph we see that the corresponding acceleration is \(3.0 \mathrm{~m} / \mathrm{s}^{2}\). From Eq. \(5-26\), we then find that \(F_{1}=10 \mathrm{~N}\).

Substituting \(F_{1}=10 \mathrm{~N}, F_{2}=2.00 \mathrm{~N}\), and \(\theta=180^{\circ}\) into Eq. 5-25 leads to
\[
a_{x}=-2.00 \mathrm{~m} / \mathrm{s}^{2} .
\]
(Answer)

\section*{Sample Problem 5.06 Forces within an elevator cab}

Although people would surely avoid getting into the elevator with you, suppose that you weigh yourself while on an elevator that is moving. Would you weigh more than, less than, or the same as when the scale is on a stationary floor?

In Fig. 5-17a, a passenger of mass \(m=72.2 \mathrm{~kg}\) stands on a platform scale in an elevator cab. We are concerned with the scale readings when the cab is stationary and when it is moving up or down.
(a) Find a general solution for the scale reading, whatever the vertical motion of the cab.

\section*{KEY IDEAS}
(1) The reading is equal to the magnitude of the normal force \(\vec{F}_{N}\) on the passenger from the scale. The only other force acting on the passenger is the gravitational force \(\vec{F}_{g}\), as shown in the free-body diagram of Fig. 5-17b. (2) We can relate the forces on the passenger to his acceleration \(\vec{a}\) by using Newton's second law \(\left(\vec{F}_{\text {net }}=m \vec{a}\right)\). However, recall that we can use this law only in an inertial frame. If the cab accelerates, then it is not an inertial frame. So we choose the ground to be our inertial frame and make any measure of the passenger's acceleration relative to it.

Calculations: Because the two forces on the passenger and his acceleration are all directed vertically, along the \(y\) axis in Fig. 5-17b, we can use Newton's second law written for \(y\) components \(\left(F_{\text {net }, y}=m a_{y}\right)\) to get
\[
F_{N}-F_{g}=m a
\]
or
\[
\begin{equation*}
F_{N}=F_{g}+m a . \tag{5-27}
\end{equation*}
\]


Figure 5-17 (a) A passenger stands on a platform scale that indicates either his weight or his apparent weight. (b) The free-body diagram for the passenger, showing the normal force \(\vec{F}_{N}\) on him from the scale and the gravitational force \(\vec{F}_{g}\).

This tells us that the scale reading, which is equal to normal force magnitude \(F_{N}\), depends on the vertical acceleration. Substituting \(m g\) for \(F_{g}\) gives us
\[
\begin{equation*}
F_{N}=m(g+a) \quad \text { (Answer) } \tag{5-28}
\end{equation*}
\]
for any choice of acceleration \(a\). If the acceleration is upward, \(a\) is positive; if it is downward, \(a\) is negative.
(b) What does the scale read if the cab is stationary or moving upward at a constant \(0.50 \mathrm{~m} / \mathrm{s}\) ?

\section*{KEY IDEA}

For any constant velocity (zero or otherwise), the acceleration \(a\) of the passenger is zero.

Calculation: Substituting this and other known values into Eq. 5-28, we find
\[
F_{N}=(72.2 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}+0\right)=708 \mathrm{~N} .
\]
(Answer)
This is the weight of the passenger and is equal to the magnitude \(F_{g}\) of the gravitational force on him.
(c) What does the scale read if the cab accelerates upward at \(3.20 \mathrm{~m} / \mathrm{s}^{2}\) and downward at \(3.20 \mathrm{~m} / \mathrm{s}^{2}\) ?

Calculations: For \(a=3.20 \mathrm{~m} / \mathrm{s}^{2}\), Eq. 5-28 gives
\[
\begin{aligned}
F_{N} & =(72.2 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}+3.20 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =939 \mathrm{~N},
\end{aligned}
\]
(Answer)
and for \(a=-3.20 \mathrm{~m} / \mathrm{s}^{2}\), it gives
\[
\begin{aligned}
F_{N} & =(72.2 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}-3.20 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =477 \mathrm{~N} .
\end{aligned}
\]
(Answer)
For an upward acceleration (either the cab's upward speed is increasing or its downward speed is decreasing), the scale reading is greater than the passenger's weight. That reading is a measurement of an apparent weight, because it is made in a noninertial frame. For a downward acceleration (either decreasing upward speed or increasing downward speed), the scale reading is less than the passenger's weight.
(d) During the upward acceleration in part (c), what is the magnitude \(F_{\text {net }}\) of the net force on the passenger, and what is the magnitude \(a_{\mathrm{p}, \text { cab }}\) of his acceleration as measured in the frame of the cab? Does \(\vec{F}_{\text {net }}=m \vec{a}_{\text {p,cab }}\) ?

Calculation: The magnitude \(F_{g}\) of the gravitational force on the passenger does not depend on the motion of the passenger or the cab; so, from part (b), \(F_{g}\) is 708 N . From part (c), the magnitude \(F_{N}\) of the normal force on the passenger during
the upward acceleration is the 939 N reading on the scale. Thus, the net force on the passenger is
\[
F_{\mathrm{net}}=F_{N}-F_{g}=939 \mathrm{~N}-708 \mathrm{~N}=231 \mathrm{~N},
\]
(Answer)
during the upward acceleration. However, his acceleration \(a_{\mathrm{p}, \text { cab }}\) relative to the frame of the cab is zero. Thus, in the noninertial frame of the accelerating cab, \(F_{\text {net }}\) is not equal to \(m a_{\mathrm{p}, \mathrm{cab}}\), and Newton's second law does not hold.

\section*{Sample Problem 5.07 Acceleration of block pushing on block}

Some homework problems involve objects that move together, because they are either shoved together or tied together. Here is an example in which you apply Newton's second law to the composite of two blocks and then to the individual blocks.

In Fig. 5-18a, a constant horizontal force \(\vec{F}_{\text {app }}\) of magnitude 20 N is applied to block \(A\) of mass \(m_{A}=4.0 \mathrm{~kg}\), which pushes against block \(B\) of mass \(m_{B}=6.0 \mathrm{~kg}\). The blocks slide over a frictionless surface, along an \(x\) axis.
(a) What is the acceleration of the blocks?

Serious Error: Because force \(\vec{F}_{\text {app }}\) is applied directly to block \(A\), we use Newton's second law to relate that force to the acceleration \(\vec{a}\) of block \(A\). Because the motion is along the \(x\) axis, we use that law for \(x\) components \(\left(F_{\text {net }, x}=m a_{x}\right)\), writing it as
\[
F_{\mathrm{app}}=m_{A} a .
\]

However, this is seriously wrong because \(\vec{F}_{\text {app }}\) is not the only horizontal force acting on block \(A\). There is also the force \(\vec{F}_{A B}\) from block \(B\) (Fig. 5-18b).


Figure 5-18 (a) A constant horizontal force \(\vec{F}_{\text {app }}\) is applied to block \(A\), which pushes against block \(B\). (b) Two horizontal forces act on block \(A\). (c) Only one horizontal force acts on block \(B\).

Dead-End Solution: Let us now include force \(\vec{F}_{A B}\) by writing, again for the \(x\) axis,
\[
F_{\mathrm{app}}-F_{A B}=m_{A} a .
\]
(We use the minus sign to include the direction of \(\vec{F}_{A B}\).) Because \(F_{A B}\) is a second unknown, we cannot solve this equation for \(a\).

Successful Solution: Because of the direction in which force \(\vec{F}_{\text {app }}\) is applied, the two blocks form a rigidly connected system. We can relate the net force on the system to the acceleration of the system with Newton's second law. Here, once again for the \(x\) axis, we can write that law as
\[
F_{\mathrm{app}}=\left(m_{A}+m_{B}\right) a,
\]
where now we properly apply \(\vec{F}_{\text {app }}\) to the system with total mass \(m_{A}+m_{B}\). Solving for \(a\) and substituting known values, we find
\[
a=\frac{F_{\mathrm{app}}}{m_{A}+m_{B}}=\frac{20 \mathrm{~N}}{4.0 \mathrm{~kg}+6.0 \mathrm{~kg}}=2.0 \mathrm{~m} / \mathrm{s}^{2}
\]
(Answer)
Thus, the acceleration of the system and of each block is in the positive direction of the \(x\) axis and has the magnitude \(2.0 \mathrm{~m} / \mathrm{s}^{2}\).
(b) What is the (horizontal) force \(\vec{F}_{B A}\) on block \(B\) from block \(A\) (Fig. 5-18c)?

\section*{KEY IDEA}

We can relate the net force on block \(B\) to the block's acceleration with Newton's second law.

Calculation: Here we can write that law, still for components along the \(x\) axis, as
\[
F_{B A}=m_{B} a,
\]
which, with known values, gives
\[
F_{B A}=(6.0 \mathrm{~kg})\left(2.0 \mathrm{~m} / \mathrm{s}^{2}\right)=12 \mathrm{~N} .
\]
(Answer)
Thus, force \(\vec{F}_{B A}\) is in the positive direction of the \(x\) axis and has a magnitude of 12 N .

\section*{8eview \& Summary}

Newtonian Mechanics The velocity of an object can change (the object can accelerate) when the object is acted on by one or more forces (pushes or pulls) from other objects. Newtonian mechanics relates accelerations and forces.

Force Forces are vector quantities. Their magnitudes are defined in terms of the acceleration they would give the standard kilogram. A force that accelerates that standard body by exactly \(1 \mathrm{~m} / \mathrm{s}^{2}\) is defined to have a magnitude of 1 N . The direction of a force is the direction of the acceleration it causes. Forces are combined according to the rules of vector algebra. The net force on a body is the vector sum of all the forces acting on the body.

Newton's First Law If there is no net force on a body, the body remains at rest if it is initially at rest or moves in a straight line at constant speed if it is in motion.

Inertial Reference Frames Reference frames in which Newtonian mechanics holds are called inertial reference frames or inertial frames. Reference frames in which Newtonian mechanics does not hold are called noninertial reference frames or noninertial frames.

Mass The mass of a body is the characteristic of that body that relates the body's acceleration to the net force causing the acceleration. Masses are scalar quantities.

Newton's Second Law The net force \(\vec{F}_{\text {net }}\) on a body with mass \(m\) is related to the body's acceleration \(\vec{a}\) by
\[
\begin{equation*}
\vec{F}_{\text {net }}=m \vec{a}, \tag{5-1}
\end{equation*}
\]
which may be written in the component versions
\[
\begin{equation*}
F_{\text {net }, x}=m a_{x} \quad F_{\text {net }, y}=m a_{y} \quad \text { and } \quad F_{\text {net }, z}=m a_{z} . \tag{5-2}
\end{equation*}
\]

The second law indicates that in SI units
\[
\begin{equation*}
1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2} . \tag{5-3}
\end{equation*}
\]

\section*{uestions}

1 Figure 5-19 gives the free-body diagram for four situations in which an object is pulled by several forces across a frictionless floor, as seen from overhead. In which situations does the acceleration \(\vec{a}\) of the object have (a) an \(x\) component and (b) a \(y\) com-

(1)

(2)

A free-body diagram is a stripped-down diagram in which only one body is considered. That body is represented by either a sketch or a dot. The external forces on the body are drawn, and a coordinate system is superimposed, oriented so as to simplify the solution.

Some Particular Forces A gravitational force \(\vec{F}_{g}\) on a body is a pull by another body. In most situations in this book, the other body is Earth or some other astronomical body. For Earth, the force is directed down toward the ground, which is assumed to be an inertial frame. With that assumption, the magnitude of \(\vec{F}_{g}\) is
\[
\begin{equation*}
F_{g}=m g, \tag{5-8}
\end{equation*}
\]
where \(m\) is the body's mass and \(g\) is the magnitude of the free-fall acceleration.

The weight \(W\) of a body is the magnitude of the upward force needed to balance the gravitational force on the body. A body's weight is related to the body's mass by
\[
\begin{equation*}
W=m g . \tag{5-12}
\end{equation*}
\]

A normal force \(\vec{F}_{N}\) is the force on a body from a surface against which the body presses. The normal force is always perpendicular to the surface.

A frictional force \(\vec{f}\) is the force on a body when the body slides or attempts to slide along a surface. The force is always parallel to the surface and directed so as to oppose the sliding. On a frictionless surface, the frictional force is negligible.

When a cord is under tension, each end of the cord pulls on a body. The pull is directed along the cord, away from the point of attachment to the body. For a massless cord (a cord with negligible mass), the pulls at both ends of the cord have the same magnitude \(T\), even if the cord runs around a massless, frictionless pulley (a pulley with negligible mass and negligible friction on its axle to oppose its rotation).

Newton's Third Law If a force \(\vec{F}_{B C}\) acts on body \(B\) due to body \(C\), then there is a force \(\vec{F}_{C B}\) on body \(C\) due to body \(B\) :
\[
\vec{F}_{B C}=-\vec{F}_{C B}
\]
ponent? (c) In each situation, give the direction of \(\vec{a}\) by naming either a quadrant or a direction along an axis. (Don't reach for the calculator because this can be answered with a few mental calculations.)

(3)

(4)

Figure 5-19 Question 1.

2 Two horizontal forces,
\[
\vec{F}_{1}=(3 \mathrm{~N}) \hat{\mathrm{i}}-(4 \mathrm{~N}) \hat{\mathrm{j}} \quad \text { and } \quad \vec{F}_{2}=-(1 \mathrm{~N}) \hat{\mathrm{i}}-(2 \mathrm{~N}) \hat{\mathrm{j}}
\]
pull a banana split across a frictionless lunch counter. Without using a calculator, determine which of the vectors in the free-body diagram of Fig. 5-20 best represent (a) \(\vec{F}_{1}\) and (b) \(\vec{F}_{2}\). What is the net-force component along (c) the \(x\) axis and (d) the \(y\) axis? Into which quadrants do (e) the net-force vector and (f) the split's acceleration vector point?
3 In Fig. 5-21, forces \(\vec{F}_{1}\) and \(\vec{F}_{2}\) are applied to a lunchbox as it slides at constant velocity over a frictionless floor. We are to decrease angle \(\theta\) without changing the magnitude of \(\vec{F}_{1}\). For constant velocity, should we increase, decrease, or maintain the magnitude of \(\vec{F}_{2}\) ?
4 At time \(t=0\), constant \(\vec{F}\) begins to act on a rock moving through


Figure 5-20 Question 2.


Figure 5-21 Question 3. deep space in the \(+x\) direction. (a) For time \(t>0\), which are possible functions \(x(t)\) for the rock's position: (1) \(x=4 t-3\), (2) \(x=-4 t^{2}+6 t-3\), (3) \(x=4 t^{2}+6 t-3\) ? (b) For which function is \(\vec{F}\) directed opposite the rock's initial direction of motion?
5 Figure 5-22 shows overhead views of four situations in which forces act on a block that lies on a frictionless floor. If the force magnitudes are chosen properly, in which situations is it possible that the block is (a) stationary and (b) moving with a constant velocity?
(1)

(2)

(3)

(4)


Figure 5-22 Question 5.
6 Figure 5-23 shows the same breadbox in four situations where horizontal forces are applied. Rank the situations according to the magnitude of the box's acceleration, greatest first.


7 July 17, 1981, Kansas City: The newly opened Hyatt Regency is packed with people listening and dancing to a band playing favorites from the 1940s. Many of the people are crowded onto the walkways that hang like bridges across the wide atrium. Suddenly two of the walkways collapse, falling onto the merrymakers on the main floor.

The walkways were suspended one above another on vertical rods and held in place by nuts threaded onto the rods. In the original design, only two long rods were to be used, each extending through all three walkways (Fig. 5-24a). If each walkway and the merrymakers on it have a combined mass of \(M\), what is the total mass supported by the threads and two nuts on (a) the lowest walkway and (b) the highest walkway?

Apparently someone responsible for the actual construction realized that threading nuts on a rod is impossible except at the ends, so the design was changed: Instead, six rods were used, each connecting two walkways (Fig. 5-24b). What now is the total mass supported by the threads and two nuts on (c) the lowest walkway, (d) the upper side of the highest walkway, and (e) the lower side of the highest walkway? It was this design that failed on that tragic night-a simple engineering error.


Figure 5-24 Question 7.

8 Figure 5-25 gives three graphs of velocity component \(v_{x}(t)\) and three graphs of velocity component \(v_{y}(t)\). The graphs are not to scale. Which \(v_{x}(t)\) graph and which \(v_{y}(t)\) graph best correspond to each of the four situations in Question 1 and Fig. 5-19?


9 Figure 5-26 shows a train of four blocks being pulled across a frictionless floor by force \(\vec{F}\). What total mass is accelerated to the right by (a) force \(\vec{F}\), (b) cord 3, and (c) cord 1 ? (d) Rank the blocks according to their accelerations, greatest first. (e) Rank the cords according to their tension, greatest first.


Figure 5-26 Question 9.
10 Figure 5-27 shows three blocks being pushed across a frictionless floor by horizontal force \(\vec{F}\). What total mass is accelerated to the right by (a) force \(\vec{F}\), (b) force \(\vec{F}_{21}\) on block 2 from block 1, and (c) force


Figure 5-27 Question 10.
\(\vec{F}_{32}\) on block 3 from block 2? (d) Rank the blocks according to their acceleration magnitudes, greatest first. (e) Rank forces \(\vec{F}, \vec{F}_{21}\), and \(\vec{F}_{32}\) according to magnitude, greatest first.
11 A vertical force \(\vec{F}\) is applied to a block of mass \(m\) that lies on a floor. What happens to the magnitude of the normal force \(\vec{F}_{N}\) on the block from the floor as magnitude \(F\) is increased from zero if force \(\vec{F}\) is (a) downward and (b) upward?
12 Figure 5-28 shows four choices for the direction of a force of magnitude \(F\) to be applied to a block on an inclined plane. The directions are either horizontal or vertical. (For choice \(b\), the force is not enough to lift the block off the plane.) Rank the choices according to the magnitude of the normal force acting on the block from the plane, greatest first.


Figure 5-28 Question 12.

\section*{Broblems}


\section*{Module 5-1 Newton's First and Second Laws}
-1 Only two horizontal forces act on a 3.0 kg body that can move over a frictionless floor. One force is 9.0 N , acting due east, and the other is 8.0 N , acting \(62^{\circ}\) north of west. What is the magnitude of the body's acceleration?
-2 Two horizontal forces act on a 2.0 kg chopping block that can slide over a frictionless kitchen counter, which lies in an \(x y\) plane. One force is \(\vec{F}_{1}=(3.0 \mathrm{~N}) \hat{\mathrm{i}}+(4.0 \mathrm{~N}) \hat{\mathrm{j}}\). Find the acceleration of the chopping block in unit-vector notation when the other force is (a) \(\vec{F}_{2}=(-3.0 \mathrm{~N}) \hat{\mathrm{i}}+(-4.0 \mathrm{~N}) \hat{\mathrm{j}}\), (b) \(\vec{F}_{2}=(-3.0 \mathrm{~N}) \hat{\mathrm{i}}+(4.0 \mathrm{~N}) \hat{\mathrm{j}}\), and (c) \(\vec{F}_{2}=(3.0 \mathrm{~N}) \hat{\mathrm{i}}+(-4.0 \mathrm{~N}) \hat{\mathrm{j}}\).
-3 If the 1 kg standard body has an acceleration of \(2.00 \mathrm{~m} / \mathrm{s}^{2}\) at \(20.0^{\circ}\) to the positive direction of an \(x\) axis, what are (a) the \(x\) component and (b) the \(y\) component of the net force acting on the body, and (c) what is the net force in unit-vector notation?
\(\bullet 4\) While two forces act on it, a particle is to move at the constant velocity \(\vec{v}=(3 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}-(4 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}\). One of the forces is \(\vec{F}_{1}=(2 \mathrm{~N}) \hat{\mathrm{i}}+\) \((-6 \mathrm{~N}) \hat{\mathrm{j}}\). What is the other force?
\(\because 5\) ©o Three astronauts, propelled by jet backpacks, push and guide a 120 kg asteroid toward a processing dock, exerting the forces shown in Fig. 5-29, with \(F_{1}=32 \mathrm{~N}, F_{2}=55 \mathrm{~N}\), \(F_{3}=41 \mathrm{~N}, \theta_{1}=30^{\circ}\), and \(\theta_{3}=60^{\circ}\).


Figure 5-29 Problem 5. What is the asteroid's acceleration
(a) in unit-vector notation and as (b) a magnitude and (c) a direction relative to the positive direction of the \(x\) axis?
-06 In a two-dimensional tug-ofwar, Alex, Betty, and Charles pull horizontally on an automobile tire at the angles shown in the overhead view of Fig. 5-30. The tire remains stationary in spite of the three pulls. Alex pulls with force \(\vec{F}_{A}\) of magnitude 220 N , and Charles pulls with force \(\vec{F}_{C}\) of magnitude 170 N . Note that the direction of \(\vec{F}_{C}\) is not given. What is the magnitude of Betty's force \(\vec{F}_{B}\) ?
©07 SSM There are two forces on the 2.00 kg box in the overhead view of Fig. 5-31, but only one is shown. For \(F_{1}=20.0 \mathrm{~N}, a=12.0 \mathrm{~m} / \mathrm{s}^{2}\), and \(\theta=30.0^{\circ}\), find the second force (a) in unit-vector notation and as (b) a magnitude and (c) an angle relative to the positive direction of the \(x\) axis.
-ロ8 A 2.00 kg object is subjected to three forces that give it an acceleration \(\vec{a}=-\left(8.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}+\left(6.00 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{j}} . \quad\) If two of the three forces are \(\vec{F}_{1}=(30.0 \mathrm{~N}) \hat{\mathrm{i}}+(16.0 \mathrm{~N}) \hat{\mathrm{j}}\) and \(\vec{F}_{2}=\) \(-(12.0 \mathrm{~N}) \hat{\mathrm{i}}+(8.00 \mathrm{~N}) \hat{\mathrm{j}}\), find the third force.
-•9 A 0.340 kg particle moves in an \(x y\) plane according to \(x(t)=-15.00+2.00 t-4.00 t^{3}\) and \(y(t)=25.00+7.00 t-9.00 t^{2}\), with \(x\) and \(y\) in meters and \(t\) in seconds. At \(t=0.700 \mathrm{~s}\), what are
(a) the magnitude and (b) the angle (relative to the positive direction of the \(x\) axis) of the net force on the particle, and (c) what is the angle of the particle's direction of travel?
\(\bullet 10\) A 0.150 kg particle moves along an \(x\) axis according to \(x(t)=-13.00+2.00 t+4.00 t^{2}-3.00 t^{3}\), with \(x\) in meters and \(t\) in seconds. In unit-vector notation, what is the net force acting on the particle at \(t=3.40 \mathrm{~s}\) ?
\(\bullet 11\) A 2.0 kg particle moves along an \(x\) axis, being propelled by a variable force directed along that axis. Its position is given by \(x=\) \(3.0 \mathrm{~m}+(4.0 \mathrm{~m} / \mathrm{s}) t+c t^{2}-\left(2.0 \mathrm{~m} / \mathrm{s}^{3}\right) t^{3}\), with \(x\) in meters and \(t\) in seconds. The factor \(c\) is a constant. At \(t=3.0 \mathrm{~s}\), the force on the particle has a magnitude of 36 N and is in the negative direction of the axis. What is \(c\) ?
-0012 © Two horizontal forces \(\vec{F}_{1}\) and \(\vec{F}_{2}\) act on a 4.0 kg disk that slides over frictionless ice, on which an \(x y\) coordinate system is laid out. Force \(\vec{F}_{1}\) is in the positive direction of the \(x\) axis and has a magnitude of 7.0 N . Force \(\vec{F}_{2}\) has a magnitude of 9.0 N . Figure 5-32 gives the \(x\) component \(v_{x}\) of the velocity of the disk as a function of time \(t\) during the sliding. What is the angle between the constant directions of forces \(\vec{F}_{1}\) and \(\vec{F}_{2}\) ?


Figure 5-32 Problem 12.

\section*{Module 5-2 Some Particular Forces}
-13 Figure 5-33 shows an arrangement in which four disks are suspended by cords. The longer, top cord loops over a frictionless pulley and pulls with a force of magnitude 98 N on the wall to which it is attached. The tensions in the three shorter cords are \(T_{1}=58.8 \mathrm{~N}\), \(T_{2}=49.0 \mathrm{~N}\), and \(T_{3}=9.8 \mathrm{~N}\). What are the masses of (a) disk \(A\), (b) disk \(B\), (c) disk \(C\), and (d) disk \(D\) ?
-14 A block with a weight of 3.0 N is at rest on a horizontal surface. A 1.0 N upward force is applied to the block by means of an attached vertical string. What are the (a) magnitude and (b) direction of the force of the block on the horizontal surface?


Figure 5-33 Problem 13.
\(\bullet 15\) SSM (a) An 11.0 kg salami is supported by a cord that runs to a spring scale, which is supported by a cord hung from the ceiling (Fig. 5-34a). What is the reading on the scale, which is marked in SI weight units? (This is a way to measure weight by a deli owner.) (b) In Fig. 5-34b the salami is supported by a cord that runs around a pulley and to a scale. The opposite end of the scale is attached by a cord to a wall. What is the reading on the scale? (This is the way by a physics major.) (c) In Fig. 5-34c the wall has been replaced with a second 11.0 kg salami, and the assembly is stationary. What is the
reading on the scale? (This is the way by a deli owner who was once a physics major.)


Figure 5-34 Problem 15.
-•16 Some insects can walk below a thin rod (such as a twig) by hanging from it. Suppose that such an insect has mass \(m\) and hangs from a horizontal rod as shown in Fig. 5-35, with angle \(\theta=40^{\circ}\). Its six legs are all under the same tension, and the leg


Figure 5-35 Problem 16. sections nearest the body are horizontal. (a) What is the ratio of the tension in each tibia (forepart of a leg) to the insect's weight? (b) If the insect straightens out its legs somewhat, does the tension in each tibia increase, decrease, or stay the same?

\section*{Module 5-3 Applying}

\section*{Newton's Laws}
-17 ssm www In Fig. 5-36, let the mass of the block be 8.5 kg and the angle \(\theta\) be \(30^{\circ}\). Find (a) the tension in the cord and (b) the normal force acting on the block. (c) If the cord is cut, find the magnitude of the resulting acceleration of the block.
-18 In April 1974, John


Figure 5-36 Problem 17. Massis of Belgium managed to move two passenger railroad cars. He did so by clamping his teeth down on a bit that was attached to the cars with a rope and then leaning backward while pressing his feet against the railway ties. The cars together weighed 700 kN (about 80 tons). Assume that he pulled with a constant force that was 2.5 times his body weight, at an upward angle \(\theta\) of \(30^{\circ}\) from the horizontal. His mass was 80 kg , and he moved the cars by 1.0 m . Neglecting any retarding force from the wheel rotation, find the speed of the cars at the end of the pull.
-19 SSM A 500 kg rocket sled can be accelerated at a constant rate from rest to \(1600 \mathrm{~km} / \mathrm{h}\) in 1.8 s . What is the magnitude of the required net force?
-20 A car traveling at \(53 \mathrm{~km} / \mathrm{h}\) hits a bridge abutment. A passenger in the car moves forward a distance of 65 cm (with respect to the road) while being brought to rest by an inflated air bag. What magnitude of force (assumed constant) acts on the passenger's upper torso, which has a mass of 41 kg ?
-21 A constant horizontal force \(\vec{F}_{a}\) pushes a 2.00 kg FedEx package across a frictionless floor on which an \(x y\) coordinate system has been drawn. Figure 5-37 gives the package's \(x\) and \(y\) velocity components versus time \(t\). What are the (a) magnitude and (b) direction of \(\vec{F}_{a}\) ?


Figure 5-37 Problem 21.
-22 A customer sits in an amusement park ride in which the compartment is to be pulled downward in the negative direction of a \(y\) axis with an acceleration magnitude of \(1.24 g\), with \(g=9.80 \mathrm{~m} / \mathrm{s}^{2}\). A 0.567 g coin rests on the customer's knee. Once the motion begins and in unit-vector notation, what is the coin's acceleration relative to (a) the ground and (b) the customer? (c) How long does the coin take to reach the compartment ceiling, 2.20 m above the knee? In unit-vector notation, what are (d) the actual force on the coin and (e) the apparent force according to the customer's measure of the coin's acceleration?
-23 Tarzan, who weighs 820 N , swings from a cliff at the end of a 20.0 m vine that hangs from a high tree limb and initially makes an angle of \(22.0^{\circ}\) with the vertical. Assume that an \(x\) axis extends horizontally away from the cliff edge and a \(y\) axis extends upward. Immediately after Tarzan steps off the cliff, the tension in the vine is 760 N . Just then, what are (a) the force on him from the vine in unit-vector notation and the net force on him (b) in unit-vector notation and as (c) a magnitude and (d) an angle relative to the positive direction of the \(x\) axis? What are the (e) magnitude and (f) angle of Tarzan's acceleration just then?
-24 There are two horizontal forces on the 2.0 kg box in the overhead view of Fig. 5-38 but only one (of magnitude \(F_{1}=20 \mathrm{~N}\) ) is shown.


Figure 5-38 Problem 24. The box moves along the \(x\) axis. For each of the following values for the acceleration \(a_{x}\) of the box, find the second force in unit-vector notation: (a) \(10 \mathrm{~m} / \mathrm{s}^{2}\), (b) \(20 \mathrm{~m} / \mathrm{s}^{2}\), (c) 0, (d) \(-10 \mathrm{~m} / \mathrm{s}^{2}\), and (e) \(-20 \mathrm{~m} / \mathrm{s}^{2}\).
-25 Sunjamming. A "sun yacht" is a spacecraft with a large sail that is pushed by sunlight. Although such a push is tiny in everyday circumstances, it can be large enough to send the spacecraft outward from the Sun on a cost-free but slow trip. Suppose that the spacecraft has a mass of 900 kg and receives a push of 20 N . (a) What is the magnitude of the resulting acceleration? If the craft starts from rest, (b) how far will it travel in 1 day and (c) how fast will it then be moving?
-26 The tension at which a fishing line snaps is commonly called the line's "strength." What minimum strength is needed for a line that is to stop a salmon of weight 85 N in 11 cm if the fish is initially drifting at \(2.8 \mathrm{~m} / \mathrm{s}\) ? Assume a constant deceleration.
\(\cdot 27\) SSM An electron with a speed of \(1.2 \times 10^{7} \mathrm{~m} / \mathrm{s}\) moves horizontally into a region where a constant vertical force of \(4.5 \times\) \(10^{-16} \mathrm{~N}\) acts on it. The mass of the electron is \(9.11 \times 10^{-31} \mathrm{~kg}\). Determine the vertical distance the electron is deflected during the time it has moved 30 mm horizontally.
-28 A car that weighs \(1.30 \times 10^{4} \mathrm{~N}\) is initially moving at \(40 \mathrm{~km} / \mathrm{h}\) when the brakes are applied and the car is brought to a stop in 15 m . Assuming the force that stops the car is constant, find (a) the magnitude of that force and (b) the time required for the change in speed. If the initial speed is doubled, and the car experiences the same force during the braking, by what factors are (c) the stopping distance and (d) the stopping time multiplied? (There could be a lesson here about the danger of driving at high speeds.)
-29 A firefighter who weighs 712 N slides down a vertical pole with an acceleration of \(3.00 \mathrm{~m} / \mathrm{s}^{2}\), directed downward. What are the (a) magnitude and (b) direction (up or down) of the vertical force on the firefighter from the pole and the (c) magnitude and (d) direction of the vertical force on the pole from the firefighter?
-30 The high-speed winds around a tornado can drive projectiles into trees, building walls, and even metal traffic signs. In a laboratory simulation, a standard wood toothpick was shot by pneumatic gun into an oak branch. The toothpick's mass was 0.13 g , its speed before entering the branch was \(220 \mathrm{~m} / \mathrm{s}\), and its penetration depth was 15 mm . If its speed was decreased at a uniform rate, what was the magnitude of the force of the branch on the toothpick?
-031 SSM www A block is projected up a frictionless inclined plane with initial speed \(v_{0}=3.50\) \(\mathrm{m} / \mathrm{s}\). The angle of incline is \(\theta=32.0^{\circ}\). (a) How far up the plane does the block go? (b) How long does it take to get there? (c) What is its speed when it gets back to the bottom?
-•32 Figure 5-39 shows an overhead view of a 0.0250 kg lemon half and


Figure 5-39 Problem 32.
two of the three horizontal forces that act on it as it is on a frictionless table. Force \(\vec{F}_{1}\) has a magnitude of 6.00 N and is at \(\theta_{1}=30.0^{\circ}\). Force \(\vec{F}_{2}\) has a magnitude of 7.00 N and is at \(\theta_{2}=30.0^{\circ}\). In unit-vector notation, what is the third force if the lemon half (a) is stationary, (b) has the constant velocity \(\vec{v}=(13.0 \hat{\mathrm{i}}-14.0 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}\), and (c) has the varying velocity \(\vec{v}=(13.0 t \hat{i}-14.0 t \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}^{2}\), where \(t\) is time?
-033 An elevator cab and its load have a combined mass of 1600 kg . Find the tension in the supporting cable when the cab, originally moving downward at \(12 \mathrm{~m} / \mathrm{s}\), is brought to rest with constant acceleration in a distance of 42 m .
-०34 ©0 In Fig. 5-40, a crate of mass \(m=100 \mathrm{~kg}\) is pushed at constant speed up a frictionless ramp \(\left(\theta=30.0^{\circ}\right)\) by a horizontal force \(\vec{F}\). What are the magnitudes of (a) \(\vec{F}\) and (b) the force on the crate from the ramp?
-•35 The velocity of a 3.00 kg parti-


Figure 5-40 Problem 34. cle is given by \(\vec{v}=\left(8.00 t \hat{i}+3.00 t^{2} \hat{\mathrm{j}}\right)\) \(\mathrm{m} / \mathrm{s}\), with time \(t\) in seconds. At the instant the net force on the particle has a magnitude of 35.0 N , what are the direction (relative to the positive direction of the \(x\) axis) of (a) the net force and (b) the particle's direction of travel?
-•36 Holding on to a towrope moving parallel to a frictionless ski slope, a 50 kg skier is pulled up the slope, which is at an angle of \(8.0^{\circ}\) with the horizontal. What is the magnitude \(F_{\text {rope }}\) of the force on the skier from the rope when (a) the magnitude \(v\) of the skier's velocity is constant at \(2.0 \mathrm{~m} / \mathrm{s}\) and (b) \(v=2.0 \mathrm{~m} / \mathrm{s}\) as \(v\) increases at a rate of \(0.10 \mathrm{~m} / \mathrm{s}^{2}\) ?
-•37 A 40 kg girl and an 8.4 kg sled are on the frictionless ice of a frozen lake, 15 m apart but connected by a rope of negligible mass. The girl exerts a horizontal 5.2 N force on the rope. What are the acceleration magnitudes of (a) the sled and (b) the girl? (c) How far from the girl's initial position do they meet?
-•38 A 40 kg skier skis directly down a frictionless slope angled at \(10^{\circ}\) to the horizontal. Assume the skier moves in the negative direction of an \(x\) axis along the slope. A wind force with component \(F_{x}\) acts on the skier. What is \(F_{x}\) if the magnitude of the skier's velocity is (a) constant, (b) increasing at a rate of \(1.0 \mathrm{~m} / \mathrm{s}^{2}\), and (c) increasing at a rate of \(2.0 \mathrm{~m} / \mathrm{s}^{2}\) ?
-•39 ILW A sphere of mass \(3.0 \times 10^{-4} \mathrm{~kg}\) is suspended from a cord. A steady horizontal breeze pushes the sphere so that the cord makes a constant angle of \(37^{\circ}\) with the vertical. Find (a) the push magnitude and (b) the tension in the cord.
-•40 ©0 A dated box of dates, of mass 5.00 kg , is sent sliding up a frictionless ramp at an angle of \(\theta\) to the horizontal. Figure 5-41 gives,


Figure 5-41 Problem 40.
as a function of time \(t\), the component \(v_{x}\) of the box's velocity along an \(x\) axis that extends directly up the ramp. What is the magnitude of the normal force on the box from the ramp?
\(\bullet 41\) Using a rope that will snap if the tension in it exceeds 387 N , you need to lower a bundle of old roofing material weighing 449 N from a point 6.1 m above the ground. Obviously if you hang the bundle on the rope, it will snap. So, you allow the bundle to accelerate downward. (a) What magnitude of the bundle's acceleration will put the rope on the verge of snapping? (b) At that acceleration, with what speed would the bundle hit the ground?
-•42 ©o In earlier days, horses pulled barges down canals in the manner shown in Fig. 5-42. Suppose the horse pulls on the rope with a force of 7900 N at an angle of \(\theta=18^{\circ}\) to the direction of motion of the barge, which is headed straight along the positive direction of an \(x\) axis. The mass of the barge is 9500 kg , and the magnitude of its acceleration is \(0.12 \mathrm{~m} / \mathrm{s}^{2}\). What are the (a) magnitude and (b) direction (relative to positive \(x\) ) of the force on the barge from the water?


Figure 5-42 Problem 42.
-•43 SSM In Fig. 5-43, a chain consisting of five links, each of mass 0.100 kg , is lifted vertically with constant acceleration of magnitude \(a=2.50\) \(\mathrm{m} / \mathrm{s}^{2}\). Find the magnitudes of (a) the force on link 1 from link 2, (b) the force on link 2 from link 3, (c) the force on link 3 from link 4 , and (d) the force on link 4 from link 5 . Then find the magnitudes of (e) the force \(\vec{F}\) on the top link from the person lifting the chain and (f) the net force accelerating each link.
\(\bullet 44\) A lamp hangs vertically from a cord in a descending elevator that decelerates at \(2.4 \mathrm{~m} / \mathrm{s}^{2}\). (a) If the tension in the cord is 89 N , what is the lamp's


Figure 5-43
Problem 43. mass? (b) What is the cord's tension when the elevator ascends with an upward acceleration of \(2.4 \mathrm{~m} / \mathrm{s}^{2}\) ?
-•45 An elevator cab that weighs 27.8 kN moves upward. What is the tension in the cable if the cab's speed is (a) increasing at a rate of \(1.22 \mathrm{~m} / \mathrm{s}^{2}\) and (b) decreasing at a rate of \(1.22 \mathrm{~m} / \mathrm{s}^{2}\) ?
-•46 An elevator cab is pulled upward by a cable. The cab and its single occupant have a combined mass of 2000 kg . When that occupant drops a coin, its acceleration relative to the cab is \(8.00 \mathrm{~m} / \mathrm{s}^{2}\) downward. What is the tension in the cable?
\(\bullet 47\) To The Zacchini family was renowned for their hu-man-cannonball act in which a family member was shot from a cannon using either elastic bands or compressed air. In one version of the act, Emanuel Zacchini was shot over three Ferris wheels to land in a net at the same height as the open end of the cannon and at a range of 69 m . He was propelled inside the barrel for 5.2 m and launched at an angle of \(53^{\circ}\). If his mass was 85 kg and he underwent constant acceleration inside the barrel, what was the magnitude of the force propelling him? (Hint: Treat the launch as though it were along a ramp at \(53^{\circ}\). Neglect air drag.)
\(\bullet 48\) ©o In Fig. 5-44, elevator cabs \(A\) and \(B\) are connected by a short cable and can be pulled upward or lowered by the cable above cab \(A\). Cab \(A\) has mass 1700 kg ; cab \(B\) has mass 1300 kg . A 12.0 kg box of catnip lies on the floor of cab \(A\). The tension in the cable connecting the cabs is \(1.91 \times 10^{4} \mathrm{~N}\). What is the magnitude of the normal force on the box from the floor?
\(\bullet 49\) In Fig. 5-45, a block of mass \(m=5.00 \mathrm{~kg}\) is pulled along a horizontal frictionless floor by a cord that exerts a force of magnitude \(F=12.0 \mathrm{~N}\) at an angle \(\theta=25.0^{\circ}\). (a) What is the magnitude of the block's acceleration? (b) The force magnitude \(F\) is slowly increased. What is its value just before the block is lifted (completely) off the floor? (c) What is the magnitude of the block's acceleration just before it is lifted (completely) off the floor?


Figure 5-45
Problems 49 and 60.
\(\bullet 50\) ©o In Fig. 5-46, three ballot boxes are connected by cords, one of which wraps over a pulley having negligible friction on its axle and negligible mass. The three masses are \(\quad m_{A}=30.0 \mathrm{~kg}, \quad m_{B}=40.0 \mathrm{~kg}\), and \(m_{C}=10.0 \mathrm{~kg}\). When the assembly is released from rest, (a) what is the tension in the cord connecting \(B\) and \(C\), and (b) how far does \(A\) move in the first 0.250 s (assuming it does not reach the pulley)?
\(\bullet 51\) ©o Figure 5-47 shows two blocks connected by a cord (of negligible mass) that passes over a frictionless pulley (also of negligible mass). The arrangement is known as Atwood's machine. One block has mass \(m_{1}=1.30 \mathrm{~kg}\); the other has mass \(m_{2}=\) 2.80 kg . What are (a) the magnitude of the blocks' acceleration and (b) the tension in the cord?
\(\bullet 52\) An 85 kg man lowers himself to the ground from a height of 10.0 m by holding onto a rope that runs over a frictionless pulley to a 65 kg sandbag. With what speed does the man hit the ground if he started from rest?
-•53 In Fig. 5-48, three connected blocks are pulled to the right on a horizontal frictionless table


Figure 5-47
Problems 51 and 65. by a force of magnitude \(T_{3}=65.0 \mathrm{~N}\). If \(m_{1}=12.0 \mathrm{~kg}\), \(m_{2}=24.0 \mathrm{~kg}\), and \(m_{3}=31.0 \mathrm{~kg}\), calculate (a) the magnitude of the system's acceleration, (b) the tension \(T_{1}\), and (c) the tension \(T_{2}\).


Figure 5-48 Problem 53.
-•54 ©o Figure 5-49 shows four penguins that are being playfully pulled along very slippery (frictionless) ice by a curator. The masses of three penguins and the tension in two of the cords are \(m_{1}=12 \mathrm{~kg}\), \(m_{3}=15 \mathrm{~kg}, m_{4}=20 \mathrm{~kg}, T_{2}=111 \mathrm{~N}\), and \(T_{4}=222 \mathrm{~N}\). Find the penguin mass \(m_{2}\) that is not given.


Figure 5-49 Problem 54.
-•55 SSM ILW Www Two blocks are in contact on a frictionless table. A horizontal force is applied to the larger block, as shown in Fig. \(5-50\). (a) If \(m_{1}=2.3 \mathrm{~kg}\), \(m_{2}=1.2 \mathrm{~kg}\), and \(F=3.2 \mathrm{~N}\), find the magnitude of the force between the two blocks. (b) Show that if a force of the same


Figure 5-50
Problem 55. magnitude \(F\) is applied to the smaller block but in the opposite direction, the magnitude of the force between the blocks is 2.1 N , which is not the same value calculated in (a). (c) Explain the difference.
-•56 ©0 In Fig. 5-51 \(a\), a constant horizontal force \(\vec{F}_{a}\) is applied to block \(A\), which pushes against block \(B\) with a 20.0 N force directed horizontally to the right. In Fig. 5-51b, the same force \(\vec{F}_{a}\) is applied to block \(B\); now block \(A\) pushes on block \(B\) with a 10.0 N force directed horizontally to the left. The blocks have a combined mass of 12.0 kg . What are the magnitudes of (a) their acceleration in Fig. 5-51a and (b) force \(\vec{F}_{a}\) ?

(a)

(b)

Figure 5-51 Problem 56.
-•57 ILW A block of mass \(m_{1}=3.70 \mathrm{~kg}\) on a frictionless plane inclined at angle \(\theta=30.0^{\circ}\) is connected by a cord over a massless, frictionless pulley to a second block of mass \(m_{2}=2.30 \mathrm{~kg}\) (Fig. 5-52). What are (a) the magnitude of the acceleration of each block, (b) the direction of the acceleration of the hanging block, and (c) the tension in the cord?

-•58 Figure 5-53 shows a man sitting in a bosun's chair that dangles from a massless rope, which runs over a massless, frictionless pulley and back down to the man's hand. The combined mass of man and chair is 95.0 kg . With what force magnitude must the man pull on the rope if he is to rise (a) with a constant velocity and
(b) with an upward acceleration of \(1.30 \mathrm{~m} / \mathrm{s}^{2}\) ? (Hint: A free-body diagram can really help.) If the rope on the right extends to the ground and is pulled by a co-worker, with what force magnitude must the coworker pull for the man to rise (c) with a constant velocity and (d) with an upward acceleration of \(1.30 \mathrm{~m} / \mathrm{s}^{2}\) ? What is the magnitude of the force on the ceiling from the pulley system in (e) part a, (f) part \(\mathrm{b},(\mathrm{g})\) part c , and (h) part d ?
-059 SSM A 10 kg monkey climbs up a massless rope that runs over a frictionless tree limb and back down to a 15 kg package on the ground (Fig. 5-54). (a) What is the magnitude of the least acceleration the monkey must have if it is to lift the package off the ground? If, after the package has been lifted, the monkey stops its climb and holds onto the rope, what are the (b) magnitude and (c) direction of the monkey's acceleration and (d) the tension in the rope?
-•60 Figure \(5-45\) shows a 5.00 kg block being pulled along a frictionless floor by a cord that applies a force of constant magnitude 20.0 N but with an angle \(\theta(t)\) that varies with time. When angle \(\theta=25.0^{\circ}\), at what rate is the acceleration of the


Figure 5-53 Problem 58.


Figure 5-54 Problem 59. block changing if (a) \(\theta(t)=\) \(\left(2.00 \times 10^{-2} \mathrm{deg} / \mathrm{s}\right) t\) and (b) \(\theta(t)=-\left(2.00 \times 10^{-2} \mathrm{deg} / \mathrm{s}\right) t\) ? (Hint: The angle should be in radians.)
©61 SSM ILW A hot-air balloon of mass \(M\) is descending vertically with downward acceleration of magnitude \(a\). How much mass (ballast) must be thrown out to give the balloon an upward acceleration of magnitude \(a\) ? Assume that the upward force from the air (the lift) does not change because of the decrease in mass.
00062 In shot putting, many athletes elect to launch the shot at an angle that is smaller than the theoretical one (about \(42^{\circ}\) ) at which the distance of a projected ball at the same speed and height is greatest. One reason has to do with the speed the athlete can give the shot during the acceleration phase of the throw. Assume that a 7.260 kg shot is accelerated along a straight path of length 1.650 m by a constant applied force of magnitude 380.0 N , starting with an initial speed of \(2.500 \mathrm{~m} / \mathrm{s}\) (due to the athlete's preliminary motion). What is the shot's speed at the end of the acceleration phase if the angle between the path and the horizontal is (a) \(30.00^{\circ}\) and (b) \(42.00^{\circ}\) ? (Hint: Treat the motion as though it were along a ramp at the given angle.) (c) By what percent is the launch speed decreased if the athlete increases the angle from \(30.00^{\circ}\) to \(42.00^{\circ}\) ?
-0063 © Figure 5-55 gives, as a function of time \(t\), the force component \(F_{x}\) that acts on a 3.00 kg ice block that can move only along the \(x\) axis. At \(t=0\), the block is moving in the positive direction of
the axis, with a speed of \(3.0 \mathrm{~m} / \mathrm{s}\). What are its (a) speed and (b) direction of travel at \(t=11 \mathrm{~s}\) ?


Figure 5-55 Problem 63
-0064 60 Figure \(5-56\) shows a box of mass \(m_{2}=1.0 \mathrm{~kg}\) on a frictionless plane inclined at angle \(\theta=30^{\circ}\). It is connected by a cord of negligible mass to a box of mass \(m_{1}=3.0 \mathrm{~kg}\) on a horizontal frictionless surface. The pulley is frictionless and massless. (a) If the magnitude of horizontal force \(\vec{F}\) is 2.3 N , what is the tension in the connecting cord? (b) What is the largest value the magnitude of \(\vec{F}\) may have without the cord becoming slack?


Figure 5-56 Problem 64.
-0065 60 Figure 5-47 shows Atwood's machine, in which two containers are connected by a cord (of negligible mass) passing over a frictionless pulley (also of negligible mass). At time \(t=0\), container 1 has mass 1.30 kg and container 2 has mass 2.80 kg , but container 1 is losing mass (through a leak) at the constant rate of \(0.200 \mathrm{~kg} / \mathrm{s}\). At what rate is the acceleration magnitude of the containers changing at (a) \(t=0\) and (b) \(t=3.00 \mathrm{~s}\) ? (c) When does the acceleration reach its maximum value?
-0066 © Figure 5-57 shows a section of a cable-car system. The maximum permissible mass of each car with occupants is 2800 kg . The cars, riding on a support cable, are pulled by a second cable attached to the support tower on each car. Assume that the cables


Figure 5-57 Problem 66.
are taut and inclined at angle \(\theta=35^{\circ}\). What is the difference in tension between adjacent sections of pull cable if the cars are at the maximum permissible mass and are being accelerated up the incline at \(0.81 \mathrm{~m} / \mathrm{s}^{2}\) ?
-••67 Figure 5-58 shows three blocks attached by cords that loop over frictionless pulleys. Block \(B\) lies on a frictionless table; the masses are \(m_{A}=6.00 \mathrm{~kg}, m_{B}=8.00\) kg , and \(m_{C}=10.0 \mathrm{~kg}\). When the blocks are released, what is the


Figure 5-58 Problem 67 tension in the cord at the right?
\(\bullet\) A shot putter launches a 7.260 kg shot by pushing it along a straight line of length 1.650 m and at an angle of \(34.10^{\circ}\) from the horizontal, accelerating the shot to the launch speed from its initial speed of \(2.500 \mathrm{~m} / \mathrm{s}\) (which is due to the athlete's preliminary motion). The shot leaves the hand at a height of 2.110 m and at an angle of \(34.10^{\circ}\), and it lands at a horizontal distance of 15.90 m . What is the magnitude of the athlete's average force on the shot during the acceleration phase? (Hint: Treat the motion during the acceleration phase as though it were along a ramp at the given angle.)

\section*{Additional Problems}

69 In Fig. 5-59, 4.0 kg block \(A\) and 6.0 kg block \(B\) are connected by a string of negligible mass. Force \(\vec{F}_{A}=(12 \mathrm{~N}) \hat{\mathrm{i}}\) acts on block \(A\); force \(\vec{F}_{B}=(24 \mathrm{~N}) \hat{\mathrm{i}}\) acts on block \(B\). What is the tension in the string?


Figure 5-59 Problem 69.

70 An 80 kg man drops to a concrete patio from a window 0.50 m above the patio. He neglects to bend his knees on landing, taking 2.0 cm to stop. (a) What is his average acceleration from when his feet first touch the patio to when he stops? (b) What is the magnitude of the average stopping force exerted on him by the patio?
71 SSIM Figure 5-60 shows a box of dirty money (mass \(m_{1}=3.0 \mathrm{~kg}\) ) on a frictionless plane inclined at angle \(\theta_{1}=30^{\circ}\). The box is connected via a cord of negligible mass to a box of laundered money (mass \(m_{2}=2.0 \mathrm{~kg}\) ) on a frictionless plane inclined at angle \(\theta_{2}=60^{\circ}\). The pulley is frictionless and has negligible mass. What is the tension in the cord?


Figure 5-60 Problem 71.
72 Three forces act on a particle that moves with unchanging velocity \(\vec{v}=(2 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}-(7 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}\). Two of the forces are \(\vec{F}_{1}=(2 \mathrm{~N}) \hat{\mathrm{i}}+\) \((3 \mathrm{~N}) \hat{\mathrm{j}}+(-2 \mathrm{~N}) \hat{\mathrm{k}}\) and \(\vec{F}_{2}=(-5 \mathrm{~N}) \hat{\mathrm{i}}+(8 \mathrm{~N}) \hat{\mathrm{j}}+(-2 \mathrm{~N}) \hat{\mathrm{k}}\). What is the third force?

73 SSM In Fig. 5-61, a tin of antioxidants \(\left(m_{1}=1.0 \mathrm{~kg}\right)\) on a frictionless inclined surface is connected to a tin of corned beef ( \(m_{2}=\) 2.0 kg ). The pulley is massless and frictionless. An upward force of magnitude \(F=6.0 \mathrm{~N}\) acts on the corned beef tin, which has a downward acceleration of \(5.5 \mathrm{~m} / \mathrm{s}^{2}\). What are (a) the tension in the connecting cord and (b) angle \(\beta\) ?

74 The only two forces acting on a body have magnitudes of 20 N and 35 N and directions that differ by \(80^{\circ}\). The resulting acceleration has a magnitude of \(20 \mathrm{~m} / \mathrm{s}^{2}\). What is the mass of the body?
75 Figure 5-62 is an overhead view of a 12 kg tire that is to be pulled by three horizontal ropes. One rope's force \(\left(F_{1}=50 \mathrm{~N}\right)\) is indicated. The forces from the other ropes are to be oriented such that the tire's acceleration magnitude \(a\) is least. What is that least \(a\) if (a) \(F_{2}=\) \(30 \mathrm{~N}, F_{3}=20 \mathrm{~N}\); (b) \(F_{2}=30 \mathrm{~N}, F_{3}=\) 10 N ; and (c) \(F_{2}=F_{3}=30 \mathrm{~N}\) ?
76 A block of mass \(M\) is pulled along a horizontal frictionless surface by a rope of mass \(m\), as shown in Fig. 5-63. A horizontal force \(\vec{F}\)


Figure 5-61 Problem 73.


Figure 5-62 Problem 75.


Figure 5-63 Problem 76. acts on one end of the rope.
(a) Show that the rope must sag, even if only by an imperceptible amount. Then, assuming that the sag is negligible, find (b) the acceleration of rope and block, (c) the force on the block from the rope, and ( d ) the tension in the rope at its midpoint.

77 SSM A worker drags a crate across a factory floor by pulling on a rope tied to the crate. The worker exerts a force of magnitude \(F=450 \mathrm{~N}\) on the rope, which is inclined at an upward angle \(\theta=38^{\circ}\) to the horizontal, and the floor exerts a horizontal force of magnitude \(f=125 \mathrm{~N}\) that opposes the motion. Calculate the magnitude of the acceleration of the crate if (a) its mass is 310 kg and (b) its weight is 310 N .

78 In Fig. 5-64, a force \(\vec{F}\) of magnitude 12 N is applied to a FedEx box of mass \(m_{2}=1.0 \mathrm{~kg}\). The force is directed up a plane tilted by \(\theta=\) \(37^{\circ}\). The box is connected by a cord to a UPS box of mass \(m_{1}=3.0 \mathrm{~kg}\) on the floor. The floor, plane, and


Figure 5-64 Problem 78. pulley are frictionless, and the masses of the pulley and cord are negligible. What is the tension in the cord?

79 A certain particle has a weight of 22 N at a point where \(g=9.8 \mathrm{~m} / \mathrm{s}^{2}\). What are its (a) weight and (b) mass at a point where \(g=4.9 \mathrm{~m} / \mathrm{s}^{2}\) ? What are its (c) weight and (d) mass if it is moved to a point in space where \(g=0\) ?
80 An 80 kg person is parachuting and experiencing a downward acceleration of \(2.5 \mathrm{~m} / \mathrm{s}^{2}\). The mass of the parachute is 5.0 kg . (a)

What is the upward force on the open parachute from the air? (b) What is the downward force on the parachute from the person?
81 A spaceship lifts off vertically from the Moon, where \(g=\) \(1.6 \mathrm{~m} / \mathrm{s}^{2}\). If the ship has an upward acceleration of \(1.0 \mathrm{~m} / \mathrm{s}^{2}\) as it lifts off, what is the magnitude of the force exerted by the ship on its pilot, who weighs 735 N on Earth?
82 In the overhead view of Fig. \(5-65\), five forces pull on a box of mass \(m=4.0 \mathrm{~kg}\). The force magnitudes are \(F_{1}=11 \mathrm{~N}, \quad F_{2}=17 \mathrm{~N}\), \(F_{3}=3.0 \mathrm{~N}, F_{4}=14 \mathrm{~N}\), and \(F_{5}=5.0 \mathrm{~N}\), and angle \(\theta_{4}\) is \(30^{\circ}\). Find the box's acceleration (a) in unit-vector notation and as (b) a magnitude and (c) an angle relative to the positive direction of the \(x\) axis.
83 SSM A certain force gives an object of mass \(m_{1}\) an acceleration of \(12.0 \mathrm{~m} / \mathrm{s}^{2}\) and an object of mass \(m_{2}\) an acceleration of 3.30 \(\mathrm{m} / \mathrm{s}^{2}\). What acceleration would the force give to an object of mass (a) \(m_{2}-m_{1}\) and (b) \(m_{2}+m_{1}\) ?

84 You pull a short refrigerator with a constant force \(\vec{F}\) across a greased (frictionless) floor, either with \(\vec{F}\) horizontal (case 1) or with \(\vec{F}\) tilted upward at an angle \(\theta\) (case 2). (a) What is the ratio of the refrigerator's speed in case 2 to its speed in case 1 if you pull for a certain time \(t\) ? (b) What is this ratio if you pull for a certain distance \(d\) ?
85 A 52 kg circus performer is to slide down a rope that will break if the tension exceeds 425 N . (a) What happens if the performer hangs stationary on the rope? (b) At what magnitude of acceleration does the performer just avoid breaking the rope?
86 Compute the weight of a 75 kg space ranger (a) on Earth, (b) on Mars, where \(g=3.7 \mathrm{~m} / \mathrm{s}^{2}\), and (c) in interplanetary space, where \(g=0\). (d) What is the ranger's mass at each location?
87 An object is hung from a spring balance attached to the ceiling of an elevator cab. The balance reads 65 N when the cab is standing still. What is the reading when the cab is moving upward (a) with a constant speed of \(7.6 \mathrm{~m} / \mathrm{s}\) and (b) with a speed of \(7.6 \mathrm{~m} / \mathrm{s}\) while decelerating at a rate of \(2.4 \mathrm{~m} / \mathrm{s}^{2}\) ?
88 Imagine a landing craft approaching the surface of Callisto, one of Jupiter's moons. If the engine provides an upward force (thrust) of 3260 N , the craft descends at constant speed; if the engine provides only 2200 N , the craft accelerates downward at \(0.39 \mathrm{~m} / \mathrm{s}^{2}\). (a) What is the weight of the landing craft in the vicinity of Callisto's surface? (b) What is the mass of the craft? (c) What is the magnitude of the free-fall acceleration near the surface of Callisto?

89 A 1400 kg jet engine is fastened to the fuselage of a passenger jet by just three bolts (this is the usual practice). Assume that each bolt supports one-third of the load. (a) Calculate the force on each bolt as the plane waits in line for clearance to take off. (b) During flight, the plane encounters turbulence, which suddenly imparts an upward vertical acceleration of \(2.6 \mathrm{~m} / \mathrm{s}^{2}\) to the plane. Calculate the force on each bolt now.
90 An interstellar ship has a mass of \(1.20 \times 10^{6} \mathrm{~kg}\) and is initially at rest relative to a star system. (a) What constant acceleration is needed to bring the ship up to a speed of \(0.10 c\) (where \(c\) is the speed of light, \(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\) ) relative to the star system in 3.0 days? (b) What is that
acceleration in \(g\) units? (c) What force is required for the acceleration? (d) If the engines are shut down when \(0.10 c\) is reached (the speed then remains constant), how long does the ship take (start to finish) to journey 5.0 light-months, the distance that light travels in 5.0 months?

91 ssm A motorcycle and 60.0 kg rider accelerate at \(3.0 \mathrm{~m} / \mathrm{s}^{2}\) up a ramp inclined \(10^{\circ}\) above the horizontal. What are the magnitudes of (a) the net force on the rider and (b) the force on the rider from the motorcycle?
92 Compute the initial upward acceleration of a rocket of mass \(1.3 \times 10^{4} \mathrm{~kg}\) if the initial upward force produced by its engine (the thrust) is \(2.6 \times 10^{5} \mathrm{~N}\). Do not neglect the gravitational force on the rocket.
93 SSM Figure 5-66a shows a mobile hanging from a ceiling; it consists of two metal pieces ( \(m_{1}=3.5 \mathrm{~kg}\) and \(m_{2}=4.5 \mathrm{~kg}\) ) that are strung together by cords of negligible mass. What is the tension in (a) the bottom cord and (b) the top cord? Figure \(5-66 b\) shows a mobile consisting of three metal pieces. Two of the masses are \(m_{3}=\) 4.8 kg and \(m_{5}=5.5 \mathrm{~kg}\). The tension in the top cord is 199 N . What is the tension in (c) the lowest cord and (d) the middle cord?


Figure 5-66 Problem 93.

94 For sport, a 12 kg armadillo runs onto a large pond of level, frictionless ice. The armadillo's initial velocity is \(5.0 \mathrm{~m} / \mathrm{s}\) along the positive direction of an \(x\) axis. Take its initial position on the ice as being the origin. It slips over the ice while being pushed by a wind with a force of 17 N in the positive direction of the \(y\) axis. In unitvector notation, what are the animal's (a) velocity and (b) position vector when it has slid for 3.0 s ?

95 Suppose that in Fig. 5-12, the masses of the blocks are 2.0 kg and 4.0 kg . (a) Which mass should the hanging block have if the magnitude of the acceleration is to be as large as possible? What then are (b) the magnitude of the acceleration and (c) the tension in the cord?
96 A nucleus that captures a stray neutron must bring the neutron to a stop within the diameter of the nucleus by means of the strong force. That force, which "glues" the nucleus together, is approximately zero outside the nucleus. Suppose that a stray neutron with an initial speed of \(1.4 \times 10^{7} \mathrm{~m} / \mathrm{s}\) is just barely captured by a nucleus with diameter \(d=1.0 \times 10^{-14} \mathrm{~m}\). Assuming the strong force on the neutron is constant, find the magnitude of that force. The neutron's mass is \(1.67 \times 10^{-27} \mathrm{~kg}\).
97 If the 1 kg standard body is accelerated by only \(\vec{F}_{1}=\) \((3.0 \mathrm{~N}) \hat{\mathrm{i}}+(4.0 \mathrm{~N}) \hat{\mathrm{j}}\) and \(\vec{F}_{2}=(-2.0 \mathrm{~N}) \hat{\mathrm{i}}+(-6.0 \mathrm{~N}) \hat{\mathrm{j}}\), then what is \(\vec{F}_{\text {net }}\) (a) in unit-vector notation and as (b) a magnitude and (c) an angle relative to the positive \(x\) direction? What are the (d) magnitude and (e) angle of \(\vec{a}\) ?

\section*{C H A P T \(\mathbf{H} \quad \mathbf{R} \quad \mathbf{C}\)}

Force and Motion-II

\section*{6-1 friction}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
6.01 Distinguish between friction in a static situation and a kinetic situation.
6.02 Determine direction and magnitude of a frictional force.
6.03 For objects on horizontal, vertical, or inclined planes in situations involving friction, draw free-body diagrams and apply Newton's second law.

\section*{Key Ideas}
- When a force \(\vec{F}\) tends to slide a body along a surface, a frictional force from the surface acts on the body. The frictional force is parallel to the surface and directed so as to oppose the sliding. It is due to bonding between the body and the surface.

If the body does not slide, the frictional force is a static frictional force \(\vec{f}_{s}\). If there is sliding, the frictional force is a kinetic frictional force \(\vec{f}_{k}\).
- If a body does not move, the static frictional force \(\vec{f}_{s}\) and the component of \(\vec{F}\) parallel to the surface are equal in magnitude, and \(\vec{f}_{s}\) is directed opposite that component. If the component increases, \(f_{s}\) also increases.
- The magnitude of \(\vec{f}_{s}\) has a maximum value \(\vec{f}_{s, \text { max }}\) given by
\[
f_{s, \max }=\mu_{s} F_{N}
\]
where \(\mu_{s}\) is the coefficient of static friction and \(F_{N}\) is the magnitude of the normal force. If the component of \(\vec{F}\) parallel to the surface exceeds \(f_{s, \text { max }}\), the body slides on the surface.
- If the body begins to slide on the surface, the magnitude of the frictional force rapidly decreases to a constant value \(f_{k}\) given by
\[
f_{k}=\mu_{k} F_{N},
\]
where \(\mu_{k}\) is the coefficient of kinetic friction.

\section*{What Is Physics?}

In this chapter we focus on the physics of three common types of force: frictional force, drag force, and centripetal force. An engineer preparing a car for the Indianapolis 500 must consider all three types. Frictional forces acting on the tires are crucial to the car's acceleration out of the pit and out of a curve (if the car hits an oil slick, the friction is lost and so is the car). Drag forces acting on the car from the passing air must be minimized or else the car will consume too much fuel and have to pit too early (even one 14 s pit stop can cost a driver the race). Centripetal forces are crucial in the turns (if there is insufficient centripetal force, the car slides into the wall). We start our discussion with frictional forces.

\section*{Friction}

Frictional forces are unavoidable in our daily lives. If we were not able to counteract them, they would stop every moving object and bring to a halt every rotating shaft. About \(20 \%\) of the gasoline used in an automobile is needed to counteract friction in the engine and in the drive train. On the other hand, if friction were totally absent, we could not get an automobile to go anywhere, and we could not walk or ride a bicycle. We could not hold a pencil, and, if we could, it would not write. Nails and screws would be useless, woven cloth would fall apart, and knots would untie.

Three Experiments. Here we deal with the frictional forces that exist between dry solid surfaces, either stationary relative to each other or moving across each other at slow speeds. Consider three simple thought experiments:
1. Send a book sliding across a long horizontal counter. As expected, the book slows and then stops. This means the book must have an acceleration parallel to the counter surface, in the direction opposite the book's velocity. From Newton's second law, then, a force must act on the book parallel to the counter surface, in the direction opposite its velocity. That force is a frictional force.
2. Push horizontally on the book to make it travel at constant velocity along the counter. Can the force from you be the only horizontal force on the book? No, because then the book would accelerate. From Newton's second law, there must be a second force, directed opposite your force but with the same magnitude, so that the two forces balance. That second force is a frictional force, directed parallel to the counter.
3. Push horizontally on a heavy crate. The crate does not move. From Newton's second law, a second force must also be acting on the crate to counteract your force. Moreover, this second force must be directed opposite your force and have the same magnitude as your force, so that the two forces balance. That second force is a frictional force. Push even harder. The crate still does not move. Apparently the frictional force can change in magnitude so that the two forces still balance. Now push with all your strength. The crate begins to slide. Evidently, there is a maximum magnitude of the frictional force. When you exceed that maximum magnitude, the crate slides.

Two Types of Friction. Figure 6-1 shows a similar situation. In Fig. 6-1 \(a\), a block rests on a tabletop, with the gravitational force \(\vec{F}_{g}\) balanced by a normal force \(\vec{F}_{N}\). In Fig. 6-1b, you exert a force \(\vec{F}\) on the block, attempting to pull it to the left. In response, a frictional force \(\vec{f}_{s}\) is directed to the right, exactly balancing your force. The force \(\vec{f}_{s}\) is called the static frictional force. The block does not move.

Figure 6-1 (a) The forces on a stationary block. ( \(b-d\) ) An external force \(\vec{F}\), applied to the block, is balanced by a static frictional force \(\vec{f}_{s}\). As \(F\) is increased, \(f_{s}\) also increases, until \(f_{s}\) reaches a certain maximum value. (Figure continues)

There is no attempt at sliding. Thus, no friction and no motion.

Force \(\vec{F}\) attempts sliding but is balanced by the frictional force. No motion.

Force \(\vec{F}\) is now stronger but is still balanced by the frictional force. No motion.

Force \(\vec{F}\) is now even stronger but is still balanced by the frictional force. No motion.

(b)

(c)

(d)

Frictional force \(=0\)

Frictional force \(=F\)

Frictional force \(=F\)

Frictional force \(=F\)

Figure 6-1 (Continued) (e) Once \(f_{s}\) reaches its maximum value, the block "breaks away," accelerating suddenly in the direction of \(\vec{F}\). ( \(f\) ) If the block is now to move with constant velocity, \(F\) must be reduced from the maximum value it had just before the block broke away. (g) Some experimental results for the sequence (a) through ( \(f\) ). In WileyPLUS, this figure is available as an animation with voiceover.

Finally, the applied force has overwhelmed the static frictional force. Block slides and accelerates.

To maintain the speed, weaken force \(\vec{F}\) to match the weak frictional force.

Static frictional force can only match growing applied force.


Weak kinetic frictional force


Same weak kinetic frictional force
(f)


Kinetic frictional force has only one value (no matching).

Figures 6-1c and 6-1d show that as you increase the magnitude of your applied force, the magnitude of the static frictional force \(\vec{f}_{s}\) also increases and the block remains at rest. When the applied force reaches a certain magnitude, however, the block "breaks away" from its intimate contact with the tabletop and accelerates leftward (Fig. 6-1e). The frictional force that then opposes the motion is called the kinetic frictional force \(\vec{f}_{k}\).

Usually, the magnitude of the kinetic frictional force, which acts when there is motion, is less than the maximum magnitude of the static frictional force, which acts when there is no motion. Thus, if you wish the block to move across the surface with a constant speed, you must usually decrease the magnitude of the applied force once the block begins to move, as in Fig. 6-1f. As an example, Fig. 6-1 \(g\) shows the results of an experiment in which the force on a block was slowly increased until breakaway occurred. Note the reduced force needed to keep the block moving at constant speed after breakaway.

Microscopic View. A frictional force is, in essence, the vector sum of many forces acting between the surface atoms of one body and those of another body. If two highly polished and carefully cleaned metal surfaces are brought together in a very good vacuum (to keep them clean), they cannot be made to slide over each other. Because the surfaces are so smooth, many atoms of one surface contact many atoms of the other surface, and the surfaces cold-weld together instantly, forming a single piece of metal. If a machinist's specially polished gage blocks are brought together in air, there is less atom-to-atom contact, but the blocks stick firmly to each other and can be separated only by means of a wrenching motion. Usually, however, this much atom-to-atom contact is not possible. Even a highly polished metal surface is far from being flat on the atomic scale. Moreover, the surfaces of everyday objects have layers of oxides and other contaminants that reduce cold-welding.

When two ordinary surfaces are placed together, only the high points touch each other. (It is like having the Alps of Switzerland turned over and placed down on the Alps of Austria.) The actual microscopic area of contact is much less than the apparent macroscopic contact area, perhaps by a factor of \(10^{4}\). Nonetheless,
many contact points do cold-weld together. These welds produce static friction when an applied force attempts to slide the surfaces relative to each other.

If the applied force is great enough to pull one surface across the other, there is first a tearing of welds (at breakaway) and then a continuous re-forming and tearing of welds as movement occurs and chance contacts are made (Fig. 6-2). The kinetic frictional force \(\vec{f}_{k}\) that opposes the motion is the vector sum of the forces at those many chance contacts.

If the two surfaces are pressed together harder, many more points cold-weld. Now getting the surfaces to slide relative to each other requires a greater applied force: The static frictional force \(\vec{f}_{s}\) has a greater maximum value. Once the surfaces are sliding, there are many more points of momentary cold-welding, so the kinetic frictional force \(\vec{f}_{k}\) also has a greater magnitude.

Often, the sliding motion of one surface over another is "jerky" because the two surfaces alternately stick together and then slip. Such repetitive stick-and-slip can produce squeaking or squealing, as when tires skid on dry pavement, fingernails scratch along a chalkboard, or a rusty hinge is opened. It can also produce beautiful and captivating sounds, as in music when a bow is drawn properly across a violin string.

\section*{Properties of Friction}

Experiment shows that when a dry and unlubricated body presses against a surface in the same condition and a force \(\vec{F}\) attempts to slide the body along the surface, the resulting frictional force has three properties:
Property 1. If the body does not move, then the static frictional force \(\vec{f}_{s}\) and the component of \(\vec{F}\) that is parallel to the surface balance each other. They are equal in magnitude, and \(\vec{f}_{s}\) is directed opposite that component of \(\vec{F}\).
Property 2. The magnitude of \(\vec{f}_{s}\) has a maximum value \(f_{s, \text { max }}\) that is given by
\[
\begin{equation*}
f_{s, \max }=\mu_{s} F_{N} \tag{6-1}
\end{equation*}
\]
where \(\mu_{s}\) is the coefficient of static friction and \(F_{N}\) is the magnitude of the normal force on the body from the surface. If the magnitude of the component of \(\vec{F}\) that is parallel to the surface exceeds \(f_{s, \text { max }}\), then the body begins to slide along the surface.
Property 3. If the body begins to slide along the surface, the magnitude of the frictional force rapidly decreases to a value \(f_{k}\) given by
\[
\begin{equation*}
f_{k}=\mu_{k} F_{N} \tag{6-2}
\end{equation*}
\]
where \(\mu_{k}\) is the coefficient of kinetic friction. Thereafter, during the sliding, a kinetic frictional force \(\vec{f}_{k}\) with magnitude given by Eq. 6-2 opposes the motion.
The magnitude \(F_{N}\) of the normal force appears in properties 2 and 3 as a measure of how firmly the body presses against the surface. If the body presses harder, then, by Newton's third law, \(F_{N}\) is greater. Properties 1 and 2 are worded in terms of a single applied force \(\vec{F}\), but they also hold for the net force of several applied forces acting on the body. Equations 6-1 and 6-2 are not vector equations; the direction of \(\vec{f}_{s}\) or \(\vec{f}_{k}\) is always parallel to the surface and opposed to the attempted sliding, and the normal force \(\vec{F}_{N}\) is perpendicular to the surface.

The coefficients \(\mu_{s}\) and \(\mu_{k}\) are dimensionless and must be determined experimentally. Their values depend on certain properties of both the body and the surface; hence, they are usually referred to with the preposition "between," as in "the value of \(\mu_{s}\) between an egg and a Teflon-coated skillet is 0.04 , but that between rock-climbing shoes and rock is as much as 1.2." We assume that the value of \(\mu_{k}\) does not depend on the speed at which the body slides along the surface.


Figure 6-2 The mechanism of sliding friction. (a) The upper surface is sliding to the right over the lower surface in this enlarged view. (b) A detail, showing two spots where cold-welding has occurred. Force is required to break the welds and maintain the motion.

\section*{Checkpoint 1}

A block lies on a floor. (a) What is the magnitude of the frictional force on it from the floor? (b) If a horizontal force of 5 N is now applied to the block, but the block does not move, what is the magnitude of the frictional force on it? (c) If the maximum value \(f_{s, \text { max }}\) of the static frictional force on the block is 10 N , will the block move if the magnitude of the horizontally applied force is 8 N ? (d) If it is 12 N ? (e) What is the magnitude of the frictional force in part (c)?

\section*{Sample Problem 6.01 Angled force applied to an initially stationary block}

This sample problem involves a tilted applied force, which requires that we work with components to find a frictional force. The main challenge is to sort out all the components. Figure \(6-3 a\) shows a force of magnitude \(F=\) 12.0 N applied to an 8.00 kg block at a downward angle of \(\theta=30.0^{\circ}\). The coefficient of static friction between block and floor is \(\mu_{s}=0.700\); the coefficient of kinetic friction is \(\mu_{k}=0.400\). Does the block begin to slide or does it remain stationary? What is the magnitude of the frictional force on the block?

\section*{KEY IDEAS}
(1) When the object is stationary on a surface, the static frictional force balances the force component that is attempting to slide the object along the surface. (2) The maximum possible magnitude of that force is given by Eq. 6-1 \(\left(f_{s, \text { max }}=\mu_{s} F_{N}\right)\). (3) If the component of the applied force along the surface exceeds this limit on the static friction, the block begins to slide. (4) If the object slides, the kinetic frictional force is given by Eq. 6-2 \(\left(f_{k}=\mu_{k} F_{N}\right)\).

Calculations: To see if the block slides (and thus to calculate the magnitude of the frictional force), we must compare the applied force component \(F_{x}\) with the maximum magnitude \(f_{s, \text { max }}\) that the static friction can have. From the triangle of components and full force shown in Fig. 6-3b, we see that
\[
\begin{align*}
F_{x} & =F \cos \theta \\
& =(12.0 \mathrm{~N}) \cos 30^{\circ}=10.39 \mathrm{~N} . \tag{6-3}
\end{align*}
\]

From Eq. 6-1, we know that \(f_{s, \text { max }}=\mu_{s} F_{N}\), but we need the magnitude \(F_{N}\) of the normal force to evaluate \(f_{s, \text { max }}\). Because the normal force is vertical, we need to write Newton's second law ( \(F_{\text {net, },}=m a_{y}\) ) for the vertical force components acting on the block, as displayed in Fig. 6-3c. The gravitational force with magnitude \(m g\) acts downward. The applied force has a downward component \(F_{y}=F \sin \theta\). And the vertical acceleration \(a_{y}\) is just zero. Thus, we can write Newton's sec-
ond law as
\[
\begin{equation*}
F_{N}-m g-F \sin \theta=m(0), \tag{6-4}
\end{equation*}
\]
which gives us
\[
\begin{equation*}
F_{N}=m g+F \sin \theta \tag{6-5}
\end{equation*}
\]

Now we can evaluate \(f_{s, \max }=\mu_{s} F_{N}\) :
\[
\begin{align*}
f_{s, \max } & =\mu_{s}(m g+F \sin \theta) \\
& =(0.700)\left((8.00 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)+(12.0 \mathrm{~N})\left(\sin 30^{\circ}\right)\right) \\
& =59.08 \mathrm{~N} . \tag{6-6}
\end{align*}
\]

Because the magnitude \(F_{x}(=10.39 \mathrm{~N})\) of the force component attempting to slide the block is less than \(f_{s, \text { max }}\) ( \(=59.08 \mathrm{~N}\) ), the block remains stationary. That means that the magnitude \(f_{s}\) of the frictional force matches \(F_{x}\). From Fig. 6-3d, we can write Newton's second law for \(x\) components as
and thus
\[
\begin{align*}
& F_{x}-f_{s}=m(0),  \tag{6-7}\\
& f_{s}=F_{x}=10.39 \mathrm{~N} \approx 10.4 \mathrm{~N} .
\end{align*}
\]
(Answer)


Figure 6-3 (a) A force is applied to an initially stationary block. (b) The components of the applied force. (c) The vertical force components. (d) The horizontal force components.

\section*{Sample Problem 6.02 Sliding to a stop on icy roads, horizontal and inclined}

Some of the funniest videos on the web involve motorists sliding uncontrollably on icy roads. Here let's compare the typical stopping distances for a car sliding to a stop from an initial speed of \(10.0 \mathrm{~m} / \mathrm{s}\) on a dry horizontal road, an icy horizontal road, and (everyone's favorite) an icy hill.
(a) How far does the car take to slide to a stop on a horizontal road (Fig. 6-4a) if the coefficient of kinetic friction is \(\mu_{k}=0.60\), which is typical of regular tires on dry pavement? Let's neglect any effect of the air on the car, assume that the wheels lock up and the tires slide, and extend an \(x\) axis in the car's direction of motion.

\section*{KEY IDEAS}
(1) The car accelerates (its speed decreases) because a horizontal frictional force acts against the motion, in the negative direction of the \(x\) axis. (2) The frictional force is a kinetic frictional force with a magnitude given by Eq. 6-2 \(\left(f_{k}=\mu_{k} F_{N}\right)\), in which \(F_{N}\) is the magnitude of the normal force on the car from the road. (3) We can relate the frictional force to the resulting acceleration by writing Newton's second law \(\left(F_{\text {net }, x}=m a_{x}\right)\) for motion along the road.

Calculations: Figure 6-4b shows the free-body diagram for the car. The normal force is upward, the gravitational force is downward, and the frictional force is horizontal. Because the frictional force is the only force with an \(x\) component, Newton's second law written for motion along the \(x\) axis becomes
\[
\begin{equation*}
-f_{k}=m a_{x} . \tag{6-8}
\end{equation*}
\]

Substituting \(f_{k}=\mu_{k} F_{N}\) gives us
\[
\begin{equation*}
-\mu_{k} F_{N}=m a_{x} . \tag{6-9}
\end{equation*}
\]

From Fig. \(6-4 b\) we see that the upward normal force balances the downward gravitational force, so in Eq. 6-9 let's replace magnitude \(F_{N}\) with magnitude \(m g\). Then we can cancel \(m\) (the stopping distance is thus independent of the car's mass-the car can be heavy or light, it does not matter). Solving for \(a_{x}\) we find
\[
\begin{equation*}
a_{x}=-\mu_{k} g . \tag{6-10}
\end{equation*}
\]

Because this acceleration is constant, we can use the constant-acceleration equations of Table 2-1. The easiest choice for finding the sliding distance \(x-x_{0}\) is Eq. 2-16 \(\left(v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)\right)\), which gives us
\[
\begin{equation*}
x-x_{0}=\frac{v^{2}-v_{0}^{2}}{2 a_{x}} \tag{6-11}
\end{equation*}
\]

Substituting from Eq. 6-10, we then have
\[
\begin{equation*}
x-x_{0}=\frac{v^{2}-v_{0}^{2}}{-2 \mu_{k} g} . \tag{6-12}
\end{equation*}
\]


Figure 6-4 (a) A car sliding to the right and finally stopping after a displacement of 290 m . A free-body diagram for the car on (b) a horizontal road and (c) a hill.

Inserting the initial speed \(v_{0}=10.0 \mathrm{~m} / \mathrm{s}\), the final speed \(v=0\), and the coefficient of kinetic friction \(\mu_{k}=0.60\), we find that the car's stopping distance is
\[
x-x_{0}=8.50 \mathrm{~m} \approx 8.5 \mathrm{~m}
\]
(Answer)
(b) What is the stopping distance if the road is covered with ice with \(\mu_{k}=0.10\) ?

Calculation: Our solution is perfectly fine through Eq. 6-12 but now we substitute this new \(\mu_{k}\), finding
\[
x-x_{0}=51 \mathrm{~m}
\]
(Answer)
Thus, a much longer clear path would be needed to avoid the car hitting something along the way.
(c) Now let's have the car sliding down an icy hill with an inclination of \(\theta=5.00^{\circ}\) (a mild incline, nothing like the hills of San Francisco). The free-body diagram shown in Fig. 6-4c is like the ramp in Sample Problem 5.04 except, to be consistent with Fig. \(6-4 b\), the positive direction of the \(x\) axis is down the ramp. What now is the stopping distance?

Calculations: Switching from Fig. 6-4b to \(c\) involves two major changes. (1) Now a component of the gravitational force is along the tilted \(x\) axis, pulling the car down the hill. From Sample Problem 5.04 and Fig. 5-15, that down-the-hill component is \(m g \sin \theta\), which is in the positive direction of the \(x\) axis in Fig. 6-4c. (2) The normal force (still perpendicular to the road) now balances only a component of the gravitational
force, not the full force. From Sample Problem 5.04 (see Fig. \(5-15 i\) ), we write that balance as
\[
F_{N}=m g \cos \theta
\]

In spite of these changes, we still want to write Newton's second law ( \(F_{\text {net }, x}=m a_{x}\) ) for the motion along the (now tilted) \(x\) axis. We have
\[
\begin{aligned}
-f_{k}+m g \sin \theta & =m a_{x} \\
-\mu_{k} F_{N}+m g \sin \theta & =m a_{x}
\end{aligned}
\]
and \(\quad-\mu_{k} m g \cos \theta+m g \sin \theta=m a_{x}\).
Solving for the acceleration and substituting the given data
now give us
\[
\begin{align*}
a_{x} & =-\mu_{k} g \cos \theta+g \sin \theta \\
& =-(0.10)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \cos 5.00^{\circ}+\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \sin 5.00^{\circ} \\
& =-0.122 \mathrm{~m} / \mathrm{s}^{2} . \tag{6-13}
\end{align*}
\]

Substituting this result into Eq. 6-11 gives us the stopping distance hown the hill:
\[
x-x_{0}=409 \mathrm{~m} \approx 400 \mathrm{~m},
\]
(Answer)
which is about \(\frac{1}{4} \mathrm{mi}\) ! Such icy hills separate people who can do this calculation (and thus know to stay home) from people who cannot (and thus end up in web videos).

PLU'S Additional examples, video, and practice available at WileyPLUS

\section*{6-2 the drag force and terminal speed}

\section*{Learning Objectives}

After reading this module, you should be able to ... 6.04 Apply the relationship between the drag force on an object moving through air and the speed of the object.
6.05 Determine the terminal speed of an object falling through air.

\section*{Key Ideas}
- When there is relative motion between air (or some other fluid) and a body, the body experiences a drag force \(\vec{D}\) that opposes the relative motion and points in the direction in which the fluid flows relative to the body. The magnitude of \(\vec{D}\) is related to the relative speed \(v\) by an experimentally determined drag coefficient \(C\) according to
\[
D=\frac{1}{2} C \rho A v^{2},
\]
where \(\rho\) is the fluid density (mass per unit volume) and \(A\) is the effective cross-sectional area of the body (the area
of a cross section taken perpendicular to the relative velocity \(\vec{v}\) ).
- When a blunt object has fallen far enough through air, the magnitudes of the drag force \(\vec{D}\) and the gravitational force \(\vec{F}_{g}\) on the body become equal. The body then falls at a constant terminal speed \(v_{t}\) given by
\[
v_{t}=\sqrt{\frac{2 F_{g}}{C \rho A}} .
\]

\section*{The Drag Force and Terminal Speed}

A fluid is anything that can flow-generally either a gas or a liquid. When there is a relative velocity between a fluid and a body (either because the body moves through the fluid or because the fluid moves past the body), the body experiences a drag force \(\vec{D}\) that opposes the relative motion and points in the direction in which the fluid flows relative to the body.

Here we examine only cases in which air is the fluid, the body is blunt (like a baseball) rather than slender (like a javelin), and the relative motion is fast enough so that the air becomes turbulent (breaks up into swirls) behind the body. In such cases, the magnitude of the drag force \(\vec{D}\) is related to the relative speed \(v\) by an experimentally determined drag coefficient \(C\) according to
\[
\begin{equation*}
D=\frac{1}{2} C \rho A v^{2}, \tag{6-14}
\end{equation*}
\]

Table 6-1 Some Terminal Speeds in Air
\begin{tabular}{lcc}
\hline Object & Terminal Speed (m/s) & \(95 \%\) Distance \(^{a}(\mathrm{~m})\) \\
\hline Shot (from shot put) & 145 & 2500 \\
Sky diver (typical) & 60 & 430 \\
Baseball & 42 & 210 \\
Tennis ball & 31 & 115 \\
Basketball & 20 & 47 \\
Ping-Pong ball & 9 & 10 \\
Raindrop (radius \(=1.5 \mathrm{~mm})\) & 7 & 6 \\
Parachutist (typical) & 5 & 3 \\
\hline
\end{tabular}
\({ }^{a}\) This is the distance through which the body must fall from rest to reach \(95 \%\) of its terminal speed. Based on Peter J. Brancazio, Sport Science, 1984, Simon \& Schuster, New York.
where \(\rho\) is the air density (mass per volume) and \(A\) is the effective cross-sectional area of the body (the area of a cross section taken perpendicular to the velocity \(\vec{v}\) ). The drag coefficient \(C\) (typical values range from 0.4 to 1.0 ) is not truly a constant for a given body because if \(v\) varies significantly, the value of \(C\) can vary as well. Here, we ignore such complications.

Downhill speed skiers know well that drag depends on \(A\) and \(v^{2}\). To reach high speeds a skier must reduce \(D\) as much as possible by, for example, riding the skis in the "egg position" (Fig. 6-5) to minimize \(A\).

Falling. When a blunt body falls from rest through air, the drag force \(\vec{D}\) is directed upward; its magnitude gradually increases from zero as the speed of the body increases. This upward force \(\vec{D}\) opposes the downward gravitational force \(\vec{F}_{g}\) on the body. We can relate these forces to the body's acceleration by writing Newton's second law for a vertical \(y\) axis \(\left(F_{\text {net }, y}=m a_{y}\right)\) as
\[
\begin{equation*}
D-F_{g}=m a, \tag{6-15}
\end{equation*}
\]
where \(m\) is the mass of the body. As suggested in Fig. 6-6, if the body falls long enough, \(D\) eventually equals \(F_{g}\). From Eq. 6-15, this means that \(a=0\), and so the body's speed no longer increases. The body then falls at a constant speed, called the terminal speed \(v_{t}\).

To find \(v_{t}\), we set \(a=0\) in Eq. 6-15 and substitute for \(D\) from Eq. 6-14, obtaining
\[
\frac{1}{2} C \rho A v_{t}^{2}-F_{g}=0
\]
\[
\begin{equation*}
\text { which gives } \quad v_{t}=\sqrt{\frac{2 F_{g}}{C \rho A}} \tag{6-16}
\end{equation*}
\]

Table 6-1 gives values of \(v_{t}\) for some common objects.
According to calculations* based on Eq. 6-14, a cat must fall about six floors to reach terminal speed. Until it does so, \(F_{g}>D\) and the cat accelerates downward because of the net downward force. Recall from Chapter 2 that your body is an accelerometer, not a speedometer. Because the cat also senses the acceleration, it is frightened and keeps its feet underneath its body, its head tucked in, and its spine bent upward, making \(A\) small, \(v_{t}\) large, and injury likely.

However, if the cat does reach \(v_{t}\) during a longer fall, the acceleration vanishes and the cat relaxes somewhat, stretching its legs and neck horizontally outward and

\footnotetext{
*W. O. Whitney and C. J. Mehlhaff, "High-Rise Syndrome in Cats." The Journal of the American Veterinary Medical Association, 1987.
}


Karl-Josef Hildenbrand/dpa/Landov LLC
Figure 6-5 This skier crouches in an "egg position" so as to minimize her effective cross-sectional area and thus minimize the air drag acting on her.

As the cat's speed increases, the upward drag force increases until it balances the gravitational force.


Figure 6-6 The forces that act on a body falling through air: (a) the body when it has just begun to fall and \((b)\) the freebody diagram a little later, after a drag force has developed. (c) The drag force has increased until it balances the gravitational force on the body. The body now falls at its constant terminal speed.


Figure 6-7 Sky divers in a horizontal "spread eagle" maximize air drag.
straightening its spine (it then resembles a flying squirrel). These actions increase area \(A\) and thus also, by Eq. 6-14, the drag \(D\). The cat begins to slow because now \(D>F_{g}\) (the net force is upward), until a new, smaller \(v_{t}\) is reached. The decrease in \(v_{t}\) reduces the possibility of serious injury on landing. Just before the end of the fall, when it sees it is nearing the ground, the cat pulls its legs back beneath its body to prepare for the landing.

Humans often fall from great heights for the fun of skydiving. However, in April 1987, during a jump, sky diver Gregory Robertson noticed that fellow sky diver Debbie Williams had been knocked unconscious in a collision with a third sky diver and was unable to open her parachute. Robertson, who was well above Williams at the time and who had not yet opened his parachute for the 4 km plunge, reoriented his body head-down so as to minimize \(A\) and maximize his downward speed. Reaching an estimated \(v_{t}\) of \(320 \mathrm{~km} / \mathrm{h}\), he caught up with Williams and then went into a horizontal "spread eagle" (as in Fig. 6-7) to increase \(D\) so that he could grab her. He opened her parachute and then, after releasing her, his own, a scant 10 s before impact. Williams received extensive internal injuries due to her lack of control on landing but survived.

\section*{Sample Problem 6.03 Terminal speed of falling raindrop}

A raindrop with radius \(R=1.5 \mathrm{~mm}\) falls from a cloud that is at height \(h=1200 \mathrm{~m}\) above the ground. The drag coefficient \(C\) for the drop is 0.60 . Assume that the drop is spherical throughout its fall. The density of water \(\rho_{w}\) is \(1000 \mathrm{~kg} / \mathrm{m}^{3}\), and the density of air \(\rho_{a}\) is \(1.2 \mathrm{~kg} / \mathrm{m}^{3}\).
(a) As Table 6-1 indicates, the raindrop reaches terminal speed after falling just a few meters. What is the terminal speed?

\section*{KEY IDEA}

The drop reaches a terminal speed \(v_{t}\) when the gravitational force on it is balanced by the air drag force on it, so its acceleration is zero. We could then apply Newton's second law and the drag force equation to find \(v_{t}\), but Eq. 6-16 does all that for us.

Calculations: To use Eq. 6-16, we need the drop's effective cross-sectional area \(A\) and the magnitude \(F_{g}\) of the gravitational force. Because the drop is spherical, \(A\) is the area of a circle \(\left(\pi R^{2}\right)\) that has the same radius as the sphere. To find \(F_{g}\), we use three facts: (1) \(F_{g}=m g\), where \(m\) is the drop's mass; (2) the (spherical) drop's volume is \(V=\frac{4}{3} \pi R^{3}\); and (3) the density of the water in the drop is the mass per volume, or \(\rho_{w}=m / V\). Thus, we find
\[
F_{g}=V \rho_{w} g=\frac{4}{3} \pi R^{3} \rho_{w} g .
\]

We next substitute this, the expression for \(A\), and the given data into Eq. 6-16. Being careful to distinguish between the air den-
sity \(\rho_{a}\) and the water density \(\rho_{w}\), we obtain
\[
\begin{aligned}
v_{t} & =\sqrt{\frac{2 F_{g}}{C \rho_{a} A}}=\sqrt{\frac{8 \pi R^{3} \rho_{w} g}{3 C \rho_{a} \pi R^{2}}}=\sqrt{\frac{8 R \rho_{w} g}{3 C \rho_{a}}} \\
& =\sqrt{\frac{(8)\left(1.5 \times 10^{-3} \mathrm{~m}\right)\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{(3)(0.60)\left(1.2 \mathrm{~kg} / \mathrm{m}^{3}\right)}} \\
& =7.4 \mathrm{~m} / \mathrm{s} \approx 27 \mathrm{~km} / \mathrm{h} .
\end{aligned}
\]
(Answer)
Note that the height of the cloud does not enter into the calculation.
(b) What would be the drop's speed just before impact if there were no drag force?

\section*{KEY IDEA}

With no drag force to reduce the drop's speed during the fall, the drop would fall with the constant free-fall acceleration \(g\), so the constant-acceleration equations of Table 2-1 apply.

Calculation: Because we know the acceleration is \(g\), the initial velocity \(v_{0}\) is 0 , and the displacement \(x-x_{0}\) is \(-h\), we use Eq. 2-16 to find \(v\) :
\[
\begin{aligned}
v & =\sqrt{2 g h}=\sqrt{(2)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(1200 \mathrm{~m})} \\
& =153 \mathrm{~m} / \mathrm{s} \approx 550 \mathrm{~km} / \mathrm{h} .
\end{aligned}
\]
(Answer)
Had he known this, Shakespeare would scarcely have written, "it droppeth as the gentle rain from heaven, upon the place beneath." In fact, the speed is close to that of a bullet from a large-caliber handgun!

\section*{6-3 unIFORM CIRCULAR MOTION}

\section*{Learning Objectives}

After reading this module, you should be able to. . .
6.06 Sketch the path taken in uniform circular motion and explain the velocity, acceleration, and force vectors (magnitudes and directions) during the motion.
6.07 Identify that unless there is a radially inward net force (a centripetal force), an object cannot move in circular motion.
6.08 For a particle in uniform circular motion, apply the relationship between the radius of the path, the particle's speed and mass, and the net force acting on the particle.

\section*{Key Ideas}
- If a particle moves in a circle or a circular arc of radius \(R\) at constant speed \(v\), the particle is said to be in uniform circular motion. It then has a centripetal acceleration \(\vec{a}\) with magnitude given by
\[
a=\frac{v^{2}}{R} .
\]
- This acceleration is due to a net centripetal force on the particle, with magnitude given by
\[
F=\frac{m v^{2}}{R}
\]
where \(m\) is the particle's mass. The vector quantities \(\vec{a}\) and \(\vec{F}\) are directed toward the center of curvature of the particle's path.

\section*{Uniform Circular Motion}

From Module 4-5, recall that when a body moves in a circle (or a circular arc) at constant speed \(v\), it is said to be in uniform circular motion. Also recall that the body has a centripetal acceleration (directed toward the center of the circle) of constant magnitude given by
\[
\begin{equation*}
a=\frac{v^{2}}{R} \quad \text { (centripetal acceleration) } \tag{6-17}
\end{equation*}
\]
where \(R\) is the radius of the circle. Here are two examples:
1. Rounding a curve in a car. You are sitting in the center of the rear seat of a car moving at a constant high speed along a flat road. When the driver suddenly turns left, rounding a corner in a circular arc, you slide across the seat toward the right and then jam against the car wall for the rest of the turn. What is going on?

While the car moves in the circular arc, it is in uniform circular motion; that is, it has an acceleration that is directed toward the center of the circle. By Newton's second law, a force must cause this acceleration. Moreover, the force must also be directed toward the center of the circle. Thus, it is a centripetal force, where the adjective indicates the direction. In this example, the centripetal force is a frictional force on the tires from the road; it makes the turn possible.

If you are to move in uniform circular motion along with the car, there must also be a centripetal force on you. However, apparently the frictional force on you from the seat was not great enough to make you go in a circle with the car. Thus, the seat slid beneath you, until the right wall of the car jammed into you. Then its push on you provided the needed centripetal force on you, and you joined the car's uniform circular motion.
2. Orbiting Earth. This time you are a passenger in the space shuttle Atlantis. As it and you orbit Earth, you float through your cabin. What is going on?

Both you and the shuttle are in uniform circular motion and have accelerations directed toward the center of the circle. Again by Newton's second law, centripetal forces must cause these accelerations. This time the centripetal forces are gravitational pulls (the pull on you and the pull on the shuttle) exerted by Earth and directed radially inward, toward the center of Earth.

In both car and shuttle you are in uniform circular motion, acted on by a centripetal force-yet your sensations in the two situations are quite different. In the car, jammed up against the wall, you are aware of being compressed by the wall. In the orbiting shuttle, however, you are floating around with no sensation of any force acting on you. Why this difference?

The difference is due to the nature of the two centripetal forces. In the car, the centripetal force is the push on the part of your body touching the car wall. You can sense the compression on that part of your body. In the shuttle, the centripetal force is Earth's gravitational pull on every atom of your body. Thus, there is no compression (or pull) on any one part of your body and no sensation of a force acting on you. (The sensation is said to be one of "weightlessness," but that description is tricky. The pull on you by Earth has certainly not disappeared and, in fact, is only a little less than it would be with you on the ground.)

Another example of a centripetal force is shown in Fig. 6-8. There a hockey puck moves around in a circle at constant speed \(v\) while tied to a string looped around a central peg. This time the centripetal force is the radially inward pull on the puck from the string. Without that force, the puck would slide off in a straight line instead of moving in a circle.

Note again that a centripetal force is not a new kind of force. The name merely indicates the direction of the force. It can, in fact, be a frictional force, a gravitational force, the force from a car wall or a string, or any other force. For any situation:

A centripetal force accelerates a body by changing the direction of the body's velocity without changing the body's speed.

From Newton's second law and Eq. 6-17 \(\left(a=v^{2} / R\right)\), we can write the magnitude \(F\) of a centripetal force (or a net centripetal force) as
\[
\begin{equation*}
F=m \frac{v^{2}}{R} \quad \text { (magnitude of centripetal force). } \tag{6-18}
\end{equation*}
\]

Because the speed \(v\) here is constant, the magnitudes of the acceleration and the force are also constant.

However, the directions of the centripetal acceleration and force are not constant; they vary continuously so as to always point toward the center of the circle. For this reason, the force and acceleration vectors are sometimes drawn along a radial axis \(r\) that moves with the body and always extends from the center of the circle to the body, as in Fig. 6-8. The positive direction of the axis is radially outward, but the acceleration and force vectors point radially inward.


The puck moves in uniform circular motion only because of a toward-thecenter force.

Figure 6-8 An overhead view of a hockey puck moving with constant speed \(v\) in a circular path of radius \(R\) on a horizontal frictionless surface. The centripetal force on the puck is \(\vec{T}\), the pull from the string, directed inward along the radial axis \(r\) extending through the puck.

\section*{Checkpoint 2}

As every amusement park fan knows, a Ferris wheel is a ride consisting of seats mounted on a tall ring that rotates around a horizontal axis. When you ride in a Ferris wheel at constant speed, what are the directions of your acceleration \(\vec{a}\) and the normal force \(\vec{F}_{N}\) on you (from the always upright seat) as you pass through (a) the highest point and (b) the lowest point of the ride? (c) How does the magnitude of the acceleration at the highest point compare with that at the lowest point? (d) How do the magnitudes of the normal force compare at those two points?

\section*{Sample Problem 6.04 Vertical circular loop, Diavolo}

Largely because of riding in cars, you are used to horizontal circular motion. Vertical circular motion would be a novelty. In this sample problem, such motion seems to defy the gravitational force.

In a 1901 circus performance, Allo "Dare Devil" Diavolo introduced the stunt of riding a bicycle in a loop-the-loop (Fig. 6-9a). Assuming that the loop is a circle with radius \(R=2.7 \mathrm{~m}\), what is the least speed \(v\) that Diavolo and his bicycle could have at the top of the loop to remain in contact with it there?


Figure 6-9 (a) Contemporary advertisement for Diavolo and (b) free-body diagram for the performer at the top of the loop.

\section*{KEY IDEA}

We can assume that Diavolo and his bicycle travel through the top of the loop as a single particle in uniform circular motion. Thus, at the top, the acceleration \(\vec{a}\) of this particle must have the magnitude \(a=v^{2} / R\) given by Eq. 6-17 and be directed downward, toward the center of the circular loop.

Calculations: The forces on the particle when it is at the top of the loop are shown in the free-body diagram of Fig 6-9b. The gravitational force \(\vec{F}_{g}\) is downward along a \(y\) axis; so is the normal force \(\vec{F}_{N}\) on the particle from the loop (the loop can push down, not pull up); so also is the centripetal acceleration of the particle. Thus, Newton's second law for \(y\) components ( \(F_{\text {net, },}=m a_{y}\) ) gives us
\[
\begin{align*}
& -F_{N}-F_{g}=m(-a) \\
& -F_{N}-m g=m\left(-\frac{v^{2}}{R}\right) \tag{6-19}
\end{align*}
\]

If the particle has the least speed \(v\) needed to remain in contact, then it is on the verge of losing contact with the loop (falling away from the loop), which means that \(F_{N}=0\) at the top of the loop (the particle and loop touch but without any normal force). Substituting 0 for \(F_{N}\) in Eq. 6-19, solving for \(v\), and then substituting known values give us
\[
\begin{aligned}
v & =\sqrt{g R}=\sqrt{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(2.7 \mathrm{~m})} \\
& =5.1 \mathrm{~m} / \mathrm{s}
\end{aligned}
\]
(Answer)
Comments: Diavolo made certain that his speed at the top of the loop was greater than \(5.1 \mathrm{~m} / \mathrm{s}\) so that he did not lose contact with the loop and fall away from it. Note that this speed requirement is independent of the mass of Diavolo and his bicycle. Had he feasted on, say, pierogies before his performance, he still would have had to exceed only \(5.1 \mathrm{~m} / \mathrm{s}\) to maintain contact as he passed through the top of the loop.

\section*{Sample Problem 6.05 Car in flat circular turn}

Upside-down racing: A modern race car is designed so that the passing air pushes down on it, allowing the car to travel much faster through a flat turn in a Grand Prix without friction failing. This downward push is called negative lift. Can a race car have so much negative lift that it could be driven upside down on a long ceiling, as done fictionally by a sedan in the first Men in Black movie?

Figure 6-10a represents a Grand Prix race car of mass \(m=600 \mathrm{~kg}\) as it travels on a flat track in a circular arc of radius \(R=100 \mathrm{~m}\). Because of the shape of the car and the wings on it, the passing air exerts a negative lift \(\vec{F}_{L}\) downward on the car. The coefficient of static friction between the tires and the track is 0.75 . (Assume that the forces on the four tires are identical.)
(a) If the car is on the verge of sliding out of the turn when its speed is \(28.6 \mathrm{~m} / \mathrm{s}\), what is the magnitude of the negative lift \(\vec{F}_{L}\) acting downward on the car?

\section*{KEY IDEAS}
1. A centripetal force must act on the car because the car is moving around a circular arc; that force must be directed toward the center of curvature of the arc (here, that is horizontally).
2. The only horizontal force acting on the car is a frictional force on the tires from the road. So the required centripetal force is a frictional force.
3. Because the car is not sliding, the frictional force must be a static frictional force \(\vec{f}_{s}\) (Fig. 6-10a).
4. Because the car is on the verge of sliding, the magnitude \(f_{s}\) is equal to the maximum value \(f_{s, \text { max }}=\mu_{s} F_{N}\), where \(F_{N}\) is the magnitude of the normal force \(\vec{F}_{N}\) acting on the car from the track.

Radial calculations: The frictional force \(\vec{f}_{s}\) is shown in the free-body diagram of Fig. 6-10b. It is in the negative direction of a radial axis \(r\) that always extends from the center of curvature through the car as the car moves. The force produces a centripetal acceleration of magnitude \(v^{2} / R\). We can relate the force and acceleration by writing Newton's second law for components along the \(r\) axis \(\left(F_{\text {net }, r}=m a_{r}\right)\) as
\[
\begin{equation*}
-f_{s}=m\left(-\frac{v^{2}}{R}\right) . \tag{6-20}
\end{equation*}
\]

Substituting \(f_{s, \max }=\mu_{s} F_{N}\) for \(f_{s}\) leads us to
\[
\begin{equation*}
\mu_{s} F_{N}=m\left(\frac{v^{2}}{R}\right) . \tag{6-21}
\end{equation*}
\]

Vertical calculations: Next, let's consider the vertical forces on the car. The normal force \(\vec{F}_{N}\) is directed up, in the positive direction of the \(y\) axis in Fig. 6-10b. The gravitational force \(\vec{F}_{g}=m \vec{g}\) and the negative lift \(\vec{F}_{L}\) are directed down. The acceleration of the car along the \(y\) axis is zero. Thus we can write Newton's second law for components along the \(y\) axis \(\left(F_{\text {net }, y}=m a_{y}\right)\) as
\[
F_{N}-m g-F_{L}=0
\]
or
\[
\begin{equation*}
F_{N}=m g+F_{L} \tag{6-22}
\end{equation*}
\]

Combining results: Now we can combine our results along the two axes by substituting Eq. 6-22 for \(F_{N}\) in Eq. 6-21. Doing so and then solving for \(F_{L}\) lead to
\[
\begin{aligned}
F_{L} & =m\left(\frac{v^{2}}{\mu_{s} R}-g\right) \\
& =(600 \mathrm{~kg})\left(\frac{(28.6 \mathrm{~m} / \mathrm{s})^{2}}{(0.75)(100 \mathrm{~m})}-9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =663.7 \mathrm{~N} \approx 660 \mathrm{~N} .
\end{aligned}
\]
(Answer)


Figure 6-10 (a) A race car moves around a flat curved track at constant speed \(v\). The frictional force \(\vec{f}_{s}\) provides the necessary centripetal force along a radial axis \(r\). (b) A free-body diagram (not to scale) for the car, in the vertical plane containing \(r\).
(b) The magnitude \(F_{L}\) of the negative lift on a car depends on the square of the car's speed \(v^{2}\), just as the drag force does (Eq. 6-14). Thus, the negative lift on the car here is greater when the car travels faster, as it does on a straight section of track. What is the magnitude of the negative lift for a speed of \(90 \mathrm{~m} / \mathrm{s}\) ?

\section*{KEY IDEA}
\(F_{L}\) is proportional to \(v^{2}\).
Calculations: Thus we can write a ratio of the negative lift \(F_{L, 90}\) at \(v=90 \mathrm{~m} / \mathrm{s}\) to our result for the negative lift \(F_{L}\) at \(v=\) \(28.6 \mathrm{~m} / \mathrm{s}\) as
\[
\frac{F_{L, 90}}{F_{L}}=\frac{(90 \mathrm{~m} / \mathrm{s})^{2}}{(28.6 \mathrm{~m} / \mathrm{s})^{2}}
\]

Substituting our known negative lift of \(F_{L}=663.7 \mathrm{~N}\) and solving for \(F_{L, 90}\) give us
\[
F_{L, 90}=6572 \mathrm{~N} \approx 6600 \mathrm{~N} .
\]
(Answer)
Upside-down racing: The gravitational force is, of course, the force to beat if there is a chance of racing upside down:
\[
\begin{aligned}
F_{g} & =m g=(600 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =5880 \mathrm{~N} .
\end{aligned}
\]

With the car upside down, the negative lift is an upward force of 6600 N , which exceeds the downward 5880 N . Thus, the car could run on a long ceiling provided that it moves at about \(90 \mathrm{~m} / \mathrm{s}(=324 \mathrm{~km} / \mathrm{h}=201 \mathrm{mi} / \mathrm{h})\). However, moving that fast while right side up on a horizontal track is dangerous enough, so you are not likely to see upside-down racing except in the movies.

\section*{Sample Problem 6.06 Car in banked circular turn}

This problem is quite challenging in setting up but takes only a few lines of algebra to solve. We deal with not only uniformly circular motion but also a ramp. However, we will not need a tilted coordinate system as with other ramps. Instead we can take a freeze-frame of the motion and work with simply horizontal and vertical axes. As always in this chapter, the starting point will be to apply Newton's second law, but that will require us to identify the force component that is responsible for the uniform circular motion.

Curved portions of highways are always banked (tilted) to prevent cars from sliding off the highway. When a highway is dry, the frictional force between the tires and the road surface may be enough to prevent sliding. When the highway is wet, however, the frictional force may be negligible, and banking is then essential. Figure 6-11a represents a car
of mass \(m\) as it moves at a constant speed \(v\) of \(20 \mathrm{~m} / \mathrm{s}\) around a banked circular track of radius \(R=190 \mathrm{~m}\). (It is a normal car, rather than a race car, which means that any vertical force from the passing air is negligible.) If the frictional force from the track is negligible, what bank angle \(\theta\) prevents sliding?

\section*{KEY IDEAS}

Here the track is banked so as to tilt the normal force \(\vec{F}_{N}\) on the car toward the center of the circle (Fig. 6-11b). Thus, \(\vec{F}_{N}\) now has a centripetal component of magnitude \(F_{N r}\), directed inward along a radial axis \(r\). We want to find the value of the bank angle \(\theta\) such that this centripetal component keeps the car on the circular track without need of friction.


Figure 6-11 (a) A car moves around a curved banked road at constant speed \(v\). The bank angle is exaggerated for clarity. (b) A free-body diagram for the car, assuming that friction between tires and road is zero and that the car lacks negative lift. The radially inward component \(F_{N r}\) of the normal force (along radial axis \(r\) ) provides the necessary centripetal force and radial acceleration.

Radial calculation: As Fig. 6-11b shows (and as you should verify), the angle that force \(\vec{F}_{N}\) makes with the vertical is equal to the bank angle \(\theta\) of the track. Thus, the radial component \(F_{N r}\) is equal to \(F_{N} \sin \theta\). We can now write Newton's second law for components along the \(r\) axis \(\left(F_{\text {net }, r}=m a_{r}\right)\) as
\[
\begin{equation*}
-F_{N} \sin \theta=m\left(-\frac{v^{2}}{R}\right) \tag{6-23}
\end{equation*}
\]

We cannot solve this equation for the value of \(\theta\) because it also contains the unknowns \(F_{N}\) and \(m\).

Vertical calculations: We next consider the forces and acceleration along the \(y\) axis in Fig. 6-11b. The vertical component of the normal force is \(F_{N y}=F_{N} \cos \theta\), the gravitational force \(\vec{F}_{g}\) on the car has the magnitude \(m g\), and the acceleration of the car along the \(y\) axis is zero. Thus we can
write Newton's second law for components along the \(y\) axis \(\left(F_{\text {net }, y}=m a_{y}\right)\) as
\[
F_{N} \cos \theta-m g=m(0),
\]
from which
\[
\begin{equation*}
F_{N} \cos \theta=m g . \tag{6-24}
\end{equation*}
\]

Combining results: Equation 6-24 also contains the unknowns \(F_{N}\) and \(m\), but note that dividing Eq. 6-23 by Eq. 6-24 neatly eliminates both those unknowns. Doing so, replacing \((\sin \theta) /(\cos \theta)\) with \(\tan \theta\), and solving for \(\theta\) then yield
\[
\begin{aligned}
\theta & =\tan ^{-1} \frac{v^{2}}{g R} \\
& =\tan ^{-1} \frac{(20 \mathrm{~m} / \mathrm{s})^{2}}{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(190 \mathrm{~m})}=12^{\circ} .
\end{aligned}
\]
(Answer)

\section*{Beview \& Summary}

Friction When a force \(\vec{F}\) tends to slide a body along a surface, a frictional force from the surface acts on the body. The frictional force is parallel to the surface and directed so as to oppose the sliding. It is due to bonding between the atoms on the body and the atoms on the surface, an effect called cold-welding.

If the body does not slide, the frictional force is a static
frictional force \(\vec{f}_{s}\). If there is sliding, the frictional force is a kinetic frictional force \(\vec{f}_{k}\).
1. If a body does not move, the static frictional force \(\vec{f}_{s}\) and the component of \(\vec{F}\) parallel to the surface are equal in magnitude, and \(\vec{f}_{s}\) is directed opposite that component. If the component increases, \(f_{s}\) also increases.
2. The magnitude of \(\vec{f}_{s}\) has a maximum value \(f_{s, \text { max }}\) given by
\[
\begin{equation*}
f_{s, \max }=\mu_{s} F_{N}, \tag{6-1}
\end{equation*}
\]
where \(\mu_{s}\) is the coefficient of static friction and \(F_{N}\) is the magnitude of the normal force. If the component of \(\vec{F}\) parallel to the surface exceeds \(f_{s, \text { max }}\), the static friction is overwhelmed and the body slides on the surface.
3. If the body begins to slide on the surface, the magnitude of the frictional force rapidly decreases to a constant value \(f_{k}\) given by
\[
\begin{equation*}
f_{k}=\mu_{k} F_{N}, \tag{6-2}
\end{equation*}
\]
where \(\mu_{k}\) is the coefficient of kinetic friction.
Drag Force When there is relative motion between air (or some other fluid) and a body, the body experiences a drag force \(\vec{D}\) that opposes the relative motion and points in the direction in which the fluid flows relative to the body. The magnitude of \(\vec{D}\) is
related to the relative speed \(v\) by an experimentally determined drag coefficient \(C\) according to
\[
\begin{equation*}
D=\frac{1}{2} C \rho A v^{2}, \tag{6-14}
\end{equation*}
\]
where \(\rho\) is the fluid density (mass per unit volume) and \(A\) is the effective cross-sectional area of the body (the area of a cross section taken perpendicular to the relative velocity \(\vec{v}\) ).

Terminal Speed When a blunt object has fallen far enough through air, the magnitudes of the drag force \(\vec{D}\) and the gravitational force \(\vec{F}_{g}\) on the body become equal. The body then falls at a constant terminal speed \(v_{t}\) given by
\[
\begin{equation*}
v_{t}=\sqrt{\frac{2 F_{g}}{C \rho A}} \tag{6-16}
\end{equation*}
\]

Uniform Circular Motion If a particle moves in a circle or a circular arc of radius \(R\) at constant speed \(v\), the particle is said to be in uniform circular motion. It then has a centripetal acceleration \(\vec{a}\) with magnitude given by
\[
\begin{equation*}
a=\frac{v^{2}}{R} . \tag{6-17}
\end{equation*}
\]

This acceleration is due to a net centripetal force on the particle, with magnitude given by
\[
\begin{equation*}
F=\frac{m v^{2}}{R} \tag{6-18}
\end{equation*}
\]
where \(m\) is the particle's mass. The vector quantities \(\vec{a}\) and \(\vec{F}\) are directed toward the center of curvature of the particle's path. A particle can move in circular motion only if a net centripetal force acts on it.

\section*{Questions}

1 In Fig. 6-12, if the box is stationary and the angle \(\theta\) between the horizontal and force \(\vec{F}\) is increased somewhat, do the following quantities increase, decrease, or remain the


Figure 6-12 Question 1. same: (a) \(F_{x}\); (b) \(f_{s}\); (c) \(F_{N}\); (d) \(f_{s, \text { max }}\) ? (e) If, instead, the box is sliding and \(\theta\) is increased, does the magnitude of the frictional force on the box increase, decrease, or remain the same?
2 Repeat Question 1 for force \(\vec{F}\) angled upward instead of downward as drawn.
3 In Fig. 6-13, horizontal force \(\vec{F}_{1}\) of magnitude 10 N is applied to a box on a floor, but the box does not slide. Then, as the magnitude of vertical force \(\vec{F}_{2}\) is increased from zero,


Figure 6-13 Question 3. do the following quantities increase, decrease, or stay the same: (a) the magnitude of the frictional force \(\vec{f}_{s}\), on the box; (b) the magnitude of the normal force \(\vec{F}_{N}\) on the box from the floor; (c) the maximum value \(f_{s, \text { max }}\) of the magnitude of the static frictional force on the box? (d) Does the box eventually slide?
4 In three experiments, three different horizontal forces are applied to the same block lying on the same countertop. The force magnitudes are \(F_{1}=12 \mathrm{~N}, F_{2}=8 \mathrm{~N}\), and \(F_{3}=4 \mathrm{~N}\). In each experiment, the block remains stationary in spite of the applied force. Rank the forces according to (a) the magnitude \(f_{s}\) of the static frictional force on the block from the countertop and (b) the maximum value \(f_{s, \text { max }}\) of that force, greatest first.
5 If you press an apple crate against a wall so hard that the crate cannot slide down the wall, what is the direction of (a) the static frictional force \(\vec{f}_{s}\) on the crate from the wall and (b) the normal force \(\vec{F}_{N}\) on the crate from the wall? If you increase your push, what happens to (c) \(f_{s}\), (d) \(F_{N}\), and (e) \(f_{s, \text { max }}\) ?
6 In Fig. 6-14, a block of mass \(m\) is held stationary on a ramp by the frictional force on it from the ramp. A force \(\vec{F}\), directed up the ramp, is then applied to the block and gradually increased in magnitude from zero. During the increase, what happens to the direction and magnitude of the frictional force


Figure 6-14 Question 6. on the block?
7 Reconsider Question 6 but with the force \(\vec{F}\) now directed down the ramp. As the magnitude of \(\vec{F}\) is increased from zero, what happens to the direction and magnitude of the frictional force on the block?
8 In Fig. 6-15, a horizontal force of 100 N is to be applied to a 10 kg slab that is initially stationary on a frictionless floor, to accelerate the slab. A 10 kg block lies on top of the slab; the coefficient of friction \(\mu\) between the block and the slab is not known, and the


Figure 6-15 Question 8.
block might slip. In fact, the contact between the block and the slab might even be frictionless. (a) Considering that possibility, what is the possible range of values for the magnitude of the slab's acceleration \(a_{\text {slab }}\) ? (Hint: You don't need written calculations; just consider extreme values for \(\mu\).) (b) What is the possible range for the magnitude \(a_{\text {block }}\) of the block's acceleration?
9 Figure 6-16 shows the overhead view of the path of an amusement-park ride that travels at constant speed through five circular arcs of radii \(R_{0}, 2 R_{0}\), and \(3 R_{0}\). Rank the arcs according to the magnitude of the centripetal force on a rider traveling in the arcs, greatest first.


Figure 6-16 Question 9.
10 In 1987, as a Halloween stunt, two sky divers passed a pumpkin back and forth between them while they were in free fall just west of Chicago. The stunt was great fun until the last sky diver with the pumpkin opened his parachute. The pumpkin broke free from his grip, plummeted about 0.5 km , ripped through the roof of a house, slammed into the kitchen floor, and splattered all over the newly remodeled kitchen. From the sky diver's viewpoint and from the pumpkin's viewpoint, why did the sky diver lose control of the pumpkin?
11 A person riding a Ferris wheel moves through positions at (1) the top, (2) the bottom, and (3) midheight. If the wheel rotates at a constant rate, rank these three positions according to (a) the magnitude of the person's centripetal acceleration, (b) the magnitude of the net centripetal force on the person, and (c) the magnitude of the normal force on the person, greatest first.
12 During a routine flight in 1956, test pilot Tom Attridge put his jet fighter into a \(20^{\circ}\) dive for a test of the aircraft's 20 mm machine cannons. While traveling faster than sound at 4000 m altitude, he shot a burst of rounds. Then, after allowing the cannons to cool, he shot another burst at 2000 m ; his speed was then \(344 \mathrm{~m} / \mathrm{s}\), the speed of the rounds relative to him was \(730 \mathrm{~m} / \mathrm{s}\), and he was still in a dive.

Almost immediately the canopy around him was shredded and his right air intake was damaged. With little flying capability left, the jet crashed into a wooded area, but Attridge managed to escape the resulting explosion. Explain what apparently happened just after the second burst of cannon rounds. (Attridge has been the only pilot who has managed to shoot himself down.)
13 A box is on a ramp that is at angle \(\theta\) to the horizontal. As \(\theta\) is increased from zero, and before the box slips, do the following increase, decrease, or remain the same: (a) the component of the gravitational force on the box, along the ramp, (b) the magnitude of the static frictional force on the box from the ramp, (c) the component of the gravitational force on the box, perpendicular to the ramp, (d) the magnitude of the normal force on the box from the ramp, and (e) the maximum value \(f_{s, \text { max }}\) of the static frictional force?

\section*{Problems}

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

\section*{Module 6-1 Friction}
-1 The floor of a railroad flatcar is loaded with loose crates having a coefficient of static friction of 0.25 with the floor. If the train is initially moving at a speed of \(48 \mathrm{~km} / \mathrm{h}\), in how short a distance can the train be stopped at constant acceleration without causing the crates to slide over the floor?
-2 In a pickup game of dorm shuffleboard, students crazed by final exams use a broom to propel a calculus book along the dorm hallway. If the 3.5 kg book is pushed from rest through a distance of 0.90 m by the horizontal 25 N force from the broom and then has a speed of \(1.60 \mathrm{~m} / \mathrm{s}\), what is the coefficient of kinetic friction between the book and floor?
-3 SSM WWW A bedroom bureau with a mass of 45 kg , including drawers and clothing, rests on the floor. (a) If the coefficient of static friction between the bureau and the floor is 0.45 , what is the magnitude of the minimum horizontal force that a person must apply to start the bureau moving? (b) If the drawers and clothing, with 17 kg mass, are removed before the bureau is pushed, what is the new minimum magnitude?
-4 A slide-loving pig slides down a certain \(35^{\circ}\) slide in twice the time it would take to slide down a frictionless \(35^{\circ}\) slide. What is the coefficient of kinetic friction between the pig and the slide?
-5 ©0 A 2.5 kg block is initially at rest on a horizontal surface. A horizontal force \(\vec{F}\) of magnitude 6.0 N and a vertical force \(\vec{P}\) are then applied to the block (Fig. 6-17). The coefficients of friction for the block and surface are \(\mu_{s}=0.40\) and \(\mu_{k}=0.25\). Determine the magnitude of the frictional force acting on the block if the magnitude of \(\vec{P}\) is (a) 8.0 N , (b) 10 N , and (c) 12 N .


Figure 6-17 Problem 5.
-6 A baseball player with mass \(m=79 \mathrm{~kg}\), sliding into second base, is retarded by a frictional force of magnitude 470 N . What is the coefficient of kinetic friction \(\mu_{k}\) between the player and the ground?
\(\bullet 7\) SSIM ILW A person pushes horizontally with a force of 220 N on a 55 kg crate to move it across a level floor. The coefficient of kinetic friction between the crate and the floor is 0.35 . What is the magnitude of (a) the frictional force and (b) the acceleration of the crate?
-8 The mysterious sliding stones. Along the remote Racetrack Playa in Death Valley, California, stones sometimes gouge out prominent trails in the desert floor, as if the stones had been migrating (Fig. 6-18). For years curiosity mounted about why the stones moved. One explanation was that strong winds during occasional rainstorms would drag the rough stones
over ground softened by rain. When the desert dried out, the trails behind the stones were hard-baked in place. According to measurements, the coefficient of kinetic friction between the stones and the wet playa ground is about 0.80 . What horizontal force must act on a 20 kg stone (a typical mass) to maintain the stone's motion once a gust has started it moving? (Story continues with Problem 37.)


Jerry Schad/Photo Researchers, Inc.
Figure 6-18 Problem 8. What moved the stone?
-9 © A 3.5 kg block is pushed along a horizontal floor by a force \(\vec{F}\) of magnitude 15 N at an angle \(\theta=40^{\circ}\) with the horizontal (Fig. 6-19). The coefficient of kinetic friction between the block and the floor is 0.25 . Calculate the magnitudes of (a) the frictional force on the block from the floor and (b) the block's acceleration.
-10 Figure 6-20 shows an initially stationary block of mass \(m\) on a floor. A force of magnitude 0.500 mg is then applied at upward angle \(\theta=\)


Figure 6-19
Problems 9 and 32.


Figure 6-20 Problem 10. \(20^{\circ}\). What is the magnitude of the acceleration of the block across the floor if the friction coefficients are (a) \(\mu_{s}=0.600\) and \(\mu_{k}=0.500\) and (b) \(\mu_{s}=0.400\) and \(\mu_{k}=0.300\) ?
-11 SSM A 68 kg crate is dragged across a floor by pulling on a rope attached to the crate and inclined \(15^{\circ}\) above the horizontal.
(a) If the coefficient of static friction is 0.50 , what minimum force magnitude is required from the rope to start the crate moving?
(b) If \(\mu_{k}=0.35\), what is the magnitude of the initial acceleration of the crate?
-12 In about 1915, Henry Sincosky of Philadelphia suspended himself from a rafter by gripping the rafter with the thumb of each
hand on one side and the fingers on the opposite side (Fig. 6-21). Sincosky's mass was 79 kg . If the coefficient of static friction between hand and rafter was 0.70 , what was the least magnitude of the normal force on the rafter from each thumb or opposite fingers? (After suspending himself, Sincosky chinned himself on the rafter and then moved hand-over-hand along the rafter. If you do not think Sincosky's grip was remarkable, try to repeat his stunt.)
-13 A worker pushes horizontally on a 35 kg crate with a force of magnitude 110 N . The coefficient of static friction between the crate and the floor is 0.37 . (a) What is the value of \(f_{s, \text { max }}\) under the circumstances? (b) Does the crate move? (c) What is the frictional force on the crate from the floor? (d) Suppose, next, that a second worker pulls directly upward on the crate to help out. What is the least vertical pull that will allow the


Figure 6-21
Problem 12. first worker's 110 N push to move the crate? (e) If, instead, the second worker pulls horizontally to help out, what is the least pull that will get the crate moving?
-14 Figure 6-22 shows the cross section of a road cut into the side of a mountain. The solid line \(A A^{\prime}\) represents a weak bedding plane along which sliding is possible. Block \(B\) directly above the highway is separated from uphill rock by a large crack (called a joint), so that only friction between the block and the


Figure 6-22 Problem 14. bedding plane prevents sliding. The mass of the block is \(1.8 \times 10^{7} \mathrm{~kg}\), the dip angle \(\theta\) of the bedding plane is \(24^{\circ}\), and the coefficient of static friction between block and plane is 0.63 . (a) Show that the block will not slide under these circumstances. (b) Next, water seeps into the joint and expands upon freezing, exerting on the block a force \(\vec{F}\) parallel to \(A A^{\prime}\). What minimum value of force magnitude \(F\) will trigger a slide down the plane?
-15 The coefficient of static friction between Teflon and scrambled eggs is about 0.04 . What is the smallest angle from the horizontal that will cause the eggs to slide across the bottom of a Teflon-coated skillet?
-116 A loaded penguin sled weighing 80 N rests on a plane inclined at angle \(\theta=20^{\circ}\) to the horizontal (Fig. \(6-23\) ). Between the sled and the plane, the coefficient of static friction is 0.25 , and the coefficient of kinetic friction is 0.15 . (a) What is the least magnitude of the force \(\vec{F}\),


Figure 6-23
Problems 16 and 22. parallel to the plane, that will prevent the sled from slipping down the plane? (b) What is the minimum magnitude \(F\) that will start the sled moving up the plane? (c) What value of \(F\) is required to move the sled up the plane at constant velocity?
-•17 In Fig. 6-24, a force \(\vec{P}\) acts on a block weighing 45 N . The block is


Figure 6-24 Problem 17.
initially at rest on a plane inclined at angle \(\theta=15^{\circ}\) to the horizontal. The positive direction of the \(x\) axis is up the plane. Between block and plane, the coefficient of static friction is \(\mu_{s}=0.50\) and the coefficient of kinetic friction is \(\mu_{k}=0.34\). In unit-vector notation, what is the frictional force on the block from the plane when \(\vec{P}\) is (a) \((-5.0 \mathrm{~N}) \hat{\mathrm{i}},(\mathrm{b})(-8.0 \mathrm{~N}) \hat{\mathrm{i}}\), and (c) \((-15 \mathrm{~N}) \hat{\mathrm{i}}\) ?
-18 ©0 You testify as an expert witness in a case involving an accident in which car \(A\) slid into the rear of car \(B\), which was stopped at a red light along a road headed down a hill (Fig. 6-25). You find that the slope of the hill is \(\theta=12.0^{\circ}\), that the cars were separated by distance \(d=24.0 \mathrm{~m}\) when the driver of car \(A\) put the car into a slide (it lacked any automatic anti-brake-lock system), and that the speed of \(\operatorname{car} A\) at the onset of braking was \(v_{0}=18.0 \mathrm{~m} / \mathrm{s}\). With what speed did car \(A\) hit car \(B\) if the coefficient of kinetic friction was (a) 0.60 (dry road surface) and (b) 0.10 (road surface covered with wet leaves)?

-•19 A 12 N horizontal force \(\vec{F}\) pushes a block weighing 5.0 N against a vertical wall (Fig. 6-26). The coefficient of static friction between the wall and the block is 0.60 , and the coefficient of kinetic friction


Figure 6-26 Problem 19. is 0.40 . Assume that the block is not moving initially. (a) Will the block move? (b) In unit-vector notation, what is the force on the block from the wall?
-20 ©0 In Fig. 6-27, a box of Cheerios (mass \(m_{C}=1.0 \mathrm{~kg}\) ) and a box of Wheaties (mass \(m_{W}=3.0\) kg ) are accelerated across a horizontal surface by a horizontal force


Figure 6-27 Problem 20. \(\vec{F}\) applied to the Cheerios box. The magnitude of the frictional force on the Cheerios box is 2.0 N , and the magnitude of the frictional force on the Wheaties box is 4.0 N . If the magnitude of \(\vec{F}\) is 12 N , what is the magnitude of the force on the Wheaties box from the Cheerios box?
-21 An initially stationary box of sand is to be pulled across a floor by means of a cable in which the tension should not exceed 1100 N . The coefficient of static friction between the box and the floor is 0.35 . (a) What should be the angle between the cable and the horizontal in order to pull the greatest possible amount of sand, and (b) what is the weight of the sand and box in that situation?
\(\bullet 22\) © In Fig. 6-23, a sled is held on an inclined plane by a cord pulling directly up the plane. The sled is to be on the verge of moving up the plane. In Fig. 628, the magnitude \(F\) required of the cord's force on the sled is plotted versus a range of values for the coefficient of static friction \(\mu_{s}\) between sled and plane: \(F_{1}=2.0 \mathrm{~N}, F_{2}=5.0 \mathrm{~N}\), and \(\mu_{2}=\) 0.50 . At what angle \(\theta\) is the plane inclined?


Figure 6-28 Problem 22.
-023 When the three blocks in Fig. 6-29 are released from rest, they accelerate with a magnitude of \(0.500 \mathrm{~m} / \mathrm{s}^{2}\). Block 1 has mass \(M\), block 2 has \(2 M\), and block 3 has \(2 M\). What is the coefficient of kinetic friction between block 2 and the table?
\(\bullet 24\) A 4.10 kg block is pushed along a floor by a constant applied force that is horizontal and has a magnitude of 40.0 N . Figure 6-30 gives the block's speed \(v\) versus time \(t\) as the block moves along an \(x\) axis on the floor. The scale of the figure's vertical axis is set by \(v_{s}=\) \(5.0 \mathrm{~m} / \mathrm{s}\). What is the coefficient of kinetic friction between the block and the floor?
\(\because 25\) ssm www Block \(B\) in Fig. \(6-31\) weighs 711 N . The coefficient of static friction between block and table is 0.25 ; angle \(\theta\) is \(30^{\circ}\); assume that the cord between \(B\) and the knot is horizontal. Find the maximum weight of block \(A\) for which the system will be stationary.
-026 ©0 Figure 6-32 shows three crates being pushed over a concrete floor by a horizontal force \(\vec{F}\) of magnitude 440 N . The masses of the crates are \(m_{1}=30.0 \mathrm{~kg}, m_{2}=10.0\) kg , and \(m_{3}=20.0 \mathrm{~kg}\). The coefficient of kinetic friction between the floor and each of the crates is 0.700 . (a) What is the magnitude \(F_{32}\) of the force on crate 3 from crate 2 ? (b) If the crates then slide onto a polished floor, where the coefficient of kinetic friction is less than 0.700 , is magnitude \(F_{32}\) more than, less than, or the same as it was when the coefficient was 0.700 ?
\(\bullet 27\) © Body \(A\) in Fig. 6-33 weighs 102 N , and body \(B\) weighs 32 N . The coefficients of friction between \(A\) and the incline are \(\mu_{s}=0.56\) and \(\mu_{k}=0.25\). Angle \(\theta\) is \(40^{\circ}\). Let the positive direction of an \(x\) axis be up the incline. In unit-vector notation, what is the acceleration of \(A\) if \(A\) is initially (a) at rest, (b) moving up the incline, and (c) moving down the incline?
-028 In Fig. 6-33, two blocks are connected over a pulley. The mass of block \(A\) is 10 kg , and the coefficient of kinetic friction between \(A\) and the incline is 0.20 . Angle \(\theta\) of the incline is \(30^{\circ}\). Block \(A\) slides down the incline at constant speed. What is the mass of block \(B\) ? Assume the connecting rope has negligible mass. (The pulley's function is only to redirect the rope.)


Figure 6-29 Problem 23.


Figure 6-30 Problem 24.


Figure 6-31 Problem 25.


Figure 6-32 Problem 26.
-29 60 In Fig. 6-34, blocks \(A\) and \(B\) have weights of 44 N and 22 N , respectively. (a) Determine the minimum weight of block \(C\) to keep \(A\) from sliding if \(\mu_{s}\) between \(A\) and the table is 0.20 . (b) Block \(C\) suddenly is lifted off \(A\). What is the acceleration of block \(A\) if \(\mu_{k}\) between \(A\) and the table is 0.15 ?


Figure 6-34 Problem 29.
-030 A toy chest and its contents have a combined weight of 180 N . The coefficient of static friction between toy chest and floor is 0.42 . The child in Fig. 6-35 attempts to move the chest across the floor by pulling on an attached rope. (a) If \(\theta\) is \(42^{\circ}\), what is the magnitude of the force \(\vec{F}\) that the child must exert on the rope to put the chest on the verge of moving? (b) Write an expression for the magnitude \(F\) required to put the chest on the verge of moving as a function of the angle \(\theta\). Determine (c) the value of \(\theta\) for which \(F\) is a minimum and (d) that minimum magnitude.


Figure 6-35 Problem 30.
-•31 SSM Two blocks, of weights 3.6 N and 7.2 N , are connected by a massless string and slide down a \(30^{\circ}\) inclined plane. The coefficient of kinetic friction between the lighter block and the plane is 0.10 , and the coefficient between the heavier block and the plane is 0.20 . Assuming that the lighter block leads, find (a) the magnitude of the acceleration of the blocks and (b) the tension in the taut string.
-032 © A block is pushed across a floor by a constant force that is applied at downward angle \(\theta\) (Fig. 6-19). Figure 6-36 gives the acceleration magnitude \(a\) versus a range of values for the coefficient of kinetic friction \(\mu_{k}\) between block and floor: \(a_{1}=3.0 \mathrm{~m} / \mathrm{s}^{2}, \mu_{k 2}=\) 0.20 , and \(\mu_{k 3}=0.40\). What is the value of \(\theta\) ?


Figure 6-36 Problem 32.
\(\bullet \bullet 33\) SSIM A 1000 kg boat is traveling at \(90 \mathrm{~km} / \mathrm{h}\) when its engine is shut off. The magnitude of the frictional force \(\vec{f}_{k}\) between boat and water is proportional to the speed \(v\) of the boat: \(f_{k}=70 v\), where \(v\) is in meters per second and \(f_{k}\) is in newtons. Find the time required for the boat to slow to \(45 \mathrm{~km} / \mathrm{h}\).
-••34 ©0 In Fig. 6-37, a slab of mass \(m_{1}=40 \mathrm{~kg}\) rests on a frictionless floor, and a block of mass \(m_{2}=10\) kg rests on top of the slab. Between


Figure 6-37 Problem 34. block and slab, the coefficient of static friction is 0.60 , and the coefficient of kinetic friction is 0.40 . A horizontal force \(\vec{F}\) of magnitude 100 N begins to pull directly on the block, as shown. In unit-vector notation, what are the resulting accelerations of (a) the block and (b) the slab?
\(\bullet \bullet 35\) ILW The two blocks ( \(m=16\) kg and \(M=88 \mathrm{~kg}\) ) in Fig. 6-38 are not attached to each other. The coefficient of static friction between the blocks is \(\mu_{s}=0.38\), but the surface beneath the larger block is frictionless. What is the minimum magnitude
 of the horizontal force \(\vec{F}\) required to keep the smaller block from slipping down the larger block?

\section*{Module 6-2 The Drag Force and Terminal Speed}
-36 The terminal speed of a sky diver is \(160 \mathrm{~km} / \mathrm{h}\) in the spreadeagle position and \(310 \mathrm{~km} / \mathrm{h}\) in the nosedive position. Assuming that the diver's drag coefficient \(C\) does not change from one position to the other, find the ratio of the effective cross-sectional area \(A\) in the slower position to that in the faster position.
-•37 Continuation of Problem 8. Now assume that Eq. 6-14 gives the magnitude of the air drag force on the typical 20 kg stone, which presents to the wind a vertical cross-sectional area of \(0.040 \mathrm{~m}^{2}\) and has a drag coefficient \(C\) of 0.80 . Take the air density to be \(1.21 \mathrm{~kg} / \mathrm{m}^{3}\), and the coefficient of kinetic friction to be 0.80 . (a) In kilometers per hour, what wind speed \(V\) along the ground is needed to maintain the stone's motion once it has started moving? Because winds along the ground are retarded by the ground, the wind speeds reported for storms are often measured at a height of 10 m . Assume wind speeds are 2.00 times those along the ground. (b) For your answer to (a), what wind speed would be reported for the storm? (c) Is that value reasonable for a high-speed wind in a storm? (Story continues with Problem 65.)
-•38 Assume Eq. 6-14 gives the drag force on a pilot plus ejection seat just after they are ejected from a plane traveling horizontally at \(1300 \mathrm{~km} / \mathrm{h}\). Assume also that the mass of the seat is equal to the mass of the pilot and that the drag coefficient is that of a sky diver. Making a reasonable guess of the pilot's mass and using the appropriate \(v_{t}\) value from Table 6-1, estimate the magnitudes of (a) the drag force on the pilot + seat and (b) their horizontal deceleration (in terms of \(g\) ), both just after ejection. (The result of (a) should indicate an engineering requirement: The seat must include a protective barrier to deflect the initial wind blast away from the pilot's head.)
-•39 Calculate the ratio of the drag force on a jet flying at \(1000 \mathrm{~km} / \mathrm{h}\) at an altitude of 10 km to the drag force on a propdriven transport flying at half that speed and altitude. The density
of air is \(0.38 \mathrm{~kg} / \mathrm{m}^{3}\) at 10 km and \(0.67 \mathrm{~kg} / \mathrm{m}^{3}\) at 5.0 km . Assume that the airplanes have the same effective cross-sectional area and drag coefficient \(C\).
\(\bullet 40\) In downhill speed skiing a skier is retarded by both the air drag force on the body and the kinetic frictional force on the skis. (a) Suppose the slope angle is \(\theta=40.0^{\circ}\), the snow is dry snow with a coefficient of kinetic friction \(\mu_{k}=0.0400\), the mass of the skier and equipment is \(m=85.0 \mathrm{~kg}\), the cross-sectional area of the (tucked) skier is \(A=1.30 \mathrm{~m}^{2}\), the drag coefficient is \(C=0.150\), and the air density is \(1.20 \mathrm{~kg} / \mathrm{m}^{3}\). (a) What is the terminal speed? (b) If a skier can vary \(C\) by a slight amount \(d C\) by adjusting, say, the hand positions, what is the corresponding variation in the terminal speed?

\section*{Module 6-3 Uniform Circular Motion}
-41 A cat dozes on a stationary merry-go-round in an amusement park, at a radius of 5.4 m from the center of the ride. Then the operator turns on the ride and brings it up to its proper turning rate of one complete rotation every 6.0 s . What is the least coefficient of static friction between the cat and the merry-go-round that will allow the cat to stay in place, without sliding (or the cat clinging with its claws)?
-42 Suppose the coefficient of static friction between the road and the tires on a car is 0.60 and the car has no negative lift. What speed will put the car on the verge of sliding as it rounds a level curve of 30.5 m radius?
-43 ILW What is the smallest radius of an unbanked (flat) track around which a bicyclist can travel if her speed is \(29 \mathrm{~km} / \mathrm{h}\) and the \(\mu_{s}\) between tires and track is 0.32 ?
-44 During an Olympic bobsled run, the Jamaican team makes a turn of radius 7.6 m at a speed of \(96.6 \mathrm{~km} / \mathrm{h}\). What is their acceleration in terms of \(g\) ?
\(\bullet 45\) SSM ILW A student of weight 667 N rides a steadily rotating Ferris wheel (the student sits upright). At the highest point, the magnitude of the normal force \(\vec{F}_{N}\) on the student from the seat is 556 N . (a) Does the student feel "light" or "heavy" there? (b) What is the magnitude of \(\vec{F}_{N}\) at the lowest point? If the wheel's speed is doubled, what is the magnitude \(F_{N}\) at the (c) highest and (d) lowest point?
-•46 A police officer in hot pursuit drives her car through a circular turn of radius 300 m with a constant speed of \(80.0 \mathrm{~km} / \mathrm{h}\). Her mass is 55.0 kg . What are (a) the magnitude and (b) the angle (relative to vertical) of the net force of the officer on the car seat? (Hint: Consider both horizontal and vertical forces.)
\(\bullet 47\) A circular-motion addict of mass 80 kg rides a Ferris wheel around in a vertical circle of radius 10 m at a constant speed of \(6.1 \mathrm{~m} / \mathrm{s}\). (a) What is the period of the motion? What is the magnitude of the normal force on the addict from the seat when both go through (b) the highest point of the circular path and (c) the lowest point?
\(\bullet 48\) A roller-coaster car at an amusement park has a mass of 1200 kg when fully loaded with passengers. As the car passes over the top of a circular hill of radius 18 m , assume that its speed is not changing. At the top of the hill, what are the (a) magnitude \(F_{N}\) and (b) direction (up or down) of the normal force on the car from the track if the car's speed is \(v=11 \mathrm{~m} / \mathrm{s}\) ? What are (c) \(F_{N}\) and (d) the direction if \(v=14 \mathrm{~m} / \mathrm{s}\) ?
-049 In Fig. 6-39, a car is driven at constant speed over a circular hill and then into a circular valley with the same radius. At the top of the hill, the normal force on the driver from the car seat is 0 . The driver's mass is 70.0 kg . What is the magnitude of the normal force on the driver from the seat when the car passes through the bottom of the valley?

-•50 An 85.0 kg passenger is made to move along a circular path of radius \(r=3.50 \mathrm{~m}\) in uniform circular motion. (a) Figure 6-40a is a plot of the required magnitude \(F\) of the net centripetal force for a range of possible values of the passenger's speed \(v\). What is the plot's slope at \(v=8.30 \mathrm{~m} / \mathrm{s}\) ? (b) Figure \(6-40 b\) is a plot of \(F\) for a range of possible values of \(T\), the period of the motion. What is the plot's slope at \(T=2.50 \mathrm{~s}\) ?


Figure 6-40 Problem 50.
-051 SSM www An airplane is flying in a horizontal circle at a speed of \(480 \mathrm{~km} / \mathrm{h}\) (Fig. 6-41). If its wings are tilted at angle \(\theta=40^{\circ}\) to the horizontal, what is the radius of the circle in which the plane is flying? Assume that the required force is provided entirely by an "aerodynamic lift" that is perpendicular to the wing surface. \(\because 052\) An amusement park ride consists of a car moving in a ver-


Figure 6-41 Problem 51. tical circle on the end of a rigid boom of negligible mass. The combined weight of the car and riders is 5.0 kN , and the circle's radius is 10 m . At the top of the circle, what are the (a) magnitude \(F_{B}\) and (b) direction (up or down) of the force on the car from the boom if the car's speed is \(v=5.0 \mathrm{~m} / \mathrm{s}\) ? What are (c) \(F_{B}\) and (d) the direction if \(v=12 \mathrm{~m} / \mathrm{s}\) ?
-053 An old streetcar rounds a flat corner of radius 9.1 m , at \(16 \mathrm{~km} / \mathrm{h}\). What angle with the vertical will be made by the loosely hanging hand straps?
००54 In designing circular rides for amusement parks, mechanical engineers must consider how small variations in certain parameters can alter the net force on a passenger. Consider a passenger of mass \(m\) riding around a horizontal circle of radius \(r\) at speed \(v\). What is the variation \(d F\) in the net force magnitude for (a) a variation \(d r\) in the radius with \(v\) held constant, (b) a variation
\(d v\) in the speed with \(r\) held constant, and (c) a variation \(d T\) in the period with \(r\) held constant?
\(\bullet 055\) A bolt is threaded onto one end of a thin horizontal rod, and the rod is then rotated horizontally about its other end. An engineer monitors the motion by flashing a strobe lamp onto the rod and bolt, adjusting the strobe rate until the bolt appears to be in the same


Figure 6-42 Problem 55. eight places during each full rotation of the rod (Fig. 6-42). The strobe rate is 2000 flashes per second; the bolt has mass 30 g and is at radius 3.5 cm . What is the magnitude of the force on the bolt from the rod?
-056 (60) A banked circular highway curve is designed for traffic moving at \(60 \mathrm{~km} / \mathrm{h}\). The radius of the curve is 200 m . Traffic is moving along the highway at \(40 \mathrm{~km} / \mathrm{h}\) on a rainy day. What is the minimum coefficient of friction between tires and road that will allow cars to take the turn without sliding off the road? (Assume the cars do not have negative lift.)
-•57 © A puck of mass \(m=1.50 \mathrm{~kg}\) slides in a circle of radius \(r=20.0 \mathrm{~cm}\) on a frictionless table while attached to a hanging cylinder of mass \(M=2.50 \mathrm{~kg}\) by means of a cord that extends through a hole in the table (Fig. 6-43). What speed keeps the cylinder at rest?


Figure 6-43 Problem 57.
-058 Brake or turn? Figure 644 depicts an overhead view of a car's path as the car travels toward a wall. Assume that the driver begins to brake the car when the distance to the wall is \(d=107 \mathrm{~m}\), and take the car's mass as \(m=1400 \mathrm{~kg}\), its initial speed as \(v_{0}=35 \mathrm{~m} / \mathrm{s}\), and the coefficient of static friction as \(\mu_{s}=0.50\). Assume that the car's weight is dis-


Figure 6-44
Problem 58. tributed evenly on the four wheels, even during braking. (a) What magnitude of static friction is needed (between tires and road) to stop the car just as it reaches the wall? (b) What is the maximum possible static friction \(f_{s, \text { max }}\) ? (c) If the coefficient of kinetic friction between the (sliding) tires and the road is \(\mu_{k}=0.40\), at what speed will the car hit the wall? To avoid the crash, a driver could elect to turn the car so that it just barely misses the wall, as shown in the figure. (d) What magnitude of frictional force would be required to keep the car in a circular path of radius \(d\) and at the given speed \(v_{0}\), so that the car moves in a quarter circle and then parallel to the wall? (e) Is the required force less than \(f_{s, \text { max }}\) so that a circular path is possible?
\({ }^{\circ} 0559\) SSM ILW In Fig. 6-45, a 1.34 kg ball is connected by means of two massless strings, each of length \(L=1.70 \mathrm{~m}\), to a vertical, rotating rod. The strings are tied to the rod with separation \(d=1.70 \mathrm{~m}\) and are taut. The tension in the upper string is 35 N . What are the (a) tension in the lower string, (b) magnitude of the net force \(\vec{F}_{\text {net }}\) on the ball, and (c) speed of the ball? (d) What is the direction of \(\vec{F}_{\text {net }}\) ?

\section*{Additional Problems}

60 ©o In Fig. 6-46, a box of ant aunts (total


Figure 6-45
Problem 59. mass \(m_{1}=1.65 \mathrm{~kg}\) ) and a box of ant uncles (total mass \(m_{2}=3.30 \mathrm{~kg}\) ) slide down an inclined plane while attached by a massless rod parallel to the plane. The angle of incline is \(\theta=30.0^{\circ}\). The coefficient of kinetic friction between the aunt box and the incline is \(\mu_{1}=0.226\); that between the uncle box and the incline is \(\mu_{2}=0.113\). Compute (a) the tension in the rod and (b) the magnitude of the common acceleration of the two boxes. (c) How would the answers to (a) and (b) change if the uncles trailed the aunts?


Figure 6-46 Problem 60.

61 SSM A block of mass \(m_{t}=4.0 \mathrm{~kg}\) is put on top of a block of mass \(m_{b}=5.0 \mathrm{~kg}\). To cause the top block to slip on the bottom one while the bottom one is held fixed, a horizontal force of at least 12 N must be applied to the top block. The assembly of blocks is now placed on a horizontal, frictionless table (Fig. 6-47). Find the magnitudes of (a) the maximum horizontal force \(\vec{F}\) that can be applied to the lower block so that the blocks will move together and (b) the resulting acceleration of the blocks.


Figure 6-47 Problem 61.
62 A 5.00 kg stone is rubbed across the horizontal ceiling of a cave passageway (Fig. 6-48). If the coefficient of kinetic friction is 0.65 and the force applied to the stone is angled at \(\theta=70.0^{\circ}\), what must the magnitude of the force be for the stone to move at constant velocity?


Figure 6-48 Problem 62.

63 In Fig. 6-49, a 49 kg rock climber is climbing a "chimney." The coefficient of static friction between her shoes and the rock is 1.2 ; between her back and the rock is 0.80 . She has reduced her push against the rock until her back and her shoes are on the verge of slipping. (a) Draw a free-body diagram of her. (b) What is the magnitude of her push against the rock? (c) What fraction of her weight is supported by the frictional force on her shoes?


Figure 6-49 Problem 63.

64 A high-speed railway car goes around a flat, horizontal circle of radius 470 m at a constant speed. The magnitudes of the horizontal and vertical components of the force of the car on a 51.0 kg passenger are 210 N and 500 N , respectively. (a) What is the magnitude of the net force (of all the forces) on the passenger? (b) What is the speed of the car?
65 Continuation of Problems 8 and 37. Another explanation is that the stones move only when the water dumped on the playa during a storm freezes into a large, thin sheet of ice. The stones are trapped in place in the ice. Then, as air flows across the ice during a wind, the air-drag forces on the ice and stones move them both, with the stones gouging out the trails. The magnitude of the air-drag force on this horizontal "ice sail" is given by \(D_{\text {ice }}=4 C_{\text {ice }} \rho A_{\text {ice }} \nu^{2}\), where \(C_{\text {ice }}\) is the drag coefficient \(\left(2.0 \times 10^{-3}\right), \rho\) is the air density \(\left(1.21 \mathrm{~kg} / \mathrm{m}^{3}\right), A_{\text {ice }}\) is the horizontal area of the ice, and \(v\) is the wind speed along the ice.

Assume the following: The ice sheet measures 400 m by 500 m by 4.0 mm and has a coefficient of kinetic friction of 0.10 with the ground and a density of \(917 \mathrm{~kg} / \mathrm{m}^{3}\). Also assume that 100 stones identical to the one in Problem 8 are trapped in the ice. To maintain the motion of the sheet, what are the required wind speeds (a) near the sheet and (b) at a height of 10 m ? (c) Are these reasonable values for high-speed winds in a storm?
66 (60) In Fig. 6-50, block 1 of mass \(m_{1}=2.0 \mathrm{~kg}\) and block 2 of mass \(m_{2}=3.0 \mathrm{~kg}\) are connected by a string of negligible mass and are initially held in place. Block 2 is on a frictionless surface tilted at \(\theta=30^{\circ}\). The coefficient of kinetic friction between block 1 and the horizontal surface is 0.25 . The pulley has negligible mass and friction. Once they are released, the blocks move. What then is the tension in the string?


Figure 6-50 Problem 66.

67 In Fig. 6-51, a crate slides down an inclined right-angled trough. The coefficient of kinetic friction between the crate and the trough is \(\mu_{k}\). What is the acceleration of the crate in terms of \(\mu_{k}, \theta\), and \(g\) ?


Figure 6-51 Problem 67.

68 Engineering a highway curve. If a car goes through a curve too fast, the car tends to slide out of the curve. For a banked curve with friction, a frictional force acts on a fast car to oppose the tendency to slide out of the curve; the force is directed down the bank (in the direction water would drain). Consider a circular curve of radius \(R=200 \mathrm{~m}\) and bank angle \(\theta\), where the coefficient of static friction between tires and pavement is \(\mu_{s}\). A car (without negative lift) is driven around the curve as shown in Fig. 6-11. (a) Find an expression for the car speed \(v_{\text {max }}\) that puts the car on the verge of sliding out. (b) On the same graph, plot \(v_{\text {max }}\) versus angle \(\theta\) for the range \(0^{\circ}\) to \(50^{\circ}\), first for \(\mu_{s}=0.60\) (dry pavement) and then for \(\mu_{s}=0.050\) (wet or icy pavement). In kilometers per hour, evaluate \(v_{\text {max }}\) for a bank angle of \(\theta=10^{\circ}\) and for (c) \(\mu_{s}=0.60\) and (d) \(\mu_{s}=\) 0.050 . (Now you can see why accidents occur in highway curves when icy conditions are not obvious to drivers, who tend to drive at normal speeds.)
69 A student, crazed by final exams, uses a force \(\vec{P}\) of magnitude 80 N and angle \(\theta=70^{\circ}\) to push a 5.0 kg block across the ceiling of his room (Fig. 6-52). If the coefficient of kinetic friction between the block and the ceiling is 0.40 , what is the magnitude of the block's acceleration?


Figure 6-52 Problem 69.
70 © Figure 6 - 53 shows a conical pendulum, in which the bob (the small object at the lower end of the cord) moves in a horizontal circle at constant speed. (The cord sweeps out a cone as the bob rotates.) The bob has a mass of 0.040 kg , the string has length \(L=0.90 \mathrm{~m}\) and negligible mass, and the bob follows a circular path of circumference 0.94 m . What are (a) the tension in the string and (b) the period of the motion?

71 An 8.00 kg block of steel is at rest on a horizontal table. The coefficient of static friction between the block and the table is 0.450 . A force is to be applied to the block.


Figure 6-53 Problem 70.

To three significant figures, what is the magnitude of that applied force if it puts the block on the verge of sliding when the force is directed (a) horizontally, (b) upward at \(60.0^{\circ}\) from the horizontal, and (c) downward at \(60.0^{\circ}\) from the horizontal?
72 A box of canned goods slides down a ramp from street level into the basement of a grocery store with acceleration \(0.75 \mathrm{~m} / \mathrm{s}^{2} \mathrm{di}-\) rected down the ramp. The ramp makes an angle of \(40^{\circ}\) with the horizontal. What is the coefficient of kinetic friction between the box and the ramp?
73 In Fig. 6-54, the coefficient of kinetic friction between the block and inclined plane is 0.20 , and angle \(\theta\) is \(60^{\circ}\). What are the (a) magnitude \(a\) and (b) direction (up or down the plane) of the block's acceleration if the block is sliding down the plane? What are (c) \(a\) and (d) the direction if the block is sent sliding up the plane?


Figure 6-54
Problem 73.

74 A 110 g hockey puck sent sliding over ice is stopped in 15 m by the frictional force on it from the ice. (a) If its initial speed is \(6.0 \mathrm{~m} / \mathrm{s}\), what is the magnitude of the frictional force? (b) What is the coefficient of friction between the puck and the ice?
75 A locomotive accelerates a 25 -car train along a level track. Every car has a mass of \(5.0 \times 10^{4} \mathrm{~kg}\) and is subject to a frictional force \(f=250 v\), where the speed \(v\) is in meters per second and the force \(f\) is in newtons. At the instant when the speed of the train is \(30 \mathrm{~km} / \mathrm{h}\), the magnitude of its acceleration is \(0.20 \mathrm{~m} / \mathrm{s}^{2}\). (a) What is the tension in the coupling between the first car and the locomotive? (b) If this tension is equal to the maximum force the locomotive can exert on the train, what is the steepest grade up which the locomotive can pull the train at \(30 \mathrm{~km} / \mathrm{h}\) ?
76 A house is built on the top of a hill with a nearby slope at angle \(\theta=45^{\circ}\) (Fig. 6-55). An engineering study indicates that the slope angle should be reduced because the top layers of soil along the slope might slip past the lower layers. If the coefficient of static friction between two such layers is 0.5 , what is the least angle \(\phi\) through which the present slope should be reduced to prevent slippage?


Figure 6-55 Problem 76.
77 What is the terminal speed of a 6.00 kg spherical ball that has a radius of 3.00 cm and a drag coefficient of 1.60 ? The density of the air through which the ball falls is \(1.20 \mathrm{~kg} / \mathrm{m}^{3}\).

78 A student wants to determine the coefficients of static friction and kinetic friction between a box and a plank. She places the box on the plank and gradually raises one end of the plank. When the angle of inclination with the horizontal reaches \(30^{\circ}\), the box starts to slip, and it then slides 2.5 m down the plank in 4.0 s at constant acceleration. What are (a) the coefficient of static friction and (b) the coefficient of kinetic friction between the box and the plank?

79 SSM Block \(A\) in Fig. 6-56 has mass \(m_{A}=4.0 \mathrm{~kg}\), and block \(B\) has mass \(m_{B}=2.0 \mathrm{~kg}\). The coefficient of kinetic friction between block \(B\) and the horizontal plane is \(\mu_{k}=0.50\). The inclined plane is frictionless and at angle \(\theta=30^{\circ}\). The pulley serves only to change the direction of the cord connecting the blocks. The cord has negligible mass. Find (a) the tension in the cord and (b) the magnitude of the acceleration of the blocks.


Figure 6-56 Problem 79.
80 Calculate the magnitude of the drag force on a missile 53 cm in diameter cruising at \(250 \mathrm{~m} / \mathrm{s}\) at low altitude, where the density of air is \(1.2 \mathrm{~kg} / \mathrm{m}^{3}\). Assume \(C=0.75\).
81 SSM A bicyclist travels in a circle of radius 25.0 m at a constant speed of \(9.00 \mathrm{~m} / \mathrm{s}\). The bicycle-rider mass is 85.0 kg . Calculate the magnitudes of (a) the force of friction on the bicycle from the road and (b) the net force on the bicycle from the road.
82 In Fig. 6-57, a stuntman drives a car (without negative lift) over the top of a hill, the cross section of which can be approximated by a circle of radius \(R=250 \mathrm{~m}\). What is the greatest speed at which he can


Figure 6-57 Problem 82. drive without the car leaving the road at the top of the hill?
83 You must push a crate across a floor to a docking bay. The crate weighs 165 N . The coefficient of static friction between crate and floor is 0.510 , and the coefficient of kinetic friction is 0.32 . Your force on the crate is directed horizontally. (a) What magnitude of your push puts the crate on the verge of sliding? (b) With what magnitude must you then push to keep the crate moving at a constant velocity? (c) If, instead, you then push with the same magnitude as the answer to (a), what is the magnitude of the crate's acceleration?
84 In Fig. 6-58, force \(\vec{F}\) is applied to a crate of mass \(m\) on a floor where the coefficient of static friction between crate and floor is \(\mu_{s}\). Angle \(\theta\) is initially \(0^{\circ}\) but is gradu-


Figure 6-58 Problem 84. ally increased so that the force vector rotates clockwise in the figure. During the rotation, the magnitude \(F\) of the force is continuously adjusted so that the crate is always on the verge of sliding. For \(\mu_{s}=0.70\), (a) plot the ratio \(F / m g\) versus \(\theta\) and (b) determine the angle \(\theta_{\text {inf }}\) at which the ratio approaches an infinite value. (c) Does lubricating the floor increase or decrease \(\theta_{\mathrm{inf}}\), or is the value unchanged? (d) What is \(\theta_{\mathrm{inf}}\) for \(\mu_{s}=0.60\) ?
85 In the early afternoon, a car is parked on a street that runs down a steep hill, at an angle of \(35.0^{\circ}\) relative to the horizontal. Just then the coefficient of static friction between the tires and the street surface is 0.725 . Later, after nightfall, a sleet storm hits the area, and the coefficient decreases due to both the ice and a chemi-
cal change in the road surface because of the temperature decrease. By what percentage must the coefficient decrease if the car is to be in danger of sliding down the street?
86 A sling-thrower puts a stone \((0.250 \mathrm{~kg})\) in the sling's pouch \((0.010 \mathrm{~kg})\) and then begins to make the stone and pouch move in a vertical circle of radius 0.650 m . The cord between the pouch and the person's hand has negligible mass and will break when the tension in the cord is 33.0 N or more. Suppose the slingthrower could gradually increase the speed of the stone. (a) Will the breaking occur at the lowest point of the circle or at the highest point? (b) At what speed of the stone will that breaking occur?
87 SSM A car weighing 10.7 kN and traveling at \(13.4 \mathrm{~m} / \mathrm{s}\) without negative lift attempts to round an unbanked curve with a radius of 61.0 m . (a) What magnitude of the frictional force on the tires is required to keep the car on its circular path? (b) If the coefficient of static friction between the tires and the road is 0.350 , is the attempt at taking the curve successful?

88 In Fig. 6-59, block 1 of mass \(m_{1}=2.0 \mathrm{~kg}\) and block 2 of mass \(m_{2}=1.0 \mathrm{~kg}\) are connected by a string of negligible mass. Block 2 is pushed by force \(\vec{F}\) of magnitude 20


Figure 6-59 Problem 88. N and angle \(\theta=35^{\circ}\). The coefficient of kinetic friction between each block and the horizontal surface is 0.20. What is the tension in the string?

89 SSM A filing cabinet weighing 556 N rests on the floor. The coefficient of static friction between it and the floor is 0.68 , and the coefficient of kinetic friction is 0.56 . In four different attempts to move it, it is pushed with horizontal forces of magnitudes (a) 222 N , (b) 334 N , (c) 445 N , and (d) 556 N . For each attempt, calculate the magnitude of the frictional force on it from the floor. (The cabinet is initially at rest.) (e) In which of the attempts does the cabinet move?
90 In Fig. 6-60, a block weighing 22 N is held at rest against a vertical wall by a horizontal force \(\vec{F}\) of magnitude 60 N . The coefficient of static friction between the wall and the block is 0.55 , and the coefficient of kinetic friction between them is 0.38 . In six experiments, a second force \(\vec{P}\) is applied to the block and directed parallel to the wall with these magnitudes and directions: (a) 34 N , up, (b) 12 N , up, (c) 48 N , up, (d) 62 N , up, (e) 10 N , down, and (f) 18 N , down. In each experiment, what is the


\section*{Figure 6-60}

Problem 90. magnitude of the frictional force on the block? In which does the block move \((\mathrm{g})\) up the wall and (h) down the wall? (i) In which is the frictional force directed down the wall?

91 SSM A block slides with constant velocity down an inclined plane that has slope angle \(\theta\). The block is then projected up the same plane with an initial speed \(v_{0}\). (a) How far up the plane will it move before coming to rest? (b) After the block comes to rest, will it slide down the plane again? Give an argument to back your answer.
92 A circular curve of highway is designed for traffic moving at \(60 \mathrm{~km} / \mathrm{h}\). Assume the traffic consists of cars without negative lift. (a) If the radius of the curve is 150 m , what is the correct angle of banking of the road? (b) If the curve were not banked, what would be the minimum coefficient of friction between tires and road that would keep traffic from skidding out of the turn when traveling at \(60 \mathrm{~km} / \mathrm{h}\) ?

93 A 1.5 kg box is initially at rest on a horizontal surface when at \(t=0\) a horizontal force \(\vec{F}=(1.8 t) \hat{\mathrm{i}} \mathrm{N}\) (with \(t\) in seconds) is applied to the box. The acceleration of the box as a function of time \(t\) is given by \(\vec{a}=0\) for \(0 \leq t \leq 2.8 \mathrm{~s}\) and \(\vec{a}=(1.2 t-2.4) \hat{\mathrm{i}} \mathrm{m} / \mathrm{s}^{2}\) for \(t>\) 2.8 s . (a) What is the coefficient of static friction between the box and the surface? (b) What is the coefficient of kinetic friction between the box and the surface?

94 A child weighing 140 N sits at rest at the top of a playground slide that makes an angle of \(25^{\circ}\) with the horizontal. The child keeps from sliding by holding onto the sides of the slide. After letting go of the sides, the child has a constant acceleration of \(0.86 \mathrm{~m} / \mathrm{s}^{2}\) (down the slide, of course). (a) What is the coefficient of kinetic friction between the child and the slide? (b) What maximum and minimum values for the coefficient of static friction between the child and the slide are consistent with the information given here?
95 In Fig. 6-61 a fastidious worker pushes directly along the handle of a mop with a force \(\vec{F}\). The handle is at an angle \(\theta\) with the vertical, and \(\mu_{s}\) and \(\mu_{k}\) are the coefficients of static and kinetic friction between the head of the mop and the floor. Ignore the mass of the handle and assume that all the mop's mass \(m\) is in its head. (a) If the mop head moves along the floor with a constant velocity, then what is \(F\) ? (b) Show that if \(\theta\) is less than a certain value \(\theta_{0}\), then \(\vec{F}\) (still directed along the handle) is unable to move the mop head. Find \(\theta_{0}\).
96 A child places a picnic basket on the outer rim of a merry-go-round that has a radius of 4.6 m and revolves once every 30 s . (a) What is the speed of a point on that rim? (b) What is the lowest value of the coefficient of static friction between basket and merry-go-round that allows the basket to stay on the ride?
97 SSM A warehouse worker exerts a constant horizontal force of magnitude 85 N on a 40 kg box that is initially at rest on the horizontal floor of the warehouse. When the box has moved a distance of 1.4 m , its speed is \(1.0 \mathrm{~m} / \mathrm{s}\). What is the coefficient of kinetic friction between the box and the floor?
98 In Fig. 6-62, a 5.0 kg block is sent sliding up a plane inclined at \(\theta=37^{\circ}\) while a horizontal force \(\vec{F}\) of magnitude 50 N acts on it. The coefficient of kinetic friction between block and plane is 0.30 . What are the (a) magnitude and (b) direction (up or down the plane) of the block's acceleration? The block's initial speed is 4.0 \(\mathrm{m} / \mathrm{s}\). (c) How far up the plane does the block go? (d) When it reaches its highest point, does it remain at rest or slide back down the plane?


Figure 6-62 Problem 98.

99 An 11 kg block of steel is at rest on a horizontal table. The coefficient of static friction between block and table is 0.52 . (a) What is the magnitude of the horizontal force that will put the block on the verge of moving? (b) What is the magnitude of a force acting upward \(60^{\circ}\) from the horizontal that will put the block on the verge of moving? (c) If the force acts downward at \(60^{\circ}\) from the horizontal, how large can its magnitude be without causing the block to move?
100 A ski that is placed on snow will stick to the snow. However, when the ski is moved along the snow, the rubbing warms and partially melts the snow, reducing the coefficient of kinetic friction and promoting sliding. Waxing the ski makes it water repellent and reduces friction with the resulting layer of water. A magazine reports that a new type of plastic ski is especially water repellent and that, on a gentle 200 m slope in the Alps, a skier reduced his top-to-bottom time from 61 s with standard skis to 42 s with the new skis. Determine the magnitude of his average acceleration with (a) the standard skis and (b) the new skis. Assuming a \(3.0^{\circ}\) slope, compute the coefficient of kinetic friction for (c) the standard skis and (d) the new skis.
101 Playing near a road construction site, a child falls over a barrier and down onto a dirt slope that is angled downward at \(35^{\circ}\) to the horizontal. As the child slides down the slope, he has an acceleration that has a magnitude of \(0.50 \mathrm{~m} / \mathrm{s}^{2}\) and that is directed \(u p\) the slope. What is the coefficient of kinetic friction between the child and the slope?
102 A 100 N force, directed at an angle \(\theta\) above a horizontal floor, is applied to a 25.0 kg chair sitting on the floor. If \(\theta=0^{\circ}\), what are (a) the horizontal component \(F_{h}\) of the applied force and (b) the magnitude \(F_{N}\) of the normal force of the floor on the chair? If \(\theta=30.0^{\circ}\), what are (c) \(F_{h}\) and (d) \(F_{N}\) ? If \(\theta=60.0^{\circ}\), what are (e) \(F_{h}\) and (f) \(F_{N}\) ? Now assume that the coefficient of static friction between chair and floor is 0.420 . Does the chair slide or remain at rest if \(\theta\) is \((\mathrm{g}) 0^{\circ}\), (h) \(30.0^{\circ}\), and (i) \(60.0^{\circ}\) ?
103 A certain string can withstand a maximum tension of 40 N without breaking. A child ties a 0.37 kg stone to one end and, holding the other end, whirls the stone in a vertical circle of radius 0.91 m , slowly increasing the speed until the string breaks. (a) Where is the stone on its path when the string breaks? (b) What is the speed of the stone as the string breaks?
104 A four-person bobsled (total mass \(=630 \mathrm{~kg}\) ) comes down a straightaway at the start of a bobsled run. The straightaway is 80.0 m long and is inclined at a constant angle of \(10.2^{\circ}\) with the horizontal. Assume that the combined effects of friction and air drag produce on the bobsled a constant force of 62.0 N that acts parallel to the incline and up the incline. Answer the following questions to three significant digits. (a) If the speed of the bobsled at the start of the run is \(6.20 \mathrm{~m} / \mathrm{s}\), how long does the bobsled take to come down the straightaway? (b) Suppose the crew is able to reduce the effects of friction and air drag to 42.0 N . For the same initial velocity, how long does the bobsled now take to come down the straightaway?
105 As a 40 N block slides down a plane that is inclined at \(25^{\circ}\) to the horizontal, its acceleration is \(0.80 \mathrm{~m} / \mathrm{s}^{2}\), directed up the plane. What is the coefficient of kinetic friction between the block and the plane?

\title{
Kinetic Energy and Work
}

\section*{7-1 kinetic energy}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
7.01 Apply the relationship between a particle's kinetic energy, mass, and speed.
7.02 Identify that kinetic energy is a scalar quantity.

\section*{Key Idea}
- The kinetic energy \(K\) associated with the motion of a particle of mass \(m\) and speed \(v\), where \(v\) is well below the speed of light, is
\[
K=\frac{1}{2} m v^{2} \quad \text { (kinetic energy). }
\]

\section*{What Is Physics?}

One of the fundamental goals of physics is to investigate something that everyone talks about: energy. The topic is obviously important. Indeed, our civilization is based on acquiring and effectively using energy.

For example, everyone knows that any type of motion requires energy: Flying across the Pacific Ocean requires it. Lifting material to the top floor of an office building or to an orbiting space station requires it. Throwing a fastball requires \(i\) it. We spend a tremendous amount of money to acquire and use energy. Wars have been started because of energy resources. Wars have been ended because of a sudden, overpowering use of energy by one side. Everyone knows many examples of energy and its use, but what does the term energy really mean?

\section*{What Is Energy?}

The term energy is so broad that a clear definition is difficult to write. Technically, energy is a scalar quantity associated with the state (or condition) of one or more objects. However, this definition is too vague to be of help to us now.

A looser definition might at least get us started. Energy is a number that we associate with a system of one or more objects. If a force changes one of the objects by, say, making it move, then the energy number changes. After countless experiments, scientists and engineers realized that if the scheme by which we assign energy numbers is planned carefully, the numbers can be used to predict the outcomes of experiments and, even more important, to build machines, such as flying machines. This success is based on a wonderful property of our universe: Energy can be transformed from one type to another and transferred from one object to another, but the total amount is always the same (energy is conserved). No exception to this principle of energy conservation has ever been found.

Money. Think of the many types of energy as being numbers representing money in many types of bank accounts. Rules have been made about what such money numbers mean and how they can be changed. You can transfer money numbers from one account to another or from one system to another, perhaps
electronically with nothing material actually moving. However, the total amount (the total of all the money numbers) can always be accounted for: It is always conserved. In this chapter we focus on only one type of energy (kinetic energy) and on only one way in which energy can be transferred (work).

\section*{Kinetic Energy}

Kinetic energy \(K\) is energy associated with the state of motion of an object. The faster the object moves, the greater is its kinetic energy. When the object is stationary, its kinetic energy is zero.

For an object of mass \(m\) whose speed \(v\) is well below the speed of light,
\[
\begin{equation*}
K=\frac{1}{2} m v^{2} \quad \text { (kinetic energy). } \tag{7-1}
\end{equation*}
\]

For example, a 3.0 kg duck flying past us at \(2.0 \mathrm{~m} / \mathrm{s}\) has a kinetic energy of \(6.0 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}\); that is, we associate that number with the duck's motion.

The SI unit of kinetic energy (and all types of energy) is the joule (J), named for James Prescott Joule, an English scientist of the 1800s and defined as
\[
\begin{equation*}
1 \text { joule }=1 \mathrm{~J}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2} \tag{7-2}
\end{equation*}
\]

Thus, the flying duck has a kinetic energy of 6.0 J .

\section*{Sample Problem 7.01 Kinetic energy, train crash}

In 1896 in Waco, Texas, William Crush parked two locomotives at opposite ends of a \(6.4-\mathrm{km}\)-long track, fired them up, tied their throttles open, and then allowed them to crash head-on at full speed (Fig. 7-1) in front of 30,000 spectators. Hundreds of people were hurt by flying debris; several were killed. Assuming each locomotive weighed \(1.2 \times 10^{6} \mathrm{~N}\) and its acceleration was a constant \(0.26 \mathrm{~m} / \mathrm{s}^{2}\), what was the total kinetic energy of the two locomotives just before the collision?

\section*{KEY IDEAS}
(1) We need to find the kinetic energy of each locomotive with Eq. 7-1, but that means we need each locomotive's speed just before the collision and its mass. (2) Because we can assume each locomotive had constant acceleration, we can use the equations in Table 2-1 to find its speed \(v\) just before the collision.

Calculations: We choose Eq. 2-16 because we know values for all the variables except \(v\) :
\[
v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)
\]

With \(v_{0}=0\) and \(x-x_{0}=3.2 \times 10^{3} \mathrm{~m}\) (half the initial separation), this yields
or
\[
\begin{gathered}
v^{2}=0+2\left(0.26 \mathrm{~m} / \mathrm{s}^{2}\right)\left(3.2 \times 10^{3} \mathrm{~m}\right) \\
\\
v=40.8 \mathrm{~m} / \mathrm{s}=147 \mathrm{~km} / \mathrm{h}
\end{gathered}
\]

We can find the mass of each locomotive by dividing its given weight by \(g\) :
\[
m=\frac{1.2 \times 10^{6} \mathrm{~N}}{9.8 \mathrm{~m} / \mathrm{s}^{2}}=1.22 \times 10^{5} \mathrm{~kg}
\]

Now, using Eq. 7-1, we find the total kinetic energy of the two locomotives just before the collision as
\[
\begin{aligned}
K & =2\left(\frac{1}{2} m v^{2}\right)=\left(1.22 \times 10^{5} \mathrm{~kg}\right)(40.8 \mathrm{~m} / \mathrm{s})^{2} \\
& =2.0 \times 10^{8} \mathrm{~J} .
\end{aligned}
\]
(Answer)
This collision was like an exploding bomb.


Courtesy Library of Congress
Figure 7-1 The aftermath of an 1896 crash of two locomotives.

PLUS

\section*{7-2 work and kinetic energy}

\section*{Learning Objectives}

After reading this module, you should be able to ...
7.03 Apply the relationship between a force (magnitude and direction) and the work done on a particle by the force when the particle undergoes a displacement.
7.04 Calculate work by taking a dot product of the force vector and the displacement vector, in either magnitude-angle or unit-vector notation.
7.05 If multiple forces act on a particle, calculate the net work done by them.
7.06 Apply the work-kinetic energy theorem to relate the work done by a force (or the net work done by multiple forces) and the resulting change in kinetic energy.

\section*{Key Ideas}
- Work \(W\) is energy transferred to or from an object via a force acting on the object. Energy transferred to the object is positive work, and from the object, negative work.
- The work done on a particle by a constant force \(\vec{F}\) during displacement \(\vec{d}\) is
\[
W=F d \cos \phi=\vec{F} \cdot \vec{d} \quad(\text { work , constant force }),
\]
in which \(\phi\) is the constant angle between the directions of \(\vec{F}\) and \(\vec{d}\).
- Only the component of \(\vec{F}\) that is along the displacement \(\vec{d}\) can do work on the object.
- When two or more forces act on an object, their net work is the sum of the individual works done by the forces, which is also equal to the work that would be done on the object by the net force \(\vec{F}_{\text {net }}\) of those forces.
For a particle, a change \(\Delta K\) in the kinetic energy equals the net work \(W\) done on the particle:
\[
\Delta K=K_{f}-K_{i}=W \quad(\text { work }- \text { kinetic energy theorem })
\]
in which \(K_{i}\) is the initial kinetic energy of the particle and \(K_{f}\) is the kinetic energy after the work is done. The equation rearranged gives us
\[
K_{f}=K_{i}+W
\]

\section*{Work}

If you accelerate an object to a greater speed by applying a force to the object, you increase the kinetic energy \(K\left(=\frac{1}{2} m v^{2}\right)\) of the object. Similarly, if you decelerate the object to a lesser speed by applying a force, you decrease the kinetic energy of the object. We account for these changes in kinetic energy by saying that your force has transferred energy to the object from yourself or from the object to yourself. In such a transfer of energy via a force, work \(W\) is said to be done on the object by the force. More formally, we define work as follows:

Work \(W\) is energy transferred to or from an object by means of a force acting on the object. Energy transferred to the object is positive work, and energy transferred from the object is negative work.
"Work," then, is transferred energy; "doing work" is the act of transferring the energy. Work has the same units as energy and is a scalar quantity.

The term transfer can be misleading. It does not mean that anything material flows into or out of the object; that is, the transfer is not like a flow of water. Rather, it is like the electronic transfer of money between two bank accounts: The number in one account goes up while the number in the other account goes down, with nothing material passing between the two accounts.

Note that we are not concerned here with the common meaning of the word "work," which implies that any physical or mental labor is work. For example, if you push hard against a wall, you tire because of the continuously repeated muscle contractions that are required, and you are, in the common sense, working. However, such effort does not cause an energy transfer to or from the wall and thus is not work done on the wall as defined here.

To avoid confusion in this chapter, we shall use the symbol \(W\) only for work and shall represent a weight with its equivalent \(m g\).

\section*{Work and Kinetic Energy}

\section*{Finding an Expression for Work}

Let us find an expression for work by considering a bead that can slide along a frictionless wire that is stretched along a horizontal \(x\) axis (Fig. 7-2). A constant force \(\vec{F}\), directed at an angle \(\phi\) to the wire, accelerates the bead along the wire. We can relate the force and the acceleration with Newton's second law, written for components along the \(x\) axis:
\[
\begin{equation*}
F_{x}=m a_{x}, \tag{7-3}
\end{equation*}
\]
where \(m\) is the bead's mass. As the bead moves through a displacement \(\vec{d}\), the force changes the bead's velocity from an initial value \(\vec{v}_{0}\) to some other value \(\vec{v}\). Because the force is constant, we know that the acceleration is also constant. Thus, we can use Eq. 2-16 to write, for components along the \(x\) axis,
\[
\begin{equation*}
v^{2}=v_{0}^{2}+2 a_{x} d . \tag{7-4}
\end{equation*}
\]

Solving this equation for \(a_{x}\), substituting into Eq. 7-3, and rearranging then give us
\[
\begin{equation*}
\frac{1}{2} m v^{2}-\frac{1}{2} m v_{0}^{2}=F_{x} d . \tag{7-5}
\end{equation*}
\]

The first term is the kinetic energy \(K_{f}\) of the bead at the end of the displacement \(d\), and the second term is the kinetic energy \(K_{i}\) of the bead at the start. Thus, the left side of Eq. 7-5 tells us the kinetic energy has been changed by the force, and the right side tells us the change is equal to \(F_{x} d\). Therefore, the work \(W\) done on the bead by the force (the energy transfer due to the force) is
\[
\begin{equation*}
W=F_{x} d \tag{7-6}
\end{equation*}
\]

If we know values for \(F_{x}\) and \(d\), we can use this equation to calculate the work \(W\).

To calculate the work a force does on an object as the object moves through some displacement, we use only the force component along the object's displacement. The force component perpendicular to the displacement does zero work.

From Fig. 7-2, we see that we can write \(F_{x}\) as \(F \cos \phi\), where \(\phi\) is the angle between the directions of the displacement \(\vec{d}\) and the force \(\vec{F}\). Thus,
\[
\begin{equation*}
W=F d \cos \phi \quad \text { (work done by a constant force). } \tag{7-7}
\end{equation*}
\]

Figure 7-2 A constant force \(\vec{F}\) directed at angle \(\phi\) to the displacement \(\vec{d}\) of a bead on a wire accelerates the bead along the wire, changing the velocity of the bead from \(\vec{v}_{0}\) to \(\vec{v}\). A "kinetic energy gauge" indicates the resulting change in the kinetic energy of the bead, from the value \(K_{i}\) to the value \(K_{f}\).
In WileyPLUS, this figure is available as an animation with voiceover.



Displacement \(\vec{d}\)

We can use the definition of the scaler (dot) product (Eq. 3-20) to write
\[
\begin{equation*}
W=\vec{F} \cdot \vec{d} \quad(\text { work done by a constant force }), \tag{7-8}
\end{equation*}
\]
where \(F\) is the magnitude of \(\vec{F}\). (You may wish to review the discussion of scaler products in Module 3-3.) Equation 7-8 is especially useful for calculating the work when \(\vec{F}\) and \(\vec{d}\) are given in unit-vector notation.

Cautions. There are two restrictions to using Eqs. 7-6 through 7-8 to calculate work done on an object by a force. First, the force must be a constant force; that is, it must not change in magnitude or direction as the object moves. (Later, we shall discuss what to do with a variable force that changes in magnitude.) Second, the object must be particle-like. This means that the object must be rigid; all parts of it must move together, in the same direction. In this chapter we consider only particle-like objects, such as the bed and its occupant being pushed in Fig. 7-3.

Signs for Work. The work done on an object by a force can be either positive work or negative work. For example, if angle \(\phi\) in Eq. 7-7 is less than \(90^{\circ}\), then \(\cos \phi\) is positive and thus so is the work. However, if \(\phi\) is greater than \(90^{\circ}\) (up to \(180^{\circ}\) ), then \(\cos \phi\) is negative and thus so is the work. (Can you see that the work is zero when \(\phi=90^{\circ}\) ?) These results lead to a simple rule. To find the sign of the work done by a force, consider the force vector component that is parallel to the displacement:

> A force does positive work when it has a vector component in the same direction as the displacement, and it does negative work when it has a vector component in the opposite direction. It does zero work when it has no such vector component.

Units for Work. Work has the SI unit of the joule, the same as kinetic energy. However, from Eqs. 7-6 and 7-7 we can see that an equivalent unit is the newtonmeter \((\mathrm{N} \cdot \mathrm{m})\). The corresponding unit in the British system is the foot-pound ( \(\mathrm{ft} \cdot \mathrm{lb}\) ). Extending Eq. \(7-2\), we have
\[
\begin{equation*}
1 \mathrm{~J}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}=1 \mathrm{~N} \cdot \mathrm{~m}=0.738 \mathrm{ft} \cdot \mathrm{lb} \tag{7-9}
\end{equation*}
\]

Net Work. When two or more forces act on an object, the net work done on the object is the sum of the works done by the individual forces. We can calculate the net work in two ways. (1) We can find the work done by each force and then sum those works. (2) Alternatively, we can first find the net force \(\vec{F}_{\text {net }}\) of those forces. Then we can use Eq. 7-7, substituting the magnitude \(F_{\text {net }}\) for \(F\) and also the angle between the directions of \(\vec{F}_{\text {net }}\) and \(\vec{d}\) for \(\phi\). Similarly, we can use Eq. \(7-8\) with \(\vec{F}_{\text {net }}\) substituted for \(\vec{F}\).

\section*{Work-Kinetic Energy Theorem}

Equation 7-5 relates the change in kinetic energy of the bead (from an initial \(K_{i}=\frac{1}{2} m v_{0}^{2}\) to a later \(\left.K_{f}=\frac{1}{2} m v^{2}\right)\) to the work \(W\left(=F_{x} d\right)\) done on the bead. For such particle-like objects, we can generalize that equation. Let \(\Delta K\) be the change in the kinetic energy of the object, and let \(W\) be the net work done on it. Then
\[
\begin{equation*}
\Delta K=K_{f}-K_{i}=W \tag{7-10}
\end{equation*}
\]
which says that
\[
\binom{\text { change in the kinetic }}{\text { energy of a particle }}=\binom{\text { net work done on }}{\text { the particle }} .
\]

We can also write
\[
\begin{equation*}
K_{f}=K_{i}+W \tag{7-11}
\end{equation*}
\]
which says that
\[
\binom{\text { kinetic energy after }}{\text { the net work is done }}=\binom{\text { kinetic energy }}{\text { before the net work }}+\binom{\text { the net }}{\text { work done }} .
\]


Figure 7-3 A contestant in a bed race. We can approximate the bed and its occupant as being a particle for the purpose of calculating the work done on them by the force applied by the contestant.

These statements are known traditionally as the work-kinetic energy theorem for particles. They hold for both positive and negative work: If the net work done on a particle is positive, then the particle's kinetic energy increases by the amount of the work. If the net work done is negative, then the particle's kinetic energy decreases by the amount of the work.

For example, if the kinetic energy of a particle is initially 5 J and there is a net transfer of 2 J to the particle (positive net work), the final kinetic energy is 7 J. If, instead, there is a net transfer of 2 J from the particle (negative net work), the final kinetic energy is 3 J .

\section*{Checkpoint 1}

A particle moves along an \(x\) axis. Does the kinetic energy of the particle increase, decrease, or remain the same if the particle's velocity changes (a) from \(-3 \mathrm{~m} / \mathrm{s}\) to \(-2 \mathrm{~m} / \mathrm{s}\) and (b) from \(-2 \mathrm{~m} / \mathrm{s}\) to \(2 \mathrm{~m} / \mathrm{s}\) ? (c) In each situation, is the work done on the particle positive, negative, or zero?

\section*{Sample Problem 7.02 Work done by two constant forces, industrial spies}

Figure \(7-4 a\) shows two industrial spies sliding an initially stationary 225 kg floor safe a displacement \(\vec{d}\) of magnitude 8.50 m . The push \(\vec{F}_{1}\) of spy 001 is 12.0 N at an angle of \(30.0^{\circ}\) downward from the horizontal; the pull \(\vec{F}_{2}\) of spy 002 is 10.0 N at \(40.0^{\circ}\) above the horizontal. The magnitudes and directions of these forces do not change as the safe moves, and the floor and safe make frictionless contact.
(a) What is the net work done on the safe by forces \(\vec{F}_{1}\) and \(\vec{F}_{2}\) during the displacement \(\vec{d}\) ?

\section*{KEY IDEAS}
(1) The net work \(W\) done on the safe by the two forces is the sum of the works they do individually. (2) Because we can treat the safe as a particle and the forces are constant in both magnitude and direction, we can use either Eq. 7-7 ( \(W=F d \cos \phi\) ) or Eq. 7-8 \((W=\vec{F} \cdot \vec{d})\) to calculate those works. Let's choose Eq. 7-7.

Calculations: From Eq. 7-7 and the free-body diagram for the safe in Fig. \(7-4 b\), the work done by \(\vec{F}_{1}\) is
\[
\begin{aligned}
W_{1} & =F_{1} d \cos \phi_{1}=(12.0 \mathrm{~N})(8.50 \mathrm{~m})\left(\cos 30.0^{\circ}\right) \\
& =88.33 \mathrm{~J}
\end{aligned}
\]
and the work done by \(\vec{F}_{2}\) is
\[
\begin{aligned}
W_{2} & =F_{2} d \cos \phi_{2}=(10.0 \mathrm{~N})(8.50 \mathrm{~m})\left(\cos 40.0^{\circ}\right) \\
& =65.11 \mathrm{~J}
\end{aligned}
\]

Thus, the net work \(W\) is
\[
\begin{aligned}
W & =W_{1}+W_{2}=88.33 \mathrm{~J}+65.11 \mathrm{~J} \\
& =153.4 \mathrm{~J} \approx 153 \mathrm{~J} .
\end{aligned}
\]
(Answer)
During the 8.50 m displacement, therefore, the spies transfer 153 J of energy to the kinetic energy of the safe.


Figure 7-4 (a) Two spies move a floor safe through a displacement \(\vec{d}\). (b) A free-body diagram for the safe.
(b) During the displacement, what is the work \(W_{g}\) done on the safe by the gravitational force \(\vec{F}_{g}\) and what is the work \(W_{N}\) done on the safe by the normal force \(\vec{F}_{N}\) from the floor?

\section*{KEY IDEA}

Because these forces are constant in both magnitude and direction, we can find the work they do with Eq. 7-7.

Calculations: Thus, with \(m g\) as the magnitude of the gravitational force, we write
\[
W_{g}=m g d \cos 90^{\circ}=m g d(0)=0
\]
(Answer)
and
\[
W_{N}=F_{N} d \cos 90^{\circ}=F_{N} d(0)=0
\]
(Answer)
We should have known this result. Because these forces are perpendicular to the displacement of the safe, they do zero work on the safe and do not transfer any energy to or from it.
(c) The safe is initially stationary. What is its speed \(v_{f}\) at the end of the 8.50 m displacement?

\section*{KEY IDEA}

The speed of the safe changes because its kinetic energy is changed when energy is transferred to it by \(\vec{F}_{1}\) and \(\vec{F}_{2}\).

Calculations: We relate the speed to the work done by combining Eqs. 7-10 (the work-kinetic energy theorem) and 7-1 (the definition of kinetic energy):
\[
W=K_{f}-K_{i}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}
\]

The initial speed \(v_{i}\) is zero, and we now know that the work
done is 153.4 J . Solving for \(v_{f}\) and then substituting known data, we find that
\[
\begin{aligned}
v_{f} & =\sqrt{\frac{2 W}{m}}=\sqrt{\frac{2(153.4 \mathrm{~J})}{225 \mathrm{~kg}}} \\
& =1.17 \mathrm{~m} / \mathrm{s} .
\end{aligned}
\]
(Answer)

\section*{Sample Problem 7.03 Work done by a constant force in unit-vector notation}

During a storm, a crate of crepe is sliding across a slick, oily parking lot through a displacement \(\vec{d}=(-3.0 \mathrm{~m}) \hat{\mathrm{i}}\) while a steady wind pushes against the crate with a force \(\vec{F}=(2.0 \mathrm{~N}) \hat{\mathrm{i}}+(-6.0 \mathrm{~N}) \hat{\mathrm{j}}\). The situation and coordinate axes are shown in Fig. 7-5.
(a) How much work does this force do on the crate during the displacement?

\section*{KEY IDEA}

Because we can treat the crate as a particle and because the wind force is constant ("steady") in both magnitude and direction during the displacement, we can use either Eq. 7-7 ( \(W=\) \(F d \cos \phi)\) or Eq. 7-8 \((W=\vec{F} \cdot \vec{d})\) to calculate the work. Since we know \(\vec{F}\) and \(\vec{d}\) in unit-vector notation, we choose Eq. 7-8.

Calculations: We write
\[
W=\vec{F} \cdot \vec{d}=[(2.0 \mathrm{~N}) \hat{\mathrm{i}}+(-6.0 \mathrm{~N}) \hat{\mathrm{j}}] \cdot[(-3.0 \mathrm{~m}) \hat{\mathrm{i}}] .
\]

Of the possible unit-vector dot products, only \(\hat{\mathrm{i}} \cdot \hat{\mathrm{i}}, \hat{\mathrm{j}} \cdot \hat{\mathrm{j}}\), and \(\hat{\mathrm{k}} \cdot \hat{\mathrm{k}}\) are nonzero (see Appendix E). Here we obtain
\[
\begin{aligned}
W & =(2.0 \mathrm{~N})(-3.0 \mathrm{~m}) \hat{\mathrm{i}} \cdot \hat{\mathrm{i}}+(-6.0 \mathrm{~N})(-3.0 \mathrm{~m}) \hat{\mathrm{j}} \cdot \hat{\mathrm{i}} \\
& =(-6.0 \mathrm{~J})(1)+0=-6.0 \mathrm{~J} .
\end{aligned}
\]

Figure 7-5 Force \(\vec{F}\) slows a crate during displacement \(\vec{d}\).

The parallel force component does negative work, slowing the crate.


Thus, the force does a negative 6.0 J of work on the crate, transferring 6.0 J of energy from the kinetic energy of the crate.
(b) If the crate has a kinetic energy of 10 J at the beginning of displacement \(\vec{d}\), what is its kinetic energy at the end of \(\vec{d}\) ?

\section*{KEY IDEA}

Because the force does negative work on the crate, it reduces the crate's kinetic energy.

Calculation: Using the work-kinetic energy theorem in the form of Eq. 7-11, we have
\[
K_{f}=K_{i}+W=10 \mathrm{~J}+(-6.0 \mathrm{~J})=4.0 \mathrm{~J}
\]
(Answer)
Less kinetic energy means that the crate has been slowed.

\section*{7-3 work done by the gravitational force}

\section*{Learning Objectives}

After reading this module, you should be able to ...
7.07 Calculate the work done by the gravitational force when an object is lifted or lowered.
7.08 Apply the work-kinetic energy theorem to situations where an object is lifted or lowered.

\section*{Key Ideas}
- The work \(W_{g}\) done by the gravitational force \(\vec{F}_{g}\) on a particle-like object of mass \(m\) as the object moves through a displacement \(\vec{d}\) is given by
\[
W_{g}=m g d \cos \phi,
\]
in which \(\phi\) is the angle between \(\vec{F}_{g}\) and \(\vec{d}\).
- The work \(W_{a}\) done by an applied force as a particle-like object is either lifted or lowered is related to the work \(W_{g}\)
done by the gravitational force and the change \(\Delta K\) in the object's kinetic energy by
\[
\Delta K=K_{f}-K_{i}=W_{a}+W_{g} .
\]

If \(K_{f}=K_{i}\), then the equation reduces to
\[
W_{a}=-W_{g},
\]
which tells us that the applied force transfers as much energy to the object as the gravitational force transfers from it.


Figure 7-6 Because the gravitational force \(\vec{F}_{g}\) acts on it, a particle-like tomato of mass \(m\) thrown upward slows from velocity \(\vec{v}_{0}\) to velocity \(\vec{v}\) during displacement \(\vec{d}\). A kinetic energy gauge indicates the resulting change in the kinetic energy of the tomato, from \(K_{i}\left(=\frac{1}{2} m v_{0}^{2}\right)\) to \(K_{f}\left(=\frac{1}{2} m v^{2}\right)\).

(b)

Figure 7-7 (a) An applied force \(\vec{F}\) lifts an object. The object's displacement \(\vec{d}\) makes an angle \(\phi=180^{\circ}\) with the gravitational force \(\vec{F}_{g}\) on the object. The applied force does positive work on the object. (b) An applied force \(\vec{F}\) lowers an object. The displacement \(\vec{d}\) of the object makes an angle \(\phi=0^{\circ}\) with the gravitational force \(\vec{F}_{g}\). The applied force does negative work on the object.

\section*{Work Done by the Gravitational Force}

We next examine the work done on an object by the gravitational force acting on it. Figure 7-6 shows a particle-like tomato of mass \(m\) that is thrown upward with initial speed \(v_{0}\) and thus with initial kinetic energy \(K_{i}=\frac{1}{2} m v_{0}^{2}\). As the tomato rises, it is slowed by a gravitational force \(\vec{F}_{g}\); that is, the tomato's kinetic energy decreases because \(\vec{F}_{g}\) does work on the tomato as it rises. Because we can treat the tomato as a particle, we can use Eq. 7-7 ( \(W=F d \cos \phi\) ) to express the work done during a displacement \(\vec{d}\). For the force magnitude \(F\), we use \(m g\) as the magnitude of \(\vec{F}_{g}\). Thus, the work \(W_{g}\) done by the gravitational force \(\vec{F}_{g}\) is
\[
\begin{equation*}
W_{g}=m g d \cos \phi \quad(\text { work done by gravitational force }) \tag{7-12}
\end{equation*}
\]

For a rising object, force \(\vec{F}_{g}\) is directed opposite the displacement \(\vec{d}\), as indicated in Fig. 7-6. Thus, \(\phi=180^{\circ}\) and
\[
\begin{equation*}
W_{g}=m g d \cos 180^{\circ}=m g d(-1)=-m g d . \tag{7-13}
\end{equation*}
\]

The minus sign tells us that during the object's rise, the gravitational force acting on the object transfers energy in the amount \(m g d\) from the kinetic energy of the object. This is consistent with the slowing of the object as it rises.

After the object has reached its maximum height and is falling back down, the angle \(\phi\) between force \(\vec{F}_{g}\) and displacement \(\vec{d}\) is zero. Thus,
\[
\begin{equation*}
W_{g}=m g d \cos 0^{\circ}=m g d(+1)=+m g d \tag{7-14}
\end{equation*}
\]

The plus sign tells us that the gravitational force now transfers energy in the amount \(m g d\) to the kinetic energy of the falling object (it speeds up, of course).

\section*{Work Done in Lifting and Lowering an Object}

Now suppose we lift a particle-like object by applying a vertical force \(\vec{F}\) to it. During the upward displacement, our applied force does positive work \(W_{a}\) on the object while the gravitational force does negative work \(W_{g}\) on it. Our applied force tends to transfer energy to the object while the gravitational force tends to transfer energy from it. By Eq. 7-10, the change \(\Delta K\) in the kinetic energy of the object due to these two energy transfers is
\[
\begin{equation*}
\Delta K=K_{f}-K_{i}=W_{a}+W_{g} \tag{7-15}
\end{equation*}
\]
in which \(K_{f}\) is the kinetic energy at the end of the displacement and \(K_{i}\) is that at the start of the displacement. This equation also applies if we lower the object, but then the gravitational force tends to transfer energy to the object while our force tends to transfer energy from it.

If an object is stationary before and after a lift (as when you lift a book from the floor to a shelf), then \(K_{f}\) and \(K_{i}\) are both zero, and Eq. \(7-15\) reduces to
\[
\begin{gather*}
W_{a}+W_{g}=0 \\
W_{a}=-W_{g} . \tag{7-16}
\end{gather*}
\]

Note that we get the same result if \(K_{f}\) and \(K_{i}\) are not zero but are still equal. Either way, the result means that the work done by the applied force is the negative of the work done by the gravitational force; that is, the applied force transfers the same amount of energy to the object as the gravitational force transfers from the object. Using Eq. 7-12, we can rewrite Eq. 7-16 as
\[
\begin{equation*}
W_{a}=-m g d \cos \phi \quad\left(\text { work done in lifting and lowering; } K_{f}=K_{i}\right), \tag{7-17}
\end{equation*}
\]
with \(\phi\) being the angle between \(\vec{F}_{g}\) and \(\vec{d}\). If the displacement is vertically upward (Fig. 7-7a), then \(\phi=180^{\circ}\) and the work done by the applied force equals \(m g d\).

If the displacement is vertically downward (Fig. 7-7b), then \(\phi=0^{\circ}\) and the work done by the applied force equals - \(m g d\).

Equations 7-16 and 7-17 apply to any situation in which an object is lifted or lowered, with the object stationary before and after the lift. They are independent of the magnitude of the force used. For example, if you lift a mug from the floor to over your head, your force on the mug varies considerably during the lift. Still, because the mug is stationary before and after the lift, the work your force does on the mug is given by Eqs. 7-16 and 7-17, where, in Eq. 7-17, \(m g\) is the weight of the mug and \(d\) is the distance you lift it.

\section*{Sample Problem 7.04 Work in pulling a sleigh up a snowy slope}

In this problem an object is pulled along a ramp but the object starts and ends at rest and thus has no overall change in its kinetic energy (that is important). Figure \(7-8 a\) shows the situation. A rope pulls a 200 kg sleigh (which you may know) up a slope at incline angle \(\theta=30^{\circ}\), through distance \(d=20 \mathrm{~m}\). The sleigh and its contents have a total mass of 200 kg . The snowy slope is so slippery that we take it to be frictionless. How much work is done by each force acting on the sleigh?

\section*{KEY IDEAS}
(1) During the motion, the forces are constant in magnitude and direction and thus we can calculate the work done by each with Eq. \(7-7(W=F d \cos \phi)\) in which \(\phi\) is the angle between the force and the displacement. We reach the same result with Eq. \(7-8(W=\vec{F} \cdot \vec{d})\) in which we take a dot product of the force vector and displacement vector. (2) We can relate the net work done by the forces to the change in kinetic energy (or lack of a change, as here) with the work-kinetic energy theorem of Eq. 7-10 \((\Delta K=W)\).

Calculations: The first thing to do with most physics problems involving forces is to draw a free-body diagram to organize our thoughts. For the sleigh, Fig.7-8b is our free-body diagram, showing the gravitational force \(\vec{F}_{g}\), the force \(\vec{T}\) from the rope, and the normal force \(\vec{F}_{N}\) from the slope.

Work \(W_{N}\) by the normal force. Let's start with this easy calculation. The normal force is perpendicular to the slope and thus also to the sleigh's displacement. Thus the normal force does not affect the sleigh's motion and does zero work. To be more formal, we can apply Eq. 7-7 to write
\[
W_{N}=F_{N} d \cos 90^{\circ}=0
\]
(Answer)
Work \(W_{g}\) by the gravitational force. We can find the work done by the gravitational force in either of two ways (you pick the more appealing way). From an earlier discussion about ramps (Sample Problem 5.04 and Fig. 5-15), we know that the component of the gravitational force along the slope has magnitude \(m g \sin \theta\) and is directed down the slope. Thus the magnitude is
\[
\begin{aligned}
F_{g x}=m g \sin \theta & =(200 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \sin 30^{\circ} \\
& =980 \mathrm{~N} .
\end{aligned}
\]

The angle \(\phi\) between the displacement and this force component is \(180^{\circ}\). So we can apply Eq. 7-7 to write
\[
\begin{aligned}
W_{g} & =F_{g x} d \cos 180^{\circ}=(980 \mathrm{~N})(20 \mathrm{~m})(-1) \\
& =-1.96 \times 10^{4} \mathrm{~J}
\end{aligned}
\]
(Answer)
The negative result means that the gravitational force removes energy from the sleigh.

The second (equivalent) way to get this result is to use the full gravitational force \(\vec{F}_{g}\) instead of a component. The angle between \(\vec{F}_{g}\) and \(\vec{d}\) is \(120^{\circ}\) (add the incline angle \(30^{\circ}\) to \(90^{\circ}\) ). So, Eq. 7-7 gives us
\[
\begin{aligned}
W_{g} & =F_{g} d \cos 120^{\circ}=m g d \cos 120^{\circ} \\
& =(200 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(20 \mathrm{~m}) \cos 120^{\circ} \\
& =-1.96 \times 10^{4} \mathrm{~J} .
\end{aligned}
\]
(Answer)
Work \(W_{T}\) by the rope's force. We have two ways of calculating this work. The quickest way is to use the work-kinetic energy theorem of Eq. 7-10 \((\Delta K=W)\), where the net work \(W\) done by the forces is \(W_{N}+W_{g}+W_{T}\) and the change \(\Delta K\) in the kinetic energy is just zero (because the initial and final kinetic energies are the same-namely, zero). So, Eq. 7-10 gives us
and \(\quad W_{T}=1.96 \times 10^{4} \mathrm{~J}\).
\[
W_{T}=1.96 \times 10^{4} \mathrm{~J} .
\]
(Answer)
\[
0=W_{N}+W_{g}+W_{T}=0-1.96 \times 10^{4} \mathrm{~J}+W_{T}
\]


Figure 7-8 (a) A sleigh is pulled up a snowy slope. (b) The freebody diagram for the sleigh.

Instead of doing this, we can apply Newton's second law for motion along the \(x\) axis to find the magnitude \(F_{T}\) of the rope's force. Assuming that the acceleration along the slope is zero (except for the brief starting and stopping), we can write
\[
\begin{aligned}
F_{\mathrm{net}, x} & =m a_{x}, \\
F_{T}-m g \sin 30^{\circ} & =m(0),
\end{aligned}
\]
to find
\[
F_{T}=m g \sin 30^{\circ} .
\]

This is the magnitude. Because the force and the displacement are both up the slope, the angle between those two vectors is zero. So, we can now write Eq. 7-7 to find the work done by the rope's force:
\[
\begin{aligned}
W_{T} & =F_{T} d \cos 0^{\circ}=\left(m g \sin 30^{\circ}\right) d \cos 0^{\circ} \\
& =(200 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(\sin 30^{\circ}\right)(20 \mathrm{~m}) \cos 0^{\circ} \\
& =1.96 \times 10^{4} \mathrm{~J} . \quad \text { (Answer) }
\end{aligned}
\]

\section*{Sample Problem 7.05 Work done on an accelerating elevator cab}

An elevator cab of mass \(m=500 \mathrm{~kg}\) is descending with speed \(v_{i}=4.0 \mathrm{~m} / \mathrm{s}\) when its supporting cable begins to slip, allowing it to fall with constant acceleration \(\vec{a}=\vec{g} / 5\) (Fig. 7-9a).
(a) During the fall through a distance \(d=12 \mathrm{~m}\), what is the work \(W_{g}\) done on the cab by the gravitational force \(\vec{F}_{g}\) ?

\section*{KEY IDEA}

We can treat the cab as a particle and thus use Eq. 7-12 \(\left(W_{g}=m g d \cos \phi\right)\) to find the work \(W_{g}\).

Calculation: From Fig. 7-9b, we see that the angle between the directions of \(\vec{F}_{g}\) and the cab's displacement \(\vec{d}\) is \(0^{\circ}\). So,
\[
\begin{aligned}
W_{g} & =m g d \cos 0^{\circ}=(500 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(12 \mathrm{~m})(1) \\
& =5.88 \times 10^{4} \mathrm{~J} \approx 59 \mathrm{~kJ}
\end{aligned}
\]
(Answer)
(b) During the 12 m fall, what is the work \(W_{T}\) done on the cab by the upward pull \(\vec{T}\) of the elevator cable?

\section*{KEY IDEA}

We can calculate work \(W_{T}\) with Eq. 7-7 ( \(W=F d \cos \phi\) ) by first writing \(F_{\text {net }, y}=m a_{y}\) for the components in Fig. 7-9b.
Calculations: We get
\[
\begin{equation*}
T-F_{g}=m a . \tag{7-18}
\end{equation*}
\]

Solving for \(T\), substituting \(m g\) for \(F_{g}\), and then substituting the result in Eq. 7-7, we obtain
\[
\begin{equation*}
W_{T}=T d \cos \phi=m(a+g) d \cos \phi \tag{7-19}
\end{equation*}
\]

Next, substituting \(-g / 5\) for the (downward) acceleration \(a\) and then \(180^{\circ}\) for the angle \(\phi\) between the directions of forces \(\vec{T}\) and \(m \vec{g}\), we find
\[
\begin{aligned}
W_{T} & =m\left(-\frac{g}{5}+g\right) d \cos \phi=\frac{4}{5} m g d \cos \phi \\
& =\frac{4}{5}(500 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(12 \mathrm{~m}) \cos 180^{\circ} \\
& =-4.70 \times 10^{4} \mathrm{~J} \approx-47 \mathrm{~kJ} .
\end{aligned}
\]
(Answer)
cab, displacement included.

(b)

Caution: Note that \(W_{T}\) is not simply the negative of \(W_{g}\) because the cab accelerates during the fall. Thus, Eq. 7-16 (which assumes that the initial and final kinetic energies are equal) does not apply here.
(c) What is the net work \(W\) done on the cab during the fall?

Calculation: The net work is the sum of the works done by the forces acting on the cab:
\[
\begin{aligned}
W & =W_{g}+W_{T}=5.88 \times 10^{4} \mathrm{~J}-4.70 \times 10^{4} \mathrm{~J} \\
& =1.18 \times 10^{4} \mathrm{~J} \approx 12 \mathrm{~kJ} .
\end{aligned}
\]
(Answer)
(d) What is the cab's kinetic energy at the end of the 12 m fall?

\section*{KEY IDEA}

The kinetic energy changes because of the net work done on the cab, according to Eq. 7-11 \(\left(K_{f}=K_{i}+W\right)\).

Calculation: From Eq. 7-1, we write the initial kinetic energy as \(K_{i}=\frac{1}{2} m v_{i}^{2}\). We then write Eq. 7-11 as
\[
\begin{aligned}
K_{f} & =K_{i}+W=\frac{1}{2} m v_{i}^{2}+W \\
& =\frac{1}{2}(500 \mathrm{~kg})(4.0 \mathrm{~m} / \mathrm{s})^{2}+1.18 \times 10^{4} \mathrm{~J} \\
& =1.58 \times 10^{4} \mathrm{~J} \approx 16 \mathrm{~kJ} .
\end{aligned}
\]
(Answer)

\section*{7-4 work done by a spring force}

\section*{Learning Objectives}

After reading this module, you should be able to ...
7.09 Apply the relationship (Hooke's law) between the force on an object due to a spring, the stretch or compression of the spring, and the spring constant of the spring.
7.10 Identify that a spring force is a variable force.
7.11 Calculate the work done on an object by a spring force by integrating the force from the initial position to the final
position of the object or by using the known generic result of that integration.
7.12 Calculate work by graphically integrating on a graph of force versus position of the object.
7.13 Apply the work-kinetic energy theorem to situations in which an object is moved by a spring force.

\section*{Key Ideas}
- The force \(\vec{F}_{s}\) from a spring is
\[
\vec{F}_{s}=-k \vec{d} \quad(\text { Hooke's law })
\]
where \(\vec{d}\) is the displacement of the spring's free end from its position when the spring is in its relaxed state (neither compressed nor extended), and \(k\) is the spring constant (a measure of the spring's stiffness). If an \(x\) axis lies along the spring, with the origin at the location of the spring's free end when the spring is in its relaxed state, we can write
\[
F_{x}=-k x \quad(\text { Hooke's law })
\]
- A spring force is thus a variable force: It varies with the displacement of the spring's free end.
- If an object is attached to the spring's free end, the work \(W_{s}\) done on the object by the spring force when the object is moved from an initial position \(x_{i}\) to a final position \(x_{f}\) is
\[
W_{s}=\frac{1}{2} k x_{i}^{2}-\frac{1}{2} k x_{f}^{2}
\]

If \(x_{i}=0\) and \(x_{f}=x\), then the equation becomes
\[
W_{s}=-\frac{1}{2} k x^{2} .
\]

\section*{Work Done by a Spring Force}

We next want to examine the work done on a particle-like object by a particular type of variable force - namely, a spring force, the force from a spring. Many forces in nature have the same mathematical form as the spring force. Thus, by examining this one force, you can gain an understanding of many others.

\section*{The Spring Force}

Figure 7-10a shows a spring in its relaxed state - that is, neither compressed nor extended. One end is fixed, and a particle-like object - a block, say - is attached to the other, free end. If we stretch the spring by pulling the block to the right as in Fig. \(7-10 b\), the spring pulls on the block toward the left. (Because a spring force acts to restore the relaxed state, it is sometimes said to be a restoring force.) If we compress the spring by pushing the block to the left as in Fig. 7-10c, the spring now pushes on the block toward the right.

To a good approximation for many springs, the force \(\vec{F}_{s}\) from a spring is proportional to the displacement \(\vec{d}\) of the free end from its position when the spring is in the relaxed state. The spring force is given by
\[
\begin{equation*}
\vec{F}_{s}=-k \vec{d} \quad(\text { Hooke's law }) \tag{7-20}
\end{equation*}
\]
which is known as Hooke's law after Robert Hooke, an English scientist of the late 1600s. The minus sign in Eq. 7-20 indicates that the direction of the spring force is always opposite the direction of the displacement of the spring's free end. The constant \(k\) is called the spring constant (or force constant) and is a measure of the stiffness of the spring. The larger \(k\) is, the stiffer the spring; that is, the larger \(k\) is, the stronger the spring's pull or push for a given displacement. The SI unit for \(k\) is the newton per meter.

In Fig. 7-10 an \(x\) axis has been placed parallel to the length of the spring, with the origin \((x=0)\) at the position of the free end when the spring is in its relaxed


Figure 7-10 (a) A spring in its relaxed state. The origin of an \(x\) axis has been placed at the end of the spring that is attached to a block. (b) The block is displaced by \(\vec{d}\), and the spring is stretched by a positive amount \(x\). Note the restoring force \(\vec{F}_{s}\) exerted by the spring. (c) The spring is compressed by a negative amount \(x\). Again, note the restoring force.
state. For this common arrangement, we can write Eq. 7-20 as
\[
\begin{equation*}
F_{x}=-k x \quad(\text { Hooke's law }) \tag{7-21}
\end{equation*}
\]
where we have changed the subscript. If \(x\) is positive (the spring is stretched toward the right on the \(x\) axis), then \(F_{x}\) is negative (it is a pull toward the left). If \(x\) is negative (the spring is compressed toward the left), then \(F_{x}\) is positive (it is a push toward the right). Note that a spring force is a variable force because it is a function of \(x\), the position of the free end. Thus \(F_{x}\) can be symbolized as \(F(x)\). Also note that Hooke's law is a linear relationship between \(F_{x}\) and \(x\).

\section*{The Work Done by a Spring Force}

To find the work done by the spring force as the block in Fig. 7-10a moves, let us make two simplifying assumptions about the spring. (1) It is massless; that is, its mass is negligible relative to the block's mass. (2) It is an ideal spring; that is, it obeys Hooke's law exactly. Let us also assume that the contact between the block and the floor is frictionless and that the block is particle-like.

We give the block a rightward jerk to get it moving and then leave it alone. As the block moves rightward, the spring force \(F_{x}\) does work on the block, decreasing the kinetic energy and slowing the block. However, we cannot find this work by using Eq. 7-7 ( \(W=F d \cos \phi\) ) because there is no one value of \(F\) to plug into that equation-the value of \(F\) increases as the block stretches the spring.

There is a neat way around this problem. (1) We break up the block's displacement into tiny segments that are so small that we can neglect the variation in \(F\) in each segment. (2) Then in each segment, the force has (approximately) a single value and thus we can use Eq. 7-7 to find the work in that segment. (3) Then we add up the work results for all the segments to get the total work. Well, that is our intent, but we don't really want to spend the next several days adding up a great many results and, besides, they would be only approximations. Instead, let's make the segments infinitesimal so that the error in each work result goes to zero. And then let's add up all the results by integration instead of by hand. Through the ease of calculus, we can do all this in minutes instead of days.

Let the block's initial position be \(x_{i}\) and its later position be \(x_{f}\). Then divide the distance between those two positions into many segments, each of tiny length \(\Delta x\). Label these segments, starting from \(x_{i}\), as segments 1,2 , and so on. As the block moves through a segment, the spring force hardly varies because the segment is so short that \(x\) hardly varies. Thus, we can approximate the force magnitude as being constant within the segment. Label these magnitudes as \(F_{x 1}\) in segment \(1, F_{x 2}\) in segment 2 , and so on.

With the force now constant in each segment, we can find the work done within each segment by using Eq. 7-7. Here \(\phi=180^{\circ}\), and so \(\cos \phi=-1\). Then the work done is \(-F_{x 1} \Delta x\) in segment \(1,-F_{x 2} \Delta x\) in segment 2 , and so on. The net work \(W_{s}\) done by the spring, from \(x_{i}\) to \(x_{f}\), is the sum of all these works:
\[
\begin{equation*}
W_{s}=\sum-F_{x j} \Delta x \tag{7-22}
\end{equation*}
\]
where \(j\) labels the segments. In the limit as \(\Delta x\) goes to zero, Eq. 7-22 becomes
\[
\begin{equation*}
W_{s}=\int_{x_{i}}^{x_{f}}-F_{x} d x \tag{7-23}
\end{equation*}
\]

From Eq. \(7-21\), the force magnitude \(F_{x}\) is \(k x\). Thus, substitution leads to
\[
\begin{align*}
W_{s} & =\int_{x_{i}}^{x_{f}}-k x d x=-k \int_{x_{i}}^{x_{f}} x d x \\
& =\left(-\frac{1}{2} k\right)\left[x^{2}\right]_{x_{i}}^{x_{f}}=\left(-\frac{1}{2} k\right)\left(x_{f}^{2}-x_{i}^{2}\right) . \tag{7-24}
\end{align*}
\]

Multiplied out, this yields
\[
\begin{equation*}
W_{s}=\frac{1}{2} k x_{i}^{2}-\frac{1}{2} k x_{f}^{2} \quad(\text { work by a spring force }) . \tag{7-25}
\end{equation*}
\]

This work \(W_{s}\) done by the spring force can have a positive or negative value, depending on whether the net transfer of energy is to or from the block as the block moves from \(x_{i}\) to \(x_{f}\). Caution: The final position \(x_{f}\) appears in the second term on the right side of Eq. 7-25. Therefore, Eq. \(7-25\) tells us:

Work \(W_{s}\) is positive if the block ends up closer to the relaxed position \((x=0)\) than it was initially. It is negative if the block ends up farther away from \(x=0\). It is zero if the block ends up at the same distance from \(x=0\).

If \(x_{i}=0\) and if we call the final position \(x\), then Eq. \(7-25\) becomes
\[
\begin{equation*}
W_{s}=-\frac{1}{2} k x^{2} \quad \text { (work by a spring force). } \tag{7-26}
\end{equation*}
\]

\section*{The Work Done by an Applied Force}

Now suppose that we displace the block along the \(x\) axis while continuing to apply a force \(\vec{F}_{a}\) to it. During the displacement, our applied force does work \(W_{a}\) on the block while the spring force does work \(W_{s}\). By Eq. 7-10, the change \(\Delta K\) in the kinetic energy of the block due to these two energy transfers is
\[
\begin{equation*}
\Delta K=K_{f}-K_{i}=W_{a}+W_{s} \tag{7-27}
\end{equation*}
\]
in which \(K_{f}\) is the kinetic energy at the end of the displacement and \(K_{i}\) is that at the start of the displacement. If the block is stationary before and after the displacement, then \(K_{f}\) and \(K_{i}\) are both zero and Eq. \(7-27\) reduces to
\[
\begin{equation*}
W_{a}=-W_{s} . \tag{7-28}
\end{equation*}
\]

If a block that is attached to a spring is stationary before and after a displacement, then the work done on it by the applied force displacing it is the negative of the work done on it by the spring force.

Caution: If the block is not stationary before and after the displacement, then this statement is not true.

\section*{Checkpoint 2}

For three situations, the initial and final positions, respectively, along the \(x\) axis for the block in Fig. 7-10 are (a) \(-3 \mathrm{~cm}, 2 \mathrm{~cm}\); (b) \(2 \mathrm{~cm}, 3 \mathrm{~cm}\); and (c) \(-2 \mathrm{~cm}, 2 \mathrm{~cm}\). In each situation, is the work done by the spring force on the block positive, negative, or zero?

\section*{Sample Problem 7.06 Work done by a spring to change kinetic energy}

When a spring does work on an object, we cannot find the work by simply multiplying the spring force by the object's displacement. The reason is that there is no one value for the force-it changes. However, we can split the displacement up into an infinite number of tiny parts and then approximate the force in each as being constant. Integration sums the work done in all those parts. Here we use the generic result of the integration.

In Fig. 7-11, a cumin canister of mass \(m=0.40 \mathrm{~kg}\) slides across a horizontal frictionless counter with speed \(v=0.50 \mathrm{~m} / \mathrm{s}\).


Figure 7-11 A canister moves toward a spring.

It then runs into and compresses a spring of spring constant \(k=750 \mathrm{~N} / \mathrm{m}\). When the canister is momentarily stopped by the spring, by what distance \(d\) is the spring compressed?

\section*{KEY IDEAS}
1. The work \(W_{s}\) done on the canister by the spring force is related to the requested distance \(d\) by Eq. 7-26 ( \(W_{s}=\) \(-\frac{1}{2} k x^{2}\) ), with \(d\) replacing \(x\).
2. The work \(W_{s}\) is also related to the kinetic energy of the canister by Eq. 7-10 \(\left(K_{f}-K_{i}=W\right)\).
3. The canister's kinetic energy has an initial value of \(K=\) \(\frac{1}{2} m \nu^{2}\) and a value of zero when the canister is momentarily at rest.

Calculations: Putting the first two of these ideas together, we write the work-kinetic energy theorem for the canister as
\[
K_{f}-K_{i}=-\frac{1}{2} k d^{2} .
\]

Substituting according to the third key idea gives us this expression:
\[
0-\frac{1}{2} m v^{2}=-\frac{1}{2} k d^{2}
\]

Simplifying, solving for \(d\), and substituting known data then give us
\[
\begin{aligned}
d & =v \sqrt{\frac{m}{k}}=(0.50 \mathrm{~m} / \mathrm{s}) \sqrt{\frac{0.40 \mathrm{~kg}}{750 \mathrm{~N} / \mathrm{m}}} \\
& =1.2 \times 10^{-2} \mathrm{~m}=1.2 \mathrm{~cm}
\end{aligned}
\]
(Answer)

\section*{7-5 work done by a general variable force}

\section*{Learning Objectives}

After reading this module, you should be able to ...
7.14 Given a variable force as a function of position, calculate the work done by it on an object by integrating the function from the initial to the final position of the object, in one or more dimensions.
7.15 Given a graph of force versus position, calculate the work done by graphically integrating from the initial position to the final position of the object.
7.16 Convert a graph of acceleration versus position to a graph of force versus position.
7.17 Apply the work-kinetic energy theorem to situations where an object is moved by a variable force.

\section*{Key Ideas}
- When the force \(\vec{F}\) on a particle-like object depends on the position of the object, the work done by \(\vec{F}\) on the object while the object moves from an initial position \(r_{i}\) with coordinates \(\left(x_{i}, y_{i}, z_{i}\right)\) to a final position \(r_{f}\) with coordinates \(\left(x_{f}, y_{f}, z_{f}\right)\) must be found by integrating the force. If we assume that component \(F_{x}\) may depend on \(x\) but not on \(y\) or \(z\), component \(F_{y}\) may depend on \(y\) but not on \(x\) or \(z\), and component \(F_{z}\) may depend on \(z\) but not on \(x\) or \(y\), then the
work is
\[
W=\int_{x_{i}}^{x_{f}} F_{x} d x+\int_{y_{i}}^{y_{f}} F_{y} d y+\int_{z_{i}}^{z_{f}} F_{z} d z
\]

If \(\vec{F}\) has only an \(x\) component, then this reduces to
\[
W=\int_{x_{i}}^{x_{f}} F(x) d x .
\]

\section*{Work Done by a General Variable Force}

\section*{One-Dimensional Analysis}

Let us return to the situation of Fig. 7-2 but now consider the force to be in the positive direction of the \(x\) axis and the force magnitude to vary with position \(x\). Thus, as the bead (particle) moves, the magnitude \(F(x)\) of the force doing work on it changes. Only the magnitude of this variable force changes, not its direction, and the magnitude at any position does not change with time.

Figure 7-12a shows a plot of such a one-dimensional variable force. We want an expression for the work done on the particle by this force as the particle moves from an initial point \(x_{i}\) to a final point \(x_{f}\). However, we cannot use Eq. 7-7 ( \(W=F d \cos \phi\) ) because it applies only for a constant force \(\vec{F}\). Here, again, we shall use calculus. We divide the area under the curve of Fig. 7-12 \(a\) into a number of narrow strips of width \(\Delta x\) (Fig. 7-12b). We choose \(\Delta x\) small enough to permit us to take the force \(F(x)\) as being reasonably constant over that interval. We let \(F_{j, \text { avg }}\) be the average value of \(F(x)\) within the \(j\) th interval. Then in Fig. 7-12b, \(F_{j, \text { avg }}\) is the height of the \(j\) th strip.

With \(F_{j, \text { avg }}\) considered constant, the increment (small amount) of work \(\Delta W_{j}\) done by the force in the \(j\) th interval is now approximately given by Eq. 7-7 and is
\[
\begin{equation*}
\Delta W_{j}=F_{j, \text { avg }} \Delta x . \tag{7-29}
\end{equation*}
\]

In Fig. \(7-12 b, \Delta W_{j}\) is then equal to the area of the \(j\) th rectangular, shaded strip.
To approximate the total work \(W\) done by the force as the particle moves from \(x_{i}\) to \(x_{f}\), we add the areas of all the strips between \(x_{i}\) and \(x_{f}\) in Fig. 7-12b:
\[
\begin{equation*}
W=\sum \Delta W_{j}=\sum F_{j, \mathrm{avg}} \Delta x \tag{7-30}
\end{equation*}
\]

Equation 7-30 is an approximation because the broken "skyline" formed by the tops of the rectangular strips in Fig. 7-12b only approximates the actual curve of \(F(x)\).

We can make the approximation better by reducing the strip width \(\Delta x\) and using more strips (Fig. 7-12c). In the limit, we let the strip width approach zero; the number of strips then becomes infinitely large and we have, as an exact result,
\[
\begin{equation*}
W=\lim _{\Delta x \rightarrow 0} \sum F_{j, \text { avg }} \Delta x \tag{7-31}
\end{equation*}
\]

This limit is exactly what we mean by the integral of the function \(F(x)\) between the limits \(x_{i}\) and \(x_{f}\). Thus, Eq. 7-31 becomes
\[
\begin{equation*}
W=\int_{x_{i}}^{x_{f}} F(x) d x \quad \text { (work: variable force). } \tag{7-32}
\end{equation*}
\]

If we know the function \(F(x)\), we can substitute it into Eq. 7-32, introduce the proper limits of integration, carry out the integration, and thus find the work. (Appendix E contains a list of common integrals.) Geometrically, the work is equal to the area between the \(F(x)\) curve and the \(x\) axis, between the limits \(x_{i}\) and \(x_{f}\) (shaded in Fig. 7-12d).

\section*{Three-Dimensional Analysis}

Consider now a particle that is acted on by a three-dimensional force
\[
\begin{equation*}
\vec{F}=F_{x} \hat{\mathrm{i}}+F_{y} \hat{\mathrm{j}}+F_{z} \hat{\mathrm{k}}, \tag{7-33}
\end{equation*}
\]
in which the components \(F_{x}, F_{y}\), and \(F_{z}\) can depend on the position of the particle; that is, they can be functions of that position. However, we make three simplifications: \(F_{x}\) may depend on \(x\) but not on \(y\) or \(z, F_{y}\) may depend on \(y\) but not on \(x\) or \(z\), and \(F_{z}\) may depend on \(z\) but not on \(x\) or \(y\). Now let the particle move through an incremental displacement
\[
\begin{equation*}
d \vec{r}=d x \hat{\mathrm{i}}+d y \hat{\mathrm{j}}+d z \hat{\mathrm{k}} \tag{7-34}
\end{equation*}
\]

The increment of work \(d W\) done on the particle by \(\vec{F}\) during the displacement \(d \vec{r}\) is, by Eq. 7-8,
\[
\begin{equation*}
d W=\vec{F} \cdot d \vec{r}=F_{x} d x+F_{y} d y+F_{z} d z \tag{7-35}
\end{equation*}
\]


We can approximate that area with the area of these strips.


> We can do better with more, narrower strips.
(c)


For the best, take the limit of strip widths going to zero.

(d)

Figure 7-12 (a) A one-dimensional force \(\vec{F}(x)\) plotted against the displacement \(x\) of a particle on which it acts. The particle moves from \(x_{i}\) to \(x_{f .}\) (b) Same as (a) but with the area under the curve divided into narrow strips. (c) Same as (b) but with the area divided into narrower strips. (d) The limiting case. The work done by the force is given by Eq. 7-32 and is represented by the shaded area between the curve and the \(x\) axis and between \(x_{i}\) and \(x_{f}\).

The work \(W\) done by \(\vec{F}\) while the particle moves from an initial position \(r_{i}\) having coordinates \(\left(x_{i}, y_{i}, z_{i}\right)\) to a final position \(r_{f}\) having coordinates \(\left(x_{f}, y_{f}, z_{f}\right)\) is then
\[
\begin{equation*}
W=\int_{r_{i}}^{r_{f}} d W=\int_{x_{i}}^{x_{f}} F_{x} d x+\int_{y_{i}}^{y_{f}} F_{y} d y+\int_{z_{i}}^{z_{f}} F_{z} d z \tag{7-36}
\end{equation*}
\]

If \(\vec{F}\) has only an \(x\) component, then the \(y\) and \(z\) terms in Eq. 7-36 are zero and the equation reduces to Eq. 7-32.

\section*{Work-Kinetic Energy Theorem with a Variable Force}

Equation 7-32 gives the work done by a variable force on a particle in a onedimensional situation. Let us now make certain that the work is equal to the change in kinetic energy, as the work - kinetic energy theorem states.

Consider a particle of mass \(m\), moving along an \(x\) axis and acted on by a net force \(F(x)\) that is directed along that axis. The work done on the particle by this force as the particle moves from position \(x_{i}\) to position \(x_{f}\) is given by Eq. 7-32 as
\[
\begin{equation*}
W=\int_{x_{i}}^{x_{f}} F(x) d x=\int_{x_{i}}^{x_{f}} m a d x \tag{7-37}
\end{equation*}
\]
in which we use Newton's second law to replace \(F(x)\) with \(m a\). We can write the quantity \(m a d x\) in Eq. 7-37 as
\[
\begin{equation*}
m a d x=m \frac{d v}{d t} d x \tag{7-38}
\end{equation*}
\]

From the chain rule of calculus, we have
\[
\begin{equation*}
\frac{d v}{d t}=\frac{d v}{d x} \frac{d x}{d t}=\frac{d v}{d x} v \tag{7-39}
\end{equation*}
\]
and Eq. \(7-38\) becomes
\[
\begin{equation*}
m a d x=m \frac{d v}{d x} v d x=m v d v \tag{7-40}
\end{equation*}
\]

Substituting Eq. 7-40 into Eq. 7-37 yields
\[
\begin{align*}
W & =\int_{v_{i}}^{v_{f}} m v d v=m \int_{v_{i}}^{v_{f}} v d v \\
& =\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2} \tag{7-41}
\end{align*}
\]

Note that when we change the variable from \(x\) to \(v\) we are required to express the limits on the integral in terms of the new variable. Note also that because the mass \(m\) is a constant, we are able to move it outside the integral.

Recognizing the terms on the right side of Eq. 7-41 as kinetic energies allows us to write this equation as
\[
W=K_{f}-K_{i}=\Delta K
\]
which is the work-kinetic energy theorem.

\section*{Sample Problem 7.07 Work calculated by graphical integration}

In Fig. 7-13b, an 8.0 kg block slides along a frictionless floor as a force acts on it, starting at \(x_{1}=0\) and ending at \(x_{3}=6.5 \mathrm{~m}\). As the block moves, the magnitude and direction of the force varies according to the graph shown in Fig. 7-13a. For
example, from \(x=0\) to \(x=1 \mathrm{~m}\), the force is positive (in the positive direction of the \(x\) axis) and increases in magnitude from 0 to 40 N . And from \(x=4 \mathrm{~m}\) to \(x=5 \mathrm{~m}\), the force is negative and increases in magnitude from 0 to 20 N .
(Note that this latter value is displayed as -20 N .) The block's kinetic energy at \(x_{1}\) is \(K_{1}=280 \mathrm{~J}\). What is the block's speed at \(x_{1}=0, x_{2}=4.0 \mathrm{~m}\), and \(x_{3}=6.5 \mathrm{~m}\) ?

\section*{KEY IDEAS}
(1) At any point, we can relate the speed of the block to its kinetic energy with Eq. \(7-1\left(K=\frac{1}{2} m v^{2}\right)\). (2) We can relate the kinetic energy \(K_{f}\) at a later point to the initial kinetic \(K_{i}\) and the work \(W\) done on the block by using the workkinetic energy theorem of Eq. 7-10 \(\left(K_{f}-K_{i}=W\right)\). (3) We can calculate the work \(W\) done by a variable force \(F(x)\) by integrating the force versus position \(x\). Equation 7-32 tells us that
\[
W=\int_{x_{i}}^{x_{f}} F(x) d x
\]

We don't have a function \(F(x)\) to carry out the integration, but we do have a graph of \(F(x)\) where we can integrate by finding the area between the plotted line and the \(x\) axis. Where the plot is above the axis, the work (which is equal to the area) is positive. Where it is below the axis, the work is negative.

Calculations: The requested speed at \(x=0\) is easy because we already know the kinetic energy. So, we just plug the kinetic energy into the formula for kinetic energy:
\[
\begin{aligned}
K_{1} & =\frac{1}{2} m v_{1}^{2}, \\
280 \mathrm{~J} & =\frac{1}{2}(8.0 \mathrm{~kg}) v_{1}^{2},
\end{aligned}
\]
and then
\[
v_{1}=8.37 \mathrm{~m} / \mathrm{s} \approx 8.4 \mathrm{~m} / \mathrm{s}
\]
(Answer)
As the block moves from \(x=0\) to \(x=4.0 \mathrm{~m}\), the plot in Figure 7-13a is above the \(x\) axis, which means that positive work is being done on the block. We split the area under the plot into a triangle at the left, a rectangle in the center, and a triangle at the right. Their total area is
\[
\begin{aligned}
\frac{1}{2}(40 \mathrm{~N})(1 \mathrm{~m})+(40 \mathrm{~N})(2 \mathrm{~m})+\frac{1}{2}(40 \mathrm{~N})(1 \mathrm{~m}) & =120 \mathrm{~N} \cdot \mathrm{~m} \\
& =120 \mathrm{~J} .
\end{aligned}
\]

This means that between \(x=0\) and \(x=4.0 \mathrm{~m}\), the force does 120 J of work on the block, increasing the kinetic energy and speed of the block. So, when the block reaches \(x=4.0 \mathrm{~m}\), the work-kinetic energy theorem tells us that the kinetic energy is
\[
\begin{aligned}
K_{2} & =K_{1}+W \\
& =280 \mathrm{~J}+120 \mathrm{~J}=400 \mathrm{~J}
\end{aligned}
\]


Figure 7-13 (a) A graph indicating the magnitude and direction of a variable force that acts on a block as it moves along an \(x\) axis on a floor, \((b)\) The location of the block at several times.

Again using the definition of kinetic energy, we find
\[
\begin{aligned}
K_{2} & =\frac{1}{2} m v_{2}^{2}, \\
400 \mathrm{~J} & =\frac{1}{2}(8.0 \mathrm{~kg}) v_{2}^{2}
\end{aligned}
\]
and then
\[
v_{2}=10 \mathrm{~m} / \mathrm{s}
\]
(Answer)
This is the block's greatest speed because from \(x=4.0 \mathrm{~m}\) to \(x=6.5 \mathrm{~m}\) the force is negative, meaning that it opposes the block's motion, doing negative work on the block and thus decreasing the kinetic energy and speed. In that range, the area between the plot and the \(x\) axis is
\[
\begin{aligned}
\frac{1}{2}(20 \mathrm{~N})(1 \mathrm{~m})+(20 \mathrm{~N})(1 \mathrm{~m})+\frac{1}{2}(20 \mathrm{~N})(0.5 \mathrm{~m}) & =35 \mathrm{~N} \cdot \mathrm{~m} \\
& =35 \mathrm{~J}
\end{aligned}
\]

This means that the work done by the force in that range is -35 J . At \(x=4.0\), the block has \(K=400 \mathrm{~J}\). At \(x=6.5 \mathrm{~m}\), the work-kinetic energy theorem tells us that its kinetic energy is
\[
\begin{aligned}
K_{3} & =K_{2}+W \\
& =400 \mathrm{~J}-35 \mathrm{~J}=365 \mathrm{~J}
\end{aligned}
\]

Again using the definition of kinetic energy, we find
\[
\begin{aligned}
K_{3} & =\frac{1}{2} m v_{3}^{2} \\
365 \mathrm{~J} & =\frac{1}{2}(8.0 \mathrm{~kg}) v_{3}^{2},
\end{aligned}
\]
and then
\[
v_{3}=9.55 \mathrm{~m} / \mathrm{s} \approx 9.6 \mathrm{~m} / \mathrm{s} .
\]
(Answer)
The block is still moving in the positive direction of the \(x\) axis, a bit faster than initially.

\section*{Sample Problem 7.08 Work, two-dimensional integration}

When the force on an object depends on the position of the object, we cannot find the work done by it on the object by simply multiplying the force by the displacement. The reason is that there is no one value for the force-it changes. So, we must find the work in tiny little displacements and then add up all the work results. We effectively say, "Yes, the force varies over any given tiny little displacement, but the variation is so small we can approximate the force as being constant during the displacement." Sure, it is not precise, but if we make the displacements infinitesimal, then our error becomes infinitesimal and the result becomes precise. But, to add an infinite number of work contributions by hand would take us forever, longer than a semester. So, we add them up via an integration, which allows us to do all this in minutes (much less than a semester).

Force \(\vec{F}=\left(3 x^{2} \mathrm{~N}\right) \hat{\mathrm{i}}+(4 \mathrm{~N}) \hat{\mathrm{j}}\), with \(x\) in meters, acts on a particle, changing only the kinetic energy of the particle. How much work is done on the particle as it moves from coordinates \((2 \mathrm{~m}, 3 \mathrm{~m})\) to \((3 \mathrm{~m}, 0 \mathrm{~m})\) ? Does the speed of the particle increase, decrease, or remain the same?

KEY IDEA
The force is a variable force because its \(x\) component depends on the value of \(x\). Thus, we cannot use Eqs. 7-7 and 7-8 to find the work done. Instead, we must use Eq. 7-36 to integrate the force.

Calculation: We set up two integrals, one along each axis:
\[
\begin{aligned}
W & =\int_{2}^{3} 3 x^{2} d x+\int_{3}^{0} 4 d y=3 \int_{2}^{3} x^{2} d x+4 \int_{3}^{0} d y \\
& =3\left[\frac{1}{3} x^{3}\right]_{2}^{3}+4[y]_{3}^{0}=\left[3^{3}-2^{3}\right]+4[0-3] \\
& =7.0 \mathrm{~J} .
\end{aligned}
\]
(Answer)
The positive result means that energy is transferred to the particle by force \(\vec{F}\). Thus, the kinetic energy of the particle increases and, because \(K=\frac{1}{2} m v^{2}\), its speed must also increase. If the work had come out negative, the kinetic energy and speed would have decreased.

Additional examples, video, and practice available at WileyPLUS

\section*{7-6 POWER}

\section*{Learning Objectives}

After reading this module, you should be able to ...
7.18 Apply the relationship between average power, the work done by a force, and the time interval in which that work is done.
7.19 Given the work as a function of time, find the instantaneous power.
7.20 Determine the instantaneous power by taking a dot product of the force vector and an object's velocity vector, in magnitude-angle and unit-vector notations.

\section*{Key Ideas}
- The power due to a force is the rate at which that force does work on an object.
- If the force does work \(W\) during a time interval \(\Delta t\), the average power due to the force over that time interval is
\[
P_{\mathrm{avg}}=\frac{W}{\Delta t}
\]
- Instantaneous power is the instantaneous rate of doing work:
\[
P=\frac{d W}{d t}
\]
- For a force \(\vec{F}\) at an angle \(\phi\) to the direction of travel of the instantaneous velocity \(\vec{v}\), the instantaneous power is
\[
P=F v \cos \phi=\vec{F} \cdot \vec{v}
\]

\section*{Power}

The time rate at which work is done by a force is said to be the power due to the force. If a force does an amount of work \(W\) in an amount of time \(\Delta t\), the average power due to the force during that time interval is
\[
\begin{equation*}
P_{\mathrm{avg}}=\frac{W}{\Delta t} \quad \text { (average power). } \tag{7-42}
\end{equation*}
\]

The instantaneous power \(P\) is the instantaneous time rate of doing work, which we can write as
\[
\begin{equation*}
P=\frac{d W}{d t} \quad \text { (instantaneous power) } \tag{7-43}
\end{equation*}
\]

Suppose we know the work \(W(t)\) done by a force as a function of time. Then to get the instantaneous power \(P\) at, say, time \(t=3.0 \mathrm{~s}\) during the work, we would first take the time derivative of \(W(t)\) and then evaluate the result for \(t=3.0 \mathrm{~s}\).

The SI unit of power is the joule per second. This unit is used so often that it has a special name, the watt (W), after James Watt, who greatly improved the rate at which steam engines could do work. In the British system, the unit of power is the foot-pound per second. Often the horsepower is used. These are related by
and
\[
\begin{equation*}
1 \mathrm{watt}=1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}=0.738 \mathrm{ft} \cdot \mathrm{lb} / \mathrm{s} \tag{7-44}
\end{equation*}
\]
\[
\begin{equation*}
1 \text { horsepower }=1 \mathrm{hp}=550 \mathrm{ft} \cdot \mathrm{lb} / \mathrm{s}=746 \mathrm{~W} \tag{7-45}
\end{equation*}
\]

Inspection of Eq. 7-42 shows that work can be expressed as power multiplied by time, as in the common unit kilowatt-hour. Thus,
\[
\begin{align*}
1 \text { kilowatt-hour } & =1 \mathrm{~kW} \cdot \mathrm{~h}=\left(10^{3} \mathrm{~W}\right)(3600 \mathrm{~s}) \\
& =3.60 \times 10^{6} \mathrm{~J}=3.60 \mathrm{MJ} \tag{7-46}
\end{align*}
\]

Perhaps because they appear on our utility bills, the watt and the kilowatt-hour have become identified as electrical units. They can be used equally well as units for other examples of power and energy. Thus, if you pick up a book from the floor and put it on a tabletop, you are free to report the work that you have done as, say, \(4 \times 10^{-6} \mathrm{~kW} \cdot \mathrm{~h}\) (or more conveniently as \(4 \mathrm{~mW} \cdot \mathrm{~h}\) ).

We can also express the rate at which a force does work on a particle (or particle-like object) in terms of that force and the particle's velocity. For a particle that is moving along a straight line (say, an \(x\) axis) and is acted on by a constant force \(\vec{F}\) directed at some angle \(\phi\) to that line, Eq. \(7-43\) becomes
\[
P=\frac{d W}{d t}=\frac{F \cos \phi d x}{d t}=F \cos \phi\left(\frac{d x}{d t}\right)
\]
or
\[
\begin{equation*}
P=F v \cos \phi \tag{7-47}
\end{equation*}
\]

Reorganizing the right side of Eq. \(7-47\) as the dot product \(\vec{F} \cdot \vec{v}\), we may also write the equation as
\[
\begin{equation*}
P=\vec{F} \cdot \vec{v} \quad \text { (instantaneous power). } \tag{7-48}
\end{equation*}
\]

For example, the truck in Fig. 7-14 exerts a force \(\vec{F}\) on the trailing load, which has velocity \(\vec{v}\) at some instant. The instantaneous power due to \(\vec{F}\) is the rate at which \(\vec{F}\) does work on the load at that instant and is given by Eqs. 7-47 and 7-48. Saying that this power is "the power of the truck" is often acceptable, but keep in mind what is meant: Power is the rate at which the applied force does work.

\section*{Checkpoint 3}

A block moves with uniform circular motion because a cord tied to the block is anchored at the center of a circle. Is the power due to the force on the block from the cord positive, negative, or zero?

© Reglain/ZUMA
Figure 7-14 The power due to the truck's applied force on the trailing load is the rate at which that force does work on the load.

\section*{Sample Problem 7.09 Power, force, and velocity}

Here we calculate an instantaneous work-that is, the rate at which work is being done at any given instant rather than averaged over a time interval. Figure 7-15 shows constant forces \(\vec{F}_{1}\) and \(\vec{F}_{2}\) acting on a box as the box slides rightward across a frictionless floor. Force \(\vec{F}_{1}\) is horizontal, with magnitude 2.0 N ; force \(\vec{F}_{2}\) is angled upward by \(60^{\circ}\) to the floor and has magnitude 4.0 N . The speed \(v\) of the box at a certain instant is \(3.0 \mathrm{~m} / \mathrm{s}\). What is the power due to each force acting on the box at that instant, and what is the net power? Is the net power changing at that instant?

\section*{KEY IDEA}

We want an instantaneous power, not an average power over a time period. Also, we know the box's velocity (rather than the work done on it).


Figure 7-15 Two forces \(\vec{F}_{1}\) and \(\vec{F}_{2}\) act on a box that slides rightward across a frictionless floor. The velocity of the box is \(\vec{v}\).

Calculation: We use Eq. 7-47 for each force. For force \(\vec{F}_{1}\), at angle \(\phi_{1}=180^{\circ}\) to velocity \(\vec{v}\), we have
\[
\begin{aligned}
P_{1} & =F_{1} v \cos \phi_{1}=(2.0 \mathrm{~N})(3.0 \mathrm{~m} / \mathrm{s}) \cos 180^{\circ} \\
& =-6.0 \mathrm{~W} .
\end{aligned}
\]
(Answer)
This negative result tells us that force \(\vec{F}_{1}\) is transferring energy from the box at the rate of \(6.0 \mathrm{~J} / \mathrm{s}\).

For force \(\vec{F}_{2}\), at angle \(\phi_{2}=60^{\circ}\) to velocity \(\vec{v}\), we have
\[
\begin{aligned}
P_{2} & =F_{2} v \cos \phi_{2}=(4.0 \mathrm{~N})(3.0 \mathrm{~m} / \mathrm{s}) \cos 60^{\circ} \\
& =6.0 \mathrm{~W} .
\end{aligned}
\]
(Answer)
This positive result tells us that force \(\vec{F}_{2}\) is transferring energy to the box at the rate of \(6.0 \mathrm{~J} / \mathrm{s}\).

The net power is the sum of the individual powers (complete with their algebraic signs):
\[
\begin{aligned}
P_{\mathrm{net}} & =P_{1}+P_{2} \\
& =-6.0 \mathrm{~W}+6.0 \mathrm{~W}=0,
\end{aligned}
\]
(Answer)
which tells us that the net rate of transfer of energy to or from the box is zero. Thus, the kinetic energy ( \(K=\frac{1}{2} m v^{2}\) ) of the box is not changing, and so the speed of the box will remain at \(3.0 \mathrm{~m} / \mathrm{s}\). With neither the forces \(\vec{F}_{1}\) and \(\vec{F}_{2}\) nor the velocity \(\vec{v}\) changing, we see from Eq. 7-48 that \(P_{1}\) and \(P_{2}\) are constant and thus so is \(P_{\text {net }}\).

\section*{Beview \& Summary}

Kinetic Energy The kinetic energy \(K\) associated with the motion of a particle of mass \(m\) and speed \(v\), where \(v\) is well below the speed of light, is
\[
\begin{equation*}
K=\frac{1}{2} m v^{2} \quad \text { (kinetic energy). } \tag{7-1}
\end{equation*}
\]

Work Work \(W\) is energy transferred to or from an object via a force acting on the object. Energy transferred to the object is positive work, and from the object, negative work.

Work Done by a Constant Force The work done on a particle by a constant force \(\vec{F}\) during displacement \(\vec{d}\) is
\[
\begin{equation*}
W=F d \cos \phi=\vec{F} \cdot \vec{d} \quad \text { (work, constant force) }, \tag{7-7,7-8}
\end{equation*}
\]
in which \(\phi\) is the constant angle between the directions of \(\vec{F}\) and \(\vec{d}\). Only the component of \(\vec{F}\) that is along the displacement \(\vec{d}\) can do work on the object. When two or more forces act on an object, their net work is the sum of the individual works done by the forces, which is also equal to the work that would be done on the object by the net force \(\vec{F}_{\text {net }}\) of those forces.
Work and Kinetic Energy For a particle, a change \(\Delta K\) in the kinetic energy equals the net work \(W\) done on the particle:
\[
\begin{equation*}
\Delta K=K_{f}-K_{i}=W \quad \text { (work-kinetic energy theorem) } \tag{7-10}
\end{equation*}
\]
in which \(K_{i}\) is the initial kinetic energy of the particle and \(K_{f}\) is the kinetic energy after the work is done. Equation 7-10 rearranged gives us
\[
\begin{equation*}
K_{f}=K_{i}+W \tag{7-11}
\end{equation*}
\]

Work Done by the Gravitational Force The work \(W_{g}\) done by the gravitational force \(\vec{F}_{g}\) on a particle-like object of mass \(m\) as the object moves through a displacement \(\vec{d}\) is given by
\[
\begin{equation*}
W_{g}=m g d \cos \phi, \tag{7-12}
\end{equation*}
\]
in which \(\phi\) is the angle between \(\vec{F}_{g}\) and \(\vec{d}\).
Work Done in Lifting and Lowering an Object The work \(W_{a}\) done by an applied force as a particle-like object is either lifted or lowered is related to the work \(W_{g}\) done by the gravitational force and the change \(\Delta K\) in the object's kinetic energy by
\[
\begin{equation*}
\Delta K=K_{f}-K_{i}=W_{a}+W_{g} . \tag{7-15}
\end{equation*}
\]

If \(K_{f}=K_{i}\), then Eq. 7-15 reduces to
\[
\begin{equation*}
W_{a}=-W_{g}, \tag{7-16}
\end{equation*}
\]
which tells us that the applied force transfers as much energy to the object as the gravitational force transfers from it.

Spring Force The force \(\vec{F}_{s}\) from a spring is
\[
\begin{equation*}
\vec{F}_{s}=-k \vec{d} \quad(\text { Hooke's law) } \tag{7-20}
\end{equation*}
\]
where \(\vec{d}\) is the displacement of the spring's free end from its position when the spring is in its relaxed state (neither compressed nor extended), and \(k\) is the spring constant (a measure of the spring's stiffness). If an \(x\) axis lies along the spring, with the origin at the location of the spring's free end when the spring is in its relaxed state, Eq. 7-20 can be written as
\[
\begin{equation*}
F_{x}=-k x \quad(\text { Hooke's law }) \tag{7-21}
\end{equation*}
\]

A spring force is thus a variable force: It varies with the displacement of the spring's free end.

Work Done by a Spring Force If an object is attached to the spring's free end, the work \(W_{s}\) done on the object by the spring force when the object is moved from an initial position \(x_{i}\) to a final position \(x_{f}\) is
\[
\begin{equation*}
W_{s}=\frac{1}{2} k x_{i}^{2}-\frac{1}{2} k x_{f}^{2} . \tag{7-25}
\end{equation*}
\]

If \(x_{i}=0\) and \(x_{f}=x\), then Eq. 7-25 becomes
\[
\begin{equation*}
W_{s}=-\frac{1}{2} k x^{2} . \tag{7-26}
\end{equation*}
\]

Work Done by a Variable Force When the force \(\vec{F}\) on a particlelike object depends on the position of the object, the work done by \(\vec{F}\) on the object while the object moves from an initial position \(r_{i}\) with coordinates \(\left(x_{i}, y_{i}, z_{i}\right)\) to a final position \(r_{f}\) with coordinates \(\left(x_{f}, y_{f}, z_{f}\right)\)

\section*{Questions}

1 Rank the following velocities according to the kinetic energy a particle will have with each velocity, greatest first: (a) \(\vec{v}=4 \hat{i}+3 \hat{\mathrm{j}}\), (b) \(\vec{v}=-4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}\), (c) \(\vec{v}=-3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}\), (d) \(\vec{v}=3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}\), (e) \(\vec{v}=5 \hat{\mathrm{i}}\), and (f) \(v=5 \mathrm{~m} / \mathrm{s}\) at \(30^{\circ}\) to the horizontal.
2 Figure 7-16a shows two horizontal forces that act on a block that is sliding to the right across a frictionless floor. Figure 7-16b shows three plots of the block's kinetic energy \(K\) versus time \(t\). Which of the plots best corresponds to the following three situations: (a) \(F_{1}=F_{2}\), (b) \(F_{1}>F_{2}\), (c) \(F_{1}<F_{2}\) ?


Figure 7-16 Question 2.

3 Is positive or negative work done by a constant force \(\vec{F}\) on a particle during a straight-line displacement \(\vec{d}\) if (a) the angle between \(\vec{F}\) and \(\vec{d}\) is \(30^{\circ}\); (b) the angle is \(100^{\circ}\); (c) \(\vec{F}=2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}\) and \(\vec{d}=-4 \hat{\mathrm{i}}\) ?
4 In three situations, a briefly applied horizontal force changes the velocity of a hockey puck that slides over frictionless ice. The overhead views of Fig. 7-17 indicate, for each situation, the puck's initial speed \(v_{i}\), its final speed \(v_{f}\), and the directions of the corresponding velocity vectors. Rank the situations according to the work done on the puck by the applied force, most positive first and most negative last.
must be found by integrating the force. If we assume that component \(F_{x}\) may depend on \(x\) but not on \(y\) or \(z\), component \(F_{y}\) may depend on \(y\) but not on \(x\) or \(z\), and component \(F_{z}\) may depend on \(z\) but not on \(x\) or \(y\), then the work is
\[
\begin{equation*}
W=\int_{x_{i}}^{x_{f}} F_{x} d x+\int_{y_{i}}^{y_{f}} F_{y} d y+\int_{z_{i}}^{z_{f}} F_{z} d z \tag{7-36}
\end{equation*}
\]

If \(\vec{F}\) has only an \(x\) component, then Eq. 7-36 reduces to
\[
\begin{equation*}
W=\int_{x_{i}}^{x_{f}} F(x) d x . \tag{7-32}
\end{equation*}
\]

Power The power due to a force is the rate at which that force does work on an object. If the force does work \(W\) during a time interval \(\Delta t\), the average power due to the force over that time interval is
\[
\begin{equation*}
P_{\text {avg }}=\frac{W}{\Delta t} . \tag{7-42}
\end{equation*}
\]

Instantaneous power is the instantaneous rate of doing work:
\[
\begin{equation*}
P=\frac{d W}{d t} . \tag{7-43}
\end{equation*}
\]

For a force \(\vec{F}\) at an angle \(\phi\) to the direction of travel of the instantaneous velocity \(\vec{v}\), the instantaneous power is
\[
\begin{equation*}
P=F v \cos \phi=\vec{F} \cdot \vec{v} \tag{7-47,7-48}
\end{equation*}
\]


Figure 7-17 Question 4.
5 The graphs in Fig. 7-18 give the \(x\) component \(F_{x}\) of a force acting on a particle moving along an \(x\) axis. Rank them according to the work done by the force on the particle from \(x=0\) to \(x=x_{1}\), from most positive work first to most negative work last.
(a)

(b)

(c)

(d)

Figure 7-18
Question 5.

6 Figure 7-19 gives the \(x\) component \(F_{x}\) of a force that can act on a particle. If the particle begins at rest at \(x=0\), what is its coordinate when it has (a) its greatest kinetic energy, (b) its greatest speed, and (c) zero speed? (d) What is the particle's direction of travel after it reaches \(x=6 \mathrm{~m}\) ?
7 In Fig. 7-20, a greased pig has a choice of three frictionless slides along which to slide to the ground. Rank the slides according to how much work the gravitational force does on the pig during the descent, greatest first.

Figure 7-20
Question 7.


8 Figure 7-21 \(a\) shows four situations in which a horizontal force acts on the same block, which is initially at rest. The force magnitudes are \(F_{2}=F_{4}=2 F_{1}=2 F_{3}\). The horizontal component \(v_{x}\) of the block's velocity is shown in Fig. 7-21b for the four situations. (a) Which plot in Fig. 7-21 best corresponds to which force in Fig. 7-21a? (b) Which



Figure 7-19 Question 6.
plot in Fig. 7-21c (for kinetic energy \(K\) versus time \(t\) ) best corresponds to which plot in Fig. 7-21b?
9 Spring \(A\) is stiffer than spring \(B\left(k_{A}>k_{B}\right)\). The spring force of which spring does more work if the springs are compressed (a) the same distance and (b) by the same applied force?
10 A glob of slime is launched or dropped from the edge of a cliff. Which of the graphs in Fig. 7-22 could possibly show how the kinetic energy of the glob changes during its flight?


Figure 7-22 Question 10.
11 In three situations, a single force acts on a moving particle. Here are the velocities (at that instant) and the forces: (1) \(\vec{v}=(-4 \hat{\mathrm{i}}) \mathrm{m} / \mathrm{s}, \quad \vec{F}=(6 \hat{\mathrm{i}}-20 \hat{\mathrm{j}}) \mathrm{N} ; \quad(2) \quad \vec{v}=(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}\), \(\vec{F}=(-2 \hat{\mathrm{j}}+7 \hat{\mathrm{k}}) \mathrm{N} ;(3) \vec{v}=(-3 \hat{\mathrm{i}}+\hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}, \vec{F}=(2 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}) \mathrm{N}\). Rank the situations according to the rate at which energy is being transferred, greatest transfer to the particle ranked first, greatest transfer from the particle ranked last.
12 Figure 7-23 shows three arrangements of a block attached to identical springs that are in their relaxed state when the block is centered as shown. Rank the arrangements according to the magnitude of the net force on the block, largest first, when the block is displaced by distance \(d\) (a) to the right and (b) to the left. Rank the arrangements according to the work done on the block by the spring forces, greatest first, when the block is displaced by \(d\) (c) to the right and (d) to the left.

(1)
(2)

Figure 7-21 Question 8.

\section*{Problems}


\section*{Module 7-1 Kinetic Energy}
\(\bullet 1\) SSM A proton (mass \(m=1.67 \times 10^{-27} \mathrm{~kg}\) ) is being accelerated along a straight line at \(3.6 \times 10^{15} \mathrm{~m} / \mathrm{s}^{2}\) in a machine. If the proton has an initial speed of \(2.4 \times 10^{7} \mathrm{~m} / \mathrm{s}\) and travels 3.5 cm , what then is (a) its speed and (b) the increase in its kinetic energy?
-2 If a Saturn V rocket with an Apollo spacecraft attached had a combined mass of \(2.9 \times 10^{5} \mathrm{~kg}\) and reached a speed of \(11.2 \mathrm{~km} / \mathrm{s}\), how much kinetic energy would it then have?
-3 On August 10, 1972, a large meteorite skipped across the atmosphere above the western United States and western Canada,
much like a stone skipped across water. The accompanying fireball was so bright that it could be seen in the daytime sky and was brighter than the usual meteorite trail. The meteorite's mass was about \(4 \times 10^{6} \mathrm{~kg}\); its speed was about \(15 \mathrm{~km} / \mathrm{s}\). Had it entered the atmosphere vertically, it would have hit Earth's surface with about the same speed. (a) Calculate the meteorite's loss of kinetic energy (in joules) that would have been associated with the vertical impact. (b) Express the energy as a multiple of the explosive energy of 1 megaton of TNT, which is \(4.2 \times 10^{15} \mathrm{~J}\). (c) The energy associated with the atomic bomb explosion over Hiroshima was equivalent to 13 kilotons of TNT. To how many Hiroshima bombs would the meteorite impact have been equivalent?
-4 An explosion at ground level leaves a crater with a diameter that is proportional to the energy of the explosion raised to the \(\frac{1}{3}\) power; an explosion of 1 megaton of TNT leaves a crater with a 1 km diameter. Below Lake Huron in Michigan there appears to be an ancient impact crater with a 50 km diameter. What was the kinetic energy associated with that impact, in terms of (a) megatons of TNT ( 1 megaton yields \(4.2 \times 10^{15} \mathrm{~J}\) ) and (b) Hiroshima bomb equivalents ( 13 kilotons of TNT each)? (Ancient meteorite or comet impacts may have significantly altered the climate, killing off the dinosaurs and other life-forms.)
-๐5 A father racing his son has half the kinetic energy of the son, who has half the mass of the father. The father speeds up by \(1.0 \mathrm{~m} / \mathrm{s}\) and then has the same kinetic energy as the son. What are the original speeds of (a) the father and (b) the son?
\({ }^{\circ} 6\) A bead with mass \(1.8 \times 10^{-2} \mathrm{~kg}\) is moving along a wire in the positive direction of an \(x\) axis. Beginning at time \(t=0\), when the bead passes through \(x=0\) with speed \(12 \mathrm{~m} / \mathrm{s}\), a constant force acts on the bead. Figure 7-24 indicates the bead's position at these four times: \(t_{0}=0, t_{1}=1.0 \mathrm{~s}, t_{2}=2.0 \mathrm{~s}\), and \(t_{3}=3.0 \mathrm{~s}\). The bead momentarily stops at \(t=3.0 \mathrm{~s}\). What is the kinetic energy of the bead at \(t=10 \mathrm{~s}\) ?


Figure 7-24 Problem 6.

\section*{Module 7-2 Work and Kinetic Energy}
-7 A 3.0 kg body is at rest on a frictionless horizontal air track when a constant horizontal force \(\vec{F}\) acting in the positive direction of an \(x\) axis along the track is applied to the body. A stroboscopic graph of the position of the body as it slides to the right is shown in Fig. 725. The force \(\vec{F}\) is applied to the body at \(t=0\), and the graph records the position of the body at 0.50 s intervals. How much work is done on the body by the applied force \(\vec{F}\) between \(t=0\) and \(t=2.0 \mathrm{~s}\) ?


Figure 7-25 Problem 7.
\({ }^{\bullet} 8\) A ice block floating in a river is pushed through a displacement \(\vec{d}=(15 \mathrm{~m}) \hat{\mathrm{i}}-(12 \mathrm{~m}) \hat{\mathrm{j}}\) along a straight embankment by rushing water, which exerts a force \(\vec{F}=(210 \mathrm{~N}) \hat{\mathrm{i}}-(150 \mathrm{~N}) \hat{\mathrm{j}}\) on the block. How much work does the force do on the block during the displacement?
-9 The only force acting on a 2.0 kg canister that is moving in an \(x y\) plane has a magnitude of 5.0 N . The canister initially has a veloc-
ity of \(4.0 \mathrm{~m} / \mathrm{s}\) in the positive \(x\) direction and some time later has a velocity of \(6.0 \mathrm{~m} / \mathrm{s}\) in the positive \(y\) direction. How much work is done on the canister by the 5.0 N force during this time?
-10 A coin slides over a frictionless plane and across an \(x y\) coordinate system from the origin to a point with \(x y\) coordinates \((3.0 \mathrm{~m}, 4.0 \mathrm{~m})\) while a constant force acts on it. The force has magnitude 2.0 N and is directed at a counterclockwise angle of \(100^{\circ}\) from the positive direction of the \(x\) axis. How much work is done by the force on the coin during the displacement?
\(\bullet 11\) A 12.0 N force with a fixed orientation does work on a particle as the particle moves through the three-dimensional displacement \(\vec{d}=(2.00 \hat{\mathrm{i}}-4.00 \hat{\mathrm{j}}+3.00 \hat{\mathrm{k}}) \mathrm{m}\). What is the angle between the force and the displacement if the change in the particle's kinetic energy is (a) +30.0 J and (b) -30.0 J ?
\(\because 12\) A can of bolts and nuts is pushed 2.00 m along an \(x\) axis by a broom along the greasy (frictionless) floor of a car repair shop in a version of shuffleboard. Figure 7-26 gives the work \(W\) done on the can by the constant horizontal force from the broom, versus the can's position \(x\). The scale of the figure's vertical axis is set by \(W_{s}=6.0 \mathrm{~J}\). (a)


Figure 7-26 Problem 12. What is the magnitude of that force? (b) If the can had an initial kinetic energy of 3.00 J , moving in the positive direction of the \(x\) axis, what is its kinetic energy at the end of the 2.00 m ?
-•13 A luge and its rider, with a total mass of 85 kg , emerge from a downhill track onto a horizontal straight track with an initial speed of \(37 \mathrm{~m} / \mathrm{s}\). If a force slows them to a stop at a constant rate of 2.0 \(\mathrm{m} / \mathrm{s}^{2}\), (a) what magnitude \(F\) is required for the force, (b) what distance \(d\) do they travel while slowing, and (c) what work \(W\) is done on them by the force? What are (d) \(F\), (e) \(d\), and (f) \(W\) if they, instead, slow at \(4.0 \mathrm{~m} / \mathrm{s}^{2}\) ?
-14 ©0 Figure 7-27 shows an overhead view of three horizontal forces acting on a cargo canister that was initially stationary but now moves across a frictionless floor. The force magnitudes are \(F_{1}=3.00 \mathrm{~N}, F_{2}=\) 4.00 N , and \(F_{3}=10.0 \mathrm{~N}\), and the indicated angles are \(\theta_{2}=50.0^{\circ}\) and \(\theta_{3}=\) \(35.0^{\circ}\). What is the net work done on the canister by the three forces during the first 4.00 m of displacement?
-015 ©0 Figure 7-28 shows three forces applied to a trunk that moves leftward by 3.00 m over a frictionless floor. The force magnitudes are \(F_{1}=5.00 \mathrm{~N}, F_{2}=9.00 \mathrm{~N}\), and \(F_{3}=\) 3.00 N , and the indicated angle is \(\theta=\) \(60.0^{\circ}\). During the displacement, (a) what is the net work done on the trunk by the three forces and (b) does the kinetic energy of the trunk


Figure 7-27 Problem 14.


Figure 7-28 Problem 15. increase or decrease?
\(\bullet 16\) © An 8.0 kg object is moving in the positive direction of an \(x\) axis. When it passes through \(x=0\), a constant force directed
along the axis begins to act on it. Figure 7-29 gives its kinetic energy \(K\) versus position \(x\) as it moves from \(x=0\) to \(x=5.0 \mathrm{~m} ; K_{0}=30.0\) J . The force continues to act. What is \(v\) when the object moves back through \(x=-3.0 \mathrm{~m}\) ?

\section*{Module 7-3 Work Done by the Gravitational Force}
-17 SSM www A helicopter lifts a 72 kg astronaut 15 m vertically from the ocean by means of a cable. The acceleration of the astronaut is \(g / 10\). How much work is done on the astronaut by (a) the force from the helicopter and (b) the gravitational force on her? Just before she reaches the helicopter, what are her (c) kinetic energy and (d) speed?
-18 (a) In 1975 the roof of Montreal's Velodrome, with a weight of 360 kN , was lifted by 10 cm so that it could be centered. How much work was done on the roof by the forces making the lift? (b) In 1960 a Tampa, Florida, mother reportedly raised one end of a car that had fallen onto her son when a jack failed. If her panic lift effectively raised 4000 N (about \(\frac{1}{4}\) of the car's weight) by 5.0 cm , how much work did her force do on the car?
\(\bullet 19\) © In Fig. 7-30, a block of ice slides down a frictionless ramp at angle \(\theta=50^{\circ}\) while an ice worker pulls on the block (via a rope) with a force \(\vec{F}_{r}\) that has a magnitude of 50 N and is directed up the ramp. As the block slides through distance \(d=0.50 \mathrm{~m}\) along the ramp, its kinetic energy increases by 80 J. How much greater would its kinetic energy have been if the rope had not been attached to the block?
\(\because 20\) A block is sent up a frictionless ramp along which an \(x\) axis extends upward. Figure 7-31 gives the kinetic energy of the block as a function of position \(x\); the scale of the figure's vertical axis is set by \(K_{s}=40.0 \mathrm{~J}\). If the block's initial speed is \(4.00 \mathrm{~m} / \mathrm{s}\), what is the normal force on the block?
\(\because 21\) SSM A cord is used to vertically


Figure 7-30 Problem 19.


Figure 7-31 Problem 20. lower an initially stationary block of mass \(M\) at a constant downward acceleration of \(g / 4\). When the block has fallen a distance \(d\), find (a) the work done by the cord's force on the block, (b) the work done by the gravitational force on the block, (c) the kinetic energy of the block, and (d) the speed of the block.
-22 A cave rescue team lifts an injured spelunker directly upward and out of a sinkhole by means of a motor-driven cable. The lift is performed in three stages, each requiring a vertical distance of 10.0 m : (a) the initially stationary spelunker is accelerated to a speed of \(5.00 \mathrm{~m} / \mathrm{s}\); (b) he is then lifted at the constant speed of \(5.00 \mathrm{~m} / \mathrm{s}\); (c) finally he is decelerated to zero speed. How much work is done on the 80.0 kg rescuee by the force lifting him during each stage? -०23 In Fig. 7-32, a constant force \(\vec{F}_{a}\) of magnitude 82.0 N is applied to a 3.00 kg shoe box at angle \(\phi=53.0^{\circ}\), causing


Figure 7-32 Problem 23.
the box to move up a frictionless ramp at constant speed. How much work is done on the box by \(\vec{F}_{a}\) when the box has moved through vertical distance \(h=0.150 \mathrm{~m}\) ? -24 ©0 In Fig. 7-33, a horizontal force \(\vec{F}_{a}\) of magnitude 20.0 N is applied to a 3.00 kg psychology book as the book slides a distance \(d=0.500 \mathrm{~m}\) up a frictionless ramp at angle \(\theta=30.0^{\circ}\). (a) During the displacement, what is the net work done on the book by \(\vec{F}_{a}\), the gravitational force on the book, and the normal force on the book? (b) If the book


Figure 7-33 Problem 24. has zero kinetic energy at the start of the displacement, what is its speed at the end of the displacement?
-ロ025 ©0 In Fig. 7-34, a 0.250 kg block of cheese lies on the floor of a 900 kg elevator cab that is being pulled upward by a cable through distance \(d_{1}=2.40 \mathrm{~m}\) and then through distance \(d_{2}=10.5 \mathrm{~m}\). (a) Through \(d_{1}\), if the normal force on the block from the floor has constant magnitude \(F_{N}=3.00 \mathrm{~N}\), how much work is done on the cab by the force from the cable? (b) Through \(d_{2}\), if the work done on the cab by the (constant) force from the cable is 92.61 kJ , what is the magnitude of \(F_{N}\) ?


Figure 7-34 Problem 25.

\section*{Module 7-4 Work Done by a Spring Force}
-26 In Fig. 7-10, we must apply a force of magnitude 80 N to hold the block stationary at \(x=-2.0 \mathrm{~cm}\). From that position, we then slowly move the block so that our force does +4.0 J of work on the spring-block system; the block is then again stationary. What is the block's position? (Hint:There are two answers.)
-27 A spring and block are in the arrangement of Fig. 7-10. When the block is pulled out to \(x=+4.0 \mathrm{~cm}\), we must apply a force of magnitude 360 N to hold it there. We pull the block to \(x=11 \mathrm{~cm}\) and then release it. How much work does the spring do on the block as the block moves from \(x_{i}=+5.0 \mathrm{~cm}\) to (a) \(x=+3.0 \mathrm{~cm}\), (b) \(x=-3.0 \mathrm{~cm}\), (c) \(x=-5.0 \mathrm{~cm}\), and (d) \(x=-9.0 \mathrm{~cm}\) ?
-28 During spring semester at MIT, residents of the parallel buildings of the East Campus dorms battle one another with large catapults that are made with surgical hose mounted on a window frame. A balloon filled with dyed water is placed in a pouch attached to the hose, which is then stretched through the width of the room. Assume that the stretching of the hose obeys Hooke's law with a spring constant of \(100 \mathrm{~N} / \mathrm{m}\). If the hose is stretched by 5.00 m and then released, how much work does the force from the hose do on the balloon in the pouch by the time the hose reaches its relaxed length?
-29 In the arrangement of Fig. 7-10, we gradually pull the block from \(x=0\) to \(x=+3.0 \mathrm{~cm}\), where it is stationary. Figure \(7-35\) gives

the work that our force does on the block. The scale of the figure's vertical axis is set by \(W_{s}=1.0 \mathrm{~J}\). We then pull the block out to \(x=\) +5.0 cm and release it from rest. How much work does the spring do on the block when the block moves from \(x_{i}=+5.0 \mathrm{~cm}\) to (a) \(x=+4.0 \mathrm{~cm}\), (b) \(x=-2.0 \mathrm{~cm}\), and (c) \(x=-5.0 \mathrm{~cm}\) ?
-•30 In Fig. 7-10a, a block of mass \(m\) lies on a horizontal frictionless surface and is attached to one end of a horizontal spring (spring constant \(k\) ) whose other end is fixed. The block is initially at rest at the position where the spring is


Figure 7-36 Problem 30. unstretched ( \(x=0\) ) when a constant horizontal force \(\vec{F}\) in the positive direction of the \(x\) axis is applied to it. A plot of the resulting kinetic energy of the block versus its position \(x\) is shown in Fig. 7-36. The scale of the figure's vertical axis is set by \(K_{s}=4.0 \mathrm{~J}\). (a) What is the magnitude of \(\vec{F}\) ? (b) What is the value of \(k\) ?
\(\because 31\) SSm www The only force acting on a 2.0 kg body as it moves along a positive \(x\) axis has an \(x\) component \(F_{x}=-6 x \mathrm{~N}\), with \(x\) in meters. The velocity at \(x=3.0 \mathrm{~m}\) is \(8.0 \mathrm{~m} / \mathrm{s}\). (a) What is the velocity of the body at \(x=4.0 \mathrm{~m}\) ? (b) At what positive value of \(x\) will the body have a velocity of \(5.0 \mathrm{~m} / \mathrm{s}\) ?
थ32 Figure 7-37 gives spring force \(F_{x}\) versus position \(x\) for the spring-block arrangement of Fig. 710 . The scale is set by \(F_{s}=160.0 \mathrm{~N}\). We release the block at \(x=12 \mathrm{~cm}\). How much work does the spring do on the block when the block moves from \(x_{i}=+8.0 \mathrm{~cm}\) to (a) \(x=+5.0\) cm , (b) \(x=-5.0 \mathrm{~cm}\), (c) \(x=-8.0\)


Figure 7-37 Problem 32. cm , and (d) \(x=-10.0 \mathrm{~cm}\) ?
-0033 ©0 The block in Fig. 7-10a lies on a horizontal frictionless surface, and the spring constant is \(50 \mathrm{~N} / \mathrm{m}\). Initially, the spring is at its relaxed length and the block is stationary at position \(x=0\). Then an applied force with a constant magnitude of 3.0 N pulls the block in the positive direction of the \(x\) axis, stretching the spring until the block stops. When that stopping point is reached, what are (a) the position of the block, (b) the work that has been done on the block by the applied force, and (c) the work that has been done on the block by the spring force? During the block's displacement, what are (d) the block's position when its kinetic energy is maximum and (e) the value of that maximum kinetic energy?

\section*{Module 7-5 Work Done by a General Variable Force}
-34 ILW A 10 kg brick moves along an \(x\) axis. Its acceleration as a function of its position is shown in Fig. 7-38. The scale of the figure's vertical axis is set by \(a_{s}=20.0 \mathrm{~m} / \mathrm{s}^{2}\). What is the net work performed on the brick by the force causing the acceleration as the brick moves from \(x=0\) to \(x=8.0 \mathrm{~m}\) ?


Figure 7-38 Problem 34.
-35 SSM WWW The force on a particle is directed along an \(x\) axis and given by \(F=F_{0}\left(x / x_{0}-1\right)\). Find the work done by the force in moving the particle from \(x=0\) to \(x=2 x_{0}\) by (a) plotting \(F(x)\) and measuring the work from the graph and (b) integrating \(F(x)\).
-36 © A 5.0 kg block moves in a straight line on a horizontal frictionless surface under the influence of a force that varies with position as shown in Fig. 7-39. The scale of the figure's vertical axis is set by \(F_{s}=10.0 \mathrm{~N}\). How much work is done by the force as the block moves from the origin to \(x=8.0 \mathrm{~m}\) ?


Figure 7-39 Problem 36.
-•37 60 Figure 7-40 gives the acceleration of a 2.00 kg particle as an applied force \(\vec{F}_{a}\) moves it from rest along an \(x\) axis from \(x=0\) to \(x=9.0 \mathrm{~m}\). The scale of the figure's vertical axis is set by \(a_{s}=6.0 \mathrm{~m} / \mathrm{s}^{2}\). How much work has the force done on the particle when the particle reaches (a) \(x=4.0 \mathrm{~m}\), (b) \(x=7.0 \mathrm{~m}\), and (c) \(x=9.0 \mathrm{~m}\) ? What is the particle's speed and direction of travel when it reaches (d) \(x=4.0 \mathrm{~m}\), (e) \(x=7.0 \mathrm{~m}\), and (f) \(x=9.0 \mathrm{~m}\) ?


Figure 7-40 Problem 37.
-•38 A 1.5 kg block is initially at rest on a horizontal frictionless surface when a horizontal force along an \(x\) axis is applied to the block. The force is given by \(\vec{F}(x)=\left(2.5-x^{2}\right) \hat{\mathrm{i}} \mathrm{N}\), where \(x\) is in meters and the initial position of the block is \(x=0\). (a) What is the kinetic energy of the block as it passes through \(x=2.0 \mathrm{~m}\) ? (b) What is the maximum kinetic energy of the block between \(x=0\) and \(x=2.0 \mathrm{~m}\) ?
-039 © A force \(\vec{F}=\left(c x-3.00 x^{2}\right) \hat{i}\) acts on a particle as the particle moves along an \(x\) axis, with \(\vec{F}\) in newtons, \(x\) in meters, and \(c\) a constant. At \(x=0\), the particle's kinetic energy is 20.0 J ; at \(x=3.00 \mathrm{~m}\), it is 11.0 J . Find \(c\).
\(\because 40\) A can of sardines is made to move along an \(x\) axis from \(x=0.25 \mathrm{~m}\) to \(x=1.25 \mathrm{~m}\) by a force with a magnitude given by \(F=\exp \left(-4 x^{2}\right)\), with \(x\) in meters and \(F\) in newtons. (Here exp is the exponential function.) How much work is done on the can by the force?
\(\because 41\) A single force acts on a 3.0 kg particle-like object whose position is given by \(x=3.0 t-4.0 t^{2}+1.0 t^{3}\), with \(x\) in meters and \(t\) in seconds. Find the work done by the force from \(t=0\) to \(t=4.0 \mathrm{~s}\).
\(\cdots 0042\) © Figure 7-41 shows a cord attached to a cart that can slide along a frictionless horizontal rail aligned along an \(x\) axis. The left


Figure 7-41 Problem 42.
end of the cord is pulled over a pulley, of negligible mass and friction and at cord height \(h=1.20 \mathrm{~m}\), so the cart slides from \(x_{1}=3.00 \mathrm{~m}\) to \(x_{2}=1.00 \mathrm{~m}\). During the move, the tension in the cord is a constant 25.0 N . What is the change in the kinetic energy of the cart during the move?

\section*{Module 7-6 Power}
\(\cdot 43\) SSM A force of 5.0 N acts on a 15 kg body initially at rest. Compute the work done by the force in (a) the first, (b) the second, and (c) the third seconds and (d) the instantaneous power due to the force at the end of the third second.
-44 A skier is pulled by a towrope up a frictionless ski slope that makes an angle of \(12^{\circ}\) with the horizontal. The rope moves parallel to the slope with a constant speed of \(1.0 \mathrm{~m} / \mathrm{s}\). The force of the rope does 900 J of work on the skier as the skier moves a distance of 8.0 m up the incline. (a) If the rope moved with a constant speed of \(2.0 \mathrm{~m} / \mathrm{s}\), how much work would the force of the rope do on the skier as the skier moved a distance of 8.0 m up the incline? At what rate is the force of the rope doing work on the skier when the rope moves with a speed of (b) \(1.0 \mathrm{~m} / \mathrm{s}\) and (c) \(2.0 \mathrm{~m} / \mathrm{s}\) ?
\(\cdot 45\) SSM ILW A 100 kg block is pulled at a constant speed of \(5.0 \mathrm{~m} / \mathrm{s}\) across a horizontal floor by an applied force of 122 N directed \(37^{\circ}\) above the horizontal. What is the rate at which the force does work on the block?
-46 The loaded cab of an elevator has a mass of \(3.0 \times 10^{3} \mathrm{~kg}\) and moves 210 m up the shaft in 23 s at constant speed. At what average rate does the force from the cable do work on the cab?
\(\bullet 47\) A machine carries a 4.0 kg package from an initial position of \(\vec{d}_{i}=(0.50 \mathrm{~m}) \hat{\mathrm{i}}+(0.75 \mathrm{~m}) \hat{\mathrm{j}}+(0.20 \mathrm{~m}) \hat{\mathrm{k}}\) at \(t=0\) to a final position of \(\vec{d}_{f}=(7.50 \mathrm{~m}) \hat{\mathrm{i}}+(12.0 \mathrm{~m}) \hat{\mathrm{j}}+(7.20 \mathrm{~m}) \hat{\mathrm{k}}\) at \(t=12 \mathrm{~s}\). The constant force applied by the machine on the package is \(\vec{F}=(2.00 \mathrm{~N}) \hat{\mathrm{i}}+(4.00 \mathrm{~N}) \hat{\mathrm{j}}+(6.00 \mathrm{~N}) \hat{\mathrm{k}}\). For that displacement, find (a) the work done on the package by the machine's force and (b) the average power of the machine's force on the package.
-048 A 0.30 kg ladle sliding on a horizontal frictionless surface is attached to one end of a horizontal spring ( \(k=500 \mathrm{~N} / \mathrm{m}\) ) whose other end is fixed. The ladle has a kinetic energy of 10 J as it passes through its equilibrium position (the point at which the spring force is zero). (a) At what rate is the spring doing work on the ladle as the ladle passes through its equilibrium position? (b) At what rate is the spring doing work on the ladle when the spring is compressed 0.10 m and the ladle is moving away from the equilibrium position?
-049 SSM A fully loaded, slow-moving freight elevator has a cab with a total mass of 1200 kg , which is required to travel upward 54 m in 3.0 min , starting and ending at rest. The elevator's counterweight has a mass of only 950 kg , and so the elevator motor must help. What average power is required of the force the motor exerts on the cab via the cable?
\(\bullet 50\) (a) At a certain instant, a particle-like object is acted on by a force \(\vec{F}=(4.0 \mathrm{~N}) \hat{\mathrm{i}}-(2.0 \mathrm{~N}) \hat{\mathrm{j}}+(9.0 \mathrm{~N}) \hat{\mathrm{k}}\) while the object's velocity is \(\vec{v}=-(2.0 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(4.0 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{k}}\). What is the instantaneous rate at which the force does work on the object? (b) At some other time, the velocity consists of only a \(y\) component. If the force is unchanged and the instantaneous power is -12 W , what is the velocity of the object?
-051 A force \(\vec{F}=(3.00 \mathrm{~N}) \hat{\mathrm{i}}+(7.00 \mathrm{~N}) \hat{\mathrm{j}}+(7.00 \mathrm{~N}) \hat{\mathrm{k}}\) acts on a 2.00 kg mobile object that moves from an initial position of
\(\vec{d}_{i}=(3.00 \mathrm{~m}) \hat{\mathrm{i}}-(2.00 \mathrm{~m}) \hat{\mathrm{j}}+(5.00 \mathrm{~m}) \hat{\mathrm{k}}\) to a final position of \(\vec{d}_{f}=-(5.00 \mathrm{~m}) \hat{\mathrm{i}}+(4.00 \mathrm{~m}) \hat{\mathrm{j}}+(7.00 \mathrm{~m}) \hat{\mathrm{k}}\) in 4.00 s . Find (a) the work done on the object by the force in the 4.00 s interval, (b) the average power due to the force during that interval, and (c) the angle between vectors \(\vec{d}_{i}\) and \(\vec{d}_{f}\).
©o52 A funny car accelerates from rest through a measured track distance in time \(T\) with the engine operating at a constant power \(P\). If the track crew can increase the engine power by a differential amount \(d P\), what is the change in the time required for the run?

\section*{Additional Problems}

53 Figure 7-42 shows a cold package of hot dogs sliding rightward across a frictionless floor through a distance \(d=20.0 \mathrm{~cm}\) while three forces act on the package. Two of them are horizontal and have the magnitudes \(F_{1}=5.00 \mathrm{~N}\) and \(F_{2}=1.00 \mathrm{~N}\); the third is angled down by \(\theta=60.0^{\circ}\) and has the magnitude \(F_{3}=4.00 \mathrm{~N}\). (a) For the 20.0 cm displacement, what is the net work done on the package by the three applied forces, the gravitational force on the package, and the normal force on the package? (b) If the package has a mass of 2.0 kg and an initial kinetic energy of 0 , what is its speed at the end of the displacement?


54 © The only force acting on a \(F_{x}(\mathrm{~N})\) 2.0 kg body as the body moves along an \(x\) axis varies as shown in Fig. 7-43. The scale of the figure's vertical axis is set by \(F_{s}=4.0 \mathrm{~N}\). The velocity of the body at \(x=0\) is \(4.0 \mathrm{~m} / \mathrm{s}\). (a) What is the kinetic energy of the body at \(x=3.0 \mathrm{~m}\) ? (b) At what value of \(x\) will


Figure 7-43 Problem 54. the body have a kinetic energy of 8.0 J ? (c) What is the maximum kinetic energy of the body between \(x=0\) and \(x=5.0 \mathrm{~m}\) ?

55 SSM A horse pulls a cart with a force of 40 lb at an angle of \(30^{\circ}\) above the horizontal and moves along at a speed of \(6.0 \mathrm{mi} / \mathrm{h}\). (a) How much work does the force do in 10 min ? (b) What is the average power (in horsepower) of the force?
56 An initially stationary 2.0 kg object accelerates horizontally and uniformly to a speed of \(10 \mathrm{~m} / \mathrm{s}\) in 3.0 s . (a) In that 3.0 s interval, how much work is done on the object by the force accelerating it? What is the instantaneous power due to that force (b) at the end of the interval and (c) at the end of the first half of the interval?
57 A 230 kg crate hangs from the end of a rope of length \(L=12.0 \mathrm{~m}\). You push horizontally on the crate with a varying force \(\vec{F}\) to move it distance \(d=\) 4.00 m to the side (Fig. 7-44). (a) What is the magnitude of \(\vec{F}\) when the crate is in this final position? During the crate's displacement, what are (b) the total


Figure 7-44 Problem 57.
work done on it, (c) the work done by the gravitational force on the crate, and (d) the work done by the pull on the crate from the rope? (e) Knowing that the crate is motionless before and after its displacement, use the answers to (b), (c), and (d) to find the work your force \(\vec{F}\) does on the crate. (f) Why is the work of your force not equal to the product of the horizontal displacement and the answer to (a)?
58 To pull a 50 kg crate across a horizontal frictionless floor, a worker applies a force of 210 N , directed \(20^{\circ}\) above the horizontal. As the crate moves 3.0 m , what work is done on the crate by (a) the worker's force, (b) the gravitational force, and (c) the normal force? (d) What is the total work?

59 A force \(\vec{F}_{a}\) is applied to a bead as the bead is moved along a straight wire through displacement +5.0 cm . The magnitude of \(\vec{F}_{a}\) is set at a certain value, but the angle \(\phi\) between \(\vec{F}_{a}\) and the bead's displacement can be chosen. Figure 7-45 gives the work \(W\) done by \(\vec{F}_{a}\) on the bead for a range of \(\phi\) values; \(W_{0}=25 \mathrm{~J}\). How much work is done by \(\vec{F}_{a}\) if \(\phi\) is (a)


Figure 7-45
Problem 59. \(64^{\circ}\) and (b) \(147^{\circ}\) ?

60 A frightened child is restrained by her mother as the child slides down a frictionless playground slide. If the force on the child from the mother is 100 N up the slide, the child's kinetic energy increases by 30 J as she moves down the slide a distance of 1.8 m . (a) How much work is done on the child by the gravitational force during the 1.8 m descent? (b) If the child is not restrained by her mother, how much will the child's kinetic energy increase as she comes down the slide that same distance of 1.8 m ?
61 How much work is done by a force \(\vec{F}=(2 x \mathrm{~N}) \hat{\mathrm{i}}+(3 \mathrm{~N}) \hat{\mathrm{j}}\), with \(x\) in meters, that moves a particle from a position \(\vec{r}_{i}=\) \((2 \mathrm{~m}) \hat{\mathrm{i}}+(3 \mathrm{~m}) \hat{\mathrm{j}}\) to a position \(\vec{r}_{f}=-(4 \mathrm{~m}) \hat{\mathrm{i}}-(3 \mathrm{~m}) \hat{\mathrm{j}}\) ?
62 A 250 g block is dropped onto a relaxed vertical spring that has a spring constant of \(k=\) \(2.5 \mathrm{~N} / \mathrm{cm}\) (Fig. 7-46). The block becomes attached to the spring and compresses the spring 12 cm before momentarily stopping. While the spring is being compressed, what work is done on the block by (a) the gravitational force on it and (b) the spring force? (c) What is the speed of the block just before it hits the spring? (Assume that friction is negligible.) (d) If the speed at impact is doubled, what is the maximum compression of the spring?


Figure 7-46 Problem 62.

63 SSM To push a 25.0 kg crate up a frictionless incline, angled at \(25.0^{\circ}\) to the horizontal, a worker exerts a force of 209 N parallel to the incline. As the crate slides 1.50 m , how much work is done on the crate by (a) the worker's applied force, (b) the gravitational force on the crate, and (c) the normal force exerted by the incline on the crate? (d) What is the total work done on the crate?
64 Boxes are transported from one location to another in a warehouse by means of a conveyor belt that moves with a constant speed of \(0.50 \mathrm{~m} / \mathrm{s}\). At a certain location the conveyor belt moves for 2.0 m up an incline that makes an angle of \(10^{\circ}\) with the horizontal, then for 2.0 m horizontally, and finally for 2.0 m down an incline that makes an angle of \(10^{\circ}\) with the horizontal. Assume that a 2.0 kg box rides on the belt without slipping. At what rate is the force of the conveyor belt doing work on the box as the box moves (a) up the \(10^{\circ}\) incline, (b) horizontally, and (c) down the \(10^{\circ}\) incline?

65 In Fig. 7-47, a cord runs around two massless, frictionless pulleys. A canister with mass \(m=20 \mathrm{~kg}\) hangs from one pulley, and you exert a force \(\vec{F}\) on the free end of the cord. (a) What must be the magnitude of \(\vec{F}\) if you are to lift the canister at a constant speed? (b) To lift the canister by 2.0 cm , how far must you pull the free end of the cord? During that lift, what is the work done on the canister by (c) your force (via the cord) and (d) the gravitational force? (Hint: When a cord loops around a pulley as shown, it pulls on the pulley with a net force that is twice the tension in the cord.)
66 If a car of mass 1200 kg is moving along a highway at \(120 \mathrm{~km} / \mathrm{h}\), what is the car's kinetic energy as determined by someone standing alongside the highway?

67 SSM A spring with a pointer attached is hanging next to a scale marked in millimeters. Three different packages are hung from the spring, in turn, as shown in Fig. 7-48. (a) Which mark on the scale will the pointer indicate when no package is hung from the spring? (b) What is the weight \(W\) of the third package?


Figure 7-48 Problem 67.
68 An iceboat is at rest on a frictionless frozen lake when a sudden wind exerts a constant force of 200 N , toward the east, on the boat. Due to the angle of the sail, the wind causes the boat to slide in a straight line for a distance of 8.0 m in a direction \(20^{\circ}\) north of east. What is the kinetic energy of the iceboat at the end of that 8.0 m ?

69 If a ski lift raises 100 passengers averaging 660 N in weight to a height of 150 m in 60.0 s , at constant speed, what average power is required of the force making the lift?
70 A force \(\vec{F}=(4.0 \mathrm{~N}) \hat{\mathrm{i}}+c \hat{\mathrm{j}}\) acts on a particle as the particle goes through displacement \(\vec{d}=(3.0 \mathrm{~m}) \hat{\mathrm{i}}-(2.0 \mathrm{~m}) \hat{\mathrm{j}}\). (Other forces also act on the particle.) What is \(c\) if the work done on the particle by force \(\vec{F}\) is (a) 0, (b) 17 J , and (c) -18 J ?

71 A constant force of magnitude 10 N makes an angle of \(150^{\circ}\) (measured counterclockwise) with the positive \(x\) direction as it acts on a 2.0 kg object moving in an \(x y\) plane. How much work is done on the object by the force as the object moves from the origin to the point having position vector \((2.0 \mathrm{~m}) \hat{\mathrm{i}}-(4.0 \mathrm{~m}) \hat{\mathrm{j}}\) ?

72 In Fig. 7-49a, a 2.0 N force is applied to a 4.0 kg block at a downward angle \(\theta\) as the block moves rightward through 1.0 m across a frictionless floor. Find an expression for the speed \(v_{f}\) of the block at the end of that distance if the block's initial velocity is (a) 0 and (b) \(1.0 \mathrm{~m} / \mathrm{s}\) to the right. (c) The situation in Fig. \(7-49 b\) is similar in that the block is initially moving at \(1.0 \mathrm{~m} / \mathrm{s}\) to the right, but now the 2.0 N force is directed downward to the left. Find an expression for the speed \(v_{f}\) of the block at the end of the 1.0 m distance. (d) Graph all three expressions for \(v_{f}\) versus downward angle \(\theta\) for \(\theta=0^{\circ}\) to \(\theta=90^{\circ}\). Interpret the graphs.


Figure 7-49 Problem 72.
73 A force \(\vec{F}\) in the positive direction of an \(x\) axis acts on an object moving along the axis. If the magnitude of the force is \(F=10 e^{-x / 2.0}\) N , with \(x\) in meters, find the work done by \(\vec{F}\) as the object moves from \(x=0\) to \(x=2.0 \mathrm{~m}\) by (a) plotting \(F(x)\) and estimating the area under the curve and (b) integrating to find the work analytically.

74 A particle moves along a straight path through displacement \(\vec{d}=(8 \mathrm{~m}) \hat{\mathrm{i}}+c \hat{\mathrm{j}}\) while force \(\vec{F}=(2 \mathrm{~N}) \hat{\mathrm{i}}-(4 \mathrm{~N}) \hat{\mathrm{j}}\) acts on it. (Other forces also act on the particle.) What is the value of \(c\) if the work done by \(\vec{F}\) on the particle is (a) zero, (b) positive, and (c) negative?
75 SSIM What is the power of the force required to move a 4500 kg elevator cab with a load of 1800 kg upward at constant speed \(3.80 \mathrm{~m} / \mathrm{s}\) ?
76 A 45 kg block of ice slides down a frictionless incline 1.5 m long and 0.91 m high. A worker pushes up against the ice, parallel to the incline, so that the block slides down at constant speed. (a) Find the magnitude of the worker's force. How much work is done on the block by (b) the worker's force, (c) the gravitational force on the block, (d) the normal force on the block from the surface of the incline, and (e) the net force on the block?
77 As a particle moves along an \(x\) axis, a force in the positive direction of the axis acts on it. Figure 7-50 shows the magnitude \(F\) of the force versus position \(x\) of the particle. The curve is given by \(F=a / x^{2}\), with \(a=9.0 \mathrm{~N} \cdot \mathrm{~m}^{2}\). Find the work done on the particle by the force as the particle moves from \(x=1.0 \mathrm{~m}\) to \(x=3.0 \mathrm{~m}\) by (a) estimating the work from the graph and (b) integrating the force function.


Figure 7-50 Problem 77.
78 A CD case slides along a floor in the positive direction of an \(x\) axis while an applied force \(\vec{F}_{a}\) acts on the case. The force is di-
rected along the \(x\) axis and has the \(x\) component \(F_{a x}=9 x-3 x^{2}\), with \(x\) in meters and \(F_{a x}\) in newtons. The case starts at rest at the position \(x=0\), and it moves until it is again at rest. (a) Plot the work \(\vec{F}_{a}\) does on the case as a function of \(x\). (b) At what position is the work maximum, and (c) what is that maximum value? (d) At what position has the work decreased to zero? (e) At what position is the case again at rest?
79 SSM A 2.0 kg lunchbox is sent sliding over a frictionless surface, in the positive direction of an \(x\) axis along the surface. Beginning at time \(t=0\), a steady wind pushes on the lunchbox in the negative direction of the \(x\) axis. Figure 7-51 shows the position \(x\) of the lunchbox as a function of time \(t\) as the wind pushes on the lunchbox. From the graph, estimate the kinetic energy of the lunchbox at (a) \(t=1.0 \mathrm{~s}\) and (b) \(t=5.0 \mathrm{~s}\). (c) How much work does the force from the wind do on the lunchbox from \(t=1.0 \mathrm{~s}\) to \(t=5.0 \mathrm{~s}\) ?


Figure 7-51 Problem 79.
80 Numerical integration. A breadbox is made to move along an \(x\) axis from \(x=0.15 \mathrm{~m}\) to \(x=1.20 \mathrm{~m}\) by a force with a magnitude given by \(F=\exp \left(-2 x^{2}\right)\), with \(x\) in meters and \(F\) in newtons. (Here \(\exp\) is the exponential function.) How much work is done on the breadbox by the force?

81 In the block-spring arrangement of Fig. 7-10, the block's mass is 4.00 kg and the spring constant is \(500 \mathrm{~N} / \mathrm{m}\). The block is released from position \(x_{i}=0.300 \mathrm{~m}\). What are (a) the block's speed at \(x=0\), (b) the work done by the spring when the block reaches \(x=0\), (c) the instantaneous power due to the spring at the release point \(x_{i}\), (d) the instantaneous power at \(x=0\), and (e) the block's position when the power is maximum?
82 A 4.00 kg block is pulled up a frictionless inclined plane by a 50.0 N force that is parallel to the plane, starting from rest. The normal force on the block from the plane has magnitude 13.41 N . What is the block's speed when its displacement up the ramp is 3.00 m ?
83 A spring with a spring constant of \(18.0 \mathrm{~N} / \mathrm{cm}\) has a cage attached to its free end. (a) How much work does the spring force do on the cage when the spring is stretched from its relaxed length by 7.60 mm ? (b) How much additional work is done by the spring force when the spring is stretched by an additional 7.60 mm ?
84 A force \(\vec{F}=(2.00 \hat{\mathrm{i}}+9.00 \hat{\mathrm{j}}+5.30 \hat{\mathrm{k}}) \mathrm{N}\) acts on a 2.90 kg object that moves in time interval 2.10 s from an initial position \(\vec{r}_{1}=(2.70 \hat{\mathrm{i}}-2.90 \hat{\mathrm{j}}+5.50 \hat{\mathrm{k}}) \mathrm{m}\) to a final position \(\vec{r}_{2}=\) \((-4.10 \hat{\mathrm{i}}+3.30 \hat{\mathrm{j}}+5.40 \hat{\mathrm{k}}) \mathrm{m}\). Find (a) the work done on the object by the force in that time interval, (b) the average power due to the force during that time interval, and (c) the angle between vectors \(\vec{r}_{1}\) and \(\vec{r}_{2}\).
85 At \(t=0\), force \(\vec{F}=(-5.00 \hat{\mathrm{i}}+5.00 \hat{\mathrm{j}}+4.00 \hat{\mathrm{k}}) \mathrm{N}\) begins to act on a 2.00 kg particle with an initial speed of \(4.00 \mathrm{~m} / \mathrm{s}\). What is the particle's speed when its displacement from the initial point is \(\vec{d}=(2.00 \hat{\mathrm{i}}+2.00 \hat{\mathrm{j}}+7.00 \hat{\mathrm{k}}) \mathrm{m}\) ?

\section*{Potential Energy and Conservation of Energy}

\section*{8-1 potential energy}

\section*{Learning Objectives}

After reading this module, you should be able to ...
8.01 Distinguish a conservative force from a nonconservative force.
8.02 For a particle moving between two points, identify that the work done by a conservative force does not depend on which path the particle takes.
8.03 Calculate the gravitational potential energy of a particle (or, more properly, a particle-Earth system).
8.04 Calculate the elastic potential energy of a block-spring system.
- The potential energy associated with a system consisting of Earth and a nearby particle is gravitational potential energy. If the particle moves from height \(y_{i}\) to height \(y_{f}\), the change in the gravitational potential energy of the particle-Earth system is
\[
\Delta U=m g\left(y_{f}-y_{i}\right)=m g \Delta y
\]
- If the reference point of the particle is set as \(y_{i}=0\) and the corresponding gravitational potential energy of the system is set as \(U_{i}=0\), then the gravitational potential energy \(U\) when the particle is at any height \(y\) is
\[
U(y)=m g y .
\]
- Elastic potential energy is the energy associated with the state of compression or extension of an elastic object. For a spring that exerts a spring force \(F=-k x\) when its free end has displacement \(x\), the elastic potential energy is
\[
U(x)=\frac{1}{2} k x^{2} .
\]
- The reference configuration has the spring at its relaxed length, at which \(x=0\) and \(U=0\).

\section*{What Is Physics?}

One job of physics is to identify the different types of energy in the world, especially those that are of common importance. One general type of energy is potential energy \(U\). Technically, potential energy is energy that can be associated with the configuration (arrangement) of a system of objects that exert forces on one another.


Rough Guides/Greg Roden/Getty Images, Inc.
Figure 8-1 The kinetic energy of a bungeecord jumper increases during the free fall, and then the cord begins to stretch, slowing the jumper.

This is a pretty formal definition of something that is actually familiar to you. An example might help better than the definition: A bungee-cord jumper plunges from a staging platform (Fig. 8-1). The system of objects consists of Earth and the jumper. The force between the objects is the gravitational force. The configuration of the system changes (the separation between the jumper and Earth decreases that is, of course, the thrill of the jump). We can account for the jumper's motion and increase in kinetic energy by defining a gravitational potential energy \(U\). This is the energy associated with the state of separation between two objects that attract each other by the gravitational force, here the jumper and Earth.

When the jumper begins to stretch the bungee cord near the end of the plunge, the system of objects consists of the cord and the jumper. The force between the objects is an elastic (spring-like) force. The configuration of the system changes (the cord stretches). We can account for the jumper's decrease in kinetic energy and the cord's increase in length by defining an elastic potential energy \(U\).This is the energy associated with the state of compression or extension of an elastic object, here the bungee cord.

Physics determines how the potential energy of a system can be calculated so that energy might be stored or put to use. For example, before any particular bungee-cord jumper takes the plunge, someone (probably a mechanical engineer) must determine the correct cord to be used by calculating the gravitational and elastic potential energies that can be expected. Then the jump is only thrilling and not fatal.

\section*{Work and Potential Energy}

In Chapter 7 we discussed the relation between work and a change in kinetic energy. Here we discuss the relation between work and a change in potential energy.

Let us throw a tomato upward (Fig. 8-2). We already know that as the tomato rises, the work \(W_{g}\) done on the tomato by the gravitational force is negative because the force transfers energy from the kinetic energy of the tomato. We can now finish the story by saying that this energy is transferred by the gravitational force to the gravitational potential energy of the tomato-Earth system.

The tomato slows, stops, and then begins to fall back down because of the gravitational force. During the fall, the transfer is reversed: The work \(W_{g}\) done on the tomato by the gravitational force is now positive - that force transfers energy from the gravitational potential energy of the tomato-Earth system to the kinetic energy of the tomato.

For either rise or fall, the change \(\Delta U\) in gravitational potential energy is defined as being equal to the negative of the work done on the tomato by the gravitational force. Using the general symbol \(W\) for work, we write this as
\[
\begin{equation*}
\Delta U=-W \tag{8-1}
\end{equation*}
\]

Figure 8-2 A tomato is thrown upward. As it rises, the gravitational force does negative work on it, decreasing its kinetic energy. As the tomato descends, the gravitational force does positive work on it, increasing its kinetic energy.


This equation also applies to a block-spring system, as in Fig. 8-3. If we abruptly shove the block to send it moving rightward, the spring force acts leftward and thus does negative work on the block, transferring energy from the kinetic energy of the block to the elastic potential energy of the spring-block system. The block slows and eventually stops, and then begins to move leftward because the spring force is still leftward. The transfer of energy is then reversed-it is from potential energy of the spring-block system to kinetic energy of the block.

\section*{Conservative and Nonconservative Forces}

Let us list the key elements of the two situations we just discussed:
1. The system consists of two or more objects.
2. A force acts between a particle-like object (tomato or block) in the system and the rest of the system.
3. When the system configuration changes, the force does work (call it \(W_{1}\) ) on the particle-like object, transferring energy between the kinetic energy \(K\) of the object and some other type of energy of the system.
4. When the configuration change is reversed, the force reverses the energy transfer, doing work \(W_{2}\) in the process.
In a situation in which \(W_{1}=-W_{2}\) is always true, the other type of energy is a potential energy and the force is said to be a conservative force. As you might suspect, the gravitational force and the spring force are both conservative (since otherwise we could not have spoken of gravitational potential energy and elastic potential energy, as we did previously).

A force that is not conservative is called a nonconservative force. The kinetic frictional force and drag force are nonconservative. For an example, let us send a block sliding across a floor that is not frictionless. During the sliding, a kinetic frictional force from the floor slows the block by transferring energy from its kinetic energy to a type of energy called thermal energy (which has to do with the random motions of atoms and molecules). We know from experiment that this energy transfer cannot be reversed (thermal energy cannot be transferred back to kinetic energy of the block by the kinetic frictional force). Thus, although we have a system (made up of the block and the floor), a force that acts between parts of the system, and a transfer of energy by the force, the force is not conservative. Therefore, thermal energy is not a potential energy.

When only conservative forces act on a particle-like object, we can greatly simplify otherwise difficult problems involving motion of the object. Let's next develop a test for identifying conservative forces, which will provide one means for simplifying such problems.

\section*{Path Independence of Conservative Forces}

The primary test for determining whether a force is conservative or nonconservative is this: Let the force act on a particle that moves along any closed path, beginning at some initial position and eventually returning to that position (so that the particle makes a round trip beginning and ending at the initial position). The force is conservative only if the total energy it transfers to and from the particle during the round trip along this and any other closed path is zero. In other words:

The net work done by a conservative force on a particle moving around any closed path is zero.

We know from experiment that the gravitational force passes this closedpath test. An example is the tossed tomato of Fig. 8-2. The tomato leaves the launch point with speed \(v_{0}\) and kinetic energy \(\frac{1}{2} m v_{0}^{2}\). The gravitational force acting


Figure 8-3 A block, attached to a spring and initially at rest at \(x=0\), is set in motion toward the right. (a) As the block moves rightward (as indicated by the arrow), the spring force does negative work on it.
(b) Then, as the block moves back toward \(x=0\), the spring force does positive work on it.

(a)

The force is conservative. Any choice of path between the points gives the same amount of work.

(b)

And a round trip gives a total work of zero.

Figure 8-4 (a) As a conservative force acts on it, a particle can move from point \(a\) to point \(b\) along either path 1 or path 2 .
(b) The particle moves in a round trip, from point \(a\) to point \(b\) along path 1 and then back to point \(a\) along path 2 .
on the tomato slows it, stops it, and then causes it to fall back down. When the tomato returns to the launch point, it again has speed \(v_{0}\) and kinetic energy \(\frac{1}{2} m v_{0}^{2}\). Thus, the gravitational force transfers as much energy from the tomato during the ascent as it transfers to the tomato during the descent back to the launch point. The net work done on the tomato by the gravitational force during the round trip is zero.

An important result of the closed-path test is that:

The work done by a conservative force on a particle moving between two points does not depend on the path taken by the particle.

For example, suppose that a particle moves from point \(a\) to point \(b\) in Fig. 8-4a along either path 1 or path 2 . If only a conservative force acts on the particle, then the work done on the particle is the same along the two paths. In symbols, we can write this result as
\[
\begin{equation*}
W_{a b, 1}=W_{a b, 2} \tag{8-2}
\end{equation*}
\]
where the subscript \(a b\) indicates the initial and final points, respectively, and the subscripts 1 and 2 indicate the path.

This result is powerful because it allows us to simplify difficult problems when only a conservative force is involved. Suppose you need to calculate the work done by a conservative force along a given path between two points, and the calculation is difficult or even impossible without additional information. You can find the work by substituting some other path between those two points for which the calculation is easier and possible.

\section*{Proof of Equation 8-2}

Figure \(8-4 b\) shows an arbitrary round trip for a particle that is acted upon by a single force. The particle moves from an initial point \(a\) to point \(b\) along path 1 and then back to point \(a\) along path 2 . The force does work on the particle as the particle moves along each path. Without worrying about where positive work is done and where negative work is done, let us just represent the work done from \(a\) to \(b\) along path 1 as \(W_{a b, 1}\) and the work done from \(b\) back to \(a\) along path 2 as \(W_{b a, 2}\). If the force is conservative, then the net work done during the round trip must be zero:
\[
W_{a b, 1}+W_{b a, 2}=0,
\]
and thus
\[
\begin{equation*}
W_{a b, 1}=-W_{b a, 2} \tag{8-3}
\end{equation*}
\]

In words, the work done along the outward path must be the negative of the work done along the path back.

Let us now consider the work \(W_{a b, 2}\) done on the particle by the force when the particle moves from \(a\) to \(b\) along path 2, as indicated in Fig. 8-4a. If the force is conservative, that work is the negative of \(W_{b a, 2}\) :
\[
\begin{equation*}
W_{a b, 2}=-W_{b a, 2} \tag{8-4}
\end{equation*}
\]

Substituting \(W_{a b, 2}\) for \(-W_{b a, 2}\) in Eq. 8-3, we obtain
\[
W_{a b, 1}=W_{a b, 2}
\]
which is what we set out to prove.

\section*{Checkpoint 1}

The figure shows three paths connecting points \(a\) and \(b\). A single force \(\vec{F}\) does the indicated work on a particle moving along each path in the indicated direction. On the basis of this information, is force \(\vec{F}\) conservative?


\section*{Sample Problem 8.01 Equivalent paths for calculating work, slippery cheese}

The main lesson of this sample problem is this: It is perfectly all right to choose an easy path instead of a hard path. Figure \(8-5 a\) shows a 2.0 kg block of slippery cheese that slides along a frictionless track from point \(a\) to point \(b\). The cheese travels through a total distance of 2.0 m along the track, and a net vertical distance of 0.80 m . How much work is done on the cheese by the gravitational force during the slide?

\section*{KEY IDEAS}
(1) We cannot calculate the work by using Eq. 7-12 ( \(W_{g}=\) \(m g d \cos \phi)\). The reason is that the angle \(\phi\) between the directions of the gravitational force \(\vec{F}_{g}\) and the displacement \(\vec{d}\) varies along the track in an unknown way. (Even if we did know the shape of the track and could calculate \(\phi\) along it, the calculation could be very difficult.) (2) Because \(\vec{F}_{g}\) is a conservative force, we can find the work by choosing some other path between \(a\) and \(b\)-one that makes the calculation easy.

Calculations: Let us choose the dashed path in Fig. 8-5b; it consists of two straight segments. Along the horizontal segment, the angle \(\phi\) is a constant \(90^{\circ}\). Even though we do not know the displacement along that horizontal segment, Eq. 7-12 tells us that the work \(W_{h}\) done there is
\[
W_{h}=m g d \cos 90^{\circ}=0 .
\]

Along the vertical segment, the displacement \(d\) is 0.80 m and, with \(\vec{F}_{g}\) and \(\vec{d}\) both downward, the angle \(\phi\) is a constant \(0^{\circ}\). Thus, Eq. 7-12 gives us, for the work \(W_{v}\) done along the


Figure 8-5 (a) A block of cheese slides along a frictionless track from point \(a\) to point \(b\). (b) Finding the work done on the cheese by the gravitational force is easier along the dashed path than along the actual path taken by the cheese; the result is the same for both paths.
vertical part of the dashed path,
\[
\begin{aligned}
W_{v} & =m g d \cos 0^{\circ} \\
& =(2.0 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.80 \mathrm{~m})(1)=15.7 \mathrm{~J}
\end{aligned}
\]

The total work done on the cheese by \(\vec{F}_{g}\) as the cheese moves from point \(a\) to point \(b\) along the dashed path is then
\[
W=W_{h}+W_{v}=0+15.7 \mathrm{~J} \approx 16 \mathrm{~J}
\]
(Answer)
This is also the work done as the cheese slides along the track from \(a\) to \(b\).

\section*{Determining Potential Energy Values}

Here we find equations that give the value of the two types of potential energy discussed in this chapter: gravitational potential energy and elastic potential energy. However, first we must find a general relation between a conservative force and the associated potential energy.

Consider a particle-like object that is part of a system in which a conservative force \(\vec{F}\) acts. When that force does work \(W\) on the object, the change \(\Delta U\) in the potential energy associated with the system is the negative of the work done. We wrote this fact as Eq. 8-1 \((\Delta U=-W)\). For the most general case, in which the force may vary with position, we may write the work \(W\) as in Eq. 7-32:
\[
\begin{equation*}
W=\int_{x_{i}}^{x_{f}} F(x) d x . \tag{8-5}
\end{equation*}
\]

This equation gives the work done by the force when the object moves from point \(x_{i}\) to point \(x_{f}\), changing the configuration of the system. (Because the force is conservative, the work is the same for all paths between those two points.)

Substituting Eq. 8-5 into Eq. 8-1, we find that the change in potential energy due to the change in configuration is, in general notation,
\[
\begin{equation*}
\Delta U=-\int_{x_{i}}^{x_{f}} F(x) d x \tag{8-6}
\end{equation*}
\]

\section*{Gravitational Potential Energy}

We first consider a particle with mass \(m\) moving vertically along a \(y\) axis (the positive direction is upward). As the particle moves from point \(y_{i}\) to point \(y_{f}\), the gravitational force \(\vec{F}_{g}\) does work on it. To find the corresponding change in the gravitational potential energy of the particle-Earth system, we use Eq. 8-6 with two changes: (1) We integrate along the \(y\) axis instead of the \(x\) axis, because the gravitational force acts vertically. (2) We substitute \(-m g\) for the force symbol \(F\), because \(\vec{F}_{g}\) has the magnitude \(m g\) and is directed down the \(y\) axis. We then have
\[
\Delta U=-\int_{y_{i}}^{y_{f}}(-m g) d y=m g \int_{y_{i}}^{y_{f}} d y=m g[y]_{y_{i}}^{y_{f}},
\]
which yields
\[
\begin{equation*}
\Delta U=m g\left(y_{f}-y_{i}\right)=m g \Delta y \tag{8-7}
\end{equation*}
\]

Only changes \(\Delta U\) in gravitational potential energy (or any other type of potential energy) are physically meaningful. However, to simplify a calculation or a discussion, we sometimes would like to say that a certain gravitational potential value \(U\) is associated with a certain particle-Earth system when the particle is at a certain height \(y\). To do so, we rewrite Eq. 8-7 as
\[
\begin{equation*}
U-U_{i}=m g\left(y-y_{i}\right) . \tag{8-8}
\end{equation*}
\]

Then we take \(U_{i}\) to be the gravitational potential energy of the system when it is in a reference configuration in which the particle is at a reference point \(y_{i}\). Usually we take \(U_{i}=0\) and \(y_{i}=0\). Doing this changes Eq. 8-8 to
\[
\begin{equation*}
U(y)=m g y \quad(\text { gravitational potential energy }) . \tag{8-9}
\end{equation*}
\]

This equation tells us:

The gravitational potential energy associated with a particle-Earth system depends only on the vertical position \(y\) (or height) of the particle relative to the reference position \(y=0\), not on the horizontal position.

\section*{Elastic Potential Energy}

We next consider the block-spring system shown in Fig. 8-3, with the block moving on the end of a spring of spring constant \(k\). As the block moves from point \(x_{i}\) to point \(x_{f}\), the spring force \(F_{x}=-k x\) does work on the block. To find the corresponding change in the elastic potential energy of the block-spring system, we substitute \(-k x\) for \(F(x)\) in Eq. 8-6. We then have
\[
\begin{gather*}
\Delta U=-\int_{x_{i}}^{x_{f}}(-k x) d x=k \int_{x_{i}}^{x_{f}} x d x=\frac{1}{2} k\left[x^{2}\right]_{x_{i}}^{x_{f}}, \\
\Delta U=\frac{1}{2} k x_{f}^{2}-\frac{1}{2} k x_{i}^{2} . \tag{8-10}
\end{gather*}
\]
or
To associate a potential energy value \(U\) with the block at position \(x\), we choose the reference configuration to be when the spring is at its relaxed length and the block is at \(x_{i}=0\). Then the elastic potential energy \(U_{i}\) is 0 , and Eq. 8-10
becomes
which gives us
\[
U-0=\frac{1}{2} k x^{2}-0,
\]
\[
\begin{equation*}
U(x)=\frac{1}{2} k x^{2} \quad(\text { elastic potential energy }) \tag{8-11}
\end{equation*}
\]

\section*{Checkpoint 2}

A particle is to move along an \(x\) axis from \(x=0\) to \(x_{1}\) while a conservative force, directed along the \(x\) axis, acts on the particle. The figure shows three situations in which the \(x\) component of that force varies with \(x\). The force has the same maximum magnitude \(F_{1}\) in all three situations. Rank the situations according to the change in the associated potential energy during the particle's motion, most positive first.

(2)

(3)


\section*{Sample Problem 8.02 Choosing reference level for gravitational potential energy, sloth}

Here is an example with this lesson plan: Generally you can choose any level to be the reference level, but once chosen, be consistent. A 2.0 kg sloth hangs 5.0 m above the ground (Fig. 8-6).
(a) What is the gravitational potential energy \(U\) of the sloth-Earth system if we take the reference point \(y=0\) to be (1) at the ground, (2) at a balcony floor that is 3.0 m above


Figure 8-6 Four choices of reference point \(y=0\). Each \(y\) axis is marked in units of meters. The choice affects the value of the potential energy \(U\) of the sloth-Earth system. However, it does not affect the change \(\Delta U\) in potential energy of the system if the sloth moves by, say, falling.
the ground, (3) at the limb, and (4) 1.0 m above the limb? Take the gravitational potential energy to be zero at \(y=0\).

\section*{KEY IDEA}

Once we have chosen the reference point for \(y=0\), we can calculate the gravitational potential energy \(U\) of the system relative to that reference point with Eq. 8-9.
Calculations: For choice (1) the sloth is at \(y=5.0 \mathrm{~m}\), and
\[
\begin{aligned}
U & =m g y=(2.0 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(5.0 \mathrm{~m}) \\
& =98 \mathrm{~J} .
\end{aligned}
\]
(Answer)
For the other choices, the values of \(U\) are
(2) \(U=m g y=m g(2.0 \mathrm{~m})=39 \mathrm{~J}\),
(3) \(U=m g y=m g(0)=0 \mathrm{~J}\),
(4) \(U=m g y=m g(-1.0 \mathrm{~m})\)
\[
=-19.6 \mathrm{~J} \approx-20 \mathrm{~J} .
\]
(Answer)
(b) The sloth drops to the ground. For each choice of reference point, what is the change \(\Delta U\) in the potential energy of the sloth-Earth system due to the fall?

\section*{KEY IDEA}

The change in potential energy does not depend on the choice of the reference point for \(y=0\); instead, it depends on the change in height \(\Delta y\).

Calculation: For all four situations, we have the same \(\Delta y=\) -5.0 m . Thus, for (1) to (4), Eq. 8-7 tells us that
\[
\begin{aligned}
\Delta U & =m g \Delta y=(2.0 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(-5.0 \mathrm{~m}) \\
& =-98 \mathrm{~J}
\end{aligned}
\]
(Answer)

\section*{8-2 conservation of mechanical energy}

\section*{Learning Objectives}

After reading this module, you should be able to ...
8.05 After first clearly defining which objects form a system, identify that the mechanical energy of the system is the sum of the kinetic energies and potential energies of those objects.
8.06 For an isolated system in which only conservative forces act, apply the conservation of mechanical energy to relate the initial potential and kinetic energies to the potential and kinetic energies at a later instant.

\section*{Key Ideas}
- The mechanical energy \(E_{\text {mec }}\) of a system is the sum of its kinetic energy \(K\) and potential energy \(U\) :
\[
E_{\mathrm{mec}}=K+U
\]
- An isolated system is one in which no external force causes energy changes. If only conservative forces do work within an isolated system, then the mechanical energy \(E_{\text {mec }}\) of the
system cannot change. This principle of conservation of mechanical energy is written as
\[
K_{2}+U_{2}=K_{1}+U_{1},
\]
in which the subscripts refer to different instants during an energy transfer process. This conservation principle can also be written as
\[
\Delta E_{\mathrm{mec}}=\Delta K+\Delta U=0 .
\]

©AP/Wide World Photos
In olden days, a person would be tossed via a blanket to be able to see farther over the flat terrain. Nowadays, it is done just for fun. During the ascent of the person in the photograph, energy is transferred from kinetic energy to gravitational potential energy. The maximum height is reached when that transfer is complete. Then the transfer is reversed during the fall.

\section*{Conservation of Mechanical Energy}

The mechanical energy \(E_{\text {mec }}\) of a system is the sum of its potential energy \(U\) and the kinetic energy \(K\) of the objects within it:
\[
\begin{equation*}
E_{\mathrm{mec}}=K+U \quad \text { (mechanical energy). } \tag{8-12}
\end{equation*}
\]

In this module, we examine what happens to this mechanical energy when only conservative forces cause energy transfers within the system - that is, when frictional and drag forces do not act on the objects in the system. Also, we shall assume that the system is isolated from its environment; that is, no external force from an object outside the system causes energy changes inside the system.

When a conservative force does work \(W\) on an object within the system, that force transfers energy between kinetic energy \(K\) of the object and potential energy \(U\) of the system. From Eq. 7-10, the change \(\Delta K\) in kinetic energy is
\[
\begin{equation*}
\Delta K=W \tag{8-13}
\end{equation*}
\]
and from Eq. 8-1, the change \(\Delta U\) in potential energy is
\[
\begin{equation*}
\Delta U=-W \tag{8-14}
\end{equation*}
\]

Combining Eqs. 8-13 and 8-14, we find that
\[
\begin{equation*}
\Delta K=-\Delta U \tag{8-15}
\end{equation*}
\]

In words, one of these energies increases exactly as much as the other decreases.
We can rewrite Eq. 8-15 as
\[
\begin{equation*}
K_{2}-K_{1}=-\left(U_{2}-U_{1}\right), \tag{8-16}
\end{equation*}
\]
where the subscripts refer to two different instants and thus to two different arrangements of the objects in the system. Rearranging Eq. 8-16 yields
\[
\begin{equation*}
K_{2}+U_{2}=K_{1}+U_{1} \quad \text { (conservation of mechanical energy). } \tag{8-17}
\end{equation*}
\]

In words, this equation says:
\(\binom{\) the sum of \(K\) and \(U\) for }{ any state of a system }\(=\binom{\) the sum of \(K\) and \(U\) for }{ any other state of the system },
when the system is isolated and only conservative forces act on the objects in the system. In other words:

In an isolated system where only conservative forces cause energy changes, the kinetic energy and potential energy can change, but their sum, the mechanical energy \(E_{\text {mec }}\) of the system, cannot change.

This result is called the principle of conservation of mechanical energy. (Now you can see where conservative forces got their name.) With the aid of Eq. 8-15, we can write this principle in one more form, as
\[
\begin{equation*}
\Delta E_{\mathrm{mec}}=\Delta K+\Delta U=0 \tag{8-18}
\end{equation*}
\]

The principle of conservation of mechanical energy allows us to solve problems that would be quite difficult to solve using only Newton's laws:

When the mechanical energy of a system is conserved, we can relate the sum of kinetic energy and potential energy at one instant to that at another instant without considering the intermediate motion and without finding the work done by the forces involved.

Figure 8-7 shows an example in which the principle of conservation of mechanical energy can be applied: As a pendulum swings, the energy of the

Figure 8-7 A pendulum, with its mass concentrated in a bob at the lower end, swings back and forth. One full cycle of the motion is shown. During the cycle the values of the potential and kinetic energies of the pendulum-Earth system vary as the bob rises and falls, but the mechanical energy \(E_{\text {mec }}\) of the system remains constant. The energy \(E_{\mathrm{mec}}\) can be described as continuously shifting between the kinetic and potential forms. In stages (a) and (e), all the energy is kinetic energy. The bob then has its greatest speed and is at its lowest point. In stages \((c)\) and \((g)\), all the energy is potential energy. The bob then has zero speed and is at its highest point. In stages \((b),(d),(f)\), and \((h)\), half the energy is kinetic energy and half is potential energy. If the swinging involved a frictional force at the point where the pendulum is attached to the ceiling, or a drag force due to the air, then \(E_{\text {mec }}\) would not be conserved, and eventually the pendulum would stop.

pendulum-Earth system is transferred back and forth between kinetic energy \(K\) and gravitational potential energy \(U\), with the sum \(K+U\) being constant. If we know the gravitational potential energy when the pendulum bob is at its highest point (Fig. 8-7c), Eq. 8-17 gives us the kinetic energy of the bob at the lowest point (Fig. 8-7e).

For example, let us choose the lowest point as the reference point, with the gravitational potential energy \(U_{2}=0\). Suppose then that the potential energy at the highest point is \(U_{1}=20 \mathrm{~J}\) relative to the reference point. Because the bob momentarily stops at its highest point, the kinetic energy there is \(K_{1}=0\). Putting these values into Eq. 8-17 gives us the kinetic energy \(K_{2}\) at the lowest point:
\[
K_{2}+0=0+20 \mathrm{~J} \quad \text { or } \quad K_{2}=20 \mathrm{~J} .
\]

Note that we get this result without considering the motion between the highest and lowest points (such as in Fig. 8-7d) and without finding the work done by any forces involved in the motion.

\section*{Checkpoint 3}

The figure shows four situations-one in which an initially stationary block is dropped and three in which the block is allowed to slide down frictionless ramps.
(a) Rank the situations

(1)
(2)
(3)
(4) according to the kinetic energy of the block at point \(B\), greatest first. (b) Rank them according to the speed of the block at point \(B\), greatest first.

\section*{Sample Problem 8.03 Conservation of mechanical energy, water slide}

The huge advantage of using the conservation of energy instead of Newton's laws of motion is that we can jump from the initial state to the final state without considering all the intermediate motion. Here is an example. In Fig. 8-8, a child of mass \(m\) is released from rest at the top of a water slide, at height \(h=8.5 \mathrm{~m}\) above the bottom of the slide. Assuming that the slide is frictionless because of the water on it, find the child's speed at the bottom of the slide.

\section*{KEY IDEAS}
(1) We cannot find her speed at the bottom by using her acceleration along the slide as we might have in earlier chapters because we do not know the slope (angle) of the slide. However, because that speed is related to her kinetic energy, perhaps we can use the principle of conservation of mechanical energy to get the speed. Then we would not need to know the slope. (2) Mechanical energy is conserved in a system if the system is isolated and if only conservative forces cause energy transfers within it. Let's check.

Forces: Two forces act on the child. The gravitational force, a conservative force, does work on her. The normal force on her from the slide does no work because its direction at any point during the descent is always perpendicular to the direction in which the child moves.


Figure 8-8 A child slides down a water slide as she descends a height \(h\).

System: Because the only force doing work on the child is the gravitational force, we choose the child-Earth system as our system, which we can take to be isolated.

Thus, we have only a conservative force doing work in an isolated system, so we can use the principle of conservation of mechanical energy.
Calculations: Let the mechanical energy be \(E_{\text {mec }, t}\) when the child is at the top of the slide and \(E_{\text {mec }, b}\) when she is at the bottom. Then the conservation principle tells us
\[
\begin{equation*}
E_{\mathrm{mec}, b}=E_{\mathrm{mec}, t} . \tag{8-19}
\end{equation*}
\]

To show both kinds of mechanical energy, we have
\[
\begin{equation*}
K_{b}+U_{b}=K_{t}+U_{t}, \tag{8-20}
\end{equation*}
\]
or \(\quad \frac{1}{2} m v_{b}^{2}+m g y_{b}=\frac{1}{2} m v_{t}^{2}+m g y_{t}\).
Dividing by \(m\) and rearranging yield
\[
v_{b}^{2}=v_{t}^{2}+2 g\left(y_{t}-y_{b}\right)
\]

Putting \(v_{t}=0\) and \(y_{t}-y_{b}=h\) leads to
\[
\begin{aligned}
v_{b} & =\sqrt{2 g h}=\sqrt{(2)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(8.5 \mathrm{~m})} \\
& =13 \mathrm{~m} / \mathrm{s} .
\end{aligned}
\]
(Answer)

This is the same speed that the child would reach if she fell 8.5 m vertically. On an actual slide, some frictional forces would act and the child would not be moving quite so fast.

Comments: Although this problem is hard to solve directly with Newton's laws, using conservation of mechanical energy makes the solution much easier. However, if we were asked to find the time taken for the child to reach the bottom of the slide, energy methods would be of no use; we would need to know the shape of the slide, and we would have a difficult problem.

PLU'S
Additional examples, video, and practice available at WileyPLUS

\section*{8-3 reading a potential energy curve}

\section*{Learning Objectives}

After reading this module, you should be able to ...
8.07 Given a particle's potential energy as a function of its position \(x\), determine the force on the particle.
8.08 Given a graph of potential energy versus \(x\), determine the force on a particle.
8.09 On a graph of potential energy versus \(x\), superimpose a line for a particle's mechanical energy and determine the particle's kinetic energy for any given value of \(x\).
8.10 If a particle moves along an \(x\) axis, use a potentialenergy graph for that axis and the conservation of mechanical energy to relate the energy values at one position to those at another position.
8.11 On a potential-energy graph, identify any turning points and any regions where the particle is not allowed because of energy requirements.
8.12 Explain neutral equilibrium, stable equilibrium, and unstable equilibrium.

\section*{Key Ideas}
- If we know the potential energy function \(U(x)\) for a system in which a one-dimensional force \(F(x)\) acts on a particle, we can find the force as
\[
F(x)=-\frac{d U(x)}{d x}
\]

If \(U(x)\) is given on a graph, then at any value of \(x\), the force \(F(x)\) is the negative of the slope of the curve there and the
kinetic energy of the particle is given by
\[
K(x)=E_{\mathrm{mec}}-U(x),
\]
where \(E_{\text {mec }}\) is the mechanical energy of the system.
- A turning point is a point \(x\) at which the particle reverses its motion (there, \(K=0\) ).
- The particle is in equilibrium at points where the slope of the \(U(x)\) curve is zero (there, \(F(x)=0\) ).

\section*{Reading a Potential Energy Curve}

Once again we consider a particle that is part of a system in which a conservative force acts. This time suppose that the particle is constrained to move along an \(x\) axis while the conservative force does work on it. We want to plot the potential energy \(U(x)\) that is associated with that force and the work that it does, and then we want to consider how we can relate the plot back to the force and to the kinetic energy of the particle. However, before we discuss such plots, we need one more relationship between the force and the potential energy.

\section*{Finding the Force Analytically}

Equation 8-6 tells us how to find the change \(\Delta U\) in potential energy between two points in a one-dimensional situation if we know the force \(F(x)\). Now we want to
go the other way; that is, we know the potential energy function \(U(x)\) and want to find the force.

For one-dimensional motion, the work \(W\) done by a force that acts on a particle as the particle moves through a distance \(\Delta x\) is \(F(x) \Delta x\). We can then write Eq. 8-1 as
\[
\begin{equation*}
\Delta U(x)=-W=-F(x) \Delta x . \tag{8-21}
\end{equation*}
\]

Solving for \(F(x)\) and passing to the differential limit yield
\[
\begin{equation*}
F(x)=-\frac{d U(x)}{d x} \quad(\text { one-dimensional motion }) \tag{8-22}
\end{equation*}
\]
which is the relation we sought.
We can check this result by putting \(U(x)=\frac{1}{2} k x^{2}\), which is the elastic potential energy function for a spring force. Equation 8-22 then yields, as expected, \(F(x)=-k x\), which is Hooke's law. Similarly, we can substitute \(U(x)=m g x\), which is the gravitational potential energy function for a particle-Earth system, with a particle of mass \(m\) at height \(x\) above Earth's surface. Equation 8-22 then yields \(F=-m g\), which is the gravitational force on the particle.

\section*{The Potential Energy Curve}

Figure \(8-9 a\) is a plot of a potential energy function \(U(x)\) for a system in which a particle is in one-dimensional motion while a conservative force \(F(x)\) does work on it. We can easily find \(F(x)\) by (graphically) taking the slope of the \(U(x)\) curve at various points. (Equation 8-22 tells us that \(F(x)\) is the negative of the slope of the \(U(x)\) curve.) Figure \(8-9 b\) is a plot of \(F(x)\) found in this way.

\section*{Turning Points}

In the absence of a nonconservative force, the mechanical energy \(E\) of a system has a constant value given by
\[
\begin{equation*}
U(x)+K(x)=E_{\mathrm{mec}} . \tag{8-23}
\end{equation*}
\]

Here \(K(x)\) is the kinetic energy function of a particle in the system (this \(K(x)\) gives the kinetic energy as a function of the particle's location \(x\) ). We may rewrite Eq. 8-23 as
\[
\begin{equation*}
K(x)=E_{\mathrm{mec}}-U(x) . \tag{8-24}
\end{equation*}
\]

Suppose that \(E_{\text {mec }}\) (which has a constant value, remember) happens to be 5.0 J . It would be represented in Fig. 8-9c by a horizontal line that runs through the value 5.0 J on the energy axis. (It is, in fact, shown there.)

Equation 8-24 and Fig. 8-9d tell us how to determine the kinetic energy \(K\) for any location \(x\) of the particle: On the \(U(x)\) curve, find \(U\) for that location \(x\) and then subtract \(U\) from \(E_{\text {mec }}\). In Fig. \(8-9 e\) for example, if the particle is at any point to the right of \(x_{5}\), then \(K=1.0 \mathrm{~J}\). The value of \(K\) is greatest \((5.0 \mathrm{~J})\) when the particle is at \(x_{2}\) and least \((0 \mathrm{~J})\) when the particle is at \(x_{1}\).

Since \(K\) can never be negative (because \(v^{2}\) is always positive), the particle can never move to the left of \(x_{1}\), where \(E_{\text {mec }}-U\) is negative. Instead, as the particle moves toward \(x_{1}\) from \(x_{2}, K\) decreases (the particle slows) until \(K=0\) at \(x_{1}\) (the particle stops there).

Note that when the particle reaches \(x_{1}\), the force on the particle, given by Eq. \(8-22\), is positive (because the slope \(d U / d x\) is negative). This means that the particle does not remain at \(x_{1}\) but instead begins to move to the right, opposite its earlier motion. Hence \(x_{1}\) is a turning point, a place where \(K=0\) (because \(U=E\) ) and the particle changes direction. There is no turning point (where \(K=0\) ) on the right side of the graph. When the particle heads to the right, it will continue indefinitely.


Figure 8-9 (a) A plot of \(U(x)\), the potential energy function of a system containing a particle confined to move along an \(x\) axis. There is no friction, so mechanical energy is conserved. (b) A plot of the force \(F(x)\) acting on the particle, derived from the potential energy plot by taking its slope at various points. \((c)-(e)\) How to determine the kinetic energy. \((f)\) The \(U(x)\) plot of \((a)\) with three possible values of \(E_{\text {mec }}\) shown. In WileyPLUS, this figure is available as an animation with voiceover.

\section*{Equilibrium Points}

Figure \(8-9 f\) shows three different values for \(E_{\text {mec }}\) superposed on the plot of the potential energy function \(U(x)\) of Fig. 8-9a. Let us see how they change the situation. If \(E_{\mathrm{mec}}=4.0 \mathrm{~J}\) (purple line), the turning point shifts from \(x_{1}\) to a point between \(x_{1}\) and \(x_{2}\). Also, at any point to the right of \(x_{5}\), the system's mechanical energy is equal to its potential energy; thus, the particle has no kinetic energy and (by Eq. 8-22) no force acts on it, and so it must be stationary. A particle at such a position is said to be in neutral equilibrium. (A marble placed on a horizontal tabletop is in that state.)

If \(E_{\text {mec }}=3.0 \mathrm{~J}\) (pink line), there are two turning points: One is between \(x_{1}\) and \(x_{2}\), and the other is between \(x_{4}\) and \(x_{5}\). In addition, \(x_{3}\) is a point at which \(K=0\). If the particle is located exactly there, the force on it is also zero, and the particle remains stationary. However, if it is displaced even slightly in either direction, a nonzero force pushes it farther in the same direction, and the particle continues to move. A particle at such a position is said to be in unstable equilibrium. (A marble balanced on top of a bowling ball is an example.)

Next consider the particle's behavior if \(E_{\mathrm{mec}}=1.0 \mathrm{~J}\) (green line). If we place it at \(x_{4}\), it is stuck there. It cannot move left or right on its own because to do so would require a negative kinetic energy. If we push it slightly left or right, a restoring force appears that moves it back to \(x_{4}\). A particle at such a position is said to be in stable equilibrium. (A marble placed at the bottom of a hemispherical bowl is an example.) If we place the particle in the cup-like potential well centered at \(x_{2}\), it is between two turning points. It can still move somewhat, but only partway to \(x_{1}\) or \(x_{3}\).

\section*{Checkpoint 4}

The figure gives the potential energy function \(U(x)\) for a system in which a particle is in onedimensional motion. (a) Rank regions \(A B, B C\), and \(C D\) according to the magnitude of the force on the particle, greatest first. (b) What is the direction of the force when the particle is in region \(A B\) ?


\section*{Sample Problem 8.04 Reading a potential energy graph}

A 2.00 kg particle moves along an \(x\) axis in one-dimensional motion while a conservative force along that axis acts on it. The potential energy \(U(x)\) associated with the force is plotted in Fig. 8-10a. That is, if the particle were placed at any position between \(x=0\) and \(x=7.00 \mathrm{~m}\), it would have the plotted value of \(U\). At \(x=6.5 \mathrm{~m}\), the particle has velocity \(\vec{v}_{0}=(-4.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}\).
(a) From Fig. 8-10a, determine the particle's speed at \(x_{1}=4.5 \mathrm{~m}\).

\section*{KEY IDEAS}
(1) The particle's kinetic energy is given by Eq. 7-1 ( \(K=\frac{1}{2} m v^{2}\) ). (2) Because only a conservative force acts on the particle, the mechanical energy \(E_{\text {mec }}(=K+U)\) is conserved as the particle moves. (3) Therefore, on a plot of \(U(x)\) such as Fig. 8-10a, the kinetic energy is equal to the difference between \(E_{\text {mec }}\) and \(U\).

Calculations: At \(x=6.5 \mathrm{~m}\), the particle has kinetic energy
\[
\begin{aligned}
K_{0} & =\frac{1}{2} m v_{0}^{2}=\frac{1}{2}(2.00 \mathrm{~kg})(4.00 \mathrm{~m} / \mathrm{s})^{2} \\
& =16.0 \mathrm{~J}
\end{aligned}
\]

Because the potential energy there is \(U=0\), the mechanical energy is
\[
E_{\mathrm{mec}}=K_{0}+U_{0}=16.0 \mathrm{~J}+0=16.0 \mathrm{~J} .
\]

This value for \(E_{\text {mec }}\) is plotted as a horizontal line in Fig. 8-10a. From that figure we see that at \(x=4.5 \mathrm{~m}\), the potential energy is \(U_{1}=7.0 \mathrm{~J}\). The kinetic energy \(K_{1}\) is the difference between \(E_{\mathrm{mec}}\) and \(U_{1}\) :
\[
K_{1}=E_{\mathrm{mec}}-U_{1}=16.0 \mathrm{~J}-7.0 \mathrm{~J}=9.0 \mathrm{~J} .
\]

Because \(K_{1}=\frac{1}{2} m v_{1}^{2}\), we find
\[
v_{1}=3.0 \mathrm{~m} / \mathrm{s}
\]
(Answer)
(b) Where is the particle's turning point located?

\section*{KEY IDEA}

The turning point is where the force momentarily stops and then reverses the particle's motion. That is, it is where the particle momentarily has \(v=0\) and thus \(K=0\).
Calculations: Because \(K\) is the difference between \(E_{\text {mec }}\) and \(U\), we want the point in Fig. 8-10a where the plot of \(U\) rises to meet the horizontal line of \(E_{\mathrm{mec}}\), as shown in Fig. \(8-10 b\). Because the plot of \(U\) is a straight line in Fig. 8-10b, we can draw nested right triangles as shown and then write the proportionality of distances
\[
\frac{16-7.0}{d}=\frac{20-7.0}{4.0-1.0}
\]
which gives us \(d=2.08 \mathrm{~m}\). Thus, the turning point is at
\[
x=4.0 \mathrm{~m}-d=1.9 \mathrm{~m} .
\]
(Answer)
(c) Evaluate the force acting on the particle when it is in the region \(1.9 \mathrm{~m}<x<4.0 \mathrm{~m}\).

\section*{KEY IDEA}

The force is given by Eq. 8-22 \((F(x)=-d U(x) / d x)\) : The force is equal to the negative of the slope on a graph of \(U(x)\).

Calculations: For the graph of Fig. 8-10b, we see that for the range \(1.0 \mathrm{~m}<x<4.0 \mathrm{~m}\) the force is
\[
F=-\frac{20 \mathrm{~J}-7.0 \mathrm{~J}}{1.0 \mathrm{~m}-4.0 \mathrm{~m}}=4.3 \mathrm{~N} .
\]
(Answer)


Figure 8-10 (a) A plot of potential energy \(U\) versus position \(x\). (b) A section of the plot used to find where the particle turns around.

Thus, the force has magnitude 4.3 N and is in the positive direction of the \(x\) axis. This result is consistent with the fact that the initially leftward-moving particle is stopped by the force and then sent rightward.

\section*{8-4 WORK dONE ON A SUSTEM BY an EXTERNAL FORCE}

\section*{Learning Objectives}

After reading this module, you should be able to ...
8.13 When work is done on a system by an external force with no friction involved, determine the changes in kinetic energy and potential energy.
8.14 When work is done on a system by an external force with friction involved, relate that work to the changes in kinetic energy, potential energy, and thermal energy.

\section*{Key Ideas}
- Work \(W\) is energy transferred to or from a system by means of an external force acting on the system.
- When more than one force acts on a system, their net work is the transferred energy.
- When friction is not involved, the work done on the system and the change \(\Delta E_{\text {mec }}\) in the mechanical energy of the system are equal:
\[
W=\Delta E_{\mathrm{mec}}=\Delta K+\Delta U
\]
- When a kinetic frictional force acts within the system, then the thermal energy \(E_{\mathrm{th}}\) of the system changes. (This energy is associated with the random motion of atoms and molecules in the system.) The work done on the system is then
\[
W=\Delta E_{\mathrm{mec}}+\Delta E_{\mathrm{th}}
\]
- The change \(\Delta E_{\mathrm{th}}\) is related to the magnitude \(f_{k}\) of the frictional force and the magnitude \(d\) of the displacement caused by the external force by
\[
\Delta E_{\mathrm{th}}=f_{k} d
\]


Figure 8-11 (a) Positive work \(W\) done on an arbitrary system means a transfer of energy to the system. (b) Negative work \(W\) means a transfer of energy from the system.


Figure 8-12 Positive work \(W\) is done on a system of a bowling ball and Earth, causing a change \(\Delta E_{\text {mec }}\) in the mechanical energy of the system, a change \(\Delta K\) in the ball's kinetic energy, and a change \(\Delta U\) in the system's gravitational potential energy.

\section*{Work Done on a System by an External Force}

In Chapter 7, we defined work as being energy transferred to or from an object by means of a force acting on the object. We can now extend that definition to an external force acting on a system of objects.

Work is energy transferred to or from a system by means of an external force acting on that system.

Figure 8-11a represents positive work (a transfer of energy to a system), and Fig. 8-11b represents negative work (a transfer of energy from a system). When more than one force acts on a system, their net work is the energy transferred to or from the system.

These transfers are like transfers of money to and from a bank account. If a system consists of a single particle or particle-like object, as in Chapter 7, the work done on the system by a force can change only the kinetic energy of the system. The energy statement for such transfers is the work-kinetic energy theorem of Eq. 7-10 \((\Delta K=W)\); that is, a single particle has only one energy account, called kinetic energy. External forces can transfer energy into or out of that account. If a system is more complicated, however, an external force can change other forms of energy (such as potential energy); that is, a more complicated system can have multiple energy accounts.

Let us find energy statements for such systems by examining two basic situations, one that does not involve friction and one that does.

\section*{No Friction Involved}

To compete in a bowling-ball-hurling contest, you first squat and cup your hands under the ball on the floor. Then you rapidly straighten up while also pulling your hands up sharply, launching the ball upward at about face level. During your upward motion, your applied force on the ball obviously does work; that is, it is an external force that transfers energy, but to what system?

To answer, we check to see which energies change. There is a change \(\Delta K\) in the ball's kinetic energy and, because the ball and Earth become more separated, there is a change \(\Delta U\) in the gravitational potential energy of the ball-Earth system. To include both changes, we need to consider the ball-Earth system. Then your force is an external force doing work on that system, and the work is
\[
\begin{equation*}
W=\Delta K+\Delta U, \tag{8-25}
\end{equation*}
\]
\[
\begin{equation*}
\text { or } \quad W=\Delta E_{\mathrm{mec}} \quad \text { (work done on system, no friction involved), } \tag{8-26}
\end{equation*}
\]
where \(\Delta E_{\text {mec }}\) is the change in the mechanical energy of the system. These two equations, which are represented in Fig. 8-12, are equivalent energy statements for work done on a system by an external force when friction is not involved.

\section*{Friction Involved}

We next consider the example in Fig. 8-13a. A constant horizontal force \(\vec{F}\) pulls a block along an \(x\) axis and through a displacement of magnitude \(d\), increasing the block's velocity from \(\vec{v}_{0}\) to \(\vec{v}\). During the motion, a constant kinetic frictional force \(\vec{f}_{k}\) from the floor acts on the block. Let us first choose the block as our system and apply Newton's second law to it. We can write that law for components along the \(x\) axis \(\left(F_{\text {net }, x}=m a_{x}\right)\) as
\[
\begin{equation*}
F-f_{k}=m a . \tag{8-27}
\end{equation*}
\]


Figure 8-13 (a) A block is pulled across a floor by force \(\vec{F}\) while a kinetic frictional force \(\vec{f}_{k}\) opposes the motion. The block has velocity \(\vec{v}_{0}\) at the start of a displacement \(\vec{d}\) and velocity \(\vec{v}\) at the end of the displacement. (b) Positive work \(W\) is done on the block-floor system by force \(\vec{F}\), resulting in a change \(\Delta E_{\text {mec }}\) in the block's mechanical energy and a change \(\Delta E_{\mathrm{th}}\) in the thermal energy of the block and floor.

Because the forces are constant, the acceleration \(\vec{a}\) is also constant. Thus, we can use Eq. 2-16 to write
\[
v^{2}=v_{0}^{2}+2 a d .
\]

Solving this equation for \(a\), substituting the result into Eq. 8-27, and rearranging then give us
\[
\begin{equation*}
F d=\frac{1}{2} m v^{2}-\frac{1}{2} m v_{0}^{2}+f_{k} d \tag{8-28}
\end{equation*}
\]
or, because \(\frac{1}{2} m v^{2}-\frac{1}{2} m v_{0}^{2}=\Delta K\) for the block,
\[
\begin{equation*}
F d=\Delta K+f_{k} d \tag{8-29}
\end{equation*}
\]

In a more general situation (say, one in which the block is moving up a ramp), there can be a change in potential energy. To include such a possible change, we generalize Eq. \(8-29\) by writing
\[
\begin{equation*}
F d=\Delta E_{\mathrm{mec}}+f_{k} d \tag{8-30}
\end{equation*}
\]

By experiment we find that the block and the portion of the floor along which it slides become warmer as the block slides. As we shall discuss in Chapter 18, the temperature of an object is related to the object's thermal energy \(E_{\text {th }}\) (the energy associated with the random motion of the atoms and molecules in the object). Here, the thermal energy of the block and floor increases because (1) there is friction between them and (2) there is sliding. Recall that friction is due to the cold-welding between two surfaces. As the block slides over the floor, the sliding causes repeated tearing and re-forming of the welds between the block and the floor, which makes the block and floor warmer. Thus, the sliding increases their thermal energy \(E_{\text {th }}\).

Through experiment, we find that the increase \(\Delta E_{\mathrm{th}}\) in thermal energy is equal to the product of the magnitudes \(f_{k}\) and \(d\) :
\[
\begin{equation*}
\Delta E_{\mathrm{th}}=f_{k} d \quad \text { (increase in thermal energy by sliding). } \tag{8-31}
\end{equation*}
\]

Thus, we can rewrite Eq. 8-30 as
\[
\begin{equation*}
F d=\Delta E_{\mathrm{mec}}+\Delta E_{\mathrm{th}} . \tag{8-32}
\end{equation*}
\]
\(F d\) is the work \(W\) done by the external force \(\vec{F}\) (the energy transferred by the force), but on which system is the work done (where are the energy transfers made)? To answer, we check to see which energies change. The block's mechanical energy
changes, and the thermal energies of the block and floor also change. Therefore, the work done by force \(\vec{F}\) is done on the block-floor system. That work is
\[
\begin{equation*}
W=\Delta E_{\mathrm{mec}}+\Delta E_{\mathrm{th}} \quad \text { (work done on system, friction involved). } \tag{8-33}
\end{equation*}
\]

This equation, which is represented in Fig. 8-13b, is the energy statement for the work done on a system by an external force when friction is involved.

\section*{Checkpoint 5}

In three trials, a block is pushed by a horizontal applied force across a floor that is not frictionless, as in Fig. 8-13a. The magnitudes \(F\) of the applied force and the results of the pushing on the
\begin{tabular}{ccc}
\hline Trial & \(F\) & Result on Block's Speed \\
\hline a & 5.0 N & decreases \\
b & 7.0 N & remains constant \\
c & 8.0 N & increases \\
\hline
\end{tabular} block's speed are given in the table. In all three trials, the block is pushed through the same distance \(d\). Rank the three trials according to the change in the thermal energy of the block and floor that occurs in that distance \(d\), greatest first.

\section*{Sample Problem 8.05 Work, friction, change in thermal energy, cabbage heads}

A food shipper pushes a wood crate of cabbage heads (total mass \(m=14 \mathrm{~kg}\) ) across a concrete floor with a constant horizontal force \(\vec{F}\) of magnitude 40 N . In a straight-line displacement of magnitude \(d=0.50 \mathrm{~m}\), the speed of the crate decreases from \(v_{0}=0.60 \mathrm{~m} / \mathrm{s}\) to \(v=0.20 \mathrm{~m} / \mathrm{s}\).
(a) How much work is done by force \(\vec{F}\), and on what system does it do the work?

\section*{KEY IDEA}

Because the applied force \(\vec{F}\) is constant, we can calculate the work it does by using Eq. 7-7 ( \(W=F d \cos \phi\) ).

Calculation: Substituting given data, including the fact that force \(\vec{F}\) and displacement \(\vec{d}\) are in the same direction, we find
\[
\begin{aligned}
W & =F d \cos \phi=(40 \mathrm{~N})(0.50 \mathrm{~m}) \cos 0^{\circ} \\
& =20 \mathrm{~J} .
\end{aligned}
\]
(Answer)
Reasoning: To determine the system on which the work is done, let's check which energies change. Because the crate's speed changes, there is certainly a change \(\Delta K\) in the crate's kinetic energy. Is there friction between the floor and the crate, and thus a change in thermal energy? Note that \(\vec{F}\) and the crate's velocity have the same direction. Thus, if there is no friction, then \(\vec{F}\) should be accelerating the crate to a greater speed. However, the crate is slowing, so there must
be friction and a change \(\Delta E_{\mathrm{th}}\) in thermal energy of the crate and the floor. Therefore, the system on which the work is done is the crate-floor system, because both energy changes occur in that system.
(b) What is the increase \(\Delta E_{\mathrm{th}}\) in the thermal energy of the crate and floor?

\section*{KEY IDEA}

We can relate \(\Delta E_{\text {th }}\) to the work \(W\) done by \(\vec{F}\) with the energy statement of Eq. 8-33 for a system that involves friction:
\[
\begin{equation*}
W=\Delta E_{\mathrm{mec}}+\Delta E_{\mathrm{th}} . \tag{8-34}
\end{equation*}
\]

Calculations: We know the value of \(W\) from (a). The change \(\Delta E_{\text {mec }}\) in the crate's mechanical energy is just the change in its kinetic energy because no potential energy changes occur, so we have
\[
\Delta E_{\mathrm{mec}}=\Delta K=\frac{1}{2} m v^{2}-\frac{1}{2} m v_{0}^{2} .
\]

Substituting this into Eq. 8-34 and solving for \(\Delta E_{\mathrm{th}}\), we find
\[
\begin{aligned}
\Delta E_{\mathrm{th}} & =W-\left(\frac{1}{2} m v^{2}-\frac{1}{2} m v_{0}^{2}\right)=W-\frac{1}{2} m\left(v^{2}-v_{0}^{2}\right) \\
& =20 \mathrm{~J}-\frac{1}{2}(14 \mathrm{~kg})\left[(0.20 \mathrm{~m} / \mathrm{s})^{2}-(0.60 \mathrm{~m} / \mathrm{s})^{2}\right] \\
& =22.2 \mathrm{~J} \approx 22 \mathrm{~J} .
\end{aligned}
\]
(Answer)
Without further experiments, we cannot say how much of this thermal energy ends up in the crate and how much in the floor. We simply know the total amount.

\section*{8-5 conservation of energy}

\section*{Learning Objectives}

After reading this module, you should be able to ...
8.15 For an isolated system (no net external force), apply the conservation of energy to relate the initial total energy (energies of all kinds) to the total energy at a later instant.
8.16 For a nonisolated system, relate the work done on the system by a net external force to the changes in the various types of energies within the system.
8.17 Apply the relationship between average power, the associated energy transfer, and the time interval in which that transfer is made.
8.18 Given an energy transfer as a function of time (either as an equation or a graph), determine the instantaneous power (the transfer at any given instant).

\section*{Key Ideas}
- The total energy \(E\) of a system (the sum of its mechanical energy and its internal energies, including thermal energy) can change only by amounts of energy that are transferred to or from the system. This experimental fact is known as the law of conservation of energy.
- If work \(W\) is done on the system, then
\[
W=\Delta E=\Delta E_{\mathrm{mec}}+\Delta E_{\mathrm{th}}+\Delta E_{\mathrm{int}} .
\]

If the system is isolated ( \(W=0\) ), this gives
and \(\quad E_{\mathrm{mec}, 2}=E_{\mathrm{mec}, 1}-\Delta E_{\mathrm{th}}-\Delta E_{\mathrm{int}}\),
where the subscripts 1 and 2 refer to two different instants.
- The power due to a force is the rate at which that force transfers energy. If an amount of energy \(\Delta E\) is transferred by a force in an amount of time \(\Delta t\), the average power of the force is
\[
P_{\mathrm{avg}}=\frac{\Delta E}{\Delta t}
\]
- The instantaneous power due to a force is
\[
P=\frac{d E}{d t}
\]

On a graph of energy \(E\) versus time \(t\), the power is the slope of the plot at any given time.

\section*{Conservation of Energy}

We now have discussed several situations in which energy is transferred to or from objects and systems, much like money is transferred between accounts. In each situation we assume that the energy that was involved could always be accounted for; that is, energy could not magically appear or disappear. In more formal language, we assumed (correctly) that energy obeys a law called the law of conservation of energy, which is concerned with the total energy \(E\) of a system. That total is the sum of the system's mechanical energy, thermal energy, and any type of internal energy in addition to thermal energy. (We have not yet discussed other types of internal energy.) The law states that

The total energy \(E\) of a system can change only by amounts of energy that are transferred to or from the system.

The only type of energy transfer that we have considered is work \(W\) done on a system by an external force. Thus, for us at this point, this law states that
\[
\begin{equation*}
W=\Delta E=\Delta E_{\mathrm{mec}}+\Delta E_{\mathrm{th}}+\Delta E_{\mathrm{int}}, \tag{8-35}
\end{equation*}
\]
where \(\Delta E_{\text {mec }}\) is any change in the mechanical energy of the system, \(\Delta E_{\mathrm{th}}\) is any change in the thermal energy of the system, and \(\Delta E_{\text {int }}\) is any change in any other type of internal energy of the system. Included in \(\Delta E_{\text {mec }}\) are changes \(\Delta K\) in kinetic energy and changes \(\Delta U\) in potential energy (elastic, gravitational, or any other type we might find).

This law of conservation of energy is not something we have derived from basic physics principles. Rather, it is a law based on countless experiments.


Tyler Stableford/The Image Bank/Getty Images
Figure 8-14 To descend, the rock climber must transfer energy from the gravitational potential energy of a system consisting of him, his gear, and Earth. He has wrapped the rope around metal rings so that the rope rubs against the rings. This allows most of the transferred energy to go to the thermal energy of the rope and rings rather than to his kinetic energy.

Scientists and engineers have never found an exception to it. Energy simply cannot magically appear or disappear.

\section*{Isolated System}

If a system is isolated from its environment, there can be no energy transfers to or from it. For that case, the law of conservation of energy states:

The total energy \(E\) of an isolated system cannot change.
Many energy transfers may be going on within an isolated system - between, say, kinetic energy and a potential energy or between kinetic energy and thermal energy. However, the total of all the types of energy in the system cannot change. Here again, energy cannot magically appear or disappear.

We can use the rock climber in Fig. 8-14 as an example, approximating him, his gear, and Earth as an isolated system. As he rappels down the rock face, changing the configuration of the system, he needs to control the transfer of energy from the gravitational potential energy of the system. (That energy cannot just disappear.) Some of it is transferred to his kinetic energy. However, he obviously does not want very much transferred to that type or he will be moving too quickly, so he has wrapped the rope around metal rings to produce friction between the rope and the rings as he moves down. The sliding of the rings on the rope then transfers the gravitational potential energy of the system to thermal energy of the rings and rope in a way that he can control. The total energy of the climber-gear-Earth system (the total of its gravitational potential energy, kinetic energy, and thermal energy) does not change during his descent.

For an isolated system, the law of conservation of energy can be written in two ways. First, by setting \(W=0\) in Eq. 8-35, we get
\[
\begin{equation*}
\Delta E_{\mathrm{mec}}+\Delta E_{\mathrm{th}}+\Delta E_{\mathrm{int}}=0 \quad \text { (isolated system) } \tag{8-36}
\end{equation*}
\]

We can also let \(\Delta E_{\mathrm{mec}}=E_{\mathrm{mec}, 2}-E_{\mathrm{mec}, 1}\), where the subscripts 1 and 2 refer to two different instants - say, before and after a certain process has occurred. Then Eq. \(8-36\) becomes
\[
\begin{equation*}
E_{\mathrm{mec}, 2}=E_{\mathrm{mec}, 1}-\Delta E_{\mathrm{th}}-\Delta E_{\mathrm{int}} . \tag{8-37}
\end{equation*}
\]

Equation 8-37 tells us:

In an isolated system, we can relate the total energy at one instant to the total energy at another instant without considering the energies at intermediate times.

This fact can be a very powerful tool in solving problems about isolated systems when you need to relate energies of a system before and after a certain process occurs in the system.

In Module 8-2, we discussed a special situation for isolated systems-namely, the situation in which nonconservative forces (such as a kinetic frictional force) do not act within them. In that special situation, \(\Delta E_{\mathrm{th}}\) and \(\Delta E_{\text {int }}\) are both zero, and so Eq. 8-37 reduces to Eq. 8-18. In other words, the mechanical energy of an isolated system is conserved when nonconservative forces do not act in it.

\section*{External Forces and Internal Energy Transfers}

An external force can change the kinetic energy or potential energy of an object without doing work on the object - that is, without transferring energy to the object. Instead, the force is responsible for transfers of energy from one type to another inside the object.


Figure 8-15 (a) As a skater pushes herself away from a railing, the force on her from the railing is \(\vec{F}\). (b) After the skater leaves the railing, she has velocity \(\vec{v}\). (c) External force \(\vec{F}\) acts on the skater, at angle \(\phi\) with a horizontal \(x\) axis. When the skater goes through displacement \(\vec{d}\), her velocity is changed from \(\vec{v}_{0}(=0)\) to \(\vec{v}\) by the horizontal component of \(\vec{F}\).

Figure 8-15 shows an example. An initially stationary ice-skater pushes away from a railing and then slides over the ice (Figs. 8-15a and \(b\) ). Her kinetic energy increases because of an external force \(\vec{F}\) on her from the rail. However, that force does not transfer energy from the rail to her. Thus, the force does no work on her. Rather, her kinetic energy increases as a result of internal transfers from the biochemical energy in her muscles.

Figure 8-16 shows another example. An engine increases the speed of a car with four-wheel drive (all four wheels are made to turn by the engine). During the acceleration, the engine causes the tires to push backward on the road surface. This push produces frictional forces \(\vec{f}\) that act on each tire in the forward direction. The net external force \(\vec{F}\) from the road, which is the sum of these frictional forces, accelerates the car, increasing its kinetic energy. However, \(\vec{F}\) does not transfer energy from the road to the car and so does no work on the car. Rather, the car's kinetic energy increases as a result of internal transfers from the energy stored in the fuel.

In situations like these two, we can sometimes relate the external force \(\vec{F}\) on an object to the change in the object's mechanical energy if we can simplify the situation. Consider the ice-skater example. During her push through distance \(d\) in Fig. 8-15c, we can simplify by assuming that the acceleration is constant, her speed changing from \(v_{0}=0\) to \(v\). (That is, we assume \(\vec{F}\) has constant magnitude \(F\) and angle \(\phi\).) After the push, we can simplify the skater as being a particle and neglect the fact that the exertions of her muscles have increased the thermal energy in her muscles and changed other physiological features. Then we can apply Eq. \(7-5\left(\frac{1}{2} m v^{2}-\frac{1}{2} m v_{0}^{2}=F_{x} d\right)\) to write
\[
\begin{gather*}
K-K_{0}=(F \cos \phi) d, \\
\Delta K=F d \cos \phi . \tag{8-38}
\end{gather*}
\]
or
If the situation also involves a change in the elevation of an object, we can include the change \(\Delta U\) in gravitational potential energy by writing
\[
\begin{equation*}
\Delta U+\Delta K=F d \cos \phi \tag{8-39}
\end{equation*}
\]

The force on the right side of this equation does no work on the object but is still responsible for the changes in energy shown on the left side.

\section*{Power}

Now that you have seen how energy can be transferred from one type to another, we can expand the definition of power given in Module 7-6. There power is


Figure 8-16 A vehicle accelerates to the right using four-wheel drive. The road exerts four frictional forces (two of them shown) on the bottom surfaces of the tires. Taken together, these four forces make up the net external force \(\vec{F}\) acting on the car.
defined as the rate at which work is done by a force. In a more general sense, power \(P\) is the rate at which energy is transferred by a force from one type to another. If an amount of energy \(\Delta E\) is transferred in an amount of time \(\Delta t\), the average power due to the force is
\[
\begin{equation*}
P_{\mathrm{avg}}=\frac{\Delta E}{\Delta t} \tag{8-40}
\end{equation*}
\]

Similarly, the instantaneous power due to the force is
\[
\begin{equation*}
P=\frac{d E}{d t} \tag{8-41}
\end{equation*}
\]

\section*{Sample Problem 8.06 Lots of energies at an amusement park water slide}

Figure 8-17 shows a water-slide ride in which a glider is shot by a spring along a water-drenched (frictionless) track that takes the glider from a horizontal section down to ground level. As the glider then moves along ground-level track, it is gradually brought to rest by friction. The total mass of the glider and its rider is \(m=200 \mathrm{~kg}\), the initial compression of the spring is \(d=5.00 \mathrm{~m}\), the spring constant is \(k=3.20 \times\) \(10^{3} \mathrm{~N} / \mathrm{m}\), the initial height is \(h=35.0 \mathrm{~m}\), and the coefficient of kinetic friction along the ground-level track is \(\mu_{k}=0.800\). Through what distance \(L\) does the glider slide along the ground-level track until it stops?

\section*{KEY IDEAS}

Before we touch a calculator and start plugging numbers into equations, we need to examine all the forces and then determine what our system should be. Only then can we decide what equation to write. Do we have an isolated system (our equation would be for the conservation of energy) or a system on which an external force does work (our equation would relate that work to the system's change in energy)?

Forces: The normal force on the glider from the track does no work on the glider because the direction of this force is always perpendicular to the direction of the glider's displacement. The gravitational force does work on the glider, and because the force is conservative we can associate a potential energy with it. As the spring pushes


Figure 8-17 A spring-loaded amusement park water slide.
on the glider to get it moving, a spring force does work on it, transferring energy from the elastic potential energy of the compressed spring to kinetic energy of the glider. The spring force also pushes against a rigid wall. Because there is friction between the glider and the ground-level track, the sliding of the glider along that track section increases their thermal energies.

System: Let's take the system to contain all the interacting bodies: glider, track, spring, Earth, and wall. Then, because all the force interactions are within the system, the system is isolated and thus its total energy cannot change. So, the equation we should use is not that of some external force doing work on the system. Rather, it is a conservation of energy. We write this in the form of Eq. 8-37:
\[
\begin{equation*}
E_{\mathrm{mec}, 2}=E_{\mathrm{mec}, 1}-\Delta E_{\mathrm{th}} . \tag{8-42}
\end{equation*}
\]

This is like a money equation: The final money is equal to the initial money minus the amount stolen away by a thief. Here, the final mechanical energy is equal to the initial mechanical energy minus the amount stolen away by friction. None has magically appeared or disappeared.

Calculations: Now that we have an equation, let's find distance \(L\). Let subscript 1 correspond to the initial state of the glider (when it is still on the compressed spring) and subscript 2 correspond to the final state of the glider (when it has come to rest on the ground-level track). For both states, the mechanical energy of the system is the sum of any potential energy and any kinetic energy.

We have two types of potential energy: the elastic potential energy ( \(U_{e}=\frac{1}{2} k x^{2}\) ) associated with the compressed spring and the gravitational potential energy ( \(U_{g}=m g y\) ) associated with the glider's elevation. For the latter, let's take ground level as the reference level. That means that the glider is initially at height \(y=h\) and finally at height \(y=0\).

In the initial state, with the glider stationary and elevated and the spring compressed, the energy is
\[
\begin{align*}
E_{\mathrm{mec}, 1} & =K_{1}+U_{e 1}+U_{g 1} \\
& =0+\frac{1}{2} k d^{2}+m g h . \tag{8-43}
\end{align*}
\]

In the final state, with the spring now in its relaxed state and the glider again stationary but no longer elevated, the final mechanical energy of the system is
\[
\begin{align*}
E_{\mathrm{mec}, 2} & =K_{2}+U_{e 2}+U_{g 2} \\
& =0+0+0 . \tag{8-44}
\end{align*}
\]

Let's next go after the change \(\Delta E_{\mathrm{th}}\) of the thermal energy of the glider and ground-level track. From Eq. 8-31, we can substitute for \(\Delta E_{\text {th }}\) with \(f_{k} L\) (the product of the frictional force magnitude and the distance of rubbing). From Eq. 6-2, we know that \(f_{k}=\mu_{k} F_{N}\), where \(F_{N}\) is the normal force. Because the glider moves horizontally through the region with friction, the magnitude of \(F_{N}\) is equal to \(m g\) (the upward force matches the downward force). So, the friction's theft from the mechanical energy amounts to
\[
\begin{equation*}
\Delta E_{\mathrm{th}}=\mu_{k} m g L \tag{8-45}
\end{equation*}
\]
(By the way, without further experiments, we cannot say how much of this thermal energy ends up in the glider and how much in the track. We simply know the total amount.)

Substituting Eqs. 8-43 through 8-45 into Eq. 8-42, we find
\[
\begin{equation*}
0=\frac{1}{2} k d^{2}+m g h-\mu_{k} m g L \tag{8-46}
\end{equation*}
\]
and
\[
\begin{aligned}
L & =\frac{k d^{2}}{2 \mu_{k} m g}+\frac{h}{\mu_{k}} \\
& =\frac{\left(3.20 \times 10^{3} \mathrm{~N} / \mathrm{m}\right)(5.00 \mathrm{~m})^{2}}{2(0.800)(200 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}+\frac{35 \mathrm{~m}}{0.800} \\
& =69.3 \mathrm{~m}
\end{aligned}
\]

Finally, note how algebraically simple our solution is. By carefully defining a system and realizing that we have an isolated system, we get to use the law of the conservation of energy. That means we can relate the initial and final states of the system with no consideration of the intermediate states. In particular, we did not need to consider the glider as it slides over the uneven track. If we had, instead, applied Newton's second law to the motion, we would have had to know the details of the track and would have faced a far more difficult calculation.

\section*{Seview \& Summary}

Conservative Forces A force is a conservative force if the net work it does on a particle moving around any closed path, from an initial point and then back to that point, is zero. Equivalently, a force is conservative if the net work it does on a particle moving between two points does not depend on the path taken by the particle. The gravitational force and the spring force are conservative forces; the kinetic frictional force is a nonconservative force.

Potential Energy A potential energy is energy that is associated with the configuration of a system in which a conservative force acts. When the conservative force does work \(W\) on a particle within the system, the change \(\Delta U\) in the potential energy of the system is
\[
\begin{equation*}
\Delta U=-W \tag{8-1}
\end{equation*}
\]

If the particle moves from point \(x_{i}\) to point \(x_{f}\), the change in the potential energy of the system is
\[
\begin{equation*}
\Delta U=-\int_{x_{i}}^{x_{f}} F(x) d x \tag{8-6}
\end{equation*}
\]

Gravitational Potential Energy The potential energy associated with a system consisting of Earth and a nearby particle is gravitational potential energy. If the particle moves from height \(y_{i}\) to height \(y_{f}\), the change in the gravitational potential energy of the particle-Earth system is
\[
\begin{equation*}
\Delta U=m g\left(y_{f}-y_{i}\right)=m g \Delta y . \tag{8-7}
\end{equation*}
\]

If the reference point of the particle is set as \(y_{i}=0\) and the corresponding gravitational potential energy of the system is set as \(U_{i}=0\), then the gravitational potential energy \(U\) when the parti-
cle is at any height \(y\) is
\[
\begin{equation*}
U(y)=m g y . \tag{8-9}
\end{equation*}
\]

Elastic Potential Energy Elastic potential energy is the energy associated with the state of compression or extension of an elastic object. For a spring that exerts a spring force \(F=-k x\) when its free end has displacement \(x\), the elastic potential energy is
\[
\begin{equation*}
U(x)=\frac{1}{2} k x^{2} . \tag{8-11}
\end{equation*}
\]

The reference configuration has the spring at its relaxed length, at which \(x=0\) and \(U=0\).

Mechanical Energy The mechanical energy \(E_{\text {mec }}\) of a system is the sum of its kinetic energy \(K\) and potential energy \(U\) :
\[
\begin{equation*}
E_{\mathrm{mec}}=K+U . \tag{8-12}
\end{equation*}
\]

An isolated system is one in which no external force causes energy changes. If only conservative forces do work within an isolated system, then the mechanical energy \(E_{\text {mec }}\) of the system cannot change. This principle of conservation of mechanical energy is written as
\[
\begin{equation*}
K_{2}+U_{2}=K_{1}+U_{1}, \tag{8-17}
\end{equation*}
\]
in which the subscripts refer to different instants during an energy transfer process. This conservation principle can also be written as
\[
\begin{equation*}
\Delta E_{\mathrm{mec}}=\Delta K+\Delta U=0 . \tag{8-18}
\end{equation*}
\]

Potential Energy Curves If we know the potential energy function \(U(x)\) for a system in which a one-dimensional force \(F(x)\)
acts on a particle, we can find the force as
\[
\begin{equation*}
F(x)=-\frac{d U(x)}{d x} \tag{8-22}
\end{equation*}
\]

If \(U(x)\) is given on a graph, then at any value of \(x\), the force \(F(x)\) is the negative of the slope of the curve there and the kinetic energy of the particle is given by
\[
\begin{equation*}
K(x)=E_{\mathrm{mec}}-U(x) \tag{8-24}
\end{equation*}
\]
where \(E_{\text {mec }}\) is the mechanical energy of the system. A turning point is a point \(x\) at which the particle reverses its motion (there, \(K=0\) ). The particle is in equilibrium at points where the slope of the \(U(x)\) curve is zero (there, \(F(x)=0\) ).

Work Done on a System by an External Force Work W is energy transferred to or from a system by means of an external force acting on the system. When more than one force acts on a system, their net work is the transferred energy. When friction is not involved, the work done on the system and the change \(\Delta E_{\text {mec }}\) in the mechanical energy of the system are equal:
\[
\begin{equation*}
W=\Delta E_{\mathrm{mec}}=\Delta K+\Delta U \tag{8-26,8-25}
\end{equation*}
\]

When a kinetic frictional force acts within the system, then the thermal energy \(E_{\mathrm{th}}\) of the system changes. (This energy is associated with the random motion of atoms and molecules in the system.) The work done on the system is then
\[
\begin{equation*}
W=\Delta E_{\mathrm{mec}}+\Delta E_{\mathrm{th}} \tag{8-33}
\end{equation*}
\]

\section*{Questions}

1 In Fig. 8-18, a horizontally moving block can take three frictionless routes, differing only in elevation, to reach the dashed finish line. Rank the routes according to (a) the speed of the block at the finish line and (b) the travel time of the block to the finish line, greatest first.


Figure 8-18 Question 1.
2 Figure 8-19 gives the potential energy function of a particle.
(a) Rank regions \(A B, B C, C D\), and \(D E\) according to the magni-


The change \(\Delta E_{\mathrm{th}}\) is related to the magnitude \(f_{k}\) of the frictional force and the magnitude \(d\) of the displacement caused by the external force by
\[
\begin{equation*}
\Delta E_{\mathrm{th}}=f_{k} d \tag{8-31}
\end{equation*}
\]

Conservation of Energy The total energy \(E\) of a system (the sum of its mechanical energy and its internal energies, including thermal energy) can change only by amounts of energy that are transferred to or from the system. This experimental fact is known as the law of conservation of energy. If work \(W\) is done on the system, then
\[
\begin{equation*}
W=\Delta E=\Delta E_{\mathrm{mec}}+\Delta E_{\mathrm{th}}+\Delta E_{\mathrm{int}} . \tag{8-35}
\end{equation*}
\]

If the system is isolated \((W=0)\), this gives
\[
\begin{equation*}
\Delta E_{\mathrm{mec}}+\Delta E_{\mathrm{th}}+\Delta E_{\mathrm{int}}=0 \tag{8-36}
\end{equation*}
\]
and \(\quad E_{\mathrm{mec}, 2}=E_{\mathrm{mec}, 1}-\Delta E_{\mathrm{th}}-\Delta E_{\mathrm{int}}\),
where the subscripts 1 and 2 refer to two different instants.
Power The power due to a force is the rate at which that force transfers energy. If an amount of energy \(\Delta E\) is transferred by a force in an amount of time \(\Delta t\), the average power of the force is
\[
\begin{equation*}
P_{\mathrm{avg}}=\frac{\Delta E}{\Delta t} \tag{8-40}
\end{equation*}
\]

The instantaneous power due to a force is
\[
\begin{equation*}
P=\frac{d E}{d t} \tag{8-41}
\end{equation*}
\]
tude of the force on the particle, greatest first. What value must the mechanical energy \(E_{\text {mec }}\) of the particle not exceed if the particle is to be (b) trapped in the potential well at the left, (c) trapped in the potential well at the right, and (d) able to move between the two potential wells but not to the right of point \(H\) ? For the situation of (d), in which of regions \(B C, D E\), and \(F G\) will the particle have (e) the greatest kinetic energy and (f) the least speed?
3 Figure 8-20 shows one direct path and four indirect paths from point \(i\) to point \(f\). Along the direct path and three of the indirect paths, only a conservative force \(F_{\mathrm{c}}\) acts on a certain object. Along the fourth indirect path, both \(F_{\mathrm{c}}\) and a nonconservative force \(F_{\mathrm{nc}}\) act on the object.


Figure 8-20 Question 3. The change \(\Delta E_{\text {mec }}\) in the object's mechanical energy (in joules) in going from \(i\) to \(f\) is indicated along each straight-line segment of the indirect paths. What is \(\Delta E_{\text {mec }}\) (a) from \(i\) to \(f\) along the direct path and (b) due to \(F_{\text {nc }}\) along the one path where it acts?

4 In Fig. 8-21, a small, initially stationary block is released on a frictionless ramp at a height of 3.0 m . Hill heights along the ramp are as shown in the figure. The hills have identical circular tops, and the block does not fly off any hill. (a) Which hill is the first the block cannot cross? (b) What does the block do after failing to cross that hill? Of the hills that the block can cross, on which hill-
top is (c) the centripetal acceleration of the block greatest and (d) the normal force on the block least?


Figure 8-21 Question 4.

5 In Fig. 8-22, a block slides from \(A\) to \(C\) along a frictionless ramp, and then it passes through horizontal region \(C D\), where a frictional force acts on it. Is the block's kinetic energy increasing, decreasing, or constant in (a) region \(A B\), (b) region \(B C\), and (c) region \(C D\) ? (d) Is the block's mechanical energy increasing, decreasing, or constant in those regions?


Figure 8-22 Question 5.

6 In Fig. 8-23a, you pull upward on a rope that is attached to a cylinder on a vertical rod. Because the cylinder fits tightly on the rod, the cylinder slides along the rod with considerable friction. Your force does work \(W=+100 \mathrm{~J}\) on the cylinder-rod-Earth system (Fig. 8-23b). An "energy statement" for the system is shown in Fig. 8-23c: the kinetic energy \(K\) increases by 50 J , and the gravitational potential energy \(U_{g}\) increases by 20 J . The only other change in energy within the system is for the thermal energy \(E_{\mathrm{th}}\). What is the change \(\Delta E_{\mathrm{th}}\) ?


Figure 8-23 Question 6.

7 The arrangement shown in Fig. 8-24 is similar to that in Question 6. Here you pull downward on the rope that is attached to the cylinder, which fits tightly on the rod. Also, as the cylinder
descends, it pulls on a block via a second rope, and the block slides over a lab table. Again consider the cylinder-rod-Earth system, similar to that shown in Fig. 8-23b. Your work on the system is 200 J . The system does work of 60 J on the block. Within the system, the kinetic energy increases by 130 J and the gravitational potential energy decreases by 20 J. (a) Draw an "energy statement" for the system, as in Fig. 8-23c. (b) What is the change in


Figure 8-24 Question 7. the thermal energy within the system?
8 In Fig. 8-25, a block slides along a track that descends through distance \(h\). The track is frictionless except for the lower section. There the block slides to a stop in a certain distance \(D\) because of friction. (a) If we decrease \(h\), will the block now slide to a stop in a distance that is greater than, less than, or equal to \(D\) ? (b) If, instead, we increase the mass of the block, will the stopping distance now be greater than, less than, or equal to \(D\) ?


Figure 8-25 Question 8.
9 Figure 8-26 shows three situations involving a plane that is not frictionless and a block sliding along the plane. The block begins with the same speed in all three situations and slides until the kinetic frictional force has stopped it. Rank the situations according to the increase in thermal energy due to the sliding, greatest first.


Figure 8-26 Question 9.

10 Figure 8-27 shows three plums that are launched from the same level with the same speed. One moves straight upward, one is launched at a small angle to the vertical, and one is launched along a frictionless incline. Rank the plums according to their speed when they reach the level of the dashed line, greatest first.
11 When a particle moves from \(f\) to \(i\) and from \(j\) to \(i\) along the paths shown in Fig. 8-28, and in the indicated directions, a conservative force \(\vec{F}\) does the indicated amounts of work on it. How much work is done on the particle by \(\vec{F}\) when the particle moves directly from \(f\) to \(j\) ?


Figure 8-27 Question 10.


Figure 8-28 Question 11.

\section*{Problems}


\section*{Module 8-1 Potential Energy}
\(\bullet 1\) SSM What is the spring constant of a spring that stores 25 J of elastic potential energy when compressed by 7.5 cm ?
-2 In Fig. 8-29, a single frictionless roller-coaster car of mass \(m=825 \mathrm{~kg}\) tops the first hill with speed \(v_{0}=17.0 \mathrm{~m} / \mathrm{s}\) at height \(h=42.0 \mathrm{~m}\). How much work does the gravitational force do on the car from that point to (a) point \(A\), (b) point \(B\), and (c) point \(C\) ? If the gravitational potential energy of the car-Earth system is taken to be zero at \(C\), what is its value when the car is at (d) \(B\) and (e) \(A\) ? (f) If mass \(m\) were doubled, would the change in the gravitational potential energy of the system between points \(A\) and \(B\) increase, decrease, or remain the same?


Figure 8-29 Problems 2 and 9.
-3 You drop a 2.00 kg book to a friend who stands on the ground at distance \(D=10.0 \mathrm{~m}\) below. If your friend's outstretched hands are at distance \(d=1.50 \mathrm{~m}\) above the ground (Fig. 8-30), (a) how much work \(W_{g}\) does the gravitational force do on the book as it drops to her hands? (b) What is the change \(\Delta U\) in the gravitational potential energy of the book-Earth system during the drop? If the gravitational potential energy \(U\) of that system is taken to be zero at ground level, what is \(U\) (c) when the book is released and (d) when it reaches her hands? Now take \(U\) to be 100 J at ground level and again find (e) \(W_{g}\), (f) \(\Delta U,(\mathrm{~g}) U\) at the release point, and (h) \(U\) at her hands.
-4 Figure 8-31 shows a ball with mass \(m=0.341 \mathrm{~kg}\) attached to the end of a thin rod with length \(L=0.452 \mathrm{~m}\) and negligible mass. The other end of the rod is pivoted so that the ball can move in a vertical circle. The rod is held horizontally as shown and then given enough of a downward push to cause the ball to swing down and around and just reach the vertically up position, with zero speed there. How much work is done on the ball by the gravitational force from the initial point


Figure 8-30
Problems 3 and 10.
to (a) the lowest point, (b) the highest point, and (c) the point on the right level with the initial point? If the gravitational potential energy of the ball-Earth system is taken to be zero at the initial point, what is it when the ball reaches (d) the lowest point, (e) the highest point, and (f) the point on the right level with the initial point? (g) Suppose the rod were pushed harder so that the ball passed through the highest point with a nonzero speed. Would \(\Delta U_{g}\) from the lowest point to the highest point then be greater than, less than, or the same as it was when the ball stopped at the highest point?
\({ }^{\circ} 5\) Ssm In Fig. 8-32, a 2.00 g ice flake is released from the edge of a hemispherical bowl whose radius \(r\) is 22.0 cm . The flake-bowl contact is frictionless. (a) How much work is done on the flake by the gravitational force during the flake's descent to the bottom of the bowl? (b) What is the change in the potential energy of the flake-Earth system during that descent? (c) If that potential energy is taken to be zero


Figure 8-32 Problems 5 and 11. at the bottom of the bowl, what is its value when the flake is released? (d) If, instead, the potential energy is taken to be zero at the release point, what is its value when the flake reaches the bottom of the bowl? (e) If the mass of the flake were doubled, would the magnitudes of the answers to (a) through (d) increase, decrease, or remain the same?
\({ }^{\circ} 6\) In Fig. 8-33, a small block of mass \(m=0.032 \mathrm{~kg}\) can slide along the frictionless loop-the-loop, with loop radius \(R=12 \mathrm{~cm}\). The block is released from rest at point \(P\), at height \(h=5.0 \mathrm{R}\) above the bottom of the loop. How much work does the gravitational force do on the block as the block travels from point \(P\) to (a) point \(Q\) and (b) the top of the loop? If the gravitational potential energy of the block-Earth system is taken to be zero at the bot-


Figure 8-33 Problems 6 and 17. tom of the loop, what is that potential energy when the block is (c) at point \(P\), (d) at point \(Q\), and (e) at the top of the loop? (f) If, instead of merely being released, the block is given some initial speed downward along the track, do the answers to (a) through (e) increase, decrease, or remain the same?
\(\bullet 7\) Figure 8-34 shows a thin rod, of length \(L=2.00 \mathrm{~m}\) and negligible mass, that can pivot about one end to rotate in a vertical circle. A ball of mass \(m=5.00 \mathrm{~kg}\) is attached to the other end. The rod is pulled aside to angle \(\theta_{0}=30.0^{\circ}\) and released with initial velocity \(\vec{v}_{0}=0\). As the ball descends to its lowest point,
(a) how much work does the gravitational force do on it and
(b) what is the change in the gravitational potential energy of
the ball-Earth system? (c) If the gravitational potential energy is taken to be zero at the lowest point, what is its value just as the ball is released? (d) Do the magnitudes of the answers to (a) through (c) increase, decrease, or remain the same if angle \(\theta_{0}\) is increased?

थ०8 A 1.50 kg snowball is fired from a cliff 12.5 m high. The snowball's initial velocity is \(14.0 \mathrm{~m} / \mathrm{s}\), directed \(41.0^{\circ}\) above the horizontal. (a) How much work is done on the snowball by the gravitational force during its flight to the flat ground below the cliff? (b) What is the change in the gravitational potential energy of the snowball-Earth system during the flight? (c) If that gravitational potential


Figure 8-34 Problems 7, 18, and 21. energy is taken to be zero at the height of the cliff, what is its value when the snowball reaches the ground?

\section*{Module 8-2 Conservation of Mechanical Energy}
-9 60 In Problem 2, what is the speed of the car at (a) point \(A\), (b) point \(B\), and (c) point \(C\) ? (d) How high will the car go on the last hill, which is too high for it to cross? (e) If we substitute a second car with twice the mass, what then are the answers to (a) through (d)?
\(\cdot 10\) (a) In Problem 3, what is the speed of the book when it reaches the hands? (b) If we substituted a second book with twice the mass, what would its speed be? (c) If, instead, the book were thrown down, would the answer to (a) increase, decrease, or remain the same?
-11 SSM www (a) In Problem 5, what is the speed of the flake when it reaches the bottom of the bowl? (b) If we substituted a second flake with twice the mass, what would its speed be? (c) If, instead, we gave the flake an initial downward speed along the bowl, would the answer to (a) increase, decrease, or remain the same?
-12 (a) In Problem 8, using energy techniques rather than the techniques of Chapter 4, find the speed of the snowball as it reaches the ground below the cliff. What is that speed (b) if the launch angle is changed to \(41.0^{\circ}\) below the horizontal and (c) if the mass is changed to 2.50 kg ?
-13 SSM A 5.0 g marble is fired vertically upward using a spring gun. The spring must be compressed 8.0 cm if the marble is to just reach a target 20 m above the marble's position on the compressed spring. (a) What is the change \(\Delta U_{g}\) in the gravitational potential energy of the marble-Earth system during the 20 m ascent? (b) What is the change \(\Delta U_{s}\) in the elastic potential energy of the spring during its launch of the marble? (c) What is the spring constant of the spring?
-14 (a) In Problem 4, what initial speed must be given the ball so that it reaches the vertically upward position with zero speed? What then is its speed at (b) the lowest point and (c) the point on the right at which the ball is level with the initial point? (d) If the ball's mass were doubled, would the answers to (a) through (c) increase, decrease, or remain the same?
-15 SSM In Fig. 8-35, a runaway truck with failed brakes is moving downgrade at \(130 \mathrm{~km} / \mathrm{h}\) just before the driver steers the truck up a frictionless emergency escape ramp with an inclination of \(\theta=15^{\circ}\). The truck's mass is \(1.2 \times 10^{4} \mathrm{~kg}\). (a) What minimum length
\(L\) must the ramp have if the truck is to stop (momentarily) along it? (Assume the truck is a particle, and justify that assumption.) Does the minimum length \(L\) increase, decrease, or remain the same if (b) the truck's mass is decreased and (c) its speed is decreased?


Figure 8-35 Problem 15.
-16 A 700 g block is released from rest at height \(h_{0}\) above a vertical spring with spring constant \(k=400 \mathrm{~N} / \mathrm{m}\) and negligible mass. The block sticks to the spring and momentarily stops after compressing the spring 19.0 cm . How much work is done (a) by the block on the spring and (b) by the spring on the block? (c) What is the value of \(h_{0}\) ? (d) If the block were released from height \(2.00 h_{0}\) above the spring, what would be the maximum compression of the spring?
-•17 In Problem 6, what are the magnitudes of (a) the horizontal component and (b) the vertical component of the net force acting on the block at point \(Q\) ? (c) At what height \(h\) should the block be released from rest so that it is on the verge of losing contact with the track at the top of the loop? (On the verge of losing contact means that the normal force on the block from the track has just then become zero.) (d) Graph the magnitude of the normal force on the block at the top of the loop versus initial height \(h\), for the range \(h=0\) to \(h=6 R\).
\(\bullet 18\) (a) In Problem 7, what is the speed of the ball at the lowest point? (b) Does the speed increase, decrease, or remain the same if the mass is increased?
-•19 © Figure \(8-36\) shows an 8.00 kg stone at rest on a spring. The spring is compressed 10.0 cm by the stone. (a) What is the spring constant? (b) The stone is pushed down an additional 30.0 cm and released. What is the elastic potential energy of the compressed spring just before that release? (c) What is the change in the gravitational potential en-


Figure 8-36
Problem 19. ergy of the stone-Earth system when the stone moves from the release point to its maximum height? (d) What is that maximum height, measured from the release point?
\(\bullet 20\) A pendulum consists of a 2.0 kg stone swinging on a 4.0 m string of negligible mass. The stone has a speed of \(8.0 \mathrm{~m} / \mathrm{s}\) when it passes its lowest point. (a) What is the speed when the string is at \(60^{\circ}\) to the vertical? (b) What is the greatest angle with the vertical that the string will reach during the stone's motion? (c) If the potential energy of the pendulum-Earth system is taken to be zero at the stone's lowest point, what is the total mechanical energy of the system?
\(\bullet 21\) Figure \(8-34\) shows a pendulum of length \(L=1.25 \mathrm{~m}\). Its bob (which effectively has all the mass) has speed \(v_{0}\) when the cord makes an angle \(\theta_{0}=40.0^{\circ}\) with the vertical. (a) What is the speed of the bob when it is in its lowest position if \(v_{0}=8.00 \mathrm{~m} / \mathrm{s}\) ? What is the least value that \(v_{0}\) can have if the pendulum is to swing down and then up (b) to a horizontal position, and (c) to a vertical position with the cord remaining straight? (d) Do the answers to (b) and (c) increase, decrease, or remain the same if \(\theta_{0}\) is increased by a few degrees?
-•22 A 60 kg skier starts from rest at height \(H=20 \mathrm{~m}\) above the end of a ski-jump ramp (Fig. 8-37) and leaves the ramp at angle \(\theta=28^{\circ}\). Neglect the effects of air resistance and assume the ramp is frictionless. (a) What is the maximum height \(h\) of his jump above the end of the ramp? (b) If he increased his weight by putting on a backpack, would \(h\) then be greater, less, or the same?


Figure 8-37 Problem 22.
-23 ILw The string in Fig. 8-38 is \(L=120 \mathrm{~cm}\) long, has a ball attached to one end, and is fixed at its other end. The distance \(d\) from the fixed end to a fixed peg at point \(P\) is 75.0 cm . When the initially stationary ball is released with the string horizontal as shown, it will swing along the dashed arc. What is its speed when it reaches (a) its lowest point and (b) its highest point after the string catches on the peg?
-०24 A block of mass \(m=2.0 \mathrm{~kg}\) is dropped from height \(h=40 \mathrm{~cm}\) onto a spring of spring constant \(k=1960 \mathrm{~N} / \mathrm{m}\) (Fig. 8-39). Find the maximum distance the spring is compressed.
-०25 At \(t=0\) a 1.0 kg ball is thrown from a tall tower with \(\vec{v}=(18 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(24 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}\). What is \(\Delta U\) of the ball-Earth system between \(t=0\) and \(t=6.0 \mathrm{~s}\) (still free fall)?
-026 A conservative force \(\vec{F}=(6.0 x-12) \hat{\mathrm{i}} \mathrm{N}\), where \(x\) is in meters, acts on a particle moving along an \(x\) axis. The potential energy \(U\) associated


Figure 8-39
Problem 24. with this force is assigned a value of 27 J at \(x=0\). (a) Write an expression for \(U\) as a function of \(x\), with \(U\) in joules and \(x\) in meters. (b) What is the maximum positive potential energy? At what (c) negative value and (d) positive value of \(x\) is the potential energy equal to zero?
\(\bullet 27\) Tarzan, who weighs 688 N , swings from a cliff at the end of a vine 18 m long (Fig. 8-40). From the top of the cliff to the bottom of the swing, he descends by 3.2 m . The vine will break if the force on it exceeds 950 N . (a) Does the vine break? (b) If no, what is the greatest force on it during the swing? If yes, at what angle with the vertical does it break?


Figure 8-40 Problem 27.

Figure 8-38 Problems 23 and 70.
\(\because 28\) Figure 8-41a applies to the spring in a cork gun (Fig. 8-41b); it shows the spring force as a function of the stretch or compression of the spring. The spring is compressed by 5.5 cm and used to propel a 3.8 g cork from the gun. (a) What is the speed of the cork if it is released as the spring passes through its relaxed position? (b) Suppose, instead, that the cork sticks to the spring and stretches it 1.5 cm before separation occurs. What now is the speed of the cork at the time of release?
-029 SSm www In Fig. 8-42, a block of mass \(m=12 \mathrm{~kg}\) is released from rest on a frictionless incline of angle \(\theta=30^{\circ}\). Below the block is a spring that can be compressed 2.0 cm by a force of 270 N . The block momentarily stops when it compresses the spring by 5.5 cm . (a) How far does the block move down the incline from its rest position to this stopping point? (b) What is the speed of the block just as it touches the spring?
\(\because 30\) © A 2.0 kg breadbox on a frictionless incline of angle \(\theta=40^{\circ}\) is connected, by a cord that runs over a pulley, to a light spring of spring constant \(k=120 \mathrm{~N} / \mathrm{m}\), as shown in


Figure 8-42 Problems 29 and 35 . Fig. 8-43. The box is released from rest when the spring is unstretched. Assume that the pulley is massless and frictionless. (a) What is the speed of the box when it has moved 10 cm down the incline? (b) How far down the incline from its point of release does the box slide before momentarily stopping, and what are the (c) magnitude and (d) direction (up or down the incline) of the box's acceleration at the instant the box momentarily stops?


Figure 8-43 Problem 30.
-031 ILW A block with mass \(m=2.00 \mathrm{~kg}\) is placed against a spring on a frictionless incline with angle \(\theta=30.0^{\circ}\) (Fig. 8-44). (The block is not attached to the spring.) The spring, with spring constant \(k=19.6\) \(\mathrm{N} / \mathrm{cm}\), is compressed 20.0 cm and then released. (a) What is the elastic potential energy of the compressed spring? (b) What is the change in the gravitational potential energy of the block-Earth system as the block moves from the release point to its highest point on the incline? (c) How far along the incline is the highest point from the release point?


Figure 8-44 Problem 31.


Figure 8-41 Problem 28.
-•32 In Fig. 8-45, a chain is held on a frictionless table with onefourth of its length hanging over the edge. If the chain has length \(L=28 \mathrm{~cm}\) and mass \(m=0.012 \mathrm{~kg}\), how much work is required to pull the hanging part back onto the table?
-•०33 ©0 In Fig. 8-46, a spring with \(k=170 \mathrm{~N} / \mathrm{m}\) is at the top of a frictionless incline of angle \(\theta=37.0^{\circ}\). The lower end of the incline is distance \(D=1.00 \mathrm{~m}\) from the end of the spring, which is at its relaxed length. A 2.00 kg canister is pushed against the spring until the spring is compressed 0.200 m and released from rest. (a) What is the speed of the canister at the instant the spring returns to its relaxed length (which is when the canister loses contact with the spring)? (b) What is the speed of the canister when it reaches the lower end of the incline?
\(\bullet \circ 34\) ©o A boy is initially seated on the top of a hemispherical ice mound of radius \(R=13.8 \mathrm{~m}\). He begins to slide down the ice, with a negligible initial speed (Fig. 8-47). Approximate the ice as being frictionless. At what height does the boy lose contact with the ice?
-••35 ©0 In Fig. 8-42, a block of mass \(m=3.20 \mathrm{~kg}\) slides from rest a distance \(d\) down a frictionless incline at angle \(\theta=30.0^{\circ}\) where it runs into a spring of spring constant \(431 \mathrm{~N} / \mathrm{m}\). When the block momentarily stops, it has compressed the spring by 21.0 cm . What are (a) distance \(d\) and (b) the distance between the point of the first block-spring contact and the point where the block's speed is greatest?
-•36 © © Two children are playing a game in which they try to hit a small box on the floor with a marble fired from a spring-loaded gun that is mounted on a table. The target box is horizontal distance \(D=2.20 \mathrm{~m}\)


Figure 8-48 Problem 36. from the edge of the table; see Fig. 8-48. Bobby compresses the spring 1.10 cm , but the center of the marble falls 27.0 cm short of the center of the box. How far should Rhoda compress the spring to score a direct hit? Assume that neither the spring nor the ball encounters friction in the gun.
-••37 A uniform cord of length 25 cm and mass 15 g is initially stuck to a ceiling. Later, it hangs vertically from the ceiling with only one end still stuck. What is the change in the gravitational potential energy of the cord with this change in orientation? (Hint: Consider a differential slice of the cord and then use integral calculus.)

\section*{Module 8-3 Reading a Potential Energy Curve}
-•38 Figure 8-49 shows a plot of potential energy \(U\) versus position \(x\) of a 0.200 kg particle that can travel only along an \(x\) axis under the influence of a conservative force. The graph has these
values: \(U_{A}=9.00 \mathrm{~J}, U_{C}=20.00 \mathrm{~J}\), and \(U_{D}=24.00 \mathrm{~J}\). The particle is released at the point where \(U\) forms a "potential hill" of "height" \(U_{B}=12.00 \mathrm{~J}\), with kinetic energy 4.00 J . What is the speed of the particle at (a) \(x=3.5 \mathrm{~m}\) and (b) \(x=6.5 \mathrm{~m}\) ? What is the position of the turning point on (c) the right side and (d) the left side?


Figure 8-49 Problem 38.
-39 © Figure 8-50 shows a plot of potential energy \(U\) versus position \(x\) of a 0.90 kg particle that can travel only along an \(x\) axis. (Nonconservative forces are not involved.) Three values are \(U_{A}=15.0 \mathrm{~J}, \quad U_{B}=35.0 \mathrm{~J}\), and \(U_{C}=45.0 \mathrm{~J}\). The particle is released at \(x=4.5 \mathrm{~m}\) with an initial speed of \(7.0 \mathrm{~m} / \mathrm{s}\), headed


Figure 8-50 Problem 39. in the negative \(x\) direction.
(a) If the particle can reach \(x=1.0 \mathrm{~m}\), what is its speed there, and if it cannot, what is its turning point? What are the (b) magnitude and (c) direction of the force on the particle as it begins to move to the left of \(x=4.0 \mathrm{~m}\) ? Suppose, instead, the particle is headed in the positive \(x\) direction when it is released at \(x=4.5 \mathrm{~m}\) at speed \(7.0 \mathrm{~m} / \mathrm{s}\). (d) If the particle can reach \(x=7.0 \mathrm{~m}\), what is its speed there, and if it cannot, what is its turning point? What are the (e) magnitude and (f) direction of the force on the particle as it begins to move to the right of \(x=5.0 \mathrm{~m}\) ?
\(\bullet 40\) The potential energy of a diatomic molecule (a two-atom system like \(\mathrm{H}_{2}\) or \(\mathrm{O}_{2}\) ) is given by
\[
U=\frac{A}{r^{12}}-\frac{B}{r^{6}}
\]
where \(r\) is the separation of the two atoms of the molecule and \(A\) and \(B\) are positive constants. This potential energy is associated with the force that binds the two atoms together. (a) Find the equilibrium separation - that is, the distance between the atoms at which the force on each atom is zero. Is the force repulsive (the atoms are pushed apart) or attractive (they are pulled together) if their separation is (b) smaller and (c) larger than the equilibrium separation?
\(\bullet \bullet 41\) A single conservative force \(F(x)\) acts on a 1.0 kg particle that moves along an \(x\) axis. The potential energy \(U(x)\) associated with \(F(x)\) is given by
\[
U(x)=-4 x e^{-x / 4} \mathrm{~J}
\]
where \(x\) is in meters. At \(x=5.0 \mathrm{~m}\) the particle has a kinetic energy of 2.0 J . (a) What is the mechanical energy of the system? (b) Make
a plot of \(U(x)\) as a function of \(x\) for \(0 \leq x \leq 10 \mathrm{~m}\), and on the same graph draw the line that represents the mechanical energy of the system. Use part (b) to determine (c) the least value of \(x\) the particle can reach and (d) the greatest value of \(x\) the particle can reach. Use part (b) to determine (e) the maximum kinetic energy of the particle and (f) the value of \(x\) at which it occurs. (g) Determine an expression in newtons and meters for \(F(x)\) as a function of \(x\). (h) For what (finite) value of \(x\) does \(F(x)=0\) ?

\section*{Module 8-4 Work Done on a System by an External Force}
-42 A worker pushed a 27 kg block 9.2 m along a level floor at constant speed with a force directed \(32^{\circ}\) below the horizontal. If the coefficient of kinetic friction between block and floor was 0.20 , what were (a) the work done by the worker's force and (b) the increase in thermal energy of the block-floor system?
-43 A collie drags its bed box across a floor by applying a horizontal force of 8.0 N . The kinetic frictional force acting on the box has magnitude 5.0 N . As the box is dragged through 0.70 m along the way, what are (a) the work done by the collie's applied force and (b) the increase in thermal energy of the bed and floor?
\(\bullet 44\) A horizontal force of magnitude 35.0 N pushes a block of mass 4.00 kg across a floor where the coefficient of kinetic friction is 0.600 . (a) How much work is done by that applied force on the block-floor system when the block slides through a displacement of 3.00 m across the floor? (b) During that displacement, the thermal energy of the block increases by 40.0 J . What is the increase in thermal energy of the floor? (c) What is the increase in the kinetic energy of the block?
\(\bullet 45\) SSM A rope is used to pull a 3.57 kg block at constant speed 4.06 m along a horizontal floor. The force on the block from the rope is 7.68 N and directed \(15.0^{\circ}\) above the horizontal. What are (a) the work done by the rope's force, (b) the increase in thermal energy of the block-floor system, and (c) the coefficient of kinetic friction between the block and floor?

\section*{Module 8-5 Conservation of Energy}
-46 An outfielder throws a baseball with an initial speed of \(81.8 \mathrm{mi} / \mathrm{h}\). Just before an infielder catches the ball at the same level, the ball's speed is \(110 \mathrm{ft} / \mathrm{s}\). In foot-pounds, by how much is the mechanical energy of the ball-Earth system reduced because of air drag? (The weight of a baseball is 9.0 oz .)
-47 A 75 g Frisbee is thrown from a point 1.1 m above the ground with a speed of \(12 \mathrm{~m} / \mathrm{s}\). When it has reached a height of 2.1 m , its speed is \(10.5 \mathrm{~m} / \mathrm{s}\). What was the reduction in \(E_{\text {mec }}\) of the Frisbee-Earth system because of air drag?
\(\bullet 48\) In Fig. 8-51, a block slides down an incline. As it moves from point \(A\) to point \(B\), which are 5.0 m apart, force \(\vec{F}\) acts on the block, with magnitude 2.0 N and directed down the incline. The magnitude of the frictional force acting on the block is


Figure 8-51 Problems 48 and 71 . 10 N . If the kinetic energy of the block increases by 35 J between \(A\) and \(B\), how much work is done on the block by the gravitational force as the block moves from \(A\) to \(B\) ?
-49 SSm ILw A 25 kg bear slides, from rest, 12 m down a lodgepole pine tree, moving with a speed of \(5.6 \mathrm{~m} / \mathrm{s}\) just before hitting the ground. (a) What change occurs in the gravitational
potential energy of the bear-Earth system during the slide? (b) What is the kinetic energy of the bear just before hitting the ground? (c) What is the average frictional force that acts on the sliding bear?
-50 A 60 kg skier leaves the end of a ski-jump ramp with a velocity of \(24 \mathrm{~m} / \mathrm{s}\) directed \(25^{\circ}\) above the horizontal. Suppose that as a result of air drag the skier returns to the ground with a speed of 22 \(\mathrm{m} / \mathrm{s}\), landing 14 m vertically below the end of the ramp. From the launch to the return to the ground, by how much is the mechanical energy of the skier-Earth system reduced because of air drag?
-51 During a rockslide, a 520 kg rock slides from rest down a hillside that is 500 m long and 300 m high. The coefficient of kinetic friction between the rock and the hill surface is 0.25 . (a) If the gravitational potential energy \(U\) of the rock-Earth system is zero at the bottom of the hill, what is the value of \(U\) just before the slide? (b) How much energy is transferred to thermal energy during the slide? (c) What is the kinetic energy of the rock as it reaches the bottom of the hill? (d) What is its speed then?
-052 A large fake cookie sliding on a horizontal surface is attached to one end of a horizontal spring with spring constant \(k=400 \mathrm{~N} / \mathrm{m}\); the other end of the spring is fixed in place. The cookie has a kinetic energy of 20.0 J as it passes through the spring's equilibrium position. As the cookie slides, a frictional force of magnitude 10.0 N acts on it. (a) How far will the cookie slide from the equilibrium position before coming momentarily to rest? (b) What will be the kinetic energy of the cookie as it slides back through the equilibrium position?
\(\bullet 53\) © © In Fig. 8-52, a 3.5 kg block is accelerated from rest by a compressed spring of spring constant \(640 \mathrm{~N} / \mathrm{m}\). The block leaves the spring at the spring's relaxed length and then travels over a horizontal


Figure 8-52 Problem 53. floor with a coefficient of kinetic friction \(\mu_{k}=0.25\). The frictional force stops the block in distance \(D=7.8 \mathrm{~m}\). What are (a) the increase in the thermal energy of the block-floor system, (b) the maximum kinetic energy of the block, and (c) the original compression distance of the spring?
\(\bullet 54\) A child whose weight is 267 N slides down a 6.1 m playground slide that makes an angle of \(20^{\circ}\) with the horizontal. The coefficient of kinetic friction between slide and child is 0.10 . (a) How much energy is transferred to thermal energy? (b) If she starts at the top with a speed of \(0.457 \mathrm{~m} / \mathrm{s}\), what is her speed at the bottom? \(\bullet 55\) ILW In Fig. 8-53, a block of mass \(m=2.5 \mathrm{~kg}\) slides head on into a spring of spring constant \(k=320 \mathrm{~N} / \mathrm{m}\). When the block stops, it has compressed the spring by 7.5 cm . The coefficient of kinetic friction between block and floor is 0.25 . While the block is in contact with the spring and


Figure 8-53 Problem 55. being brought to rest, what are (a) the work done by the spring force and (b) the increase in thermal energy of the block-floor system? (c) What is the block's speed just as it reaches the spring?
-•56 You push a 2.0 kg block against a horizontal spring, compressing the spring by 15 cm . Then you release the block, and the
spring sends it sliding across a tabletop. It stops 75 cm from where you released it. The spring constant is \(200 \mathrm{~N} / \mathrm{m}\). What is the block - table coefficient of kinetic friction?
\(\bullet\) •57 ©o In Fig. 8-54, a block slides along a track from one level to a higher level after passing through an intermediate valley. The track is frictionless until the block reaches the higher level. There a frictional force stops the block in a distance \(d\). The block's initial speed \(v_{0}\) is \(6.0 \mathrm{~m} / \mathrm{s}\), the height difference \(h\) is 1.1 m , and \(\mu_{k}\) is 0.60 . Find \(d\).


Figure 8-54 Problem 57.
-•58 A cookie jar is moving up a \(40^{\circ}\) incline. At a point 55 cm from the bottom of the incline (measured along the incline), the jar has a speed of \(1.4 \mathrm{~m} / \mathrm{s}\). The coefficient of kinetic friction between jar and incline is 0.15 . (a) How much farther up the incline will the jar move? (b) How fast will it be going when it has slid back to the bottom of the incline? (c) Do the answers to (a) and (b) increase, decrease, or remain the same if we decrease the coefficient of kinetic friction (but do not change the given speed or location)?
\(\bullet \circ 59\) A stone with a weight of 5.29 N is launched vertically from ground level with an initial speed of \(20.0 \mathrm{~m} / \mathrm{s}\), and the air drag on it is 0.265 N throughout the flight. What are (a) the maximum height reached by the stone and (b) its speed just before it hits the ground?
-•60 A 4.0 kg bundle starts up a \(30^{\circ}\) incline with 128 J of kinetic energy. How far will it slide up the incline if the coefficient of kinetic friction between bundle and incline is 0.30 ?
-•61 When a click beetle is upside down on its back, it jumps upward by suddenly arching its back, transferring energy stored in a muscle to mechanical energy. This launching mechanism produces an audible click, giving the beetle its name. Videotape of a certain clickbeetle jump shows that a beetle of mass \(m=4.0 \times 10^{-6} \mathrm{~kg}\) moved directly upward by 0.77 mm during the launch and then to a maximum height of \(h=0.30 \mathrm{~m}\). During the launch, what are the average magnitudes of (a) the external force on the beetle's back from the floor and (b) the acceleration of the beetle in terms of \(g\) ?
-ッ०62 ©0 In Fig. 8-55, a block slides along a path that is without friction until the block reaches the section of length \(L=0.75 \mathrm{~m}\), which begins at height \(h=2.0 \mathrm{~m}\) on a ramp of angle \(\theta=30^{\circ}\). In that section, the coefficient of kinetic friction is 0.40 . The block passes through point \(A\) with a speed of \(8.0 \mathrm{~m} / \mathrm{s}\). If the block can reach point \(B\) (where the friction ends), what is its speed there, and if it cannot, what is its greatest height above \(A\) ?


Figure 8-55 Problem 62.
-••63 The cable of the 1800 kg elevator cab in Fig. 8-56 snaps when the cab is at rest at the first floor, where the cab bottom is a distance \(d=3.7 \mathrm{~m}\) above a spring of spring constant \(k=0.15 \mathrm{MN} / \mathrm{m}\). A safety device clamps the cab against guide rails so that a constant frictional force of 4.4 kN opposes the cab's motion. (a) Find the speed of the cab just before it hits the spring. (b) Find the maximum distance \(x\) that the spring is compressed (the frictional force still acts during this compression). (c) Find the distance that the cab will bounce back up the shaft. (d) Using


Figure 8-56 Problem 63. conservation of energy, find the approximate total distance that the cab will move before coming to rest. (Assume that the frictional force on the cab is negligible when the cab is stationary.)
\(\bullet\) ••64 In Fig. 8-57, a block is released from rest at height \(d=40\) cm and slides down a frictionless ramp and onto a first plateau, which has length \(d\) and where the coefficient of kinetic friction is 0.50 . If the block is still moving, it then slides down a second frictionless ramp through height \(d / 2\) and onto a lower plateau, which has length \(d / 2\) and where the coefficient of kinetic friction is again 0.50 . If the block is still moving, it then slides up a frictionless ramp until it (momentarily) stops. Where does the block stop? If its final stop is on a plateau, state which one and give the distance \(L\) from the left edge of that plateau. If the block reaches the ramp, give the height \(H\) above the lower plateau where it momentarily stops.


Figure 8-57 Problem 64.
-•65 © © A particle can slide along a track with elevated ends and a flat central part, as shown in Fig. 8-58. The flat part has length \(L=40 \mathrm{~cm}\). The curved portions of the track are frictionless, but for the flat part the


Figure 8-58 Problem 65. coefficient of kinetic friction is \(\mu_{k}=\) 0.20. The particle is released from rest at point \(A\), which is at height \(h=L / 2\). How far from the left edge of the flat part does the particle finally stop?

\section*{Additional Problems}

66 A 3.2 kg sloth hangs 3.0 m above the ground. (a) What is the gravitational potential energy of the sloth-Earth system if we take the reference point \(y=0\) to be at the ground? If the sloth drops to the ground and air drag on it is assumed to be negligible, what are the (b) kinetic energy and (c) speed of the sloth just before it reaches the ground?

67 SSM A spring \((k=200 \mathrm{~N} / \mathrm{m})\) is fixed at the top of a frictionless plane inclined at angle \(\theta=40^{\circ}\) (Fig. 8-59). A 1.0 kg block is projected up the plane, from an initial position that is distance \(d=0.60 \mathrm{~m}\) from the end of the relaxed spring, with an initial kinetic energy of 16 J . (a) What is the kinetic energy of the block at the instant it has compressed the spring 0.20 m ? (b) With what kinetic energy must the block be projected up the plane if it is to stop momentarily when it has compressed the spring by 0.40 m ?

68 From the edge of a cliff, a 0.55 kg projectile is launched with an initial kinetic energy of 1550 J . The projectile's maximum upward displacement from the launch point is +140 m . What are the (a) horizontal and (b) vertical components of its launch velocity? (c) At the instant the vertical component of its velocity is \(65 \mathrm{~m} / \mathrm{s}\), what is its vertical displacement from the launch point?
69 SSIM In Fig. 8-60, the pulley has negligible mass, and both it and the inclined plane are frictionless. Block \(A\) has a mass of 1.0 kg , block \(B\) has a mass of 2.0 kg , and angle \(\theta\) is \(30^{\circ}\). If the blocks are released from rest with the connecting cord taut, what is their total kinetic energy when block \(B\) has fallen 25 cm ?

70 ©o In Fig. 8-38, the string is \(L=120 \mathrm{~cm}\) long, has a ball attached to one end, and is fixed at its other end. A fixed peg is at point \(P\). Released from rest, the ball swings down until the string catches on the peg; then the ball swings up, around the peg. If the ball is to swing completely around the peg, what value must distance \(d\) exceed? (Hint: The ball must still be moving at the top of its swing. Do you see why?)

71 SSM In Fig. 8-51, a block is sent sliding down a frictionless ramp. Its speeds at points \(A\) and \(B\) are \(2.00 \mathrm{~m} / \mathrm{s}\) and \(2.60 \mathrm{~m} / \mathrm{s}\), respectively. Next, it is again sent sliding down the ramp, but this time its speed at point \(A\) is \(4.00 \mathrm{~m} / \mathrm{s}\). What then is its speed at point \(B\) ?
72 Two snowy peaks are at heights \(H=850 \mathrm{~m}\) and \(h=750 \mathrm{~m}\) above the valley between them. A ski run extends between the peaks, with a total length of 3.2 km and an average slope of \(\theta=30^{\circ}\) (Fig. 8-61). (a) A skier starts from rest at the top of the higher peak. At what speed will he arrive at the top of the lower peak if he coasts without using ski poles? Ignore friction. (b) Approximately what coefficient of kinetic friction


Figure 8-61 Problem 72.
between snow and skis would make him stop just at the top of the lower peak?

73 SSIM The temperature of a plastic cube is monitored while the cube is pushed 3.0 m across a floor at constant speed by a horizontal force of 15 N . The thermal energy of the cube increases by 20 J . What is the increase in the thermal energy of the floor along which the cube slides?

74 A skier weighing 600 N goes over a frictionless circular hill of radius \(R=20 \mathrm{~m}\) (Fig. 8-62). Assume that the effects of air resistance on the skier are negligible. As she comes up the hill, her speed is \(8.0 \mathrm{~m} / \mathrm{s}\) at point \(B\), at angle \(\theta=20^{\circ}\). (a) What is her speed at the hilltop (point \(A\) ) if she coasts without using her poles? (b) What minimum speed can she have at \(B\) and still coast to the hilltop? (c) Do the answers to these two questions increase, decrease, or remain the same if the skier weighs 700 N instead of 600 N ?


Figure 8-62 Problem 74.

75 SSM To form a pendulum, a 0.092 kg ball is attached to one end of a rod of length 0.62 m and negligible mass, and the other end of the rod is mounted on a pivot. The rod is rotated until it is straight up, and then it is released from rest so that it swings down around the pivot. When the ball reaches its lowest point, what are (a) its speed and (b) the tension in the rod? Next, the rod is rotated until it is horizontal, and then it is again released from rest. (c) At what angle from the vertical does the tension in the rod equal the weight of the ball? (d) If the mass of the ball is increased, does the answer to (c) increase, decrease, or remain the same?

76 We move a particle along an \(x\) axis, first outward from \(x=1.0 \mathrm{~m}\) to \(x=4.0 \mathrm{~m}\) and then back to \(x=1.0 \mathrm{~m}\), while an external force acts on it. That force is directed along the \(x\) axis, and its \(x\) component can have different values for the outward trip and for the return trip. Here are the values (in newtons) for four situations, where \(x\) is in meters:
\begin{tabular}{ll}
\hline Outward & Inward \\
\hline\((\mathrm{a})+3.0\) & -3.0 \\
(b) +5.0 & +5.0 \\
(c) \(+2.0 x\) & \(-2.0 x\) \\
(d) \(+3.0 x^{2}\) & \(+3.0 x^{2}\) \\
\hline
\end{tabular}

Find the net work done on the particle by the external force for the round trip for each of the four situations. (e) For which, if any, is the external force conservative?
77 SSM A conservative force \(F(x)\) acts on a 2.0 kg particle that moves along an \(x\) axis. The potential energy \(U(x)\) associated with \(F(x)\) is graphed in Fig. 8-63. When the particle is at \(x=2.0 \mathrm{~m}\), its
velocity is \(-1.5 \mathrm{~m} / \mathrm{s}\). What are the (a) magnitude and (b) direction of \(F(x)\) at this position? Between what positions on the (c) left and (d) right does the particle move? (e) What is the particle's speed at \(x=7.0 \mathrm{~m}\) ?


Figure 8-63 Problem 77.
78 At a certain factory, 300 kg crates are dropped vertically from a packing machine onto a conveyor belt moving at \(1.20 \mathrm{~m} / \mathrm{s}\) (Fig. 8-64). (A motor maintains the belt's constant speed.) The coefficient of kinetic friction between the belt and each crate is 0.400 . After a short


Figure 8-64 Problem 78. time, slipping between the belt and the crate ceases, and the crate then moves along with the belt. For the period of time during which the crate is being brought to rest relative to the belt, calculate, for a coordinate system at rest in the factory, (a) the kinetic energy supplied to the crate, (b) the magnitude of the kinetic frictional force acting on the crate, and (c) the energy supplied by the motor. (d) Explain why answers (a) and (c) differ.

79 SSM A 1500 kg car begins sliding down a \(5.0^{\circ}\) inclined road with a speed of \(30 \mathrm{~km} / \mathrm{h}\). The engine is turned off, and the only forces acting on the car are a net frictional force from the road and the gravitational force. After the car has traveled 50 m along the road, its speed is \(40 \mathrm{~km} / \mathrm{h}\). (a) How much is the mechanical energy of the car reduced because of the net frictional force? (b) What is the magnitude of that net frictional force?
80 ©क In Fig. 8-65, a 1400 kg block of granite is pulled up an incline at a constant speed of \(1.34 \mathrm{~m} / \mathrm{s}\) by a cable and winch. The indicated distances are \(d_{1}=40 \mathrm{~m}\) and \(d_{2}=30 \mathrm{~m}\). The coefficient of kinetic friction between the block and the incline is 0.40 . What is the power due to the force applied to the block by the cable?


Figure 8-65 Problem 80.

81 A particle can move along only an \(x\) axis, where conservative forces act on it (Fig. 8-66 and the following table). The particle is released at \(x=5.00 \mathrm{~m}\) with a kinetic energy of \(K=14.0 \mathrm{~J}\) and a potential energy of \(U=0\). If its motion is in the negative direction of the \(x\) axis, what are its (a) \(K\) and (b) \(U\) at \(x=2.00 \mathrm{~m}\) and its (c) \(K\) and (d) \(U\) at \(x=0\) ? If its motion is in the positive direction of the \(x\) axis, what are its (e) \(K\) and (f) \(U\) at \(x=11.0 \mathrm{~m}\), its (g) \(K\) and (h) \(U\) at \(x=12.0 \mathrm{~m}\), and its (i) \(K\) and (j) \(U\) at \(x=13.0 \mathrm{~m}\) ? (k) Plot \(U(x)\) versus \(x\) for the range \(x=0\) to \(x=13.0 \mathrm{~m}\).


Next, the particle is released from rest at \(x=0\). What are (l) its kinetic energy at \(x=5.0 \mathrm{~m}\) and \((\mathrm{m})\) the maximum positive position \(x_{\max }\) it reaches? (n) What does the particle do after it reaches \(x_{\max }\) ?
\begin{tabular}{lr}
\multicolumn{1}{c}{ Range } & \multicolumn{1}{c}{ Force } \\
\hline 0 to 2.00 m & \(\vec{F}_{1}=+(3.00 \mathrm{~N}) \hat{\mathrm{i}}\) \\
2.00 m to 3.00 m & \(\vec{F}_{2}=+(5.00 \mathrm{~N}) \hat{\mathrm{i}}\) \\
3.00 m to 8.00 m & \(F=0\) \\
8.00 m to 11.0 m & \(\vec{F}_{3}=-(4.00 \mathrm{~N}) \hat{\mathrm{i}}\) \\
11.0 m to 12.0 m & \(\vec{F}_{4}=-(1.00 \mathrm{~N}) \hat{\mathrm{i}}\) \\
12.0 m to 15.0 m & \(F\)
\end{tabular}

82 For the arrangement of forces in Problem 81, a 2.00 kg particle is released at \(x=5.00 \mathrm{~m}\) with an initial velocity of \(3.45 \mathrm{~m} / \mathrm{s}\) in the negative direction of the \(x\) axis. (a) If the particle can reach \(x=0 \mathrm{~m}\), what is its speed there, and if it cannot, what is its turning point? Suppose, instead, the particle is headed in the positive \(x\) direction when it is released at \(x=5.00 \mathrm{~m}\) at speed \(3.45 \mathrm{~m} / \mathrm{s}\). (b) If the particle can reach \(x=13.0 \mathrm{~m}\), what is its speed there, and if it cannot, what is its turning point?

83 SSM A 15 kg block is accelerated at \(2.0 \mathrm{~m} / \mathrm{s}^{2}\) along a horizontal frictionless surface, with the speed increasing from \(10 \mathrm{~m} / \mathrm{s}\) to \(30 \mathrm{~m} / \mathrm{s}\). What are (a) the change in the block's mechanical energy and (b) the average rate at which energy is transferred to the block? What is the instantaneous rate of that transfer when the block's speed is (c) \(10 \mathrm{~m} / \mathrm{s}\) and (d) \(30 \mathrm{~m} / \mathrm{s}\) ?
84 A certain spring is found not to conform to Hooke's law. The force (in newtons) it exerts when stretched a distance \(x\) (in meters) is found to have magnitude \(52.8 x+38.4 x^{2}\) in the direction opposing the stretch. (a) Compute the work required to stretch the spring from \(x=0.500 \mathrm{~m}\) to \(x=1.00 \mathrm{~m}\). (b) With one end of the spring fixed, a particle of mass 2.17 kg is attached to the other end of the spring when it is stretched by an amount \(x=1.00 \mathrm{~m}\). If the particle is then released from rest, what is its speed at the instant the stretch in the spring is \(x=0.500 \mathrm{~m}\) ? (c) Is the force exerted by the spring conservative or nonconservative? Explain.
85 SSIM Each second, \(1200 \mathrm{~m}^{3}\) of water passes over a waterfall 100 m high. Three-fourths of the kinetic energy gained by the water in falling is transferred to electrical energy by a hydroelectric generator. At what rate does the generator produce electrical energy? (The mass of \(1 \mathrm{~m}^{3}\) of water is 1000 kg .)

86 ©0 In Fig. 8-67, a small block is sent through point \(A\) with a speed of \(7.0 \mathrm{~m} / \mathrm{s}\). Its path is without friction until it reaches the section of length \(L=12 \mathrm{~m}\), where the coefficient of kinetic friction is 0.70 . The indicated heights are \(h_{1}=6.0 \mathrm{~m}\) and \(h_{2}=2.0 \mathrm{~m}\). What are the speeds of the block at (a) point \(B\) and (b) point \(C\) ? (c) Does the block reach point \(D\) ? If so, what is its speed there; if not, how far through the section of friction does it travel?


Figure 8-67 Problem 86.

87 SSM A massless rigid rod of length \(L\) has a ball of mass \(m\) attached to one end (Fig. 8-68). The other end is pivoted in such a way that the ball will move in a vertical circle. First, assume that there is no friction at the pivot. The system is launched downward from the horizontal position \(A\) with initial speed \(v_{0}\). The ball just barely reaches point \(D\) and then stops. (a) Derive an expression for \(v_{0}\) in terms of \(L, m\), and


Figure 8-68 Problem 87. \(g\). (b) What is the tension in the rod when the ball passes through \(B\) ? (c) A little grit is placed on the pivot to increase the friction there. Then the ball just barely reaches \(C\) when launched from \(A\) with the same speed as before. What is the decrease in the mechanical energy during this motion? (d) What is the decrease in the mechanical energy by the time the ball finally comes to rest at \(B\) after several oscillations?
88 A 1.50 kg water balloon is shot straight up with an initial speed of \(3.00 \mathrm{~m} / \mathrm{s}\). (a) What is the kinetic energy of the balloon just as it is launched? (b) How much work does the gravitational force do on the balloon during the balloon's full ascent? (c) What is the change in the gravitational potential energy of the balloon-Earth system during the full ascent? (d) If the gravitational potential energy is taken to be zero at the launch point, what is its value when the balloon reaches its maximum height? (e) If, instead, the gravitational potential energy is taken to be zero at the maximum height, what is its value at the launch point? (f) What is the maximum height?
89 A 2.50 kg beverage can is thrown directly downward from a height of 4.00 m , with an initial speed of \(3.00 \mathrm{~m} / \mathrm{s}\). The air drag on the can is negligible. What is the kinetic energy of the can (a) as it reaches the ground at the end of its fall and (b) when it is halfway to the ground? What are (c) the kinetic energy of the can and (d) the gravitational potential energy of the can-Earth system 0.200 s before the can reaches the ground? For the latter, take the reference point \(y=0\) to be at the ground.
90 A constant horizontal force moves a 50 kg trunk 6.0 m up a \(30^{\circ}\) incline at constant speed. The coefficient of kinetic friction is 0.20 . What are (a) the work done by the applied force and (b) the increase in the thermal energy of the trunk and incline?

91 © Two blocks, of masses \(M=2.0 \mathrm{~kg}\) and \(2 M\), are connected to a spring of spring constant \(k=200 \mathrm{~N} / \mathrm{m}\) that has one end fixed, as shown in Fig. 8-69. The horizontal surface and the pulley are frictionless, and the pulley has negligible mass. The blocks are released from rest with the spring relaxed. (a) What is the combined kinetic energy of the two blocks when the hanging block has fallen 0.090 m ? (b) What is the kinetic energy of the hanging block when it has


Figure 8-69 Problem 91. fallen that 0.090 m ? (c) What maximum distance does the hanging block fall before momentarily stopping?
92 A volcanic ash flow is moving across horizontal ground when it encounters a \(10^{\circ}\) upslope. The front of the flow then travels 920 m up the slope before stopping. Assume that the gases entrapped in the flow lift the flow and thus make the frictional force from the ground negligible; assume also that the mechanical energy of the front of the flow is conserved. What was the initial speed of the front of the flow?

93 A playground slide is in the form of an arc of a circle that has a radius of 12 m . The maximum height of the slide is \(h=4.0 \mathrm{~m}\), and the ground is tangent to the circle (Fig. 8-70). A 25 kg child starts from rest at the top of the slide and has a speed of \(6.2 \mathrm{~m} / \mathrm{s}\) at the bottom. (a) What is the length of the slide? (b) What average frictional force acts on the child over this distance? If, instead of the ground, a vertical line through the top of the slide is tangent to the circle, what are (c) the length of the slide and (d) the average frictional force on the child?


94 The luxury liner Queen Elizabeth 2 has a diesel-electric power plant with a maximum power of 92 MW at a cruising speed of 32.5 knots. What forward force is exerted on the ship at this speed? \((1 \mathrm{knot}=1.852 \mathrm{~km} / \mathrm{h}\). \()\)
95 A factory worker accidentally releases a 180 kg crate that was being held at rest at the top of a ramp that is 3.7 m long and inclined at \(39^{\circ}\) to the horizontal. The coefficient of kinetic friction between the crate and the ramp, and between the crate and the horizontal factory floor, is 0.28 . (a) How fast is the crate moving as it reaches the bottom of the ramp? (b) How far will it subsequently slide across the floor? (Assume that the crate's kinetic energy does not change as it moves from the ramp onto the floor.) (c) Do the answers to (a) and (b) increase, decrease, or remain the same if we halve the mass of the crate?
96 If a 70 kg baseball player steals home by sliding into the plate with an initial speed of \(10 \mathrm{~m} / \mathrm{s}\) just as he hits the ground, (a) what
is the decrease in the player's kinetic energy and (b) what is the increase in the thermal energy of his body and the ground along which he slides?
97 A 0.50 kg banana is thrown directly upward with an initial speed of \(4.00 \mathrm{~m} / \mathrm{s}\) and reaches a maximum height of 0.80 m . What change does air drag cause in the mechanical energy of the banana-Earth system during the ascent?
98 A metal tool is sharpened by being held against the rim of a wheel on a grinding machine by a force of 180 N . The frictional forces between the rim and the tool grind off small pieces of the tool. The wheel has a radius of 20.0 cm and rotates at \(2.50 \mathrm{rev} / \mathrm{s}\). The coefficient of kinetic friction between the wheel and the tool is 0.320. At what rate is energy being transferred from the motor driving the wheel to the thermal energy of the wheel and tool and to the kinetic energy of the material thrown from the tool?
99 A swimmer moves through the water at an average speed of \(0.22 \mathrm{~m} / \mathrm{s}\). The average drag force is 110 N . What average power is required of the swimmer?
100 An automobile with passengers has weight 16400 N and is moving at \(113 \mathrm{~km} / \mathrm{h}\) when the driver brakes, sliding to a stop. The frictional force on the wheels from the road has a magnitude of 8230 N. Find the stopping distance.
101 A 0.63 kg ball thrown directly upward with an initial speed of \(14 \mathrm{~m} / \mathrm{s}\) reaches a maximum height of 8.1 m . What is the change in the mechanical energy of the ball-Earth system during the ascent of the ball to that maximum height?

102 The summit of Mount Everest is 8850 m above sea level. (a) How much energy would a 90 kg climber expend against the gravitational force on him in climbing to the summit from sea level? (b) How many candy bars, at 1.25 MJ per bar, would supply an energy equivalent to this? Your answer should suggest that work done against the gravitational force is a very small part of the energy expended in climbing a mountain.
103 A sprinter who weighs 670 N runs the first 7.0 m of a race in 1.6 s , starting from rest and accelerating uniformly. What are the sprinter's (a) speed and (b) kinetic energy at the end of the 1.6 s ? (c) What average power does the sprinter generate during the 1.6 s interval?
104 A 20 kg object is acted on by a conservative force given by \(F=-3.0 x-5.0 x^{2}\), with \(F\) in newtons and \(x\) in meters. Take the potential energy associated with the force to be zero when the object is at \(x=0\). (a) What is the potential energy of the system associated with the force when the object is at \(x=2.0 \mathrm{~m}\) ? (b) If the object has a velocity of \(4.0 \mathrm{~m} / \mathrm{s}\) in the negative direction of the \(x\) axis when it is at \(x=5.0 \mathrm{~m}\), what is its speed when it passes through the origin? (c) What are the answers to (a) and (b) if the potential energy of the system is taken to be -8.0 J when the object is at \(x=0\) ?
105 A machine pulls a 40 kg trunk 2.0 m up a \(40^{\circ} \mathrm{ramp}\) at constant velocity, with the machine's force on the trunk directed parallel to the ramp. The coefficient of kinetic friction between the trunk and the ramp is 0.40 . What are (a) the work done on the trunk by the machine's force and (b) the increase in thermal energy of the trunk and the ramp?

106 The spring in the muzzle of a child's spring gun has a spring constant of \(700 \mathrm{~N} / \mathrm{m}\). To shoot a ball from the gun, first the spring is compressed and then the ball is placed on it. The gun's trigger then
releases the spring, which pushes the ball through the muzzle. The ball leaves the spring just as it leaves the outer end of the muzzle. When the gun is inclined upward by \(30^{\circ}\) to the horizontal, a 57 g ball is shot to a maximum height of 1.83 m above the gun's muzzle. Assume air drag on the ball is negligible. (a) At what speed does the spring launch the ball? (b) Assuming that friction on the ball within the gun can be neglected, find the spring's initial compression distance.
107 The only force acting on a particle is conservative force \(\vec{F}\). If the particle is at point \(A\), the potential energy of the system associated with \(\vec{F}\) and the particle is 40 J. If the particle moves from point \(A\) to point \(B\), the work done on the particle by \(\vec{F}\) is +25 J . What is the potential energy of the system with the particle at \(B\) ?
108 In 1981, Daniel Goodwin climbed 443 m up the exterior of the Sears Building in Chicago using suction cups and metal clips. (a) Approximate his mass and then compute how much energy he had to transfer from biomechanical (internal) energy to the gravitational potential energy of the Earth-Goodwin system to lift himself to that height. (b) How much energy would he have had to transfer if he had, instead, taken the stairs inside the building (to the same height)?
109 A 60.0 kg circus performer slides 4.00 m down a pole to the circus floor, starting from rest. What is the kinetic energy of the performer as she reaches the floor if the frictional force on her from the pole (a) is negligible (she will be hurt) and (b) has a magnitude of 500 N ?

110 A 5.0 kg block is projected at \(5.0 \mathrm{~m} / \mathrm{s}\) up a plane that is inclined at \(30^{\circ}\) with the horizontal. How far up along the plane does the block go (a) if the plane is frictionless and (b) if the coefficient of kinetic friction between the block and the plane is 0.40 ? (c) In the latter case, what is the increase in thermal energy of block and plane during the block's ascent? (d) If the block then slides back down against the frictional force, what is the block's speed when it reaches the original projection point?
111 A 9.40 kg projectile is fired vertically upward. Air drag decreases the mechanical energy of the projectile-Earth system by 68.0 kJ during the projectile's ascent. How much higher would the projectile have gone were air drag negligible?
112 A 70.0 kg man jumping from a window lands in an elevated fire rescue net 11.0 m below the window. He momentarily stops when he has stretched the net by 1.50 m . Assuming that mechanical energy is conserved during this process and that the net functions like an ideal spring, find the elastic potential energy of the net when it is stretched by 1.50 m .
113 A 30 g bullet moving a horizontal velocity of \(500 \mathrm{~m} / \mathrm{s}\) comes to a stop 12 cm within a solid wall. (a) What is the change in the bullet's mechanical energy? (b) What is the magnitude of the average force from the wall stopping it?
114 A 1500 kg car starts from rest on a horizontal road and gains a speed of \(72 \mathrm{~km} / \mathrm{h}\) in 30 s . (a) What is its kinetic energy at the end of the 30 s ? (b) What is the average power required of the car during the 30 s interval? (c) What is the instantaneous power at the end of the 30 s interval, assuming that the acceleration is constant?

115 A 1.50 kg snowball is shot upward at an angle of \(34.0^{\circ}\) to the horizontal with an initial speed of \(20.0 \mathrm{~m} / \mathrm{s}\). (a) What is its initial kinetic energy? (b) By how much does the gravitational potential
energy of the snowball-Earth system change as the snowball moves from the launch point to the point of maximum height? (c) What is that maximum height?
116 A 68 kg sky diver falls at a constant terminal speed of \(59 \mathrm{~m} / \mathrm{s}\). (a) At what rate is the gravitational potential energy of the Earth-sky diver system being reduced? (b) At what rate is the system's mechanical energy being reduced?
117 A 20 kg block on a horizontal surface is attached to a horizontal spring of spring constant \(k=4.0 \mathrm{kN} / \mathrm{m}\). The block is pulled to the right so that the spring is stretched 10 cm beyond its relaxed length, and the block is then released from rest. The frictional force between the sliding block and the surface has a magnitude of 80 N . (a) What is the kinetic energy of the block when it has moved 2.0 cm from its point of release? (b) What is the kinetic energy of the block when it first slides back through the point at which the spring is relaxed? (c) What is the maximum kinetic energy attained by the block as it slides from its point of release to the point at which the spring is relaxed?
118 Resistance to the motion of an automobile consists of road friction, which is almost independent of speed, and air drag, which is proportional to speed-squared. For a certain car with a weight of 12000 N , the total resistant force \(F\) is given by \(F=300+1.8 v^{2}\), with \(F\) in newtons and \(v\) in meters per second. Calculate the power (in horsepower) required to accelerate the car at \(0.92 \mathrm{~m} / \mathrm{s}^{2}\) when the speed is \(80 \mathrm{~km} / \mathrm{h}\).
119 SSM A 50 g ball is thrown from a window with an initial velocity of \(8.0 \mathrm{~m} / \mathrm{s}\) at an angle of \(30^{\circ}\) above the horizontal. Using energy methods, determine (a) the kinetic energy of the ball at the top of its flight and (b) its speed when it is 3.0 m below the window. Does the answer to (b) depend on either (c) the mass of the ball or (d) the initial angle?

120 A spring with a spring constant of \(3200 \mathrm{~N} / \mathrm{m}\) is initially stretched until the elastic potential energy of the spring is 1.44 J . ( \(U=0\) for the relaxed spring.) What is \(\Delta U\) if the initial stretch is changed to (a) a stretch of 2.0 cm , (b) a compression of 2.0 cm , and (c) a compression of 4.0 cm ?

121 A locomotive with a power capability of 1.5 MW can accelerate a train from a speed of \(10 \mathrm{~m} / \mathrm{s}\) to \(25 \mathrm{~m} / \mathrm{s}\) in 6.0 min . (a) Calculate the mass of the train. Find (b) the speed of the train and (c) the force accelerating the train as functions of time (in seconds) during the 6.0 min interval. (d) Find the distance moved by the train during the interval.
122 SSM A 0.42 kg shuffleboard disk is initially at rest when a player uses a cue to increase its speed to \(4.2 \mathrm{~m} / \mathrm{s}\) at constant acceleration. The acceleration takes place over a 2.0 m distance, at the end of which the cue loses contact with the disk. Then the disk slides an additional 12 m before stopping. Assume that the shuffleboard court is level and that the force of friction on the disk is constant. What is the increase in the thermal energy of the disk-court system (a) for that additional 12 m and (b) for the entire 14 m distance? (c) How much work is done on the disk by the cue?
123 A river descends 15 m through rapids. The speed of the water is \(3.2 \mathrm{~m} / \mathrm{s}\) upon entering the rapids and \(13 \mathrm{~m} / \mathrm{s}\) upon leaving. What percentage of the gravitational potential energy of the water-Earth system is transferred to kinetic energy during the descent? (Hint: Consider the descent of, say, 10 kg of water.)

124 The magnitude of the gravitational force between a particle of mass \(m_{1}\) and one of mass \(m_{2}\) is given by
\[
F(x)=G \frac{m_{1} m_{2}}{x^{2}}
\]
where \(G\) is a constant and \(x\) is the distance between the particles. (a) What is the corresponding potential energy function \(U(x)\) ? Assume that \(U(x) \rightarrow 0\) as \(x \rightarrow \infty\) and that \(x\) is positive. (b) How much work is required to increase the separation of the particles from \(x=x_{1}\) to \(x=x_{1}+d\) ?
125 Approximately \(5.5 \times 10^{6} \mathrm{~kg}\) of water falls 50 m over Niagara Falls each second. (a) What is the decrease in the gravitational potential energy of the water-Earth system each second? (b) If all this energy could be converted to electrical energy (it cannot be), at what rate would electrical energy be supplied? (The mass of \(1 \mathrm{~m}^{3}\) of water is 1000 kg .) (c) If the electrical energy were sold at 1 cent \(/ \mathrm{kW} \cdot \mathrm{h}\), what would be the yearly income?
126 To make a pendulum, a 300 g ball is attached to one end of a string that has a length of 1.4 m and negligible mass. (The other end of the string is fixed.) The ball is pulled to one side until the string makes an angle of \(30.0^{\circ}\) with the vertical; then (with the string taut) the ball is released from rest. Find (a) the speed of the ball when the string makes an angle of \(20.0^{\circ}\) with the vertical and (b) the maximum speed of the ball. (c) What is the angle between the string and the vertical when the speed of the ball is one-third its maximum value?
127 In a circus act, a 60 kg clown is shot from a cannon with an initial velocity of \(16 \mathrm{~m} / \mathrm{s}\) at some unknown angle above the horizontal. A short time later the clown lands in a net that is 3.9 m vertically above the clown's initial position. Disregard air drag. What is the kinetic energy of the clown as he lands in the net?
128 A 70 kg firefighter slides, from rest, 4.3 m down a vertical pole. (a) If the firefighter holds onto the pole lightly, so that the frictional force of the pole on her is negligible, what is her speed just before reaching the ground floor? (b) If the firefighter grasps the pole more firmly as she slides, so that the average frictional force of the pole on her is 500 N upward, what is her speed just before reaching the ground floor?
129 The surface of the continental United States has an area of about \(8 \times 10^{6} \mathrm{~km}^{2}\) and an average elevation of about 500 m (above sea level). The average yearly rainfall is 75 cm . The fraction of this rainwater that returns to the atmosphere by evaporation is \(\frac{2}{3}\); the rest eventually flows into the ocean. If the decrease in gravitational potential energy of the water-Earth system associated with that flow could be fully converted to electrical energy, what would be the average power? (The mass of \(1 \mathrm{~m}^{3}\) of water is 1000 kg .)
130 A spring with spring constant \(k=200 \mathrm{~N} / \mathrm{m}\) is suspended vertically with its upper end fixed to the ceiling and its lower end at position \(y=0\). A block of weight 20 N is attached to the lower end, held still for a moment, and then released. What are (a) the kinetic energy \(K\), (b) the change (from the initial value) in the gravitational potential energy \(\Delta U_{g}\), and (c) the change in the elastic potential energy \(\Delta U_{e}\) of the spring-block system when the block is at \(y=-5.0 \mathrm{~cm}\) ? What are (d) \(K\), (e) \(\Delta U_{g}\), and (f) \(\Delta U_{e}\) when \(y=-10 \mathrm{~cm}\), (g) \(K\), (h) \(\Delta U_{g}\), and (i) \(\Delta U_{e}\) when \(y=-15 \mathrm{~cm}\), and (j) \(K\), (k) \(\Delta U_{g}\), and (l) \(\Delta U_{e}\) when \(y=-20 \mathrm{~cm}\) ?

131 Fasten one end of a vertical spring to a ceiling, attach a cabbage to the other end, and then slowly lower the cabbage until the upward force on it from the spring balances the gravitational force on it. Show that the loss of gravitational potential energy of the cabbage-Earth system equals twice the gain in the spring's potential energy.
132 The maximum force you can exert on an object with one of your back teeth is about 750 N . Suppose that as you gradually bite on a clump of licorice, the licorice resists compression by one of your teeth by acting like a spring for which \(k=2.5 \times 10^{5} \mathrm{~N} / \mathrm{m}\). Find (a) the distance the licorice is compressed by your tooth and (b) the work the tooth does on the licorice during the compression.
(c) Plot the magnitude of your force versus the compression distance. (d) If there is a potential energy associated with this compression, plot it versus compression distance.

In the 1990s the pelvis of a particular Triceratops dinosaur was found to have deep bite marks. The shape of the marks suggested that they were made by a Tyrannosaurus rex dinosaur. To test the idea, researchers made a replica of a T. rex tooth from bronze and aluminum and then used a hydraulic press to gradually drive the replica into cow bone to the depth seen in the Triceratops bone. A graph of the force required versus depth of penetration is given in Fig. 8-71 for one trial; the required force increased with depth because, as the nearly conical tooth penetrated the bone, more of the tooth came in contact with the bone. (e) How much work was done by the hydraulic press-and thus presumably by the T. rex-in such a penetration? (f) Is there a potential energy associated with this penetration? (The large biting force and energy expenditure


Figure 8-71 Problem 132.
attributed to the T. rex by this research suggest that the animal was a predator and not a scavenger.)

133 Conservative force \(F(x)\) acts on a particle that moves along an \(x\) axis. Figure 8-72 shows how the potential energy \(U(x)\) associated with force \(F(x)\) varies with the position of the particle, (a) Plot \(F(x)\) for the range \(0<x<6 \mathrm{~m}\). (b) The mechanical energy \(E\) of the system is 4.0 J . Plot the kinetic energy \(K(x)\) of the particle directly on Fig. 8-72.
134 Figure 8-73a shows a molecule consisting of two atoms of masses \(m\) and \(M\) (with \(m \ll M\) ) and separation \(r\). Figure \(8-73 b\) shows the potential energy \(U(r)\) of the molecule as a function of \(r\). Describe the motion of the atoms (a) if the total mechanical energy \(E\) of the two-atom system is greater than zero (as is \(E_{1}\) ), and (b) if \(E\) is less than zero (as is \(E_{2}\) ). For \(E_{1}=1 \times 10^{-19} \mathrm{~J}\) and \(r=0.3 \mathrm{~nm}\), find (c) the potential energy of the system, (d) the total kinetic energy of the atoms, and (e) the force (magnitude and direction) acting on each atom. For what values of \(r\) is the force (f) repulsive, (g) attractive, and (h) zero?

135 Repeat Problem 83, but now with the block accelerated up a frictionless plane inclined at \(5.0^{\circ}\) to the horizontal.

136 A spring with spring constant \(k=620 \mathrm{~N} / \mathrm{m}\) is placed in a vertical orientation with its lower end supported by a horizontal surface. The upper end is depressed 25 cm , and a block with a weight of 50 N is placed (unattached) on the depressed spring. The system is then released from rest. Assume that the gravitational potential energy \(U_{g}\) of the block is zero at the release point \((y=0)\) and calculate the kinetic energy \(K\) of the block for \(y\) equal to (a) 0 , (b) 0.050 m , (c) 0.10 m , (d) 0.15 m , and (e) 0.20 m . Also, (f) how far above its point of release does the block rise?

\section*{9-1 center of mass}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
9.01 Given the positions of several particles along an axis or a plane, determine the location of their center of mass.
9.02 Locate the center of mass of an extended, symmetric object by using the symmetry.
9.03 For a two-dimensional or three-dimensional extended object with a uniform distribution of mass, determine the center of mass by (a) mentally dividing the object into simple geometric figures, each of which can be replaced by a particle at its center and (b) finding the center of mass of those particles.

\section*{Key Idea}
- The center of mass of a system of \(n\) particles is defined to be the point whose coordinates are given by
\[
\begin{aligned}
x_{\mathrm{com}}=\frac{1}{M} \sum_{i=1}^{n} m_{i} x_{i}, \quad y_{\mathrm{com}} & =\frac{1}{M} \sum_{i=1}^{n} m_{i} y_{i}, \quad z_{\mathrm{com}}=\frac{1}{M} \sum_{i=1}^{n} m_{i} z_{i}, \\
\vec{r}_{\mathrm{com}} & =\frac{1}{M} \sum_{i=1}^{n} m_{i} \vec{r}_{i},
\end{aligned}
\]
where \(M\) is the total mass of the system.

\section*{What Is Physics?}

Every mechanical engineer who is hired as a courtroom expert witness to reconstruct a traffic accident uses physics. Every dance trainer who coaches a ballerina on how to leap uses physics. Indeed, analyzing complicated motion of any sort requires simplification via an understanding of physics. In this chapter we discuss how the complicated motion of a system of objects, such as a car or a ballerina, can be simplified if we determine a special point of the system - the center of mass of that system.

Here is a quick example. If you toss a ball into the air without much spin on the ball (Fig. 9-1a), its motion is simple - it follows a parabolic path, as we discussed in Chapter 4, and the ball can be treated as a particle. If, instead, you flip a baseball bat into the air (Fig. 9-1b), its motion is more complicated. Because every part of the bat moves differently, along paths of many different shapes, you cannot represent the bat as a particle. Instead, it is a system of particles each of which follows its own path through the air. However, the bat has one special point - the center of mass - that does move in a simple parabolic path. The other parts of the bat move around the center of mass. (To locate the center of mass, balance the bat on an outstretched finger; the point is above your finger, on the bat's central axis.)

You cannot make a career of flipping baseball bats into the air, but you can make a career of advising long-jumpers or dancers on how to leap properly into the air while either moving their arms and legs or rotating their torso. Your starting point would be to determine the person's center of mass because of its simple motion.

\section*{The Center of Mass}

We define the center of mass (com) of a system of particles (such as a person) in order to predict the possible motion of the system.

The center of mass of a system of particles is the point that moves as though (1) all of the system's mass were concentrated there and (2) all external forces were applied there.

Here we discuss how to determine where the center of mass of a system of particles is located. We start with a system of only a few particles, and then we consider a system of a great many particles (a solid body, such as a baseball bat). Later in the chapter, we discuss how the center of mass of a system moves when external forces act on the system.

\section*{Systems of Particles}

Two Particles. Figure 9-2a shows two particles of masses \(m_{1}\) and \(m_{2}\) separated by distance \(d\). We have arbitrarily chosen the origin of an \(x\) axis to coincide with the particle of mass \(m_{1}\). We define the position of the center of mass (com) of this two-particle system to be
\[
\begin{equation*}
x_{\mathrm{com}}=\frac{m_{2}}{m_{1}+m_{2}} d \tag{9-1}
\end{equation*}
\]

Suppose, as an example, that \(m_{2}=0\). Then there is only one particle, of mass \(m_{1}\), and the center of mass must lie at the position of that particle;Eq. \(9-1\) dutifully reduces to \(x_{\text {com }}=0\). If \(m_{1}=0\), there is again only one particle (of mass \(m_{2}\) ), and we have, as we expect, \(x_{\text {com }}=d\). If \(m_{1}=m_{2}\), the center of mass should be halfway between the two particles; Eq. 9-1 reduces to \(x_{\text {com }}=\frac{1}{2} d\), again as we expect. Finally, Eq. \(9-1\) tells us that if neither \(m_{1}\) nor \(m_{2}\) is zero, \(x_{\text {com }}\) can have only values that lie between zero and \(d\); that is, the center of mass must lie somewhere between the two particles.

We are not required to place the origin of the coordinate system on one of the particles. Figure \(9-2 b\) shows a more generalized situation, in which the coordinate system has been shifted leftward. The position of the center of mass is now defined
as
\[
\begin{equation*}
x_{\mathrm{com}}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}} . \tag{9-2}
\end{equation*}
\]

Note that if we put \(x_{1}=0\), then \(x_{2}\) becomes \(d\) and Eq. 9-2 reduces to Eq. 9-1, as it must. Note also that in spite of the shift of the coordinate system, the center


Figure 9-1 (a) A ball tossed into the air follows a parabolic path. (b) The center of mass (black dot) of a baseball bat flipped into the air follows a parabolic path, but all other points of the bat follow more complicated curved paths.


Figure 9-2 (a) Two particles of masses \(m_{1}\) and \(m_{2}\) are separated by distance \(d\). The dot labeled com shows the position of the center of mass, calculated from Eq. 9-1. (b) The same as (a) except that the origin is located farther from the particles. The position of the center of mass is calculated from Eq. 9-2. The location of the center of mass with respect to the particles is the same in both cases.
of mass is still the same distance from each particle. The com is a property of the physical particles, not the coordinate system we happen to use.

We can rewrite Eq. \(9-2\) as
\[
\begin{equation*}
x_{\mathrm{com}}=\frac{m_{1} x_{1}+m_{2} x_{2}}{M} \tag{9-3}
\end{equation*}
\]
in which \(M\) is the total mass of the system. (Here, \(M=m_{1}+m_{2}\).)
Many Particles. We can extend this equation to a more general situation in which \(n\) particles are strung out along the \(x\) axis. Then the total mass is \(M=m_{1}+\) \(m_{2}+\cdots+m_{n}\), and the location of the center of mass is
\[
\begin{align*}
x_{\mathrm{com}} & =\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}+\cdots+m_{n} x_{n}}{M} \\
& =\frac{1}{M} \sum_{i=1}^{n} m_{i} x_{i} . \tag{9-4}
\end{align*}
\]

The subscript \(i\) is an index that takes on all integer values from 1 to \(n\).
Three Dimensions. If the particles are distributed in three dimensions, the center of mass must be identified by three coordinates. By extension of Eq. 9-4, they are
\[
\begin{equation*}
x_{\mathrm{com}}=\frac{1}{M} \sum_{i=1}^{n} m_{i} x_{i}, \quad y_{\mathrm{com}}=\frac{1}{M} \sum_{i=1}^{n} m_{i} y_{i}, \quad z_{\mathrm{com}}=\frac{1}{M} \sum_{i=1}^{n} m_{i} z_{i} \tag{9-5}
\end{equation*}
\]

We can also define the center of mass with the language of vectors. First recall that the position of a particle at coordinates \(x_{i}, y_{i}\), and \(z_{i}\) is given by a position vector (it points from the origin to the particle):
\[
\begin{equation*}
\vec{r}_{i}=x_{i} \hat{\mathrm{i}}+y_{i} \hat{\mathrm{j}}+z_{i} \hat{\mathrm{k}} \tag{9-6}
\end{equation*}
\]

Here the index identifies the particle, and \(\hat{\mathrm{i}}, \hat{\mathrm{j}}\), and \(\hat{\mathrm{k}}\) are unit vectors pointing, respectively, in the positive direction of the \(x, y\), and \(z\) axes. Similarly, the position of the center of mass of a system of particles is given by a position vector:
\[
\begin{equation*}
\vec{r}_{\mathrm{com}}=x_{\mathrm{com}} \hat{\mathrm{i}}+y_{\mathrm{com}} \hat{\mathrm{j}}+z_{\mathrm{com}} \hat{\mathrm{k}} \tag{9-7}
\end{equation*}
\]

If you are a fan of concise notation, the three scalar equations of Eq. 9-5 can now be replaced by a single vector equation,
\[
\begin{equation*}
\vec{r}_{\mathrm{com}}=\frac{1}{M} \sum_{i=1}^{n} m_{i} \vec{r}_{i}, \tag{9-8}
\end{equation*}
\]
where again \(M\) is the total mass of the system. You can check that this equation is correct by substituting Eqs. 9-6 and 9-7 into it, and then separating out the \(x\), \(y\), and \(z\) components. The scalar relations of Eq. \(9-5\) result.

\section*{Solid Bodies}

An ordinary object, such as a baseball bat, contains so many particles (atoms) that we can best treat it as a continuous distribution of matter. The "particles" then become differential mass elements \(d m\), the sums of Eq. 9-5 become integrals, and the coordinates of the center of mass are defined as
\[
\begin{equation*}
x_{\mathrm{com}}=\frac{1}{M} \int x d m, \quad y_{\mathrm{com}}=\frac{1}{M} \int y d m, \quad z_{\mathrm{com}}=\frac{1}{M} \int z d m \tag{9-9}
\end{equation*}
\]
where \(M\) is now the mass of the object. The integrals effectively allow us to use Eq. 9-5 for a huge number of particles, an effort that otherwise would take many years.

Evaluating these integrals for most common objects (such as a television set or a moose) would be difficult, so here we consider only uniform objects. Such objects have uniform density, or mass per unit volume; that is, the density \(\rho\) (Greek letter
rho) is the same for any given element of an object as for the whole object. From Eq. 1-8, we can write
\[
\begin{equation*}
\rho=\frac{d m}{d V}=\frac{M}{V} \tag{9-10}
\end{equation*}
\]
where \(d V\) is the volume occupied by a mass element \(d m\), and \(V\) is the total volume of the object. Substituting \(d m=(M / V) d V\) from Eq. 9-10 into Eq. 9-9 gives
\[
\begin{equation*}
x_{\mathrm{com}}=\frac{1}{V} \int x d V, \quad y_{\mathrm{com}}=\frac{1}{V} \int y d V, \quad z_{\mathrm{com}}=\frac{1}{V} \int z d V \tag{9-11}
\end{equation*}
\]

Symmetry as a Shortcut. You can bypass one or more of these integrals if an object has a point, a line, or a plane of symmetry. The center of mass of such an object then lies at that point, on that line, or in that plane. For example, the center of mass of a uniform sphere (which has a point of symmetry) is at the center of the sphere (which is the point of symmetry). The center of mass of a uniform cone (whose axis is a line of symmetry) lies on the axis of the cone. The center of mass of a banana (which has a plane of symmetry that splits it into two equal parts) lies somewhere in the plane of symmetry.

The center of mass of an object need not lie within the object. There is no dough at the com of a doughnut, and no iron at the com of a horseshoe.

\section*{Sample Problem 9.01 com of three particles}

Three particles of masses \(m_{1}=1.2 \mathrm{~kg}, m_{2}=2.5 \mathrm{~kg}\), and \(m_{3}=3.4 \mathrm{~kg}\) form an equilateral triangle of edge length \(a=140 \mathrm{~cm}\). Where is the center of mass of this system?

\section*{KEY IDEA}

We are dealing with particles instead of an extended solid body, so we can use Eq. \(9-5\) to locate their center of mass. The particles are in the plane of the equilateral triangle, so we need only the first two equations.

Calculations: We can simplify the calculations by choosing the \(x\) and \(y\) axes so that one of the particles is located at the origin and the \(x\) axis coincides with one of the triangle's


Figure 9-3 Three particles form an equilateral triangle of edge length \(a\). The center of mass is located by the position vector \(\vec{r}_{\text {com }}\).
sides (Fig. 9-3). The three particles then have the following coordinates:
\begin{tabular}{cccc}
\hline Particle & Mass \((\mathrm{kg})\) & \(x(\mathrm{~cm})\) & \(y(\mathrm{~cm})\) \\
\hline 1 & 1.2 & 0 & 0 \\
2 & 2.5 & 140 & 0 \\
3 & 3.4 & 70 & 120 \\
\hline
\end{tabular}

The total mass \(M\) of the system is 7.1 kg .
From Eq. 9-5, the coordinates of the center of mass are
\[
\begin{aligned}
& \begin{aligned}
& x_{\mathrm{com}}=\frac{1}{M} \sum_{i=1}^{3} m_{i} x_{i}=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}}{M} \\
&=\frac{(1.2 \mathrm{~kg})(0)+(2.5 \mathrm{~kg})(140 \mathrm{~cm})+(3.4 \mathrm{~kg})(70 \mathrm{~cm})}{7.1 \mathrm{~kg}} \\
&=83 \mathrm{~cm} \\
& \text { and } \begin{aligned}
y_{\mathrm{com}} & =\frac{1}{M} \sum_{i=1}^{3} m_{i} y_{i}=\frac{m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3}}{M} \\
& =\frac{(1.2 \mathrm{~kg})(0)+(2.5 \mathrm{~kg})(0)+(3.4 \mathrm{~kg})(120 \mathrm{~cm})}{7.1 \mathrm{~kg}} \\
& =58 \mathrm{~cm} .
\end{aligned} \quad \text { (Answer) }
\end{aligned} \quad \begin{aligned}
\text { (Answer }
\end{aligned} \\
&
\end{aligned}
\]

In Fig. 9-3, the center of mass is located by the position vector \(\vec{r}_{\text {com }}\), which has components \(x_{\text {com }}\) and \(y_{\text {com }}\). If we had chosen some other orientation of the coordinate system, these coordinates would be different but the location of the com relative to the particles would be the same.

\section*{Sample Problem 9.02 com of plate with missing piece}

This sample problem has lots of words to read, but they will allow you to calculate a com using easy algebra instead of challenging integral calculus. Figure \(9-4 a\) shows a uniform metal plate \(P\) of radius \(2 R\) from which a disk of radius \(R\) has been stamped out (removed) in an assembly line. The disk is shown in Fig. 9-4b. Using the \(x y\) coordinate system shown, locate the center of mass \(\operatorname{com}_{P}\) of the remaining plate.

\section*{KEY IDEAS}
(1) Let us roughly locate the center of plate \(P\) by using symmetry. We note that the plate is symmetric about the \(x\) axis (we get the portion below that axis by rotating the upper portion about the axis). Thus, com \(_{P}\) must be on the \(x\) axis. The plate (with the disk removed) is not symmetric about the \(y\) axis. However, because there is somewhat more mass on the right of the \(y\) axis, \(\operatorname{com}_{P}\) must be somewhat to the right of that axis. Thus, the location of \(\operatorname{com}_{P}\) should be roughly as indicated in Fig. 9-4a.
(2) Plate \(P\) is an extended solid body, so in principle we can use Eqs. 9-11 to find the actual coordinates of the center of mass of plate \(P\). Here we want the \(x y\) coordinates of the center of mass because the plate is thin and uniform. If it had any appreciable thickness, we would just say that the center of mass is midway across the thickness. Still, using Eqs. 9-11 would be challenging because we would need a function for the shape of the plate with its hole, and then we would need to integrate the function in two dimensions.
(3) Here is a much easier way: In working with centers of mass, we can assume that the mass of a uniform object (as we have here) is concentrated in a particle at the object's center of mass. Thus we can treat the object as a particle and avoid any two-dimensional integration.

Calculations: First, put the stamped-out disk (call it disk \(S\) ) back into place (Fig. 9-4c) to form the original composite plate (call it plate \(C\) ). Because of its circular symmetry, the center of mass com \(_{S}\) for disk \(S\) is at the center of \(S\), at \(x=\) \(-R\) (as shown). Similarly, the center of mass \(\operatorname{com}_{C}\) for composite plate \(C\) is at the center of \(C\), at the origin (as shown). We then have the following:
\begin{tabular}{cccc}
\hline Plate & \begin{tabular}{c} 
Center \\
of Mass
\end{tabular} & \begin{tabular}{c} 
Location \\
of com
\end{tabular} & Mass \\
\hline\(P\) & \(\operatorname{com}_{P}\) & \(x_{P}=?\) & \(m_{P}\) \\
\(S\) & \(\operatorname{com}_{S}\) & \(x_{S}=-R\) & \(m_{S}\) \\
\(C\) & \(\operatorname{com}_{C}\) & \(x_{C}=0\) & \(m_{C}=m_{S}+m_{P}\) \\
\hline
\end{tabular}

Assume that mass \(m_{S}\) of disk \(S\) is concentrated in a particle at \(x_{S}=-R\), and mass \(m_{P}\) is concentrated in a particle at \(x_{P}\) (Fig. 9-4d). Next we use Eq. 9-2 to find the center of mass \(x_{S+P}\) of the two-particle system:
\[
\begin{equation*}
x_{S+P}=\frac{m_{S} x_{S}+m_{P} x_{P}}{m_{S}+m_{P}} . \tag{9-12}
\end{equation*}
\]

Next note that the combination of disk \(S\) and plate \(P\) is composite plate \(C\). Thus, the position \(x_{S+P}\) of \(\operatorname{com}_{S+P}\) must coincide with the position \(x_{C}\) of \(\operatorname{com}_{C}\), which is at the origin; so \(x_{S+P}=x_{C}=0\). Substituting this into Eq. 9-12, we get
\[
\begin{equation*}
x_{P}=-x_{S} \frac{m_{S}}{m_{P}} \tag{9-13}
\end{equation*}
\]

We can relate these masses to the face areas of \(S\) and \(P\) by noting that
\[
\begin{aligned}
\text { mass } & =\text { density } \times \text { volume } \\
& =\text { density } \times \text { thickness } \times \text { area. }
\end{aligned}
\]

Then \(\quad \frac{m_{S}}{m_{P}}=\frac{\text { density }_{S}}{\operatorname{density}_{P}} \times \frac{\text { thickness }_{S}}{\text { thickness }_{P}} \times \frac{\operatorname{area}_{S}}{\operatorname{area}_{P}}\).
Because the plate is uniform, the densities and thicknesses are equal; we are left with
\[
\begin{aligned}
\frac{m_{S}}{m_{P}} & =\frac{\operatorname{area}_{S}}{\operatorname{area}_{P}}=\frac{\operatorname{area}_{S}}{\operatorname{area}_{C}-\operatorname{area}_{S}} \\
& =\frac{\pi R^{2}}{\pi(2 R)^{2}-\pi R^{2}}=\frac{1}{3}
\end{aligned}
\]

Substituting this and \(x_{S}=-R\) into Eq. 9-13, we have
\[
x_{P}=\frac{1}{3} R .
\]
(Answer)

\section*{Checkpoint 1}

The figure shows a uniform square plate from which four identical squares at the corners will be removed. (a) Where is the center of mass of the plate originally? Where is it after the removal of (b) square 1; (c) squares 1 and 2 ; (d) squares 1 and 3 ; (e) squares 1,2 , and 3; (f) all four squares? Answer in terms of quadrants, axes, or points (without calculation, of course).



Figure 9-4 (a) Plate \(P\) is a metal plate of radius \(2 R\), with a circular hole of radius \(R\). The center of mass of \(P\) is at point \(\operatorname{com}_{P}\). (b) Disk \(S\). (c) Disk \(S\) has been put back into place to form a composite plate \(C\). The center of mass \(\operatorname{com}_{S}\) of disk \(S\) and the center of mass \(\operatorname{com}_{C}\) of plate \(C\) are shown. ( \(d\) ) The center of mass \(\operatorname{com}_{S+P}\) of the combination of \(S\) and \(P\) coincides with com \({ }_{C}\), which is at \(x=0\).

\section*{9-2 NEWTON'S SECOND LAW FOR A SYSTEM OF PARTICLES}

\section*{Learning Objectives}

After reading this module, you should be able to ...
9.04 Apply Newton's second law to a system of particles by relating the net force (of the forces acting on the particles) to the acceleration of the system's center of mass.
9.05 Apply the constant-acceleration equations to the motion of the individual particles in a system and to the motion of the system's center of mass.
9.06 Given the mass and velocity of the particles in a system, calculate the velocity of the system's center of mass.
9.07 Given the mass and acceleration of the particles in a system, calculate the acceleration of the system's center of mass.
9.08 Given the position of a system's center of mass as a function of time, determine the velocity of the center of mass.
9.09 Given the velocity of a system's center of mass as a function of time, determine the acceleration of the center of mass.
9.10 Calculate the change in the velocity of a com by integrating the com's acceleration function with respect to time.
9.11 Calculate a com's displacement by integrating the com's velocity function with respect to time.
9.12 When the particles in a two-particle system move without the system's com moving, relate the displacements of the particles and the velocities of the particles.

\section*{Key Idea}
- The motion of the center of mass of any system of particles is governed by Newton's second law for a system of particles, which is

Here \(\vec{F}_{\text {net }}\) is the net force of all the external forces acting on the system, \(M\) is the total mass of the system, and \(\vec{a}_{\text {com }}\) is the acceleration of the system's center of mass.

\section*{Newton's Second Law for a System of Particles}

Now that we know how to locate the center of mass of a system of particles, we discuss how external forces can move a center of mass. Let us start with a simple system of two billiard balls.

If you roll a cue ball at a second billiard ball that is at rest, you expect that the two-ball system will continue to have some forward motion after impact. You would be surprised, for example, if both balls came back toward you or if both moved to the right or to the left. You already have an intuitive sense that something continues to move forward.

What continues to move forward, its steady motion completely unaffected by the collision, is the center of mass of the two-ball system. If you focus on this point - which is always halfway between these bodies because they have identical masses - you can easily convince yourself by trial at a billiard table that this is so. No matter whether the collision is glancing, head-on, or somewhere in between, the center of mass continues to move forward, as if the collision had never occurred. Let us look into this center-of-mass motion in more detail.

Motion of a System's com. To do so, we replace the pair of billiard balls with a system of \(n\) particles of (possibly) different masses. We are interested not in the individual motions of these particles but only in the motion of the center of mass of the system. Although the center of mass is just a point, it moves like a particle whose mass is equal to the total mass of the system; we can assign a position, a velocity, and an acceleration to it. We state (and shall prove next) that the vector equation that governs the motion of the center of mass of such a system of particles is
\[
\begin{equation*}
\vec{F}_{\text {net }}=M \vec{a}_{\text {com }} \quad(\text { system of particles }) . \tag{9-14}
\end{equation*}
\]

This equation is Newton's second law for the motion of the center of mass of a system of particles. Note that its form is the same as the form of the equation
\(\left(\vec{F}_{\text {net }}=m \vec{a}\right)\) for the motion of a single particle. However, the three quantities that appear in Eq. 9-14 must be evaluated with some care:
1. \(\vec{F}_{\text {net }}\) is the net force of all external forces that act on the system. Forces on one part of the system from another part of the system (internal forces) are not included in Eq. 9-14.
2. \(M\) is the total mass of the system. We assume that no mass enters or leaves the system as it moves, so that \(M\) remains constant. The system is said to be closed.
3. \(\vec{a}_{\text {com }}\) is the acceleration of the center of mass of the system. Equation \(9-14\) gives no information about the acceleration of any other point of the system.

Equation 9-14 is equivalent to three equations involving the components of \(\vec{F}_{\text {net }}\) and \(\vec{a}_{\text {com }}\) along the three coordinate axes. These equations are
\[
\begin{equation*}
F_{\mathrm{net}, x}=M a_{\mathrm{com}, x} \quad F_{\mathrm{net}, y}=M a_{\mathrm{com}, y} \quad F_{\mathrm{net}, z}=M a_{\mathrm{com}, z} . \tag{9-15}
\end{equation*}
\]

Billiard Balls. Now we can go back and examine the behavior of the billiard balls. Once the cue ball has begun to roll, no net external force acts on the (twoball) system. Thus, because \(\vec{F}_{\text {net }}=0\), Eq. \(9-14\) tells us that \(\vec{a}_{\text {com }}=0\) also. Because acceleration is the rate of change of velocity, we conclude that the velocity of the center of mass of the system of two balls does not change. When the two balls collide, the forces that come into play are internal forces, on one ball from the other. Such forces do not contribute to the net force \(\vec{F}_{\text {net }}\), which remains zero. Thus, the center of mass of the system, which was moving forward before the collision, must continue to move forward after the collision, with the same speed and in the same direction.

Solid Body. Equation 9-14 applies not only to a system of particles but also to a solid body, such as the bat of Fig. 9-1b. In that case, \(M\) in Eq. \(9-14\) is the mass of the bat and \(\vec{F}_{\text {net }}\) is the gravitational force on the bat. Equation 9-14 then tells us that \(\vec{a}_{\text {com }}=\vec{g}\). In other words, the center of mass of the bat moves as if the bat were a single particle of mass \(M\), with force \(\vec{F}_{g}\) acting on it.

Exploding Bodies. Figure 9-5 shows another interesting case. Suppose that at a fireworks display, a rocket is launched on a parabolic path. At a certain point, it explodes into fragments. If the explosion had not occurred, the rocket would have continued along the trajectory shown in the figure. The forces of the explosion are internal to the system (at first the system is just the rocket, and later it is its fragments); that is, they are forces on parts of the system from other parts. If we ignore air drag, the net external force \(\vec{F}_{\text {net }}\) acting on the system is the gravitational force on the system, regardless of whether the rocket explodes. Thus, from Eq. 9-14, the acceleration \(\vec{a}_{\text {com }}\) of the center of mass of the fragments (while they are in flight) remains equal to \(\vec{g}\). This means that the center of mass of the fragments follows the same parabolic trajectory that the rocket would have followed had it not exploded.

Ballet Leap. When a ballet dancer leaps across the stage in a grand jeté, she raises her arms and stretches her legs out horizontally as soon as her feet leave the

Figure 9-5 A fireworks rocket explodes in flight. In the absence of air drag, the center of mass of the fragments would continue to follow the original parabolic path, until fragments began to hit the ground.



Figure 9-6 A grand jeté. (Based on The Physics of Dance, by Kenneth Laws, Schirmer Books, 1984.)
stage (Fig. 9-6). These actions shift her center of mass upward through her body. Although the shifting center of mass faithfully follows a parabolic path across the stage, its movement relative to the body decreases the height that is attained by her head and torso, relative to that of a normal jump. The result is that the head and torso follow a nearly horizontal path, giving an illusion that the dancer is floating.

\section*{Proof of Equation 9-14}

Now let us prove this important equation. From Eq. 9-8 we have, for a system of \(n\) particles,
\[
\begin{equation*}
M \vec{r}_{\mathrm{com}}=m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}+m_{3} \vec{r}_{3}+\cdots+m_{n} \vec{r}_{n}, \tag{9-16}
\end{equation*}
\]
in which \(M\) is the system's total mass and \(\vec{r}_{\mathrm{com}}\) is the vector locating the position of the system's center of mass.

Differentiating Eq. 9-16 with respect to time gives
\[
\begin{equation*}
M \vec{v}_{\text {com }}=m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}+m_{3} \vec{v}_{3}+\cdots+m_{n} \vec{v}_{n} . \tag{9-17}
\end{equation*}
\]

Here \(\vec{v}_{i}\left(=d \vec{r}_{i} / d t\right)\) is the velocity of the \(i\) th particle, and \(\vec{v}_{\text {com }}\left(=d \vec{r}_{\text {com }} / d t\right)\) is the velocity of the center of mass.

Differentiating Eq. 9-17 with respect to time leads to
\[
\begin{equation*}
M \vec{a}_{\mathrm{com}}=m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}+m_{3} \vec{a}_{3}+\cdots+m_{n} \vec{a}_{n} \tag{9-18}
\end{equation*}
\]

Here \(\vec{a}_{i}\left(=d \vec{v}_{i} / d t\right)\) is the acceleration of the \(i\) th particle, and \(\vec{a}_{\mathrm{com}}\left(=d \vec{v}_{\mathrm{com}} / d t\right)\) is the acceleration of the center of mass. Although the center of mass is just a geometrical point, it has a position, a velocity, and an acceleration, as if it were a particle.

From Newton's second law, \(m_{i} \vec{a}_{i}\) is equal to the resultant force \(\vec{F}_{i}\) that acts on the \(i\) th particle. Thus, we can rewrite Eq. 9-18 as
\[
\begin{equation*}
M \vec{a}_{\mathrm{com}}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}+\cdots+\vec{F}_{n} . \tag{9-19}
\end{equation*}
\]

Among the forces that contribute to the right side of Eq. 9-19 will be forces that the particles of the system exert on each other (internal forces) and forces exerted on the particles from outside the system (external forces). By Newton's third law, the internal forces form third-law force pairs and cancel out in the sum that appears on the right side of Eq. 9-19. What remains is the vector sum of all the external forces that act on the system. Equation 9-19 then reduces to Eq. 9-14, the relation that we set out to prove.

\section*{Checkpoint 2}

> Two skaters on frictionless ice hold opposite ends of a pole of negligible mass. An axis runs along it, with the origin at the center of mass of the two-skater system. One skater, Fred, weighs twice as much as the other skater, Ethel. Where do the skaters meet if (a) Fred pulls hand over hand along the pole so as to draw himself to Ethel, (b) Ethel pulls hand over hand to draw herself to Fred, and (c) both skaters pull hand over hand?

\section*{Sample Problem 9.03 Motion of the com of three particles}

If the particles in a system all move together, the com moves with them-no trouble there. But what happens when they move in different directions with different accelerations? Here is an example.

The three particles in Fig. 9-7a are initially at rest. Each experiences an external force due to bodies outside the three-particle system. The directions are indicated, and the magnitudes are \(F_{1}=6.0 \mathrm{~N}, F_{2}=12 \mathrm{~N}\), and \(F_{3}=14 \mathrm{~N}\). What is the acceleration of the center of mass of the system, and in what direction does it move?

\section*{KEY IDEAS}

The position of the center of mass is marked by a dot in the figure. We can treat the center of mass as if it were a real particle, with a mass equal to the system's total mass \(M=16 \mathrm{~kg}\). We can also treat the three external forces as if they act at the center of mass (Fig. 9-7b).
Calculations: We can now apply Newton's second law \(\left(\vec{F}_{\text {net }}=m \vec{a}\right)\) to the center of mass, writing
\[
\begin{equation*}
\vec{F}_{\mathrm{net}}=M \vec{a}_{\mathrm{com}} \tag{9-20}
\end{equation*}
\]
or
\[
\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}=M \vec{a}_{\mathrm{com}}
\]

So
\[
\begin{equation*}
\vec{a}_{\mathrm{com}}=\frac{\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}}{M} \tag{9-21}
\end{equation*}
\]

Equation 9-20 tells us that the acceleration \(\vec{a}_{\text {com }}\) of the center of mass is in the same direction as the net external force \(\vec{F}_{\text {net }}\) on the system (Fig. 9-7b). Because the particles are initially at rest, the center of mass must also be at rest. As the center of mass then begins to accelerate, it must move off in the common direction of \(\vec{a}_{\text {com }}\) and \(\vec{F}_{\text {net }}\).

We can evaluate the right side of Eq. 9-21 directly on a vector-capable calculator, or we can rewrite Eq. 9-21 in component form, find the components of \(\vec{a}_{\text {com }}\), and then find \(\vec{a}_{\text {com }}\). Along the \(x\) axis, we have
\[
\begin{aligned}
a_{\mathrm{com}, x} & =\frac{F_{1 x}+F_{2 x}+F_{3 x}}{M} \\
& =\frac{-6.0 \mathrm{~N}+(12 \mathrm{~N}) \cos 45^{\circ}+14 \mathrm{~N}}{16 \mathrm{~kg}}=1.03 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
\]

Along the \(y\) axis, we have
\[
\begin{aligned}
a_{\text {com }, y} & =\frac{F_{1 y}+F_{2 y}+F_{3 y}}{M} \\
& =\frac{0+(12 \mathrm{~N}) \sin 45^{\circ}+0}{16 \mathrm{~kg}}=0.530 \mathrm{~m} / \mathrm{s}^{2} .
\end{aligned}
\]

From these components, we find that \(\vec{a}_{\text {com }}\) has the magnitude
\[
\begin{aligned}
a_{\mathrm{com}} & =\sqrt{\left(a_{\mathrm{com}, x}\right)^{2}+\left(a_{\mathrm{com}, y}\right)^{2}} \\
& =1.16 \mathrm{~m} / \mathrm{s}^{2} \approx 1.2 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
\]
(Answer)
and the angle (from the positive direction of the \(x\) axis)
\[
\theta=\tan ^{-1} \frac{a_{\mathrm{com}, y}}{a_{\mathrm{com}, x}}=27^{\circ}
\]
(Answer)


Figure 9-7 (a) Three particles, initially at rest in the positions shown, are acted on by the external forces shown. The center of mass (com) of the system is marked. (b) The forces are now transferred to the center of mass of the system, which behaves like a particle with a mass \(M\) equal to the total mass of the system. The net external force \(\vec{F}_{\text {net }}\) and the acceleration \(\vec{a}_{\text {com }}\) of the center of mass are shown.

\section*{9-3 linear momentum}

\section*{Learning Objectives}

After reading this module, you should be able to ...
9.13 Identify that momentum is a vector quantity and thus has both magnitude and direction and also components.
9.14 Calculate the (linear) momentum of a particle as the product of the particle's mass and velocity.
9.15 Calculate the change in momentum (magnitude and direction) when a particle changes its speed and direction of travel.
9.16 Apply the relationship between a particle's momentum and the (net) force acting on the particle.
9.17 Calculate the momentum of a system of particles as the product of the system's total mass and its center-of-mass velocity.
9.18 Apply the relationship between a system's center-ofmass momentum and the net force acting on the system.

\section*{Key Ideas}
- For a single particle, we define a quantity \(\vec{p}\) called its linear momentum as
\[
\vec{p}=m \vec{v}
\]
which is a vector quantity that has the same direction as the particle's velocity. We can write Newton's second law in
terms of this momentum:
\[
\vec{F}_{\mathrm{net}}=\frac{d \vec{p}}{d t}
\]

For a system of particles these relations become
\[
\vec{P}=M \vec{v}_{\mathrm{com}} \quad \text { and } \quad \vec{F}_{\mathrm{net}}=\frac{d \vec{P}}{d t}
\]

\section*{Linear Momentum}

Here we discuss only a single particle instead of a system of particles, in order to define two important quantities. Then we shall extend those definitions to systems of many particles.

The first definition concerns a familiar word-momentum - that has several meanings in everyday language but only a single precise meaning in physics and engineering. The linear momentum of a particle is a vector quantity \(\vec{p}\) that is defined as
\[
\begin{equation*}
\vec{p}=m \vec{v} \quad \text { (linear momentum of a particle), } \tag{9-22}
\end{equation*}
\]
in which \(m\) is the mass of the particle and \(\vec{v}\) is its velocity. (The adjective linear is often dropped, but it serves to distinguish \(\vec{p}\) from angular momentum, which is introduced in Chapter 11 and which is associated with rotation.) Since \(m\) is always a positive scalar quantity, Eq. 9-22 tells us that \(\vec{p}\) and \(\vec{v}\) have the same direction. From Eq. 9-22, the SI unit for momentum is the kilogram-meter per second ( \(\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}\) ).

Force and Momentum. Newton expressed his second law of motion in terms of momentum:

The time rate of change of the momentum of a particle is equal to the net force acting on the particle and is in the direction of that force.

In equation form this becomes
\[
\begin{equation*}
\vec{F}_{\mathrm{net}}=\frac{d \vec{p}}{d t} . \tag{9-23}
\end{equation*}
\]

In words, Eq. 9-23 says that the net external force \(\vec{F}_{\text {net }}\) on a particle changes the particle's linear momentum \(\vec{p}\). Conversely, the linear momentum can be changed only by a net external force. If there is no net external force, \(\vec{p}\) cannot change. As we shall see in Module 9-5, this last fact can be an extremely powerful tool in solving problems.

Manipulating Eq. \(9-23\) by substituting for \(\vec{p}\) from Eq. \(9-22\) gives, for constant mass \(m\),
\[
\vec{F}_{\mathrm{net}}=\frac{d \vec{p}}{d t}=\frac{d}{d t}(m \vec{v})=m \frac{d \vec{v}}{d t}=m \vec{a}
\]

Thus, the relations \(\vec{F}_{\text {net }}=d \vec{p} / d t\) and \(\vec{F}_{\text {net }}=m \vec{a}\) are equivalent expressions of Newton's second law of motion for a particle.

\section*{Checkpoint 3}

The figure gives the magnitude \(p\) of the linear momentum versus time \(t\) for a particle moving along an axis. A force directed along the axis acts on the particle. (a) Rank the four regions indicated according to the magnitude of the force, greatest first.(b) In which region is the particle slowing?


\section*{The Linear Momentum of a System of Particles}

Let's extend the definition of linear momentum to a system of particles. Consider a system of \(n\) particles, each with its own mass, velocity, and linear momentum. The particles may interact with each other, and external forces may act on them. The system as a whole has a total linear momentum \(\vec{P}\), which is defined to be the vector sum of the individual particles' linear momenta. Thus,
\[
\begin{align*}
\vec{P} & =\vec{p}_{1}+\vec{p}_{2}+\vec{p}_{3}+\cdots+\vec{p}_{n} \\
& =m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}+m_{3} \vec{v}_{3}+\cdots+m_{n} \vec{v}_{n} \tag{9-24}
\end{align*}
\]

If we compare this equation with Eq. 9-17, we see that
\[
\begin{equation*}
\vec{P}=M \vec{v}_{\mathrm{com}} \quad \text { (linear momentum, system of particles), } \tag{9-25}
\end{equation*}
\]
which is another way to define the linear momentum of a system of particles:

The linear momentum of a system of particles is equal to the product of the total mass \(M\) of the system and the velocity of the center of mass.

Force and Momentum. If we take the time derivative of Eq. 9-25 (the velocity can change but not the mass), we find
\[
\begin{equation*}
\frac{d \vec{P}}{d t}=M \frac{d \vec{v}_{\mathrm{com}}}{d t}=M \vec{a}_{\mathrm{com}} . \tag{9-26}
\end{equation*}
\]

Comparing Eqs. 9-14 and 9-26 allows us to write Newton's second law for a system of particles in the equivalent form
\[
\begin{equation*}
\vec{F}_{\mathrm{net}}=\frac{d \vec{P}}{d t} \quad \text { (system of particles), } \tag{9-27}
\end{equation*}
\]
where \(\vec{F}_{\text {net }}\) is the net external force acting on the system. This equation is the generalization of the single-particle equation \(\vec{F}_{\text {net }}=d \vec{p} / d t\) to a system of many particles. In words, the equation says that the net external force \(\vec{F}_{\text {net }}\) on a system of particles changes the linear momentum \(\vec{P}\) of the system. Conversely, the linear momentum can be changed only by a net external force. If there is no net external force, \(\vec{P}\) cannot change. Again, this fact gives us an extremely powerful tool for solving problems.

\section*{9-4 collision and Impulse}

\section*{Learning Objectives}

After reading this module, you should be able to ...
9.19 Identify that impulse is a vector quantity and thus has both magnitude and direction and also components.
9.20 Apply the relationship between impulse and momentum change.
9.21 Apply the relationship between impulse, average force, and the time interval taken by the impulse.
9.22 Apply the constant-acceleration equations to relate impulse to average force.
9.23 Given force as a function of time, calculate the impulse (and thus also the momentum change) by integrating the function.
9.24 Given a graph of force versus time, calculate the impulse (and thus also the momentum change) by graphical integration.
9.25 In a continuous series of collisions by projectiles, calculate the average force on the target by relating it to the rate at which mass collides and to the velocity change experienced by each projectile.

\section*{Key Ideas}
- Applying Newton's second law in momentum form to a particle-like body involved in a collision leads to the impulse-linear momentum theorem:
\[
\vec{p}_{f}-\vec{p}_{i}=\Delta \vec{p}=\vec{J}
\]
where \(\vec{p}_{f}-\vec{p}_{i}=\Delta \vec{p}\) is the change in the body's linear momentum, and \(\vec{J}\) is the impulse due to the force \(\vec{F}(t)\) exerted on the body by the other body in the collision:
\[
\vec{J}=\int_{t_{i}}^{t_{f}} \vec{F}(t) d t
\]
- If \(F_{\text {avg }}\) is the average magnitude of \(\vec{F}(t)\) during the collision and \(\Delta t\) is the duration of the collision, then for one-dimensional motion
\[
J=F_{\text {avg }} \Delta t .
\]

When a steady stream of bodies, each with mass \(m\) and speed \(v\), collides with a body whose position is fixed, the average force on the fixed body is
\[
F_{\mathrm{avg}}=-\frac{n}{\Delta t} \Delta p=-\frac{n}{\Delta t} m \Delta v
\]
where \(n / \Delta t\) is the rate at which the bodies collide with the fixed body, and \(\Delta v\) is the change in velocity of each colliding body. This average force can also be written as
\[
F_{\mathrm{avg}}=-\frac{\Delta m}{\Delta t} \Delta v
\]
where \(\Delta m / \Delta t\) is the rate at which mass collides with the fixed body. The change in velocity is \(\Delta v=-v\) if the bodies stop upon impact and \(\Delta v=-2 v\) if they bounce directly backward with no change in their speed.


The collision of a ball with a bat collapses part of the ball.

\section*{Collision and Impulse}

The momentum \(\vec{p}\) of any particle-like body cannot change unless a net external force changes it. For example, we could push on the body to change its momentum. More dramatically, we could arrange for the body to collide with a baseball bat. In such a collision (or crash), the external force on the body is brief, has large magnitude, and suddenly changes the body's momentum. Collisions occur commonly in our world, but before we get to them, we need to consider a simple collision in which a moving particle-like body (a projectile) collides with some other body (a target).

\section*{Single Collision}

Let the projectile be a ball and the target be a bat. The collision is brief, and the ball experiences a force that is great enough to slow, stop, or even reverse its motion. Figure 9-8 depicts the collision at one instant. The ball experiences a force \(\vec{F}(t)\) that varies during the collision and changes the linear momentum \(\vec{p}\) of the ball. That change is related to the force by Newton's second law written in the form \(\vec{F}=d \vec{p} / d t\). By rearranging this second-law expression, we see that, in time interval \(d t\), the change in the ball's momentum is
\[
\begin{equation*}
d \vec{p}=\vec{F}(t) d t \tag{9-28}
\end{equation*}
\]

We can find the net change in the ball's momentum due to the collision if we integrate both sides of Eq. 9-28 from a time \(t_{i}\) just before the collision to a time \(t_{f}\) just after the collision:
\[
\begin{equation*}
\int_{t_{i}}^{t_{f}} d \vec{p}=\int_{t_{i}}^{t_{f}} \vec{F}(t) d t \tag{9-29}
\end{equation*}
\]

The left side of this equation gives us the change in momentum: \(\vec{p}_{f}-\vec{p}_{i}=\Delta \vec{p}\). The right side, which is a measure of both the magnitude and the duration of the collision force, is called the impulse \(\vec{J}\) of the collision:
\[
\begin{equation*}
\vec{J}=\int_{t_{i}}^{t_{f}} \vec{F}(t) d t \quad \text { (impulse defined). } \tag{9-30}
\end{equation*}
\]

Thus, the change in an object's momentum is equal to the impulse on the object:
\[
\begin{equation*}
\Delta \vec{p}=\vec{J} \quad \text { (linear momentum-impulse theorem). } \tag{9-31}
\end{equation*}
\]

This expression can also be written in the vector form
\[
\begin{equation*}
\vec{p}_{f}-\vec{p}_{i}=\vec{J} \tag{9-32}
\end{equation*}
\]
and in such component forms as
and
\[
\begin{align*}
\Delta p_{x} & =J_{x}  \tag{9-33}\\
p_{f x}-p_{i x} & =\int_{t_{i}}^{t_{f}} F_{x} d t \tag{9-34}
\end{align*}
\]

Integrating the Force. If we have a function for \(\vec{F}(t)\), we can evaluate \(\vec{J}\) (and thus the change in momentum) by integrating the function. If we have a plot of \(\vec{F}\) versus time \(t\), we can evaluate \(\vec{J}\) by finding the area between the curve and the \(t\) axis, such as in Fig. 9-9a. In many situations we do not know how the force varies with time but we do know the average magnitude \(F_{\text {avg }}\) of the force and the duration \(\Delta t\left(=t_{f}-t_{i}\right)\) of the collision. Then we can write the magnitude of the impulse as
\[
\begin{equation*}
J=F_{\text {avg }} \Delta t . \tag{9-35}
\end{equation*}
\]

The average force is plotted versus time as in Fig. 9-9b. The area under that curve is equal to the area under the curve for the actual force \(F(t)\) in Fig. 9-9a because both areas are equal to impulse magnitude \(J\).

Instead of the ball, we could have focused on the bat in Fig. 9-8. At any instant, Newton's third law tells us that the force on the bat has the same magnitude but the opposite direction as the force on the ball. From Eq. 9-30, this means that the impulse on the bat has the same magnitude but the opposite direction as the impulse on the ball.

\section*{Checkpoint 4}

A paratrooper whose chute fails to open lands in snow; he is hurt slightly. Had he landed on bare ground, the stopping time would have been 10 times shorter and the collision lethal. Does the presence of the snow increase, decrease, or leave unchanged the values of (a) the paratrooper's change in momentum, (b) the impulse stopping the paratrooper, and (c) the force stopping the paratrooper?

\section*{Series of Collisions}

Now let's consider the force on a body when it undergoes a series of identical, repeated collisions. For example, as a prank, we might adjust one of those machines that fire tennis balls to fire them at a rapid rate directly at a wall. Each collision would produce a force on the wall, but that is not the force we are seeking. We


Figure 9-8 Force \(\vec{F}(t)\) acts on a ball as the ball and a bat collide.

The impulse in the collision is equal to the area under the curve.

(a)

(b)

Figure 9-9 (a) The curve shows the magnitude of the time-varying force \(F(t)\) that acts on the ball in the collision of Fig. 9-8. The area under the curve is equal to the magnitude of the impulse \(\vec{J}\) on the ball in the collision. (b) The height of the rectangle represents the average force \(F_{\text {avg }}\) acting on the ball over the time interval \(\Delta t\). The area within the rectangle is equal to the area under the curve in (a) and thus is also equal to the magnitude of the impulse \(\vec{J}\) in the collision.


Figure 9-10 A steady stream of projectiles, with identical linear momenta, collides with a target, which is fixed in place. The average force \(F_{\text {avg }}\) on the target is to the right and has a magnitude that depends on the rate at which the projectiles collide with the target or, equivalently, the rate at which mass collides with the target.
want the average force \(F_{\text {avg }}\) on the wall during the bombardment - that is, the average force during a large number of collisions.

In Fig. 9-10, a steady stream of projectile bodies, with identical mass \(m\) and linear momenta \(m \vec{v}\), moves along an \(x\) axis and collides with a target body that is fixed in place. Let \(n\) be the number of projectiles that collide in a time interval \(\Delta t\). Because the motion is along only the \(x\) axis, we can use the components of the momenta along that axis. Thus, each projectile has initial momentum \(m v\) and undergoes a change \(\Delta p\) in linear momentum because of the collision. The total change in linear momentum for \(n\) projectiles during interval \(\Delta t\) is \(n \Delta p\). The resulting impulse \(\vec{J}\) on the target during \(\Delta t\) is along the \(x\) axis and has the same magnitude of \(n \Delta p\) but is in the opposite direction. We can write this relation in component form as
\[
\begin{equation*}
J=-n \Delta p \tag{9-36}
\end{equation*}
\]
where the minus sign indicates that \(J\) and \(\Delta p\) have opposite directions.
Average Force. By rearranging Eq. 9-35 and substituting Eq. 9-36, we find the average force \(F_{\text {avg }}\) acting on the target during the collisions:
\[
\begin{equation*}
F_{\mathrm{avg}}=\frac{J}{\Delta t}=-\frac{n}{\Delta t} \Delta p=-\frac{n}{\Delta t} m \Delta v . \tag{9-37}
\end{equation*}
\]

This equation gives us \(F_{\text {avg }}\) in terms of \(n / \Delta t\), the rate at which the projectiles collide with the target, and \(\Delta v\), the change in the velocity of those projectiles.

Velocity Change. If the projectiles stop upon impact, then in Eq. 9-37 we can substitute, for \(\Delta v\),
\[
\begin{equation*}
\Delta v=v_{f}-v_{i}=0-v=-v \tag{9-38}
\end{equation*}
\]
where \(v_{i}(=v)\) and \(v_{f}(=0)\) are the velocities before and after the collision, respectively. If, instead, the projectiles bounce (rebound) directly backward from the target with no change in speed, then \(v_{f}=-v\) and we can substitute
\[
\begin{equation*}
\Delta v=v_{f}-v_{i}=-v-v=-2 v \tag{9-39}
\end{equation*}
\]

In time interval \(\Delta t\), an amount of mass \(\Delta m=n m\) collides with the target. With this result, we can rewrite Eq. 9-37 as
\[
\begin{equation*}
F_{\mathrm{avg}}=-\frac{\Delta m}{\Delta t} \Delta v \tag{9-40}
\end{equation*}
\]

This equation gives the average force \(F_{\text {avg }}\) in terms of \(\Delta m / \Delta t\), the rate at which mass collides with the target. Here again we can substitute for \(\Delta v\) from Eq. 9-38 or 9-39 depending on what the projectiles do.

\section*{Checkpoint 5}

The figure shows an overhead view of a ball bouncing from a vertical wall without any change in its speed. Consider the change \(\Delta \vec{p}\) in the ball's linear momentum. (a) Is \(\Delta p_{x}\) positive, negative, or zero? (b) Is \(\Delta p_{y}\) positive, negative, or zero? (c) What is the direction of \(\Delta \vec{p}\) ?


\section*{Sample Problem 9.04 Two-dimensional impulse, race car-wall collision}

Race car-wall collision. Figure 9-11a is an overhead view of the path taken by a race car driver as his car collides with the racetrack wall. Just before the collision, he is traveling at speed \(v_{i}=70 \mathrm{~m} / \mathrm{s}\) along a straight line at \(30^{\circ}\) from the wall. Just after the collision, he is traveling at speed \(v_{f}=50 \mathrm{~m} / \mathrm{s}\) along a straight line at \(10^{\circ}\) from the wall. His mass \(m\) is 80 kg .
(a) What is the impulse \(\vec{J}\) on the driver due to the collision?

\section*{KEY IDEAS}

We can treat the driver as a particle-like body and thus apply the physics of this module. However, we cannot calculate \(\vec{J}\) directly from Eq. 9-30 because we do not know anything about the force \(\vec{F}(t)\) on the driver during the collision. That is, we do not have a function of \(\vec{F}(t)\) or a plot for it and thus cannot integrate to find \(\vec{J}\). However, we can find \(\vec{J}\) from the change in the driver's linear momentum \(\vec{p}\) via Eq. 9-32 \(\left(\vec{J}=\vec{p}_{f}-\vec{p}_{i}\right)\).

Calculations: Figure \(9-11 b\) shows the driver's momentum \(\vec{p}_{i}\) before the collision (at angle \(30^{\circ}\) from the positive \(x\) direction) and his momentum \(\vec{p}_{f}\) after the collision (at angle \(-10^{\circ}\) ). From Eqs. 9-32 and 9-22 \((\vec{p}=m \vec{v})\), we can write
\[
\begin{equation*}
\vec{J}=\vec{p}_{f}-\vec{p}_{i}=m \vec{v}_{f}-m \vec{v}_{i}=m\left(\vec{v}_{f}-\vec{v}_{i}\right) . \tag{9-41}
\end{equation*}
\]

We could evaluate the right side of this equation directly on a vector-capable calculator because we know \(m\) is \(80 \mathrm{~kg}, \vec{v}_{f}\) is \(50 \mathrm{~m} / \mathrm{s}\) at \(-10^{\circ}\), and \(\vec{v}_{i}\) is \(70 \mathrm{~m} / \mathrm{s}\) at \(30^{\circ}\). Instead, here we evaluate Eq. \(9-41\) in component form.
\(x\) component: Along the \(x\) axis we have
\[
\begin{aligned}
J_{x} & =m\left(v_{f x}-v_{i x}\right) \\
& =(80 \mathrm{~kg})\left[(50 \mathrm{~m} / \mathrm{s}) \cos \left(-10^{\circ}\right)-(70 \mathrm{~m} / \mathrm{s}) \cos 30^{\circ}\right] \\
& =-910 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} .
\end{aligned}
\]
\(y\) component: Along the \(y\) axis,
\[
\begin{aligned}
J_{y} & =m\left(v_{f y}-v_{i y}\right) \\
& =(80 \mathrm{~kg})\left[(50 \mathrm{~m} / \mathrm{s}) \sin \left(-10^{\circ}\right)-(70 \mathrm{~m} / \mathrm{s}) \sin 30^{\circ}\right] \\
& =-3495 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \approx-3500 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} .
\end{aligned}
\]

Impulse: The impulse is then
\[
\vec{J}=(-910 \hat{\mathrm{i}}-3500 \hat{\mathrm{j}}) \mathrm{kg} \cdot \mathrm{~m} / \mathrm{s},
\]
(Answer)
which means the impulse magnitude is
\[
J=\sqrt{J_{x}^{2}+J_{y}^{2}}=3616 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \approx 3600 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
\]

The angle of \(\vec{J}\) is given by
\[
\theta=\tan ^{-1} \frac{J_{y}}{J_{x}},
\]
(Answer)
which a calculator evaluates as \(75.4^{\circ}\). Recall that the physically correct result of an inverse tangent might be the displayed answer plus \(180^{\circ}\). We can tell which is correct here by drawing the components of \(\vec{J}\) (Fig. 9-11c). We find that \(\theta\) is actually \(75.4^{\circ}+180^{\circ}=255.4^{\circ}\), which we can write as
\[
\theta=-105^{\circ} .
\]
(Answer)
(b) The collision lasts for 14 ms . What is the magnitude of the average force on the driver during the collision?

\section*{KEY IDEA}

From Eq. 9-35 \(\left(J=F_{\text {avg }} \Delta t\right)\), the magnitude \(F_{\text {avg }}\) of the average force is the ratio of the impulse magnitude \(J\) to the duration \(\Delta t\) of the collision.

Calculations: We have
\[
\begin{aligned}
F_{\mathrm{avg}} & =\frac{J}{\Delta t}=\frac{3616 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}}{0.014 \mathrm{~s}} \\
& =2.583 \times 10^{5} \mathrm{~N} \approx 2.6 \times 10^{5} \mathrm{~N}
\end{aligned}
\]
(Answer)
Using \(F=m a\) with \(m=80 \mathrm{~kg}\), you can show that the magnitude of the driver's average acceleration during the collision is about \(3.22 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}=329 \mathrm{~g}\), which is fatal.

Surviving: Mechanical engineers attempt to reduce the chances of a fatality by designing and building racetrack walls with more "give," so that a collision lasts longer. For example, if the collision here lasted 10 times longer and the other data remained the same, the magnitudes of the average force and average acceleration would be 10 times less and probably survivable.

Figure 9-11 (a) Overhead view of the path taken by a race car and its driver as the car slams into the racetrack wall. (b) The initial momentum \(\vec{p}_{i}\) and final momentum \(\vec{p}_{f}\) of the driver. (c) The impulse \(\vec{J}\) on the driver during the collision.

(a)

(b)

The impulse on the car

(c)

\section*{9-5 conservation of linear momentum}

\section*{Learning Objectives}

After reading this module, you should be able to ...
9.26 For an isolated system of particles, apply the conservation of linear momenta to relate the initial momenta of the particles to their momenta at a later instant.
9.27 Identify that the conservation of linear momentum can be done along an individual axis by using components along that axis, provided that there is no net external force component along that axis.

\section*{Key Ideas}
- If a system is closed and isolated so that no net external force acts on it, then the linear momentum \(\vec{P}\) must be constant even if there are internal changes:
\[
\vec{P}=\text { constant } \quad \text { (closed, isolated system). }
\]

This conservation of linear momentum can also be written in terms of the system's initial momentum and its momentum at some later instant:
\[
\vec{P}_{i}=\vec{P}_{f} \quad(\text { closed }, \text { isolated system })
\]

\section*{Conservation of Linear Momentum}

Suppose that the net external force \(\vec{F}_{\text {net }}\) (and thus the net impulse \(\vec{J}\) ) acting on a system of particles is zero (the system is isolated) and that no particles leave or enter the system (the system is closed). Putting \(\vec{F}_{\text {net }}=0\) in Eq. 9-27 then yields \(d \vec{P} / d t=0\), which means that
\[
\begin{equation*}
\vec{P}=\text { constant } \quad \text { (closed, isolated system). } \tag{9-42}
\end{equation*}
\]

In words,

If no net external force acts on a system of particles, the total linear momentum \(\vec{P}\) of the system cannot change.

This result is called the law of conservation of linear momentum and is an extremely powerful tool in solving problems. In the homework we usually write the law as
\[
\begin{equation*}
\vec{P}_{i}=\vec{P}_{f} \quad \text { (closed, isolated system) } \tag{9-43}
\end{equation*}
\]

In words, this equation says that, for a closed, isolated system,
\[
\binom{\text { total linear momentum }}{\text { at some initial time } t_{i}}=\binom{\text { total linear momentum }}{\text { at some later time } t_{f}} .
\]

Caution: Momentum should not be confused with energy. In the sample problems of this module, momentum is conserved but energy is definitely not.

Equations 9-42 and 9-43 are vector equations and, as such, each is equivalent to three equations corresponding to the conservation of linear momentum in three mutually perpendicular directions as in, say, an \(x y z\) coordinate system. Depending on the forces acting on a system, linear momentum might be conserved in one or two directions but not in all directions. However,

If the component of the net external force on a closed system is zero along an axis, then the component of the linear momentum of the system along that axis cannot change.

In a homework problem, how can you know if linear momentum can be conserved along, say, an \(x\) axis? Check the force components along that axis. If the net of any such components is zero, then the conservation applies. As an example, suppose that you toss a grapefruit across a room. During its flight, the only external force acting on the grapefruit (which we take as the system) is the gravitational force \(\vec{F}_{g}\), which is directed vertically downward. Thus, the vertical component of the linear
momentum of the grapefruit changes, but since no horizontal external force acts on the grapefruit, the horizontal component of the linear momentum cannot change.

Note that we focus on the external forces acting on a closed system. Although internal forces can change the linear momentum of portions of the system, they cannot change the total linear momentum of the entire system. For example, there are plenty of forces acting between the organs of your body, but they do not propel you across the room (thankfully).

The sample problems in this module involve explosions that are either onedimensional (meaning that the motions before and after the explosion are along a single axis) or two-dimensional (meaning that they are in a plane containing two axes). In the following modules we consider collisions.

\section*{Checkpoint 6}

An initially stationary device lying on a frictionless floor explodes into two pieces, which then slide across the floor, one of them in the positive \(x\) direction. (a) What is the sum of the momenta of the two pieces after the explosion? (b) Can the second piece move at an angle to the \(x\) axis? (c) What is the direction of the momentum of the second piece?

\section*{Sample Problem 9.05 One-dimensional explosion, relative velocity, space hauler}

One-dimensional explosion: Figure 9-12a shows a space hauler and cargo module, of total mass \(M\), traveling along an \(x\) axis in deep space. They have an initial velocity \(\vec{v}_{i}\) of magnitude 2100 \(\mathrm{km} / \mathrm{h}\) relative to the Sun. With a small explosion, the hauler ejects the cargo module, of mass \(0.20 M\) (Fig. 9-12b). The hauler then travels \(500 \mathrm{~km} / \mathrm{h}\) faster than the module along the \(x\) axis; that is, the relative speed \(v_{\text {rel }}\) between the hauler and the module is \(500 \mathrm{~km} / \mathrm{h}\). What then is the velocity \(\vec{v}_{H S}\) of the hauler relative to the Sun?

\section*{KEY IDEA}

Because the hauler-module system is closed and isolated, its total linear momentum is conserved; that is,
\[
\begin{equation*}
\vec{P}_{i}=\vec{P}_{f} \tag{9-44}
\end{equation*}
\]
where the subscripts \(i\) and \(f\) refer to values before and after the ejection, respectively. (We need to be careful here: Although the momentum of the system does not change, the momenta of the hauler and module certainly do.)
Calculations: Because the motion is along a single axis, we can write momenta and velocities in terms of their \(x\) components, using a sign to indicate direction. Before the ejection, we have
\[
\begin{equation*}
P_{i}=M v_{i} \tag{9-45}
\end{equation*}
\]

Let \(v_{M S}\) be the velocity of the ejected module relative to the Sun. The total linear momentum of the system after the ejection is then
\[
\begin{equation*}
P_{f}=(0.20 M) v_{M S}+(0.80 M) v_{H S} \tag{9-46}
\end{equation*}
\]
where the first term on the right is the linear momentum of the module and the second term is that of the hauler.


Figure 9-12 (a) A space hauler, with a cargo module, moving at initial velocity \(\vec{v}_{i}\). (b) The hauler has ejected the cargo module. Now the velocities relative to the Sun are \(\vec{v}_{M S}\) for the module and \(\vec{v}_{H S}\) for the hauler.
\[
\text { We can relate the } v_{M S} \text { to the known velocities with }
\]
\[
\left(\begin{array}{c}
\text { velocity of } \\
\text { hauler relative } \\
\text { to Sun }
\end{array}\right)=\left(\begin{array}{c}
\text { velocity of } \\
\text { hauler relative } \\
\text { to module }
\end{array}\right)+\left(\begin{array}{c}
\text { velocity of } \\
\text { module relative } \\
\text { to Sun }
\end{array}\right) .
\]

In symbols, this gives us
or
\[
\begin{align*}
v_{H S} & =v_{\mathrm{rel}}+v_{M S}  \tag{9-47}\\
v_{M S} & =v_{H S}-v_{\mathrm{rel}} .
\end{align*}
\]

Substituting this expression for \(v_{M S}\) into Eq. 9-46, and then substituting Eqs. 9-45 and 9-46 into Eq. 9-44, we find
\[
M v_{i}=0.20 M\left(v_{H S}-v_{\mathrm{rel}}\right)+0.80 M v_{H S}
\]
which gives us
\[
\text { or } \quad \begin{aligned}
v_{H S} & =v_{i}+0.20 v_{\mathrm{rel}}, \\
v_{H S} & =2100 \mathrm{~km} / \mathrm{h}+(0.20)(500 \mathrm{~km} / \mathrm{h}) \\
& =2200 \mathrm{~km} / \mathrm{h}
\end{aligned}
\]
(Answer)

\section*{Sample Problem 9.06 Two-dimensional explosion, momentum, coconut}

Two-dimensional explosion: A firecracker placed inside a coconut of mass \(M\), initially at rest on a frictionless floor, blows the coconut into three pieces that slide across the floor. An overhead view is shown in Fig. 9-13a. Piece \(C\), with mass 0.30 M , has final speed \(v_{f C}=5.0 \mathrm{~m} / \mathrm{s}\).
(a) What is the speed of piece \(B\), with mass \(0.20 M\) ?

\section*{KEY IDEA}

First we need to see whether linear momentum is conserved. We note that (1) the coconut and its pieces form a closed system, (2) the explosion forces are internal to that system, and (3) no net external force acts on the system. Therefore, the linear momentum of the system is conserved. (We need to be careful here: Although the momentum of the system does not change, the momenta of the pieces certainly do.)

Calculations: To get started, we superimpose an \(x y\) coordinate system as shown in Fig. 9-13b, with the negative direction of the \(x\) axis coinciding with the direction of \(\vec{v}_{f A}\). The \(x\) axis is at \(80^{\circ}\) with the direction of \(\vec{v}_{f C}\) and \(50^{\circ}\) with the direction of \(\vec{v}_{f B}\).

Linear momentum is conserved separately along each axis. Let's use the \(y\) axis and write
\[
\begin{equation*}
P_{i y}=P_{f y} \tag{9-48}
\end{equation*}
\]
where subscript \(i\) refers to the initial value (before the explosion), and subscript \(y\) refers to the \(y\) component of \(\vec{P}_{i}\) or \(\vec{P}_{f}\).

The component \(P_{i y}\) of the initial linear momentum is zero, because the coconut is initially at rest. To get an expression for \(P_{f y}\), we find the \(y\) component of the final linear momentum of each piece, using the \(y\)-component version of Eq. 9-22 \(\left(p_{y}=m v_{y}\right)\) :
\[
\begin{aligned}
p_{f A, y} & =0, \\
p_{f B, y} & =-0.20 M v_{f B, y}=-0.20 M v_{f B} \sin 50^{\circ}, \\
p_{f C, y} & =0.30 M v_{f C, y}=0.30 M v_{f C} \sin 80^{\circ} .
\end{aligned}
\]
(Note that \(p_{f A, y}=0\) because of our nice choice of axes.) Equation 9-48 can now be written as
\[
P_{i y}=P_{f y}=p_{f A, y}+p_{f B, y}+p_{f C, y} .
\]

Then, with \(v_{f C}=5.0 \mathrm{~m} / \mathrm{s}\), we have
\[
0=0-0.20 M v_{f B} \sin 50^{\circ}+(0.30 M)(5.0 \mathrm{~m} / \mathrm{s}) \sin 80^{\circ},
\]
from which we find
\[
v_{f B}=9.64 \mathrm{~m} / \mathrm{s} \approx 9.6 \mathrm{~m} / \mathrm{s} .
\]
(Answer)
(b) What is the speed of piece \(A\) ?

Calculations: Linear momentum is also conserved along the \(x\) axis because there is no net external force acting on the coconut and pieces along that axis. Thus we have
\[
\begin{equation*}
P_{i x}=P_{f x}, \tag{9-49}
\end{equation*}
\]
where \(P_{i x}=0\) because the coconut is initially at rest. To get \(P_{f x}\), we find the \(x\) components of the final momenta, using the fact that piece \(A\) must have a mass of \(0.50 M\) ( \(=M-0.20 M-0.30 M\) ):
\[
\begin{aligned}
p_{f A, x} & =-0.50 M v_{f A}, \\
p_{f B, x} & =0.20 M v_{f B, x}=0.20 M v_{f B} \cos 50^{\circ}, \\
p_{f C, x} & =0.30 M v_{f C, x}=0.30 M v_{f C} \cos 80^{\circ} .
\end{aligned}
\]

Equation 9-49 for the conservation of momentum along the \(x\) axis can now be written as
\[
P_{i x}=P_{f x}=p_{f A, x}+p_{f B, x}+p_{f C, x} .
\]

Then, with \(v_{f C}=5.0 \mathrm{~m} / \mathrm{s}\) and \(v_{f B}=9.64 \mathrm{~m} / \mathrm{s}\), we have
\(0=-0.50 M v_{f A}+0.20 M(9.64 \mathrm{~m} / \mathrm{s}) \cos 50^{\circ}\)
\[
+0.30 M(5.0 \mathrm{~m} / \mathrm{s}) \cos 80^{\circ}
\]
from which we find
\[
v_{f A}=3.0 \mathrm{~m} / \mathrm{s} .
\]
(Answer)

The explosive separation can change the momentum of the parts but not the momentum of the system.

Figure 9-13 Three pieces of an exploded coconut move off in three directions along a frictionless floor. (a) An overhead view of the event. (b) The same with a two-dimensional axis system imposed.

(a)

(b)

PLU'S

\section*{9-6 momentum and kinetic energy in collisions}

\section*{Learning Objectives}

After reading this module, you should be able to ...
9.28 Distinguish between elastic collisions, inelastic collisions, and completely inelastic collisions.
9.29 Identify a one-dimensional collision as one where the objects move along a single axis, both before and after the collision.
9.30 Apply the conservation of momentum for an isolated one-dimensional collision to relate the initial momenta of the objects to their momenta after the collision.
9.31 Identify that in an isolated system, the momentum and velocity of the center of mass are not changed even if the objects collide.

\section*{Key Ideas}
- In an inelastic collision of two bodies, the kinetic energy of the two-body system is not conserved. If the system is closed and isolated, the total linear momentum of the system must be conserved, which we can write in vector form as
\[
\vec{p}_{1 i}+\vec{p}_{2 i}=\vec{p}_{1 f}+\vec{p}_{2 f}
\]
where subscripts \(i\) and \(f\) refer to values just before and just after the collision, respectively.
- If the motion of the bodies is along a single axis, the collision is one-dimensional and we can write the equation in terms of
velocity components along that axis:
\[
m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f} .
\]

\footnotetext{
- If the bodies stick together, the collision is a completely inelastic collision and the bodies have the same final velocity \(V\) (because they are stuck together).
- The center of mass of a closed, isolated system of two colliding bodies is not affected by a collision. In particular, the velocity \(\vec{v}_{\text {com }}\) of the center of mass cannot be changed by the collision.
}

\section*{Momentum and Kinetic Energy in Collisions}

In Module 9-4, we considered the collision of two particle-like bodies but focused on only one of the bodies at a time. For the next several modules we switch our focus to the system itself, with the assumption that the system is closed and isolated. In Module 9-5, we discussed a rule about such a system: The total linear momentum \(\vec{P}\) of the system cannot change because there is no net external force to change it. This is a very powerful rule because it can allow us to determine the results of a collision without knowing the details of the collision (such as how much damage is done).

We shall also be interested in the total kinetic energy of a system of two colliding bodies. If that total happens to be unchanged by the collision, then the kinetic energy of the system is conserved (it is the same before and after the collision). Such a collision is called an elastic collision. In everyday collisions of common bodies, such as two cars or a ball and a bat, some energy is always transferred from kinetic energy to other forms of energy, such as thermal energy or energy of sound. Thus, the kinetic energy of the system is not conserved. Such a collision is called an inelastic collision.

However, in some situations, we can approximate a collision of common bodies as elastic. Suppose that you drop a Superball onto a hard floor. If the collision between the ball and floor (or Earth) were elastic, the ball would lose no kinetic energy because of the collision and would rebound to its original height. However, the actual rebound height is somewhat short, showing that at least some kinetic energy is lost in the collision and thus that the collision is somewhat inelastic. Still, we might choose to neglect that small loss of kinetic energy to approximate the collision as elastic.

The inelastic collision of two bodies always involves a loss in the kinetic energy of the system. The greatest loss occurs if the bodies stick together, in which case the collision is called a completely inelastic collision. The collision of a baseball and a bat is inelastic. However, the collision of a wet putty ball and a bat is completely inelastic because the putty sticks to the bat.

Here is the generic setup for an inelastic collision.


Figure 9-14 Bodies 1 and 2 move along an \(x\) axis, before and after they have an inelastic collision.

\section*{Inelastic Collisions in One Dimension}

\section*{One-Dimensional Inelastic Collision}

Figure 9-14 shows two bodies just before and just after they have a onedimensional collision. The velocities before the collision (subscript \(i\) ) and after the collision (subscript \(f\) ) are indicated. The two bodies form our system, which is closed and isolated. We can write the law of conservation of linear momentum for this two-body system as
\[
\binom{\text { total momentum } \vec{P}_{i}}{\text { before the collision }}=\binom{\text { total momentum } \vec{P}_{f}}{\text { after the collision }},
\]
which we can symbolize as
\[
\begin{equation*}
\vec{p}_{1 i}+\vec{p}_{2 i}=\vec{p}_{1 f}+\vec{p}_{2 f} \quad \text { (conservation of linear momentum) } \tag{9-50}
\end{equation*}
\]

Because the motion is one-dimensional, we can drop the overhead arrows for vectors and use only components along the axis, indicating direction with a sign. Thus, from \(p=m v\), we can rewrite Eq. \(9-50\) as
\[
\begin{equation*}
m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f} \tag{9-51}
\end{equation*}
\]

If we know values for, say, the masses, the initial velocities, and one of the final velocities, we can find the other final velocity with Eq. 9-51.

\section*{One-Dimensional Completely Inelastic Collision}

Figure 9-15 shows two bodies before and after they have a completely inelastic collision (meaning they stick together). The body with mass \(m_{2}\) happens to be initially at rest \(\left(v_{2 i}=0\right)\). We can refer to that body as the target and to the incoming body as the projectile. After the collision, the stuck-together bodies move with velocity \(V\). For this situation, we can rewrite Eq. 9-51 as
or
\[
\begin{gather*}
m_{1} v_{1 i}=\left(m_{1}+m_{2}\right) V  \tag{9-52}\\
V=\frac{m_{1}}{m_{1}+m_{2}} v_{1 i} \tag{9-53}
\end{gather*}
\]

If we know values for, say, the masses and the initial velocity \(v_{1 i}\) of the projectile, we can find the final velocity \(V\) with Eq. \(9-53\). Note that \(V\) must be less than \(v_{1 i}\) because the mass ratio \(m_{1} /\left(m_{1}+m_{2}\right)\) must be less than unity.

\section*{Velocity of the Center of Mass}

In a closed, isolated system, the velocity \(\vec{v}_{\text {com }}\) of the center of mass of the system cannot be changed by a collision because, with the system isolated, there is no net external force to change it. To get an expression for \(\vec{v}_{\text {com }}\), let us return to the

Figure 9-15 A completely inelastic collision between two bodies. Before the collision, the body with mass \(m_{2}\) is at rest and the body with mass \(m_{1}\) moves directly toward it. After the collision, the stucktogether bodies move with the same velocity \(\vec{V}\).

In a completely inelastic collision, the bodies stick together.


Figure 9-16 Some freeze-frames of the two-body system in Fig. 9-15, which undergoes a completely inelastic collision. The system's center of mass is shown in each freeze-frame. The velocity \(\vec{v}_{\text {com }}\) of the center of mass is unaffected by the collision. Because the bodies stick together after the collision, their common velocity \(\vec{V}\) must be equal to \(\vec{v}_{\text {com }}\).

two-body system and one-dimensional collision of Fig. 9-14. From Eq. 9-25 \(\left(\vec{P}=M \vec{v}_{\text {com }}\right)\), we can relate \(\vec{v}_{\text {com }}\) to the total linear momentum \(\vec{P}\) of that two-body system by writing
\[
\begin{equation*}
\vec{P}=M \vec{v}_{\mathrm{com}}=\left(m_{1}+m_{2}\right) \vec{v}_{\mathrm{com}} \tag{9-54}
\end{equation*}
\]

The total linear momentum \(\vec{P}\) is conserved during the collision; so it is given by either side of Eq. 9-50. Let us use the left side to write
\[
\begin{equation*}
\vec{P}=\vec{p}_{1 i}+\vec{p}_{2 i} \tag{9-55}
\end{equation*}
\]

Substituting this expression for \(\vec{P}\) in Eq. \(9-54\) and solving for \(\vec{v}_{\text {com }}\) give us
\[
\begin{equation*}
\vec{v}_{\mathrm{com}}=\frac{\vec{P}}{m_{1}+m_{2}}=\frac{\vec{p}_{1 i}+\vec{p}_{2 i}}{m_{1}+m_{2}} \tag{9-56}
\end{equation*}
\]

The right side of this equation is a constant, and \(\vec{v}_{\text {com }}\) has that same constant value before and after the collision.

For example, Fig. 9-16 shows, in a series of freeze-frames, the motion of the center of mass for the completely inelastic collision of Fig. 9-15. Body 2 is the target, and its initial linear momentum in Eq. \(9-56\) is \(\vec{p}_{2 i}=m_{2} \vec{v}_{2 i}=0\). Body 1 is the projectile, and its initial linear momentum in Eq. 9-56 is \(\vec{p}_{1 i}=m_{1} \vec{v}_{1 i}\). Note that as the series of freeze-frames progresses to and then beyond the collision, the center of mass moves at a constant velocity to the right. After the collision, the common final speed \(V\) of the bodies is equal to \(\vec{v}_{\text {com }}\) because then the center of mass travels with the stuck-together bodies.

\section*{Checkpoint 7}

Body 1 and body 2 are in a completely inelastic one-dimensional collision. What is their final momentum if their initial momenta are, respectively, (a) \(10 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\) and 0 ; (b) \(10 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\) and \(4 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\); (c) \(10 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\) and \(-4 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\) ?

\section*{Sample Problem 9.07 Conservation of momentum, ballistic pendulum}

Here is an example of a common technique in physics. We have a demonstration that cannot be worked out as a whole (we don't have a workable equation for it). So, we break it up into steps that can be worked separately (we have equations for them).

The ballistic pendulum was used to measure the speeds of bullets before electronic timing devices were developed. The version shown in Fig. 9-17 consists of a large block of wood of mass \(M=5.4 \mathrm{~kg}\), hanging from two long cords. A bullet of mass \(m=9.5 \mathrm{~g}\) is fired into the block, coming quickly to rest. The block + bullet then swing upward, their center of mass rising a vertical distance \(h=6.3 \mathrm{~cm}\) before the pendulum comes momentarily to rest at the end of its arc. What is the speed of the bullet just prior to the collision?

\section*{KEY IDEAS}

We can see that the bullet's speed \(v\) must determine the rise height \(h\). However, we cannot use the conservation of mechanical energy to relate these two quantities because surely energy is transferred from mechanical energy to other forms (such as thermal energy and energy to break apart the wood) as the bullet penetrates the block. Nevertheless, we can split this complicated motion into two steps that we can separately analyze: (1) the bullet-block collision and (2) the bullet-block rise, during which mechanical energy is conserved.
Reasoning step 1: Because the collision within the bullet-block system is so brief, we can make two important assumptions: (1) During the collision, the gravitational force on the block and the force on the block from the cords are still balanced. Thus, during the collision, the net external impulse on the bullet-block system is zero. Therefore, the system is isolated and its total linear momentum is conserved:
\[
\begin{equation*}
\binom{\text { total momentum }}{\text { before the collision }}=\binom{\text { total momentum }}{\text { after the collision }} . \tag{9-57}
\end{equation*}
\]
(2) The collision is one-dimensional in the sense that the direction of the bullet and block just after the collision is in the bullet's original direction of motion.

Because the collision is one-dimensional, the block is initially at rest, and the bullet sticks in the block, we use Eq. \(9-53\) to express the conservation of linear momentum. Replacing the symbols there with the corresponding symbols here, we have
\[
\begin{equation*}
V=\frac{m}{m+M} v . \tag{9-58}
\end{equation*}
\]

Reasoning step 2: As the bullet and block now swing up together, the mechanical energy of the bullet-block-Earth
system is conserved:
\[
\begin{equation*}
\binom{\text { mechanical energy }}{\text { at bottom }}=\binom{\text { mechanical energy }}{\text { at top }} . \tag{9-59}
\end{equation*}
\]
(This mechanical energy is not changed by the force of the cords on the block, because that force is always directed perpendicular to the block's direction of travel.) Let's take the block's initial level as our reference level of zero gravitational potential energy. Then conservation of mechanical energy means that the system's kinetic energy at the start of the swing must equal its gravitational potential energy at the highest point of the swing. Because the speed of the bullet and block at the start of the swing is the speed \(V\) immediately after the collision, we may write this conservation as
\[
\begin{equation*}
\frac{1}{2}(m+M) V^{2}=(m+M) g h . \tag{9-60}
\end{equation*}
\]

Combining steps: Substituting for \(V\) from Eq. 9-58 leads to
\[
\begin{align*}
v & =\frac{m+M}{m} \sqrt{2 g h}  \tag{9-61}\\
& =\left(\frac{0.0095 \mathrm{~kg}+5.4 \mathrm{~kg}}{0.0095 \mathrm{~kg}}\right) \sqrt{(2)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.063 \mathrm{~m})} \\
& =630 \mathrm{~m} / \mathrm{s} .
\end{align*}
\]

The ballistic pendulum is a kind of "transformer," exchanging the high speed of a light object (the bullet) for the lowand thus more easily measurable - speed of a massive object (the block).

Figure 9-17 A ballistic pendulum, used to measure the speeds of bullets.

There are two events here. The bullet collides with the block. Then the bullet-block system swings upward by height \(h\).


\section*{9-7 elastic collisions in one dimension}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
9.32 For isolated elastic collisions in one dimension, apply the conservation laws for both the total energy and the net momentum of the colliding bodies to relate the initial values to the values after the collision.
9.33 For a projectile hitting a stationary target, identify the resulting motion for the three general cases: equal masses, target more massive than projectile, projectile more massive than target.

\section*{Key Idea}
- An elastic collision is a special type of collision in which the kinetic energy of a system of colliding bodies is conserved. If the system is closed and isolated, its linear momentum is also conserved. For a one-dimensional collision in which body 2 is a target and body 1 is an incoming projectile, conservation of kinetic energy and linear momentum
yield the following expressions for the velocities immediately after the collision:
and
\[
v_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i}
\]
\[
v_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i}
\]

\section*{Elastic Collisions in One Dimension}

As we discussed in Module 9-6, everyday collisions are inelastic but we can approximate some of them as being elastic; that is, we can approximate that the total kinetic energy of the colliding bodies is conserved and is not transferred to other forms of energy:
\[
\begin{equation*}
\binom{\text { total kinetic energy }}{\text { before the collision }}=\binom{\text { total kinetic energy }}{\text { after the collision }} . \tag{9-62}
\end{equation*}
\]

This means:

In an elastic collision, the kinetic energy of each colliding body may change, but the total kinetic energy of the system does not change.

For example, the collision of a cue ball with an object ball in a game of pool can be approximated as being an elastic collision. If the collision is head-on (the cue ball heads directly toward the object ball), the kinetic energy of the cue ball can be transferred almost entirely to the object ball. (Still, the collision transfers some of the energy to the sound you hear.)

\section*{Stationary Target}

Figure 9-18 shows two bodies before and after they have a one-dimensional collision, like a head-on collision between pool balls. A projectile body of mass \(m_{1}\) and initial velocity \(v_{1 i}\) moves toward a target body of mass \(m_{2}\) that is initially at rest \(\left(v_{2 i}=0\right)\). Let's assume that this two-body system is closed and isolated. Then the net linear momentum of the system is conserved, and from Eq. 9-51 we can write that conservation as
\[
\begin{equation*}
m_{1} v_{1 i}=m_{1} v_{1 f}+m_{2} v_{2 f} \quad \text { (linear momentum) } \tag{9-63}
\end{equation*}
\]

If the collision is also elastic, then the total kinetic energy is conserved and we can write that conservation as
\[
\begin{equation*}
\frac{1}{2} m_{1} v_{1 i}^{2}=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2} \quad \text { (kinetic energy). } \tag{9-64}
\end{equation*}
\]

In each of these equations, the subscript \(i\) identifies the initial velocities and the subscript \(f\) the final velocities of the bodies. If we know the masses of the bodies and if we also know \(v_{1 i}\), the initial velocity of body 1 , the only unknown quantities are \(v_{1 f}\) and \(v_{2 f}\), the final velocities of the two bodies. With two equations at our disposal, we should be able to find these two unknowns.


Figure 9-18 Body 1 moves along an \(x\) axis before having an elastic collision with body 2 , which is initially at rest. Both bodies move along that axis after the collision.

To do so, we rewrite Eq. 9-63 as
\[
\begin{equation*}
m_{1}\left(v_{1 i}-v_{1 f}\right)=m_{2} v_{2 f} \tag{9-65}
\end{equation*}
\]
and Eq. 9-64 as*
\[
\begin{equation*}
m_{1}\left(v_{1 i}-v_{1 f}\right)\left(v_{1 i}+v_{1 f}\right)=m_{2} v_{2 f}^{2} . \tag{9-66}
\end{equation*}
\]

After dividing Eq. \(9-66\) by Eq. \(9-65\) and doing some more algebra, we obtain
\[
\text { and } \quad \begin{align*}
v_{1 f} & =\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i}  \tag{9-67}\\
v_{2 f} & =\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i} . \tag{9-68}
\end{align*}
\]

Note that \(v_{2 f}\) is always positive (the initially stationary target body with mass \(m_{2}\) always moves forward). From Eq. 9-67 we see that \(v_{1 f}\) may be of either sign (the projectile body with mass \(m_{1}\) moves forward if \(m_{1}>m_{2}\) but rebounds if \(m_{1}<m_{2}\) ).

Let us look at a few special situations.
1. Equal masses If \(m_{1}=m_{2}\), Eqs. 9-67 and 9-68 reduce to
\[
v_{1 f}=0 \quad \text { and } \quad v_{2 f}=v_{1 i},
\]
which we might call a pool player's result. It predicts that after a head-on collision of bodies with equal masses, body 1 (initially moving) stops dead in its tracks and body 2 (initially at rest) takes off with the initial speed of body 1. In head-on collisions, bodies of equal mass simply exchange velocities. This is true even if body 2 is not initially at rest.
2. A massive target In Fig. 9-18, a massive target means that \(m_{2} \gg m_{1}\). For example, we might fire a golf ball at a stationary cannonball. Equations 9-67 and 9-68 then reduce to
\[
\begin{equation*}
v_{1 f} \approx-v_{1 i} \quad \text { and } \quad v_{2 f} \approx\left(\frac{2 m_{1}}{m_{2}}\right) v_{1 i} \tag{9-69}
\end{equation*}
\]

This tells us that body 1 (the golf ball) simply bounces back along its incoming path, its speed essentially unchanged. Initially stationary body 2 (the cannonball) moves forward at a low speed, because the quantity in parentheses in Eq. 9-69 is much less than unity. All this is what we should expect.
3. A massive projectile This is the opposite case; that is, \(m_{1} \geqslant m_{2}\). This time, we fire a cannonball at a stationary golf ball. Equations 9-67 and 9-68 reduce to
\[
\begin{equation*}
v_{1 f} \approx v_{1 i} \quad \text { and } \quad v_{2 f} \approx 2 v_{1 i} . \tag{9-70}
\end{equation*}
\]

Equation 9-70 tells us that body 1 (the cannonball) simply keeps on going, scarcely slowed by the collision. Body 2 (the golf ball) charges ahead at twice the speed of the cannonball. Why twice the speed? Recall the collision described by Eq. 9-69, in which the velocity of the incident light body (the golf ball) changed from \(+v\) to \(-v\), a velocity change of \(2 v\). The same change in velocity (but now from zero to \(2 v\) ) occurs in this example also.

\section*{Moving Target}

Now that we have examined the elastic collision of a projectile and a stationary target, let us examine the situation in which both bodies are moving before they undergo an elastic collision.

For the situation of Fig. 9-19, the conservation of linear momentum is written as
\[
\begin{equation*}
m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f}, \tag{9-71}
\end{equation*}
\]

\footnotetext{
*In this step, we use the identity \(a^{2}-b^{2}=(a-b)(a+b)\). It reduces the amount of algebra needed to solve the simultaneous equations Eqs. 9-65 and 9-66.
}
and the conservation of kinetic energy is written as
\[
\begin{equation*}
\frac{1}{2} m_{1} v_{1 i}^{2}+\frac{1}{2} m_{2} v_{2 i}^{2}=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2} . \tag{9-72}
\end{equation*}
\]

To solve these simultaneous equations for \(v_{1 f}\) and \(v_{2 f}\), we first rewrite Eq. 9-71 as
\[
\begin{equation*}
m_{1}\left(v_{1 i}-v_{1 f}\right)=-m_{2}\left(v_{2 i}-v_{2 f}\right) \tag{9-73}
\end{equation*}
\]
and Eq. 9-72 as
\[
\begin{equation*}
m_{1}\left(v_{1 i}-v_{1 f}\right)\left(v_{1 i}+v_{1 f}\right)=-m_{2}\left(v_{2 i}-v_{2 f}\right)\left(v_{2 i}+v_{2 f}\right) \tag{9-74}
\end{equation*}
\]

After dividing Eq. 9-74 by Eq. 9-73 and doing some more algebra, we obtain
and
\[
\begin{align*}
v_{1 f} & =\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i}+\frac{2 m_{2}}{m_{1}+m_{2}} v_{2 i}  \tag{9-75}\\
v_{2 f} & =\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i}+\frac{m_{2}-m_{1}}{m_{1}+m_{2}} v_{2 i} \tag{9-76}
\end{align*}
\]

Note that the assignment of subscripts 1 and 2 to the bodies is arbitrary. If we exchange those subscripts in Fig. 9-19 and in Eqs. 9-75 and 9-76, we end up with the same set of equations. Note also that if we set \(v_{2 i}=0\), body 2 becomes a stationary target as in Fig. 9-18, and Eqs. 9-75 and 9-76 reduce to Eqs. 9-67 and 9-68, respectively.

\section*{Checkpoint 8}

What is the final linear momentum of the target in Fig. 9-18 if the initial linear momentum of the projectile is \(6 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\) and the final linear momentum of the projectile is (a) \(2 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\) and (b) \(-2 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\) ? (c) What is the final kinetic energy of the target if the initial and final kinetic energies of the projectile are, respectively, 5 J and 2 J ?

Here is the generic setup for an elastic collision with a moving target.


Figure 9-19 Two bodies headed for a onedimensional elastic collision.

\section*{Sample Problem 9.08 Chain reaction of elastic collisions}

In Fig. 9-20a, block 1 approaches a line of two stationary blocks with a velocity of \(v_{1 i}=10 \mathrm{~m} / \mathrm{s}\). It collides with block 2 , which then collides with block 3 , which has mass \(m_{3}=6.0 \mathrm{~kg}\). After the second collision, block 2 is again stationary and block 3 has velocity \(v_{3 f}=5.0 \mathrm{~m} / \mathrm{s}\) (Fig. 9-20b). Assume that the collisions are elastic. What are the masses of blocks 1 and 2? What is the final velocity \(v_{1 f}\) of block 1?

\section*{KEY IDEAS}

Because we assume that the collisions are elastic, we are to conserve mechanical energy (thus energy losses to sound, heating, and oscillations of the blocks are negligible). Because no external horizontal force acts on the blocks, we are to conserve linear momentum along the \(x\) axis. For these


Figure 9-20 Block 1 collides with stationary block 2, which then collides with stationary block 3 .
two reasons, we can apply Eqs. 9-67 and 9-68 to each of the collisions.

Calculations: If we start with the first collision, we have too many unknowns to make any progress: we do not know the masses or the final velocities of the blocks. So, let's start with the second collision in which block 2 stops because of its collision with block 3. Applying Eq. 9-67 to this collision, with changes in notation, we have
\[
v_{2 f}=\frac{m_{2}-m_{3}}{m_{2}+m_{3}} v_{2 i}
\]
where \(v_{2 i}\) is the velocity of block 2 just before the collision and \(v_{2 f}\) is the velocity just afterward. Substituting \(v_{2 f}=0\) (block 2 stops) and then \(m_{3}=6.0 \mathrm{~kg}\) gives us
\[
m_{2}=m_{3}=6.00 \mathrm{~kg} .
\]
(Answer)
With similar notation changes, we can rewrite Eq. 9-68 for the second collision as
\[
v_{3 f}=\frac{2 m_{2}}{m_{2}+m_{3}} v_{2 i}
\]
where \(v_{3 f}\) is the final velocity of block 3 . Substituting \(m_{2}=m_{3}\) and the given \(v_{3 f}=5.0 \mathrm{~m} / \mathrm{s}\), we find
\[
v_{2 i}=v_{3 f}=5.0 \mathrm{~m} / \mathrm{s}
\]

Next, let's reconsider the first collision, but we have to be careful with the notation for block 2: its velocity \(v_{2 f}\) just after the first collision is the same as its velocity \(v_{2 i}(=5.0 \mathrm{~m} / \mathrm{s})\) just before the second collision. Applying Eq. 9-68 to the first collision and using the given \(v_{1 i}=10 \mathrm{~m} / \mathrm{s}\), we have
\[
\begin{aligned}
v_{2 f} & =\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i} \\
5.0 \mathrm{~m} / \mathrm{s} & =\frac{2 m_{1}}{m_{1}+m_{2}}(10 \mathrm{~m} / \mathrm{s}),
\end{aligned}
\]
which leads to
\[
m_{1}=\frac{1}{3} m_{2}=\frac{1}{3}(6.0 \mathrm{~kg})=2.0 \mathrm{~kg} .
\]
(Answer)
Finally, applying Eq. 9-67 to the first collision with this result and the given \(v_{1 i}\), we write
\[
\begin{aligned}
v_{1 f} & =\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i} \\
& =\frac{\frac{1}{3} m_{2}-m_{2}}{\frac{1}{3} m_{2}+m_{2}}(10 \mathrm{~m} / \mathrm{s})=-5.0 \mathrm{~m} / \mathrm{s}
\end{aligned}
\]
(Answer)

\section*{9-8 COLLISIONS IN TWO DIMENSIONS}

\section*{Learning Objectives}

After reading this module, you should be able to ...
9.34 For an isolated system in which a two-dimensional collision occurs, apply the conservation of momentum along each axis of a coordinate system to relate the momentum components along an axis before the collision to the momentum components along the same axis after the collision.
9.35 For an isolated system in which a two-dimensional elastic collision occurs, (a) apply the conservation of momentum along each axis of a coordinate system to relate the momentum components along an axis before the collision to the momentum components along the same axis after the collision and (b) apply the conservation of total kinetic energy to relate the kinetic energies before and after the collision.

\section*{Key Idea}
- If two bodies collide and their motion is not along a single axis (the collision is not head-on), the collision is two-dimensional. If the two-body system is closed and isolated, the law of conservation of momentum applies to the collision and can be written as
\[
\vec{P}_{1 i}+\vec{P}_{2 i}=\vec{P}_{1 f}+\vec{P}_{2 f} .
\]

In component form, the law gives two equations that describe the collision (one equation for each of the two dimensions). If the collision is also elastic (a special case), the conservation of kinetic energy during the collision gives a third equation:
\[
K_{1 i}+K_{2 i}=K_{1 f}+K_{2 f} .
\]


Figure 9-21 An elastic collision between two bodies in which the collision is not headon. The body with mass \(m_{2}\) (the target) is initially at rest.

\section*{Collisions in Two Dimensions}

When two bodies collide, the impulse between them determines the directions in which they then travel. In particular, when the collision is not head-on, the bodies do not end up traveling along their initial axis. For such two-dimensional collisions in a closed, isolated system, the total linear momentum must still be conserved:
\[
\begin{equation*}
\vec{P}_{1 i}+\vec{P}_{2 i}=\vec{P}_{1 f}+\vec{P}_{2 f} \tag{9-77}
\end{equation*}
\]

If the collision is also elastic (a special case), then the total kinetic energy is also conserved:
\[
\begin{equation*}
K_{1 i}+K_{2 i}=K_{1 f}+K_{2 f} . \tag{9-78}
\end{equation*}
\]

Equation 9-77 is often more useful for analyzing a two-dimensional collision if we write it in terms of components on an \(x y\) coordinate system. For example, Fig. 9-21 shows a glancing collision (it is not head-on) between a projectile body and a target body initially at rest. The impulses between the bodies have sent the bodies off at angles \(\theta_{1}\) and \(\theta_{2}\) to the \(x\) axis, along which the projectile initially traveled. In this situ-
ation we would rewrite Eq. 9-77 for components along the \(x\) axis as
\[
\begin{equation*}
m_{1} v_{1 i}=m_{1} v_{1 f} \cos \theta_{1}+m_{2} v_{2 f} \cos \theta_{2}, \tag{9-79}
\end{equation*}
\]
and along the \(y\) axis as
\[
\begin{equation*}
0=-m_{1} v_{1 f} \sin \theta_{1}+m_{2} v_{2 f} \sin \theta_{2} \tag{9-80}
\end{equation*}
\]

We can also write Eq. 9-78 (for the special case of an elastic collision) in terms of speeds:
\[
\begin{equation*}
\frac{1}{2} m_{1} v_{1 i}^{2}=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2} \quad \text { (kinetic energy). } \tag{9-81}
\end{equation*}
\]

Equations 9-79 to 9-81 contain seven variables: two masses, \(m_{1}\) and \(m_{2}\); three speeds, \(v_{1 i}, v_{1 f}\), and \(v_{2 f}\); and two angles, \(\theta_{1}\) and \(\theta_{2}\). If we know any four of these quantities, we can solve the three equations for the remaining three quantities.

\section*{Checkpoint 9}

In Fig. 9-21, suppose that the projectile has an initial momentum of \(6 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\), a final \(x\) component of momentum of \(4 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\), and a final \(y\) component of momentum of \(-3 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\). For the target, what then are (a) the final \(x\) component of momentum and (b) the final \(y\) component of momentum?

\section*{9-9 systems with varying mass: a rocket}

\section*{Learning Objectives}

After reading this module, you should be able to ...
9.36 Apply the first rocket equation to relate the rate at which the rocket loses mass, the speed of the exhaust products relative to the rocket, the mass of the rocket, and the acceleration of the rocket.
9.37 Apply the second rocket equation to relate the change in the rocket's speed to the relative speed of the exhaust products and the initial and final mass of the rocket.
9.38 For a moving system undergoing a change in mass at a given rate, relate that rate to the change in momentum.

\section*{Key Ideas}
- In the absence of external forces a rocket accelerates at an instantaneous rate given by
\[
R v_{\mathrm{rel}}=M a \quad \text { (first rocket equation), }
\]
in which \(M\) is the rocket's instantaneous mass (including unexpended fuel), \(R\) is the fuel consumption rate, and \(v_{\text {rel }}\) is
the fuel's exhaust speed relative to the rocket. The term \(R v_{\text {rel }}\) is the thrust of the rocket engine.
- For a rocket with constant \(R\) and \(v_{\text {rel }}\), whose speed changes from \(v_{i}\) to \(v_{f}\) when its mass changes from \(M_{i}\) to \(M_{f}\),
\[
v_{f}-v_{i}=v_{\mathrm{rel}} \ln \frac{M_{i}}{M_{f}} \quad \text { (second rocket equation). }
\]

\section*{Systems with Varying Mass: A Rocket}

So far, we have assumed that the total mass of the system remains constant. Sometimes, as in a rocket, it does not. Most of the mass of a rocket on its launching pad is fuel, all of which will eventually be burned and ejected from the nozzle of the rocket engine. We handle the variation of the mass of the rocket as the rocket accelerates by applying Newton's second law, not to the rocket alone but to the rocket and its ejected combustion products taken together. The mass of this system does not change as the rocket accelerates.

\section*{Finding the Acceleration}

Assume that we are at rest relative to an inertial reference frame, watching a rocket accelerate through deep space with no gravitational or atmospheric drag


Figure 9-22 (a) An accelerating rocket of mass \(M\) at time \(t\), as seen from an inertial reference frame. (b) The same but at time \(t+d t\). The exhaust products released during interval \(d t\) are shown.
forces acting on it. For this one-dimensional motion, let \(M\) be the mass of the rocket and \(v\) its velocity at an arbitrary time \(t\) (see Fig. 9-22a).

Figure \(9-22 b\) shows how things stand a time interval \(d t\) later. The rocket now has velocity \(v+d v\) and mass \(M+d M\), where the change in mass \(d M\) is a negative quantity. The exhaust products released by the rocket during interval \(d t\) have mass \(-d M\) and velocity \(U\) relative to our inertial reference frame.

Conserve Momentum. Our system consists of the rocket and the exhaust products released during interval \(d t\). The system is closed and isolated, so the linear momentum of the system must be conserved during \(d t\); that is,
\[
\begin{equation*}
P_{i}=P_{f}, \tag{9-82}
\end{equation*}
\]
where the subscripts \(i\) and \(f\) indicate the values at the beginning and end of time interval \(d t\). We can rewrite Eq. \(9-82\) as
\[
\begin{equation*}
M v=-d M U+(M+d M)(v+d v) \tag{9-83}
\end{equation*}
\]
where the first term on the right is the linear momentum of the exhaust products released during interval \(d t\) and the second term is the linear momentum of the rocket at the end of interval \(d t\).

Use Relative Speed. We can simplify Eq. \(9-83\) by using the relative speed \(v_{\text {rel }}\) between the rocket and the exhaust products, which is related to the velocities relative to the frame with
\[
\binom{\text { velocity of rocket }}{\text { relative to frame }}=\binom{\text { velocity of rocket }}{\text { relative to products }}+\binom{\text { velocity of products }}{\text { relative to frame }} .
\]

In symbols, this means
or
\[
\begin{gather*}
(v+d v)=v_{\mathrm{rel}}+U \\
U=v+d v-v_{\mathrm{rel}} \tag{9-84}
\end{gather*}
\]

Substituting this result for \(U\) into Eq. 9-83 yields, with a little algebra,
\[
\begin{equation*}
-d M v_{\mathrm{rel}}=M d v \tag{9-85}
\end{equation*}
\]

Dividing each side by \(d t\) gives us
\[
\begin{equation*}
-\frac{d M}{d t} v_{\mathrm{rel}}=M \frac{d v}{d t} \tag{9-86}
\end{equation*}
\]

We replace \(d M / d t\) (the rate at which the rocket loses mass) by \(-R\), where \(R\) is the (positive) mass rate of fuel consumption, and we recognize that \(d v / d t\) is the acceleration of the rocket. With these changes, Eq. 9-86 becomes
\[
\begin{equation*}
R v_{\mathrm{rel}}=M a \quad \text { (first rocket equation). } \tag{9-87}
\end{equation*}
\]

Equation 9-87 holds for the values at any given instant.
Note the left side of Eq. \(9-87\) has the dimensions of force \((\mathrm{kg} / \mathrm{s} \cdot \mathrm{m} / \mathrm{s}=\) \(\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}=\mathrm{N}\) ) and depends only on design characteristics of the rocket enginenamely, the rate \(R\) at which it consumes fuel mass and the speed \(v_{\text {rel }}\) with which that mass is ejected relative to the rocket. We call this term \(R v_{\text {rel }}\) the thrust of the rocket engine and represent it with \(T\). Newton's second law emerges if we write Eq. \(9-87\) as \(T=M a\), in which \(a\) is the acceleration of the rocket at the time that its mass is \(M\).

\section*{Finding the Velocity}

How will the velocity of a rocket change as it consumes its fuel? From Eq. 9-85 we have
\[
d v=-v_{\mathrm{rel}} \frac{d M}{M}
\]

Integrating leads to
\[
\int_{v_{i}}^{v_{f}} d v=-v_{\mathrm{rel}} \int_{M_{i}}^{M_{f}} \frac{d M}{M}
\]
in which \(M_{i}\) is the initial mass of the rocket and \(M_{f}\) its final mass. Evaluating the integrals then gives
\[
\begin{equation*}
v_{f}-v_{i}=v_{\mathrm{rel}} \ln \frac{M_{i}}{M_{f}} \quad \text { (second rocket equation) } \tag{9-88}
\end{equation*}
\]
for the increase in the speed of the rocket during the change in mass from \(M_{i}\) to \(M_{f}\). (The symbol "ln" in Eq. 9-88 means the natural logarithm.) We see here the advantage of multistage rockets, in which \(M_{f}\) is reduced by discarding successive stages when their fuel is depleted. An ideal rocket would reach its destination with only its payload remaining.

\section*{Sample Problem 9.09 Rocket engine, thrust, acceleration}

In all previous examples in this chapter, the mass of a system is constant (fixed as a certain number). Here is an example of a system (a rocket) that is losing mass. A rocket whose initial mass \(M_{i}\) is 850 kg consumes fuel at the rate \(R=2.3 \mathrm{~kg} / \mathrm{s}\). The speed \(v_{\text {rel }}\) of the exhaust gases relative to the rocket engine is \(2800 \mathrm{~m} / \mathrm{s}\). What thrust does the rocket engine provide?

\section*{KEY IDEA}

Thrust \(T\) is equal to the product of the fuel consumption rate \(R\) and the relative speed \(v_{\text {rel }}\) at which exhaust gases are expelled, as given by Eq. 9-87.

Calculation: Here we find
\[
\begin{aligned}
T & =R v_{\text {rel }}=(2.3 \mathrm{~kg} / \mathrm{s})(2800 \mathrm{~m} / \mathrm{s}) \\
& =6440 \mathrm{~N} \approx 6400 \mathrm{~N}
\end{aligned}
\]
(Answer)
(b) What is the initial acceleration of the rocket?

\section*{KEY IDEA}

We can relate the thrust \(T\) of a rocket to the magnitude \(a\) of the resulting acceleration with \(T=M a\), where \(M\) is the
rocket's mass. However, \(M\) decreases and \(a\) increases as fuel is consumed. Because we want the initial value of \(a\) here, we must use the intial value \(M_{i}\) of the mass.

Calculation: We find
\[
a=\frac{T}{M_{i}}=\frac{6440 \mathrm{~N}}{850 \mathrm{~kg}}=7.6 \mathrm{~m} / \mathrm{s}^{2}
\]
(Answer)

To be launched from Earth's surface, a rocket must have an initial acceleration greater than \(g=9.8 \mathrm{~m} / \mathrm{s}^{2}\). That is, it must be greater than the gravitational acceleration at the surface. Put another way, the thrust \(T\) of the rocket engine must exceed the initial gravitational force on the rocket, which here has the magnitude \(M_{i} g\), which gives us
\[
(850 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=8330 \mathrm{~N}
\]

Because the acceleration or thrust requirement is not met (here \(T=6400 \mathrm{~N}\) ), our rocket could not be launched from Earth's surface by itself; it would require another, more powerful, rocket.

Additional examples, video, and practice available at WileyPLUS

\section*{Beview \& Summary}

Center of Mass The center of mass of a system of \(n\) particles is defined to be the point whose coordinates are given by
\[
\begin{array}{ll}
x_{\mathrm{com}}=\frac{1}{M} \sum_{i=1}^{n} m_{i} x_{i}, \quad y_{\mathrm{com}}=\frac{1}{M} \sum_{i=1}^{n} m_{i} y_{i}, \quad z_{\mathrm{com}}=\frac{1}{M} \sum_{i=1}^{n} m_{i} z_{i}, \\
\text { or } \quad \vec{r}_{\mathrm{com}}=\frac{1}{M} \sum_{i=1}^{n} m_{i} \vec{r}_{i},
\end{array}
\]
where \(M\) is the total mass of the system.

Newton's Second Law for a System of Particles The motion of the center of mass of any system of particles is governed by Newton's second law for a system of particles, which is
\[
\begin{equation*}
\vec{F}_{\mathrm{net}}=M \vec{a}_{\mathrm{com}} \cdot \tag{9-14}
\end{equation*}
\]

Here \(\vec{F}_{\text {net }}\) is the net force of all the external forces acting on the system, \(M\) is the total mass of the system, and \(\vec{a}_{\text {com }}\) is the acceleration of the system's center of mass.

Linear Momentum and Newton's Second Law For a single particle, we define a quantity \(\vec{p}\) called its linear momentum as
\[
\begin{equation*}
\vec{p}=m \vec{v}, \tag{9-22}
\end{equation*}
\]
and can write Newton's second law in terms of this momentum:
\[
\begin{equation*}
\vec{F}_{\mathrm{net}}=\frac{d \vec{p}}{d t} . \tag{9-23}
\end{equation*}
\]

For a system of particles these relations become
\[
\begin{equation*}
\vec{P}=M \vec{v}_{\mathrm{com}} \quad \text { and } \quad \vec{F}_{\mathrm{net}}=\frac{d \vec{P}}{d t} . \tag{9-25,9-27}
\end{equation*}
\]

Collision and Impulse Applying Newton's second law in momentum form to a particle-like body involved in a collision leads to the impulse-linear momentum theorem:
\[
\begin{equation*}
\vec{p}_{f}-\vec{p}_{i}=\Delta \vec{p}=\vec{J}, \tag{9-31,9-32}
\end{equation*}
\]
where \(\vec{p}_{f}-\vec{p}_{i}=\Delta \vec{p}\) is the change in the body's linear momentum, and \(\vec{J}\) is the impulse due to the force \(\vec{F}(t)\) exerted on the body by the other body in the collision:
\[
\begin{equation*}
\vec{J}=\int_{t_{i}}^{t_{f}} \vec{F}(t) d t . \tag{9-30}
\end{equation*}
\]

If \(F_{\text {avg }}\) is the average magnitude of \(\vec{F}(t)\) during the collision and \(\Delta t\) is the duration of the collision, then for one-dimensional motion
\[
\begin{equation*}
J=F_{\text {avg }} \Delta t . \tag{9-35}
\end{equation*}
\]

When a steady stream of bodies, each with mass \(m\) and speed \(v\), collides with a body whose position is fixed, the average force on the fixed body is
\[
\begin{equation*}
F_{\text {avg }}=-\frac{n}{\Delta t} \Delta p=-\frac{n}{\Delta t} m \Delta v \tag{9-37}
\end{equation*}
\]
where \(n / \Delta t\) is the rate at which the bodies collide with the fixed body, and \(\Delta v\) is the change in velocity of each colliding body. This average force can also be written as
\[
\begin{equation*}
F_{\mathrm{avg}}=-\frac{\Delta m}{\Delta t} \Delta v, \tag{9-40}
\end{equation*}
\]
where \(\Delta m / \Delta t\) is the rate at which mass collides with the fixed body. In Eqs. 9-37 and 9-40, \(\Delta v=-v\) if the bodies stop upon impact and \(\Delta v=\) \(-2 v\) if they bounce directly backward with no change in their speed.

Conservation of Linear Momentum If a system is isolated so that no net external force acts on it, the linear momentum \(\vec{P}\) of the system remains constant:
\[
\begin{equation*}
\vec{P}=\text { constant } \quad \text { (closed, isolated system). } \tag{9-42}
\end{equation*}
\]

This can also be written as
\[
\begin{equation*}
\left.\vec{P}_{i}=\vec{P}_{f} \quad \text { (closed, isolated system }\right), \tag{9-43}
\end{equation*}
\]
where the subscripts refer to the values of \(\vec{P}\) at some initial time and at a later time. Equations 9-42 and 9-43 are equivalent statements of the law of conservation of linear momentum.

Inelastic Collision in One Dimension In an inelastic collision of two bodies, the kinetic energy of the two-body system is not conserved (it is not a constant). If the system is closed and isolated, the total linear momentum of the system
must be conserved (it is a constant), which we can write in vector form as
\[
\begin{equation*}
\vec{p}_{1 i}+\vec{p}_{2 i}=\vec{p}_{1 f}+\vec{p}_{2 f}, \tag{9-50}
\end{equation*}
\]
where subscripts \(i\) and \(f\) refer to values just before and just after the collision, respectively.

If the motion of the bodies is along a single axis, the collision is one-dimensional and we can write Eq. 9-50 in terms of velocity components along that axis:
\[
\begin{equation*}
m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f} . \tag{9-51}
\end{equation*}
\]

If the bodies stick together, the collision is a completely inelastic collision and the bodies have the same final velocity \(V\) (because they are stuck together).

Motion of the Center of Mass The center of mass of a closed, isolated system of two colliding bodies is not affected by a collision. In particular, the velocity \(\vec{\gamma}_{\text {com }}\) of the center of mass cannot be changed by the collision.

Elastic Collisions in One Dimension An elastic collision is a special type of collision in which the kinetic energy of a system of colliding bodies is conserved. If the system is closed and isolated, its linear momentum is also conserved. For a onedimensional collision in which body 2 is a target and body 1 is an incoming projectile, conservation of kinetic energy and linear momentum yield the following expressions for the velocities immediately after the collision:
\[
\begin{align*}
& v_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i}  \tag{9-67}\\
& v_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i} .
\end{align*}
\]
and

Collisions in Two Dimensions If two bodies collide and their motion is not along a single axis (the collision is not head-on), the collision is two-dimensional. If the two-body system is closed and isolated, the law of conservation of momentum applies to the collision and can be written as
\[
\begin{equation*}
\vec{P}_{1 i}+\vec{P}_{2 i}=\vec{P}_{1 f}+\vec{P}_{2 f} \tag{9-77}
\end{equation*}
\]

In component form, the law gives two equations that describe the collision (one equation for each of the two dimensions). If the collision is also elastic (a special case), the conservation of kinetic energy during the collision gives a third equation:
\[
\begin{equation*}
K_{1 i}+K_{2 i}=K_{1 f}+K_{2 f} . \tag{9-78}
\end{equation*}
\]

Variable-Mass Systems In the absence of external forces a rocket accelerates at an instantaneous rate given by
\[
\begin{equation*}
R v_{\mathrm{rel}}=M a \quad \text { (first rocket equation), } \tag{9-87}
\end{equation*}
\]
in which \(M\) is the rocket's instantaneous mass (including unexpended fuel), \(R\) is the fuel consumption rate, and \(v_{\text {rel }}\) is the fuel's exhaust speed relative to the rocket. The term \(R v_{\text {rel }}\) is the thrust of the rocket engine. For a rocket with constant \(R\) and \(v_{\text {rel }}\), whose speed changes from \(v_{i}\) to \(v_{f}\) when its mass changes from \(M_{i}\) to \(M_{f}\),
\[
\begin{equation*}
v_{f}-v_{i}=v_{\mathrm{rel}} \ln \frac{M_{i}}{M_{f}} \quad \text { (second rocket equation). } \tag{9-88}
\end{equation*}
\]

\section*{Questions}

1 Figure 9-23 shows an overhead view of three particles on which external forces act. The magnitudes and directions of the forces on two of the particles are indicated. What are the magnitude and direction of the force acting on the third particle if the center of mass of the three-particle system is (a) stationary, (b) moving at a constant velocity rightward, and (c) accelerating rightward?
2 Figure 9-24 shows an overhead view of four particles of equal mass sliding over a frictionless surface at constant velocity. The directions of the velocities are indicated; their magnitudes are equal. Consider pairing the particles. Which pairs form a system with a center of mass that (a) is stationary,
(b) is stationary and at the ori-


Figure 9-24 Question 2. gin, and (c) passes through the origin?
3 Consider a box that explodes into two pieces while moving with a constant positive velocity along an \(x\) axis. If one piece, with mass \(m_{1}\), ends up with positive velocity \(\vec{v}_{1}\), then the second piece, with mass \(m_{2}\), could end up with (a) a positive velocity \(\vec{v}_{2}\) (Fig. 9-25a), (b) a negative velocity \(\vec{v}_{2}\) (Fig. 9-25b), or (c) zero velocity (Fig. 9-25c). Rank those three possible results for the second piece according to the corresponding magnitude of \(\overrightarrow{v_{1}}\), greatest first.


Figure 9-25 Question 3.
4 Figure 9-26 shows graphs of force magnitude versus time for a body involved in a collision. Rank the graphs according to the magnitude of the impulse on the body, greatest first.


Figure 9-26 Question 4.
5 The free-body diagrams in Fig. 9-27 give, from overhead views, the horizontal forces acting on three boxes of chocolates as the


Figure 9-27 Question 5.
boxes move over a frictionless confectioner's counter. For each box, is its linear momentum conserved along the \(x\) axis and the \(y\) axis?
6 Figure 9-28 shows four groups of three or four identical particles that move parallel to either the \(x\) axis or the \(y\) axis, at identical speeds. Rank the groups according to center-of-mass speed, greatest first.


Figure 9-28 Question 6.
7 A block slides along a frictionless floor and into a stationary second block with the same mass. Figure 9-29 shows four choices for a graph of the kinetic energies \(K\) of the blocks. (a) Determine which represent physically impossible situations. Of the others, which best represents (b) an elastic collision and (c) an inelastic collision?


Figure 9-29 Question 7.
8 Figure 9-30 shows a snapshot of block 1 as it slides along an \(x\) axis on a frictionless floor, before it undergoes an elastic collision with stationary


Figure 9-30 Question 8. block 2. The figure also shows three possible positions of the center of mass (com) of the two-block system at the time of the snapshot. (Point \(B\) is halfway between the centers of the two blocks.) Is block 1 stationary, moving forward, or moving backward after the collision if the com is located in the snapshot at (a) \(A\),(b) \(B\), and (c) \(C\) ?

9 Two bodies have undergone an elastic one-dimensional collision along an \(x\) axis. Figure 9-31 is a graph of position versus time for those bodies and for their center of mass. (a) Were both bodies initially moving, or was one initially stationary? Which line segment corresponds to the mo-


Figure 9-31 Question 9. tion of the center of mass (b) before the collision and (c) after the collision? (d) Is the mass of the body that was moving faster before the collision greater than, less than, or equal to that of the other body?
10 Figure 9-32: A block on a horizontal floor is initially either stationary, sliding in the positive direction of an \(x\) axis, or sliding in


Figure 9-32 Question 10.
the negative direction of that axis. Then the block explodes into two pieces that slide along the \(x\) axis. Assume the block and the two pieces form a closed, isolated system. Six choices for a graph of the momenta of the block and the pieces are given, all versus time \(t\). Determine which choices represent physically impossible situations and explain why.
11 Block 1 with mass \(m_{1}\) slides along an \(x\) axis across a frictionless floor and then undergoes an elastic collision with a stationary block 2 with mass \(m_{2}\). Figure 9-33 shows a plot of position \(x\) versus time \(t\) of block 1 until the collision occurs at position \(x_{c}\) and time \(t_{c}\). In which of the lettered regions on the graph will the plot be continued (after the collision) if (a) \(m_{1}<m_{2}\) and (b) \(m_{1}>m_{2}\) ? (c) Along which of the numbered dashed lines will the plot be continued if \(m_{1}=m_{2}\) ?
12 Figure 9-34 shows four graphs of position versus time for two bodies and their center of mass. The two bodies form a closed, isolated system and undergo a completely inelastic, one-dimensional collision on an \(x\) axis. In graph 1, are (a) the two bodies and (b) the center of mass moving in the positive or negative direction of the \(x\) axis? (c) Which of the graphs correspond to a physically impossible situation? Explain.


Figure 9-33 Question 11.


Figure 9-34 Question 12.

\section*{Problems}


\section*{Module 9-1 Center of Mass}
\(\bullet 1\) A 2.00 kg particle has the \(x y\) coordinates \((-1.20 \mathrm{~m}, 0.500 \mathrm{~m})\), and a 4.00 kg particle has the \(x y\) coordinates \((0.600 \mathrm{~m},-0.750 \mathrm{~m})\). Both lie on a horizontal plane. At what (a) \(x\) and (b) \(y\) coordinates must you place a 3.00 kg particle such that the center of mass of the three-particle system has the coordinates ( \(-0.500 \mathrm{~m},-0.700 \mathrm{~m}\) )?
-2 Figure 9-35 shows a three-particle system, with masses \(m_{1}=3.0\) \(\mathrm{kg}, m_{2}=4.0 \mathrm{~kg}\), and \(m_{3}=8.0 \mathrm{~kg}\). The scales on the axes are set by \(x_{s}=2.0 \mathrm{~m}\) and \(y_{s}=2.0 \mathrm{~m}\). What are (a) the \(x\) coordinate and (b) the \(y\) coordinate of the system's center of mass? (c) If \(m_{3}\) is gradually in-


Figure 9-35 Problem 2. creased, does the center of mass of the system shift toward or away from that particle, or does it remain stationary?
-•3 Figure 9-36 shows a slab with dimensions \(d_{1}=11.0 \mathrm{~cm}, d_{2}=\) 2.80 cm , and \(d_{3}=13.0 \mathrm{~cm}\). Half the slab consists of aluminum (den-
sity \(=2.70 \mathrm{~g} / \mathrm{cm}^{3}\) ) and half consists of iron (density \(=7.85 \mathrm{~g} / \mathrm{cm}^{3}\) ). What are (a) the \(x\) coordinate, (b) the \(y\) coordinate, and (c) the \(z\) coordinate of the slab's center of mass?

© 4 In Fig. 9-37, three uniform thin rods, each of length \(L=22 \mathrm{~cm}\), form an inverted \(U\). The vertical rods each have a mass of 14 g ; the horizontal rod has a mass of 42 g . What are (a) the \(x\) coordinate and (b) the \(y\) coordinate of the system's center of mass?

05 ©o What are (a) the \(x\) coordinate and (b) the \(y\) coordinate of the center of mass for the uniform plate shown in Fig. 9-38 if \(L=5.0 \mathrm{~cm}\) ?


Figure 9-38 Problem 5.
-•6 Figure 9-39 shows a cubical box that has been constructed from uniform metal plate of negligible thickness. The box is open at the top and has edge length \(L=\) 40 cm . Find (a) the \(x\) coordinate, (b) the \(y\) coordinate, and (c) the \(z\) coordinate of the center of mass of the box.

0007 ILW In the ammonia \(\left(\mathrm{NH}_{3}\right)\) molecule of Fig. 9-40, three hydrogen (H) atoms form an equilateral triangle, with the center of the triangle at distance \(d=\) \(9.40 \times 10^{-11} \mathrm{~m}\) from each hydrogen atom. The nitrogen \((\mathrm{N})\) atom is at the apex of a pyramid, with the three hydrogen atoms forming the base. The nitro-gen-to-hydrogen atomic mass ratio is 13.9, and the nitrogen-to-hydrogen distance is \(L=10.14 \times 10^{-11} \mathrm{~m}\). What are the (a) \(x\) and (b) \(y\) coordinates of the molecule's center of mass?

0008 (60 A uniform soda can of mass 0.140 kg is 12.0 cm tall and filled with 0.354 kg of soda (Fig. 9-41). Then small holes are drilled in the top and bottom (with negligible loss of metal) to drain the soda. What is the height \(h\) of the com of the can and contents (a) initially and (b) after the can loses all the soda? (c) What happens to \(h\) as the soda drains out? (d) If \(x\) is the height of the remaining soda at any given instant, find \(x\) when the com reaches its lowest point.


Figure 9-37 Problem 4.

Module 9-2 Newton's Second Law for a System of Particles
-9 ILW A stone is dropped at \(t=0\). A second stone, with twice the mass of the first, is dropped from the same point at \(t=100 \mathrm{~ms}\). (a) How far below the release point is the center of mass of the two stones at \(t=300 \mathrm{~ms}\) ? (Neither stone has yet reached the ground.) (b) How fast is the center of mass of the twostone system moving at that time?
-10 © A 1000 kg automobile is at rest at a traffic signal. At the instant the light turns green, the automobile starts to move with a constant acceleration of \(4.0 \mathrm{~m} / \mathrm{s}^{2}\). At the same instant a 2000 kg truck, traveling at a constant speed of \(8.0 \mathrm{~m} / \mathrm{s}\), overtakes and passes the automobile. (a) How far is the com of the automobile-truck system from the traffic light at \(t=3.0 \mathrm{~s}\) ? (b) What is the speed of the com then?
-11 A big olive ( \(m=0.50 \mathrm{~kg}\) ) lies at the origin of an \(x y\) coordinate system, and a big Brazil nut ( \(M=1.5 \mathrm{~kg}\) ) lies at the point \((1.0,2.0) \mathrm{m}\). At \(t=0\), a force \(\vec{F}_{o}=(2.0 \hat{\mathrm{i}}+3.0 \hat{\mathrm{j}}) \mathrm{N}\) begins to act on the olive, and a force \(\vec{F}_{n}=(-3.0 \hat{\mathrm{i}}-2.0 \hat{\mathrm{j}}) \mathrm{N}\) begins to act on the nut. In unit-vector notation, what is the displacement of the center of mass of the olive-nut system at \(t=4.0 \mathrm{~s}\), with respect to its position at \(t=0\) ?
-12 Two skaters, one with mass 65 kg and the other with mass 40 kg , stand on an ice rink holding a pole of length 10 m and negligible mass. Starting from the ends of the pole, the skaters pull themselves along the pole until they meet. How far does the 40 kg skater move?
\(\bullet 13\) SSM A shell is shot with an initial velocity \(\vec{v}_{0}\) of \(20 \mathrm{~m} / \mathrm{s}\), at an angle of \(\theta_{0}=60^{\circ}\) with the horizontal. At the top of the trajectory, the shell explodes into two fragments of equal mass (Fig. \(9-42\) ). One fragment, whose speed immediately after the explosion is zero, falls vertically. How far from the gun does the other fragment land, assuming that the terrain is level and that air drag is negligible?


Figure 9-42 Problem 13.
-11 In Figure 9-43, two particles are launched from the origin of the coordinate system at time \(t=0\). Particle 1 of mass \(m_{1}=5.00 \mathrm{~g}\) is shot directly along the \(x\) axis on a frictionless floor, with constant speed \(10.0 \mathrm{~m} / \mathrm{s}\). Particle 2 of mass \(m_{2}=3.00 \mathrm{~g}\) is shot with a velocity of magnitude \(20.0 \mathrm{~m} / \mathrm{s}\), at an upward angle such that it always stays directly above particle 1 . (a) What is the maximum height \(H_{\max }\) reached by the com of the two-particle system? In unit-vector notation, what are the (b) velocity and (c) acceleration of the com when the com reaches \(H_{\text {max }}\) ?


Figure 9-43 Problem 14.
-•15 Figure 9-44 shows an arrangement with an air track, in which a cart is connected by a cord to a hanging block. The cart has mass \(m_{1}=0.600 \mathrm{~kg}\), and its center is initially at \(x y\) coordinates \((-0.500\) \(\mathrm{m}, 0 \mathrm{~m}\) ); the block has mass \(m_{2}=0.400 \mathrm{~kg}\), and its center is initially at \(x y\) coordinates \((0,-0.100 \mathrm{~m})\). The mass of the cord and pulley are negligible. The cart is released from rest, and both cart and block move until the cart hits the pulley. The friction between the cart and the air track and between the pulley and its axle is negligible. (a) In unit-vector notation, what is the acceleration of the center of mass of the cart-block system? (b) What is the velocity of the com as a function of time \(t\) ? (c) Sketch the path taken by the com. (d) If the path is curved, determine whether it bulges upward to the right or downward to the left, and if it is straight, find the angle between it and the \(x\) axis.


Figure 9-44 Problem 15.
\(\bullet 16\) ©o Ricardo, of mass 80 kg , and Carmelita, who is lighter, are enjoying Lake Merced at dusk in a 30 kg canoe. When the canoe is at rest in the placid water, they exchange seats, which are 3.0 m apart and symmetrically located with respect to the canoe's center. If the canoe moves 40 cm horizontally relative to a pier post, what is Carmelita's mass?
\(\bullet 17\) ©o In Fig. 9-45a, a 4.5 kg dog stands on an 18 kg flatboat at distance \(D=6.1 \mathrm{~m}\) from the shore. It walks 2.4 m along the boat toward shore and then stops. Assuming no friction between the boat and the water, find how far the dog is then from the shore. (Hint: See Fig. 9-45b.)

(a)

(b)

Figure 9-45 Problem 17.

\section*{Module 9-3 Linear Momentum}
-18 A 0.70 kg ball moving horizontally at \(5.0 \mathrm{~m} / \mathrm{s}\) strikes a vertical wall and rebounds with speed \(2.0 \mathrm{~m} / \mathrm{s}\). What is the magnitude of the change in its linear momentum?
-19 ILW A 2100 kg truck traveling north at \(41 \mathrm{~km} / \mathrm{h}\) turns east and accelerates to \(51 \mathrm{~km} / \mathrm{h}\). (a) What is the change in the truck's kinetic energy? What are the (b) magnitude and (c) direction of the change in its momentum?
\(\bullet 20\) ©o At time \(t=0\), a ball is struck at ground level and sent over level ground. The momentum \(p\) versus \(t\) during the flight is given by Fig. \(9-46\) (with \(p_{0}=6.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\) and \(p_{1}=4.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\) ). At what initial angle is the ball launched? (Hint: Find a solution that does not require you to read the time of the low point of the plot.)


Figure 9-46 Problem 20.
-2 21 A 0.30 kg softball has a velocity of \(15 \mathrm{~m} / \mathrm{s}\) at an angle of \(35^{\circ}\) below the horizontal just before making contact with the bat. What is the magnitude of the change in momentum of the ball while in contact with the bat if the ball leaves with a velocity of (a) \(20 \mathrm{~m} / \mathrm{s}\), vertically downward, and (b) \(20 \mathrm{~m} / \mathrm{s}\), horizontally back toward the pitcher?
\(\bullet 22\) Figure 9-47 gives an overhead view of the path taken by a 0.165 kg cue ball as it bounces from a rail of a pool table. The ball's initial speed is \(2.00 \mathrm{~m} / \mathrm{s}\), and the angle \(\theta_{1}\) is \(30.0^{\circ}\). The bounce reverses the \(y\) component of the ball's velocity but does not alter the \(x\) component. What are (a) angle \(\theta_{2}\) and (b) the change in the ball's linear momentum in unit-vector notation? (The fact that the ball rolls is irrelevant to the problem.)


Figure 9-47 Problem 22.

\section*{Module 9-4 Collision and Impulse}
-23 Until his seventies, Henri LaMothe (Fig. 9-48) excited audiences by belly-flopping from a height of 12 m into 30 cm of water. Assuming that he stops just as he reaches the bottom of the water and estimating his mass, find the magnitude of the impulse on him from the water.


George Long/Getty Images, Inc.
Figure 9-48 Problem 23. Belly-flopping into 30 cm of water.
-24 In February 1955, a paratrooper fell 370 m from an airplane without being able to open his chute but happened to land in snow, suffering only minor injuries. Assume that his speed at impact was \(56 \mathrm{~m} / \mathrm{s}\) (terminal speed), that his mass (including gear) was 85 kg , and that the magnitude of the force on him from the
snow was at the survivable limit of \(1.2 \times 10^{5} \mathrm{~N}\). What are (a) the minimum depth of snow that would have stopped him safely and (b) the magnitude of the impulse on him from the snow?
-25 A 1.2 kg ball drops vertically onto a floor, hitting with a speed of \(25 \mathrm{~m} / \mathrm{s}\). It rebounds with an initial speed of \(10 \mathrm{~m} / \mathrm{s}\). (a) What impulse acts on the ball during the contact? (b) If the ball is in contact with the floor for 0.020 s , what is the magnitude of the average force on the floor from the ball?
-26 In a common but dangerous prank, a chair is pulled away as a person is moving downward to sit on it, causing the victim to land hard on the floor. Suppose the victim falls by 0.50 m , the mass that moves downward is 70 kg , and the collision on the floor lasts 0.082 s . What are the magnitudes of the (a) impulse and (b) average force acting on the victim from the floor during the collision?
-27 SSM A force in the negative direction of an \(x\) axis is applied for 27 ms to a 0.40 kg ball initially moving at \(14 \mathrm{~m} / \mathrm{s}\) in the positive direction of the axis. The force varies in magnitude, and the impulse has magnitude \(32.4 \mathrm{~N} \cdot \mathrm{~s}\). What are the ball's (a) speed and (b) direction of travel just after the force is applied? What are (c) the average magnitude of the force and (d) the direction of the impulse on the ball?
-28 In tae-kwon-do, a hand is slammed down onto a target at a speed of \(13 \mathrm{~m} / \mathrm{s}\) and comes to a stop during the 5.0 ms collision. Assume that during the impact the hand is independent of the arm and has a mass of 0.70 kg . What are the magnitudes of the (a) impulse and (b) average force on the hand from the target?
-29 Suppose a gangster sprays Superman's chest with 3 g bullets at the rate of 100 bullets \(/ \mathrm{min}\), and the speed of each bullet is 500 \(\mathrm{m} / \mathrm{s}\). Suppose too that the bullets rebound straight back with no change in speed. What is the magnitude of the average force on Superman's chest?
-•30 Two average forces. A steady stream of 0.250 kg snowballs is shot perpendicularly into a wall at a speed of \(4.00 \mathrm{~m} / \mathrm{s}\). Each ball sticks to the wall. Figure 9-49 gives the magnitude \(F\) of the force on the wall as a function of time \(t\) for two of the snowball impacts. Impacts occur with a repetition time interval \(\Delta t_{r}=50.0 \mathrm{~ms}\), last a duration time interval \(\Delta t_{d}=10 \mathrm{~ms}\), and produce isosceles triangles on the graph, with each impact reaching a force maximum \(F_{\max }=200 \mathrm{~N}\). During each impact, what are the magnitudes of (a) the impulse and (b) the average force on the wall? (c) During a time interval of many impacts, what is the magnitude of the average force on the wall?

-31 Jumping up before the elevator hits. After the cable snaps and the safety system fails, an elevator cab free-falls from a height of 36 m . During the collision at the bottom of the elevator shaft, a 90 kg passenger is stopped in 5.0 ms . (Assume that neither the passenger nor the cab rebounds.) What are the magnitudes of the (a) impulse and (b) average force on the passenger during the collision? If the passenger were to jump upward with a speed of \(7.0 \mathrm{~m} / \mathrm{s}\) relative to the cab floor just before the cab hits the bottom of the shaft, what
are the magnitudes of the (c) impulse and (d) average force (assuming the same stopping time)?
-•32 A 5.0 kg toy car can move along an \(x\) axis; Fig. 9-50 gives \(F_{x}\) of the force acting on the car, which begins at rest at time \(t=0\). The scale on the \(F_{x}\) axis is set by \(F_{x s}=5.0 \mathrm{~N}\). In unit-vector notation, what is \(\vec{p}\) at (a) \(t=4.0 \mathrm{~s}\) and (b) \(t=7.0 \mathrm{~s}\), and (c) what is \(\vec{v}\) at \(t=9.0 \mathrm{~s}\) ?
\(\bullet 33\) ©o Figure \(9-51\) shows a 0.300 kg baseball just before and just after it collides with a bat. Just before, the ball has velocity \(\vec{v}_{1}\) of magnitude \(12.0 \mathrm{~m} / \mathrm{s}\) and angle \(\theta_{1}=35.0^{\circ}\). Just after, it is traveling directly upward with velocity \(\vec{v}_{2}\) of magnitude 10.0 \(\mathrm{m} / \mathrm{s}\). The duration of the collision is 2.00 ms . What are the (a) magnitude and (b) direction (relative to the positive direction of the \(x\) axis) of the impulse on the ball from the bat? What are the (c) magnitude and (d) direction of the average force on the ball from the bat?
-•34 Basilisk lizards can run across the top of a water surface (Fig. 9-52). With each step, a lizard first slaps its foot against the water and then pushes it down into the water rapidly enough to form an air cavity around the top of the foot. To avoid having to pull the foot back up against water drag in order to complete the step, the lizard withdraws the foot before water can flow into the air cavity. If the lizard is not to sink, the average upward impulse on the lizard during this full action of slap, downward push, and withdrawal must match the downward impulse due to the gravitational force. Suppose the mass of a basilisk lizard is 90.0 g , the mass of each foot is 3.00 g , the speed of a foot as it slaps the water is \(1.50 \mathrm{~m} / \mathrm{s}\), and the time for a single step is 0.600 s . (a) What is the magnitude of the impulse on the lizard during the slap? (Assume this impulse is directly upward.) (b) During the 0.600 s duration of a step, what is the downward impulse on the lizard due to the gravitational force? (c) Which action, the slap or the push, provides the primary support for the lizard, or are they approximately equal in their support?


Stephen Dalton/Photo Researchers, Inc.
Figure 9-52 Problem 34. Lizard running across water.
-035 ©0 Figure 9-53 shows an approximate plot of force magnitude \(F\) versus time \(t\) during the collision of a 58 g Superball with a wall. The initial velocity of the ball is \(34 \mathrm{~m} / \mathrm{s}\) perpendicular to the wall; the ball rebounds directly back with approximately the same speed, also perpendicular to the wall. What is \(F_{\text {max }}\), the maximum magnitude of the force on the ball from the wall during the collision?
-036 A 0.25 kg puck is initially stationary on an ice surface with negligible friction. At time \(t=0\), a horizontal force begins to move the puck. The force is given by \(\vec{F}=\left(12.0-3.00 t^{2}\right) \hat{\mathrm{i}}\), with \(\vec{F}\) in newtons and \(t\) in seconds, and it acts until its magnitude is zero. (a) What is the magnitude of the impulse on the puck from the force between \(t=0.500 \mathrm{~s}\) and \(t=1.25 \mathrm{~s}\) ? (b) What is the change in momentum of the puck between \(t=0\) and the instant at which \(F=0\) ?
-037 SSM A soccer player kicks a soccer ball of mass 0.45 kg that is initially at rest. The foot of the player is in contact with the ball for \(3.0 \times 10^{-3} \mathrm{~s}\), and the force of the kick is given by
\[
F(t)=\left[\left(6.0 \times 10^{6}\right) t-\left(2.0 \times 10^{9}\right) t^{2}\right] \mathrm{N}
\]
for \(0 \leq t \leq 3.0 \times 10^{-3} \mathrm{~s}\), where \(t\) is in seconds. Find the magnitudes of (a) the impulse on the ball due to the kick, (b) the average force on the ball from the player's foot during the period of contact, (c) the maximum force on the ball from the player's foot during the period of contact, and (d) the ball's velocity immediately after it loses contact with the player's foot.
-•38 In the overhead view of Fig. \(9-54\), a 300 g ball with a speed \(v\) of \(6.0 \mathrm{~m} / \mathrm{s}\) strikes a wall at an angle \(\theta\) of \(30^{\circ}\) and then rebounds with the same speed and angle. It is in contact with the wall for 10 ms . In unitvector notation, what are (a) the


Figure 9-54 Problem 38. impulse on the ball from the wall and (b) the average force on the wall from the ball?

\section*{Module 9-5 Conservation of Linear Momentum}
-39 SSM A 91 kg man lying on a surface of negligible friction shoves a 68 g stone away from himself, giving it a speed of \(4.0 \mathrm{~m} / \mathrm{s}\). What speed does the man acquire as a result?
-40 A space vehicle is traveling at \(4300 \mathrm{~km} / \mathrm{h}\) relative to Earth when the exhausted rocket motor (mass \(4 m\) ) is disengaged and sent backward with a speed of \(82 \mathrm{~km} / \mathrm{h}\) relative to the command module (mass \(m\) ). What is the speed of the command module relative to Earth just after the separation?
-•41 Figure \(9-55\) shows a two-ended "rocket" that is initially stationary on a frictionless floor, with its center at the origin of an \(x\) axis. The rocket consists of a central block \(C\) (of mass \(M=6.00 \mathrm{~kg}\) ) and blocks \(L\) and \(R\) (each of mass \(m=2.00 \mathrm{~kg}\) ) on the left and right sides. Small explosions can shoot either of the side blocks away from block \(C\) and along the \(x\) axis. Here is the sequence: (1) At time \(t=\) 0 , block \(L\) is shot to the left with a speed of \(3.00 \mathrm{~m} / \mathrm{s}\) relative to the ve-


Figure 9-55 Problem 41.
locity that the explosion gives the rest of the rocket. (2) Next, at time \(t=0.80 \mathrm{~s}\), block \(R\) is shot to the right with a speed of \(3.00 \mathrm{~m} / \mathrm{s}\) relative to the velocity that block \(C\) then has. At \(t=2.80 \mathrm{~s}\), what are (a) the velocity of block \(C\) and (b) the position of its center?
-•42 An object, with mass \(m\) and speed \(v\) relative to an observer, explodes into two pieces, one three times as massive as the other; the explosion takes place in deep space. The less massive piece stops relative to the observer. How much kinetic energy is added to the system during the explosion, as measured in the observer's reference frame?
\(\bullet 43\) In the Olympiad of 708 B.c., some athletes competing in the standing long jump used handheld weights called halteres to lengthen their jumps (Fig. 9-56). The weights were swung up in front just before liftoff and then swung down and thrown backward during the flight. Suppose a modern 78 kg long jumper similarly uses two 5.50 kg halteres, throwing them horizontally to the rear at his maximum height such that their horizontal velocity is zero relative to the ground. Let his liftoff velocity be \(\vec{v}=(9.5 \hat{i}+4.0 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}\) with or without the halteres, and assume that he lands at the liftoff level. What distance would the use of the halteres add to his range?


Réunion des Musées Nationaux/
Art Resource
Figure 9-56 Problem 43.
\(\bullet 44\) ©o In Fig. 9-57, a stationary block explodes into two pieces \(L\) and \(R\) that slide across a frictionless floor and then into regions with friction, where they stop. Piece \(L\), with a mass of 2.0 kg , encounters a coefficient of kinetic friction \(\mu_{L}=0.40\) and slides to a stop in distance \(d_{L}=0.15 \mathrm{~m}\). Piece \(R\) encounters a coefficient of kinetic friction \(\mu_{R}=\) 0.50 and slides to a stop in distance \(d_{R}=0.25 \mathrm{~m}\). What was the mass of the block?


Figure 9-57 Problem 44.
©045 SSM Www A 20.0 kg body is moving through space in the positive direction of an \(x\) axis with a speed of \(200 \mathrm{~m} / \mathrm{s}\) when, due to an internal explosion, it breaks into three parts. One part, with a mass of 10.0 kg , moves away from the point of explosion with a speed of \(100 \mathrm{~m} / \mathrm{s}\) in the positive \(y\) direction. A second part, with a mass of 4.00 kg , moves in the negative \(x\) direction with a speed of \(500 \mathrm{~m} / \mathrm{s}\). (a) In unit-vector notation, what is the velocity of the third part? (b) How much energy is released in the explosion? Ignore effects due to the gravitational force.
-•46 A 4.0 kg mess kit sliding on a frictionless surface explodes into two 2.0 kg parts: \(3.0 \mathrm{~m} / \mathrm{s}\), due north, and \(5.0 \mathrm{~m} / \mathrm{s}, 30^{\circ}\) north of east. What is the original speed of the mess kit?
\(\bullet 47\) A vessel at rest at the origin of an \(x y\) coordinate system explodes into three pieces. Just after the explosion, one piece, of mass \(m\), moves with velocity \((-30 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}\) and a second piece, also of mass \(m\), moves with velocity \((-30 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}\). The third piece has mass \(3 m\). Just after the explosion, what are the (a) magnitude and (b) direction of the velocity of the third piece?
\(\bullet \bullet 48\) ©o Particle \(A\) and particle \(B\) are held together with a compressed spring between them. When they are released, the spring pushes them apart, and they then fly off in opposite directions, free of the spring. The mass of \(A\) is 2.00 times the mass of \(B\), and the energy stored in the spring was 60 J . Assume that the spring has negligible mass and that all its stored energy is transferred to the particles. Once that transfer is complete, what are the kinetic energies of (a) particle \(A\) and (b) particle \(B\) ?

\section*{Module 9-6 Momentum and Kinetic Energy in Collisions}
-49 A bullet of mass 10 g strikes a ballistic pendulum of mass 2.0 kg . The center of mass of the pendulum rises a vertical distance of 12 cm . Assuming that the bullet remains embedded in the pendulum, calculate the bullet's initial speed.
-50 A 5.20 g bullet moving at \(672 \mathrm{~m} / \mathrm{s}\) strikes a 700 g wooden block at rest on a frictionless surface. The bullet emerges, traveling in the same direction with its speed reduced to \(428 \mathrm{~m} / \mathrm{s}\). (a) What is the resulting speed of the block? (b) What is the speed of the bullet-block center of mass?
- 51 (6) In Fig. 9-58a, a 3.50 g bullet is fired horizontally at two blocks at rest on a frictionless table. The bullet passes through block 1 (mass 1.20 kg ) and embeds itself in block 2 (mass 1.80 kg ). The blocks end up with speeds \(v_{1}=0.630 \mathrm{~m} / \mathrm{s}\) and \(v_{2}=1.40 \mathrm{~m} / \mathrm{s}\) (Fig. \(9-58 b)\). Neglecting the material removed from block 1 by the bullet, find the speed of the bullet as it (a) leaves and (b) enters block 1.


Figure 9-58 Problem 51.
\(\bullet 52\) ©o In Fig. 9-59, a 10 g bullet moving directly upward at \(1000 \mathrm{~m} / \mathrm{s}\) strikes and passes through the center of mass of a 5.0 kg block initially at rest. The bullet emerges from the block moving directly upward at 400 \(\mathrm{m} / \mathrm{s}\). To what maximum height does the block then rise above its initial position?


Figure 9-59 Problem 52.
-•53 In Anchorage, collisions of a vehicle with a moose are so common that they are referred to with the abbreviation MVC. Suppose a 1000 kg car slides into a stationary 500 kg moose on a very slippery road, with the moose being thrown through the windshield (a common MVC result). (a) What percent of the original kinetic energy is lost in the collision to other forms of energy? A similar danger occurs in Saudi Arabia because of camel-vehicle
collisions (CVC). (b) What percent of the original kinetic energy is lost if the car hits a 300 kg camel? (c) Generally, does the percent loss increase or decrease if the animal mass decreases?
-•54 A completely inelastic collision occurs between two balls of wet putty that move directly toward each other along a vertical axis. Just before the collision, one ball, of mass 3.0 kg , is moving upward at \(20 \mathrm{~m} / \mathrm{s}\) and the other ball, of mass 2.0 kg , is moving downward at \(12 \mathrm{~m} / \mathrm{s}\). How high do the combined two balls of putty rise above the collision point? (Neglect air drag.)
\(\bullet 55\) ILW A 5.0 kg block with a speed of \(3.0 \mathrm{~m} / \mathrm{s}\) collides with a 10 kg block that has a speed of \(2.0 \mathrm{~m} / \mathrm{s}\) in the same direction. After the collision, the 10 kg block travels in the original direction with a speed of \(2.5 \mathrm{~m} / \mathrm{s}\). (a) What is the velocity of the 5.0 kg block immediately after the collision? (b) By how much does the total kinetic energy of the system of two blocks change because of the collision? (c) Suppose, instead, that the 10 kg block ends up with a speed of \(4.0 \mathrm{~m} / \mathrm{s}\). What then is the change in the total kinetic energy? (d) Account for the result you obtained in (c).
\({ }^{\bullet} 56\) In the "before" part of Fig. 9-60, car \(A\) (mass 1100 kg ) is stopped at a traffic light when it is rear-ended by car \(B\) (mass 1400 kg ). Both cars then slide with locked wheels until the frictional force from the slick road (with a low \(\mu_{k}\) of 0.13 ) stops them, at distances \(d_{A}=8.2 \mathrm{~m}\) and \(d_{B}=6.1 \mathrm{~m}\). What are the speeds of (a) car \(A\) and (b) car \(B\) at the start of the sliding, just after the collision? (c) Assuming that linear momentum is conserved during the collision, find the speed of car \(B\) just before the collision. (d) Explain why this assumption may be invalid.


Figure 9-60 Problem 56.
\(\bullet 57\) ©o In Fig. 9-61, a ball of mass \(m=60 \mathrm{~g}\) is shot with speed \(v_{i}=22\) \(\mathrm{m} / \mathrm{s}\) into the barrel of a spring gun of mass \(M=240 \mathrm{~g}\) initially at rest on a frictionless surface. The ball sticks in


Figure 9-61 Problem 57. the barrel at the point of maximum compression of the spring. Assume that the increase in thermal energy due to friction between the ball and the barrel is negligible. (a) What is the speed of the spring gun after the ball stops in the barrel? (b) What fraction of the initial kinetic energy of the ball is stored in the spring?
\(\bullet \bullet 58\) In Fig. 9-62, block 2 (mass 1.0 kg ) is at rest on a frictionless surface and touching the end of an unstretched spring of spring constant


Figure 9-62 Problem 58. \(200 \mathrm{~N} / \mathrm{m}\). The other end of the spring is fixed to a wall. Block 1 (mass 2.0 kg ), traveling at speed \(v_{1}=4.0\) \(\mathrm{m} / \mathrm{s}\), collides with block 2, and the two blocks stick together. When the blocks momentarily stop, by what distance is the spring compressed?
\({ }^{\circ 0059}\) ILW In Fig. 9-63, block 1 (mass 2.0 kg ) is moving rightward at \(10 \mathrm{~m} / \mathrm{s}\) and block 2 (mass 5.0 kg ) is moving rightward at \(3.0 \mathrm{~m} / \mathrm{s}\). The surface is frictionless, and a spring with a spring constant of \(1120 \mathrm{~N} / \mathrm{m}\) is fixed to block 2 . When the blocks collide, the compression of the spring is maximum at the instant the blocks have the same velocity. Find the maximum compression.


Figure 9-63 Problem 59.

\section*{Module 9-7 Elastic Collisions in One Dimension}
-60 In Fig. 9-64, block \(A\) (mass 1.6 kg ) slides into block \(B\) (mass 2.4 kg ), along a frictionless surface. The directions of three velocities before \((i)\) and after ( \(f\) ) the collision are indicated; the corresponding speeds are \(v_{A i}=\) \(5.5 \mathrm{~m} / \mathrm{s}, v_{B i}=2.5 \mathrm{~m} / \mathrm{s}\), and \(v_{B f}=4.9\) \(\mathrm{m} / \mathrm{s}\). What are the (a) speed and (b) direction (left or right) of velocity \(\vec{v}_{A f}\) ? (c) Is the collision elastic?

-61 SSM A cart with mass 340 g moving on a frictionless linear air track at an initial speed of \(1.2 \mathrm{~m} / \mathrm{s}\) undergoes an elastic collision with an initially stationary cart of unknown mass. After the collision, the first cart continues in its original direction at \(0.66 \mathrm{~m} / \mathrm{s}\). (a) What is the mass of the second cart? (b) What is its speed after impact? (c) What is the speed of the twocart center of mass?
-62 Two titanium spheres approach each other head-on with the same speed and collide elastically. After the collision, one of the spheres, whose mass is 300 g , remains at rest. (a) What is the mass of the other sphere? (b) What is the speed of the two-sphere center of mass if the initial speed of each sphere is \(2.00 \mathrm{~m} / \mathrm{s}\) ?
-•63 Block 1 of mass \(m_{1}\) slides along a frictionless floor and into a one-dimensional elastic collision with stationary block 2 of mass \(m_{2}=3 m_{1}\). Prior to the collision, the center of mass of the twoblock system had a speed of \(3.00 \mathrm{~m} / \mathrm{s}\). Afterward, what are the speeds of (a) the center of mass and (b) block 2 ?
\(\bullet\) •64 (60 A steel ball of mass 0.500 kg is fastened to a cord that is 70.0 cm long and fixed at the far end. The ball is then released when the cord is horizontal (Fig. 9-65). At the bottom of its path, the ball strikes a 2.50 kg steel block initially at rest on a frictionless surface. The collision is elastic. Find (a) the speed of the ball and (b) the speed of


Figure 9-65 Problem 64. the block, both just after the collision.
-065 SSM A body of mass 2.0 kg makes an elastic collision with another body at rest and continues to move in the original direction but with one-fourth of its original speed. (a) What is the mass of the other body? (b) What is the speed of the two-body center of mass if the initial speed of the 2.0 kg body was \(4.0 \mathrm{~m} / \mathrm{s}\) ?
-•66 Block 1, with mass \(m_{1}\) and speed \(4.0 \mathrm{~m} / \mathrm{s}\), slides along an \(x\) axis on a frictionless floor and then undergoes a one-dimensional elastic collision with stationary block 2 , with mass \(m_{2}=0.40 m_{1}\). The two blocks then slide into a region where the coefficient of kinetic
friction is 0.50 ; there they stop. How far into that region do (a) block 1 and (b) block 2 slide?
\(\because 67\) In Fig. 9-66, particle 1 of mass \(m_{1}=0.30 \mathrm{~kg}\) slides rightward along an \(x\) axis on a frictionless floor with a speed of \(2.0 \mathrm{~m} / \mathrm{s}\). When it reaches \(x=\) 0 , it undergoes a one-dimensional elastic collision with stationary parti-


Figure 9-66 Problem 67. cle 2 of mass \(m_{2}=0.40 \mathrm{~kg}\). When particle 2 then reaches a wall at \(x_{w}=70 \mathrm{~cm}\), it bounces from the wall with no loss of speed. At what position on the \(x\) axis does particle 2 then collide with particle 1?
-068 60 In Fig. 9-67, block 1 of mass \(m_{1}\) slides from rest along a frictionless ramp from height \(h=2.50 \mathrm{~m}\) and then collides with stationary block 2 , which has mass \(m_{2}=2.00 m_{1}\). After the collision, block 2 slides into a region where the coefficient of kinetic friction \(\mu_{k}\) is 0.500 and comes to a stop in distance \(d\) within that region. What is the value of distance \(d\) if the collision is (a) elastic and (b) completely inelastic?


Figure 9-67 Problem 68.
\(\bullet \bullet 69\) A small ball of mass \(m\) is aligned above a larger ball of mass \(M=0.63 \mathrm{~kg}\) (with a slight separation, as with the baseball and basketball of Fig. 9-68a), and the two are dropped simultaneously from a height of \(h=1.8 \mathrm{~m}\). (Assume the radius of each ball is negligible relative to \(h\).) (a) If the larger ball rebounds elastically from the floor and then the small ball rebounds elastically from the larger ball, what value of \(m\) results in the larger ball stopping when it collides with the small ball? (b) What height does the small ball


Figure 9-68 Problem 69. then reach (Fig. 9-68b)?
-0070 ©0 In Fig. 9-69, puck 1 of mass \(m_{1}=0.20 \mathrm{~kg}\) is sent sliding across a frictionless lab bench, to undergo a one-dimensional elastic collision with stationary puck 2. Puck 2 then slides off the bench and lands a distance \(d\) from the base of the bench. Puck 1 rebounds from the collision and slides off the opposite edge of the bench, landing a distance \(2 d\) from the base of the bench. What is the mass of puck 2? (Hint: Be careful with signs.)


Figure 9-69 Problem 70.

\section*{Module 9-8 Collisions in Two Dimensions}
\(\bullet 71\) ILW In Fig. 9-21, projectile particle 1 is an alpha particle and target particle 2 is an oxygen nucleus. The alpha particle is scattered at angle \(\theta_{1}=64.0^{\circ}\) and the oxygen nucleus recoils with speed \(1.20 \times\) \(10^{5} \mathrm{~m} / \mathrm{s}\) and at angle \(\theta_{2}=51.0^{\circ}\). In atomic mass units, the mass of the alpha particle is 4.00 u and the mass of the oxygen nucleus is 16.0 u . What are the (a) final and (b) initial speeds of the alpha particle?
\(\bullet 72\) Ball \(B\), moving in the positive direction of an \(x\) axis at speed \(v\), collides with stationary ball \(A\) at the origin. \(A\) and \(B\) have different masses. After the collision, \(B\) moves in the negative direction of the \(y\) axis at speed \(v / 2\). (a) In what direction does \(A\) move? (b) Show that the speed of \(A\) cannot be determined from the given information.
\(\bullet 73\) After a completely inelastic collision, two objects of the same mass and same initial speed move away together at half their initial speed. Find the angle between the initial velocities of the objects.
-०74 Two 2.0 kg bodies, \(A\) and \(B\), collide. The velocities before the collision are \(\vec{v}_{A}=(15 \hat{\mathrm{i}}+30 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}\) and \(\vec{v}_{B}=(-10 \hat{\mathrm{i}}+5.0 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}\). After the collision, \(\vec{v}_{A}^{\prime}=(-5.0 \hat{\mathrm{i}}+20 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}\). What are (a) the final velocity of \(B\) and (b) the change in the total kinetic energy (including sign)?
\(\bullet 75\) © A projectile proton with a speed of \(500 \mathrm{~m} / \mathrm{s}\) collides elastically with a target proton initially at rest. The two protons then move along perpendicular paths, with the projectile path at \(60^{\circ}\) from the original direction. After the collision, what are the speeds of (a) the target proton and (b) the projectile proton?

\section*{Module 9-9 Systems with Varying Mass: A Rocket}
-76 A 6090 kg space probe moving nose-first toward Jupiter at \(105 \mathrm{~m} / \mathrm{s}\) relative to the Sun fires its rocket engine, ejecting 80.0 kg of exhaust at a speed of \(253 \mathrm{~m} / \mathrm{s}\) relative to the space probe. What is the final velocity of the probe?
\({ }^{-77}\) ssm In Fig. 9-70, two long barges are moving in the same direction in still water, one with a speed of \(10 \mathrm{~km} / \mathrm{h}\) and the other with a speed of \(20 \mathrm{~km} / \mathrm{h}\). While they are passing each other, coal is shoveled from the slower to the faster one at a rate of \(1000 \mathrm{~kg} / \mathrm{min}\). How much additional force must be provided by the driving engines of (a) the faster barge and (b) the slower barge if neither is to change speed? Assume that the shoveling is always perfectly sideways and that the frictional forces between the barges and the water do not depend on the mass of the barges.


Figure 9-70 Problem 77.
-78 Consider a rocket that is in deep space and at rest relative to an inertial reference frame. The rocket's engine is to be fired for a
certain interval. What must be the rocket's mass ratio (ratio of initial to final mass) over that interval if the rocket's original speed relative to the inertial frame is to be equal to (a) the exhaust speed (speed of the exhaust products relative to the rocket) and (b) 2.0 times the exhaust speed?
-79 SSM ILW A rocket that is in deep space and initially at rest relative to an inertial reference frame has a mass of \(2.55 \times 10^{5} \mathrm{~kg}\), of which \(1.81 \times 10^{5} \mathrm{~kg}\) is fuel. The rocket engine is then fired for 250 s while fuel is consumed at the rate of \(480 \mathrm{~kg} / \mathrm{s}\). The speed of the exhaust products relative to the rocket is \(3.27 \mathrm{~km} / \mathrm{s}\). (a) What is the rocket's thrust? After the 250 s firing, what are (b) the mass and (c) the speed of the rocket?

\section*{Additional Problems}

80 An object is tracked by a radar station and determined to have a position vector given by \(\vec{r}=(3500-160 t) \hat{i}+2700 \hat{\mathrm{j}}+300 \hat{\mathrm{k}}\), with \(\vec{r}\) in meters and \(t\) in seconds. The radar station's \(x\) axis points east, its \(y\) axis north, and its \(z\) axis vertically up. If the object is a 250 kg meteorological missile, what are (a) its linear momentum, (b) its direction of motion, and (c) the net force on it?
81 The last stage of a rocket, which is traveling at a speed of \(7600 \mathrm{~m} / \mathrm{s}\), consists of two parts that are clamped together: a rocket case with a mass of 290.0 kg and a payload capsule with a mass of 150.0 kg . When the clamp is released, a compressed spring causes the two parts to separate with a relative speed of \(910.0 \mathrm{~m} / \mathrm{s}\). What are the speeds of (a) the rocket case and (b) the payload after they have separated? Assume that all velocities are along the same line. Find the total kinetic energy of the two parts (c) before and (d) after they separate. (e) Account for the difference.
82 Pancake collapse of a tall building. In the section of a tall building shown in Fig. 9-71a, the infrastructure of any given floor \(K\) must support the weight \(W\) of all higher floors. Normally the infrastructure is constructed with a safety factor \(s\) so that it can withstand an even greater downward force of \(s W\). If, however, the support columns between \(K\) and \(L\) suddenly

(a)

(b)

Figure 9-71 Problem 82. collapse and allow the higher floors to free-fall together onto floor \(K\) (Fig. 9-71b), the force in the collision can exceed \(s W\) and, after a brief pause, cause \(K\) to collapse onto floor \(J\), which collapses on floor \(I\), and so on until the ground is reached. Assume that the floors are separated by \(d=4.0 \mathrm{~m}\) and have the same mass. Also assume that when the floors above \(K\) free-fall onto \(K\), the collision lasts 1.5 ms . Under these simplified conditions, what value must the safety factor \(s\) exceed to prevent pancake collapse of the building?
83 "Relative" is an important word. In Fig. 9-72, block \(L\) of mass \(m_{L}=1.00 \mathrm{~kg}\) and block \(R\) of mass \(m_{R}=0.500 \mathrm{~kg}\) are held in place with


Figure 9-72 Problem 83. a compressed spring between them. When the blocks are released, the spring sends them sliding across a frictionless floor. (The spring has negligible mass and falls to the floor after the blocks leave it.) (a) If the spring gives block \(L\) a release speed of \(1.20 \mathrm{~m} / \mathrm{s}\) relative to the floor, how far does block \(R\) travel in the next 0.800 s ? (b) If, instead, the spring gives block \(L\) a release speed of \(1.20 \mathrm{~m} / \mathrm{s}\) relative to the velocity that the spring gives block \(R\), how far does block \(R\) travel in the next 0.800 s ?

84 Figure 9-73 shows an overhead view of two particles sliding at constant velocity over a frictionless surface. The particles have the same mass and the same initial speed \(v=4.00 \mathrm{~m} / \mathrm{s}\), and they collide where their paths intersect. An \(x\) axis is arranged to bisect the angle between their incoming paths, such that \(\theta=40.0^{\circ}\). The region to the right of the collision is divided into four lettered sections by the \(x\) axis and four numbered dashed lines. In what region or along what line do the particles travel if the collision is (a) completely inelastic, (b) elastic, and (c) inelastic? What are their final speeds if the collision is (d) completely inelastic and (e) elastic?
85 Speed deamplifier. In Fig. \(9-74\), block 1 of mass \(m_{1}\) slides along an \(x\) axis on a frictionless floor at speed \(4.00 \mathrm{~m} / \mathrm{s}\). Then it undergoes a one-dimensional elastic collision with stationary block 2 of mass \(m_{2}=\) \(2.00 m_{1}\). Next, block 2 undergoes a one-dimensional elastic collision with stationary block 3 of mass \(m_{3}=2.00 m_{2}\). (a) What then is the speed of block 3? Are (b) the speed, (c) the kinetic energy, and (d) the momentum of block 3 greater than, less than, or the same as the initial values for block 1 ?
86 Speed amplifier. In Fig. 9-75, block 1 of mass \(m_{1}\) slides along an \(x\) axis on a frictionless floor with a speed of \(v_{1 i}=4.00 \mathrm{~m} / \mathrm{s}\). Then it undergoes a one-dimensional elastic colli-


Figure 9-75 Problem 86. sion with stationary block 2 of mass \(m_{2}=0.500 m_{1}\). Next, block 2 undergoes a one-dimensional elastic collision with stationary block 3 of mass \(m_{3}=0.500 m_{2}\). (a) What then is the speed of block 3? Are (b) the speed, (c) the kinetic energy, and (d) the momentum of block 3 greater than, less than, or the same as the initial values for block 1 ?
87 A ball having a mass of 150 g strikes a wall with a speed of \(5.2 \mathrm{~m} / \mathrm{s}\) and rebounds with only \(50 \%\) of its initial kinetic energy. (a) What is the speed of the ball immediately after rebounding? (b) What is the magnitude of the impulse on the wall from the ball? (c) If the ball is in contact with the wall for 7.6 ms , what is the magnitude of the average force on the ball from the wall during this time interval?

88 A spacecraft is separated into two parts by detonating the explosive bolts that hold them together. The masses of the parts are 1200 kg and 1800 kg ; the magnitude of the impulse on each part from the bolts is \(300 \mathrm{~N} \cdot \mathrm{~s}\). With what relative speed do the two parts separate because of the detonation?

89 SSM A 1400 kg car moving at \(5.3 \mathrm{~m} / \mathrm{s}\) is initially traveling north along the positive direction of a \(y\) axis. After completing a \(90^{\circ}\) right-hand turn in 4.6 s , the inattentive operator drives into a tree, which stops the car in 350 ms . In unit-vector notation, what is the impulse on the car (a) due to the turn and (b) due to the collision? What is the magnitude of the average force that acts on the car (c) during the turn and (d) during the collision? (e) What is the direction of the average force during the turn?
90 ILW A certain radioactive (parent) nucleus transforms to a different (daughter) nucleus by emitting an electron and a neutrino. The parent nucleus was at rest at the origin of an \(x y\) coordinate system. The electron moves away from the origin with linear momentum \(\left(-1.2 \times 10^{-22} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\right) \hat{\mathrm{i}}\); the neutrino moves away from the
origin with linear momentum \(\left(-6.4 \times 10^{-23} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\right) \hat{\mathrm{j}}\). What are the (a) magnitude and (b) direction of the linear momentum of the daughter nucleus? (c) If the daughter nucleus has a mass of \(5.8 \times\) \(10^{-26} \mathrm{~kg}\), what is its kinetic energy?
91 A 75 kg man rides on a 39 kg cart moving at a velocity of \(2.3 \mathrm{~m} / \mathrm{s}\). He jumps off with zero horizontal velocity relative to the ground. What is the resulting change in the cart's velocity, including sign?
92 Two blocks of masses 1.0 kg and 3.0 kg are connected by a spring and rest on a frictionless surface. They are given velocities toward each other such that the 1.0 kg block travels initially at \(1.7 \mathrm{~m} / \mathrm{s}\) toward the center of mass, which remains at rest. What is the initial speed of the other block?
93 SSM A railroad freight car of mass \(3.18 \times 10^{4} \mathrm{~kg}\) collides with a stationary caboose car. They couple together, and \(27.0 \%\) of the initial kinetic energy is transferred to thermal energy, sound, vibrations, and so on. Find the mass of the caboose.
94 An old Chrysler with mass 2400 kg is moving along a straight stretch of road at \(80 \mathrm{~km} / \mathrm{h}\). It is followed by a Ford with mass 1600 kg moving at \(60 \mathrm{~km} / \mathrm{h}\). How fast is the center of mass of the two cars moving?
95 SSM In the arrangement of Fig. 9-21, billiard ball 1 moving at a speed of \(2.2 \mathrm{~m} / \mathrm{s}\) undergoes a glancing collision with identical billiard ball 2 that is at rest. After the collision, ball 2 moves at speed \(1.1 \mathrm{~m} / \mathrm{s}\), at an angle of \(\theta_{2}=60^{\circ}\). What are (a) the magnitude and (b) the direction of the velocity of ball 1 after the collision? (c) Do the given data suggest the collision is elastic or inelastic?
96 A rocket is moving away from the solar system at a speed of \(6.0 \times 10^{3} \mathrm{~m} / \mathrm{s}\). It fires its engine, which ejects exhaust with a speed of \(3.0 \times 10^{3} \mathrm{~m} / \mathrm{s}\) relative to the rocket. The mass of the rocket at this time is \(4.0 \times 10^{4} \mathrm{~kg}\), and its acceleration is \(2.0 \mathrm{~m} / \mathrm{s}^{2}\). (a) What is the thrust of the engine? (b) At what rate, in kilograms per second, is exhaust ejected during the firing?

97 The three balls in the overhead view of Fig. 9-76 are identical. Balls 2 and 3 touch each other and are aligned perpendicular to the path of ball 1.


Figure 9-76 Problem 97.

The velocity of ball 1 has magnitude \(v_{0}=10 \mathrm{~m} / \mathrm{s}\) and is directed at the contact point of balls 1 and 2. After the collision, what are the (a) speed and (b) direction of the velocity of ball 2 , the (c) speed and (d) direction of the velocity of ball 3, and the (e) speed and (f) direction of the velocity of ball 1? (Hint: With friction absent, each impulse is directed along the line connecting the centers of the colliding balls, normal to the colliding surfaces.)
98 A 0.15 kg ball hits a wall with a velocity of \((5.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(6.50\) \(\mathrm{m} / \mathrm{s}) \hat{\mathrm{j}}+(4.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{k}}\). It rebounds from the wall with a velocity of \((2.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(3.50 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}+(-3.20 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{k}}\). What are (a) the change in the ball's momentum, (b) the impulse on the ball, and (c) the impulse on the wall?

99 In Fig. 9-77, two identical containers of sugar are connected by a cord that passes over a frictionless pulley. The cord and pulley have negligible mass, each container and its sugar together have a mass of 500 g , the centers of the containers are separated by 50 mm , and the containers are held fixed at the same height. What is the horizontal distance between the center of container 1 and the center of mass of the two-container system (a) initially and


Figure 9-77
Problem 99.
(b) after 20 g of sugar is transferred from container 1 to container 2? After the transfer and after the containers are released, (c) in what direction and (d) at what acceleration magnitude does the center of mass move?

100 In a game of pool, the cue ball strikes another ball of the same mass and initially at rest. After the collision, the cue ball moves at \(3.50 \mathrm{~m} / \mathrm{s}\) along a line making an angle of \(22.0^{\circ}\) with the cue ball's original direction of motion, and the second ball has a speed of \(2.00 \mathrm{~m} / \mathrm{s}\). Find (a) the angle between the direction of motion of the second ball and the original direction of motion of the cue ball and (b) the original speed of the cue ball. (c) Is kinetic energy (of the centers of mass, don't consider the rotation) conserved?
101 In Fig. 9-78, a 3.2 kg box of running shoes slides on a horizontal frictionless table and collides with a 2.0 kg box of ballet slippers initially at rest on the edge of the table, at height \(h=0.40 \mathrm{~m}\). The speed of the 3.2 kg box is \(3.0 \mathrm{~m} / \mathrm{s}\) just before the


Figure 9-78 Problem 101. collision. If the two boxes stick together because of packing tape on their sides, what is their kinetic energy just before they strike the floor?
102 In Fig. 9-79, an 80 kg man is on a ladder hanging from a balloon that has a total mass of 320 kg (including the basket passenger). The balloon is initially stationary relative to the ground. If the man on the ladder begins to climb at \(2.5 \mathrm{~m} / \mathrm{s}\) relative to the ladder, (a) in what direction and (b) at what speed does the balloon move? (c) If the man then stops climbing, what is the speed of the balloon?
103 In Fig. 9-80, block 1 of mass \(m_{1}=6.6 \mathrm{~kg}\) is at rest on a long frictionless table that is up against a wall. Block 2 of mass \(m_{2}\) is placed between block 1 and the wall and sent sliding to the left, toward block 1, with constant


Figure 9-79
Problem 102. speed \(v_{2 i}\). Find the value of \(m_{2}\) for which both blocks move with the same velocity after block 2 has collided once with block 1 and once with the wall. Assume all collisions are elastic (the collision with the wall does not change the speed of block 2).


Figure 9-80 Problem 103.

104 The script for an action movie calls for a small race car (of mass 1500 kg and length 3.0 m ) to accelerate along a flattop boat (of mass 4000 kg and length 14 m ), from one end of the boat to the other, where the car will then jump the gap between the boat and a somewhat lower dock. You are the technical advisor for the movie. The


Figure 9-81 Problem 104.
boat will initially touch the dock, as in Fig. 9-81; the boat can slide through the water without significant resistance; both the car and the boat can be approximated as uniform in their mass distribution. Determine what the width of the gap will be just as the car is about to make the jump.

105 SSM A 3.0 kg object moving at \(8.0 \mathrm{~m} / \mathrm{s}\) in the positive direction of an \(x\) axis has a one-dimensional elastic collision with an object of mass \(M\), initially at rest. After the collision the object of mass \(M\) has a velocity of \(6.0 \mathrm{~m} / \mathrm{s}\) in the positive direction of the axis. What is mass \(M\) ?
106 A 2140 kg railroad flatcar, which can move with negligible friction, is motionless next to a platform. A 242 kg sumo wrestler runs at \(5.3 \mathrm{~m} / \mathrm{s}\) along the platform (parallel to the track) and then jumps onto the flatcar. What is the speed of the flatcar if he then (a) stands on it, (b) runs at \(5.3 \mathrm{~m} / \mathrm{s}\) relative to it in his original direction, and (c) turns and runs at \(5.3 \mathrm{~m} / \mathrm{s}\) relative to the flatcar opposite his original direction?
107 SSM A 6100 kg rocket is set for vertical firing from the ground. If the exhaust speed is \(1200 \mathrm{~m} / \mathrm{s}\), how much gas must be ejected each second if the thrust (a) is to equal the magnitude of the gravitational force on the rocket and (b) is to give the rocket an initial upward acceleration of \(21 \mathrm{~m} / \mathrm{s}^{2}\) ?
108 A 500.0 kg module is attached to a 400.0 kg shuttle craft, which moves at \(1000 \mathrm{~m} / \mathrm{s}\) relative to the stationary main spaceship. Then a small explosion sends the module backward with speed \(100.0 \mathrm{~m} / \mathrm{s}\) relative to the new speed of the shuttle craft. As measured by someone on the main spaceship, by what fraction did the kinetic energy of the module and shuttle craft increase because of the explosion?
109 SSM (a) How far is the center of mass of the Earth-Moon system from the center of Earth? (Appendix C gives the masses of Earth and the Moon and the distance between the two.) (b) What percentage of Earth's radius is that distance?
110 A 140 g ball with speed \(7.8 \mathrm{~m} / \mathrm{s}\) strikes a wall perpendicularly and rebounds in the opposite direction with the same speed. The collision lasts 3.80 ms . What are the magnitudes of the (a) impulse and (b) average force on the wall from the ball during the elastic collision?

111 SSM A rocket sled with a mass of 2900 kg moves at \(250 \mathrm{~m} / \mathrm{s}\) on a set of rails. At a certain point, a scoop on the sled dips into a trough of water located between the tracks and scoops water into an empty tank on the sled. By applying the principle of conservation of linear momentum, determine the speed of the sled after 920 kg of water has been scooped up. Ignore any retarding force on the scoop.
112 SSM A pellet gun fires ten 2.0 g pellets per second with a speed of \(500 \mathrm{~m} / \mathrm{s}\). The pellets are stopped by a rigid wall. What are (a) the magnitude of the momentum of each pellet, (b) the kinetic energy of each pellet, and (c) the magnitude of the average force on the wall from the stream of pellets? (d) If each pellet is in contact with the wall for 0.60 ms , what is the magnitude of the average force on the wall from each pellet during contact? (e) Why is this average force so different from the average force calculated in (c)?
113 A railroad car moves under a grain elevator at a constant speed of \(3.20 \mathrm{~m} / \mathrm{s}\). Grain drops into the car at the rate of \(540 \mathrm{~kg} / \mathrm{min}\). What is the magnitude of the force needed to keep the car moving at constant speed if friction is negligible?

114 Figure \(9-82\) shows a uniform square plate of edge length \(6 d=6.0 \mathrm{~m}\) from which a square piece of edge length \(2 d\) has been removed. What are (a) the \(x\) coordinate and (b) the \(y\) coordinate of the center of mass of the remaining piece?

Figure 9-82 Problem 114.


115 SSM At time \(t=0\), force \(\vec{F}_{1}=(-4.00 \hat{\mathrm{i}}+5.00 \hat{\mathrm{j}}) \mathrm{N}\) acts on an initially stationary particle of mass \(2.00 \times 10^{-3} \mathrm{~kg}\) and force \(\vec{F}_{2}=(2.00 \hat{\mathrm{i}}-4.00 \hat{\mathrm{j}}) \mathrm{N}\) acts on an initially stationary particle of mass \(4.00 \times 10^{-3} \mathrm{~kg}\). From time \(t=0\) to \(t=2.00 \mathrm{~ms}\), what are the (a) magnitude and (b) angle (relative to the positive direction of the \(x\) axis) of the displacement of the center of mass of the twoparticle system? (c) What is the kinetic energy of the center of mass at \(t=2.00 \mathrm{~ms}\) ?
116 Two particles \(P\) and \(Q\) are released from rest 1.0 m apart. \(P\) has a mass of 0.10 kg , and \(Q\) a mass of \(0.30 \mathrm{~kg} . P\) and \(Q\) attract each other with a constant force of \(1.0 \times 10^{-2} \mathrm{~N}\). No external forces act on the system. (a) What is the speed of the center of mass of \(P\) and \(Q\) when the separation is 0.50 m ? (b) At what distance from \(P\) 's original position do the particles collide?
117 A collision occurs between a 2.00 kg particle traveling with velocity \(\vec{v}_{1}=(-4.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(-5.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}\) and a 4.00 kg particle traveling with velocity \(\vec{v}_{2}=(6.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(-2.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}\). The collision connects the two particles. What then is their velocity in (a) unit-vector notation and as a (b) magnitude and (c) angle?
118 In the two-sphere arrangement of Fig. 9-20, assume that sphere 1 has a mass of 50 g and an initial height of \(h_{1}=9.0 \mathrm{~cm}\), and that sphere 2 has a mass of 85 g . After sphere 1 is released and collides elastically with sphere 2 , what height is reached by (a) sphere 1 and (b) sphere 2? After the next (elastic) collision, what height is reached by (c) sphere 1 and (d) sphere 2? (Hint: Do not use rounded-off values.)
119 In Fig. 9-83, block 1 slides along an \(x\) axis on a frictionless floor with a speed of \(0.75 \mathrm{~m} / \mathrm{s}\). When it reaches stationary block 2 , the two blocks undergo an elastic collision. The following table


Figure 9-83 Problem 119. gives the mass and length of the (uniform) blocks and also the locations of their centers at time \(t=0\). Where is the center of mass of the two-block system located (a) at \(t=0,(\mathrm{~b})\) when the two blocks first touch, and (c) at \(t=4.0 \mathrm{~s}\) ?
\begin{tabular}{cccc}
\hline Block & Mass (kg) & Length \((\mathrm{cm})\) & Center at \(t=0\) \\
\hline 1 & 0.25 & 5.0 & \(x=-1.50 \mathrm{~m}\) \\
2 & 0.50 & 6.0 & \(x=0\)
\end{tabular}

120 A body is traveling at \(2.0 \mathrm{~m} / \mathrm{s}\) along the positive direction of an \(x\) axis; no net force acts on the body. An internal explosion sepa-
rates the body into two parts, each of 4.0 kg , and increases the total kinetic energy by 16 J . The forward part continues to move in the original direction of motion. What are the speeds of (a) the rear part and (b) the forward part?
121 An electron undergoes a one-dimensional elastic collision with an initially stationary hydrogen atom. What percentage of the electron's initial kinetic energy is transferred to kinetic energy of the hydrogen atom? (The mass of the hydrogen atom is 1840 times the mass of the electron.)

122 A man (weighing 915 N ) stands on a long railroad flatcar (weighing 2415 N ) as it rolls at \(18.2 \mathrm{~m} / \mathrm{s}\) in the positive direction of an \(x\) axis, with negligible friction. Then the man runs along the flatcar in the negative \(x\) direction at \(4.00 \mathrm{~m} / \mathrm{s}\) relative to the flatcar. What is the resulting increase in the speed of the flatcar?
123 An unmanned space probe (of mass \(m\) and speed \(v\) relative to the Sun) approaches the planet Jupiter (of mass \(M\) and speed \(V_{J}\) relative to the Sun) as shown in Fig. 9-84. The spacecraft rounds the planet and departs in the opposite direction. What is its speed (in kilometers per second), relative to the Sun, after this slingshot encounter, which can be analyzed as a collision? Assume \(v=10.5 \mathrm{~km} / \mathrm{s}\) and \(V_{J}=13.0 \mathrm{~km} / \mathrm{s}\) (the orbital speed of Jupiter). The mass of Jupiter is very much greater than the mass of the spacecraft \((M \gg m)\).


124 A 0.550 kg ball falls directly down onto concrete, hitting it with a speed of \(12.0 \mathrm{~m} / \mathrm{s}\) and rebounding directly upward with a speed of \(3.00 \mathrm{~m} / \mathrm{s}\). Extend a \(y\) axis upward. In unit-vector notation, what are (a) the change in the ball's momentum, (b) the impulse on the ball, and (c) the impulse on the concrete?
125 An atomic nucleus at rest at the origin of an \(x y\) coordinate system transforms into three particles. Particle 1 , mass \(16.7 \times 10^{-27}\) kg , moves away from the origin at velocity \(\left(6.00 \times 10^{6} \mathrm{~m} / \mathrm{s}\right) \hat{\mathrm{i}}\); particle 2 , mass \(8.35 \times 10^{-27} \mathrm{~kg}\), moves away at velocity \(\left(-8.00 \times 10^{6} \mathrm{~m} / \mathrm{s}\right) \hat{\mathrm{j}}\). (a) In unit-vector notation, what is the linear momentum of the third particle, mass \(11.7 \times 10^{-27} \mathrm{~kg}\) ? (b) How much kinetic energy appears in this transformation?
126 Particle 1 of mass 200 g and speed \(3.00 \mathrm{~m} / \mathrm{s}\) undergoes a onedimensional collision with stationary particle 2 of mass 400 g . What is the magnitude of the impulse on particle 1 if the collision is (a) elastic and (b) completely inelastic?
127 During a lunar mission, it is necessary to increase the speed of a spacecraft by \(2.2 \mathrm{~m} / \mathrm{s}\) when it is moving at \(400 \mathrm{~m} / \mathrm{s}\) relative to the Moon. The speed of the exhaust products from the rocket engine is \(1000 \mathrm{~m} / \mathrm{s}\) relative to the spacecraft. What fraction of the initial mass of the spacecraft must be burned and ejected to accomplish the speed increase?

128 A cue stick strikes a stationary pool ball, with an average force of 32 N over a time of 14 ms . If the ball has mass 0.20 kg , what speed does it have just after impact?

\section*{10-1 rotational variables}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
10.01 Identify that if all parts of a body rotate around a fixed axis locked together, the body is a rigid body. (This chapter is about the motion of such bodies.)
10.02 Identify that the angular position of a rotating rigid body is the angle that an internal reference line makes with a fixed, external reference line.
10.03 Apply the relationship between angular displacement and the initial and final angular positions.
10.04 Apply the relationship between average angular velocity, angular displacement, and the time interval for that displacement.
10.05 Apply the relationship between average angular acceleration, change in angular velocity, and the time interval for that change.
10.06 Identify that counterclockwise motion is in the positive direction and clockwise motion is in the negative direction.
10.07 Given angular position as a function of time, calculate the instantaneous angular velocity at any particular time and the average angular velocity between any two particular times.
10.08 Given a graph of angular position versus time, determine the instantaneous angular velocity at a particular time and the average angular velocity between any two particular times.
10.09 Identify instantaneous angular speed as the magnitude of the instantaneous angular velocity.
10.10 Given angular velocity as a function of time, calculate the instantaneous angular acceleration at any particular time and the average angular acceleration between any two particular times.
10.11 Given a graph of angular velocity versus time, determine the instantaneous angular acceleration at any particular time and the average angular acceleration between any two particular times.
10.12 Calculate a body's change in angular velocity by integrating its angular acceleration function with respect to time.
10.13 Calculate a body's change in angular position by integrating its angular velocity function with respect to time.

\section*{Key Ideas}
- To describe the rotation of a rigid body about a fixed axis, called the rotation axis, we assume a reference line is fixed in the body, perpendicular to that axis and rotating with the body. We measure the angular position \(\theta\) of this line relative to a fixed direction. When \(\theta\) is measured in radians,
\[
\left.\theta=\frac{s}{r} \quad \text { (radian measure }\right)
\]
where \(s\) is the arc length of a circular path of radius \(r\) and angle \(\theta\).
- Radian measure is related to angle measure in revolutions and degrees by
\[
1 \mathrm{rev}=360^{\circ}=2 \pi \mathrm{rad}
\]
- A body that rotates about a rotation axis, changing its angular position from \(\theta_{1}\) to \(\theta_{2}\), undergoes an angular displacement
\[
\Delta \theta=\theta_{2}-\theta_{1}
\]
where \(\Delta \theta\) is positive for counterclockwise rotation and negative for clockwise rotation.
- If a body rotates through an angular displacement \(\Delta \theta\) in a time interval \(\Delta t\), its average angular velocity \(\omega_{\text {avg }}\) is
\[
\omega_{\mathrm{avg}}=\frac{\Delta \theta}{\Delta t}
\]

The (instantaneous) angular velocity \(\omega\) of the body is
\[
\omega=\frac{d \theta}{d t}
\]

Both \(\omega_{\text {avg }}\) and \(\omega\) are vectors, with directions given by a right-hand rule. They are positive for counterclockwise rotation and negative for clockwise rotation. The magnitude of the body's angular velocity is the angular speed.
- If the angular velocity of a body changes from \(\omega_{1}\) to \(\omega_{2}\) in a time interval \(\Delta t=t_{2}-t_{1}\), the average angular acceleration \(\alpha_{\text {avg }}\) of the body is
\[
\alpha_{\mathrm{avg}}=\frac{\omega_{2}-\omega_{1}}{t_{2}-t_{1}}=\frac{\Delta \omega}{\Delta t}
\]

The (instantaneous) angular acceleration \(\alpha\) of the body is
\[
\alpha=\frac{d \omega}{d t}
\]

Both \(\alpha_{\text {avg }}\) and \(\alpha\) are vectors.

\section*{What Is Physics?}

As we have discussed, one focus of physics is motion. However, so far we have examined only the motion of translation, in which an object moves along a straight or curved line, as in Fig. 10-1 \(a\). We now turn to the motion of rotation, in which an object turns about an axis, as in Fig. 10-1b.

You see rotation in nearly every machine, you use it every time you open a beverage can with a pull tab, and you pay to experience it every time you go to an amusement park. Rotation is the key to many fun activities, such as hitting a long drive in golf (the ball needs to rotate in order for the air to keep it aloft longer) and throwing a curveball in baseball (the ball needs to rotate in order for the air to push it left or right). Rotation is also the key to more serious matters, such as metal failure in aging airplanes.

We begin our discussion of rotation by defining the variables for the motion, just as we did for translation in Chapter 2. As we shall see, the variables for rotation are analogous to those for one-dimensional motion and, as in Chapter 2, an important special situation is where the acceleration (here the rotational acceleration) is constant. We shall also see that Newton's second law can be written for rotational motion, but we must use a new quantity called torque instead of just force. Work and the work-kinetic energy theorem can also be applied to rotational motion, but we must use a new quantity called rotational inertia instead of just mass. In short, much of what we have discussed so far can be applied to rotational motion with, perhaps, a few changes.

Caution: In spite of this repetition of physics ideas, many students find this and the next chapter very challenging. Instructors have a variety of reasons as to why, but two reasons stand out: (1) There are a lot of symbols (with Greek


Figure 10-1 Figure skater Sasha Cohen in motion of (a) pure translation in a fixed direction and \((b)\) pure rotation about a vertical axis.


Figure 10-2 A rigid body of arbitrary shape in pure rotation about the \(z\) axis of a coordinate system. The position of the reference line with respect to the rigid body is arbitrary, but it is perpendicular to the rotation axis. It is fixed in the body and rotates with the body.
letters) to sort out. (2) Although you are very familiar with linear motion (you can get across the room and down the road just fine), you are probably very unfamiliar with rotation (and that is one reason why you are willing to pay so much for amusement park rides). If a homework problem looks like a foreign language to you, see if translating it into the one-dimensional linear motion of Chapter 2 helps. For example, if you are to find, say, an angular distance, temporarily delete the word angular and see if you can work the problem with the Chapter 2 notation and ideas.

\section*{Rotational Variables}

We wish to examine the rotation of a rigid body about a fixed axis. A rigid body is a body that can rotate with all its parts locked together and without any change in its shape. A fixed axis means that the rotation occurs about an axis that does not move. Thus, we shall not examine an object like the Sun, because the parts of the Sun (a ball of gas) are not locked together. We also shall not examine an object like a bowling ball rolling along a lane, because the ball rotates about a moving axis (the ball's motion is a mixture of rotation and translation).

Figure 10-2 shows a rigid body of arbitrary shape in rotation about a fixed axis, called the axis of rotation or the rotation axis. In pure rotation (angular motion), every point of the body moves in a circle whose center lies on the axis of rotation, and every point moves through the same angle during a particular time interval. In pure translation (linear motion), every point of the body moves in a straight line, and every point moves through the same linear distance during a particular time interval.

We deal now-one at a time - with the angular equivalents of the linear quantities position, displacement, velocity, and acceleration.

\section*{Angular Position}

Figure 10-2 shows a reference line, fixed in the body, perpendicular to the rotation axis and rotating with the body. The angular position of this line is the angle of the line relative to a fixed direction, which we take as the zero angular position. In Fig. 10-3, the angular position \(\theta\) is measured relative to the positive direction of the \(x\) axis. From geometry, we know that \(\theta\) is given by
\[
\begin{equation*}
\theta=\frac{s}{r} \quad \text { (radian measure). } \tag{10-1}
\end{equation*}
\]

Here \(s\) is the length of a circular arc that extends from the \(x\) axis (the zero angular position) to the reference line, and \(r\) is the radius of the circle.


This dot means that the rotation axis is out toward you.

Figure 10-3 The rotating rigid body of Fig. 10-2 in cross section, viewed from above. The plane of the cross section is perpendicular to the rotation axis, which now extends out of the page, toward you. In this position of the body, the reference line makes an angle \(\theta\) with the \(x\) axis.

An angle defined in this way is measured in radians (rad) rather than in revolutions (rev) or degrees. The radian, being the ratio of two lengths, is a pure number and thus has no dimension. Because the circumference of a circle of radius \(r\) is \(2 \pi r\), there are \(2 \pi\) radians in a complete circle:
\[
\begin{equation*}
1 \mathrm{rev}=360^{\circ}=\frac{2 \pi r}{r}=2 \pi \mathrm{rad} \tag{10-2}
\end{equation*}
\]
and thus
\[
\begin{equation*}
1 \mathrm{rad}=57.3^{\circ}=0.159 \mathrm{rev} . \tag{10-3}
\end{equation*}
\]

We do not reset \(\theta\) to zero with each complete rotation of the reference line about the rotation axis. If the reference line completes two revolutions from the zero angular position, then the angular position \(\theta\) of the line is \(\theta=4 \pi \mathrm{rad}\).

For pure translation along an \(x\) axis, we can know all there is to know about a moving body if we know \(x(t)\), its position as a function of time. Similarly, for pure rotation, we can know all there is to know about a rotating body if we know \(\theta(t)\), the angular position of the body's reference line as a function of time.

\section*{Angular Displacement}

If the body of Fig. 10-3 rotates about the rotation axis as in Fig. 10-4, changing the angular position of the reference line from \(\theta_{1}\) to \(\theta_{2}\), the body undergoes an angular displacement \(\Delta \theta\) given by
\[
\begin{equation*}
\Delta \theta=\theta_{2}-\theta_{1} . \tag{10-4}
\end{equation*}
\]

This definition of angular displacement holds not only for the rigid body as a whole but also for every particle within that body.

Clocks Are Negative. If a body is in translational motion along an \(x\) axis, its displacement \(\Delta x\) is either positive or negative, depending on whether the body is moving in the positive or negative direction of the axis. Similarly, the angular displacement \(\Delta \theta\) of a rotating body is either positive or negative, according to the following rule:

An angular displacement in the counterclockwise direction is positive, and one in the clockwise direction is negative.

The phrase "clocks are negative" can help you remember this rule (they certainly are negative when their alarms sound off early in the morning).

\section*{Checkpoint 1}

A disk can rotate about its central axis like a merry-go-round. Which of the following pairs of values for its initial and final angular positions, respectively, give a negative angular displacement: (a) \(-3 \mathrm{rad},+5 \mathrm{rad}\), (b) \(-3 \mathrm{rad},-7 \mathrm{rad}\), (c) \(7 \mathrm{rad},-3 \mathrm{rad}\) ?

\section*{Angular Velocity}

Suppose that our rotating body is at angular position \(\theta_{1}\) at time \(t_{1}\) and at angular position \(\theta_{2}\) at time \(t_{2}\) as in Fig. 10-4. We define the average angular velocity of the body in the time interval \(\Delta t\) from \(t_{1}\) to \(t_{2}\) to be
\[
\begin{equation*}
\omega_{\mathrm{avg}}=\frac{\theta_{2}-\theta_{1}}{t_{2}-t_{1}}=\frac{\Delta \theta}{\Delta t}, \tag{10-5}
\end{equation*}
\]
where \(\Delta \theta\) is the angular displacement during \(\Delta t\) ( \(\omega\) is the lowercase omega).


Figure 10-4 The reference line of the rigid body of Figs. 10-2 and 10-3 is at angular position \(\theta_{1}\) at time \(t_{1}\) and at angular position \(\theta_{2}\) at a later time \(t_{2}\). The quantity \(\Delta \theta\left(=\theta_{2}-\theta_{1}\right)\) is the angular displacement that occurs during the interval \(\Delta t\left(=t_{2}-t_{1}\right)\). The body itself is not shown.

The (instantaneous) angular velocity \(\omega\), with which we shall be most concerned, is the limit of the ratio in Eq. 10-5 as \(\Delta t\) approaches zero. Thus,
\[
\begin{equation*}
\omega=\lim _{\Delta t \rightarrow 0} \frac{\Delta \theta}{\Delta t}=\frac{d \theta}{d t} \tag{10-6}
\end{equation*}
\]

If we know \(\theta(t)\), we can find the angular velocity \(\omega\) by differentiation.
Equations 10-5 and 10-6 hold not only for the rotating rigid body as a whole but also for every particle of that body because the particles are all locked together. The unit of angular velocity is commonly the radian per second ( \(\mathrm{rad} / \mathrm{s}\) ) or the revolution per second (rev/s). Another measure of angular velocity was used during at least the first three decades of rock: Music was produced by vinyl (phonograph) records that were played on turntables at " \(33 \frac{1}{3} \mathrm{rpm}\) " or " 45 rpm ," meaning at \(33 \frac{1}{3} \mathrm{rev} / \mathrm{min}\) or \(45 \mathrm{rev} / \mathrm{min}\).

If a particle moves in translation along an \(x\) axis, its linear velocity \(v\) is either positive or negative, depending on its direction along the axis. Similarly, the angular velocity \(\omega\) of a rotating rigid body is either positive or negative, depending on whether the body is rotating counterclockwise (positive) or clockwise (negative). ("Clocks are negative" still works.) The magnitude of an angular velocity is called the angular speed, which is also represented with \(\omega\).

\section*{Angular Acceleration}

If the angular velocity of a rotating body is not constant, then the body has an angular acceleration. Let \(\omega_{2}\) and \(\omega_{1}\) be its angular velocities at times \(t_{2}\) and \(t_{1}\), respectively. The average angular acceleration of the rotating body in the interval from \(t_{1}\) to \(t_{2}\) is defined as
\[
\begin{equation*}
\alpha_{\mathrm{avg}}=\frac{\omega_{2}-\omega_{1}}{t_{2}-t_{1}}=\frac{\Delta \omega}{\Delta t}, \tag{10-7}
\end{equation*}
\]
in which \(\Delta \omega\) is the change in the angular velocity that occurs during the time interval \(\Delta t\). The (instantaneous) angular acceleration \(\alpha\), with which we shall be most concerned, is the limit of this quantity as \(\Delta t\) approaches zero. Thus,
\[
\begin{equation*}
\alpha=\lim _{\Delta t \rightarrow 0} \frac{\Delta \omega}{\Delta t}=\frac{d \omega}{d t} . \tag{10-8}
\end{equation*}
\]

As the name suggests, this is the angular acceleration of the body at a given instant. Equations 10-7 and 10-8 also hold for every particle of that body. The unit of angular acceleration is commonly the radian per second-squared ( \(\mathrm{rad} / \mathrm{s}^{2}\) ) or the revolution per second-squared (rev/s \({ }^{2}\) ).

\section*{Sample Problem 10.01 Angular velocity derived from angular position}

The disk in Fig. 10-5a is rotating about its central axis like a merry-go-round. The angular position \(\theta(t)\) of a reference line on the disk is given by
\[
\begin{equation*}
\theta=-1.00-0.600 t+0.250 t^{2} \tag{10-9}
\end{equation*}
\]
with \(t\) in seconds, \(\theta\) in radians, and the zero angular position as indicated in the figure. (If you like, you can translate all this into Chapter 2 notation by momentarily dropping the word "angular" from "angular position" and replacing the symbol \(\theta\) with the symbol \(x\). What you then have is an equation that gives the position as a function of time, for the onedimensional motion of Chapter 2.)
(a) Graph the angular position of the disk versus time from \(t=-3.0 \mathrm{~s}\) to \(t=5.4 \mathrm{~s}\). Sketch the disk and its angular position reference line at \(t=-2.0 \mathrm{~s}, 0 \mathrm{~s}\), and 4.0 s , and when the curve crosses the \(t\) axis.

\section*{KEY IDEA}

The angular position of the disk is the angular position \(\theta(t)\) of its reference line, which is given by Eq. 10-9 as a function of time \(t\). So we graph Eq. 10-9; the result is shown in Fig. 10-5b.

Calculations: To sketch the disk and its reference line at a particular time, we need to determine \(\theta\) for that time. To do so, we substitute the time into Eq. \(10-9\). For \(t=-2.0 \mathrm{~s}\), we get
\[
\begin{aligned}
\theta & =-1.00-(0.600)(-2.0)+(0.250)(-2.0)^{2} \\
& =1.2 \mathrm{rad}=1.2 \mathrm{rad} \frac{360^{\circ}}{2 \pi \mathrm{rad}}=69^{\circ}
\end{aligned}
\]

This means that at \(t=-2.0 \mathrm{~s}\) the reference line on the disk is rotated counterclockwise from the zero position by angle \(1.2 \mathrm{rad}=69^{\circ}\) (counterclockwise because \(\theta\) is positive). Sketch 1 in Fig. 10-5b shows this position of the reference line.

Similarly, for \(t=0\), we find \(\theta=-1.00 \mathrm{rad}=-57^{\circ}\), which means that the reference line is rotated clockwise from the zero angular position by 1.0 rad , or \(57^{\circ}\), as shown in sketch 3. For \(t=4.0 \mathrm{~s}\), we find \(\theta=0.60 \mathrm{rad}=34^{\circ}\) (sketch 5). Drawing sketches for when the curve crosses the \(t\) axis is easy, because then \(\theta=0\) and the reference line is momentarily aligned with the zero angular position (sketches 2 and 4).
(b) At what time \(t_{\min }\) does \(\theta(t)\) reach the minimum value shown in Fig. 10-5 \(b\) ? What is that minimum value?


Figure 10-5 (a) A rotating disk. (b) A plot of the disk's angular position \(\theta(t)\). Five sketches indicate the angular position of the reference line on the disk for five points on the curve. (c) A plot of the disk's angular velocity \(\omega(t)\). Positive values of \(\omega\) correspond to counterclockwise rotation, and negative values to clockwise rotation.

\section*{KEY IDEA}

To find the extreme value (here the minimum) of a function, we take the first derivative of the function and set the result to zero.

Calculations: The first derivative of \(\theta(t)\) is
\[
\begin{equation*}
\frac{d \theta}{d t}=-0.600+0.500 t \tag{10-10}
\end{equation*}
\]

Setting this to zero and solving for \(t\) give us the time at which \(\theta(t)\) is minimum:
\[
t_{\min }=1.20 \mathrm{~s}
\]
(Answer)
To get the minimum value of \(\theta\), we next substitute \(t_{\text {min }}\) into Eq. 10-9, finding
\[
\theta=-1.36 \mathrm{rad} \approx-77.9^{\circ}
\]
(Answer)
This minimum of \(\theta(t)\) (the bottom of the curve in Fig. 10-5b) corresponds to the maximum clockwise rotation of the disk from the zero angular position, somewhat more than is shown in sketch 3 .
(c) Graph the angular velocity \(\omega\) of the disk versus time from

This is a plot of the angular

(c)

The angular velocity is initially negative and slowing, then momentarily zero during reversal, and then positive and increasing.
\(t=-3.0 \mathrm{~s}\) to \(t=6.0 \mathrm{~s}\). Sketch the disk and indicate the direction of turning and the sign of \(\omega\) at \(t=-2.0 \mathrm{~s}, 4.0 \mathrm{~s}\), and \(t_{\text {min }}\).

\section*{KEY IDEA}

From Eq. 10-6, the angular velocity \(\omega\) is equal to \(d \theta / d t\) as given in Eq. 10-10. So, we have
\[
\begin{equation*}
\omega=-0.600+0.500 t \tag{10-11}
\end{equation*}
\]

The graph of this function \(\omega(t)\) is shown in Fig. 10-5c. Because the function is linear, the plot is a straight line. The slope is \(0.500 \mathrm{rad} / \mathrm{s}^{2}\) and the intercept with the vertical axis (not shown) is \(-0.600 \mathrm{rad} / \mathrm{s}\).

Calculations: To sketch the disk at \(t=-2.0 \mathrm{~s}\), we substitute that value into Eq. 10-11, obtaining
\[
\omega=-1.6 \mathrm{rad} / \mathrm{s} .
\]
(Answer)
The minus sign here tells us that at \(t=-2.0 \mathrm{~s}\), the disk is turning clockwise (as indicated by the left-hand sketch in Fig. 10-5c).

Substituting \(t=4.0\) s into Eq. 10-11 gives us
\[
\omega=1.4 \mathrm{rad} / \mathrm{s}
\]
(Answer)
The implied plus sign tells us that now the disk is turning counterclockwise (the right-hand sketch in Fig. 10-5c).

For \(t_{\text {min }}\), we already know that \(d \theta / d t=0\). So, we must also have \(\omega=0\). That is, the disk momentarily stops when the reference line reaches the minimum value of \(\theta\) in Fig. 10-5b, as suggested by the center sketch in Fig. 10-5c. On the graph of \(\omega\) versus \(t\) in Fig. 10-5c, this momentary stop is the zero point where the plot changes from the negative clockwise motion to the positive counterclockwise motion.
(d) Use the results in parts (a) through (c) to describe the motion of the disk from \(t=-3.0 \mathrm{~s}\) to \(t=6.0 \mathrm{~s}\).

Description: When we first observe the disk at \(t=-3.0 \mathrm{~s}\), it has a positive angular position and is turning clockwise but slowing. It stops at angular position \(\theta=-1.36 \mathrm{rad}\) and then begins to turn counterclockwise, with its angular position eventually becoming positive again.

\footnotetext{
Additional examples, video, and
PLUS practice available at WileyPLUS
}

\section*{Sample Problem 10.02 Angular velocity derived from angular acceleration}

A child's top is spun with angular acceleration
\[
\alpha=5 t^{3}-4 t
\]
with \(t\) in seconds and \(\alpha\) in radians per second-squared. At \(t=0\), the top has angular velocity \(5 \mathrm{rad} / \mathrm{s}\), and a reference line on it is at angular position \(\theta=2 \mathrm{rad}\).
(a) Obtain an expression for the angular velocity \(\omega(t)\) of the top. That is, find an expression that explicitly indicates how the angular velocity depends on time. (We can tell that there is such a dependence because the top is undergoing an angular acceleration, which means that its angular velocity is changing.)

\section*{KEY IDEA}

By definition, \(\alpha(t)\) is the derivative of \(\omega(t)\) with respect to time. Thus, we can find \(\omega(t)\) by integrating \(\alpha(t)\) with respect to time.
Calculations: Equation 10-8 tells us
so
\[
\begin{array}{r}
d \omega=\alpha d t \\
\int d \omega=\int \alpha d t
\end{array}
\]

From this we find
\[
\omega=\int\left(5 t^{3}-4 t\right) d t=\frac{5}{4} t^{4}-\frac{4}{2} t^{2}+C
\]

To evaluate the constant of integration \(C\), we note that \(\omega=\) \(5 \mathrm{rad} / \mathrm{s}\) at \(t=0\). Substituting these values in our expression for \(\omega\) yields
\[
5 \mathrm{rad} / \mathrm{s}=0-0+C
\]
so \(C=5 \mathrm{rad} / \mathrm{s}\). Then
\[
\omega=\frac{5}{4} t^{4}-2 t^{2}+5 .
\]
(Answer)
(b) Obtain an expression for the angular position \(\theta(t)\) of the top.

\section*{KEY IDEA}

By definition, \(\omega(t)\) is the derivative of \(\theta(t)\) with respect to time. Therefore, we can find \(\theta(t)\) by integrating \(\omega(t)\) with respect to time.
Calculations: Since Eq. 10-6 tells us that
\[
d \theta=\omega d t
\]
we can write
\[
\begin{aligned}
\theta & =\int \omega d t=\int\left(\frac{5}{4} t^{4}-2 t^{2}+5\right) d t \\
& =\frac{1}{4} t^{5}-\frac{2}{3} t^{3}+5 t+C^{\prime} \\
& =\frac{1}{4} t^{5}-\frac{2}{3} t^{3}+5 t+2
\end{aligned}
\]
(Answer)
where \(C^{\prime}\) has been evaluated by noting that \(\theta=2 \mathrm{rad}\) at \(t=0\).

\section*{Are Angular Quantities Vectors?}

We can describe the position, velocity, and acceleration of a single particle by means of vectors. If the particle is confined to a straight line, however, we do not really need vector notation. Such a particle has only two directions available to it, and we can indicate these directions with plus and minus signs.

In the same way, a rigid body rotating about a fixed axis can rotate only clockwise or counterclockwise as seen along the axis, and again we can select between the two directions by means of plus and minus signs. The question arises: "Can we treat the angular displacement, velocity, and acceleration of a rotating body as vectors?" The answer is a qualified "yes" (see the caution below, in connection with angular displacements).

Angular Velocities. Consider the angular velocity. Figure \(10-6 a\) shows a vinyl record rotating on a turntable. The record has a constant angular speed \(\omega\left(=33 \frac{1}{3} \mathrm{rev} / \mathrm{min}\right)\) in the clockwise direction. We can represent its angular velocity as a vector \(\vec{\omega}\) pointing along the axis of rotation, as in Fig. 10-6b. Here's how: We choose the length of this vector according to some convenient scale, for example, with 1 cm corresponding to \(10 \mathrm{rev} / \mathrm{min}\). Then we establish a direction for the vector \(\vec{\omega}\) by using a right-hand rule, as Fig. 10-6c shows: Curl your right hand about the rotating record, your fingers pointing in the direction of rotation. Your extended thumb will then point in the direction of the angular velocity vector. If the record were to rotate in the opposite sense, the right-


Figure 10-6 (a) A record rotating about a vertical axis that coincides with the axis of the spindle. (b) The angular velocity of the rotating record can be represented by the vector \(\vec{\omega}\), lying along the axis and pointing down, as shown. (c) We establish the direction of the angular velocity vector as downward by using a right-hand rule. When the fingers of the right hand curl around the record and point the way it is moving, the extended thumb points in the direction of \(\vec{\omega}\).
hand rule would tell you that the angular velocity vector then points in the opposite direction.

It is not easy to get used to representing angular quantities as vectors. We instinctively expect that something should be moving along the direction of a vector. That is not the case here. Instead, something (the rigid body) is rotating around the direction of the vector. In the world of pure rotation, a vector defines an axis of rotation, not a direction in which something moves. Nonetheless, the vector also defines the motion. Furthermore, it obeys all the rules for vector manipulation discussed in Chapter 3. The angular acceleration \(\vec{\alpha}\) is another vector, and it too obeys those rules.

In this chapter we consider only rotations that are about a fixed axis. For such situations, we need not consider vectors - we can represent angular velocity with \(\omega\) and angular acceleration with \(\alpha\), and we can indicate direction with an implied plus sign for counterclockwise or an explicit minus sign for clockwise.

Angular Displacements. Now for the caution: Angular displacements (unless they are very small) cannot be treated as vectors. Why not? We can certainly give them both magnitude and direction, as we did for the angular velocity vector in Fig. 10-6. However, to be represented as a vector, a quantity must also obey the rules of vector addition, one of which says that if you add two vectors, the order in which you add them does not matter. Angular displacements fail this test.

Figure 10-7 gives an example. An initially horizontal book is given two \(90^{\circ}\) angular displacements, first in the order of Fig. 10-7a and then in the order of Fig. 10-7b. Although the two angular displacements are identical, their order is not, and the book ends up with different orientations. Here's another example. Hold your right arm downward, palm toward your thigh. Keeping your wrist rigid, (1) lift the arm forward until it is horizontal, (2) move it horizontally until it points toward the right, and (3) then bring it down to your side. Your palm faces forward. If you start over, but reverse the steps, which way does your palm end up facing? From either example, we must conclude that the addition of two angular displacements depends on their order and they cannot be vectors.


Figure 10-7 (a) From its initial position, at the top, the book is given two successive \(90^{\circ}\) rotations, first about the (horizontal) \(x\) axis and then about the (vertical) \(y\) axis. (b) The book is given the same rotations, but in the reverse order.

\section*{10-2 rotation with constant angular acceleration}

\section*{Learning Objective}

After reading this module, you should be able to ...
10.14 For constant angular acceleration, apply the relationships between angular position, angular displacement,
angular velocity, angular acceleration, and elapsed time (Table 10-1).

\section*{Key Idea}
- Constant angular acceleration ( \(\alpha=\) constant) is an important special case of rotational motion. The appropriate kinematic equations are
\[
\begin{aligned}
\omega & =\omega_{0}+\alpha t, \\
\theta-\theta_{0} & =\omega_{0} t+\frac{1}{2} \alpha t^{2}, \\
\omega^{2} & =\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right), \\
\theta-\theta_{0} & =\frac{1}{2}\left(\omega_{0}+\omega\right) t, \\
\theta-\theta_{0} & =\omega t-\frac{1}{2} \alpha t^{2} .
\end{aligned}
\]

\section*{Rotation with Constant Angular Acceleration}

In pure translation, motion with a constant linear acceleration (for example, that of a falling body) is an important special case. In Table 2-1, we displayed a series of equations that hold for such motion.

In pure rotation, the case of constant angular acceleration is also important, and a parallel set of equations holds for this case also. We shall not derive them here, but simply write them from the corresponding linear equations, substituting equivalent angular quantities for the linear ones. This is done in Table 10-1, which lists both sets of equations (Eqs. 2-11 and 2-15 to 2-18; 10-12 to 10-16).

Recall that Eqs. 2-11 and 2-15 are basic equations for constant linear acceleration - the other equations in the Linear list can be derived from them. Similarly, Eqs. 10-12 and 10-13 are the basic equations for constant angular acceleration, and the other equations in the Angular list can be derived from them. To solve a simple problem involving constant angular acceleration, you can usually use an equation from the Angular list (if you have the list). Choose an equation for which the only unknown variable will be the variable requested in the problem. A better plan is to remember only Eqs. 10-12 and 10-13, and then solve them as simultaneous equations whenever needed.

\section*{Checkpoint 2}

In four situations, a rotating body has angular position \(\theta(t)\) given by (a) \(\theta=3 t-4\), (b) \(\theta=-5 t^{3}+4 t^{2}+6\), (c) \(\theta=2 / t^{2}-4 / t\), and (d) \(\theta=5 t^{2}-3\). To which situations do the angular equations of Table 10-1 apply?

Table 10-1 Equations of Motion for Constant Linear Acceleration and for Constant Angular Acceleration
\begin{tabular}{lccccc}
\hline \begin{tabular}{c} 
Equation \\
Number
\end{tabular} & \begin{tabular}{c} 
Linear \\
Equation
\end{tabular} & \begin{tabular}{c} 
Missing \\
Variable
\end{tabular} & \begin{tabular}{c} 
Angular \\
Equation
\end{tabular} & \begin{tabular}{c} 
Equation \\
Number
\end{tabular} \\
\hline\((2-11)\) & \(v=v_{0}+a t\) & \(x-x_{0}\) & \(\theta-\theta_{0}\) & \(\omega=\omega_{0}+\alpha t\) & \((10-12)\) \\
\((2-15)\) & \(x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}\) & \(v\) & \(\omega\) & \(\theta-\theta_{0}=\omega_{0} t+\frac{1}{2} \alpha t^{2}\) & \((10-13)\) \\
\((2-16)\) & \(v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)\) & \(t\) & \(t\) & \(\omega^{2}=\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right)\) & \((10-14)\) \\
\((2-17)\) & \(x-x_{0}=\frac{1}{2}\left(v_{0}+v\right) t\) & \(a\) & \(\alpha\) & \(\theta-\theta_{0}=\frac{1}{2}\left(\omega_{0}+\omega\right) t\) & \((10-15)\) \\
\((2-18)\) & \(x-x_{0}=v t-\frac{1}{2} a t^{2}\) & \(v_{0}\) & \(\omega_{0}\) & \(\theta-\theta_{0}=\omega t-\frac{1}{2} \alpha t^{2}\) & \((10-16)\) \\
\hline
\end{tabular}

\section*{Sample Problem 10.03 Constant angular acceleration, grindstone}

A grindstone (Fig. 10-8) rotates at constant angular acceleration \(\alpha=0.35 \mathrm{rad} / \mathrm{s}^{2}\). At time \(t=0\), it has an angular velocity of \(\omega_{0}=-4.6 \mathrm{rad} / \mathrm{s}\) and a reference line on it is horizontal, at the angular position \(\theta_{0}=0\).
(a) At what time after \(t=0\) is the reference line at the angular position \(\theta=5.0 \mathrm{rev}\) ?

\section*{KEY IDEA}

The angular acceleration is constant, so we can use the rotation equations of Table 10-1. We choose Eq. 10-13,
\[
\theta-\theta_{0}=\omega_{0} t+\frac{1}{2} \alpha t^{2}
\]
because the only unknown variable it contains is the desired time \(t\).

Calculations: Substituting known values and setting \(\theta_{0}=0\) and \(\theta=5.0 \mathrm{rev}=10 \pi \mathrm{rad}\) give us
\[
10 \pi \mathrm{rad}=(-4.6 \mathrm{rad} / \mathrm{s}) t+\frac{1}{2}\left(0.35 \mathrm{rad} / \mathrm{s}^{2}\right) t^{2}
\]


Figure 10-8 A grindstone. At \(t=0\) the reference line (which we imagine to be marked on the stone) is horizontal.
(We converted 5.0 rev to \(10 \pi\) rad to keep the units consistent.) Solving this quadratic equation for \(t\), we find
\[
t=32 \mathrm{~s} .
\]
(Answer)
Now notice something a bit strange. We first see the wheel when it is rotating in the negative direction and through the \(\theta=0\) orientation. Yet, we just found out that 32 s later it is at the positive orientation of \(\theta=5.0 \mathrm{rev}\). What happened in that time interval so that it could be at a positive orientation?
(b) Describe the grindstone's rotation between \(t=0\) and \(t=32 \mathrm{~s}\).

Description: The wheel is initially rotating in the negative (clockwise) direction with angular velocity \(\omega_{0}=-4.6 \mathrm{rad} / \mathrm{s}\), but its angular acceleration \(\alpha\) is positive. This initial opposition of the signs of angular velocity and angular acceleration means that the wheel slows in its rotation in the negative direction, stops, and then reverses to rotate in the positive direction. After the reference line comes back through its initial orientation of \(\theta=0\), the wheel turns an additional 5.0 rev by time \(t=32 \mathrm{~s}\).
(c) At what time \(t\) does the grindstone momentarily stop?

Calculation: We again go to the table of equations for constant angular acceleration, and again we need an equation that contains only the desired unknown variable \(t\). However, now the equation must also contain the variable \(\omega\), so that we can set it to 0 and then solve for the corresponding time \(t\). We choose Eq. 10-12, which yields
\[
t=\frac{\omega-\omega_{0}}{\alpha}=\frac{0-(-4.6 \mathrm{rad} / \mathrm{s})}{0.35 \mathrm{rad} / \mathrm{s}^{2}}=13 \mathrm{~s} .
\]
(Answer)

\section*{Sample Problem 10.04 Constant angular acceleration, riding a Rotor}

While you are operating a Rotor (a large, vertical, rotating cylinder found in amusement parks), you spot a passenger in acute distress and decrease the angular velocity of the cylinder from \(3.40 \mathrm{rad} / \mathrm{s}\) to \(2.00 \mathrm{rad} / \mathrm{s}\) in 20.0 rev , at constant angular acceleration. (The passenger is obviously more of a "translation person" than a "rotation person.")
(a) What is the constant angular acceleration during this decrease in angular speed?

\section*{KEY IDEA}

Because the cylinder's angular acceleration is constant, we can relate it to the angular velocity and angular displacement via the basic equations for constant angular acceleration (Eqs. 10-12 and 10-13).
Calculations: Let's first do a quick check to see if we can solve the basic equations. The initial angular velocity is \(\omega_{0}=3.40\)
\(\mathrm{rad} / \mathrm{s}\), the angular displacement is \(\theta-\theta_{0}=20.0 \mathrm{rev}\), and the angular velocity at the end of that displacement is \(\omega=2.00\) \(\mathrm{rad} / \mathrm{s}\). In addition to the angular acceleration \(\alpha\) that we want, both basic equations also contain time \(t\), which we do not necessarily want.

To eliminate the unknown \(t\), we use Eq. 10-12 to write
\[
t=\frac{\omega-\omega_{0}}{\alpha},
\]
which we then substitute into Eq. 10-13 to write
\[
\theta-\theta_{0}=\omega_{0}\left(\frac{\omega-\omega_{0}}{\alpha}\right)+\frac{1}{2} \alpha\left(\frac{\omega-\omega_{0}}{\alpha}\right)^{2} .
\]

Solving for \(\alpha\), substituting known data, and converting 20 rev to 125.7 rad , we find
\[
\begin{aligned}
\alpha & =\frac{\omega^{2}-\omega_{0}^{2}}{2\left(\theta-\theta_{0}\right)}=\frac{(2.00 \mathrm{rad} / \mathrm{s})^{2}-(3.40 \mathrm{rad} / \mathrm{s})^{2}}{2(125.7 \mathrm{rad})} \\
& =-0.0301 \mathrm{rad} / \mathrm{s}^{2}
\end{aligned}
\]
(Answer)
(b) How much time did the speed decrease take?

Calculation: Now that we know \(\alpha\), we can use Eq. 10-12 to solve for \(t\) :
\[
\begin{aligned}
t & =\frac{\omega-\omega_{0}}{\alpha}=\frac{2.00 \mathrm{rad} / \mathrm{s}-3.40 \mathrm{rad} / \mathrm{s}}{-0.0301 \mathrm{rad} / \mathrm{s}^{2}} \\
& =46.5 \mathrm{~s}
\end{aligned}
\]

Additional examples, video, and practice available at WileyPLUS

\section*{10-3 relating the linear and angular variables}

\section*{Learning Objectives}

After reading this module, you should be able to ...
10.15 For a rigid body rotating about a fixed axis, relate the angular variables of the body (angular position, angular velocity, and angular acceleration) and the linear variables of a particle on the body (position, velocity, and acceleration) at any given radius.
10.16 Distinguish between tangential acceleration and radial acceleration, and draw a vector for each in a sketch of a particle on a body rotating about an axis, for both an increase in angular speed and a decrease.

\section*{Key Ideas}
- A point in a rigid rotating body, at a perpendicular distance \(r\) from the rotation axis, moves in a circle with radius \(r\). If the body rotates through an angle \(\theta\), the point moves along an arc with length \(s\) given by
\[
s=\theta r \quad \text { (radian measure })
\]
where \(\theta\) is in radians.
- The linear velocity \(\vec{v}\) of the point is tangent to the circle; the point's linear speed \(v\) is given by
\[
v=\omega r \quad \text { (radian measure })
\]
where \(\omega\) is the angular speed (in radians per second) of the body, and thus also the point.
- The linear acceleration \(\vec{a}\) of the point has both tangential and radial components. The tangential component is
\[
a_{t}=\alpha r \quad \text { (radian measure) },
\]
where \(\alpha\) is the magnitude of the angular acceleration (in radians per second-squared) of the body. The radial component of \(\vec{a}\) is
\[
a_{r}=\frac{v^{2}}{r}=\omega^{2} r \quad(\text { radian measure })
\]

If the point moves in uniform circular motion, the period \(T\) of the motion for the point and the body is
\[
T=\frac{2 \pi r}{v}=\frac{2 \pi}{\omega} \quad \text { (radian measure). }
\]

\section*{Relating the Linear and Angular Variables}

In Module 4-5, we discussed uniform circular motion, in which a particle travels at constant linear speed \(v\) along a circle and around an axis of rotation. When a rigid body, such as a merry-go-round, rotates around an axis, each particle in the body moves in its own circle around that axis. Since the body is rigid, all the particles make one revolution in the same amount of time; that is, they all have the same angular speed \(\omega\).

However, the farther a particle is from the axis, the greater the circumference of its circle is, and so the faster its linear speed \(v\) must be. You can notice this on a merry-go-round. You turn with the same angular speed \(\omega\) regardless of your distance from the center, but your linear speed \(v\) increases noticeably if you move to the outside edge of the merry-go-round.

We often need to relate the linear variables \(s, v\), and \(a\) for a particular point in a rotating body to the angular variables \(\theta, \omega\), and \(\alpha\) for that body. The two sets of variables are related by \(r\), the perpendicular distance of the point from the rotation axis. This perpendicular distance is the distance between the point and the rotation axis, measured along a perpendicular to the axis. It is also the radius \(r\) of the circle traveled by the point around the axis of rotation.

\section*{The Position}

If a reference line on a rigid body rotates through an angle \(\theta\), a point within the body at a position \(r\) from the rotation axis moves a distance \(s\) along a circular arc, where \(s\) is given by Eq. 10-1:
\[
\begin{equation*}
s=\theta r \quad(\text { radian measure }) \tag{10-17}
\end{equation*}
\]

This is the first of our linear-angular relations. Caution: The angle \(\theta\) here must be measured in radians because Eq. 10-17 is itself the definition of angular measure in radians.

\section*{The Speed}

Differentiating Eq. 10-17 with respect to time - with \(r\) held constant — leads to
\[
\frac{d s}{d t}=\frac{d \theta}{d t} r
\]

However, \(d s / d t\) is the linear speed (the magnitude of the linear velocity) of the point in question, and \(d \theta / d t\) is the angular speed \(\omega\) of the rotating body. So
\[
\begin{equation*}
v=\omega r \quad \text { (radian measure) } \tag{10-18}
\end{equation*}
\]

Caution: The angular speed \(\omega\) must be expressed in radian measure.
Equation 10-18 tells us that since all points within the rigid body have the same angular speed \(\omega\), points with greater radius \(r\) have greater linear speed \(v\). Figure \(10-9 a\) reminds us that the linear velocity is always tangent to the circular path of the point in question.

If the angular speed \(\omega\) of the rigid body is constant, then Eq. 10-18 tells us that the linear speed \(v\) of any point within it is also constant. Thus, each point within the body undergoes uniform circular motion. The period of revolution \(T\) for the motion of each point and for the rigid body itself is given by Eq. 4-35:
\[
\begin{equation*}
T=\frac{2 \pi r}{v} \tag{10-19}
\end{equation*}
\]

This equation tells us that the time for one revolution is the distance \(2 \pi r\) traveled in one revolution divided by the speed at which that distance is traveled. Substituting for \(v\) from Eq. 10-18 and canceling \(r\), we find also that
\[
\begin{equation*}
T=\frac{2 \pi}{\omega} \quad \text { (radian measure) } \tag{10-20}
\end{equation*}
\]

This equivalent equation says that the time for one revolution is the angular distance \(2 \pi \mathrm{rad}\) traveled in one revolution divided by the angular speed (or rate) at which that angle is traveled.

\section*{The Acceleration}

Differentiating Eq. 10-18 with respect to time - again with \(r\) held constantleads to
\[
\begin{equation*}
\frac{d v}{d t}=\frac{d \omega}{d t} r \tag{10-21}
\end{equation*}
\]

Here we run up against a complication. In Eq. 10-21, \(d v / d t\) represents only the part of the linear acceleration that is responsible for changes in the magnitude \(v\) of the linear velocity \(\vec{v}\). Like \(\vec{v}\), that part of the linear acceleration is tangent to the path of the point in question. We call it the tangential component \(a_{t}\) of the linear acceleration of the point, and we write
\[
\begin{equation*}
a_{t}=\alpha r \quad(\text { radian measure }) \tag{10-22}
\end{equation*}
\]

(a)

The acceleration always has a radial (centripetal)

(b)

Figure 10-9 The rotating rigid body of Fig. 10-2, shown in cross section viewed from above. Every point of the body (such as \(P\) ) moves in a circle around the rotation axis. (a) The linear velocity \(\vec{v}\) of every point is tangent to the circle in which the point moves. (b) The linear acceleration \(\vec{a}\) of the point has (in general) two components: tangential \(a_{t}\) and radial \(a_{r}\).
where \(\alpha=d \omega / d t\). Caution: The angular acceleration \(\alpha\) in Eq. \(10-22\) must be expressed in radian measure.

In addition, as Eq. 4-34 tells us, a particle (or point) moving in a circular path has a radial component of linear acceleration, \(a_{r}=v^{2} / r\) (directed radially inward), that is responsible for changes in the direction of the linear velocity \(\vec{v}\). By substituting for \(v\) from Eq. 10-18, we can write this component as
\[
\begin{equation*}
a_{r}=\frac{v^{2}}{r}=\omega^{2} r \quad \text { (radian measure) } \tag{10-23}
\end{equation*}
\]

Thus, as Fig. \(10-9 b\) shows, the linear acceleration of a point on a rotating rigid body has, in general, two components. The radially inward component \(a_{r}\) (given by Eq. 10-23) is present whenever the angular velocity of the body is not zero. The tangential component \(a_{t}\) (given by Eq. 10-22) is present whenever the angular acceleration is not zero.

\section*{Checkpoint 3}

A cockroach rides the rim of a rotating merry-go-round. If the angular speed of this system (merry-go-round + cockroach ) is constant, does the cockroach have (a) radial acceleration and (b) tangential acceleration? If \(\omega\) is decreasing, does the cockroach have (c) radial acceleration and (d) tangential acceleration?

\section*{Sample Problem 10.05 Designing The Giant Ring, a large-scale amusement park ride}

We are given the job of designing a large horizontal ring that will rotate around a vertical axis and that will have a radius of \(r=33.1 \mathrm{~m}\) (matching that of Beijing's The Great Observation Wheel, the largest Ferris wheel in the world). Passengers will enter through a door in the outer wall of the ring and then stand next to that wall (Fig. 10-10a). We decide that for the time interval \(t=0\) to \(t=2.30 \mathrm{~s}\), the angular position \(\theta(t)\) of a reference line on the ring will be given by
\[
\begin{equation*}
\theta=c t^{3} \tag{10-24}
\end{equation*}
\]
with \(c=6.39 \times 10^{-2} \mathrm{rad} / \mathrm{s}^{3}\). After \(t=2.30 \mathrm{~s}\), the angular speed will be held constant until the end of the ride. Once the ring begins to rotate, the floor of the ring will drop away from the riders but the riders will not fall-indeed, they feel as though they are pinned to the wall. For the time \(t=2.20 \mathrm{~s}\), let's determine a rider's angular speed \(\omega\), linear speed \(v\), angular acceleration \(\alpha\), tangential acceleration \(a_{t}\), radial acceleration \(a_{r}\), and acceleration \(\vec{a}\).

\section*{KEY IDEAS}
(1) The angular speed \(\omega\) is given by Eq. 10-6 \((\omega=d \theta / d t)\).
(2) The linear speed \(v\) (along the circular path) is related to the angular speed (around the rotation axis) by Eq. 10-18 ( \(v=\omega r\) ). (3) The angular acceleration \(\alpha\) is given by Eq. 10-8 ( \(\alpha=d \omega / d t\) ). (4) The tangential acceleration \(a_{t}\) (along the circular path) is related to the angular acceleration (around the rotation axis) by Eq. 10-22 \(\left(a_{t}=\alpha r\right)\). (5) The radial acceleration \(a_{r}\) is given Eq. 10-23 \(\left(a_{r}=\omega^{2} r\right)\). (6) The tangential

Figure 10-10 (a) Overhead view of a passenger ready to ride The Giant Ring. (b) The radial and tangential acceleration components of the (full) acceleration.

and radial accelerations are the (perpendicular) components of the (full) acceleration \(\vec{a}\).
Calculations: Let's go through the steps. We first find the angular velocity by taking the time derivative of the given angular position function and then substituting the given time of \(t=2.20 \mathrm{~s}\) :
\[
\begin{align*}
\omega & =\frac{d \theta}{d t}=\frac{d}{d t}\left(c t^{3}\right)=3 c t^{2}  \tag{10-25}\\
& =3\left(6.39 \times 10^{-2} \mathrm{rad} / \mathrm{s}^{3}\right)(2.20 \mathrm{~s})^{2} \\
& =0.928 \mathrm{rad} / \mathrm{s} .
\end{align*}
\]
(Answer)
From Eq. 10-18, the linear speed just then is
\[
\begin{align*}
v & =\omega r=3 c t^{2} r  \tag{10-26}\\
& =3\left(6.39 \times 10^{-2} \mathrm{rad} / \mathrm{s}^{3}\right)(2.20 \mathrm{~s})^{2}(33.1 \mathrm{~m}) \\
& =30.7 \mathrm{~m} / \mathrm{s}
\end{align*}
\]
(Answer)

Although this is fast ( \(111 \mathrm{~km} / \mathrm{h}\) or \(68.7 \mathrm{mi} / \mathrm{h}\) ), such speeds are common in amusement parks and not alarming because (as mentioned in Chapter 2) your body reacts to accelerations but not to velocities. (It is an accelerometer, not a speedometer.) From Eq. \(10-26\) we see that the linear speed is increasing as the square of the time (but this increase will cut off at \(t=2.30 \mathrm{~s}\) ).

Next, let's tackle the angular acceleration by taking the time derivative of Eq. 10-25:
\[
\begin{aligned}
\alpha & =\frac{d \omega}{d t}=\frac{d}{d t}\left(3 c t^{2}\right)=6 c t \\
& =6\left(6.39 \times 10^{-2} \mathrm{rad} / \mathrm{s}^{3}\right)(2.20 \mathrm{~s})=0.843 \mathrm{rad} / \mathrm{s}^{2} . \quad \text { (Answer) }
\end{aligned}
\]

The tangential acceleration then follows from Eq. 10-22:
\[
\begin{align*}
a_{t} & =\alpha r=6 c t r  \tag{10-27}\\
& =6\left(6.39 \times 10^{-2} \mathrm{rad} / \mathrm{s}^{3}\right)(2.20 \mathrm{~s})(33.1 \mathrm{~m}) \\
& =27.91 \mathrm{~m} / \mathrm{s}^{2} \approx 27.9 \mathrm{~m} / \mathrm{s}^{2}
\end{align*}
\]
(Answer)
or 2.8 g (which is reasonable and a bit exciting). Equation 10-27 tells us that the tangential acceleration is increasing with time (but it will cut off at \(t=2.30 \mathrm{~s}\) ). From Eq. 10-23, we write the radial acceleration as
\[
a_{r}=\omega^{2} r .
\]

Substituting from Eq. 10-25 leads us to
\[
\begin{align*}
a_{r} & =\left(3 c t^{2}\right)^{2} r=9 c^{2} t^{4} r  \tag{10-28}\\
& =9\left(6.39 \times 10^{-2} \mathrm{rad} / \mathrm{s}^{3}\right)^{2}(2.20 \mathrm{~s})^{4}(33.1 \mathrm{~m}) \\
& =28.49 \mathrm{~m} / \mathrm{s}^{2} \approx 28.5 \mathrm{~m} / \mathrm{s}^{2},
\end{align*}
\]
(Answer)

The radial and tangential accelerations are perpendicular to each other and form the components of the rider's acceleration \(\vec{a}\) (Fig. 10-10b). The magnitude of \(\vec{a}\) is given by
\[
\begin{align*}
a & =\sqrt{a_{r}^{2}+a_{t}^{2}}  \tag{10-29}\\
& =\sqrt{\left(28.49 \mathrm{~m} / \mathrm{s}^{2}\right)^{2}+\left(27.91 \mathrm{~m} / \mathrm{s}^{2}\right)^{2}} \\
& \approx 39.9 \mathrm{~m} / \mathrm{s}^{2},
\end{align*}
\]
(Answer)
or \(4.1 g\) (which is really exciting!). All these values are acceptable.

To find the orientation of \(\vec{a}\), we can calculate the angle \(\theta\) shown in Fig. 10-10b:
\[
\tan \theta=\frac{a_{t}}{a_{r}} .
\]

However, instead of substituting our numerical results, let's use the algebraic results from Eqs. 10-27 and 10-28:
\[
\begin{equation*}
\theta=\tan ^{-1}\left(\frac{6 c t r}{9 c^{2} t^{4} r}\right)=\tan ^{-1}\left(\frac{2}{3 c t^{3}}\right) \tag{10-30}
\end{equation*}
\]

The big advantage of solving for the angle algebraically is that we can then see that the angle (1) does not depend on the ring's radius and (2) decreases as \(t\) goes from 0 to 2.20 s . That is, the acceleration vector \(\vec{a}\) swings toward being radially inward because the radial acceleration (which depends on \(t^{4}\) ) quickly dominates over the tangential acceleration (which depends on only \(t\) ). At our given time \(t=2.20 \mathrm{~s}\), we have
\(\theta=\tan ^{-1} \frac{2}{3\left(6.39 \times 10^{-2} \mathrm{rad} / \mathrm{s}^{3}\right)(2.20 \mathrm{~s})^{3}}=44.4^{\circ}\). (Answer)

\section*{10-4 KINETIC ENERGY OF ROTATION}

\section*{Learning Objectives}

After reading this module, you should be able to . .
10.17 Find the rotational inertia of a particle about a point.
10.18 Find the total rotational inertia of many particles moving around the same fixed axis.
10.19 Calculate the rotational kinetic energy of a body in terms of its rotational inertia and its angular speed.

\section*{Key Idea}
- The kinetic energy \(K\) of a rigid body rotating about a fixed axis is given by
\[
K=\frac{1}{2} I \omega^{2} \quad \text { (radian measure) },
\]
in which \(I\) is the rotational inertia of the body, defined as
\[
I=\sum m_{i} r_{i}^{2}
\]
for a system of discrete particles.

\section*{Kinetic Energy of Rotation}

The rapidly rotating blade of a table saw certainly has kinetic energy due to that rotation. How can we express the energy? We cannot apply the familiar formula \(K=\frac{1}{2} m v^{2}\) to the saw as a whole because that would give us the kinetic energy only of the saw's center of mass, which is zero.


Figure 10-11 A long rod is much easier to rotate about (a) its central (longitudinal) axis than about (b) an axis through its center and perpendicular to its length. The reason for the difference is that the mass is distributed closer to the rotation axis in (a) than in (b).

Instead, we shall treat the table saw (and any other rotating rigid body) as a collection of particles with different speeds. We can then add up the kinetic energies of all the particles to find the kinetic energy of the body as a whole. In this way we obtain, for the kinetic energy of a rotating body,
\[
\begin{align*}
K & =\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}+\frac{1}{2} m_{3} v_{3}^{2}+\cdots \\
& =\sum \frac{1}{2} m_{i} v_{i}^{2} \tag{10-31}
\end{align*}
\]
in which \(m_{i}\) is the mass of the \(i\) th particle and \(v_{i}\) is its speed. The sum is taken over all the particles in the body.

The problem with Eq. 10-31 is that \(v_{i}\) is not the same for all particles. We solve this problem by substituting for \(v\) from Eq. 10-18 \((v=\omega r)\), so that we have
\[
\begin{equation*}
K=\sum \frac{1}{2} m_{i}\left(\omega r_{i}\right)^{2}=\frac{1}{2}\left(\sum m_{i} r_{i}^{2}\right) \omega^{2} \tag{10-32}
\end{equation*}
\]
in which \(\omega\) is the same for all particles.
The quantity in parentheses on the right side of Eq. 10-32 tells us how the mass of the rotating body is distributed about its axis of rotation. We call that quantity the rotational inertia (or moment of inertia) \(I\) of the body with respect to the axis of rotation. It is a constant for a particular rigid body and a particular rotation axis. (Caution: That axis must always be specified if the value of \(I\) is to be meaningful.)

We may now write
\[
\begin{equation*}
I=\sum m_{i} r_{i}^{2} \quad \text { (rotational inertia) } \tag{10-33}
\end{equation*}
\]
and substitute into Eq. 10-32, obtaining
\[
\begin{equation*}
K=\frac{1}{2} I \omega^{2} \quad \text { (radian measure) } \tag{10-34}
\end{equation*}
\]
as the expression we seek. Because we have used the relation \(v=\omega r\) in deriving Eq. \(10-34, \omega\) must be expressed in radian measure. The SI unit for \(I\) is the kilogram-square meter \(\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)\).

The Plan. If we have a few particles and a specified rotation axis, we find \(m r^{2}\) for each particle and then add the results as in Eq. 10-33 to get the total rotational inertia \(I\). If we want the total rotational kinetic energy, we can then substitute that \(I\) into Eq. 10-34. That is the plan for a few particles, but suppose we have a huge number of particles such as in a rod. In the next module we shall see how to handle such continuous bodies and do the calculation in only a few minutes.

Equation 10-34, which gives the kinetic energy of a rigid body in pure rotation, is the angular equivalent of the formula \(K=\frac{1}{2} M v_{\text {com }}^{2}\), which gives the kinetic energy of a rigid body in pure translation. In both formulas there is a factor of \(\frac{1}{2}\). Where mass \(M\) appears in one equation, \(I\) (which involves both mass and its distribution) appears in the other. Finally, each equation contains as a factor the square of a speed-translational or rotational as appropriate. The kinetic energies of translation and of rotation are not different kinds of energy. They are both kinetic energy, expressed in ways that are appropriate to the motion at hand.

We noted previously that the rotational inertia of a rotating body involves not only its mass but also how that mass is distributed. Here is an example that you can literally feel. Rotate a long, fairly heavy rod (a pole, a length of lumber, or something similar), first around its central (longitudinal) axis (Fig. 10-11a) and then around an axis perpendicular to the rod and through the center (Fig. 10-11b). Both rotations involve the very same mass, but the first rotation is much easier than the second. The reason is that the mass is distributed much closer to the rotation axis in the first rotation. As a result, the rotational inertia of the rod is much smaller in Fig. 10-11 \(a\) than in Fig. 10-11b. In general, smaller rotational inertia means easier rotation.

\section*{Checkpoint 4}

The figure shows three small spheres that rotate about a vertical axis. The perpendicular distance between the axis and the center of each sphere is given. Rank the three spheres according to their rotational inertia about that axis, greatest first.


\section*{10-5 calculating the rotational inertia}

\section*{Learning Objectives}

After reading this module, you should be able to ...
10.20 Determine the rotational inertia of a body if it is given in Table 10-2.
10.21 Calculate the rotational inertia of a body by integration over the mass elements of the body.

\section*{Key Ideas}
- \(I\) is the rotational inertia of the body, defined as
\[
I=\sum m_{i} r_{i}^{2}
\]
for a system of discrete particles and defined as
\[
I=\int r^{2} d m
\]
for a body with continuously distributed mass. The \(r\) and \(r_{i}\) in these expressions represent the perpendicular distance from the axis of rotation to each mass element in the body, and the integration is carried out over the entire body so as to include every mass element.
10.22 Apply the parallel-axis theorem for a rotation axis that is displaced from a parallel axis through the center of mass of a body.
- The parallel-axis theorem relates the rotational inertia \(I\) of a body about any axis to that of the same body about a parallel axis through the center of mass:
\[
I=I_{\mathrm{com}}+M h^{2} .
\]

Here \(h\) is the perpendicular distance between the two axes, and \(I_{\text {com }}\) is the rotational inertia of the body about the axis through the com. We can describe \(h\) as being the distance the actual rotation axis has been shifted from the rotation axis through the com.

\section*{Calculating the Rotational Inertia}

If a rigid body consists of a few particles, we can calculate its rotational inertia about a given rotation axis with Eq. 10-33 \(\left(I=\Sigma m_{i} r_{i}^{2}\right)\); that is, we can find the product \(m r^{2}\) for each particle and then sum the products. (Recall that \(r\) is the perpendicular distance a particle is from the given rotation axis.)

If a rigid body consists of a great many adjacent particles (it is continuous, like a Frisbee), using Eq. 10-33 would require a computer. Thus, instead, we replace the sum in Eq. 10-33 with an integral and define the rotational inertia of the body as
\[
\begin{equation*}
I=\int r^{2} d m \quad \text { (rotational inertia, continuous body) } \tag{10-35}
\end{equation*}
\]

Table 10-2 gives the results of such integration for nine common body shapes and the indicated axes of rotation.

\section*{Parallel-Axis Theorem}

Suppose we want to find the rotational inertia \(I\) of a body of mass \(M\) about a given axis. In principle, we can always find \(I\) with the integration of Eq. 10-35. However, there is a neat shortcut if we happen to already know the rotational inertia \(I_{\text {com }}\) of the body about a parallel axis that extends through the body's center of mass. Let \(h\) be the perpendicular distance between the given axis and the axis

Table 10-2 Some Rotational Inertias


We need to relate the rotational inertia around the axis at \(P\) to that around the axis at the com.


Figure 10-12 A rigid body in cross section, with its center of mass at \(O\). The parallelaxis theorem (Eq. 10-36) relates the rotational inertia of the body about an axis through \(O\) to that about a parallel axis through a point such as \(P\), a distance \(h\) from the body's center of mass.
through the center of mass (remember these two axes must be parallel). Then the rotational inertia \(I\) about the given axis is
\[
\begin{equation*}
I=I_{\text {com }}+M h^{2} \quad \text { (parallel-axis theorem) } \tag{10-36}
\end{equation*}
\]

Think of the distance \(h\) as being the distance we have shifted the rotation axis from being through the com. This equation is known as the parallel-axis theorem. We shall now prove it.

\section*{Proof of the Parallel-Axis Theorem}

Let \(O\) be the center of mass of the arbitrarily shaped body shown in cross section in Fig. 10-12. Place the origin of the coordinates at \(O\). Consider an axis through \(O\) perpendicular to the plane of the figure, and another axis through point \(P\) parallel to the first axis. Let the \(x\) and \(y\) coordinates of \(P\) be \(a\) and \(b\).

Let \(d m\) be a mass element with the general coordinates \(x\) and \(y\). The rotational inertia of the body about the axis through \(P\) is then, from Eq. 10-35,
\[
I=\int r^{2} d m=\int\left[(x-a)^{2}+(y-b)^{2}\right] d m
\]
which we can rearrange as
\[
\begin{equation*}
I=\int\left(x^{2}+y^{2}\right) d m-2 a \int x d m-2 b \int y d m+\int\left(a^{2}+b^{2}\right) d m \tag{10-37}
\end{equation*}
\]

From the definition of the center of mass (Eq. 9-9), the middle two integrals of Eq. 10-37 give the coordinates of the center of mass (multiplied by a constant)
and thus must each be zero. Because \(x^{2}+y^{2}\) is equal to \(R^{2}\), where \(R\) is the distance from \(O\) to \(d m\), the first integral is simply \(I_{\text {com }}\), the rotational inertia of the body about an axis through its center of mass. Inspection of Fig. 10-12 shows that the last term in Eq. \(10-37\) is \(M h^{2}\), where \(M\) is the body's total mass. Thus, Eq. 10-37 reduces to Eq. 10-36, which is the relation that we set out to prove.

\section*{Checkpoint 5}

The figure shows a book-like object (one side is longer than the other) and four choices of rotation axes, all perpendicular to the face of the object. Rank the choices according to the rotational inertia of the object about the axis, greatest first.

(1)
(2)
(3) (4)

\section*{Sample Problem 10.06 Rotational inertia of a two-particle system}

Figure 10-13a shows a rigid body consisting of two particles of mass \(m\) connected by a rod of length \(L\) and negligible mass.
(a) What is the rotational inertia \(I_{\text {com }}\) about an axis through the center of mass, perpendicular to the rod as shown?

\section*{KEY IDEA}

Because we have only two particles with mass, we can find the body's rotational inertia \(I_{\text {com }}\) by using Eq. 10-33 rather than by integration. That is, we find the rotational inertia of each particle and then just add the results.
Calculations: For the two particles, each at perpendicular distance \(\frac{1}{2} L\) from the rotation axis, we have
\[
\begin{aligned}
I & =\sum m_{i} r_{i}^{2}=(m)\left(\frac{1}{2} L\right)^{2}+(m)\left(\frac{1}{2} L\right)^{2} \\
& =\frac{1}{2} m L^{2} .
\end{aligned}
\]
(Answer)
(b) What is the rotational inertia \(I\) of the body about an axis through the left end of the rod and parallel to the first axis (Fig. 10-13b)?

\section*{KEY IDEAS}

This situation is simple enough that we can find \(I\) using either of two techniques. The first is similar to the one used in part (a). The other, more powerful one is to apply the parallel-axis theorem.
First technique: We calculate \(I\) as in part (a), except here the perpendicular distance \(r_{i}\) is zero for the particle on the
left and \(L\) for the particle on the right. Now Eq. 10-33 gives us
\[
I=m(0)^{2}+m L^{2}=m L^{2} .
\]
(Answer)
Second technique: Because we already know \(I_{\text {com }}\) about an axis through the center of mass and because the axis here is parallel to that "com axis," we can apply the parallel-axis theorem (Eq. 10-36). We find

(b)

Here it has been shifted from the com without changing the orientation. We can use the parallel-axis theorem.

Figure 10-13 A rigid body consisting of two particles of mass \(m\) joined by a rod of negligible mass.

PLUS Additional examples, video, and practice available at WileyPLUS

\section*{Sample Problem 10.07 Rotational inertia of a uniform rod, integration}

Figure 10-14 shows a thin, uniform rod of mass \(M\) and length \(L\), on an \(x\) axis with the origin at the rod's center.
(a) What is the rotational inertia of the rod about the perpendicular rotation axis through the center?

\section*{KEY IDEAS}
(1) The rod consists of a huge number of particles at a great many different distances from the rotation axis. We certainly don't want to sum their rotational inertias individually. So, we first write a general expression for the rotational inertia of a mass element \(d m\) at distance \(r\) from the rotation axis: \(r^{2} d m\). (2) Then we sum all such rotational inertias by integrating the expression (rather than adding them up one by one). From Eq. 10-35, we write
\[
\begin{equation*}
I=\int r^{2} d m \tag{10-38}
\end{equation*}
\]
(3) Because the rod is uniform and the rotation axis is at the center, we are actually calculating the rotational inertia \(I_{\text {com }}\) about the center of mass.

Calculations: We want to integrate with respect to coordinate \(x\) (not mass \(m\) as indicated in the integral), so we must relate the mass \(d m\) of an element of the rod to its length \(d x\) along the rod. (Such an element is shown in Fig. 10-14.) Because the rod is uniform, the ratio of mass to length is the same for all the elements and for the rod as a whole. Thus, we can write
or
\[
\begin{aligned}
\frac{\text { element's mass } d m}{\text { element's length } d x} & =\frac{\text { rod's mass } M}{\text { rod's length } L} \\
d m & =\frac{M}{L} d x
\end{aligned}
\]

We can now substitute this result for \(d m\) and \(x\) for \(r\) in Eq. 10-38. Then we integrate from end to end of the rod (from \(x=-L / 2\) to \(x=L / 2\) ) to include all the elements. We find
\[
\begin{aligned}
I & =\int_{x=-L / 2}^{x=+L / 2} x^{2}\left(\frac{M}{L}\right) d x \\
& =\frac{M}{3 L}\left[x^{3}\right]_{-L / 2}^{+L / 2}=\frac{M}{3 L}\left[\left(\frac{L}{2}\right)^{3}-\left(-\frac{L}{2}\right)^{3}\right] \\
& =\frac{1}{12} M L^{2}
\end{aligned}
\]
(Answer)
(b) What is the rod's rotational inertia \(I\) about a new rotation axis that is perpendicular to the rod and through the left end?

\section*{KEY IDEAS}

We can find \(I\) by shifting the origin of the \(x\) axis to the left end of the rod and then integrating from \(x=0\) to \(x=L\). However, here we shall use a more powerful (and easier) technique by applying the parallel-axis theorem (Eq. 10-36), in which we shift the rotation axis without changing its orientation.

Calculations: If we place the axis at the rod's end so that it is parallel to the axis through the center of mass, then we can use the parallel-axis theorem (Eq. 10-36). We know from part (a) that \(I_{\text {com }}\) is \(\frac{1}{12} M L^{2}\). From Fig. 10-14, the perpendicular distance \(h\) between the new rotation axis and the center of mass is \(\frac{1}{2} L\). Equation 10-36 then gives us
\[
\begin{aligned}
I & =I_{\text {com }}+M h^{2}=\frac{1}{12} M L^{2}+(M)\left(\frac{1}{2} L\right)^{2} \\
& =\frac{1}{3} M L^{2} .
\end{aligned}
\]
(Answer)
Actually, this result holds for any axis through the left or right end that is perpendicular to the rod.


First, pick any tiny element and write its rotational inertia as \(x^{2} d m\).


Then, using integration, add up the rotational inertias for all of the elements, from leftmost to rightmost.

Additional examples, video, and practice available at WileyPLUS

\section*{Sample Problem 10.08 Rotational kinetic energy, spin test explosion}

Large machine components that undergo prolonged, highspeed rotation are first examined for the possibility of failure in a spin test system. In this system, a component is spun \(u p\) (brought up to high speed) while inside a cylindrical arrangement of lead bricks and containment liner, all within a steel shell that is closed by a lid clamped into place. If the rotation causes the component to shatter, the soft lead bricks are supposed to catch the pieces for later analysis.

In 1985, Test Devices, Inc. (www.testdevices.com) was spin testing a sample of a solid steel rotor (a disk) of mass \(M=\) 272 kg and radius \(R=38.0 \mathrm{~cm}\). When the sample reached an angular speed \(\omega\) of \(14000 \mathrm{rev} / \mathrm{min}\), the test engineers heard a dull thump from the test system, which was located one floor down and one room over from them. Investigating, they found that lead bricks had been thrown out in the hallway leading to the test room, a door to the room had been hurled into the adjacent parking lot, one lead brick had shot from the test site through the wall of a neighbor's kitchen, the structural beams of the test building had been damaged, the concrete floor beneath the spin chamber had been shoved downward by about 0.5 cm , and the 900 kg lid had been blown upward through the ceiling and had then crashed back onto the test equipment (Fig. 10-15). The exploding pieces had not penetrated the room of the test engineers only by luck.

How much energy was released in the explosion of the rotor?

Figure 10-15 Some of the destruction caused by the explosion of a rapidly rotating steel disk.


\section*{KEY IDEA}

The released energy was equal to the rotational kinetic energy \(K\) of the rotor just as it reached the angular speed of \(14000 \mathrm{rev} / \mathrm{min}\).
Calculations: We can find \(K\) with Eq. 10-34 ( \(K=\frac{1}{2} I \omega^{2}\) ), but first we need an expression for the rotational inertia \(I\). Because the rotor was a disk that rotated like a merry-go-round, \(I\) is given in Table 10-2c \(\left(I=\frac{1}{2} M R^{2}\right)\). Thus,
\[
I=\frac{1}{2} M R^{2}=\frac{1}{2}(272 \mathrm{~kg})(0.38 \mathrm{~m})^{2}=19.64 \mathrm{~kg} \cdot \mathrm{~m}^{2} .
\]

The angular speed of the rotor was
\[
\begin{aligned}
\omega & =(14000 \mathrm{rev} / \mathrm{min})(2 \pi \mathrm{rad} / \mathrm{rev})\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right) \\
& =1.466 \times 10^{3} \mathrm{rad} / \mathrm{s}
\end{aligned}
\]

Then, with Eq. 10-34, we find the (huge) energy release:
\[
\begin{aligned}
K & =\frac{1}{2} I \omega^{2}=\frac{1}{2}\left(19.64 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\left(1.466 \times 10^{3} \mathrm{rad} / \mathrm{s}\right)^{2} \\
& =2.1 \times 10^{7} \mathrm{~J} . \quad \text { (Answer) }
\end{aligned}
\]

\section*{10-6 torque}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
10.23 Identify that a torque on a body involves a force and a position vector, which extends from a rotation axis to the point where the force is applied.
10.24 Calculate the torque by using (a) the angle between the position vector and the force vector, (b) the line of action and the moment arm of the force, and (c) the force component perpendicular to the position vector.
10.25 Identify that a rotation axis must always be specified to calculate a torque.
10.26 Identify that a torque is assigned a positive or negative sign depending on the direction it tends to make the body rotate about a specified rotation axis: "clocks are negative."
10.27 When more than one torque acts on a body about a rotation axis, calculate the net torque.

\section*{Key Ideas}
- Torque is a turning or twisting action on a body about a rotation axis due to a force \(\vec{F}\). If \(\vec{F}\) is exerted at a point given by the position vector \(\vec{r}\) relative to the axis, then the magnitude of the torque is
\[
\tau=r F_{t}=r_{\perp} F=r F \sin \phi
\]
where \(F_{t}\) is the component of \(\vec{F}\) perpendicular to \(\vec{r}\) and \(\phi\) is the angle between \(\vec{r}\) and \(\vec{F}\). The quantity \(r_{\perp}\) is the
perpendicular distance between the rotation axis and an extended line running through the \(\vec{F}\) vector. This line is called the line of action of \(\vec{F}\), and \(r_{\perp}\) is called the moment arm of \(\vec{F}\). Similarly, \(r\) is the moment arm of \(F_{t}\).
- The SI unit of torque is the newton-meter ( \(\mathrm{N} \cdot \mathrm{m}\) ). A torque \(\tau\) is positive if it tends to rotate a body at rest counterclockwise and negative if it tends to rotate the body clockwise.
(a)


The torque due to this force causes rotation around this axis (which extends out toward you).
(b)


But actually only the tangential component of the force causes the rotation.


You calculate the same torque by using this moment arm distance and the full force magnitude.

Figure 10-16 (a) A force \(\vec{F}\) acts on a rigid body, with a rotation axis perpendicular to the page. The torque can be found with (a) angle \(\phi,(b)\) tangential force component \(F_{t}\), or (c) moment arm \(r_{\perp}\).

\section*{Torque}

A doorknob is located as far as possible from the door's hinge line for a good reason. If you want to open a heavy door, you must certainly apply a force, but that is not enough. Where you apply that force and in what direction you push are also important. If you apply your force nearer to the hinge line than the knob, or at any angle other than \(90^{\circ}\) to the plane of the door, you must use a greater force than if you apply the force at the knob and perpendicular to the door's plane.

Figure 10-16a shows a cross section of a body that is free to rotate about an axis passing through \(O\) and perpendicular to the cross section. A force \(\vec{F}\) is applied at point \(P\), whose position relative to \(O\) is defined by a position vector \(\vec{r}\). The directions of vectors \(\vec{F}\) and \(\vec{r}\) make an angle \(\phi\) with each other. (For simplicity, we consider only forces that have no component parallel to the rotation axis; thus, \(\vec{F}\) is in the plane of the page.)

To determine how \(\vec{F}\) results in a rotation of the body around the rotation axis, we resolve \(\vec{F}\) into two components (Fig. 10-16b). One component, called the radial component \(F_{r}\), points along \(\vec{r}\). This component does not cause rotation, because it acts along a line that extends through \(O\). (If you pull on a door parallel to the plane of the door, you do not rotate the door.) The other component of \(\vec{F}\), called the tangential component \(F_{t}\), is perpendicular to \(\vec{r}\) and has magnitude \(F_{t}=F \sin \phi\). This component does cause rotation.

Calculating Torques. The ability of \(\vec{F}\) to rotate the body depends not only on the magnitude of its tangential component \(F_{t}\), but also on just how far from \(O\) the force is applied. To include both these factors, we define a quantity called torque \(\tau\) as the product of the two factors and write it as
\[
\begin{equation*}
\tau=(r)(F \sin \phi) \tag{10-39}
\end{equation*}
\]

Two equivalent ways of computing the torque are
\[
\begin{align*}
& \tau=(r)(F \sin \phi)  \tag{10-40}\\
&=r F_{t}  \tag{10-41}\\
& \tau=(r \sin \phi)(F)
\end{align*}=r_{\perp} F,
\]
where \(r_{\perp}\) is the perpendicular distance between the rotation axis at \(O\) and an extended line running through the vector \(\vec{F}\) (Fig. 10-16c). This extended line is called the line of action of \(\vec{F}\), and \(r_{\perp}\) is called the moment arm of \(\vec{F}\). Figure 10-16b shows that we can describe \(r\), the magnitude of \(\vec{r}\), as being the moment arm of the force component \(F_{t}\).

Torque, which comes from the Latin word meaning "to twist," may be loosely identified as the turning or twisting action of the force \(\vec{F}\). When you apply a force to an object - such as a screwdriver or torque wrench - with the purpose of turning that object, you are applying a torque. The SI unit of torque is the newtonmeter \((\mathrm{N} \cdot \mathrm{m})\). Caution: The newton-meter is also the unit of work. Torque and work, however, are quite different quantities and must not be confused. Work is often expressed in joules \((1 \mathrm{~J}=1 \mathrm{~N} \cdot \mathrm{~m})\), but torque never is.

Clocks Are Negative. In Chapter 11 we shall use vector notation for torques, but here, with rotation around a single axis, we use only an algebraic sign. If a torque would cause counterclockwise rotation, it is positive. If it would cause clockwise rotation, it is negative. (The phrase "clocks are negative" from Module 10-1 still works.)

Torques obey the superposition principle that we discussed in Chapter 5 for forces: When several torques act on a body, the net torque (or resultant torque) is the sum of the individual torques. The symbol for net torque is \(\tau_{\text {net }}\).

\section*{Checkpoint 6}

The figure shows an overhead view of a meter stick that can pivot about the dot at the position marked 20 (for 20 cm ). All five forces on the stick are horizontal and have the same magnitude. Rank the forces according to the magnitude of the torque they produce, greatest first.


\section*{10-7 newton's second law for rotation}

\section*{Learning Objective}

After reading this module, you should be able to . . .
10.28 Apply Newton's second law for rotation to relate the net torque on a body to the body's rotational inertia and
rotational acceleration, all calculated relative to a specified rotation axis.

\section*{Key Idea}
- The rotational analog of Newton's second law is
\[
\tau_{\mathrm{net}}=I \alpha
\]
where \(\tau_{\text {net }}\) is the net torque acting on a particle or rigid body,
\(I\) is the rotational inertia of the particle or body about the rotation axis, and \(\alpha\) is the resulting angular acceleration about that axis.

\section*{Newton's Second Law for Rotation}

A torque can cause rotation of a rigid body, as when you use a torque to rotate a door. Here we want to relate the net torque \(\tau_{\text {net }}\) on a rigid body to the angular acceleration \(\alpha\) that torque causes about a rotation axis. We do so by analogy with Newton's second law ( \(F_{\text {net }}=m a\) ) for the acceleration \(a\) of a body of mass \(m\) due to a net force \(F_{\text {net }}\) along a coordinate axis. We replace \(F_{\text {net }}\) with \(\tau_{\text {net }}, m\) with \(I\), and \(a\) with \(\alpha\) in radian measure, writing
\[
\begin{equation*}
\tau_{\text {net }}=I \alpha \quad(\text { Newton's second law for rotation }) . \tag{10-42}
\end{equation*}
\]

\section*{Proof of Equation 10-42}

We prove Eq. 10-42 by first considering the simple situation shown in Fig. 10-17. The rigid body there consists of a particle of mass \(m\) on one end of a massless rod of length \(r\). The rod can move only by rotating about its other end, around a rotation axis (an axle) that is perpendicular to the plane of the page. Thus, the particle can move only in a circular path that has the rotation axis at its center.

A force \(\vec{F}\) acts on the particle. However, because the particle can move only along the circular path, only the tangential component \(F_{t}\) of the force (the component that is tangent to the circular path) can accelerate the particle along the path. We can relate \(F_{t}\) to the particle's tangential acceleration \(a_{t}\) along the path with Newton's second law, writing
\[
F_{t}=m a_{t} .
\]

The torque acting on the particle is, from Eq. 10-40,
\[
\tau=F_{t} r=m a_{t} r
\]

From Eq. 10-22 \(\left(a_{t}=\alpha r\right)\) we can write this as
\[
\begin{equation*}
\tau=m(\alpha r) r=\left(m r^{2}\right) \alpha \tag{10-43}
\end{equation*}
\]

The quantity in parentheses on the right is the rotational inertia of the particle about the rotation axis (see Eq. 10-33, but here we have only a single particle). Thus, using \(I\) for the rotational inertia, Eq. 10-43 reduces to
\[
\begin{equation*}
\tau=I \alpha \quad \text { (radian measure). } \tag{10-44}
\end{equation*}
\]

If more than one force is applied to the particle, Eq. 10-44 becomes
\[
\begin{equation*}
\left.\tau_{\mathrm{net}}=I \alpha \quad \text { (radian measure }\right) \tag{10-45}
\end{equation*}
\]
which we set out to prove. We can extend this equation to any rigid body rotating about a fixed axis, because any such body can always be analyzed as an assembly of single particles.

The torque due to the tangential component of the force causes an angular acceleration around the rotation axis.


Figure 10-17 A simple rigid body, free to rotate about an axis through \(O\), consists of a particle of mass \(m\) fastened to the end of a rod of length \(r\) and negligible mass. An applied force \(\vec{F}\) causes the body to rotate.

\section*{Checkpoint 7}

The figure shows an overhead view of a meter stick that can pivot about the point indicated, which is to the left of the stick's midpoint. Two horizontal forces, \(\vec{F}_{1}\) and \(\vec{F}_{2}\), are applied to the stick. Only \(\vec{F}_{1}\) is shown. Force \(\vec{F}_{2}\) is perpendicular to the stick and is applied at the right end. If the stick is not to turn, (a) what should be the direction of \(\vec{F}_{2}\), and (b) should \(F_{2}\) be greater than, less than, or equal to \(F_{1}\) ?


\section*{Sample Problem 10.09 Using Newton's second law for rotation in a basic judo hip throw}

To throw an 80 kg opponent with a basic judo hip throw, you intend to pull his uniform with a force \(\vec{F}\) and a moment arm \(d_{1}=0.30 \mathrm{~m}\) from a pivot point (rotation axis) on your right hip (Fig. 10-18). You wish to rotate him about the pivot point with an angular acceleration \(\alpha\) of \(-6.0 \mathrm{rad} / \mathrm{s}^{2}\)-that is, with an angular acceleration that is clockwise in the figure. Assume that his rotational inertia \(I\) relative to the pivot point is \(15 \mathrm{~kg} \cdot \mathrm{~m}^{2}\).
(a) What must the magnitude of \(\vec{F}\) be if, before you throw him, you bend your opponent forward to bring his center of mass to your hip (Fig. 10-18a)?

\section*{KEY IDEA}

We can relate your pull \(\vec{F}\) on your opponent to the given angular acceleration \(\alpha\) via Newton's second law for rotation ( \(\tau_{\text {net }}=I \alpha\) ).

Calculations: As his feet leave the floor, we can assume that only three forces act on him: your pull \(\vec{F}\), a force \(\vec{N}\) on him from you at the pivot point (this force is not indicated in Fig. \(10-18\) ), and the gravitational force \(\vec{F}_{g}\). To use \(\tau_{\text {net }}=I \alpha\), we need the corresponding three torques, each about the pivot point.

From Eq. 10-41 \(\left(\tau=r_{\perp} F\right)\), the torque due to your pull \(\vec{F}\) is equal to \(-d_{1} F\), where \(d_{1}\) is the moment arm \(r_{\perp}\) and the sign indicates the clockwise rotation this torque tends to cause. The torque due to \(\vec{N}\) is zero, because \(\vec{N}\) acts at the pivot point and thus has moment \(\operatorname{arm} r_{\perp}=0\).

To evaluate the torque due to \(\vec{F}_{g}\), we can assume that \(\vec{F}_{g}\) acts at your opponent's center of mass. With the center of mass at the pivot point, \(\vec{F}_{g}\) has moment arm \(r_{\perp}=0\) and thus the torque due to \(\vec{F}_{g}\) is zero. So, the only torque on your opponent is due to your pull \(\vec{F}\), and we can write \(\tau_{\text {net }}=I \alpha\) as
\[
-d_{1} F=I \alpha .
\]

We then find
\[
\begin{aligned}
F & =\frac{-I \alpha}{d_{1}}=\frac{-\left(15 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\left(-6.0 \mathrm{rad} / \mathrm{s}^{2}\right)}{0.30 \mathrm{~m}} \\
& =300 \mathrm{~N}
\end{aligned}
\]
(Answer)
(b) What must the magnitude of \(\vec{F}\) be if your opponent remains upright before you throw him, so that \(\vec{F}_{g}\) has a moment arm \(d_{2}=0.12 \mathrm{~m}\) (Fig. 10-18b)?


Figure 10-18 A judo hip throw (a) correctly executed and \((b)\) incorrectly executed.

\section*{KEY IDEA}

Because the moment arm for \(\vec{F}_{g}\) is no longer zero, the torque due to \(\vec{F}_{g}\) is now equal to \(d_{2} m g\) and is positive because the torque attempts counterclockwise rotation.
Calculations: Now we write \(\tau_{\text {net }}=I \alpha\) as
\[
-d_{1} F+d_{2} m g=I \alpha
\]
which gives
\[
F=-\frac{I \alpha}{d_{1}}+\frac{d_{2} m g}{d_{1}}
\]

From (a), we know that the first term on the right is equal to 300 N. Substituting this and the given data, we have
\[
\begin{aligned}
F & =300 \mathrm{~N}+\frac{(0.12 \mathrm{~m})(80 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{0.30 \mathrm{~m}} \\
& =613.6 \mathrm{~N} \approx 610 \mathrm{~N}
\end{aligned}
\]
(Answer)
The results indicate that you will have to pull much harder if you do not initially bend your opponent to bring his center of mass to your hip. A good judo fighter knows this lesson from physics. Indeed, physics is the basis of most of the martial arts, figured out after countless hours of trial and error over the centuries.

\section*{Sample Problem 10.10 Newton's second law, rotation, torque, disk}

Figure 10-19a shows a uniform disk, with mass \(M=2.5 \mathrm{~kg}\) and radius \(R=20 \mathrm{~cm}\), mounted on a fixed horizontal axle. A block with mass \(m=1.2 \mathrm{~kg}\) hangs from a massless cord that is wrapped around the rim of the disk. Find the acceleration of the falling block, the angular acceleration of the disk, and the tension in the cord. The cord does not slip, and there is no friction at the axle.

\section*{KEY IDEAS}
(1) Taking the block as a system, we can relate its acceleration \(a\) to the forces acting on it with Newton's second law \(\left(\vec{F}_{\text {net }}=m \vec{a}\right)\). (2) Taking the disk as a system, we can relate its angular acceleration \(\alpha\) to the torque acting on it with Newton's second law for rotation ( \(\tau_{\text {net }}=I \alpha\) ). (3) To combine the motions of block and disk, we use the fact that the linear acceleration \(a\) of the block and the (tangential) linear acceleration \(a_{t}\) of the disk rim are equal. (To avoid confusion about signs, let's work with acceleration magnitudes and explicit algebraic signs.)

Forces on block: The forces are shown in the block's freebody diagram in Fig. 10-19b: The force from the cord is \(\vec{T}\), and the gravitational force is \(\vec{F}_{g}\), of magnitude \(m g\). We can now write Newton's second law for components along a vertical \(y\) axis \(\left(F_{\text {net, }, y}=m a_{y}\right)\) as
\[
\begin{equation*}
T-m g=m(-a) \tag{10-46}
\end{equation*}
\]
where \(a\) is the magnitude of the acceleration (down the \(y\) axis). However, we cannot solve this equation for \(a\) because it also contains the unknown \(T\).

Torque on disk: Previously, when we got stuck on the \(y\) axis, we switched to the \(x\) axis. Here, we switch to the rotation of the disk and use Newton's second law in angular form. To calculate the torques and the rotational inertia \(I\), we take the rotation axis to be perpendicular to the disk and through its center, at point \(O\) in Fig. 10-19c.

The torques are then given by Eq. \(10-40\left(\tau=r F_{t}\right)\). The gravitational force on the disk and the force on the disk from the axle both act at the center of the disk and thus at distance \(r=0\), so their torques are zero. The force \(\vec{T}\) on the disk due to the cord acts at distance \(r=R\) and is tangent to the rim of the disk. Therefore, its torque is \(-R T\), negative because the torque rotates the disk clockwise from rest. Let \(\alpha\) be the magnitude of the negative (clockwise) angular acceleration. From Table \(10-2 c\), the rotational inertia \(I\) of the disk is \(\frac{1}{2} M R^{2}\). Thus we can write the general equation \(\tau_{\text {net }}=I \alpha\) as
\[
\begin{equation*}
-R T=\frac{1}{2} M R^{2}(-\alpha) \tag{10-47}
\end{equation*}
\]


Figure 10-19 (a) The falling block causes the disk to rotate. (b) A free-body diagram for the block. (c) An incomplete free-body diagram for the disk.

This equation seems useless because it has two unknowns, \(\alpha\) and \(T\), neither of which is the desired \(a\). However, mustering physics courage, we can make it useful with this fact: Because the cord does not slip, the magnitude \(a\) of the block's linear acceleration and the magnitude \(a_{t}\) of the (tangential) linear acceleration of the rim of the disk are equal. Then, by Eq. 10-22 \(\left(a_{t}=\alpha r\right)\) we see that here \(\alpha=\) \(a / R\). Substituting this in Eq. 10-47 yields
\[
\begin{equation*}
T=\frac{1}{2} M a . \tag{10-48}
\end{equation*}
\]

Combining results: Combining Eqs. 10-46 and 10-48 leads to
\[
\begin{aligned}
a & =g \frac{2 m}{M+2 m}=\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \frac{(2)(1.2 \mathrm{~kg})}{2.5 \mathrm{~kg}+(2)(1.2 \mathrm{~kg})} \\
& =4.8 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
\]

We then use Eq. 10-48 to find \(T\) :
\[
\begin{aligned}
T & =\frac{1}{2} M a=\frac{1}{2}(2.5 \mathrm{~kg})\left(4.8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =6.0 \mathrm{~N} .
\end{aligned}
\]
(Answer)
As we should expect, acceleration \(a\) of the falling block is less than \(g\), and tension \(T\) in the cord \((=6.0 \mathrm{~N})\) is less than the gravitational force on the hanging block ( \(=m g=11.8 \mathrm{~N}\) ). We see also that \(a\) and \(T\) depend on the mass of the disk but not on its radius.

As a check, we note that the formulas derived above predict \(a=g\) and \(T=0\) for the case of a massless disk ( \(M=\) 0 ). This is what we would expect; the block simply falls as a free body. From Eq. 10-22, the magnitude of the angular acceleration of the disk is
\[
\alpha=\frac{a}{R}=\frac{4.8 \mathrm{~m} / \mathrm{s}^{2}}{0.20 \mathrm{~m}}=24 \mathrm{rad} / \mathrm{s}^{2}
\]
(Answer)

\section*{10-8 work and rotational kinetic energy}

\section*{Learning Objectives}

After reading this module, you should be able to ...
10.29 Calculate the work done by a torque acting on a rotating body by integrating the torque with respect to the angle of rotation.
10.30 Apply the work-kinetic energy theorem to relate the work done by a torque to the resulting change in the rotational kinetic energy of the body.
10.31 Calculate the work done by a constant torque by relating the work to the angle through which the body rotates.
10.32 Calculate the power of a torque by finding the rate at which work is done.
10.33 Calculate the power of a torque at any given instant by relating it to the torque and the angular velocity at that instant.

\section*{Key Ideas}
- The equations used for calculating work and power in rotational motion correspond to equations used for translational motion and are
and
\[
W=\int_{\theta_{i}}^{\theta_{f}} \tau d \theta
\]
- When \(\tau\) is constant, the integral reduces to
\[
W=\tau\left(\theta_{f}-\theta_{i}\right) .
\]
- The form of the work-kinetic energy theorem used for rotating bodies is
\[
\Delta K=K_{f}-K_{i}=\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega_{i}^{2}=W .
\]

\section*{Work and Rotational Kinetic Energy}

As we discussed in Chapter 7, when a force \(F\) causes a rigid body of mass \(m\) to accelerate along a coordinate axis, the force does work \(W\) on the body. Thus, the body's kinetic energy ( \(K=\frac{1}{2} m v^{2}\) ) can change. Suppose it is the only energy of the body that changes. Then we relate the change \(\Delta K\) in kinetic energy to the work \(W\) with the work - kinetic energy theorem (Eq. 7-10), writing
\[
\begin{equation*}
\Delta K=K_{f}-K_{i}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}=W \quad(\text { work -kinetic energy theorem }) . \tag{10-49}
\end{equation*}
\]

For motion confined to an \(x\) axis, we can calculate the work with Eq. 7-32,
\[
\begin{equation*}
W=\int_{x_{i}}^{x_{f}} F d x \quad \text { (work, one-dimensional motion). } \tag{10-50}
\end{equation*}
\]

This reduces to \(W=F d\) when \(F\) is constant and the body's displacement is \(d\). The rate at which the work is done is the power, which we can find with Eqs. 7-43 and 7-48,
\[
\begin{equation*}
P=\frac{d W}{d t}=F v \quad \text { (power, one-dimensional motion). } \tag{10-51}
\end{equation*}
\]

Now let us consider a rotational situation that is similar. When a torque accelerates a rigid body in rotation about a fixed axis, the torque does work \(W\) on the body. Therefore, the body's rotational kinetic energy ( \(K=\frac{1}{2} I \omega^{2}\) ) can change. Suppose that it is the only energy of the body that changes. Then we can still relate the change \(\Delta K\) in kinetic energy to the work \(W\) with the work-kinetic energy theorem, except now the kinetic energy is a rotational kinetic energy:
\[
\begin{equation*}
\Delta K=K_{f}-K_{i}=\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega_{i}^{2}=W \quad \text { (work-kinetic energy theorem). } \tag{10-52}
\end{equation*}
\]

Here, \(I\) is the rotational inertia of the body about the fixed axis and \(\omega_{i}\) and \(\omega_{f}\) are the angular speeds of the body before and after the work is done.

Also, we can calculate the work with a rotational equivalent of Eq. 10-50,
\[
\begin{equation*}
W=\int_{\theta_{i}}^{\theta_{f}} \tau d \theta \quad \text { (work, rotation about fixed axis), } \tag{10-53}
\end{equation*}
\]
where \(\tau\) is the torque doing the work \(W\), and \(\theta_{i}\) and \(\theta_{f}\) are the body's angular positions before and after the work is done, respectively. When \(\tau\) is constant, Eq. 10-53 reduces to
\[
\begin{equation*}
W=\tau\left(\theta_{f}-\theta_{i}\right) \quad \text { (work, constant torque). } \tag{10-54}
\end{equation*}
\]

The rate at which the work is done is the power, which we can find with the rotational equivalent of Eq. 10-51,
\[
\begin{equation*}
P=\frac{d W}{d t}=\tau \omega \quad \text { (power, rotation about fixed axis). } \tag{10-55}
\end{equation*}
\]

Table 10-3 summarizes the equations that apply to the rotation of a rigid body about a fixed axis and the corresponding equations for translational motion.

\section*{Proof of Eqs. 10-52 through 10-55}

Let us again consider the situation of Fig. 10-17, in which force \(\vec{F}\) rotates a rigid body consisting of a single particle of mass \(m\) fastened to the end of a massless rod. During the rotation, force \(\vec{F}\) does work on the body. Let us assume that the only energy of the body that is changed by \(\vec{F}\) is the kinetic energy. Then we can apply the work-kinetic energy theorem of Eq. 10-49:
\[
\begin{equation*}
\Delta K=K_{f}-K_{i}=W \tag{10-56}
\end{equation*}
\]

Using \(K=\frac{1}{2} m v^{2}\) and Eq. 10-18 \((v=\omega r)\), we can rewrite Eq. 10-56 as
\[
\begin{equation*}
\Delta K=\frac{1}{2} m r^{2} \omega_{f}^{2}-\frac{1}{2} m r^{2} \omega_{i}^{2}=W \tag{10-57}
\end{equation*}
\]

From Eq. 10-33, the rotational inertia for this one-particle body is \(I=m r^{2}\). Substituting this into Eq. 10-57 yields
\[
\Delta K=\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega_{i}^{2}=W
\]
which is Eq. 10-52. We derived it for a rigid body with one particle, but it holds for any rigid body rotated about a fixed axis.

We next relate the work \(W\) done on the body in Fig. 10-17 to the torque \(\tau\) on the body due to force \(\vec{F}\). When the particle moves a distance \(d s\) along its

Table 10-3 Some Corresponding Relations for Translational and Rotational Motion
\begin{tabular}{ll|ll}
\hline \multicolumn{2}{c}{ Pure Translation (Fixed Direction) } & \multicolumn{2}{c}{ Pure Rotation (Fixed Axis) } \\
\hline Position & \(x\) & Angular position & \(\theta\) \\
Velocity & \(v=d x / d t\) & Angular velocity & \(\omega=d \theta / d t\) \\
Acceleration & \(a=d v / d t\) & Angular acceleration & \(\alpha=d \omega / d t\) \\
Mass & \(m\) & Rotational inertia & \(I\) \\
Newton's second law & \(F_{\text {net }}=m a\) & Newton's second law & \(\tau_{\text {net }}=I \alpha\) \\
Work & \(W=\int F d x\) & Work & \(W=\int \tau d \theta\) \\
Kinetic energy & \(K=\frac{1}{2} m \nu^{2}\) & Kinetic energy & \(K=\frac{1}{2} I \omega^{2}\) \\
Power (constant force) & \(P=F v\) & Power (constant torque) & \(P=\tau \omega\) \\
Work-kinetic energy theorem & \(W=\Delta K\) & Work-kinetic energy theorem & \(W=\Delta K\) \\
\hline
\end{tabular}
circular path, only the tangential component \(F_{t}\) of the force accelerates the particle along the path. Therefore, only \(F_{t}\) does work on the particle. We write that work \(d W\) as \(F_{t} d s\). However, we can replace \(d s\) with \(r d \theta\), where \(d \theta\) is the angle through which the particle moves. Thus we have
\[
\begin{equation*}
d W=F_{t} r d \theta \tag{10-58}
\end{equation*}
\]

From Eq. 10-40, we see that the product \(F_{t} r\) is equal to the torque \(\tau\), so we can rewrite Eq. \(10-58\) as
\[
\begin{equation*}
d W=\tau d \theta \tag{10-59}
\end{equation*}
\]

The work done during a finite angular displacement from \(\theta_{i}\) to \(\theta_{f}\) is then
\[
W=\int_{\theta_{i}}^{\theta_{f}} \tau d \theta,
\]
which is Eq. 10-53. It holds for any rigid body rotating about a fixed axis. Equation 10-54 comes directly from Eq. 10-53.

We can find the power \(P\) for rotational motion from Eq. 10-59:
\[
P=\frac{d W}{d t}=\tau \frac{d \theta}{d t}=\tau \omega
\]
which is Eq. 10-55.

\section*{Sample Problem 10.11 Work, rotational kinetic energy, torque, disk}

Let the disk in Fig. 10-19 start from rest at time \(t=0\) and also let the tension in the massless cord be 6.0 N and the angular acceleration of the disk be \(-24 \mathrm{rad} / \mathrm{s}^{2}\). What is its rotational kinetic energy \(K\) at \(t=2.5 \mathrm{~s}\) ?

\section*{KEY IDEA}

We can find \(K\) with Eq. 10-34 ( \(K=\frac{1}{2} I \omega^{2}\) ). We already know that \(I=\frac{1}{2} M R^{2}\), but we do not yet know \(\omega\) at \(t=2.5 \mathrm{~s}\). However, because the angular acceleration \(\alpha\) has the constant value of \(-24 \mathrm{rad} / \mathrm{s}^{2}\), we can apply the equations for constant angular acceleration in Table 10-1.

Calculations: Because we want \(\omega\) and know \(\alpha\) and \(\omega_{0}(=0)\), we use Eq. 10-12:
\[
\omega=\omega_{0}+\alpha t=0+\alpha t=\alpha t .
\]

Substituting \(\omega=\alpha t\) and \(I=\frac{1}{2} M R^{2}\) into Eq. 10-34, we find
\[
\begin{aligned}
K & =\frac{1}{2} I \omega^{2}=\frac{1}{2}\left(\frac{1}{2} M R^{2}\right)(\alpha t)^{2}=\frac{1}{4} M(R \alpha t)^{2} \\
& =\frac{1}{4}(2.5 \mathrm{~kg})\left[(0.20 \mathrm{~m})\left(-24 \mathrm{rad} / \mathrm{s}^{2}\right)(2.5 \mathrm{~s})\right]^{2} \\
& =90 \mathrm{~J} .
\end{aligned}
\]
(Answer)

\section*{KEY IDEA}

We can also get this answer by finding the disk's kinetic energy from the work done on the disk.

Calculations: First, we relate the change in the kinetic energy of the disk to the net work \(W\) done on the disk, using the work-kinetic energy theorem of Eq. 10-52 \(\left(K_{f}-K_{i}=W\right)\). With \(K\) substituted for \(K_{f}\) and 0 for \(K_{i}\), we get
\[
\begin{equation*}
K=K_{i}+W=0+W=W \tag{10-60}
\end{equation*}
\]

Next we want to find the work \(W\). We can relate \(W\) to the torques acting on the disk with Eq. 10-53 or 10-54. The only torque causing angular acceleration and doing work is the torque due to force \(\vec{T}\) on the disk from the cord, which is equal to \(-T R\). Because \(\alpha\) is constant, this torque also must be constant. Thus, we can use Eq. 10-54 to write
\[
\begin{equation*}
W=\tau\left(\theta_{f}-\theta_{i}\right)=-T R\left(\theta_{f}-\theta_{i}\right) . \tag{10-61}
\end{equation*}
\]

Because \(\alpha\) is constant, we can use Eq. 10-13 to find \(\theta_{f}-\theta_{i}\). With \(\omega_{i}=0\), we have
\[
\theta_{f}-\theta_{i}=\omega_{i} t+\frac{1}{2} \alpha t^{2}=0+\frac{1}{2} \alpha t^{2}=\frac{1}{2} \alpha t^{2} .
\]

Now we substitute this into Eq. 10-61 and then substitute the result into Eq. 10-60. Inserting the given values \(T=6.0 \mathrm{~N}\) and \(\alpha=-24 \mathrm{rad} / \mathrm{s}^{2}\), we have
\[
\begin{aligned}
K & =W=-T R\left(\theta_{f}-\theta_{i}\right)=-T R\left(\frac{1}{2} \alpha t^{2}\right)=-\frac{1}{2} T R \alpha t^{2} \\
& =-\frac{1}{2}(6.0 \mathrm{~N})(0.20 \mathrm{~m})\left(-24 \mathrm{rad} / \mathrm{s}^{2}\right)(2.5 \mathrm{~s})^{2} \\
& =90 \mathrm{~J} .
\end{aligned}
\]

\section*{\&eview \& Summary}

Angular Position To describe the rotation of a rigid body about a fixed axis, called the rotation axis, we assume a reference line is fixed in the body, perpendicular to that axis and rotating with the body. We measure the angular position \(\theta\) of this line relative to a fixed direction. When \(\theta\) is measured in radians,
\[
\begin{equation*}
\theta=\frac{s}{r} \quad(\text { radian measure }) \tag{10-1}
\end{equation*}
\]
where \(s\) is the arc length of a circular path of radius \(r\) and angle \(\theta\). Radian measure is related to angle measure in revolutions and degrees by
\[
\begin{equation*}
1 \mathrm{rev}=360^{\circ}=2 \pi \mathrm{rad} \tag{10-2}
\end{equation*}
\]

Angular Displacement A body that rotates about a rotation axis, changing its angular position from \(\theta_{1}\) to \(\theta_{2}\), undergoes an angular displacement
\[
\begin{equation*}
\Delta \theta=\theta_{2}-\theta_{1} \tag{10-4}
\end{equation*}
\]
where \(\Delta \theta\) is positive for counterclockwise rotation and negative for clockwise rotation.

Angular Velocity and Speed If a body rotates through an angular displacement \(\Delta \theta\) in a time interval \(\Delta t\), its average angular velocity \(\omega_{\text {avg }}\) is
\[
\begin{equation*}
\omega_{\mathrm{avg}}=\frac{\Delta \theta}{\Delta t} . \tag{10-5}
\end{equation*}
\]

The (instantaneous) angular velocity \(\omega\) of the body is
\[
\begin{equation*}
\omega=\frac{d \theta}{d t} \tag{10-6}
\end{equation*}
\]

Both \(\omega_{\text {avg }}\) and \(\omega\) are vectors, with directions given by the right-hand rule of Fig. 10-6. They are positive for counterclockwise rotation and negative for clockwise rotation. The magnitude of the body's angular velocity is the angular speed.

Angular Acceleration If the angular velocity of a body changes from \(\omega_{1}\) to \(\omega_{2}\) in a time interval \(\Delta t=t_{2}-t_{1}\), the average angular acceleration \(\alpha_{\text {avg }}\) of the body is
\[
\begin{equation*}
\alpha_{\text {avg }}=\frac{\omega_{2}-\omega_{1}}{t_{2}-t_{1}}=\frac{\Delta \omega}{\Delta t} . \tag{10-7}
\end{equation*}
\]

The (instantaneous) angular acceleration \(\alpha\) of the body is
\[
\begin{equation*}
\alpha=\frac{d \omega}{d t} . \tag{10-8}
\end{equation*}
\]

Both \(\alpha_{\text {avg }}\) and \(\alpha\) are vectors.
The Kinematic Equations for Constant Angular Acceleration Constant angular acceleration ( \(\alpha=\) constant) is an important special case of rotational motion. The appropriate kinematic equations, given in Table 10-1, are
\[
\begin{align*}
\omega & =\omega_{0}+\alpha t,  \tag{10-12}\\
\theta-\theta_{0} & =\omega_{0} t+\frac{1}{2} \alpha t^{2},  \tag{10-13}\\
\omega^{2} & =\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right),  \tag{10-14}\\
\theta-\theta_{0} & =\frac{1}{2}\left(\omega_{0}+\omega\right) t,  \tag{10-15}\\
\theta-\theta_{0} & =\omega t-\frac{1}{2} \alpha t^{2} . \tag{10-16}
\end{align*}
\]

Linear and Angular Variables Related A point in a rigid rotating body, at a perpendicular distance \(r\) from the rotation axis,
moves in a circle with radius \(r\). If the body rotates through an angle \(\theta\), the point moves along an arc with length \(s\) given by
\[
\begin{equation*}
s=\theta r \quad(\text { radian measure }) \tag{10-17}
\end{equation*}
\]
where \(\theta\) is in radians.
The linear velocity \(\vec{v}\) of the point is tangent to the circle; the point's linear speed \(v\) is given by
\[
\begin{equation*}
v=\omega r \quad(\text { radian measure }) \tag{10-18}
\end{equation*}
\]
where \(\omega\) is the angular speed (in radians per second) of the body.
The linear acceleration \(\vec{a}\) of the point has both tangential and radial components. The tangential component is
\[
\begin{equation*}
a_{t}=\alpha r \quad(\text { radian measure }) \tag{10-22}
\end{equation*}
\]
where \(\alpha\) is the magnitude of the angular acceleration (in radians per second-squared) of the body. The radial component of \(\vec{a}\) is
\[
\begin{equation*}
a_{r}=\frac{v^{2}}{r}=\omega^{2} r \quad(\text { radian measure }) \tag{10-23}
\end{equation*}
\]

If the point moves in uniform circular motion, the period \(T\) of the motion for the point and the body is
\[
\begin{equation*}
T=\frac{2 \pi r}{v}=\frac{2 \pi}{\omega} \quad \text { (radian measure) } \tag{10-19,10-20}
\end{equation*}
\]

Rotational Kinetic Energy and Rotational Inertia The kinetic energy \(K\) of a rigid body rotating about a fixed axis is given by
\[
\begin{equation*}
K=\frac{1}{2} I \omega^{2} \quad \text { (radian measure) }, \tag{10-34}
\end{equation*}
\]
in which \(I\) is the rotational inertia of the body, defined as
\[
\begin{equation*}
I=\sum m_{i} r_{i}^{2} \tag{10-33}
\end{equation*}
\]
for a system of discrete particles and defined as
\[
\begin{equation*}
I=\int r^{2} d m \tag{10-35}
\end{equation*}
\]
for a body with continuously distributed mass. The \(r\) and \(r_{i}\) in these expressions represent the perpendicular distance from the axis of rotation to each mass element in the body, and the integration is carried out over the entire body so as to include every mass element.

The Parallel-Axis Theorem The parallel-axis theorem relates the rotational inertia \(I\) of a body about any axis to that of the same body about a parallel axis through the center of mass:
\[
\begin{equation*}
I=I_{\mathrm{com}}+M h^{2} . \tag{10-36}
\end{equation*}
\]

Here \(h\) is the perpendicular distance between the two axes, and \(I_{\text {com }}\) is the rotational inertia of the body about the axis through the com. We can describe \(h\) as being the distance the actual rotation axis has been shifted from the rotation axis through the com.

Torque Torque is a turning or twisting action on a body about a rotation axis due to a force \(\vec{F}\). If \(\vec{F}\) is exerted at a point given by the position vector \(\vec{r}\) relative to the axis, then the magnitude of the torque is
\[
\tau=r F_{t}=r_{\perp} F=r F \sin \phi,
\]
(10-40, 10-41, 10-39)
where \(F_{t}\) is the component of \(\vec{F}\) perpendicular to \(\vec{r}\) and \(\phi\) is the angle between \(\vec{r}\) and \(\vec{F}\). The quantity \(r_{\perp}\) is the perpendicular distance between the rotation axis and an extended line running through the \(\vec{F}\) vector. This line is called the line of action of \(\vec{F}\), and \(r_{\perp}\) is called the moment arm of \(\vec{F}\). Similarly, \(r\) is the moment arm of \(F_{t}\).

The SI unit of torque is the newton-meter \((\mathrm{N} \cdot \mathrm{m})\). A torque \(\tau\) is positive if it tends to rotate a body at rest counterclockwise and negative if it tends to rotate the body clockwise.

Newton's Second Law in Angular Form The rotational analog of Newton's second law is
\[
\begin{equation*}
\tau_{\text {net }}=I \alpha, \tag{10-45}
\end{equation*}
\]
where \(\tau_{\text {net }}\) is the net torque acting on a particle or rigid body, \(I\) is the rotational inertia of the particle or body about the rotation axis, and \(\alpha\) is the resulting angular acceleration about that axis.

Work and Rotational Kinetic Energy The equations used for calculating work and power in rotational motion correspond to

\section*{Questions}

1 Figure 10-20 is a graph of the angular velocity versus time for a disk rotating like a merry-go-round. For a point on the disk rim, rank the instants \(a, b, c\), and \(d\) according to the magnitude of the (a) tangential and (b) radial acceleration, greatest first.

2 Figure 10-21 shows plots of angular position \(\theta\) versus time \(t\) for three cases in which a disk is rotated like a merry-go-round. In each case, the rotation direction changes at a certain angular position \(\theta_{\text {change. }}\) (a) For each case, determine whether \(\theta_{\text {change }}\) is clockwise or counterclockwise from \(\theta=0\), or whether it is at \(\theta=0\). For each case, determine (b) whether


Figure 10-20 Question 1.


Figure 10-21 Question 2. \(\omega\) is zero before, after, or at \(t=0\) and (c) whether \(\alpha\) is positive, negative, or zero.
3 A force is applied to the rim of a disk that can rotate like a merry-go-round, so as to change its angular velocity. Its initial and final angular velocities, respectively, for four situations are: (a) \(-2 \mathrm{rad} / \mathrm{s}, 5 \mathrm{rad} / \mathrm{s}\); (b) \(2 \mathrm{rad} / \mathrm{s}, 5 \mathrm{rad} / \mathrm{s}\); (c) \(-2 \mathrm{rad} / \mathrm{s},-5 \mathrm{rad} / \mathrm{s}\); and (d) \(2 \mathrm{rad} / \mathrm{s},-5 \mathrm{rad} / \mathrm{s}\). Rank the situations according to the work done by the torque due to the force, greatest first.
4 Figure \(10-22 b\) is a graph of the angular position of the rotating disk of Fig. 10-22a. Is the angular velocity of the disk positive, negative, or zero at (a) \(t=1 \mathrm{~s}\), (b) \(t=2 \mathrm{~s}\), and (c) \(t=3 \mathrm{~s}\) ? (d) Is the angular acceleration positive or negative?


Figure 10-22 Question 4.
5 In Fig. 10-23, two forces \(\vec{F}_{1}\) and \(\vec{F}_{2}\) act on a disk that turns about its center like a merry-go-round. The forces maintain the indicated
equations used for translational motion and are
\[
\begin{equation*}
W=\int_{\theta_{i}}^{\theta_{f}} \tau d \theta \tag{10-53}
\end{equation*}
\]
and
\[
\begin{equation*}
P=\frac{d W}{d t}=\tau \omega . \tag{10-55}
\end{equation*}
\]

When \(\tau\) is constant, Eq. \(10-53\) reduces to
\[
\begin{equation*}
W=\tau\left(\theta_{f}-\theta_{i}\right) . \tag{10-54}
\end{equation*}
\]

The form of the work-kinetic energy theorem used for rotating bodies is
\[
\begin{equation*}
\Delta K=K_{f}-K_{i}=\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega_{i}^{2}=W . \tag{10-52}
\end{equation*}
\]
angles during the rotation, which is counterclockwise and at a constant rate. However, we are to decrease the angle \(\theta\) of \(\vec{F}_{1}\) without changing the magnitude of \(\vec{F}_{1}\). (a) To keep the angular speed constant, should we increase, decrease, or maintain the magnitude of \(\vec{F}_{2}\) ? Do forces (b) \(\vec{F}_{1}\) and (c) \(\vec{F}_{2}\) tend to rotate the disk clockwise or counterclockwise?
6 In the overhead view of Fig. 10-24, five forces of the same magnitude act on a strange merry-go-round; it is a square that can rotate about point \(P\), at midlength along one of the edges. Rank the forces according to the magnitude of the torque they create about point \(P\), greatest first.
7 Figure 10-25a is an overhead view


Figure 10-23 Question 5.


Figure 10-24 Question 6. of a horizontal bar that can pivot; two horizontal forces act on the bar, but it is stationary. If the angle between the bar and \(\vec{F}_{2}\) is now decreased from \(90^{\circ}\) and the bar is still not to turn, should \(F_{2}\) be made larger, made smaller, or left the same?


Figure 10-25 Questions 7 and 8.
8 Figure 10-25b shows an overhead view of a horizontal bar that is rotated about the pivot point by two horizontal forces, \(\vec{F}_{1}\) and \(\vec{F}_{2}\), with \(\vec{F}_{2}\) at angle \(\phi\) to the bar. Rank the following values of \(\phi\) according to the magnitude of the angular acceleration of the bar, greatest first: \(90^{\circ}, 70^{\circ}\), and \(110^{\circ}\).
9 Figure 10-26 shows a uniform metal plate that had been square before \(25 \%\) of it was snipped off. Three lettered points are indicated. Rank them according to the rotational inertia of the plate around a perpendicular axis through them, greatest first.


Figure 10-26 Question 9.

10 Figure \(10-27\) shows three flat disks (of the same radius) that can rotate about their centers like merry-go-rounds. Each disk consists of the same two materials, one denser than the other (density is mass per unit volume). In disks 1 and 3, the denser material forms the outer half of the disk area. In disk 2, it forms the inner half of the disk area. Forces with identical magnitudes are applied tangentially to the disk, either at the outer edge or at the interface of the two materials, as shown. Rank the disks according to (a) the torque about the disk center, (b) the rotational inertia about the disk center, and (c) the angular acceleration of the disk, greatest first.


Disk 1


Disk 2


Disk 3

Figure 10-27 Question 10.

11 Figure 10-28a shows a meter stick, half wood and half steel, that is pivoted at the wood end at \(O\).A force \(\vec{F}\) is applied to the steel end at \(a\). In Fig. 10-28b, the stick is reversed and pivoted at the steel end at \(O^{\prime}\), and the same force is applied at the wood end at \(a^{\prime}\). Is the resulting angular acceleration of Fig. 10-28a greater than, less than, or the same as that of Fig. 10-28b?

Figure 10-28
Question 11.


12 Figure 10-29 shows three disks, each with a uniform distribution of mass. The radii \(R\) and masses \(M\) are indicated. Each disk can rotate around its central axis (perpendicular to the disk face and through the center). Rank the disks according to their rotational inertias calculated about their central axes, greatest first.


Figure 10-29 Question 12.

\section*{8roblems}
```

 Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign
 SSIM Worked-out solution available in Student Solutions Manual WWW Worked-out solution is at
--\infty}\mathrm{ Number of dots indicates level of problem difficulty ILW Interactive solution is at
Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

```

\section*{Module 10-1 Rotational Variables}
-1 A good baseball pitcher can throw a baseball toward home plate at \(85 \mathrm{mi} / \mathrm{h}\) with a spin of \(1800 \mathrm{rev} / \mathrm{min}\). How many revolutions does the baseball make on its way to home plate? For simplicity, assume that the 60 ft path is a straight line.
-2 What is the angular speed of (a) the second hand, (b) the minute hand, and (c) the hour hand of a smoothly running analog watch? Answer in radians per second.
\(\bullet 3\) When a slice of buttered toast is accidentally pushed over the edge of a counter, it rotates as it falls. If the distance to the floor is 76 cm and for rotation less than 1 rev , what are the (a) smallest and (b) largest angular speeds that cause the toast to hit and then topple to be butter-side down?
\(\bullet 4\) The angular position of a point on a rotating wheel is given by \(\theta=2.0+4.0 t^{2}+2.0 t^{3}\), where \(\theta\) is in radians and \(t\) is in seconds. At \(t=0\), what are (a) the point's angular position and (b) its angular velocity? (c) What is its angular velocity at \(t=4.0 \mathrm{~s}\) ? (d) Calculate its angular acceleration at \(t=2.0 \mathrm{~s}\). (e) Is its angular acceleration constant? \(\bullet \circ 5\) ILW A diver makes 2.5 revolutions on the way from a 10-m-high platform to the water. Assuming zero initial vertical velocity, find the average angular velocity during the dive.
-•6 The angular position of a point on the rim of a rotating wheel is given by \(\theta=4.0 t-3.0 t^{2}+t^{3}\), where \(\theta\) is in radians and \(t\) is in seconds. What are the angular velocities at (a) \(t=2.0 \mathrm{~s}\) and (b) \(t=4.0 \mathrm{~s}\) ? (c) What is the average angular acceleration for the time interval that begins at \(t=2.0 \mathrm{~s}\) and ends at \(t=4.0 \mathrm{~s}\) ? What are the instantaneous angular accelerations at (d) the beginning and (e) the end of this time interval?
\(\because 7\) The wheel in Fig. 10-30 has eight equally spaced spokes and a radius of 30 cm . It is mounted on a fixed axle and is spinning at 2.5 \(\mathrm{rev} / \mathrm{s}\). You want to shoot a \(20-\mathrm{cm}-l o n g\) arrow parallel to this axle and
through the wheel without hitting any of the spokes. Assume that the arrow and the spokes are very thin. (a) What minimum speed must the arrow have? (b) Does it matter where between the axle and rim of the wheel you aim? If so, what is the best location?
\(\bullet \bullet 8\) The angular acceleration of a


Figure 10-30 Problem 7. wheel is \(\alpha=6.0 t^{4}-4.0 t^{2}\), with \(\alpha\) in radians per second-squared and \(t\) in seconds. At time \(t=0\), the wheel has an angular velocity of \(+2.0 \mathrm{rad} / \mathrm{s}\) and an angular position of +1.0 rad . Write expressions for (a) the angular velocity ( \(\mathrm{rad} / \mathrm{s}\) ) and (b) the angular position (rad) as functions of time (s).

\section*{Module 10-2 Rotation with Constant Angular Acceleration}
-9 A drum rotates around its central axis at an angular velocity of \(12.60 \mathrm{rad} / \mathrm{s}\). If the drum then slows at a constant rate of 4.20 \(\mathrm{rad} / \mathrm{s}^{2}\), (a) how much time does it take and (b) through what angle does it rotate in coming to rest?
-10 Starting from rest, a disk rotates about its central axis with constant angular acceleration. In 5.0 s , it rotates 25 rad . During that time, what are the magnitudes of (a) the angular acceleration and (b) the average angular velocity? (c) What is the instantaneous angular velocity of the disk at the end of the 5.0 s ? (d) With the angular acceleration unchanged, through what additional angle will the disk turn during the next 5.0 s ?
-11 A disk, initially rotating at \(120 \mathrm{rad} / \mathrm{s}\), is slowed down with a constant angular acceleration of magnitude \(4.0 \mathrm{rad} / \mathrm{s}^{2}\). (a) How much time does the disk take to stop? (b) Through what angle does the disk rotate during that time?
-12 The angular speed of an automobile engine is increased at a constant rate from \(1200 \mathrm{rev} / \mathrm{min}\) to \(3000 \mathrm{rev} / \mathrm{min}\) in 12 s . (a) What is
its angular acceleration in revolutions per minute-squared? (b) How many revolutions does the engine make during this 12 s interval?
-•13 ILW A flywheel turns through 40 rev as it slows from an angular speed of \(1.5 \mathrm{rad} / \mathrm{s}\) to a stop. (a) Assuming a constant angular acceleration, find the time for it to come to rest. (b) What is its angular acceleration? (c) How much time is required for it to complete the first 20 of the 40 revolutions?
- 14 (s) A disk rotates about its central axis starting from rest and accelerates with constant angular acceleration. At one time it is rotating at \(10 \mathrm{rev} / \mathrm{s} ; 60\) revolutions later, its angular speed is \(15 \mathrm{rev} / \mathrm{s}\). Calculate (a) the angular acceleration, (b) the time required to complete the 60 revolutions, (c) the time required to reach the \(10 \mathrm{rev} / \mathrm{s}\) angular speed, and (d) the number of revolutions from rest until the time the disk reaches the \(10 \mathrm{rev} / \mathrm{s}\) angular speed.
- 15 SSM Starting from rest, a wheel has constant \(\alpha=3.0 \mathrm{rad} / \mathrm{s}^{2}\). During a certain 4.0 s interval, it turns through 120 rad. How much time did it take to reach that 4.0 s interval?
-116 A merry-go-round rotates from rest with an angular acceleration of \(1.50 \mathrm{rad} / \mathrm{s}^{2}\). How long does it take to rotate through (a) the first 2.00 rev and (b) the next 2.00 rev ?
\(\bullet 17\) At \(t=0\), a flywheel has an angular velocity of \(4.7 \mathrm{rad} / \mathrm{s}\), a constant angular acceleration of \(-0.25 \mathrm{rad} / \mathrm{s}^{2}\), and a reference line at \(\theta_{0}=0\). (a) Through what maximum angle \(\theta_{\max }\) will the reference line turn in the positive direction? What are the (b) first and (c) second times the reference line will be at \(\theta=\frac{1}{2} \theta_{\max }\) ? At what (d) negative time and (e) positive time will the reference line be at \(\theta=10.5 \mathrm{rad}\) ? (f) Graph \(\theta\) versus \(t\), and indicate your answers.
001 A pulsar is a rapidly rotating neutron star that emits a radio beam the way a lighthouse emits a light beam. We receive a radio pulse for each rotation of the star. The period \(T\) of rotation is found by measuring the time between pulses. The pulsar in the Crab nebula has a period of rotation of \(T=0.033 \mathrm{~s}\) that is increasing at the rate of \(1.26 \times 10^{-5} \mathrm{~s} / \mathrm{y}\). (a) What is the pulsar's angular acceleration \(\alpha\) ? (b) If \(\alpha\) is constant, how many years from now will the pulsar stop rotating? (c) The pulsar originated in a supernova explosion seen in the year 1054. Assuming constant \(\alpha\), find the initial \(T\).

\section*{Module 10-3 Relating the Linear and Angular Variables}
-19 What are the magnitudes of (a) the angular velocity, (b) the radial acceleration, and (c) the tangential acceleration of a spaceship taking a circular turn of radius 3220 km at a speed of \(29000 \mathrm{~km} / \mathrm{h}\) ?
-20 An object rotates about a fixed axis, and the angular position of a reference line on the object is given by \(\theta=0.40 e^{2 t}\), where \(\theta\) is in radians and \(t\) is in seconds. Consider a point on the object that is 4.0 cm from the axis of rotation. At \(t=0\), what are the magnitudes of the point's (a) tangential component of acceleration and (b) radial component of acceleration?
-21 Between 1911 and 1990, the top of the leaning bell tower at Pisa, Italy, moved toward the south at an average rate of \(1.2 \mathrm{~mm} / \mathrm{y}\). The tower is 55 m tall. In radians per second, what is the average angular speed of the tower's top about its base?
-22 An astronaut is tested in a centrifuge with radius 10 m and rotating according to \(\theta=0.30 t^{2}\). At \(t=5.0 \mathrm{~s}\), what are the magnitudes of the (a) angular velocity, (b) linear velocity, (c) tangential acceleration, and (d) radial acceleration?
-23 SSm www A flywheel with a diameter of 1.20 m is rotating at an angular speed of \(200 \mathrm{rev} / \mathrm{min}\). (a) What is the angular speed of the flywheel in radians per second? (b) What is the linear speed of a point on the rim of the flywheel? (c) What constant angular ac-
celeration (in revolutions per minute-squared) will increase the wheel's angular speed to \(1000 \mathrm{rev} / \mathrm{min}\) in 60.0 s ? (d) How many revolutions does the wheel make during that 60.0 s ?
-24 A vinyl record is played by rotating the record so that an approximately circular groove in the vinyl slides under a stylus. Bumps in the groove run into the stylus, causing it to oscillate. The equipment converts those oscillations to electrical signals and then to sound. Suppose that a record turns at the rate of \(33 \frac{1}{3} \mathrm{rev} / \mathrm{min}\), the groove being played is at a radius of 10.0 cm , and the bumps in the groove are uniformly separated by 1.75 mm . At what rate (hits per second) do the bumps hit the stylus?
\(\bullet 25\) SSM (a) What is the angular speed \(\omega\) about the polar axis of a point on Earth's surface at latitude \(40^{\circ} \mathrm{N}\) ? (Earth rotates about that axis.) (b) What is the linear speed \(v\) of the point? What are (c) \(\omega\) and (d) \(v\) for a point at the equator?
-226 The flywheel of a steam engine runs with a constant angular velocity of \(150 \mathrm{rev} / \mathrm{min}\). When steam is shut off, the friction of the bearings and of the air stops the wheel in 2.2 h . (a) What is the constant angular acceleration, in revolutions per minute-squared, of the wheel during the slowdown? (b) How many revolutions does the wheel make before stopping? (c) At the instant the flywheel is turning at \(75 \mathrm{rev} / \mathrm{min}\), what is the tangential component of the linear acceleration of a flywheel particle that is 50 cm from the axis of rotation? (d) What is the magnitude of the net linear acceleration of the particle in (c)?
-027 A seed is on a turntable rotating at \(33 \frac{1}{3} \mathrm{rev} / \mathrm{min}, 6.0 \mathrm{~cm}\) from the rotation axis. What are (a) the seed's acceleration and (b) the least coefficient of static friction to avoid slippage? (c) If the turntable had undergone constant angular acceleration from rest in 0.25 s , what is the least coefficient to avoid slippage?
\(\bullet 28\) In Fig. 10-31, wheel \(A\) of radius \(r_{A}=10 \mathrm{~cm}\) is coupled by belt \(B\) to wheel \(C\) of radius \(r_{C}=25 \mathrm{~cm}\). The angular speed of wheel \(A\) is increased from rest at a constant rate of \(1.6 \mathrm{rad} / \mathrm{s}^{2}\). Find the time needed for wheel \(C\) to reach an angular speed of


Figure 10-31 Problem 28. \(100 \mathrm{rev} / \mathrm{min}\), assuming the belt does not slip. (Hint: If the belt does not slip, the linear speeds at the two rims must be equal.)
\(\bullet 29\) Figure 10-32 shows an early method of measuring the speed of light that makes use of a rotating slotted wheel. A beam of


Figure 10-32 Problem 29.
light passes through one of the slots at the outside edge of the wheel, travels to a distant mirror, and returns to the wheel just in time to pass through the next slot in the wheel. One such slotted wheel has a radius of 5.0 cm and 500 slots around its edge. Measurements taken when the mirror is \(L=500 \mathrm{~m}\) from the wheel indicate a speed of light of \(3.0 \times 10^{5} \mathrm{~km} / \mathrm{s}\). (a) What is the (constant) angular speed of the wheel? (b) What is the linear speed of a point on the edge of the wheel?
-•30 A gyroscope flywheel of radius 2.83 cm is accelerated from rest at \(14.2 \mathrm{rad} / \mathrm{s}^{2}\) until its angular speed is \(2760 \mathrm{rev} / \mathrm{min}\). (a) What is the tangential acceleration of a point on the rim of the flywheel during this spin-up process? (b) What is the radial acceleration of this point when the flywheel is spinning at full speed? (c) Through what distance does a point on the rim move during the spin-up?
-•31 ©0 A disk, with a radius of 0.25 m , is to be rotated like a merry-go-round through 800 rad , starting from rest, gaining angular speed at the constant rate \(\alpha_{1}\) through the first 400 rad and then losing angular speed at the constant rate \(-\alpha_{1}\) until it is again at rest. The magnitude of the centripetal acceleration of any portion of the disk is not to exceed \(400 \mathrm{~m} / \mathrm{s}^{2}\). (a) What is the least time required for the rotation? (b) What is the corresponding value of \(\alpha_{1}\) ?
-•32 A car starts from rest and moves around a circular track of radius 30.0 m . Its speed increases at the constant rate of \(0.500 \mathrm{~m} / \mathrm{s}^{2}\). (a) What is the magnitude of its net linear acceleration 15.0 s later?
(b) What angle does this net acceleration vector make with the car's velocity at this time?

\section*{Module 10-4 Kinetic Energy of Rotation}
- 33 SSIM Calculate the rotational inertia of a wheel that has a kinetic energy of 24400 J when rotating at \(602 \mathrm{rev} / \mathrm{min}\).
-34 Figure 10-33 gives angular speed versus time for a thin rod that rotates around one end. The scale on the \(\omega\) axis is set by \(\omega_{s}=6.0 \mathrm{rad} / \mathrm{s}\). (a) What is the magnitude of the rod's angular acceleration? (b) At \(t=\)


Figure 10-33 Problem 34. 4.0 s , the rod has a rotational kinetic energy of 1.60 J. What is its kinetic energy at \(t=0\) ?

\section*{Module 10-5 Calculating the Rotational Inertia}
-35 SSM Two uniform solid cylinders, each rotating about its central (longitudinal) axis at \(235 \mathrm{rad} / \mathrm{s}\), have the same mass of 1.25 kg but differ in radius. What is the rotational kinetic energy of (a) the smaller cylinder, of radius 0.25 m , and (b) the larger cylinder, of radius 0.75 m ?
-36 Figure 10-34a shows a disk that can rotate about an axis at


Figure 10-34 Problem 36.
a radial distance \(h\) from the center of the disk. Figure \(10-34 b\) gives the rotational inertia \(I\) of the disk about the axis as a function of that distance \(h\), from the center out to the edge of the disk. The scale on the \(I\) axis is set by \(I_{A}=0.050 \mathrm{~kg} \cdot \mathrm{~m}^{2}\) and \(I_{B}=0.150 \mathrm{~kg} \cdot \mathrm{~m}^{2}\). What is the mass of the disk?
-37 SSM Calculate the rotational inertia of a meter stick, with mass 0.56 kg , about an axis perpendicular to the stick and located at the 20 cm mark. (Treat the stick as a thin rod.)
-38 Figure 10-35 shows three 0.0100 kg particles that have been glued to a rod of length \(L=6.00 \mathrm{~cm}\) and negligible mass. The assembly can rotate around a perpendicular axis through point \(O\) at the left end. If we remove one particle (that is,


Figure 10-35 Problems 38 and 62. \(33 \%\) of the mass), by what percentage does the rotational inertia of the assembly around the rotation axis decrease when that removed particle is (a) the innermost one and (b) the outermost one?
-•39 Trucks can be run on energy stored in a rotating flywheel, with an electric motor getting the flywheel up to its top speed of \(200 \pi \mathrm{rad} / \mathrm{s}\). Suppose that one such flywheel is a solid, uniform cylinder with a mass of 500 kg and a radius of 1.0 m . (a) What is the kinetic energy of the flywheel after charging? (b) If the truck uses an average power of 8.0 kW , for how many minutes can it operate between chargings?
\(\bullet 40\) Figure 10-36 shows an arrangement of 15 identical disks that have been glued together in a rod-like shape of length \(L=1.0000 \mathrm{~m}\) and (total) mass \(M=100.0 \mathrm{mg}\). The disks are uniform, and the disk arrangement can rotate about a perpendicular axis through its central disk at point \(O\). (a) What is the rotational inertia of the arrangement about that axis? (b) If we approximated the arrangement as being a uniform rod of mass \(M\) and length \(L\), what percentage error would we make in using the formula in Table 10-2e to calculate the rotational inertia?


Figure 10-36 Problem 40.
\(\bullet 41\) ©o In Fig. 10-37, two particles, each with mass \(m=0.85 \mathrm{~kg}\), are fastened to each other, and to a rotation axis at \(O\), by two thin rods, each with length \(d=5.6 \mathrm{~cm}\) and mass \(M=\) 1.2 kg . The combination rotates around the rotation axis with the angular speed \(\omega=0.30 \mathrm{rad} / \mathrm{s}\). Measured


Figure 10-37 Problem 41. about \(O\), what are the combination's

\section*{(a) rotational inertia and (b) kinetic energy?}
- 42 The masses and coordinates of four particles are as follows: \(50 \mathrm{~g}, x=2.0 \mathrm{~cm}, y=2.0 \mathrm{~cm} ; 25 \mathrm{~g}, x=0, y=4.0 \mathrm{~cm} ; 25 \mathrm{~g}\), \(x=-3.0 \mathrm{~cm}, y=-3.0 \mathrm{~cm} ; 30 \mathrm{~g}, x=-2.0 \mathrm{~cm}, y=4.0 \mathrm{~cm}\). What are the rotational inertias of this collection about the (a) \(x\), (b) \(y\), and (c) \(z\) axes? (d) Suppose that we symbolize the answers to (a) and (b) as \(A\) and \(B\), respectively. Then what is the answer to (c) in terms of \(A\) and \(B\) ?
- 43 ssm www The uniform solid block in Fig. 10-38 has mass 0.172 kg and edge lengths \(a=3.5 \mathrm{~cm}, b=8.4\) cm , and \(c=1.4 \mathrm{~cm}\). Calculate its rotational inertia about an axis through one corner and perpendicular to the large faces.
-•44 Four identical particles of mass 0.50 kg each are placed at the vertices of a \(2.0 \mathrm{~m} \times 2.0 \mathrm{~m}\) square and held there by four massless rods, which form the sides of the square. What is the rotational inertia of this rigid body about an axis that (a) passes through the midpoints of opposite sides and lies in the plane of the square, (b) passes through the midpoint of one of the sides and is perpendicular to the plane of the square, and (c) lies in the plane of the square and passes through two diagonally opposite particles?

\section*{Module 10-6 Torque}
-45 ssm ILw The body in Fig. \(10-39\) is pivoted at \(O\), and two forces act on it as shown. If \(r_{1}=1.30 \mathrm{~m}, r_{2}=2.15 \mathrm{~m}, \quad F_{1}=\) \(4.20 \mathrm{~N}, F_{2}=4.90 \mathrm{~N}, \theta_{1}=75.0^{\circ}\), and \(\theta_{2}=60.0^{\circ}\), what is the net torque about the pivot?
-46 The body in Fig. 10-40 is pivoted at \(O\). Three forces act on it: \(F_{A}=10 \mathrm{~N}\) at point \(A, 8.0\) m from \(O ; F_{B}=16 \mathrm{~N}\) at \(B, 4.0\) m from \(O\); and \(F_{C}=19 \mathrm{~N}\) at \(C\), 3.0 m from \(O\). What is the net torque about \(O\) ?
\(\bullet 47\) ssm A small ball of mass 0.75 kg is attached to one end


Figure 10-39 Problem 45.


Figure 10-40 Problem 46. of a \(1.25-\mathrm{m}-\) long massless rod, and the other end of the rod is hung from a pivot. When the resulting pendulum is \(30^{\circ}\) from the vertical, what is the magnitude of the gravitational torque calculated about the pivot?
-48 The length of a bicycle pedal arm is 0.152 m , and a downward force of 111 N is applied to the pedal by the rider. What is the magnitude of the torque about the pedal arm's pivot when the arm is at angle (a) \(30^{\circ}\), (b) \(90^{\circ}\), and (c) \(180^{\circ}\) with the vertical?

\section*{Module 10-7 Newton's Second Law for Rotation}
-49 SSM ILw During the launch from a board, a diver's angular speed about her center of mass changes from zero to \(6.20 \mathrm{rad} / \mathrm{s}\) in 220 ms . Her rotational inertia about her center of mass is \(12.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}\). During the launch, what are the magnitudes of (a) her average angular acceleration and (b) the average external torque on her from the board?
-50 If a \(32.0 \mathrm{~N} \cdot \mathrm{~m}\) torque on a wheel causes angular acceleration \(25.0 \mathrm{rad} / \mathrm{s}^{2}\), what is the wheel's rotational inertia?
\(\bullet 51\) ©o In Fig. 10-41, block 1 has mass \(m_{1}=460 \mathrm{~g}\), block 2 has mass \(m_{2}=500 \mathrm{~g}\), and the pulley, which is mounted on a horizontal axle with negligible friction, has radius \(R=5.00 \mathrm{~cm}\). When released from


Figure 10-41
Problems 51 and 83.
rest, block 2 falls 75.0 cm in 5.00 s without the cord slipping on the pulley. (a) What is the magnitude of the acceleration of the blocks? What are (b) tension \(T_{2}\) and (c) tension \(T_{1}\) ? (d) What is the magnitude of the pulley's angular acceleration? (e) What is its rotational inertia?
-052 ©0 In Fig. 10-42, a cylinder having a mass of 2.0 kg can rotate about its central axis through point \(O\). Forces are applied as shown: \(F_{1}=6.0 \mathrm{~N}, F_{2}=4.0 \mathrm{~N}, F_{3}=2.0 \mathrm{~N}\), and \(F_{4}=5.0 \mathrm{~N}\). Also, \(r=5.0 \mathrm{~cm}\) and \(R=12 \mathrm{~cm}\). Find the (a) magnitude and (b) direction of the angular acceleration of the cylinder. (During the rotation, the forces maintain their same angles relative to the cylinder.)


Figure 10-42 Problem 52.


Figure 10-43
Problem 53.
-053 © Figure 10-43 shows a uniform disk that can rotate around its center like a merry-go-round. The disk has a radius of 2.00 cm and a mass of 20.0 grams and is initially at rest. Starting at time \(t=0\), two forces are to be applied tangentially to the rim as indicated, so that at time \(t=1.25 \mathrm{~s}\) the disk has an angular velocity of 250 \(\mathrm{rad} / \mathrm{s}\) counterclockwise. Force \(\vec{F}_{1}\) has a magnitude of 0.100 N . What is magnitude \(F_{2}\) ?
\({ }^{\circ} 54\) In a judo foot-sweep move, you sweep your opponent's left foot out from under him while pulling on his gi (uniform) toward that side. As a result, your opponent rotates around his right foot and onto the mat. Figure 10-44 shows a simplified diagram of your opponent as you face him, with his left foot swept out. The rotational axis is through point \(O\). The gravitational force \(\vec{F}_{g}\) on him effectively acts at his center of mass, which is a horizontal distance \(d=28 \mathrm{~cm}\) from point \(O\). His


Figure 10-44 Problem 54. mass is 70 kg , and his rotational inertia about point \(O\) is \(65 \mathrm{~kg} \cdot \mathrm{~m}^{2}\). What is the magnitude of his initial angular acceleration about point \(O\) if your pull \(\vec{F}_{a}\) on his gi is (a) negligible and (b) horizontal with a magnitude of 300 N and applied at height \(h=1.4 \mathrm{~m}\) ?
\(\bullet 55\) © In Fig. 10-45a, an irregularly shaped plastic plate with uniform thickness and density (mass per unit volume) is to be rotated around an axle that is perpendicular to the plate face and through point \(O\). The rotational inertia of the plate about
that axle is measured with the following method. A circular disk of mass 0.500 kg and radius 2.00 cm is glued to the plate, with its center aligned with point \(O\) (Fig. 10-45b). A string is wrapped around the edge of the disk the way a string is wrapped around a top. Then the string is pulled for 5.00 s . As a result, the disk and plate are rotated by a constant force of 0.400 N that is applied by the string tangentially to the edge of the disk. The resulting angular speed is \(114 \mathrm{rad} / \mathrm{s}\). What is the rotational inertia of the plate about the axle?
-056 ©0 Figure 10-46 shows particles 1 and 2, each of mass \(m\), fixed to the ends of a rigid massless rod of length \(L_{1}+\) \(L_{2}\), with \(L_{1}=20 \mathrm{~cm}\) and \(L_{2}=\) 80 cm . The rod is held hori-


Figure 10-46 Problem 56. zontally on the fulcrum and then released. What are the magnitudes of the initial accelerations of (a) particle 1 and (b) particle 2?
\(\sim_{0} 57\) (60 A pulley, with a rotational inertia of \(1.0 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}\) about its axle and a radius of 10 cm , is acted on by a force applied tangentially at its rim. The force magnitude varies in time as \(F=0.50 t+0.30 t^{2}\), with \(F\) in newtons and \(t\) in seconds. The pulley is initially at rest. At \(t=3.0 \mathrm{~s}\) what are its (a) angular acceleration and (b) angular speed?

\section*{Module 10-8 Work and Rotational Kinetic Energy}
\(\cdot 58\) (a) If \(R=12 \mathrm{~cm}, M=400 \mathrm{~g}\), and \(m=50 \mathrm{~g}\) in Fig. 10-19, find the speed of the block after it has descended 50 cm starting from rest. Solve the problem using energy conservation principles. (b) Repeat (a) with \(R=5.0 \mathrm{~cm}\).
-59 An automobile crankshaft transfers energy from the engine to the axle at the rate of \(100 \mathrm{hp}(=74.6 \mathrm{~kW})\) when rotating at a speed of \(1800 \mathrm{rev} / \mathrm{min}\). What torque (in newton-meters) does the crankshaft deliver?
\({ }^{\circ} 60\) A thin rod of length 0.75 m and mass 0.42 kg is suspended freely from one end. It is pulled to one side and then allowed to swing like a pendulum, passing through its lowest position with angular speed \(4.0 \mathrm{rad} / \mathrm{s}\). Neglecting friction and air resistance, find (a) the rod's kinetic energy at its lowest position and (b) how far above that position the center of mass rises.
-61 A 32.0 kg wheel, essentially a thin hoop with radius 1.20 m , is rotating at \(280 \mathrm{rev} / \mathrm{min}\). It must be brought to a stop in 15.0 s . (a) How much work must be done to stop it? (b) What is the required average power?
-•62 In Fig. 10-35, three 0.0100 kg particles have been glued to a rod of length \(L=6.00 \mathrm{~cm}\) and negligible mass and can rotate around a perpendicular axis through point \(O\) at one end. How much work is required to change the rotational rate (a) from 0 to \(20.0 \mathrm{rad} / \mathrm{s}\), (b) from \(20.0 \mathrm{rad} / \mathrm{s}\) to \(40.0 \mathrm{rad} / \mathrm{s}\), and (c) from \(40.0 \mathrm{rad} / \mathrm{s}\) to \(60.0 \mathrm{rad} / \mathrm{s}\) ? (d) What is the slope of a plot of the assembly's kinetic energy (in joules) versus the square of its rotation rate (in radianssquared per second-squared)?
\({ }^{\bullet 63}\) SSM ILW A meter stick is held vertically with one end on the floor and is then allowed to fall. Find the speed of the other end just before it hits the floor, assuming that the end on the floor does not slip. (Hint: Consider the stick to be a thin rod and use the conservation of energy principle.)

(a)

(b)

Figure 10-45
Problem 55.
-•64 A uniform cylinder of radius 10 cm and mass 20 kg is mounted so as to rotate freely about a horizontal axis that is parallel to and 5.0 cm from the central longitudinal axis of the cylinder. (a) What is the rotational inertia of the cylinder about the axis of rotation? (b) If the cylinder is released from rest with its central longitudinal axis at the same height as the axis about which the cylinder rotates, what is the angular speed of the cylinder as it passes through its lowest position?
©0065 A tall, cylindrical chimney falls over when its base is ruptured. Treat the chimney as a thin rod of length 55.0 m . At the instant it makes an angle of \(35.0^{\circ}\) with the vertical as it falls, what are (a) the radial acceleration of the top, and (b) the tangential acceleration of the top. (Hint: Use energy considerations, not a torque.) (c) At what angle \(\theta\) is the tangential acceleration equal to \(g\) ?
-0066 ©0 A uniform spherical shell of mass \(M=4.5 \mathrm{~kg}\) and radius \(R=8.5 \mathrm{~cm}\) can rotate about a vertical axis on frictionless bearings (Fig. 10-47). A massless cord passes around the equator of the shell, over a pulley of rotational inertia \(I=3.0 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}\) and radius \(r=5.0 \mathrm{~cm}\), and is attached to a small object of mass \(m=0.60 \mathrm{~kg}\). There is no friction on the pulley's axle; the cord does not slip on the pulley. What is the speed of the object when it has fallen 82 cm after being released from rest? Use energy considerations.

Figure 10-47 Problem 66.

~0067 ©o Figure 10-48 shows a rigid assembly of a thin hoop (of mass \(m\) and radius \(R=0.150 \mathrm{~m}\) ) and a thin radial rod (of mass \(m\) and length \(L=2.00 R\) ). The assembly is upright, but if we give it a slight nudge, it will rotate around a horizontal axis in the plane of the rod and hoop, through the lower end of the rod. Assuming that the energy given to the


Figure 10-48 Problem 67. assembly in such a nudge is negligible, what would be the assembly's angular speed about the rotation axis when it passes through the upside-down (inverted) orientation?

\section*{Additional Problems}

68 Two uniform solid spheres have the same mass of 1.65 kg , but one has a radius of 0.226 m and the other has a radius of 0.854 m . Each can rotate about an axis through its center. (a) What is the magnitude \(\tau\) of the torque required to bring the smaller sphere from rest to an angular speed of \(317 \mathrm{rad} / \mathrm{s}\) in 15.5 s ? (b) What is the magnitude \(F\) of the force that must be applied tangentially at the sphere's equator to give that torque? What are the corresponding values of (c) \(\tau\) and (d) \(F\) for the larger sphere?

69 In Fig. 10-49, a small disk of radius \(r=2.00 \mathrm{~cm}\) has been glued to the edge of a larger disk of radius \(R=4.00 \mathrm{~cm}\) so that


Figure 10-49 Problem 69.
the disks lie in the same plane. The disks can be rotated around a perpendicular axis through point \(O\) at the center of the larger disk. The disks both have a uniform density (mass per unit volume) of \(1.40 \times\) \(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\) and a uniform thickness of 5.00 mm . What is the rotational inertia of the two-disk assembly about the rotation axis through \(O\) ?
70 A wheel, starting from rest, rotates with a constant angular acceleration of \(2.00 \mathrm{rad} / \mathrm{s}^{2}\). During a certain 3.00 s interval, it turns through 90.0 rad . (a) What is the angular velocity of the wheel at the start of the 3.00 s interval? (b) How long has the wheel been turning before the start of the 3.00 s interval?

71 ssm In Fig. 10-50, two 6.20 kg blocks are connected by a massless string over a pulley of radius 2.40 cm and rotational inertia \(7.40 \times 10^{-4}\) \(\mathrm{kg} \cdot \mathrm{m}^{2}\). The string does not slip on the pulley; it is not known whether there is friction between the table and the sliding block; the pulley's axis is frictionless. When this system is re-


Figure 10-50 Problem 71. leased from rest, the pulley turns through 0.130 rad in 91.0 ms and the acceleration of the blocks is constant. What are (a) the magnitude of the pulley's angular acceleration, (b) the magnitude of either block's acceleration, (c) string tension \(T_{1}\), and (d) string tension \(T_{2}\) ?
72 Attached to each end of a thin steel rod of length 1.20 m and mass 6.40 kg is a small ball of mass 1.06 kg . The rod is constrained to rotate in a horizontal plane about a vertical axis through its midpoint. At a certain instant, it is rotating at \(39.0 \mathrm{rev} / \mathrm{s}\). Because of friction, it slows to a stop in 32.0 s . Assuming a constant retarding torque due to friction, compute (a) the angular acceleration, (b) the retarding torque, (c) the total energy transferred from mechanical energy to thermal energy by friction, and (d) the number of revolutions rotated during the 32.0 s . (e) Now suppose that the retarding torque is known not to be constant. If any of the quantities (a), (b), (c), and (d) can still be computed without additional information, give its value.
73 A uniform helicopter rotor blade is 7.80 m long, has a mass of 110 kg , and is attached to the rotor axle by a single bolt. (a) What is the magnitude of the force on the bolt from the axle when the rotor is turning at \(320 \mathrm{rev} / \mathrm{min}\) ? (Hint: For this calculation the blade can be considered to be a point mass at its center of mass. Why?) (b) Calculate the torque that must be applied to the rotor to bring it to full speed from rest in 6.70 s. Ignore air resistance. (The blade cannot be considered to be a point mass for this calculation. Why not? Assume the mass distribution of a uniform thin rod.) (c) How much work does the torque do on the blade in order for the blade to reach a speed of \(320 \mathrm{rev} / \mathrm{min}\) ?
74 Racing disks. Figure 10-51 shows two disks that can rotate about their centers like a merry-go-round. At time \(t=0\), the reference lines of the two disks have the same orientation. Disk \(A\) is already rotating, with a con-


Figure 10-51 Problem 74. stant angular velocity of \(9.5 \mathrm{rad} / \mathrm{s}\). Disk \(B\) has been stationary but now begins to rotate at a constant angular acceleration of \(2.2 \mathrm{rad} / \mathrm{s}^{2}\). (a) At what time \(t\) will the reference lines of the two disks momentarily have the same angular displacement \(\theta\) ? (b) Will that time \(t\) be the first time since \(t=0\) that the reference lines are momentarily aligned?
75 A high-wire walker always attempts to keep his center of mass over the wire (or rope). He normally carries a long, heavy pole
to help: If he leans, say, to his right (his com moves to the right) and is in danger of rotating around the wire, he moves the pole to his left (its com moves to the left) to slow the rotation and allow himself time to adjust his balance. Assume that the walker has a mass of 70.0 kg and a rotational inertia of \(15.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}\) about the wire. What is the magnitude of his angular acceleration about the wire if his com is 5.0 cm to the right of the wire and (a) he carries no pole and (b) the 14.0 kg pole he carries has its com 10 cm to the left of the wire?

76 Starting from rest at \(t=0\), a wheel undergoes a constant angular acceleration. When \(t=2.0 \mathrm{~s}\), the angular velocity of the wheel is \(5.0 \mathrm{rad} / \mathrm{s}\). The acceleration continues until \(t=20 \mathrm{~s}\), when it abruptly ceases. Through what angle does the wheel rotate in the interval \(t=0\) to \(t=40 \mathrm{~s}\) ?
77 SSM A record turntable rotating at \(33 \frac{1}{3} \mathrm{rev} / \mathrm{min}\) slows down and stops in 30 s after the motor is turned off. (a) Find its (constant) angular acceleration in revolutions per minute-squared. (b) How many revolutions does it make in this time?

78 ©0 A rigid body is made of three identical thin rods, each with length \(L=0.600 \mathrm{~m}\), fastened together in the form of a letter \(\mathbf{H}\) (Fig. 10-52). The body is free to rotate about a horizontal axis that runs along the length of one of the legs of the \(\mathbf{H}\). The body


Figure 10-52 Problem 78. is allowed to fall from rest from a position in which the plane of the \(\mathbf{H}\) is horizontal. What is the angular speed of the body when the plane of the \(\mathbf{H}\) is vertical?
79 SSM (a) Show that the rotational inertia of a solid cylinder of mass \(M\) and radius \(R\) about its central axis is equal to the rotational inertia of a thin hoop of mass \(M\) and radius \(R / \sqrt{2}\) about its central axis. (b) Show that the rotational inertia \(I\) of any given body of mass \(M\) about any given axis is equal to the rotational inertia of an equivalent hoop about that axis, if the hoop has the same mass \(M\) and a radius \(k\) given by
\[
k=\sqrt{\frac{I}{M}} .
\]

The radius \(k\) of the equivalent hoop is called the radius of gyration of the given body.
80 A disk rotates at constant angular acceleration, from angular position \(\theta_{1}=10.0 \mathrm{rad}\) to angular position \(\theta_{2}=70.0 \mathrm{rad}\) in 6.00 s . Its angular velocity at \(\theta_{2}\) is \(15.0 \mathrm{rad} / \mathrm{s}\). (a) What was its angular velocity at \(\theta_{1}\) ? (b) What is the angular acceleration? (c) At what angular position was the disk initially at rest? (d) Graph \(\theta\) versus time \(t\) and angular speed \(\omega\) versus \(t\) for the disk, from the beginning of the motion (let \(t=0\) then).
81 (60 The thin uniform rod in Fig. 10-53 has length 2.0 m and can pivot about a horizontal, frictionless pin through one end. It is released from rest at angle \(\theta=40^{\circ}\) above the horizontal. Use the principle of conservation of energy to determine the angular speed of the rod as it passes through the horizontal position.


Figure 10-53
Problem 81

82 George Washington Gale Ferris, Jr., a civil engineering graduate from Rensselaer Polytechnic Institute, built the original Ferris wheel for the 1893 World's Columbian Exposition in Chicago. The wheel, an astounding engineering construction at the time, carried 36 wooden cars, each holding up to 60 passengers, around a circle 76 m in diameter. The cars were loaded 6 at a time, and once all 36 cars were full, the wheel made a complete
rotation at constant angular speed in about 2 min. Estimate the amount of work that was required of the machinery to rotate the passengers alone.
83 In Fig. 10-41, two blocks, of mass \(m_{1}=400 \mathrm{~g}\) and \(m_{2}=600 \mathrm{~g}\), are connected by a massless cord that is wrapped around a uniform disk of mass \(M=500 \mathrm{~g}\) and radius \(R=12.0 \mathrm{~cm}\). The disk can rotate without friction about a fixed horizontal axis through its center; the cord cannot slip on the disk. The system is released from rest. Find (a) the magnitude of the acceleration of the blocks, (b) the tension \(T_{1}\) in the cord at the left, and (c) the tension \(T_{2}\) in the cord at the right.
84 At 7:14 A.M. on June 30, 1908, a huge explosion occurred above remote central Siberia, at latitude \(61^{\circ} \mathrm{N}\) and longitude \(102^{\circ} \mathrm{E}\); the fireball thus created was the brightest flash seen by anyone before nuclear weapons. The Tunguska Event, which according to one chance witness "covered an enormous part of the sky," was probably the explosion of a stony asteroid about 140 m wide. (a) Considering only Earth's rotation, determine how much later the asteroid would have had to arrive to put the explosion above Helsinki at longitude \(25^{\circ} \mathrm{E}\). This would have obliterated the city. (b) If the asteroid had, instead, been a metallic asteroid, it could have reached Earth's surface. How much later would such an asteroid have had to arrive to put the impact in the Atlantic Ocean at longitude \(20^{\circ} \mathrm{W}\) ? (The resulting tsunamis would have wiped out coastal civilization on both sides of the Atlantic.)
85 A golf ball is launched at an angle of \(20^{\circ}\) to the horizontal, with a speed of \(60 \mathrm{~m} / \mathrm{s}\) and a rotation rate of \(90 \mathrm{rad} / \mathrm{s}\). Neglecting air drag, determine the number of revolutions the ball makes by the time it reaches maximum height.
86 (60 Figure 10-54 shows a flat construction of two circular rings that have a common center and are held together by three rods of negligible mass. The construction, which is initially at rest, can rotate around the common center (like a merry-go-round), where another rod of negligible mass lies. The mass, inner radius, and outer radius of


Figure 10-54 Problem 86. the rings are given in the following table. A tangential force of magnitude 12.0 N is applied to the outer edge of the outer ring for 0.300 s . What is the change in the angular speed of the construction during the time interval?
\begin{tabular}{cccc}
\hline Ring & Mass (kg) & Inner Radius (m) & Outer Radius (m) \\
\hline 1 & 0.120 & 0.0160 & 0.0450 \\
2 & 0.240 & 0.0900 & 0.1400 \\
\hline
\end{tabular}

87 ©o In Fig. 10-55, a wheel of radius 0.20 m is mounted on a frictionless horizontal axle. A massless cord is wrapped around the wheel and attached to a 2.0 kg box that slides on a frictionless surface inclined at angle \(\theta=20^{\circ}\) with the horizontal. The


Figure 10-55 Problem 87. box accelerates down the surface at \(2.0 \mathrm{~m} / \mathrm{s}^{2}\). What is the rotational inertia of the wheel about the axle?

88 A thin spherical shell has a radius of 1.90 m . An applied torque of \(960 \mathrm{~N} \cdot \mathrm{~m}\) gives the shell an angular acceleration of \(6.20 \mathrm{rad} / \mathrm{s}^{2}\) about an axis through the center of the shell. What are (a) the rotational inertia of the shell about that axis and (b) the mass of the shell?
89 A bicyclist of mass 70 kg puts all his mass on each downwardmoving pedal as he pedals up a steep road. Take the diameter of
the circle in which the pedals rotate to be 0.40 m , and determine the magnitude of the maximum torque he exerts about the rotation axis of the pedals.
90 The flywheel of an engine is rotating at \(25.0 \mathrm{rad} / \mathrm{s}\). When the engine is turned off, the flywheel slows at a constant rate and stops in 20.0 s. Calculate (a) the angular acceleration of the flywheel,
(b) the angle through which the flywheel rotates in stopping, and (c) the number of revolutions made by the flywheel in stopping.

91 SSM In Fig. 10-19a, a wheel of radius 0.20 m is mounted on a frictionless horizontal axis. The rotational inertia of the wheel about the axis is \(0.40 \mathrm{~kg} \cdot \mathrm{~m}^{2}\). A massless cord wrapped around the wheel's circumference is attached to a 6.0 kg box. The system is released from rest. When the box has a kinetic energy of 6.0 J , what are (a) the wheel's rotational kinetic energy and (b) the distance the box has fallen?
92 Our Sun is \(2.3 \times 10^{4}\) ly (light-years) from the center of our Milky Way galaxy and is moving in a circle around that center at a speed of \(250 \mathrm{~km} / \mathrm{s}\). (a) How long does it take the Sun to make one revolution about the galactic center? (b) How many revolutions has the Sun completed since it was formed about \(4.5 \times 10^{9}\) years ago?
93 SSM A wheel of radius 0.20 m is mounted on a frictionless horizontal axis. The rotational inertia of the wheel about the axis is \(0.050 \mathrm{~kg} \cdot \mathrm{~m}^{2}\). A massless cord wrapped around


Figure 10-56 Problem 93. the wheel is attached to a 2.0 kg block that slides on a horizontal frictionless surface. If a horizontal force of magnitude \(P=3.0 \mathrm{~N}\) is applied to the block as shown in Fig. 10-56, what is the magnitude of the angular acceleration of the wheel? Assume the cord does not slip on the wheel.
94 If an airplane propeller rotates at \(2000 \mathrm{rev} / \mathrm{min}\) while the airplane flies at a speed of \(480 \mathrm{~km} / \mathrm{h}\) relative to the ground, what is the linear speed of a point on the tip of the propeller, at radius 1.5 m , as seen by (a) the pilot and (b) an observer on the ground? The plane's velocity is parallel to the propeller's axis of rotation.
95 The rigid body shown in Fig. 10-57 consists of three particles connected by massless rods. It is to be rotated about an axis perpendicular to its plane through point \(P\). If \(M=\) \(0.40 \mathrm{~kg}, a=30 \mathrm{~cm}\), and \(b=50 \mathrm{~cm}\), how much work is required to take the body from rest to an angular speed of \(5.0 \mathrm{rad} / \mathrm{s}\) ?

96 Beverage engineering. The pull tab was a major advance in the engi-


Figure 10-57 Problem 95. neering design of beverage containers. The tab pivots on a central bolt in the can's top. When you pull upward on one end of the tab, the other end presses downward on a portion of the can's top that has been scored. If you pull upward with a 10 N force, what force magnitude acts on the scored section? (You will need to examine a can with a pull tab.)
97 Figure 10-58 shows a propeller blade that rotates at \(2000 \mathrm{rev} / \mathrm{min}\) about a perpendicular axis at point \(B\). Point \(A\) is at the outer tip of the blade, at radial distance 1.50 m . (a) What is the difference in the magnitudes \(a\) of the centripetal acceleration of point \(A\) and of a point at radial distance 0.150 m ? (b) Find the slope of a plot of \(a\) versus radial distance along the blade.


Figure 10-58
Problem 97.

98 A yo-yo-shaped device mounted on a horizontal frictionless axis is used to lift a 30 kg box as shown in Fig. 10-59. The outer radius \(R\) of the device is 0.50 m , and the radius \(r\) of the hub is 0.20 m . When a constant horizontal force \(\vec{F}_{\text {app }}\) of magnitude 140 N is applied to a rope wrapped around the outside of the device, the box, which is suspended from a rope wrapped around the hub, has an upward acceleration of magnitude 0.80 \(\mathrm{m} / \mathrm{s}^{2}\). What is the rotational iner-


Figure 10-59 Problem 98. tia of the device about its axis of rotation?
99 A small ball with mass 1.30 kg is mounted on one end of a rod 0.780 m long and of negligible mass. The system rotates in a horizontal circle about the other end of the rod at \(5010 \mathrm{rev} / \mathrm{min}\). (a) Calculate the rotational inertia of the system about the axis of rotation. (b) There is an air drag of \(2.30 \times 10^{-2} \mathrm{~N}\) on the ball, directed opposite its motion. What torque must be applied to the system to keep it rotating at constant speed?
100 Two thin rods (each of mass 0.20 kg ) are joined together to form a rigid body as shown in Fig. 10-60. One of the rods has length \(L_{1}=0.40 \mathrm{~m}\), and the other has length \(L_{2}=0.50 \mathrm{~m}\). What is the rotational inertia of this rigid body about (a) an axis that is perpendicular to the plane of the paper and passes through the center of the shorter rod and (b) an axis that is perpendicular to the plane of the paper and passes through the center of the longer rod?


Figure 10-60 Problem 100.

101 In Fig. 10-61, four pulleys are connected by two belts. Pulley \(A\) (radius 15 cm ) is the drive pulley, and it rotates at \(10 \mathrm{rad} / \mathrm{s}\). Pulley \(B\) (radius 10 cm ) is connected by belt 1 to pulley \(A\). Pulley \(B^{\prime}\) (radius 5 cm ) is concentric with pulley \(B\) and is rigidly attached to it. Pulley \(C\) (radius 25 cm ) is connected by belt 2 to pulley \(B^{\prime}\). Calculate (a) the linear speed of a point on belt \(1,(\mathrm{~b})\) the angular


Figure 10-61 Problem 101. speed of pulley \(B\), (c) the angular speed of pulley \(B^{\prime}\), (d) the linear speed of a point on belt 2 , and (e) the angular speed of pulley C. (Hint: If the belt between two pulleys does not slip, the linear speeds at the rims of the two pulleys must be equal.)
102 The rigid object shown in Fig. 10-62 consists of three balls

Figure 10-62
Problem 102.
and three connecting rods, with \(M=1.6 \mathrm{~kg}, L=0.60 \mathrm{~m}\), and \(\theta=30^{\circ}\). The balls may be treated as particles, and the connecting rods have negligible mass. Determine the rotational kinetic energy of the object if it has an angular speed of \(1.2 \mathrm{rad} / \mathrm{s}\) about (a) an axis that passes through point \(P\) and is perpendicular to the plane of the figure and (b) an axis that passes through point \(P\), is perpendicular to the rod of length \(2 L\), and lies in the plane of the figure.
103 In Fig. 10-63, a thin uniform rod (mass 3.0 kg , length 4.0 m ) rotates freely about a horizontal axis \(A\) that is perpendicular to the rod and passes through a point at distance \(d=1.0 \mathrm{~m}\) from the end of the rod. The kinetic energy of the rod as it passes through the vertical position is 20 J . (a) What is the rotational inertia of the rod about axis \(A\) ? (b) What is the (linear) speed of the end \(B\) of the rod as the rod passes through the vertical position? (c) At what angle \(\theta\) will the rod momentarily stop in its upward swing?


Figure 10-63 Problem 103.


Figure 10-64 Problem 104. Four particles, each of mass, 0.20 kg , are placed at the vertices of a square with sides of length 0.50 m . The particles are connected by rods of negligible mass. This rigid body can rotate in a vertical plane about a horizontal axis \(A\) that passes through one of the particles. The body is released from rest with \(\operatorname{rod} A B\) horizontal (Fig. 10-64).
(a) What is the rotational inertia of the body about axis \(A\) ? (b) What is the angular speed of the body about axis \(A\) when \(\operatorname{rod} A B\) swings through the vertical position?
105 Cheetahs running at top speed have been reported at an astounding \(114 \mathrm{~km} / \mathrm{h}\) (about \(71 \mathrm{mi} / \mathrm{h}\) ) by observers driving alongside the animals. Imagine trying to measure a cheetah's speed by keeping your vehicle abreast of the animal while also glancing at your speedometer, which is registering \(114 \mathrm{~km} / \mathrm{h}\). You keep the vehicle a constant 8.0 m from the cheetah, but the noise of the vehicle causes the cheetah to continuously veer away from you along a circular path of radius 92 m . Thus, you travel along a circular path of radius 100 m . (a) What is the angular speed of you and the cheetah around the circular paths? (b) What is the linear speed of the cheetah along its path? (If you did not account for the circular motion, you would conclude erroneously that the cheetah's speed is \(114 \mathrm{~km} / \mathrm{h}\), and that type of error was apparently made in the published reports.)
106 A point on the rim of a 0.75 -m-diameter grinding wheel changes speed at a constant rate from \(12 \mathrm{~m} / \mathrm{s}\) to \(25 \mathrm{~m} / \mathrm{s}\) in 6.2 s . What is the average angular acceleration of the wheel?
107 A pulley wheel that is 8.0 cm in diameter has a \(5.6-\mathrm{m}\)-long cord wrapped around its periphery. Starting from rest, the wheel is given a constant angular acceleration of \(1.5 \mathrm{rad} / \mathrm{s}^{2}\). (a) Through what angle must the wheel turn for the cord to unwind completely? (b) How long will this take?
108 A vinyl record on a turntable rotates at \(33 \frac{1}{3} \mathrm{rev} / \mathrm{min}\). (a) What is its angular speed in radians per second? What is the linear speed of a point on the record (b) 15 cm and (c) 7.4 cm from the turntable axis?

\title{
Rolling, Torque, and Angular Momentum
}

\section*{11-1 rolling as translation and rotation combined}

\section*{Learning Objectives}

After reading this module, you should be able to ...
11.01 Identify that smooth rolling can be considered as a combination of pure translation and pure rotation.
11.02 Apply the relationship between the center-of-mass speed and the angular speed of a body in smooth rolling.

\section*{Key Ideas}
- For a wheel of radius \(R\) rolling smoothly,
\[
v_{\mathrm{com}}=\omega R
\]
where \(v_{\text {com }}\) is the linear speed of the wheel's center of mass and \(\omega\) is the angular speed of the wheel about its center.
- The wheel may also be viewed as rotating instantaneously about the point \(P\) of the "road" that is in contact with the wheel. The angular speed of the wheel about this point is the same as the angular speed of the wheel about its center.

\section*{What Is Physics?}

As we discussed in Chapter 10, physics includes the study of rotation. Arguably, the most important application of that physics is in the rolling motion of wheels and wheel-like objects. This applied physics has long been used. For example, when the prehistoric people of Easter Island moved their gigantic stone statues from the quarry and across the island, they dragged them over logs acting as rollers. Much later, when settlers moved westward across America in the 1800s, they rolled their possessions first by wagon and then later by train. Today, like it or not, the world is filled with cars, trucks, motorcycles, bicycles, and other rolling vehicles.

The physics and engineering of rolling have been around for so long that you might think no fresh ideas remain to be developed. However, skateboards and inline skates were invented and engineered fairly recently, to become huge financial successes. Street luge is now catching on, and the self-righting Segway (Fig. 11-1) may change the way people move around in large cities. Applying the physics of rolling can still lead to surprises and rewards. Our starting point in exploring that physics is to simplify rolling motion.

\section*{Rolling as Translation and Rotation Combined}

Here we consider only objects that roll smoothly along a surface; that is, the objects roll without slipping or bouncing on the surface. Figure 11-2 shows how complicated smooth rolling motion can be: Although the center of the object moves in a straight line parallel to the surface, a point on the rim certainly does not. However, we can study this motion by treating it as a combination of translation of the center of mass and rotation of the rest of the object around that center.


Justin Sullivan/Getty Images, Inc.
Figure 11-1 The self-righting Segway Human Transporter.


Figure 11-3 The center of mass \(O\) of a rolling wheel moves a distance \(s\) at velocity \(\vec{v}_{\text {com }}\) while the wheel rotates through angle \(\theta\). The point \(P\) at which the wheel makes contact with the surface over which the wheel rolls also moves a distance \(s\).

Figure 11-2 A time-exposure photograph of a rolling disk. Small lights have been attached to the disk, one at its center and one at its edge. The latter traces out a curve called a cycloid.


To see how we do this, pretend you are standing on a sidewalk watching the bicycle wheel of Fig. 11-3 as it rolls along a street. As shown, you see the center of mass \(O\) of the wheel move forward at constant speed \(v_{\text {com }}\). The point \(P\) on the street where the wheel makes contact with the street surface also moves forward at speed \(v_{\text {com }}\), so that \(P\) always remains directly below \(O\).

During a time interval \(t\), you see both \(O\) and \(P\) move forward by a distance \(s\). The bicycle rider sees the wheel rotate through an angle \(\theta\) about the center of the wheel, with the point of the wheel that was touching the street at the beginning of \(t\) moving through arc length \(s\). Equation 10-17 relates the arc length \(s\) to the rotation angle \(\theta\) :
\[
\begin{equation*}
s=\theta R \tag{11-1}
\end{equation*}
\]
where \(R\) is the radius of the wheel. The linear speed \(v_{\text {com }}\) of the center of the wheel (the center of mass of this uniform wheel) is \(d s / d t\). The angular speed \(\omega\) of the wheel about its center is \(d \theta / d t\). Thus, differentiating Eq. 11-1 with respect to time (with \(R\) held constant) gives us
\[
\begin{equation*}
v_{\mathrm{com}}=\omega R \quad \text { (smooth rolling motion) } \tag{11-2}
\end{equation*}
\]

A Combination. Figure 11-4 shows that the rolling motion of a wheel is a combination of purely translational and purely rotational motions. Figure 11-4a shows the purely rotational motion (as if the rotation axis through the center were stationary): Every point on the wheel rotates about the center with angular speed \(\omega\). (This is the type of motion we considered in Chapter 10.) Every point on the outside edge of the wheel has linear speed \(v_{\text {com }}\) given by Eq. 11-2. Figure 11-4b shows the purely translational motion (as if the wheel did not rotate at all): Every point on the wheel moves to the right with speed \(v_{\text {com }}\).

The combination of Figs. 11-4a and 11-4b yields the actual rolling motion of the wheel, Fig. 11-4c. Note that in this combination of motions, the portion of the wheel at the bottom (at point \(P\) ) is stationary and the portion at the top


Figure 11-4 Rolling motion of a wheel as a combination of purely rotational motion and purely translational motion. (a) The purely rotational motion: All points on the wheel move with the same angular speed \(\omega\). Points on the outside edge of the wheel all move with the same linear speed \(v=v_{\text {com }}\). The linear velocities \(\vec{v}\) of two such points, at top \((T)\) and bottom \((P)\) of the wheel, are shown. (b) The purely translational motion: All points on the wheel move to the right with the same linear velocity \(\vec{v}_{\text {com. }}(c)\) The rolling motion of the wheel is the combination of \((a)\) and \((b)\).

Figure 11-5 A photograph of a rolling bicycle wheel. The spokes near the wheel's top are more blurred than those near the bottom because the top ones are moving faster, as Fig. 11-4c shows.


Courtesy Alice Halliday
(at point \(T\) ) is moving at speed \(2 v_{\text {com }}\), faster than any other portion of the wheel. These results are demonstrated in Fig. 11-5, which is a time exposure of a rolling bicycle wheel. You can tell that the wheel is moving faster near its top than near its bottom because the spokes are more blurred at the top than at the bottom.

The motion of any round body rolling smoothly over a surface can be separated into purely rotational and purely translational motions, as in Figs. 11-4a and 11-4b.

\section*{Rolling as Pure Rotation}

Figure 11-6 suggests another way to look at the rolling motion of a wheelnamely, as pure rotation about an axis that always extends through the point where the wheel contacts the street as the wheel moves. We consider the rolling motion to be pure rotation about an axis passing through point \(P\) in Fig. 11-4c and perpendicular to the plane of the figure. The vectors in Fig. 11-6 then represent the instantaneous velocities of points on the rolling wheel.

Question: What angular speed about this new axis will a stationary observer assign to a rolling bicycle wheel?
Answer: The same \(\omega\) that the rider assigns to the wheel as she or he observes it in pure rotation about an axis through its center of mass.

To verify this answer, let us use it to calculate the linear speed of the top of the rolling wheel from the point of view of a stationary observer. If we call the wheel's radius \(R\), the top is a distance \(2 R\) from the axis through \(P\) in Fig. 11-6, so the linear speed at the top should be (using Eq. 11-2)
\[
v_{\text {top }}=(\omega)(2 R)=2(\omega R)=2 v_{\text {com }},
\]
in exact agreement with Fig. 11-4c. You can similarly verify the linear speeds shown for the portions of the wheel at points \(O\) and \(P\) in Fig. 11-4c.

\section*{Checkpoint 1}

The rear wheel on a clown's bicycle has twice the radius of the front wheel. (a) When the bicycle is moving, is the linear speed at the very top of the rear wheel greater than, less than, or the same as that of the very top of the front wheel? (b) Is the angular speed of the rear wheel greater than, less than, or the same as that of the front wheel?


Figure 11-6 Rolling can be viewed as pure rotation, with angular speed \(\omega\), about an axis that always extends through \(P\). The vectors show the instantaneous linear velocities of selected points on the rolling wheel. You can obtain the vectors by combining the translational and rotational motions as in Fig. 11-4.

\section*{11-2 forces and kinetic energy of rolling}

\section*{Learning Objectives}

After reading this module, you should be able to ...
11.03 Calculate the kinetic energy of a body in smooth rolling as the sum of the translational kinetic energy of the center of mass and the rotational kinetic energy around the center of mass.
11.04 Apply the relationship between the work done on a smoothly rolling object and the change in its kinetic energy.
11.05 For smooth rolling (and thus no sliding), conserve mechanical energy to relate initial energy values to the values at a later point.
11.06 Draw a free-body diagram of an accelerating body that is smoothly rolling on a horizontal surface or up or down a ramp.
11.07 Apply the relationship between the center-of-mass acceleration and the angular acceleration.
11.08 For smooth rolling of an object up or down a ramp, apply the relationship between the object's acceleration, its rotational inertia, and the angle of the ramp.

\section*{Key Ideas}
- A smoothly rolling wheel has kinetic energy
\[
K=\frac{1}{2} I_{\mathrm{com}} \omega^{2}+\frac{1}{2} M v_{\mathrm{com}}^{2},
\]
where \(I_{\text {com }}\) is the rotational inertia of the wheel about its center of mass and \(M\) is the mass of the wheel.
- If the wheel is being accelerated but is still rolling smoothly, the acceleration of the center of mass \(\vec{a}_{\text {com }}\) is related to the
angular acceleration \(\alpha\) about the center with
\[
a_{\mathrm{com}}=\alpha R .
\]

If the wheel rolls smoothly down a ramp of angle \(\theta\), its acceleration along an \(x\) axis extending up the ramp is
\[
a_{\mathrm{com}, x}=-\frac{g \sin \theta}{1+I_{\mathrm{com}} / M R^{2}} .
\]

\section*{The Kinetic Energy of Rolling}

Let us now calculate the kinetic energy of the rolling wheel as measured by the stationary observer. If we view the rolling as pure rotation about an axis through \(P\) in Fig. 11-6, then from Eq. 10-34 we have
\[
\begin{equation*}
K=\frac{1}{2} I_{P} \omega^{2} \tag{11-3}
\end{equation*}
\]
in which \(\omega\) is the angular speed of the wheel and \(I_{P}\) is the rotational inertia of the wheel about the axis through \(P\). From the parallel-axis theorem of Eq. 10-36 ( \(I=I_{\text {com }}+M h^{2}\) ), we have
\[
\begin{equation*}
I_{P}=I_{\mathrm{com}}+M R^{2}, \tag{11-4}
\end{equation*}
\]
in which \(M\) is the mass of the wheel, \(I_{\text {com }}\) is its rotational inertia about an axis through its center of mass, and \(R\) (the wheel's radius) is the perpendicular distance \(h\). Substituting Eq. 11-4 into Eq. 11-3, we obtain
\[
K=\frac{1}{2} I_{\mathrm{com}} \omega^{2}+\frac{1}{2} M R^{2} \omega^{2},
\]
and using the relation \(v_{\text {com }}=\omega R\) (Eq. 11-2) yields
\[
\begin{equation*}
K=\frac{1}{2} I_{\mathrm{com}} \omega^{2}+\frac{1}{2} M v_{\mathrm{com}}^{2} . \tag{11-5}
\end{equation*}
\]

We can interpret the term \(\frac{1}{2} I_{\operatorname{com}} \omega^{2}\) as the kinetic energy associated with the rotation of the wheel about an axis through its center of mass (Fig. 11-4a), and the term \(\frac{1}{2} M v_{\text {com }}^{2}\) as the kinetic energy associated with the translational motion of the wheel's center of mass (Fig. 11-4b). Thus, we have the following rule:

A rolling object has two types of kinetic energy: a rotational kinetic energy \(\left(\frac{1}{2} I_{\mathrm{com}} \omega^{2}\right)\) due to its rotation about its center of mass and a translational kinetic energy ( \(\frac{1}{2} M v_{\text {com }}^{2}\) ) due to translation of its center of mass.

\section*{The Forces of Rolling}

\section*{Friction and Rolling}

If a wheel rolls at constant speed, as in Fig. 11-3, it has no tendency to slide at the point of contact \(P\), and thus no frictional force acts there. However, if a net force acts on the rolling wheel to speed it up or to slow it, then that net force causes acceleration \(\vec{a}_{\text {com }}\) of the center of mass along the direction of travel. It also causes the wheel to rotate faster or slower, which means it causes an angular acceleration \(\alpha\). These accelerations tend to make the wheel slide at \(P\). Thus, a frictional force must act on the wheel at \(P\) to oppose that tendency.

If the wheel does not slide, the force is a static frictional force \(\vec{f}_{s}\) and the motion is smooth rolling. We can then relate the magnitudes of the linear acceleration \(\vec{a}_{\text {com }}\) and the angular acceleration \(\alpha\) by differentiating Eq. 11-2 with respect to time (with \(R\) held constant). On the left side, \(d v_{\text {com }} / d t\) is \(a_{\text {com }}\), and on the right side \(d \omega / d t\) is \(\alpha\). So, for smooth rolling we have
\[
\begin{equation*}
a_{\mathrm{com}}=\alpha R \quad \text { (smooth rolling motion) } \tag{11-6}
\end{equation*}
\]

If the wheel does slide when the net force acts on it, the frictional force that acts at \(P\) in Fig. 11-3 is a kinetic frictional force \(\vec{f}_{k}\). The motion then is not smooth rolling, and Eq. 11-6 does not apply to the motion. In this chapter we discuss only smooth rolling motion.

Figure 11-7 shows an example in which a wheel is being made to rotate faster while rolling to the right along a flat surface, as on a bicycle at the start of a race. The faster rotation tends to make the bottom of the wheel slide to the left at point \(P\). A frictional force at \(P\), directed to the right, opposes this tendency to slide. If the wheel does not slide, that frictional force is a static frictional force \(\vec{f}_{s}\) (as shown), the motion is smooth rolling, and Eq. 11-6 applies to the motion. (Without friction, bicycle races would be stationary and very boring.)

If the wheel in Fig. 11-7 were made to rotate slower, as on a slowing bicycle, we would change the figure in two ways: The directions of the center-ofmass acceleration \(\vec{a}_{\text {com }}\) and the frictional force \(\vec{f}_{s}\) at point \(P\) would now be to the left.

\section*{Rolling Down a Ramp}

Figure 11-8 shows a round uniform body of mass \(M\) and radius \(R\) rolling smoothly down a ramp at angle \(\theta\), along an \(x\) axis. We want to find an expression for the body's


Figure 11-8 A round uniform body of radius \(R\) rolls down a ramp. The forces that act on it are the gravitational force \(\vec{F}_{g}\), a normal force \(\vec{F}_{N}\), and a frictional force \(\vec{f}_{s}\) pointing up the ramp. (For clarity, vector \(\vec{F}_{N}\) has been shifted in the direction it points until its tail is at the center of the body.)


Figure 11-7 A wheel rolls horizontally without sliding while accelerating with linear acceleration \(\vec{a}_{\text {com }}\), as on a bicycle at the start of a race. A static frictional force \(\vec{f}_{s}\) acts on the wheel at \(P\),opposing its tendency to slide.
acceleration \(a_{\mathrm{com}, x}\) down the ramp. We do this by using Newton's second law in both its linear version \(\left(F_{\text {net }}=M a\right)\) and its angular version \(\left(\tau_{\text {net }}=I \alpha\right)\).

We start by drawing the forces on the body as shown in Fig. 11-8:
1. The gravitational force \(\vec{F}_{g}\) on the body is directed downward. The tail of the vector is placed at the center of mass of the body. The component along the ramp is \(F_{g} \sin \theta\), which is equal to \(M g \sin \theta\).
2. A normal force \(\vec{F}_{N}\) is perpendicular to the ramp. It acts at the point of contact \(P\), but in Fig. 11-8 the vector has been shifted along its direction until its tail is at the body's center of mass.
3. A static frictional force \(\vec{f}_{s}\) acts at the point of contact \(P\) and is directed up the ramp. (Do you see why? If the body were to slide at \(P\), it would slide down the ramp. Thus, the frictional force opposing the sliding must be \(u p\) the ramp.)
We can write Newton's second law for components along the \(x\) axis in Fig. 11-8 \(\left(F_{\text {net }, x}=m a_{x}\right)\) as
\[
\begin{equation*}
f_{s}-M g \sin \theta=M a_{\mathrm{com}, x} \tag{11-7}
\end{equation*}
\]

This equation contains two unknowns, \(f_{s}\) and \(a_{\text {com }, x}\). (We should not assume that \(f_{s}\) is at its maximum value \(f_{s, \text { max }}\). All we know is that the value of \(f_{s}\) is just right for the body to roll smoothly down the ramp, without sliding.)

We now wish to apply Newton's second law in angular form to the body's rotation about its center of mass. First, we shall use Eq. 10-41 \(\left(\tau=r_{\perp} F\right)\) to write the torques on the body about that point. The frictional force \(\vec{f}_{s}\) has moment arm \(R\) and thus produces a torque \(R f_{s}\), which is positive because it tends to rotate the body counterclockwise in Fig. 11-8. Forces \(\vec{F}_{g}\) and \(\vec{F}_{N}\) have zero moment arms about the center of mass and thus produce zero torques. So we can write the angular form of Newton's second law ( \(\tau_{\text {net }}=I \alpha\) ) about an axis through the body's center of mass as
\[
\begin{equation*}
R f_{s}=I_{\mathrm{com}} \alpha \tag{11-8}
\end{equation*}
\]

This equation contains two unknowns, \(f_{s}\) and \(\alpha\).
Because the body is rolling smoothly, we can use Eq.11-6 \(\left(a_{\mathrm{com}}=\alpha R\right)\) to relate the unknowns \(a_{\operatorname{com}, x}\) and \(\alpha\). But we must be cautious because here \(a_{\operatorname{com}, x}\) is negative (in the negative direction of the \(x\) axis) and \(\alpha\) is positive (counterclockwise). Thus we substitute \(-a_{\text {com, } x} / R\) for \(\alpha\) in Eq. 11-8. Then, solving for \(f_{s}\), we obtain
\[
\begin{equation*}
f_{s}=-I_{\mathrm{com}} \frac{a_{\mathrm{com}, x}}{R^{2}} . \tag{11-9}
\end{equation*}
\]

Substituting the right side of Eq. 11-9 for \(f_{s}\) in Eq. 11-7, we then find
\[
\begin{equation*}
a_{\mathrm{com}, x}=-\frac{g \sin \theta}{1+I_{\mathrm{com}} / M R^{2}} . \tag{11-10}
\end{equation*}
\]

We can use this equation to find the linear acceleration \(a_{\mathrm{com}, x}\) of any body rolling along an incline of angle \(\theta\) with the horizontal.

Note that the pull by the gravitational force causes the body to come down the ramp, but it is the frictional force that causes the body to rotate and thus roll. If you eliminate the friction (by, say, making the ramp slick with ice or grease) or arrange for \(M g \sin \theta\) to exceed \(f_{s, \text { max }}\), then you eliminate the smooth rolling and the body slides down the ramp.

\section*{Checkpoint 2}

Disks \(A\) and \(B\) are identical and roll across a floor with equal speeds. Then disk \(A\) rolls up an incline, reaching a maximum height \(h\), and disk \(B\) moves up an incline that is identical except that it is frictionless. Is the maximum height reached by disk \(B\) greater than, less than, or equal to \(h\) ?

\section*{Sample Problem 11.01 Ball rolling down a ramp}

A uniform ball, of mass \(M=6.00 \mathrm{~kg}\) and radius \(R\), rolls smoothly from rest down a ramp at angle \(\theta=30.0^{\circ}\) (Fig. 11-8).
(a) The ball descends a vertical height \(h=1.20 \mathrm{~m}\) to reach the bottom of the ramp. What is its speed at the bottom?

\section*{KEY IDEAS}

The mechanical energy \(E\) of the ball-Earth system is conserved as the ball rolls down the ramp. The reason is that the only force doing work on the ball is the gravitational force, a conservative force. The normal force on the ball from the ramp does zero work because it is perpendicular to the ball's path. The frictional force on the ball from the ramp does not transfer any energy to thermal energy because the ball does not slide (it rolls smoothly).

Thus, we conserve mechanical energy \(\left(E_{f}=E_{i}\right)\) :
\[
\begin{equation*}
K_{f}+U_{f}=K_{i}+U_{i} \tag{11-11}
\end{equation*}
\]
where subscripts \(f\) and \(i\) refer to the final values (at the bottom) and initial values (at rest), respectively. The gravitational potential energy is initially \(U_{i}=M g h\) (where \(M\) is the ball's mass) and finally \(U_{f}=0\). The kinetic energy is initially \(K_{i}=0\). For the final kinetic energy \(K_{f}\), we need an additional idea: Because the ball rolls, the kinetic energy involves both translation and rotation, so we include them both by using the right side of Eq. 11-5.

Calculations: Substituting into Eq. 11-11 gives us
\[
\begin{equation*}
\left(\frac{1}{2} I_{\mathrm{com}} \omega^{2}+\frac{1}{2} M v_{\mathrm{com}}^{2}\right)+0=0+M g h, \tag{11-12}
\end{equation*}
\]
where \(I_{\text {com }}\) is the ball's rotational inertia about an axis through its center of mass, \(v_{\text {com }}\) is the requested speed at the bottom, and \(\omega\) is the angular speed there.

Because the ball rolls smoothly, we can use Eq. 11-2 to substitute \(v_{\text {com }} / R\) for \(\omega\) to reduce the unknowns in Eq. 11-12.

Doing so, substituting \(\frac{2}{5} M R^{2}\) for \(I_{\text {com }}\) (from Table 10-2f), and then solving for \(v_{\text {com }}\) give us
\[
\begin{aligned}
v_{\mathrm{com}} & =\sqrt{\left(\frac{10}{7}\right) g h}=\sqrt{\left(\frac{10}{7}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(1.20 \mathrm{~m})} \\
& =4.10 \mathrm{~m} / \mathrm{s} .
\end{aligned}
\]
(Answer)
Note that the answer does not depend on \(M\) or \(R\).
(b) What are the magnitude and direction of the frictional force on the ball as it rolls down the ramp?

\section*{KEY IDEA}

Because the ball rolls smoothly, Eq. 11-9 gives the frictional force on the ball.

Calculations: Before we can use Eq. 11-9, we need the ball's acceleration \(a_{\text {com }, x}\) from Eq. 11-10:
\[
\begin{aligned}
a_{\mathrm{com}, x} & =-\frac{g \sin \theta}{1+I_{\mathrm{com}} / M R^{2}}=-\frac{g \sin \theta}{1+\frac{2}{5} M R^{2} / M R^{2}} \\
& =-\frac{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \sin 30.0^{\circ}}{1+\frac{2}{5}}=-3.50 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
\]

Note that we needed neither mass \(M\) nor radius \(R\) to find \(a_{\text {com }, x}\). Thus, any size ball with any uniform mass would have this smoothly rolling acceleration down a \(30.0^{\circ}\) ramp.

We can now solve Eq. 11-9 as
\[
\begin{aligned}
f_{s} & =-I_{\mathrm{com}} \frac{a_{\mathrm{com}, x}}{R^{2}}=-\frac{2}{5} M R^{2} \frac{a_{\mathrm{com}, x}}{R^{2}}=-\frac{2}{5} M a_{\mathrm{com}, x} \\
& =-\frac{2}{5}(6.00 \mathrm{~kg})\left(-3.50 \mathrm{~m} / \mathrm{s}^{2}\right)=8.40 \mathrm{~N} .
\end{aligned}
\]
(Answer)
Note that we needed mass \(M\) but not radius \(R\). Thus, the frictional force on any 6.00 kg ball rolling smoothly down a \(30.0^{\circ}\) ramp would be 8.40 N regardless of the ball's radius but would be larger for a larger mass.

\section*{11-3 the vo-yo}

\section*{Learning Objectives}

After reading this module, you should be able to ...
11.09 Draw a free-body diagram of a yo-yo moving up or down its string.
11.10 Identify that a yo-yo is effectively an object that rolls smoothly up or down a ramp with an incline angle of \(90^{\circ}\).
11.11 For a yo-yo moving up or down its string, apply the relationship between the yo-yo's acceleration and its rotational inertia.
11.12 Determine the tension in a yo-yo's string as the yo-yo moves up or down its string.

\section*{Key Idea}
- A yo-yo, which travels vertically up or down a string, can be treated as a wheel rolling along an inclined plane at angle \(\theta=90^{\circ}\).


Figure 11-9 (a) A yo-yo, shown in cross section. The string, of assumed negligible thickness, is wound around an axle of radius \(R_{0}\). (b) A free-body diagram for the falling yo-yo. Only the axle is shown.

\section*{The Yo-Yo}

A yo-yo is a physics lab that you can fit in your pocket. If a yo-yo rolls down its string for a distance \(h\), it loses potential energy in amount \(m g h\) but gains kinetic energy in both translational ( \(\frac{1}{2} M v_{\text {com }}^{2}\) ) and rotational ( \(\left(\frac{1}{2} I_{\text {com }} \omega^{2}\right)\) forms. As it climbs back up, it loses kinetic energy and regains potential energy.

In a modern yo-yo, the string is not tied to the axle but is looped around it. When the yo-yo "hits" the bottom of its string, an upward force on the axle from the string stops the descent. The yo-yo then spins, axle inside loop, with only rotational kinetic energy. The yo-yo keeps spinning ("sleeping") until you "wake it" by jerking on the string, causing the string to catch on the axle and the yo-yo to climb back up. The rotational kinetic energy of the yo-yo at the bottom of its string (and thus the sleeping time) can be considerably increased by throwing the yo-yo downward so that it starts down the string with initial speeds \(v_{\text {com }}\) and \(\omega\) instead of rolling down from rest.

To find an expression for the linear acceleration \(a_{\text {com }}\) of a yo-yo rolling down a string, we could use Newton's second law (in linear and angular forms) just as we did for the body rolling down a ramp in Fig. 11-8. The analysis is the same except for the following:
1. Instead of rolling down a ramp at angle \(\theta\) with the horizontal, the yo-yo rolls down a string at angle \(\theta=90^{\circ}\) with the horizontal.
2. Instead of rolling on its outer surface at radius \(R\), the yo-yo rolls on an axle of radius \(R_{0}\) (Fig. 11-9a).
3. Instead of being slowed by frictional force \(\vec{f}_{s}\), the yo-yo is slowed by the force \(\vec{T}\) on it from the string (Fig. 11-9b).

The analysis would again lead us to Eq. 11-10. Therefore, let us just change the notation in Eq. 11-10 and set \(\theta=90^{\circ}\) to write the linear acceleration as
\[
\begin{equation*}
a_{\mathrm{com}}=-\frac{g}{1+I_{\mathrm{com}} / M R_{0}^{2}}, \tag{11-13}
\end{equation*}
\]
where \(I_{\text {com }}\) is the yo-yo's rotational inertia about its center and \(M\) is its mass. A yo-yo has the same downward acceleration when it is climbing back up.

\section*{11-4 torque revisited}

\section*{Learning Objectives}

After reading this module, you should be able to ...
11.13 Identify that torque is a vector quantity.
11.14 Identify that the point about which a torque is calculated must always be specified.
11.15 Calculate the torque due to a force on a particle by taking the cross product of the particle's position vector
and the force vector, in either unit-vector notation or magnitude-angle notation.
11.16 Use the right-hand rule for cross products to find the direction of a torque vector.

The magnitude of \(\vec{\tau}\) is given by
\[
\tau=r F \sin \phi=r F_{\perp}=r_{\perp} F,
\]
where \(\phi\) is the angle between \(\vec{F}\) and \(\vec{r}, F_{\perp}\) is the component of \(\vec{F}\) perpendicular to \(\vec{r}\), and \(r_{\perp}\) is the moment arm of \(\vec{F}\).
- The direction of \(\vec{\tau}\) is given by the right-hand rule for cross products.


Figure 11-10 Defining torque. (a) A force \(\vec{F}\), lying in an \(x y\) plane, acts on a particle at point \(A\).(b) This force produces a torque \(\vec{\tau}(=\vec{r} \times \vec{F})\) on the particle with respect to the origin \(O\). By the right-hand rule for vector (cross) products, the torque vector points in the positive direction of \(z\). Its magnitude is given by \(r F_{\perp}\) in \((b)\) and by \(r_{\perp} F\) in (c).

\section*{Torque Revisited}

In Chapter 10 we defined torque \(\tau\) for a rigid body that can rotate around a fixed axis. We now expand the definition of torque to apply it to an individual particle that moves along any path relative to a fixed point (rather than a fixed axis). The path need no longer be a circle, and we must write the torque as a vector \(\vec{\tau}\) that may have any direction. We can calculate the magnitude of the torque with a formula and determine its direction with the right-hand rule for cross products.

Figure 11-10a shows such a particle at point \(A\) in an \(x y\) plane. A single force \(\vec{F}\) in that plane acts on the particle, and the particle's position relative to the origin \(O\) is given by position vector \(\vec{r}\). The torque \(\vec{\tau}\) acting on the particle relative to the fixed point \(O\) is a vector quantity defined as
\[
\begin{equation*}
\vec{\tau}=\vec{r} \times \vec{F} \quad \text { (torque defined) } \tag{11-14}
\end{equation*}
\]

We can evaluate the vector (or cross) product in this definition of \(\vec{\tau}\) by using the rules in Module 3-3. To find the direction of \(\vec{\tau}\), we slide the vector \(\vec{F}\) (without changing its direction) until its tail is at the origin \(O\), so that the two vectors in the vector product are tail to tail as in Fig. 11-10b. We then use the right-hand rule in Fig. 3-19a, sweeping the fingers of the right hand from \(\vec{r}\) (the first vector in the product) into \(\vec{F}\) (the second vector). The outstretched right thumb then gives the direction of \(\vec{\tau}\). In Fig. 11-10b, it is in the positive direction of the \(z\) axis.

To determine the magnitude of \(\vec{\tau}\), we apply the general result of Eq. 3-27 \((c=a b \sin \phi)\), finding
\[
\begin{equation*}
\tau=r F \sin \phi \tag{11-15}
\end{equation*}
\]
where \(\phi\) is the smaller angle between the directions of \(\vec{r}\) and \(\vec{F}\) when the vectors are tail to tail. From Fig. 11-10b, we see that Eq. 11-15 can be rewritten as
\[
\begin{equation*}
\tau=r F_{\perp} \tag{11-16}
\end{equation*}
\]
where \(F_{\perp}(=F \sin \phi)\) is the component of \(\vec{F}\) perpendicular to \(\vec{r}\). From Fig. 11-10c, we see that Eq. 11-15 can also be rewritten as
\[
\begin{equation*}
\tau=r_{\perp} F \tag{11-17}
\end{equation*}
\]
where \(r_{\perp}(=r \sin \phi)\) is the moment arm of \(\vec{F}\) (the perpendicular distance between \(O\) and the line of action of \(\vec{F}\) ).

\section*{Checkpoint 3}

The position vector \(\vec{r}\) of a particle points along the positive direction of a \(z\) axis. If the torque on the particle is (a) zero, (b) in the negative direction of \(x\), and (c) in the negative direction of \(y\), in what direction is the force causing the torque?

\section*{Sample Problem 11.02 Torque on a particle due to a force}

In Fig. 11-11a, three forces, each of magnitude 2.0 N , act on a particle. The particle is in the \(x z\) plane at point \(A\) given by position vector \(\vec{r}\), where \(r=3.0 \mathrm{~m}\) and \(\theta=30^{\circ}\). What is the torque, about the origin \(O\), due to each force?

\section*{KEY IDEA}

Because the three force vectors do not lie in a plane, we must use cross products, with magnitudes given by Eq. 11-15 ( \(\tau=r F \sin \phi\) ) and directions given by the right-hand rule.
Calculations: Because we want the torques with respect to the origin \(O\), the vector \(\vec{r}\) required for each cross product is the given position vector. To determine the angle \(\phi\) between \(\vec{r}\) and each force, we shift the force vectors of Fig. 11\(11 a\), each in turn, so that their tails are at the origin. Figures 11-11b, \(c\), and \(d\), which are direct views of the \(x z\) plane, show the shifted force vectors \(\vec{F}_{1}, \vec{F}_{2}\), and \(\vec{F}_{3}\), respectively. (Note how much easier the angles between the force vectors and
the position vector are to see.) In Fig. 11-11d, the angle between the directions of \(\vec{r}\) and \(\vec{F}_{3}\) is \(90^{\circ}\) and the symbol \(\otimes\) means \(\vec{F}_{3}\) is directed into the page. (For out of the page, we would use \(\odot\).)

Now, applying Eq. 11-15, we find
\[
\begin{aligned}
& \tau_{1}=r F_{1} \sin \phi_{1}=(3.0 \mathrm{~m})(2.0 \mathrm{~N})\left(\sin 150^{\circ}\right)=3.0 \mathrm{~N} \cdot \mathrm{~m} \\
& \tau_{2}=r F_{2} \sin \phi_{2}=(3.0 \mathrm{~m})(2.0 \mathrm{~N})\left(\sin 120^{\circ}\right)=5.2 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
\]
and \(\quad \tau_{3}=r F_{3} \sin \phi_{3}=(3.0 \mathrm{~m})(2.0 \mathrm{~N})\left(\sin 90^{\circ}\right)\)
\[
=6.0 \mathrm{~N} \cdot \mathrm{~m}
\]
(Answer)
Next, we use the right-hand rule, placing the fingers of the right hand so as to rotate \(\vec{r}\) into \(\vec{F}\) through the smaller of the two angles between their directions. The thumb points in the direction of the torque. Thus \(\vec{\tau}_{1}\) is directed into the page in Fig. 11-11b; \(\vec{\tau}_{2}\) is directed out of the page in Fig. 11-11c; and \(\vec{\tau}_{3}\) is directed as shown in Fig. 11-11d. All three torque vectors are shown in Fig. 11-11e.

(b)



Cross \(\vec{r}\) into \(\vec{F}_{1}\). Torque \(\vec{\tau}_{1}\) is into the figure (negative \(y\) ).
(c)


Cross \(\vec{r}\) into \(\vec{F}_{2}\). Torque \(\vec{\tau}_{2}\) is out of the figure (positive \(y\) ).

(d)



Cross \(\vec{r}\) into \(\vec{F}_{3}\). Torque \(\vec{\tau}_{3}\) is in the \(x z\) plane.


Figure 11-11 (a) A particle at point \(A\) is acted on by three forces, each parallel to a coordinate axis. The angle \(\phi\) (used in finding torque) is shown (b) for \(\vec{F}_{1}\) and (c) for \(\vec{F}_{2}\). (d) Torque \(\vec{\tau}_{3}\) is perpendicular to both \(\vec{r}\) and \(\vec{F}_{3}\) (force \(\vec{F}_{3}\) is directed into the plane of the figure). (e) The torques.

\section*{11-5 angular momentum}

\section*{Learning Objectives}

After reading this module, you should be able to ...
11.17 Identify that angular momentum is a vector quantity.
11.18 Identify that the fixed point about which an angular momentum is calculated must always be specified.
11.19 Calculate the angular momentum of a particle by taking the cross product of the particle's position vector and its
momentum vector, in either unit-vector notation or magnitude-angle notation.
11.20 Use the right-hand rule for cross products to find the direction of an angular momentum vector.

\section*{Key Ideas}
- The angular momentum \(\vec{\ell}\) of a particle with linear momentum \(\vec{p}\), mass \(m\), and linear velocity \(\vec{v}\) is a vector quantity defined relative to a fixed point (usually an origin) as
\[
\vec{\ell}=\vec{r} \times \vec{p}=m(\vec{r} \times \vec{v})
\]
- The magnitude of \(\vec{\ell}\) is given by
\[
\begin{aligned}
\ell & =r m v \sin \phi \\
& =r p_{\perp}=r m v_{\perp} \\
& =r_{\perp} p=r_{\perp} m v
\end{aligned}
\]
where \(\phi\) is the angle between \(\vec{r}\) and \(\vec{p}, p_{\perp}\) and \(v_{\perp}\) are the components of \(\vec{p}\) and \(\vec{v}\) perpendicular to \(\vec{r}\), and \(r_{\perp}\) is the perpendicular distance between the fixed point and the extension of \(\vec{p}\).
- The direction of \(\vec{\ell}\) is given by the right-hand rule: Position your right hand so that the fingers are in the direction of \(\vec{r}\). Then rotate them around the palm to be in the direction of \(\vec{p}\). Your outstretched thumb gives the direction of \(\vec{\ell}\).

\section*{Angular Momentum}

Recall that the concept of linear momentum \(\vec{p}\) and the principle of conservation of linear momentum are extremely powerful tools. They allow us to predict the outcome of, say, a collision of two cars without knowing the details of the collision. Here we begin a discussion of the angular counterpart of \(\vec{p}\), winding up in Module 11-8 with the angular counterpart of the conservation principle, which can lead to beautiful (almost magical) feats in ballet, fancy diving, ice skating, and many other activities.

Figure 11-12 shows a particle of mass \(m\) with linear momentum \(\vec{p}(=m \vec{v})\) as it passes through point \(A\) in an \(x y\) plane. The angular momentum \(\vec{\ell}\) of this particle with respect to the origin \(O\) is a vector quantity defined as
\[
\begin{equation*}
\vec{\ell}=\vec{r} \times \vec{p}=m(\vec{r} \times \vec{v}) \quad(\text { angular momentum defined }) \tag{11-18}
\end{equation*}
\]
where \(\vec{r}\) is the position vector of the particle with respect to \(O\). As the particle moves relative to \(O\) in the direction of its momentum \(\vec{p}(=m \vec{v})\), position vector \(\vec{r}\) rotates around \(O\). Note carefully that to have angular momentum about \(O\), the particle does not itself have to rotate around \(O\). Comparison of Eqs. 11-14 and 11-18 shows that angular momentum bears the same relation to linear momentum that torque does to force. The SI unit of angular momentum is the kilogram-meter-squared per second \(\left(\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}\right)\), equivalent to the joule-second \((\mathrm{J} \cdot \mathrm{s})\).

Direction. To find the direction of the angular momentum vector \(\vec{\ell}\) in Fig. 1112 , we slide the vector \(\vec{p}\) until its tail is at the origin \(O\). Then we use the right-hand rule for vector products, sweeping the fingers from \(\vec{r}\) into \(\vec{p}\). The outstretched thumb then shows that the direction of \(\vec{\ell}\) is in the positive direction of the \(z\) axis in Fig. 11-12. This positive direction is consistent with the counterclockwise rotation of position vector \(\vec{r}\) about the \(z\) axis, as the particle moves. (A negative direction of \(\vec{\ell}\) would be consistent with a clockwise rotation of \(\vec{r}\) about the \(z\) axis.)

Magnitude. To find the magnitude of \(\vec{\ell}\), we use the general result of Eq. 3-27 to write
\[
\begin{equation*}
\ell=r m v \sin \phi, \tag{11-19}
\end{equation*}
\]
where \(\phi\) is the smaller angle between \(\vec{r}\) and \(\vec{p}\) when these two vectors are tail


Figure 11-12 Defining angular momentum. A particle passing through point \(A\) has linear momentum \(\vec{p}(=m \vec{v})\), with the vector \(\vec{p}\) lying in an \(x y\) plane. The particle has angular momentum \(\vec{\ell}(=\vec{r} \times \vec{p})\) with respect to the origin \(O\). By the right-hand rule, the angular momentum vector points in the positive direction of \(z\). (a) The magnitude of \(\vec{\ell}\) is given by \(\ell=r p_{\perp}=r m v_{\perp} .(b)\) The magnitude of \(\vec{\ell}\) is also given by \(\ell=r_{\perp} p=r_{\perp} m v\).
to tail. From Fig. 11-12a, we see that Eq. 11-19 can be rewritten as
\[
\begin{equation*}
\ell=r p_{\perp}=r m v_{\perp} \tag{11-20}
\end{equation*}
\]
where \(p_{\perp}\) is the component of \(\vec{p}\) perpendicular to \(\vec{r}\) and \(v_{\perp}\) is the component of \(\vec{v}\) perpendicular to \(\vec{r}\). From Fig. 11-12b, we see that Eq. 11-19 can also be rewritten as
\[
\begin{equation*}
\ell=r_{\perp} p=r_{\perp} m v \tag{11-21}
\end{equation*}
\]
where \(r_{\perp}\) is the perpendicular distance between \(O\) and the extension of \(\vec{p}\).
Important. Note two features here: (1) angular momentum has meaning only with respect to a specified origin and (2) its direction is always perpendicular to the plane formed by the position and linear momentum vectors \(\vec{r}\) and \(\vec{p}\).

\section*{Checkpoint 4}

In part \(a\) of the figure, particles 1 and 2 move around point \(O\) in circles with radii 2 m and 4 m . In part \(b\), particles 3 and 4 travel along straight lines at perpendicular distances of 4 m and 2 m from point \(O\). Particle 5 moves directly away from \(O\). All five particles have the same mass and the same constant speed. (a) Rank the particles according to the magnitudes of their angular momentum about point \(O\), greatest first. (b) Which particles have negative angular momentum about point \(O\) ?

(a)

(b)

\section*{Sample Problem 11.03 Angular momentum of a two-particle system}

Figure 11-13 shows an overhead view of two particles moving at constant momentum along horizontal paths. Particle 1, with momentum magnitude \(p_{1}=5.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\), has position vector \(\vec{r}_{1}\) and will pass 2.0 m from point \(O\). Particle 2, with momentum magnitude \(p_{2}=2.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\), has position vector \(\vec{r}_{2}\) and will pass 4.0 m from point \(O\). What are the magnitude and direction of the net angular momentum \(\vec{L}\) about point \(O\) of the twoparticle system?

\section*{KEY IDEA}

To find \(\vec{L}\), we can first find the individual angular momenta \(\vec{\ell}_{1}\) and \(\vec{\ell}_{2}\) and then add them. To evaluate their magnitudes, we can use any one of Eqs. 11-18 through 11-21. However, Eq. 11-21 is easiest, because we are given the perpendicular distances \(r_{\perp 1}(=2.0 \mathrm{~m})\) and \(r_{\perp 2}(=4.0 \mathrm{~m})\) and the momentum magnitudes \(p_{1}\) and \(p_{2}\).

Calculations: For particle 1, Eq. 11-21 yields
\[
\begin{aligned}
\ell_{1} & =r_{\perp 1} p_{1}=(2.0 \mathrm{~m})(5.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}) \\
& =10 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}
\end{aligned}
\]

To find the direction of vector \(\vec{\ell}_{1}\), we use Eq. 11-18 and the right-hand rule for vector products. For \(\vec{r}_{1} \times \vec{p}_{1}\), the vector product is out of the page, perpendicular to the plane of Fig. 11-13. This is the positive direction, consistent with the counterclockwise rotation of the particle's position vector

Figure 11-13 Two particles pass near point \(O\).

\(\vec{r}_{1}\) around \(O\) as particle 1 moves. Thus, the angular momentum vector for particle 1 is
\[
\ell_{1}=+10 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s} .
\]

Similarly, the magnitude of \(\vec{\ell}_{2}\) is
\[
\begin{aligned}
\ell_{2} & =r_{\perp 2} p_{2}=(4.0 \mathrm{~m})(2.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}) \\
& =8.0 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s},
\end{aligned}
\]
and the vector product \(\vec{r}_{2} \times \vec{p}_{2}\) is into the page, which is the negative direction, consistent with the clockwise rotation of \(\vec{r}_{2}\) around \(O\) as particle 2 moves. Thus, the angular momentum vector for particle 2 is
\[
\ell_{2}=-8.0 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}
\]

The net angular momentum for the two-particle system is
\[
\begin{align*}
L & =\ell_{1}+\ell_{2}=+10 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}+\left(-8.0 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}\right) \\
& =+2.0 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s} . \tag{Answer}
\end{align*}
\]

The plus sign means that the system's net angular momentum about point \(O\) is out of the page.

\section*{11-6 newton's second law in angular form}

\section*{Learning Objective}

After reading this module, you should be able to ...
11.21 Apply Newton's second law in angular form to relate the torque acting on a particle to the resulting rate of change of the particle's angular momentum, all relative to a specified point.

\section*{Key Idea}
- Newton's second law for a particle can be written in angular form as
\[
\vec{\tau}_{\mathrm{net}}=\frac{d \vec{\ell}}{d t}
\]
where \(\vec{\tau}_{\text {net }}\) is the net torque acting on the particle and \(\vec{\ell}\) is the angular momentum of the particle.

\section*{Newton's Second Law in Angular Form}

Newton's second law written in the form
\[
\begin{equation*}
\vec{F}_{\mathrm{net}}=\frac{d \vec{p}}{d t} \quad \text { (single particle) } \tag{11-22}
\end{equation*}
\]
expresses the close relation between force and linear momentum for a single particle. We have seen enough of the parallelism between linear and angular quantities to be pretty sure that there is also a close relation between torque and angular momentum. Guided by Eq. 11-22, we can even guess that it must be
\[
\begin{equation*}
\vec{\tau}_{\text {net }}=\frac{d \vec{\ell}}{d t} \quad \text { (single particle). } \tag{11-23}
\end{equation*}
\]

Equation 11-23 is indeed an angular form of Newton's second law for a single particle:
The (vector) sum of all the torques acting on a particle is equal to the time rate of change of the angular momentum of that particle.

Equation 11-23 has no meaning unless the torques \(\vec{\tau}\) and the angular momentum \(\vec{\ell}\) are defined with respect to the same point, usually the origin of the coordinate system being used.

\section*{Proof of Equation 11-23}

We start with Eq. 11-18, the definition of the angular momentum of a particle:
\[
\vec{\ell}=m(\vec{r} \times \vec{v}),
\]
where \(\vec{r}\) is the position vector of the particle and \(\vec{v}\) is the velocity of the particle. Differentiating* each side with respect to time \(t\) yields
\[
\begin{equation*}
\frac{d \vec{\ell}}{d t}=m\left(\vec{r} \times \frac{d \vec{v}}{d t}+\frac{d \vec{r}}{d t} \times \vec{v}\right) \tag{11-24}
\end{equation*}
\]

However, \(d \vec{v} / d t\) is the acceleration \(\vec{a}\) of the particle, and \(d \vec{r} / d t\) is its velocity \(\vec{v}\). Thus, we can rewrite Eq. 11-24 as
\[
\frac{d \vec{\ell}}{d t}=m(\vec{r} \times \vec{a}+\vec{v} \times \vec{v}) .
\]

\footnotetext{
*In differentiating a vector product, be sure not to change the order of the two quantities (here \(\vec{r}\) and \(\vec{v}\) ) that form that product. (See Eq. 3-25.)
}

Now \(\vec{v} \times \vec{v}=0\) (the vector product of any vector with itself is zero because the angle between the two vectors is necessarily zero). Thus, the last term of this expression is eliminated and we then have
\[
\frac{d \vec{\ell}}{d t}=m(\vec{r} \times \vec{a})=\vec{r} \times m \vec{a} .
\]

We now use Newton's second law \(\left(\vec{F}_{\text {net }}=m \vec{a}\right)\) to replace \(m \vec{a}\) with its equal, the vector sum of the forces that act on the particle, obtaining
\[
\begin{equation*}
\frac{d \vec{\ell}}{d t}=\vec{r} \times \vec{F}_{\mathrm{net}}=\sum(\vec{r} \times \vec{F}) \tag{11-25}
\end{equation*}
\]

Here the symbol \(\Sigma\) indicates that we must sum the vector products \(\vec{r} \times \vec{F}\) for all the forces. However, from Eq. 11-14, we know that each one of those vector products is the torque associated with one of the forces. Therefore, Eq. 11-25 tells us that
\[
\vec{\tau}_{\mathrm{net}}=\frac{d \vec{\ell}}{d t}
\]

This is Eq. 11-23, the relation that we set out to prove.

\section*{Checkpoint 5}

The figure shows the position vector \(\vec{r}\) of a particle at a certain instant, and four choices for the direction of a force that is to accelerate the particle. All four choices lie in the \(x y\) plane. (a) Rank the choices according to the magnitude of the time rate of change ( \(d \vec{\ell} / d t\) ) they produce in the angular mo-
 mentum of the particle about point \(O\), greatest first. (b) Which choice results in a negative rate of change about \(O\) ?

\section*{Sample Problem 11.04 Torque and the time derivative of angular momentum}

Figure 11-14a shows a freeze-frame of a 0.500 kg particle moving along a straight line with a position vector given by
\[
\vec{r}=\left(-2.00 t^{2}-t\right) \hat{\mathrm{i}}+5.00 \hat{\mathrm{j}},
\]
with \(\vec{r}\) in meters and \(t\) in seconds, starting at \(t=0\). The position vector points from the origin to the particle. In unit-vector notation, find expressions for the angular momentum \(\vec{\ell}\) of the particle and the torque \(\vec{\tau}\) acting on the particle, both with respect to (or about) the origin. Justify their algebraic signs in terms of the particle's motion.

\section*{KEY IDEAS}
(1) The point about which an angular momentum of a particle is to be calculated must always be specified. Here it is the origin. (2) The angular momentum \(\vec{\ell}\) of a particle is given by Eq. 11-18 \((\vec{\ell}=\vec{r} \times \vec{p}=m(\vec{r} \times \vec{v}))\). (3) The sign associated with a particle's angular momentum is set by the sense of rotation of the particle's position vector (around the rotation axis) as the particle moves: clockwise is negative and counterclockwise is positive. (4) If the torque acting
on a particle and the angular momentum of the particle are calculated around the same point, then the torque is related to angular momentum by Eq. 11-23 \((\vec{\tau}=d \vec{\ell} / d t)\).

Calculations: In order to use Eq. 11-18 to find the angular momentum about the origin, we first must find an expression for the particle's velocity by taking a time derivative of its position vector. Following Eq. \(4-10(\vec{v}=d \vec{r} / d t)\), we write
\[
\begin{aligned}
\vec{v} & =\frac{d}{d t}\left(\left(-2.00 t^{2}-t\right) \hat{\mathrm{i}}+5.00 \hat{\mathrm{j}}\right) \\
& =(-4.00 t-1.00) \hat{\mathrm{i}},
\end{aligned}
\]
with \(\vec{v}\) in meters per second.
Next, let's take the cross product of \(\vec{r}\) and \(\vec{v}\) using the template for cross products displayed in Eq. 3-27:
\[
\vec{a} \times \vec{b}=\left(a_{y} b_{z}-b_{y} a_{z}\right) \hat{\mathrm{i}}+\left(a_{z} b_{x}-b_{z} a_{x}\right) \hat{\mathrm{j}}+\left(a_{x} b_{y}-b_{x} a_{y}\right) \hat{\mathrm{k}} .
\]

Here the generic \(\vec{a}\) is \(\vec{r}\) and the generic \(\vec{b}\) is \(\vec{v}\). However, because we really don't want to do more work than needed, let's first just think about our substitutions into


Figure 11-14 (a) A particle moving in a straight line, shown at time \(t=0\). (b) The position vector at \(t=0,1.00 \mathrm{~s}\), and 2.00 s . (c) The first step in applying the right-hand rule for cross products. (d) The second step. (e) The angular momentum vector and the torque vector are along the \(z\) axis, which extends out of the plane of the figure.
the generic cross product. Because \(\vec{r}\) lacks any \(z\) component and because \(\vec{v}\) lacks any \(y\) or \(z\) component, the only nonzero term in the generic cross product is the very last one \(\left(-b_{x} a_{y}\right) \hat{\mathrm{k}}\). So, let's cut to the (mathematical) chase by writing
\[
\vec{r} \times \vec{v}=-(-4.00 t-1.00)(5.00) \hat{\mathrm{k}}=(20.0 t+5.00) \hat{\mathrm{k}} \mathrm{~m}^{2} / \mathrm{s}
\]

Note that, as always, the cross product produces a vector that is perpendicular to the original vectors.

To finish up Eq. 11-18, we multiply by the mass, finding
\[
\begin{aligned}
\vec{\ell} & =(0.500 \mathrm{~kg})\left[(20.0 t+5.00) \hat{\mathrm{k}}^{2} / \mathrm{s}\right] \\
& =(10.0 t+2.50) \hat{\mathrm{k}} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s} .
\end{aligned}
\]
(Answer)
The torque about the origin then immediately follows from Eq. 11-23:
\[
\begin{aligned}
\vec{\tau} & =\frac{d}{d t}(10.0 t+2.50) \hat{\mathrm{k}} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s} \\
& =10.0 \hat{\mathrm{k}} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}=10.0 \hat{\mathrm{k}} \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
\]
(Answer)
which is in the positive direction of the \(z\) axis.
Our result for \(\vec{\ell}\) tells us that the angular momentum is in the positive direction of the \(z\) axis. To make sense of that positive result in terms of the rotation of the position vector,
let's evaluate that vector for several times:
\[
\begin{array}{llr}
t=0, & \vec{r}_{0}= & 5.00 \hat{\mathrm{j} ~ m} \\
t=1.00 \mathrm{~s}, & \vec{r}_{1}=-3.00 \hat{\mathrm{i}}+5.00 \hat{\mathrm{j} ~ m} \\
t=2.00 \mathrm{~s}, & \vec{r}_{2}=-10.0 \hat{\mathrm{i}}+5.00 \hat{\mathrm{j} ~ m}
\end{array}
\]

By drawing these results as in Fig. 11-14b, we see that \(\vec{r}\) rotates counterclockwise in order to keep up with the particle. That is the positive direction of rotation. Thus, even though the particle is moving in a straight line, it is still moving counterclockwise around the origin and thus has a positive angular momentum.

We can also make sense of the direction of \(\vec{\ell}\) by applying the right-hand rule for cross products (here \(\vec{r} \times \vec{v}\), or, if you like, \(m \vec{r} \times \vec{v}\), which gives the same direction). For any moment during the particle's motion, the fingers of the right hand are first extended in the direction of the first vector in the cross product ( \(\vec{r}\) ) as indicated in Fig. 11-14c. The orientation of the hand (on the page or viewing screen) is then adjusted so that the fingers can be comfortably rotated about the palm to be in the direction of the second vector in the cross product \((\vec{v})\) as indicated in Fig. 11-14d. The outstretched thumb then points in the direction of the result of the cross product. As indicated in Fig. 11-14e, the vector is in the positive direction of the \(z\) axis (which is directly out of the plane of the figure), consistent with our previous result. Figure \(11-14 e\) also indicates the direction of \(\vec{\tau}\), which is also in the positive direction of the \(z\) axis because the angular momentum is in that direction and is increasing in magnitude.

\section*{11-7 angular momentum of a rigid body}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
11.22 For a system of particles, apply Newton's second law in angular form to relate the net torque acting on the system to the rate of the resulting change in the system's angular momentum.
11.23 Apply the relationship between the angular momentum of a rigid body rotating around a fixed axis and the body's rotational inertia and angular speed around that axis.
11.24 If two rigid bodies rotate about the same axis, calculate their total angular momentum.

\section*{Key Ideas}
- The angular momentum \(\vec{L}\) of a system of particles is the vector sum of the angular momenta of the individual particles:
\[
\vec{L}=\vec{\ell}_{1}+\vec{\ell}_{2}+\cdots+\vec{\ell}_{n}=\sum_{i=1}^{n} \vec{\ell}_{i}
\]
- The time rate of change of this angular momentum is equal to the net external torque on the system (the vector sum of
the torques due to interactions of the particles of the system with particles external to the system):
\[
\vec{\tau}_{\mathrm{net}}=\frac{d \vec{L}}{d t} \quad \text { (system of particles). }
\]
- For a rigid body rotating about a fixed axis, the component of its angular momentum parallel to the rotation axis is
\[
L=I \omega \quad \text { (rigid body, fixed axis) }
\]

\section*{The Angular Momentum of a System of Particles}

Now we turn our attention to the angular momentum of a system of particles with respect to an origin. The total angular momentum \(\vec{L}\) of the system is the (vector) sum of the angular momenta \(\vec{\ell}\) of the individual particles (here with label \(i\) ):
\[
\begin{equation*}
\vec{L}=\vec{\ell}_{1}+\vec{\ell}_{2}+\vec{\ell}_{3}+\cdots+\vec{\ell}_{n}=\sum_{i=1}^{n} \vec{\ell}_{i} \tag{11-26}
\end{equation*}
\]

With time, the angular momenta of individual particles may change because of interactions between the particles or with the outside. We can find the resulting change in \(\vec{L}\) by taking the time derivative of Eq. 11-26. Thus,
\[
\begin{equation*}
\frac{d \vec{L}}{d t}=\sum_{i=1}^{n} \frac{d \vec{\ell}_{i}}{d t} . \tag{11-27}
\end{equation*}
\]

From Eq. 11-23, we see that \(d \vec{\ell}_{i} / d t\) is equal to the net torque \(\vec{\tau}_{\text {net }, i}\) on the \(i\) th particle. We can rewrite Eq. 11-27 as
\[
\begin{equation*}
\frac{d \vec{L}}{d t}=\sum_{i=1}^{n} \vec{\tau}_{\text {net }, i} . \tag{11-28}
\end{equation*}
\]

That is, the rate of change of the system's angular momentum \(\vec{L}\) is equal to the vector sum of the torques on its individual particles. Those torques include internal torques (due to forces between the particles) and external torques (due to forces on the particles from bodies external to the system). However, the forces between the particles always come in third-law force pairs so their torques sum to zero. Thus, the only torques that can change the total angular momentum \(\vec{L}\) of the system are the external torques acting on the system.

Net External Torque. Let \(\vec{\tau}_{\text {net }}\) represent the net external torque, the vector sum of all external torques on all particles in the system. Then we can write Eq. 11-28 as
\[
\begin{equation*}
\vec{\tau}_{\mathrm{net}}=\frac{d \vec{L}}{d t} \quad \text { (system of particles) } \tag{11-29}
\end{equation*}
\]
which is Newton's second law in angular form. It says:

The net external torque \(\vec{\tau}_{\text {net }}\) acting on a system of particles is equal to the time rate of change of the system's total angular momentum \(\vec{L}\).

Equation 11-29 is analogous to \(\vec{F}_{\text {net }}=d \vec{P} / d t\) (Eq. 9-27) but requires extra caution: Torques and the system's angular momentum must be measured relative to the same origin. If the center of mass of the system is not accelerating relative to an inertial frame, that origin can be any point. However, if it is accelerating, then it must be the origin. For example, consider a wheel as the system of particles. If it is rotating about an axis that is fixed relative to the ground, then the origin for applying Eq. 11-29 can be any point that is stationary relative to the ground. However, if it is rotating about an axis that is accelerating (such as when it rolls down a ramp), then the origin can be only at its center of mass.

\section*{The Angular Momentum of a Rigid Body Rotating About a Fixed Axis}

We next evaluate the angular momentum of a system of particles that form a rigid body that rotates about a fixed axis. Figure 11-15a shows such a body. The fixed axis of rotation is a \(z\) axis, and the body rotates about it with constant angular speed \(\omega\). We wish to find the angular momentum of the body about that axis.

We can find the angular momentum by summing the \(z\) components of the angular momenta of the mass elements in the body. In Fig. 11-15a, a typical mass element, of mass \(\Delta m_{i}\), moves around the \(z\) axis in a circular path. The position of the mass element is located relative to the origin \(O\) by position vector \(\vec{r}_{i}\). The radius of the mass element's circular path is \(r_{\perp i}\), the perpendicular distance between the element and the \(z\) axis.

The magnitude of the angular momentum \(\vec{\ell}_{i}\) of this mass element, with respect to \(O\), is given by Eq. 11-19:
\[
\ell_{i}=\left(r_{i}\right)\left(p_{i}\right)\left(\sin 90^{\circ}\right)=\left(r_{i}\right)\left(\Delta m_{i} v_{i}\right)
\]
where \(p_{i}\) and \(v_{i}\) are the linear momentum and linear speed of the mass element, and \(90^{\circ}\) is the angle between \(\vec{r}_{i}\) and \(\vec{p}_{i}\). The angular momentum vector \(\vec{\ell}_{i}\) for the mass element in Fig. 11-15a is shown in Fig. 11-15b; its direction must be perpendicular to those of \(\vec{r}_{i}\) and \(\vec{p}_{i}\).

The \(\boldsymbol{z}\) Components. We are interested in the component of \(\vec{\ell}_{i}\) that is parallel to the rotation axis, here the \(z\) axis. That \(z\) component is
\[
\ell_{i z}=\ell_{i} \sin \theta=\left(r_{i} \sin \theta\right)\left(\Delta m_{i} v_{i}\right)=r_{\perp i} \Delta m_{i} v_{i}
\]

The \(z\) component of the angular momentum for the rotating rigid body as a whole is found by adding up the contributions of all the mass elements that make up the body. Thus, because \(v=\omega r_{\perp}\), we may write
\[
\begin{align*}
L_{z} & =\sum_{i=1}^{n} \ell_{i z}=\sum_{i=1}^{n} \Delta m_{i} v_{i} r_{\perp i}=\sum_{i=1}^{n} \Delta m_{i}\left(\omega r_{\perp i}\right) r_{\perp i} \\
& =\omega\left(\sum_{i=1}^{n} \Delta m_{i} r_{\perp i}^{2}\right) . \tag{11-30}
\end{align*}
\]

We can remove \(\omega\) from the summation here because it has the same value for all points of the rotating rigid body.

The quantity \(\Sigma \Delta m_{i} r_{\perp i}^{2}\) in Eq. 11-30 is the rotational inertia \(I\) of the body about the fixed axis (see Eq. 10-33). Thus Eq. 11-30 reduces to
\[
\begin{equation*}
L=I \omega \quad \text { (rigid body, fixed axis). } \tag{11-31}
\end{equation*}
\]


Figure 11-15 (a) A rigid body rotates about a \(z\) axis with angular speed \(\omega\). A mass element of mass \(\Delta m_{i}\) within the body moves about the \(z\) axis in a circle with radius \(r_{\perp i}\). The mass element has linear momentum \(\vec{p}_{i}\), and it is located relative to the origin \(O\) by position vector \(\vec{r}_{i}\). Here the mass element is shown when \(r_{\perp i}\) is parallel to the \(x\) axis. (b) The angular momentum \(\vec{\ell}_{i}\), with respect to \(O\), of the mass element in \((a)\). The \(z\) component \(\ell_{i z}\) is also shown.

Table 11-1 More Corresponding Variables and Relations for Translational and Rotational Motion \({ }^{a}\)
\begin{tabular}{ll|ll}
\hline \multicolumn{2}{c|}{ Translational } & \multicolumn{2}{c}{ Rotational } \\
\hline Force & \(\vec{F}\) & Torque & \(\vec{\tau}(=\vec{r} \times \vec{F})\) \\
Linear momentum & \(\overrightarrow{\vec{r}}\) & Angular momentum & \(\vec{\ell}(=\vec{r} \times \vec{p})\) \\
Linear momentum & \(\overrightarrow{\vec{~}}\left(=\Sigma \vec{p}_{i}\right)\) & Angular momentum \(^{b}\) & \(\vec{L}(=\Sigma \vec{\ell} i\)
\end{tabular}\()\)
\({ }^{a}\) See also Table 10-3.
\({ }^{b}\) For systems of particles, including rigid bodies.
\({ }^{c}\) For a rigid body about a fixed axis, with \(L\) being the component along that axis.
\({ }^{d}\) For a closed, isolated system.
We have dropped the subscript \(z\), but you must remember that the angular momentum defined by Eq. 11-31 is the angular momentum about the rotation axis. Also, \(I\) in that equation is the rotational inertia about that same axis.

Table 11-1, which supplements Table 10-3, extends our list of corresponding linear and angular relations.

\section*{Checkpoint 6}

In the figure, a disk, a hoop, and a solid sphere are made to spin about fixed central axes (like a top) by means of strings
 wrapped around them, with the strings producing the same constant tangential force \(\vec{F}\) on all three objects. The three objects have the same mass and radius, and they are initially stationary. Rank the objects according to (a) their angular momentum about their central axes and (b) their angular speed, greatest first, when the strings have been pulled for a certain time \(t\).

\section*{11-8 conservation of angular momentum}

\section*{Learning Objective}

After reading this module, you should be able to ...
11.25 When no external net torque acts on a system along a specified axis, apply the conservation of angular momentum to relate the initial angular momentum value along that axis to the value at a later instant.

\section*{Key Idea}
- The angular momentum \(\vec{L}\) of a system remains constant if the net external torque acting on the system is zero:
\[
\begin{aligned}
& \vec{L}=\text { a constant } \quad \text { (isolated system) } \\
& \vec{L}_{i}=\vec{L}_{f} \quad \text { (isolated system) }
\end{aligned}
\]
or
This is the law of conservation of angular momentum.

\section*{Conservation of Angular Momentum}

So far we have discussed two powerful conservation laws, the conservation of energy and the conservation of linear momentum. Now we meet a third law of this type, involving the conservation of angular momentum. We start from

Eq. 11-29 \(\left(\vec{\tau}_{\text {net }}=d \vec{L} / d t\right)\), which is Newton's second law in angular form. If no net external torque acts on the system, this equation becomes \(d \vec{L} / d t=0\), or
\[
\begin{equation*}
\vec{L}=\text { a constant } \quad \text { (isolated system). } \tag{11-32}
\end{equation*}
\]

This result, called the law of conservation of angular momentum, can also be written as
\[
\binom{\text { net angular momentum }}{\text { at some initial time } t_{i}}=\binom{\text { net angular momentum }}{\text { at some later time } t_{f}}
\]
\[
\begin{equation*}
\text { or } \quad \vec{L}_{i}=\vec{L}_{f} \quad \text { (isolated system). } \tag{11-33}
\end{equation*}
\]

Equations 11-32 and 11-33 tell us:


If the net external torque acting on a system is zero, the angular momentum \(\vec{L}\) of the system remains constant, no matter what changes take place within the system.

Equations 11-32 and 11-33 are vector equations; as such, they are equivalent to three component equations corresponding to the conservation of angular momentum in three mutually perpendicular directions. Depending on the torques acting on a system, the angular momentum of the system might be conserved in only one or two directions but not in all directions:

If the component of the net external torque on a system along a certain axis is zero, then the component of the angular momentum of the system along that axis cannot change, no matter what changes take place within the system.

This is a powerful statement: In this situation we are concerned with only the initial and final states of the system; we do not need to consider any intermediate state.

We can apply this law to the isolated body in Fig. 11-15, which rotates around the \(z\) axis. Suppose that the initially rigid body somehow redistributes its mass relative to that rotation axis, changing its rotational inertia about that axis. Equations 11-32 and 11-33 state that the angular momentum of the body cannot change. Substituting Eq. 11-31 (for the angular momentum along the rotational axis) into Eq. 11-33, we write this conservation law as
\[
\begin{equation*}
I_{i} \omega_{i}=I_{f} \omega_{f} \tag{11-34}
\end{equation*}
\]

Here the subscripts refer to the values of the rotational inertia \(I\) and angular speed \(\omega\) before and after the redistribution of mass.

Like the other two conservation laws that we have discussed, Eqs. 11-32 and 11-33 hold beyond the limitations of Newtonian mechanics. They hold for particles whose speeds approach that of light (where the theory of special relativity reigns), and they remain true in the world of subatomic particles (where quantum physics reigns). No exceptions to the law of conservation of angular momentum have ever been found.

We now discuss four examples involving this law.
1. The spinning volunteer Figure \(11-16\) shows a student seated on a stool that can rotate freely about a vertical axis. The student, who has been set into rotation at a modest initial angular speed \(\omega_{i}\), holds two dumbbells in his outstretched hands. His angular momentum vector \(\vec{L}\) lies along the vertical rotation axis, pointing upward.

The instructor now asks the student to pull in his arms; this action reduces his rotational inertia from its initial value \(I_{i}\) to a smaller value \(I_{f}\) because he moves mass closer to the rotation axis. His rate of rotation increases markedly,


Figure 11-16 (a) The student has a relatively large rotational inertia about the rotation axis and a relatively small angular speed.
(b) By decreasing his rotational inertia, the student automatically increases his angular speed. The angular momentum \(\vec{L}\) of the rotating system remains unchanged.


Figure 11-17 The diver's angular momentum \(\vec{L}\) is constant throughout the dive, being represented by the tail \(\otimes\) of an arrow that is perpendicular to the plane of the figure. Note also that her center of mass (see the dots) follows a parabolic path.

Figure 11-18 Windmill motion of the arms during a long jump helps maintain body orientation for a proper landing.

Figure 11-19 (a) Initial phase of a tour jeté: large rotational inertia and small angular speed. (b) Later phase: smaller rotational inertia and larger angular speed.
from \(\omega_{i}\) to \(\omega_{f}\). The student can then slow down by extending his arms once more, moving the dumbbells outward.

No net external torque acts on the system consisting of the student, stool, and dumbbells. Thus, the angular momentum of that system about the rotation axis must remain constant, no matter how the student maneuvers the dumbbells. In Fig. 11-16a, the student's angular speed \(\omega_{i}\) is relatively low and his rotational inertia \(I_{i}\) is relatively high. According to Eq. 11-34, his angular speed in Fig. 11-16 \(b\) must be greater to compensate for the decreased \(I_{f}\).
2. The springboard diver Figure 11-17 shows a diver doing a forward one-and-a-half-somersault dive. As you should expect, her center of mass follows a parabolic path. She leaves the springboard with a definite angular momentum \(\vec{L}\) about an axis through her center of mass, represented by a vector pointing into the plane of Fig. 11-17, perpendicular to the page. When she is in the air, no net external torque acts on her about her center of mass, so her angular momentum about her center of mass cannot change. By pulling her arms and legs into the closed tuck position, she can considerably reduce her rotational inertia about the same axis and thus, according to Eq. 11-34, considerably increase her angular speed. Pulling out of the tuck position (into the open layout position) at the end of the dive increases her rotational inertia and thus slows her rotation rate so she can enter the water with little splash. Even in a more complicated dive involving both twisting and somersaulting, the angular momentum of the diver must be conserved, in both magnitude and direction, throughout the dive.
3. Long jump When an athlete takes off from the ground in a running long jump, the forces on the launching foot give the athlete an angular momentum with a forward rotation around a horizontal axis. Such rotation would not allow the jumper to land properly: In the landing, the legs should be together and extended forward at an angle so that the heels mark the sand at the greatest distance. Once airborne, the angular momentum cannot change (it is conserved) because no external torque acts to change it. However, the jumper can shift most of the angular momentum to the arms by rotating them in windmill fashion (Fig. 11-18). Then the body remains upright and in the proper orientation for landing.

4. Tour jeté In a tour jeté, a ballet performer leaps with a small twisting motion on the floor with one foot while holding the other leg perpendicular to the body (Fig. 11-19a). The angular speed is so small that it may not be perceptible

to the audience. As the performer ascends, the outstretched leg is brought down and the other leg is brought up, with both ending up at angle \(\theta\) to the body (Fig. 11-19b). The motion is graceful, but it also serves to increase the rotation because bringing in the initially outstretched leg decreases the performer's rotational inertia. Since no external torque acts on the airborne performer, the angular momentum cannot change. Thus, with a decrease in rotational inertia, the angular speed must increase. When the jump is well executed, the performer seems to suddenly begin to spin and rotates \(180^{\circ}\) before the initial leg orientations are reversed in preparation for the landing. Once a leg is again outstretched, the rotation seems to vanish.

\section*{Checkpoint 7}

A rhinoceros beetle rides the rim of a small disk that rotates like a merry-go-round. If the beetle crawls toward the center of the disk, do the following (each relative to the central axis) increase, decrease, or remain the same for the beetle-disk system:
(a) rotational inertia, (b) angular momentum, and (c) angular speed?

\section*{Sample Problem 11.05 Conservation of angular momentum, rotating wheel demo}

Figure 11-20a shows a student, again sitting on a stool that can rotate freely about a vertical axis. The student, initially at rest, is holding a bicycle wheel whose rim is loaded with lead and whose rotational inertia \(I_{w h}\) about its central axis is \(1.2 \mathrm{~kg} \cdot \mathrm{~m}^{2}\). (The rim contains lead in order to make the value of \(I_{w h}\) substantial.)

The wheel is rotating at an angular speed \(\omega_{w h}\) of 3.9 \(\mathrm{rev} / \mathrm{s}\); as seen from overhead, the rotation is counterclockwise. The axis of the wheel is vertical, and the angular momentum \(\vec{L}_{w h}\) of the wheel points vertically upward.

The student now inverts the wheel (Fig. 11-20b) so that, as seen from overhead, it is rotating clockwise. Its angular momentum is now \(-\vec{L}_{w h}\). The inversion results in the student, the stool, and the wheel's center rotating together as a composite rigid body about the stool's rotation axis, with rotational inertia \(I_{b}=6.8 \mathrm{~kg} \cdot \mathrm{~m}^{2}\). (The fact that the wheel is also rotating about its center does not affect the mass distribution of this composite body; thus, \(I_{b}\) has the same value whether or not the wheel rotates.) With what angular speed \(\omega_{b}\) and in what direction does the composite body rotate after the inversion of the wheel?

\section*{KEY IDEAS}
1. The angular speed \(\omega_{b}\) we seek is related to the final angular momentum \(\vec{L}_{b}\) of the composite body about the stool's rotation axis by Eq. 11-31 \((L=I \omega)\).
2. The initial angular speed \(\omega_{w h}\) of the wheel is related to the angular momentum \(\vec{L}_{w h}\) of the wheel's rotation about its center by the same equation.
3. The vector addition of \(\vec{L}_{b}\) and \(\vec{L}_{w h}\) gives the total angular momentum \(\vec{L}_{\text {tot }}\) of the system of the student, stool, and wheel.
4. As the wheel is inverted, no net external torque acts on


Figure 11-20 (a) A student holds a bicycle wheel rotating around a vertical axis. (b) The student inverts the wheel, setting himself into rotation. (c) The net angular momentum of the system must remain the same in spite of the inversion.
that system to change \(\vec{L}_{\text {tot }}\) about any vertical axis. (Torques due to forces between the student and the wheel as the student inverts the wheel are internal to the system.) So, the system's total angular momentum is conserved about any vertical axis, including the rotation axis through the stool.

Calculations: The conservation of \(\vec{L}_{\text {tot }}\) is represented with vectors in Fig. 11-20c. We can also write this conservation in terms of components along a vertical axis as
\[
\begin{equation*}
L_{b, f}+L_{w h, f}=L_{b, i}+L_{w h, i} \tag{11-35}
\end{equation*}
\]
where \(i\) and \(f\) refer to the initial state (before inversion of the wheel) and the final state (after inversion). Because inversion of the wheel inverted the angular momentum vector of the wheel's rotation, we substitute \(-L_{w h, i}\) for \(L_{w h, f}\). Then, if we set \(L_{b, i}=0\) (because the student, the stool, and the wheel's center were initially at rest), Eq. 11-35 yields
\[
L_{b, f}=2 L_{w h, i} .
\]

Using Eq. 11-31, we next substitute \(I_{b} \omega_{b}\) for \(L_{b, f}\) and \(I_{w h} \omega_{w h}\) for \(L_{w h, i}\) and solve for \(\omega_{b}\), finding
\[
\begin{aligned}
\omega_{b} & =\frac{2 I_{w h}}{I_{b}} \omega_{w h} \\
& =\frac{(2)\left(1.2 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)(3.9 \mathrm{rev} / \mathrm{s})}{6.8 \mathrm{~kg} \cdot \mathrm{~m}^{2}}=1.4 \mathrm{rev} / \mathrm{s}
\end{aligned}
\]
(Answer)

This positive result tells us that the student rotates counterclockwise about the stool axis as seen from overhead. If the student wishes to stop rotating, he has only to invert the wheel once more.

\section*{Sample Problem 11.06 Conservation of angular momentum, cockroach on disk}

In Fig. 11-21, a cockroach with mass \(m\) rides on a disk of mass 6.00 m and radius \(R\). The disk rotates like a merry-go-round around its central axis at angular speed \(\omega_{i}=1.50 \mathrm{rad} / \mathrm{s}\). The cockroach is initially at radius \(r=0.800 R\), but then it crawls out to the rim of the disk. Treat the cockroach as a particle. What then is the angular speed?

\section*{KEY IDEAS}
(1) The cockroach's crawl changes the mass distribution (and thus the rotational inertia) of the cockroach-disk system. (2) The angular momentum of the system does not change because there is no external torque to change it. (The forces and torques due to the cockroach's crawl are internal to the system.) (3) The magnitude of the angular momentum of a rigid body or a particle is given by Eq.11-31 \((L=I \omega)\).
Calculations: We want to find the final angular speed. Our key is to equate the final angular momentum \(L_{f}\) to the initial angular momentum \(L_{i}\), because both involve angular speed. They also involve rotational inertia \(I\). So, let's start by finding the rotational inertia of the system of cockroach and disk before and after the crawl.


Figure 11-21 A cockroach rides at radius \(r\) on a disk rotating like a merry-go-round.

The rotational inertia of a disk rotating about its central axis is given by Table \(10-2 c\) as \(\frac{1}{2} M R^{2}\). Substituting \(6.00 m\) for the mass \(M\), our disk here has rotational inertia
\[
\begin{equation*}
I_{d}=3.00 m R^{2} \tag{11-36}
\end{equation*}
\]
(We don't have values for \(m\) and \(R\), but we shall continue with physics courage.)

From Eq. 10-33, we know that the rotational inertia of the cockroach (a particle) is equal to \(m r^{2}\). Substituting the cockroach's initial radius ( \(r=0.800 R\) ) and final radius \((r=R)\), we find that its initial rotational inertia about the rotation axis is
\[
\begin{equation*}
I_{c i}=0.64 m R^{2} \tag{11-37}
\end{equation*}
\]
and its final rotational inertia about the rotation axis is
\[
\begin{equation*}
I_{c f}=m R^{2} . \tag{11-38}
\end{equation*}
\]

So, the cockroach-disk system initially has the rotational inertia
\[
\begin{equation*}
I_{i}=I_{d}+I_{c i}=3.64 m R^{2} \tag{11-39}
\end{equation*}
\]
and finally has the rotational inertia
\[
\begin{equation*}
I_{f}=I_{d}+I_{c f}=4.00 m R^{2} \tag{11-40}
\end{equation*}
\]

Next, we use Eq. 11-31 \((L=I \omega)\) to write the fact that the system's final angular momentum \(L_{f}\) is equal to the system's initial angular momentum \(L_{i}\) :
or \(\quad 4.00 m R^{2} \omega_{f}=3.64 m R^{2}(1.50 \mathrm{rad} / \mathrm{s})\).
After canceling the unknowns \(m\) and \(R\), we come to
\[
\omega_{f}=1.37 \mathrm{rad} / \mathrm{s}
\]
(Answer)
Note that \(\omega\) decreased because part of the mass moved outward, thus increasing that system's rotational inertia.

\section*{11-9 Precession of a gyroscope}

\section*{Learning Objectives}

After reading this module, you should be able to . .
11.26 Identify that the gravitational force acting on a spinning gyroscope causes the spin angular momentum vector (and thus the gyroscope) to rotate about the vertical axis in a motion called precession.
11.27 Calculate the precession rate of a gyroscope. 11.28 Identify that a gyroscope's precession rate is independent of the gyroscope's mass.

\section*{Key Idea}
- A spinning gyroscope can precess about a vertical axis through its support at the rate
\[
\Omega=\frac{M g r}{I \omega}
\]
where \(M\) is the gyroscope's mass, \(r\) is the moment arm, \(I\) is the rotational inertia, and \(\omega\) is the spin rate.

\section*{Precession of a Gyroscope}

A simple gyroscope consists of a wheel fixed to a shaft and free to spin about the axis of the shaft. If one end of the shaft of a nonspinning gyroscope is placed on a support as in Fig. 11-22a and the gyroscope is released, the gyroscope falls by rotating downward about the tip of the support. Since the fall involves rotation, it is governed by Newton's second law in angular form, which is given by Eq. 11-29:
\[
\begin{equation*}
\vec{\tau}=\frac{d \vec{L}}{d t} \tag{11-41}
\end{equation*}
\]

This equation tells us that the torque causing the downward rotation (the fall) changes the angular momentum \(\vec{L}\) of the gyroscope from its initial value of zero. The torque \(\vec{\tau}\) is due to the gravitational force \(M \vec{g}\) acting at the gyroscope's center of mass, which we take to be at the center of the wheel. The moment arm relative to the support tip, located at \(O\) in Fig. 11-22a, is \(\vec{r}\). The magnitude of \(\vec{\tau}\) is
\[
\begin{equation*}
\tau=M g r \sin 90^{\circ}=M g r \tag{11-42}
\end{equation*}
\]
(because the angle between \(M \vec{g}\) and \(\vec{r}\) is \(90^{\circ}\) ), and its direction is as shown in Fig. 11-22a.

A rapidly spinning gyroscope behaves differently. Assume it is released with the shaft angled slightly upward. It first rotates slightly downward but then, while it is still spinning about its shaft, it begins to rotate horizontally about a vertical axis through support point \(O\) in a motion called precession.

Why Not Just Fall Over? Why does the spinning gyroscope stay aloft instead of falling over like the nonspinning gyroscope? The clue is that when the spinning gyroscope is released, the torque due to \(M \vec{g}\) must change not an initial angular momentum of zero but rather some already existing nonzero angular momentum due to the spin.

To see how this nonzero initial angular momentum leads to precession, we first consider the angular momentum \(\vec{L}\) of the gyroscope due to its spin. To simplify the situation, we assume the spin rate is so rapid that the angular momentum due to precession is negligible relative to \(\vec{L}\). We also assume the shaft is horizontal when precession begins, as in Fig. 11-22b. The magnitude of \(\vec{L}\) is given by Eq. 11-31:
\[
\begin{equation*}
L=I \omega \tag{11-43}
\end{equation*}
\]
where \(I\) is the rotational moment of the gyroscope about its shaft and \(\omega\) is the angular speed at which the wheel spins about the shaft. The vector \(\vec{L}\) points along the shaft, as in Fig. 11-22b. Since \(\vec{L}\) is parallel to \(\vec{r}\), torque \(\vec{\tau}\) must be perpendicular to \(\vec{L}\).

(a)

(b)

(c)

Figure 11-22 (a) A nonspinning gyroscope falls by rotating in an \(x z\) plane because of torque \(\vec{\tau}\). (b) A rapidly spinning gyroscope, with angular momentum \(\vec{L}\), precesses around the \(z\) axis. Its precessional motion is in the \(x y\) plane. (c) The change \(d \vec{L} / d t\) in angular momentum leads to a rotation of \(\vec{L}\) about \(O\).

According to Eq. 11-41, torque \(\vec{\tau}\) causes an incremental change \(d \vec{L}\) in the angular momentum of the gyroscope in an incremental time interval \(d t\); that is,
\[
\begin{equation*}
d \vec{L}=\vec{\tau} d t . \tag{11-44}
\end{equation*}
\]

However, for a rapidly spinning gyroscope, the magnitude of \(\vec{L}\) is fixed by Eq. 11-43. Thus the torque can change only the direction of \(\vec{L}\), not its magnitude.

From Eq. \(11-44\) we see that the direction of \(d \vec{L}\) is in the direction of \(\vec{\tau}\), perpendicular to \(\vec{L}\). The only way that \(\vec{L}\) can be changed in the direction of \(\vec{\tau}\) without the magnitude \(L\) being changed is for \(\vec{L}\) to rotate around the \(z\) axis as shown in Fig. 11-22c. \(\vec{L}\) maintains its magnitude, the head of the \(\vec{L}\) vector follows a circular path, and \(\vec{\tau}\) is always tangent to that path. Since \(\vec{L}\) must always point along the shaft, the shaft must rotate about the \(z\) axis in the direction of \(\vec{\tau}\). Thus we have precession. Because the spinning gyroscope must obey Newton's law in angular form in response to any change in its initial angular momentum, it must precess instead of merely toppling over.

Precession. We can find the precession rate \(\Omega\) by first using Eqs. 11-44 and 11-42 to get the magnitude of \(d \vec{L}\) :
\[
\begin{equation*}
d L=\tau d t=M g r d t \tag{11-45}
\end{equation*}
\]

As \(\vec{L}\) changes by an incremental amount in an incremental time interval \(d t\), the shaft and \(\vec{L}\) precess around the \(z\) axis through incremental angle \(d \phi\). (In Fig. 11-22c, angle \(d \phi\) is exaggerated for clarity.) With the aid of Eqs.11-43 and 11-45, we find that \(d \phi\) is given by
\[
d \phi=\frac{d L}{L}=\frac{M g r d t}{I \omega}
\]

Dividing this expression by \(d t\) and setting the rate \(\Omega=d \phi / d t\), we obtain
\[
\begin{equation*}
\Omega=\frac{M g r}{I \omega} \quad \text { (precession rate). } \tag{11-46}
\end{equation*}
\]

This result is valid under the assumption that the spin rate \(\omega\) is rapid. Note that \(\Omega\) decreases as \(\omega\) is increased. Note also that there would be no precession if the gravitational force \(M \vec{g}\) did not act on the gyroscope, but because \(I\) is a function of \(M\), mass cancels from Eq. 11-46; thus \(\Omega\) is independent of the mass.

Equation 11-46 also applies if the shaft of a spinning gyroscope is at an angle to the horizontal. It holds as well for a spinning top, which is essentially a spinning gyroscope at an angle to the horizontal.

\section*{Review \& Summary}

Rolling Bodies For a wheel of radius \(R\) rolling smoothly,
\[
\begin{equation*}
v_{\mathrm{com}}=\omega R, \tag{11-2}
\end{equation*}
\]
where \(v_{\text {com }}\) is the linear speed of the wheel's center of mass and \(\omega\) is the angular speed of the wheel about its center. The wheel may also be viewed as rotating instantaneously about the point \(P\) of the "road" that is in contact with the wheel. The angular speed of the wheel about this point is the same as the angular speed of the wheel about its center. The rolling wheel has kinetic energy
\[
\begin{equation*}
K=\frac{1}{2} I_{\mathrm{com}} \omega^{2}+\frac{1}{2} M v_{\mathrm{com}}^{2}, \tag{11-5}
\end{equation*}
\]
where \(I_{\text {com }}\) is the rotational inertia of the wheel about its center of mass and \(M\) is the mass of the wheel. If the wheel is being accelerated but is still rolling smoothly, the acceleration of the center of mass \(\vec{a}_{\text {com }}\) is related to the angular acceleration \(\alpha\) about the center with
\[
\begin{equation*}
a_{\mathrm{com}}=\alpha R \tag{11-6}
\end{equation*}
\]

If the wheel rolls smoothly down a ramp of angle \(\theta\), its acceleration along an \(x\) axis extending up the ramp is
\[
\begin{equation*}
a_{\mathrm{com}, x}=-\frac{g \sin \theta}{1+I_{\mathrm{com}} / M R^{2}} \tag{11-10}
\end{equation*}
\]

Torque as a Vector In three dimensions, torque \(\vec{\tau}\) is a vector quantity defined relative to a fixed point (usually an origin); it is
\[
\begin{equation*}
\vec{\tau}=\vec{r} \times \vec{F} \tag{11-14}
\end{equation*}
\]
where \(\vec{F}\) is a force applied to a particle and \(\vec{r}\) is a position vector locating the particle relative to the fixed point. The magnitude of \(\vec{\tau}\) is
\[
\begin{equation*}
\tau=r F \sin \phi=r F_{\perp}=r_{\perp} F \tag{11-15,11-16,11-17}
\end{equation*}
\]
where \(\phi\) is the angle between \(\vec{F}\) and \(\vec{r}, F_{\perp}\) is the component of \(\vec{F}\) perpendicular to \(\vec{r}\), and \(r_{\perp}\) is the moment arm of \(\vec{F}\). The direction of \(\vec{\tau}\) is given by the right-hand rule.

Angular Momentum of a Particle The angular momentum \(\vec{\ell}\) of a particle with linear momentum \(\vec{p}\), mass \(m\), and linear velocity \(\vec{v}\) is a vector quantity defined relative to a fixed point (usually an origin) as
\[
\begin{equation*}
\vec{\ell}=\vec{r} \times \vec{p}=m(\vec{r} \times \vec{v}) . \tag{11-18}
\end{equation*}
\]

The magnitude of \(\vec{\ell}\) is given by
\[
\begin{align*}
\ell & =r m v \sin \phi  \tag{11-19}\\
& =r p_{\perp}=r m v_{\perp}  \tag{11-20}\\
& =r_{\perp} p=r_{\perp} m v, \tag{11-21}
\end{align*}
\]
where \(\phi\) is the angle between \(\vec{r}\) and \(\vec{p}, p_{\perp}\) and \(v_{\perp}\) are the components of \(\vec{p}\) and \(\vec{v}\) perpendicular to \(\vec{r}\), and \(r_{\perp}\) is the perpendicular distance between the fixed point and the extension of \(\vec{p}\). The direction of \(\vec{\ell}\) is given by the right-hand rule for cross products.
Newton's Second Law in Angular Form Newton's second law for a particle can be written in angular form as
\[
\begin{equation*}
\vec{\tau}_{\mathrm{net}}=\frac{d \vec{\ell}}{d t} \tag{11-23}
\end{equation*}
\]
where \(\vec{\tau}_{\text {net }}\) is the net torque acting on the particle and \(\vec{\ell}\) is the angular momentum of the particle.

Angular Momentum of a System of Particles The angular momentum \(\vec{L}\) of a system of particles is the vector sum of the angular momenta of the individual particles:
\[
\begin{equation*}
\vec{L}=\vec{\ell}_{1}+\vec{\ell}_{2}+\cdots+\vec{\ell}_{n}=\sum_{i=1}^{n} \vec{\ell}_{i} . \tag{11-26}
\end{equation*}
\]

The time rate of change of this angular momentum is equal to the net external torque on the system (the vector sum of the torques due to interactions with particles external to the system):
\[
\begin{equation*}
\vec{\tau}_{\mathrm{net}}=\frac{d \vec{L}}{d t} \quad \text { (system of particles). } \tag{11-29}
\end{equation*}
\]

Angular Momentum of a Rigid Body For a rigid body rotating about a fixed axis, the component of its angular momentum parallel to the rotation axis is
\[
\begin{equation*}
L=I \omega \quad \text { (rigid body, fixed axis). } \tag{11-31}
\end{equation*}
\]

Conservation of Angular Momentum The angular momentum \(\vec{L}\) of a system remains constant if the net external torque acting on the system is zero:
\[
\begin{gather*}
\vec{L}=\text { a constant } \quad \text { (isolated system) }  \tag{11-32}\\
\vec{L}_{i}=\vec{L}_{f} \quad \text { (isolated system). } \tag{11-33}
\end{gather*}
\]

\section*{This is the law of conservation of angular momentum.}

Precession of a Gyroscope A spinning gyroscope can precess about a vertical axis through its support at the rate
\[
\begin{equation*}
\Omega=\frac{M g r}{I \omega}, \tag{11-46}
\end{equation*}
\]
where \(M\) is the gyroscope's mass, \(r\) is the moment arm, \(I\) is the rotational inertia, and \(\omega\) is the spin rate.

\section*{Questions}

1 Figure 11-23 shows three particles of the same mass and the same constant speed moving as indicated by the velocity vectors. Points \(a, b, c\), and \(d\) form a square, with point \(e\) at the center. Rank the points according to the magnitude of the net angular momentum of the three-particle system when measured about the points, greatest first.
2 Figure 11-24 shows two particles \(A\) and \(B\) at \(x y z\) coordinates ( \(1 \mathrm{~m}, 1 \mathrm{~m}, 0\) ) and ( \(1 \mathrm{~m}, 0,1 \mathrm{~m}\) ). Acting on each particle are three numbered forces, all of the same magnitude and each directed parallel to an axis. (a) Which of the forces produce a torque about the origin that is directed parallel to \(y\) ? (b) Rank the forces according to the magnitudes of the torques they produce on the particles about the origin, greatest first.
3 What happens to the initially stationary yo-yo in Fig. 11-25 if you pull it via its string with (a) force \(\vec{F}_{2}\) (the line of action passes through the point of contact on the table, as indicated), (b) force \(\vec{F}_{1}\) (the line of action passes


Figure 11-23 Question 1.


Figure 11-24 Question 2.


Figure 11-25 Question 3.
above the point of contact), and (c) force \(\vec{F}_{3}\) (the line of action passes to the right of the point of contact)?
4 The position vector \(\vec{r}\) of a particle relative to a certain point has a magnitude of 3 m , and the force \(\vec{F}\) on the particle has a magnitude of 4 N . What is the angle between the directions of \(\vec{r}\) and \(\vec{F}\) if the magnitude of the associated torque equals (a) zero and (b) 12 \(\mathrm{N} \cdot \mathrm{m}\) ?
5 In Fig. 11-26, three forces of the same magnitude are applied to a particle at the origin ( \(\vec{F}_{1}\) acts directly into the plane of the figure). Rank the forces according to the magnitudes of the torques they create about (a) point \(P_{1}\), (b) point \(P_{2}\), and (c) point \(P_{3}\), greatest first.

6 The angular momenta \(\ell(t)\) of a particle in four situations are (1)


Figure 11-26 Question 5. \(\ell=3 t+4\); (2) \(\ell=-6 t^{2}\); (3) \(\ell=2\); (4) \(\ell=4 / t\). In which situation is the net torque on the particle (a) zero, (b) positive and constant, (c) negative and increasing in magnitude ( \(t>0\) ), and (d) negative and decreasing in magnitude \((t>0)\) ?
7 A rhinoceros beetle rides the rim of a horizontal disk rotating counterclockwise like a merry-go-round. If the beetle then walks along the rim in the direction of the rotation, will the magnitudes of the following quantities (each measured about the rotation axis) increase, decrease, or remain the same (the disk is still rotating in the counterclockwise direction): (a) the angular momentum of the
beetle-disk system, (b) the angular momentum and angular velocity of the beetle, and (c) the angular momentum and angular velocity of the disk? (d) What are your answers if the beetle walks in the direction opposite the rotation?
8 Figure 11-27 shows an overhead view of a rectangular slab that can spin like a merry-go-round about its center at \(O\). Also shown are seven paths along which wads of bubble gum can be thrown (all with the same speed and mass) to stick onto


Figure 11-27 Question 8. the stationary slab. (a) Rank the paths according to the angular speed that the slab (and gum) will have after the gum sticks, greatest first. (b) For which paths will the angular momentum of the slab (and gum) about \(O\) be negative from the view of Fig. 11-27?
9 Figure 11-28 gives the angular momentum magnitude \(L\) of a wheel versus time \(t\). Rank the four lettered time intervals according to the magnitude of the torque acting on the wheel, greatest first.


Figure 11-28 Question 9.

10 Figure 11-29 shows a particle moving at constant velocity \(\vec{v}\) and five points with their \(x y\) coordinates. Rank the points accord-
ing to the magnitude of the angular momentum of the particle measured about them, greatest first.


Figure 11-29 Question 10.
11 A cannonball and a marble roll smoothly from rest down an incline. Is the cannonball's (a) time to the bottom and (b) translational kinetic energy at the bottom more than, less than, or the same as the marble's?
12 A solid brass cylinder and a solid wood cylinder have the same radius and mass (the wood cylinder is longer). Released together from rest, they roll down an incline. (a) Which cylinder reaches the bottom first, or do they tie? (b) The wood cylinder is then shortened to match the length of the brass cylinder, and the brass cylinder is drilled out along its long (central) axis to match the mass of the wood cylinder. Which cylinder now wins the race, or do they tie?

\section*{Problems}


Module 11-1 Rolling as Translation and Rotation Combined
\(\bullet 1\) A car travels at \(80 \mathrm{~km} / \mathrm{h}\) on a level road in the positive direction of an \(x\) axis. Each tire has a diameter of 66 cm . Relative to a woman riding in the car and in unit-vector notation, what are the velocity \(\vec{v}\) at the (a) center, (b) top, and (c) bottom of the tire and the magnitude \(a\) of the acceleration at the (d) center, (e) top, and (f) bottom of each tire? Relative to a hitchhiker sitting next to the road and in unit-vector notation, what are the velocity \(\vec{v}\) at the (g) center, (h) top, and (i) bottom of the tire and the magnitude \(a\) of the acceleration at the ( j ) center, \((\mathrm{k})\) top, and ( l ) bottom of each tire?
-2 An automobile traveling at \(80.0 \mathrm{~km} / \mathrm{h}\) has tires of 75.0 cm diameter. (a) What is the angular speed of the tires about their axles? (b) If the car is brought to a stop uniformly in 30.0 complete turns of the tires (without skidding), what is the magnitude of the angular acceleration of the wheels? (c) How far does the car move during the braking?

\section*{Module 11-2 Forces and Kinetic Energy of Rolling}
\(\cdot 3\) SSm A 140 kg hoop rolls along a horizontal floor so that the hoop's center of mass has a speed of \(0.150 \mathrm{~m} / \mathrm{s}\). How much work must be done on the hoop to stop it?
-4 A uniform solid sphere rolls down an incline. (a) What must be the incline angle if the linear acceleration of the center of the sphere is to have a magnitude of 0.10 g ? (b) If a frictionless block were to slide down the incline at that angle, would its acceleration magnitude be more than, less than, or equal to \(0.10 g\) ? Why?
-5 ILW A 1000 kg car has four 10 kg wheels. When the car is moving, what fraction of its total kinetic energy is due to rotation of the wheels about their axles? Assume that the wheels are uniform disks of the same mass and size. Why do you not need to know the radius of the wheels?
-06 Figure 11-30 gives the speed \(v\) versus time \(t\) for a 0.500 kg object of radius 6.00 cm that rolls smoothly down a \(30^{\circ}\) ramp. The scale on the velocity axis is set by \(v_{s}=4.0 \mathrm{~m} / \mathrm{s}\). What is the rotational inertia of the object?
-•7 ILW In Fig. 11-31, a solid cylinder of radius 10 cm and mass 12 kg starts from rest and rolls without slipping a distance \(L=6.0 \mathrm{~m}\) down a roof that is inclined at angle \(\theta=\) \(30^{\circ}\). (a) What is the angular speed of the cylinder about its center as it leaves the roof? (b) The roof's edge is at height \(H=5.0 \mathrm{~m}\). How far horizontally from the roof's edge does the cylinder hit the level ground?


Figure 11-30 Problem 6.


Figure 11-31 Problem 7.
\(\because 8\) Figure 11-32 shows the potential energy \(U(x)\) of a solid ball that can roll along an \(x\) axis. The scale on the \(U\) axis is set by \(U_{s}=100 \mathrm{~J}\). The ball is uniform, rolls smoothly, and has a mass of 0.400 kg . It is released at \(x=7.0 \mathrm{~m}\) headed in the negative direction of the \(x\) axis with a mechanical energy of 75 J . (a) If the ball can reach \(x=0 \mathrm{~m}\), what is its speed there, and if it cannot, what is its


Figure 11-32 Problem 8. turning point? Suppose, instead, it is headed in the positive direction of the \(x\) axis when it is released at \(x=7.0 \mathrm{~m}\) with 75 J . (b) If the ball can reach \(x=13 \mathrm{~m}\), what is its speed there, and if it cannot, what is its turning point?
00 © 0 In Fig. 11-33, a solid ball rolls smoothly from rest (starting at height \(H=6.0 \mathrm{~m}\) ) until it leaves the horizontal section at the end of the track, at height \(h=2.0 \mathrm{~m}\). How far horizontally from point \(A\) does the


Figure 11-33 Problem 9. ball hit the floor?
-•10 A hollow sphere of radius 0.15 m , with rotational inertia \(I=0.040 \mathrm{~kg} \cdot \mathrm{~m}^{2}\) about a line through its center of mass, rolls without slipping up a surface inclined at \(30^{\circ}\) to the horizontal. At a certain initial position, the sphere's total kinetic energy is 20 J .
(a) How much of this initial kinetic energy is rotational? (b) What is the speed of the center of mass of the sphere at the initial position? When the sphere has moved 1.0 m up the incline from its initial position, what are (c) its total kinetic energy and (d) the speed of its center of mass?
- 11 In Fig. 11-34, a constant horizontal force \(\vec{F}_{\text {app }}\) of magnitude 10 N is applied to a wheel of mass 10 kg and radius 0.30 m . The wheel rolls smoothly on the horizontal surface, and the acceleration of its center of mass has magnitude \(0.60 \mathrm{~m} / \mathrm{s}^{2}\). (a) In


Figure 11-34 Problem 11. unit-vector notation, what is the frictional force on the wheel? (b) What is the rotational inertia of the wheel about the rotation axis through its center of mass?
-०12 ©0 In Fig. 11-35, a solid brass ball of mass 0.280 g will roll smoothly along a loop-the-loop track when released from rest along the straight section. The circular loop has radius \(R=14.0 \mathrm{~cm}\), and the ball has radius \(r \ll R\). (a) What is \(h\) if the ball is on the verge of leaving the track when it reaches the top of the loop? If the ball is released at height \(h=6.00 R\), what are the (b) magnitude and (c) direction of the horizontal force component acting on the ball at point \(Q\) ?
\(\cdots 13\) ©o Nonuniform ball. In Fig. 1136, a ball of mass \(M\) and radius \(R\)


Figure 11-35 Problem 12.


Figure 11-36 Problem 13.
rolls smoothly from rest down a ramp and onto a circular loop of radius 0.48 m . The initial height of the ball is \(h=0.36 \mathrm{~m}\). At the loop bottom, the magnitude of the normal force on the ball is 2.00 Mg . The ball consists of an outer spherical shell (of a certain uniform density) that is glued to a central sphere (of a different uniform density). The rotational inertia of the ball can be expressed in the general form \(I=\beta M R^{2}\), but \(\beta\) is not 0.4 as it is for a ball of uniform density. Determine \(\beta\).
\({ }^{\circ 0014 \text { © } \text { In Fig. 11-37, a small, solid, uniform ball is to be shot }}\) from point \(P\) so that it rolls smoothly along a horizontal path, up along a ramp, and onto a plateau. Then it leaves the plateau horizontally to land on a game board, at a horizontal distance \(d\) from the right edge of the plateau. The vertical heights are \(h_{1}=5.00\) cm and \(h_{2}=1.60 \mathrm{~cm}\). With what speed must the ball be shot at point \(P\) for it to land at \(d=6.00 \mathrm{~cm}\) ?


Figure 11-37 Problem 14. 00015 A bowler throws a bowling ball of radius \(R=11 \mathrm{~cm}\) along a lane. The ball (Fig. 11-38) slides on the lane with initial speed \(v_{\mathrm{com}, 0}=8.5 \mathrm{~m} / \mathrm{s}\) and initial angular


Figure 11-38 Problem 15. speed \(\omega_{0}=0\). The coefficient of kinetic friction between the ball and the lane is 0.21 . The kinetic frictional force \(\vec{f}_{k}\) acting on the ball causes a linear acceleration of the ball while producing a torque that causes an angular acceleration of the ball. When speed \(v_{\text {com }}\) has decreased enough and angular speed \(\omega\) has increased enough, the ball stops sliding and then rolls smoothly. (a) What then is \(v_{\text {com }}\) in terms of \(\omega\) ? During the sliding, what are the ball's (b) linear acceleration and (c) angular acceleration? (d) How long does the ball slide? (e) How far does the ball slide? (f) What is the linear speed of the ball when smooth rolling begins?
-0016 ©0 Nonuniform cylindrical object. In Fig. 11-39, a cylindrical object of mass \(M\) and radius \(R\) rolls smoothly from rest down a ramp and onto a horizontal section. From there it rolls off the ramp and onto the floor, landing a horizontal distance \(d=0.506 \mathrm{~m}\) from the end of the ramp. The initial height of the object is \(H=0.90 \mathrm{~m}\); the end of the ramp is at height \(h=0.10 \mathrm{~m}\). The object consists of an outer cylindrical shell (of a certain uniform density) that is glued to a central cylinder (of a different uniform density). The rotational inertia of the object can be expressed in the general form \(I=\beta M R^{2}\), but \(\beta\) is not 0.5 as it is for a cylinder of uniform density. Determine \(\beta\).


Figure 11-39 Problem 16.

\section*{Module 11-3 The Yo-Yo}
\(\cdot 17\) SSM A yo-yo has a rotational inertia of \(950 \mathrm{~g} \cdot \mathrm{~cm}^{2}\) and a mass of 120 g . Its axle radius is 3.2 mm , and its string is 120 cm long. The yo-yo rolls from rest down to the end of the string. (a) What is the magnitude of its linear acceleration? (b) How long does it take to reach the end of the string? As it reaches the end of the string, what are its (c) linear speed, (d) translational kinetic energy, (e) rotational kinetic energy, and (f) angular speed?
-18 In 1980, over San Francisco Bay, a large yo-yo was released from a crane. The 116 kg yo-yo consisted of two uniform disks of radius 32 cm connected by an axle of radius 3.2 cm . What was the magnitude of the acceleration of the yo-yo during (a) its fall and (b) its rise? (c) What was the tension in the cord on which it rolled? (d) Was that tension near the cord's limit of 52 kN ? Suppose you build a scaled-up version of the yo-yo (same shape and materials but larger). (e) Will the magnitude of your yo-yo's acceleration as it falls be greater than, less than, or the same as that of the San Francisco yo-yo? (f) How about the tension in the cord?

\section*{Module 11-4 Torque Revisited}
-19 In unit-vector notation, what is the net torque about the origin on a flea located at coordinates \((0,-4.0 \mathrm{~m}, 5.0 \mathrm{~m})\) when forces \(\vec{F}_{1}=(3.0 \mathrm{~N}) \hat{\mathrm{k}}\) and \(\vec{F}_{2}=(-2.0 \mathrm{~N}) \hat{\mathrm{j}}\) act on the flea?
-20 A plum is located at coordinates ( \(-2.0 \mathrm{~m}, 0,4.0 \mathrm{~m}\) ). In unitvector notation, what is the torque about the origin on the plum if that torque is due to a force \(\vec{F}\) whose only component is (a) \(F_{x}=\) 6.0 N, (b) \(F_{x}=-6.0 \mathrm{~N}\), (c) \(F_{z}=6.0 \mathrm{~N}\), and (d) \(F_{z}=-6.0 \mathrm{~N}\) ?
-21 In unit-vector notation, what is the torque about the origin on a particle located at coordinates \((0,-4.0 \mathrm{~m}, 3.0 \mathrm{~m})\) if that torque is due to (a) force \(\vec{F}_{1}\) with components \(F_{1 x}=2.0 \mathrm{~N}, F_{1 y}=F_{1 z}=0\), and (b) force \(\vec{F}_{2}\) with components \(F_{2 x}=0, F_{2 y}=2.0 \mathrm{~N}, F_{2 z}=4.0 \mathrm{~N}\) ?
-022 A particle moves through an \(x y z\) coordinate system while a force acts on the particle. When the particle has the position vector \(\vec{r}=(2.00 \mathrm{~m}) \hat{\mathrm{i}}-(3.00 \mathrm{~m}) \hat{\mathrm{j}}+(2.00 \mathrm{~m}) \hat{\mathrm{k}}\), the force is given by \(\vec{F}=F_{x} \hat{i}+(7.00 \mathrm{~N}) \hat{\mathrm{j}}-(6.00 \mathrm{~N}) \hat{\mathrm{k}}\) and the corresponding torque about the origin is \(\vec{\tau}=(4.00 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{i}}+(2.00 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{j}}-(1.00 \mathrm{~N} \cdot \mathrm{~m}) \hat{\mathrm{k}}\). Determine \(F_{x}\).
-023 Force \(\vec{F}=(2.0 \mathrm{~N}) \hat{\mathrm{i}}-(3.0 \mathrm{~N}) \hat{\mathrm{k}}\) acts on a pebble with position vector \(\vec{r}=(0.50 \mathrm{~m}) \hat{\mathrm{j}}-(2.0 \mathrm{~m}) \hat{\mathrm{k}}\) relative to the origin. In unit-vector notation, what is the resulting torque on the pebble about (a) the origin and (b) the point ( \(2.0 \mathrm{~m}, 0,-3.0 \mathrm{~m}\) )?
\(\bullet 24\) In unit-vector notation, what is the torque about the origin on a jar of jalapeño peppers located at coordinates ( \(3.0 \mathrm{~m},-2.0 \mathrm{~m}\), \(4.0 \mathrm{~m})\) due to (a) force \(\vec{F}_{1}=(3.0 \mathrm{~N}) \hat{\mathrm{i}}-(4.0 \mathrm{~N}) \hat{\mathrm{j}}+(5.0 \mathrm{~N}) \hat{\mathrm{k}}\), (b) force \(\vec{F}_{2}=(-3.0 \mathrm{~N}) \hat{\mathrm{i}}-(4.0 \mathrm{~N}) \hat{\mathrm{j}}-(5.0 \mathrm{~N}) \hat{\mathrm{k}}\), and (c) the vector sum of \(\vec{F}_{1}\) and \(\vec{F}_{2}\) ? (d) Repeat part (c) for the torque about the point with coordinates ( \(3.0 \mathrm{~m}, 2.0 \mathrm{~m}, 4.0 \mathrm{~m}\) ).
\(\bullet 25\) ssm Force \(\vec{F}=(-8.0 \mathrm{~N}) \hat{\mathrm{i}}+(6.0 \mathrm{~N}) \hat{\mathrm{j}}\) acts on a particle with position vector \(\vec{r}=(3.0 \mathrm{~m}) \hat{\mathrm{i}}+(4.0 \mathrm{~m}) \hat{\mathrm{j}}\). What are (a) the torque on the particle about the origin, in unit-vector notation, and (b) the angle between the directions of \(\vec{r}\) and \(\vec{F}\) ?

\section*{Module 11-5 Angular Momentum}
-26 At the instant of Fig. 11-40, a 2.0 kg particle \(P\) has a position vector \(\vec{r}\) of magnitude 3.0 m and angle \(\theta_{1}=45^{\circ}\) and a velocity vector \(\vec{v}\) of magnitude \(4.0 \mathrm{~m} / \mathrm{s}\) and angle \(\theta_{2}=30^{\circ}\). Force \(\vec{F}\), of magnitude 2.0 N and


Figure 11-40
Problem 26.
angle \(\theta_{3}=30^{\circ}\), acts on \(P\). All three vectors lie in the \(x y\) plane. About the origin, what are the (a) magnitude and (b) direction of the angular momentum of \(P\) and the (c) magnitude and (d) direction of the torque acting on \(P\) ?
-27 SSM At one instant, force \(\vec{F}=4.0 \hat{\mathrm{j}} \mathrm{N}\) acts on a 0.25 kg object that has position vector \(\vec{r}=(2.0 \hat{\mathrm{i}}-2.0 \hat{\mathrm{k}}) \mathrm{m}\) and velocity vector \(\vec{v}=(-5.0 \hat{\mathrm{i}}+5.0 \hat{\mathrm{k}}) \mathrm{m} / \mathrm{s}\). About the origin and in unit-vector notation, what are (a) the object's angular momentum and (b) the torque acting on the object?
-28 A 2.0 kg particle-like object moves in a plane with velocity components \(v_{x}=30 \mathrm{~m} / \mathrm{s}\) and \(v_{y}=60 \mathrm{~m} / \mathrm{s}\) as it passes through the point with \((x, y)\) coordinates of \((3.0,-4.0) \mathrm{m}\). Just then, in unitvector notation, what is its angular momentum relative to (a) the origin and (b) the point located at \((-2.0,-2.0) \mathrm{m}\) ?
-29 ILW In the instant of Fig. 11-41, two particles move in an \(x y\) plane. Particle \(P_{1}\) has mass 6.5 kg and speed \(v_{1}=2.2 \mathrm{~m} / \mathrm{s}\), and it is at distance \(d_{1}=1.5 \mathrm{~m}\) from point \(O\). Particle \(P_{2}\) has mass 3.1 kg and speed \(v_{2}=3.6 \mathrm{~m} / \mathrm{s}\), and it is at distance \(d_{2}=\) 2.8 m from point \(O\). What are the


Figure 11-41 Problem 29. (a) magnitude and (b) direction of the net angular momentum of the two particles about \(O\) ?
-30 At the instant the displacement of a 2.00 kg object relative to the origin is \(\vec{d}=(2.00 \mathrm{~m}) \hat{\mathrm{i}}+(4.00 \mathrm{~m}) \hat{\mathrm{j}}-(3.00 \mathrm{~m}) \hat{\mathrm{k}}\), its velocity is \(\vec{v}=-(6.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}+(3.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}+(3.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{k}}\) and it is subject to a force \(\vec{F}=(6.00 \mathrm{~N}) \hat{\mathrm{i}}-(8.00 \mathrm{~N}) \hat{\mathrm{j}}+(4.00 \mathrm{~N}) \hat{\mathrm{k}}\). Find (a) the acceleration of the object, (b) the angular momentum of the object about the origin, (c) the torque about the origin acting on the object, and (d) the angle between the velocity of the object and the force acting on the object.
0.31 In Fig. 11-42, a 0.400 kg ball is shot directly upward at initial speed 40.0 \(\mathrm{m} / \mathrm{s}\). What is its angular momentum about \(P, 2.00 \mathrm{~m}\) horizontally from the launch point, when the ball is (a) at


Figure 11-42 Problem 31. maximum height and (b) halfway back to the ground? What is the torque on the ball about \(P\) due to the gravitational force when the ball is (c) at maximum height and (d) halfway back to the ground?

\section*{Module 11-6 Newton's Second Law in Angular Form}
-32 A particle is acted on by two torques about the origin: \(\vec{\tau}_{1}\) has a magnitude of \(2.0 \mathrm{~N} \cdot \mathrm{~m}\) and is directed in the positive direction of the \(x\) axis, and \(\vec{\tau}_{2}\) has a magnitude of \(4.0 \mathrm{~N} \cdot \mathrm{~m}\) and is directed in the negative direction of the \(y\) axis. In unit-vector notation, find \(d \vec{\ell} \mid d t\), where \(\vec{\ell}\) is the angular momentum of the particle about the origin.
-33 SSM Www ILW At time \(t=0\), a 3.0 kg particle with velocity \(\vec{v}=(5.0 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}-(6.0 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}\) is at \(x=3.0 \mathrm{~m}, y=8.0 \mathrm{~m}\). It is pulled by a 7.0 N force in the negative \(x\) direction. About the origin, what are (a) the particle's angular momentum, (b) the torque acting on the particle, and (c) the rate at which the angular momentum is changing?
-34 A particle is to move in an \(x y\) plane, clockwise around the origin as seen from the positive side of the \(z\) axis. In unit-vector notation, what torque acts on the particle if the magnitude of its angular momentum about the origin is (a) \(4.0 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}\), (b) \(4.0 t^{2} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}\), (c) \(4.0 \sqrt{t \mathrm{~kg}} \cdot \mathrm{~m}^{2} / \mathrm{s}\), and (d) \(4.0 / t^{2} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}\) ?
-•35 At time \(t\), the vector \(\vec{r}=4.0 t^{2} \hat{\mathrm{i}}-\left(2.0 t+6.0 t^{2}\right) \hat{\mathrm{j}}\) gives the position of a 3.0 kg particle relative to the origin of an \(x y\) coordinate \(\operatorname{system}(\vec{r}\) is in meters and \(t\) is in seconds). (a) Find an expression for the torque acting on the particle relative to the origin. (b) Is the magnitude of the particle's angular momentum relative to the origin increasing, decreasing, or unchanging?

\section*{Module 11-7 Angular Momentum of a Rigid Body}
-36 Figure 11-43 shows three rotating, uniform disks that are coupled by belts. One belt runs around the rims of disks \(A\) and \(C\). Another belt runs around a central hub on disk \(A\) and the rim of disk \(B\). The belts move smoothly without slippage on the rims and hub. Disk \(A\) has radius \(R\); its hub has radius \(0.5000 R\); disk \(B\) has radius \(0.2500 R\); and disk \(C\) has radius \(2.000 R\). Disks \(B\) and \(C\) have the same density (mass per unit volume) and thickness. What is the ratio of the magnitude of the angular momentum of disk \(C\) to that of disk \(B\) ?


Figure 11-43 Problem 36.
-37 ©0 In Fig. 11-44, three particles of mass \(m=23 \mathrm{~g}\) are fastened to three rods of length \(d=12 \mathrm{~cm}\) and negligible mass. The rigid assembly rotates around point \(O\) at the angular speed \(\omega=0.85 \mathrm{rad} / \mathrm{s}\). About \(O\), what are (a) the rotational inertia


Figure 11-44 Problem 37. of the assembly, (b) the magnitude of the angular momentum of the middle particle, and (c) the magnitude of the angular momentum of the asssembly?
-38 A sanding disk with rotational inertia \(1.2 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}\) is attached to an electric drill whose motor delivers a torque of magnitude \(16 \mathrm{~N} \cdot \mathrm{~m}\) about the central axis of the disk. About that axis and with the torque applied for 33 ms , what is the magnitude of the (a) angular momentum and (b) angular velocity of the disk?
-39 SSM The angular momentum of a flywheel having a rotational inertia of \(0.140 \mathrm{~kg} \cdot \mathrm{~m}^{2}\) about its central axis decreases from 3.00 to \(0.800 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}\) in 1.50 s . (a) What is the magnitude of the average torque acting on the flywheel about its central axis during this period? (b) Assuming a constant angular acceleration, through what angle does the flywheel turn? (c) How much work is done on the wheel? (d) What is the average power of the flywheel?
\(\bullet 40\) A disk with a rotational inertia of \(7.00 \mathrm{~kg} \cdot \mathrm{~m}^{2}\) rotates like a merry-go-round while undergoing a time-dependent torque given by \(\tau=(5.00+2.00 t) \mathrm{N} \cdot \mathrm{m}\). At time \(t=1.00 \mathrm{~s}\), its angular momentum is \(5.00 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}\). What is its angular momentum at \(t=3.00 \mathrm{~s}\) ? -041 (60 Figure 11-45 shows a rigid structure consisting of a circular hoop of radius \(R\) and mass \(m\), and a square made of four thin bars, each of length \(R\) and mass \(m\). The rigid structure rotates at a constant speed about a vertical axis, with a period of


Figure 11-45 Problem 41.
rotation of 2.5 s . Assuming \(R=0.50 \mathrm{~m}\) and \(m=2.0 \mathrm{~kg}\), calculate (a) the structure's rotational inertia about the axis of rotation and (b) its angular momentum about that axis.
©42 Figure 11-46 gives the torque \(\tau\) that acts on an initially stationary disk that can rotate about its center like a merry-go-round. The scale on the \(\tau\) axis is set by \(\tau_{s}=4.0 \mathrm{~N} \cdot \mathrm{~m}\). What is the angular momentum of the disk about the rotation axis at times (a) \(t=7.0 \mathrm{~s}\) and (b) \(t=20 \mathrm{~s}\) ?


Figure 11-46 Problem 42.

\section*{Module 11-8 Conservation of Angular Momentum}
-43 In Fig. 11-47, two skaters, each of mass 50 kg , approach each other along parallel paths separated by 3.0 m . They have opposite velocities of \(1.4 \mathrm{~m} / \mathrm{s}\) each. One skater carries one end of a long pole of negligible mass, and the other skater grabs the


Figure 11-47 Problem 43. other end as she passes. The skaters then rotate around the center of the pole. Assume that the friction between skates and ice is negligible. What are (a) the radius of the circle, (b) the angular speed of the skaters, and (c) the kinetic energy of the two-skater system? Next, the skaters pull along the pole until they are separated by 1.0 m . What then are (d) their angular speed and (e) the kinetic energy of the system? (f) What provided the energy for the increased kinetic energy?
-44 A Texas cockroach of mass 0.17 kg runs counterclockwise around the rim of a lazy Susan (a circular disk mounted on a vertical axle) that has radius 15 cm , rotational inertia \(5.0 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}\), and frictionless bearings. The cockroach's speed (relative to the ground) is \(2.0 \mathrm{~m} / \mathrm{s}\), and the lazy Susan turns clockwise with angular speed \(\omega_{0}=\) \(2.8 \mathrm{rad} / \mathrm{s}\). The cockroach finds a bread crumb on the rim and, of course, stops. (a) What is the angular speed of the lazy Susan after the cockroach stops? (b) Is mechanical energy conserved as it stops?
-45 SSM WWW A man stands on a platform that is rotating (without friction) with an angular speed of \(1.2 \mathrm{rev} / \mathrm{s}\); his arms are outstretched and he holds a brick in each hand. The rotational inertia of the system consisting of the man, bricks, and platform about the central vertical axis of the platform is \(6.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}\). If by moving the bricks the man decreases the rotational inertia of the system to 2.0 \(\mathrm{kg} \cdot \mathrm{m}^{2}\), what are (a) the resulting angular speed of the platform and (b) the ratio of the new kinetic energy of the system to the original kinetic energy? (c) What source provided the added kinetic energy?
-46 The rotational inertia of a collapsing spinning star drops to \(\frac{1}{3}\) its initial value. What is the ratio of the new rotational kinetic energy to the initial rotational kinetic energy?
-47 SSM A track is mounted on a large wheel that is free to turn with negligible friction about a vertical axis (Fig. 11-48). A toy train of mass \(m\) is placed on the track and, with the


Figure 11-48 Problem 47. system initially at rest, the train's electrical power is turned on. The train reaches speed \(0.15 \mathrm{~m} / \mathrm{s}\) with respect to the track. What is the wheel's angular speed if its mass is 1.1 m and its radius is 0.43 m ? (Treat it as a hoop, and neglect the mass of the spokes and hub.)
-48 A Texas cockroach walks from the center of a circular disk (that rotates like a merry-go-round without external torques) out to the edge at radius \(R\). The angular speed of the cockroach-disk system for the walk is given in Fig. 11-49 \(\left(\omega_{a}=5.0 \mathrm{rad} / \mathrm{s}\right.\) and \(\omega_{b}=6.0 \mathrm{rad} / \mathrm{s}\). After reaching \(R\), what fraction of the rotational inertia of the disk does the cockroach have?


Figure 11-49 Problem 48.
-49 Two disks are mounted (like a merry-go-round) on lowfriction bearings on the same axle and can be brought together so that they couple and rotate as one unit. The first disk, with rotational inertia \(3.30 \mathrm{~kg} \cdot \mathrm{~m}^{2}\) about its central axis, is set spinning counterclockwise at \(450 \mathrm{rev} / \mathrm{min}\). The second disk, with rotational inertia \(6.60 \mathrm{~kg} \cdot \mathrm{~m}^{2}\) about its central axis, is set spinning counterclockwise at \(900 \mathrm{rev} / \mathrm{min}\). They then couple together. (a) What is their angular speed after coupling? If instead the second disk is set spinning clockwise at \(900 \mathrm{rev} / \mathrm{min}\), what are their (b) angular speed and (c) direction of rotation after they couple together?
-50 The rotor of an electric motor has rotational inertia \(I_{m}=\) \(2.0 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{2}\) about its central axis. The motor is used to change the orientation of the space probe in which it is mounted. The motor axis is mounted along the central axis of the probe; the probe has rotational inertia \(I_{p}=12 \mathrm{~kg} \cdot \mathrm{~m}^{2}\) about this axis. Calculate the number of revolutions of the rotor required to turn the probe through \(30^{\circ}\) about its central axis.
-51 SSM ILW A wheel is rotating freely at angular speed \(800 \mathrm{rev} / \mathrm{min}\) on a shaft whose rotational inertia is negligible. A second wheel, initially at rest and with twice the rotational inertia of the first, is suddenly coupled to the same shaft. (a) What is the angular speed of the resultant combination of the shaft and two wheels? (b) What fraction of the original rotational kinetic energy is lost?
-•52 ©0 A cockroach of mass \(m\) lies on the rim of a uniform disk of mass 4.00 m that can rotate freely about its center like a merry-goround. Initially the cockroach and disk rotate together with an angular velocity of \(0.260 \mathrm{rad} / \mathrm{s}\). Then the cockroach walks halfway to the center of the disk. (a) What then is the angular velocity of the cock-roach-disk system? (b) What is the ratio \(K / K_{0}\) of the new kinetic energy of the system to its initial kinetic energy? (c) What accounts for the change in the kinetic energy?
\(\bullet\) ••53 ©0 In Fig. 11-50 (an overhead view), a uniform thin rod of length 0.500 m and mass 4.00 kg can rotate in a horizontal plane about a vertical axis through its center. The rod is at rest when a 3.00 g bullet traveling in the rotation plane is fired into one end of the rod. In the view from


Figure 11-50 Problem 53.
above, the bullet's path makes angle \(\theta=60.0^{\circ}\) with the rod (Fig. 1150). If the bullet lodges in the rod and the angular velocity of the rod is \(10 \mathrm{rad} / \mathrm{s}\) immediately after the collision, what is the bullet's speed just before impact?
\(\bullet 54\) ©o Figure \(11-51\) shows an overhead view of a ring that can rotate about its center like a merry-go-round. Its outer radius \(R_{2}\) is 0.800 m , its inner radius \(R_{1}\) is \(R_{2} / 2.00\), its mass \(M\) is 8.00 kg , and the mass of the crossbars at its center is negligible. It initially rotates at an angular speed of \(8.00 \mathrm{rad} / \mathrm{s}\) with a cat of


Figure 11-51 Problem 54. mass \(m=M / 4.00\) on its outer edge, at radius \(R_{2}\). By how much does the cat increase the kinetic energy of the cat-ring system if the cat crawls to the inner edge, at radius \(R_{1}\) ?
-•55 A horizontal vinyl record of mass 0.10 kg and radius 0.10 m rotates freely about a vertical axis through its center with an angular speed of \(4.7 \mathrm{rad} / \mathrm{s}\) and a rotational inertia of \(5.0 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\). Putty of mass 0.020 kg drops vertically onto the record from above and sticks to the edge of the record. What is the angular speed of the record immediately afterwards?
-056 In a long jump, an athlete leaves the ground with an initial angular momentum that tends to rotate her body forward, threatening to ruin her landing. To counter this tendency, she rotates her outstretched arms to "take up" the angular momentum (Fig. 1118). In 0.700 s , one arm sweeps through 0.500 rev and the other arm sweeps through 1.000 rev . Treat each arm as a thin rod of mass 4.0 kg and length 0.60 m , rotating around one end. In the athlete's reference frame, what is the magnitude of the total angular momentum of the arms around the common rotation axis through the shoulders?
\(\bullet 57\) A uniform disk of mass \(10 m\) and radius \(3.0 r\) can rotate freely about its fixed center like a merry-go-round. A smaller uniform disk of mass \(m\) and radius \(r\) lies on top of the larger disk, concentric with it. Initially the two disks rotate together with an angular velocity of \(20 \mathrm{rad} / \mathrm{s}\). Then a slight disturbance causes the smaller disk to slide outward across the larger disk, until the outer edge of the smaller disk catches on the outer edge of the larger disk. Afterward, the two disks again rotate together (without further sliding). (a) What then is their angular velocity about the center of the larger disk? (b) What is the ratio \(K / K_{0}\) of the new kinetic energy of the two-disk system to the system's initial kinetic energy?
-•58 A horizontal platform in the shape of a circular disk rotates on a frictionless bearing about a vertical axle through the center of the disk. The platform has a mass of 150 kg , a radius of 2.0 m , and a rotational inertia of \(300 \mathrm{~kg} \cdot \mathrm{~m}^{2}\) about the axis of rotation. A 60 kg student walks slowly from the rim of the platform toward the center. If the angular speed of the system is \(1.5 \mathrm{rad} / \mathrm{s}\) when the student starts at the rim, what is the angular speed when she is 0.50 m from the center?
\(\bullet 59\) Figure \(11-52\) is an overhead view of a thin uniform rod of length 0.800 m and mass \(M\) rotating horizontally at angular speed \(20.0 \mathrm{rad} / \mathrm{s}\) about an axis through its center. A particle


\section*{Figure 11-52 Problem 59.} of mass \(M / 3.00\) initially attached to one end is ejected from the rod and travels along a path that is perpendicular to the rod at the instant of ejection. If the particle's speed \(v_{p}\) is \(6.00 \mathrm{~m} / \mathrm{s}\) greater than the speed of the rod end just after ejection, what is the value of \(v_{p}\) ?
\(\because 60\) In Fig. 11-53, a 1.0 g bullet is fired into a 0.50 kg block attached to the end of a 0.60 m nonuniform rod of mass 0.50 kg . The block-rod-bullet system then rotates in the plane of the figure, about a fixed axis at \(A\). The rotational inertia of the rod alone about that axis at \(A\) is \(0.060 \mathrm{~kg} \cdot \mathrm{~m}^{2}\). Treat the block as a particle. (a) What then is the rotational inertia of the block-rod-bullet system about point \(A\) ? (b) If the angular speed of the system about \(A\) just after impact is \(4.5 \mathrm{rad} / \mathrm{s}\), what is the bullet's speed just before impact?
\({ }^{\circ} 61\) The uniform rod (length 0.60 m , mass 1.0 kg ) in Fig. 11-54 rotates in the plane of the figure about an axis through one end, with a rotational inertia of 0.12 \(\mathrm{kg} \cdot \mathrm{m}^{2}\). As the rod swings through its lowest position, it collides with a 0.20 kg putty wad that sticks to the end of the rod. If the rod's angular speed just before collision is \(2.4 \mathrm{rad} / \mathrm{s}\), what is the angular speed of the rod-putty system immediately after collision?


Figure 11-53 Problem 60.


Figure 11-54 Problem 61.
©0062 During a jump to his partner, an aerialist is to make a quadruple somersault lasting a time \(t=1.87 \mathrm{~s}\). For the first and last quarter-revolution, he is in the extended orientation shown in Fig. 11-55, with rotational inertia \(I_{1}=19.9 \mathrm{~kg} \cdot \mathrm{~m}^{2}\) around his center of mass (the dot). During the rest of the flight he is in a tight tuck, with rotational inertia \(I_{2}=3.93 \mathrm{~kg} \cdot \mathrm{~m}^{2}\). What must be his angular speed \(\omega_{2}\) around his center of mass during the tuck?


Figure 11-55 Problem 62.
00063 ©0 In Fig. 11-56, a 30 kg child stands on the edge of a stationary merry-go-round of radius 2.0 m . The rotational inertia of the merry-go-round about its rotation axis is \(150 \mathrm{~kg} \cdot \mathrm{~m}^{2}\). The child catches a ball of mass 1.0 kg thrown by a friend. Just before the ball is caught, it has a horizontal velocity \(\vec{v}\) of magnitude \(12 \mathrm{~m} / \mathrm{s}\), at angle \(\phi=37^{\circ}\) with a line


Figure 11-56 Problem 63.
tangent to the outer edge of the merry-go-round, as shown. What is the angular speed of the merry-go-round just after the ball is caught?
 lar speed \(\omega_{i}\) and a rotational inertia consisting of two parts: \(I_{\text {leg }}=1.44 \mathrm{~kg} \cdot \mathrm{~m}^{2}\) for her leg extended outward at angle \(\theta=90.0^{\circ}\) to her body and \(I_{\text {trunk }}=0.660 \mathrm{~kg} \cdot \mathrm{~m}^{2}\) for the rest of her body (primarily her trunk). Near her maximum height she holds both legs at angle \(\theta=30.0^{\circ}\) to her body and has angular speed \(\omega_{f}\) (Fig. 11-19b). Assuming that \(I_{\text {trunk }}\) has not changed, what is the ratio \(\omega_{f} / \omega_{i}\) ?
-0065 SSM www Two 2.00 kg balls are attached to the ends of a thin rod of length 50.0 cm and negligible mass. The rod is free to rotate in a vertical plane without friction about a horizontal axis through its center. With the rod initially horizontal (Fig. 11-57), a 50.0 g wad of wet putty drops onto one of the balls, hit-


Figure 11-57 Problem 65. ting it with a speed of \(3.00 \mathrm{~m} / \mathrm{s}\) and then sticking to it. (a) What is the angular speed of the system just after the putty wad hits? (b) What is the ratio of the kinetic energy of the system after the collision to that of the putty wad just before? (c) Through what angle will the system rotate before it momentarily stops?
-0066 ©o In Fig. 11-58, a small 50 g block slides down a frictionless surface through height \(h=20 \mathrm{~cm}\) and then sticks to a uniform rod of mass 100 g and length 40 cm . The rod pivots about point \(O\) through angle \(\theta\) before momentarily stopping. Find \(\theta\).
00067 (so Figure 11-59 is an overhead view of a thin uniform rod of length 0.600 m and mass \(M\) rotating


Figure 11-58 Problem 66. horizontally at \(80.0 \mathrm{rad} / \mathrm{s}\) counterclockwise about an axis through its center. A particle of mass \(M / 3.00\) and traveling horizontally at speed \(40.0 \mathrm{~m} / \mathrm{s}\) hits the rod and sticks. The particle's path is perpendicular to the rod at the instant of the hit, at a distance \(d\) from the rod's center. (a) At what value of \(d\) are rod and particle stationary after the hit? (b) In which direction do rod and particle rotate if \(d\) is greater than this value?


\section*{Module 11-9 Precession of a Gyroscope}
\(\bullet 68\) A top spins at \(30 \mathrm{rev} / \mathrm{s}\) about an axis that makes an angle of \(30^{\circ}\) with the vertical. The mass of the top is 0.50 kg , its rotational inertia about its central axis is \(5.0 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\), and its center of mass is 4.0 cm from the pivot point. If the spin is clockwise from an overhead view, what are the (a) precession rate and (b) direction of the precession as viewed from overhead?
-069 A certain gyroscope consists of a uniform disk with a 50 cm radius mounted at the center of an axle that is 11 cm long and of negligible mass. The axle is horizontal and supported at one end. If the spin rate is \(1000 \mathrm{rev} / \mathrm{min}\), what is the precession rate?

\section*{Additional Problems}

70 A uniform solid ball rolls smoothly along a floor, then up a ramp inclined at \(15.0^{\circ}\). It momentarily stops when it has rolled 1.50 m along the ramp. What was its initial speed?

71 SSM In Fig. 11-60, a constant horizontal force \(\vec{F}_{\text {app }}\) of magnitude 12 N is applied to a uniform solid cylinder by fishing line wrapped around the cylinder. The mass of the cylinder is 10 kg , its radius is 0.10 m , and the cylinder rolls smoothly on the horizontal surface. (a) What is the mag-


Figure 11-60 Problem 71. nitude of the acceleration of the center of mass of the cylinder? (b) What is the magnitude of the angular acceleration of the cylinder about the center of mass? (c) In unit-vector notation, what is the frictional force acting on the cylinder?
72 A thin-walled pipe rolls along the floor. What is the ratio of its translational kinetic energy to its rotational kinetic energy about the central axis parallel to its length?
73 SSM A 3.0 kg toy car moves along an \(x\) axis with a velocity given by \(\vec{v}=-2.0 t^{3} \hat{\mathrm{i}} \mathrm{m} / \mathrm{s}\), with \(t\) in seconds. For \(t>0\), what are (a) the angular momentum \(\vec{L}\) of the car and (b) the torque \(\vec{\tau}\) on the car, both calculated about the origin? What are (c) \(\vec{L}\) and (d) \(\vec{\tau}\) about the point \((2.0 \mathrm{~m}, 5.0 \mathrm{~m}, 0)\) ? What are (e) \(\vec{L}\) and (f) \(\vec{\tau}\) about the point ( \(2.0 \mathrm{~m},-5.0 \mathrm{~m}, 0\) )?
74 A wheel rotates clockwise about its central axis with an angular momentum of \(600 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}\). At time \(t=0\), a torque of magnitude \(50 \mathrm{~N} \cdot \mathrm{~m}\) is applied to the wheel to reverse the rotation. At what time \(t\) is the angular speed zero?
75 SSM In a playground, there is a small merry-go-round of radius 1.20 m and mass 180 kg . Its radius of gyration (see Problem 79 of Chapter 10) is 91.0 cm . A child of mass 44.0 kg runs at a speed of \(3.00 \mathrm{~m} / \mathrm{s}\) along a path that is tangent to the rim of the initially stationary merry-go-round and then jumps on. Neglect friction between the bearings and the shaft of the merry-go-round. Calculate (a) the rotational inertia of the merry-go-round about its axis of rotation, (b) the magnitude of the angular momentum of the running child about the axis of rotation of the merry-go-round, and (c) the angular speed of the merry-go-round and child after the child has jumped onto the merry-go-round.
76 A uniform block of granite in the shape of a book has face dimensions of 20 cm and 15 cm and a thickness of 1.2 cm . The density (mass per unit volume) of granite is \(2.64 \mathrm{~g} / \mathrm{cm}^{3}\). The block rotates around an axis that is perpendicular to its face and halfway between its center and a corner. Its angular momentum about that axis is \(0.104 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}\). What is its rotational kinetic energy about that axis?
77 SSIM Two particles, each of mass \(2.90 \times 10^{-4} \mathrm{~kg}\) and speed \(5.46 \mathrm{~m} / \mathrm{s}\), travel in opposite directions along parallel lines separated by 4.20 cm . (a) What is the magnitude \(L\) of the angular momentum of the two-particle system around a point midway between the two lines? (b) Is the value different for a different location of the point? If the direction of either particle is reversed, what are the answers for (c) part (a) and (d) part (b)?
78 A wheel of radius 0.250 m , moving initially at \(43.0 \mathrm{~m} / \mathrm{s}\), rolls to a stop in 225 m . Calculate the magnitudes of its (a) linear acceleration and (b) angular acceleration. (c) Its rotational inertia is 0.155 \(\mathrm{kg} \cdot \mathrm{m}^{2}\) about its central axis. Find the magnitude of the torque about the central axis due to friction on the wheel.

79 Wheels \(A\) and \(B\) in Fig. 11-61 are connected by a belt that does not slip. The radius of \(B\) is 3.00 times the radius of \(A\). What would be the ratio of the rotational inertias \(I_{A} / I_{B}\) if the two wheels had (a) the same angular momentum about their central axes and


Figure 11-61 Problem 79. (b) the same rotational kinetic energy?

80 A 2.50 kg particle that is moving horizontally over a floor with velocity \((-3.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{j}}\) undergoes a completely inelastic collision with a 4.00 kg particle that is moving horizontally over the floor with velocity \((4.50 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}\). The collision occurs at \(x y\) coordinates \((-0.500 \mathrm{~m},-0.100 \mathrm{~m})\). After the collision and in unit-vector notation, what is the angular momentum of the stuck-together particles with respect to the origin?
81 SSM A uniform wheel of mass 10.0 kg and radius 0.400 m is mounted rigidly on a massless axle through its center (Fig. 11-62). The radius of the axle is 0.200 m , and the rotational inertia of the wheel-axle combination about its central axis


Figure 11-62 Problem 81. is \(0.600 \mathrm{~kg} \cdot \mathrm{~m}^{2}\). The wheel is initially at rest at the top of a surface that is inclined at angle \(\theta=\) \(30.0^{\circ}\) with the horizontal; the axle rests on the surface while the wheel extends into a groove in the surface without touching the surface. Once released, the axle rolls down along the surface smoothly and without slipping. When the wheel-axle combination has moved down the surface by 2.00 m , what are (a) its rotational kinetic energy and (b) its translational kinetic energy?

82 A uniform rod rotates in a horizontal plane about a vertical axis through one end. The rod is 6.00 m long, weighs 10.0 N , and rotates at \(240 \mathrm{rev} / \mathrm{min}\). Calculate (a) its rotational inertia about the axis of rotation and (b) the magnitude of its angular momentum about that axis.
83 A solid sphere of weight 36.0 N rolls up an incline at an angle of \(30.0^{\circ}\). At the bottom of the incline the center of mass of the sphere has a translational speed of \(4.90 \mathrm{~m} / \mathrm{s}\). (a) What is the kinetic energy of the sphere at the bottom of the incline? (b) How far does the sphere travel up along the incline? (c) Does the answer to (b) depend on the sphere's mass?

84 Suppose that the yo-yo in Problem 17, instead of rolling from rest, is thrown so that its initial speed down the string is \(1.3 \mathrm{~m} / \mathrm{s}\). (a) How long does the yo-yo take to reach the end of the string? As it reaches the end of the string, what are its (b) total kinetic energy, (c) linear speed, (d) translational kinetic energy, (e) angular speed, and (f) rotational kinetic energy?

85 A girl of mass \(M\) stands on the rim of a frictionless merry-go-round of radius \(R\) and rotational inertia \(I\) that is not moving. She throws a rock of mass \(m\) horizontally in a direction that is tangent to the outer edge of the merry-go-round. The speed of the rock, relative to the ground, is \(v\). Afterward, what are (a) the angular speed of the merry-go-round and (b) the linear speed of the girl?

86 A body of radius \(R\) and mass \(m\) is rolling smoothly with speed \(v\) on a horizontal surface. It then rolls up a hill to a maximum height \(h\). (a) If \(h=3 v^{2} / 4 g\), what is the body's rotational inertia about the rotational axis through its center of mass? (b) What might the body be?

\section*{Equilibrium and Elasticity}

\section*{12-1 equilibrium}

\section*{Learning Objectives}

After reading this module, you should be able to .
12.01 Distinguish between equilibrium and static equilibrium. 12.02 Specify the four conditions for static equilibrium.
12.03 Explain center of gravity and how it relates to center of mass.
12.04 For a given distribution of particles, calculate the coordinates of the center of gravity and the center of mass.

If the forces lie in the \(x y\) plane, all torque vectors are parallel to the \(z\) axis, and the balance-of-torques equation is equivalent to the single component equation
\[
\tau_{\text {net }, z}=0 \quad \text { (balance of torques). }
\]
- The gravitational force acts individually on each element of a body. The net effect of all individual actions may be found by imagining an equivalent total gravitational force \(\vec{F}_{g}\) acting at the center of gravity. If the gravitational acceleration \(\vec{g}\) is the same for all the elements of the body, the center of gravity is at the center of mass.

\section*{What Is Physics?}

Human constructions are supposed to be stable in spite of the forces that act on them. A building, for example, should be stable in spite of the gravitational force and wind forces on it, and a bridge should be stable in spite of the gravitational force pulling it downward and the repeated jolting it receives from cars and trucks.

One focus of physics is on what allows an object to be stable in spite of any forces acting on it. In this chapter we examine the two main aspects of stability: the equilibrium of the forces and torques acting on rigid objects and the elasticity of nonrigid objects, a property that governs how such objects can deform. When this physics is done correctly, it is the subject of countless articles in physics and engineering journals; when it is done incorrectly, it is the subject of countless articles in newspapers and legal journals.

\section*{Equilibrium}

Consider these objects: (1) a book resting on a table, (2) a hockey puck sliding with constant velocity across a frictionless surface, (3) the rotating blades of a ceiling fan, and (4) the wheel of a bicycle that is traveling along a straight path at constant speed. For each of these four objects,


Figure 12-1 A balancing rock. Although its perch seems precarious, the rock is in static equilibrium.

Figure 12-2 (a) A domino balanced on one edge, with its center of mass vertically above that edge. The gravitational force \(\vec{F}_{g}\) on the domino is directed through the supporting edge. (b) If the domino is rotated even slightly from the balanced orientation, then \(\vec{F}_{g}\) causes a torque that increases the rotation. (c) A domino upright on a narrow side is somewhat more stable than the domino in (a). (d) A square block is even more stable.
1. The linear momentum \(\vec{P}\) of its center of mass is constant.
2. Its angular momentum \(\vec{L}\) about its center of mass, or about any other point, is also constant.
We say that such objects are in equilibrium. The two requirements for equilibrium are then
\[
\begin{equation*}
\vec{P}=\text { a constant } \quad \text { and } \quad \vec{L}=\text { a constant } \tag{12-1}
\end{equation*}
\]

Our concern in this chapter is with situations in which the constants in Eq. 12-1 are zero; that is, we are concerned largely with objects that are not moving in any way-either in translation or in rotation-in the reference frame from which we observe them. Such objects are in static equilibrium. Of the four objects mentioned near the beginning of this module, only one - the book resting on the table-is in static equilibrium.

The balancing rock of Fig. 12-1 is another example of an object that, for the present at least, is in static equilibrium. It shares this property with countless other structures, such as cathedrals, houses, filing cabinets, and taco stands, that remain stationary over time.

As we discussed in Module 8-3, if a body returns to a state of static equilibrium after having been displaced from that state by a force, the body is said to be in stable static equilibrium. A marble placed at the bottom of a hemispherical bowl is an example. However, if a small force can displace the body and end the equilibrium, the body is in unstable static equilibrium.

A Domino. For example, suppose we balance a domino with the domino's center of mass vertically above the supporting edge, as in Fig. 12-2 \(a\). The torque about the supporting edge due to the gravitational force \(\vec{F}_{g}\) on the domino is zero because the line of action of \(\vec{F}_{g}\) is through that edge. Thus, the domino is in equilibrium. Of course, even a slight force on it due to some chance disturbance ends the equilibrium. As the line of action of \(\vec{F}_{g}\) moves to one side of the supporting edge (as in Fig. 12-2b), the torque due to \(\vec{F}_{g}\) increases the rotation of the domino. Therefore, the domino in Fig. 12-2a is in unstable static equilibrium.

The domino in Fig. 12-2c is not quite as unstable. To topple this domino, a force would have to rotate it through and then beyond the balance position of Fig. 12-2a, in which the center of mass is above a supporting edge. A slight force will not topple this domino, but a vigorous flick of the finger against the domino certainly will. (If we arrange a chain of such upright dominos, a finger flick against the first can cause the whole chain to fall.)

A Block. The child's square block in Fig. 12-2d is even more stable because its center of mass would have to be moved even farther to get it to pass above a supporting edge. A flick of the finger may not topple the block. (This is why you

To tip the block, the center of mass must pass over the supporting edge.

never see a chain of toppling square blocks.) The worker in Fig. 12-3 is like both the domino and the square block: Parallel to the beam, his stance is wide and he is stable; perpendicular to the beam, his stance is narrow and he is unstable (and at the mercy of a chance gust of wind).

The analysis of static equilibrium is very important in engineering practice. The design engineer must isolate and identify all the external forces and torques that may act on a structure and, by good design and wise choice of materials, ensure that the structure will remain stable under these loads. Such analysis is necessary to ensure, for example, that bridges do not collapse under their traffic and wind loads and that the landing gear of aircraft will function after the shock of rough landings.

\section*{The Requirements of Equilibrium}

The translational motion of a body is governed by Newton's second law in its linear momentum form, given by Eq. 9-27 as
\[
\begin{equation*}
\vec{F}_{\mathrm{net}}=\frac{d \vec{P}}{d t} \tag{12-2}
\end{equation*}
\]

If the body is in translational equilibrium-that is, if \(\vec{P}\) is a constant-then \(d \vec{P} / d t=0\) and we must have
\[
\begin{equation*}
\vec{F}_{\text {net }}=0 \quad \text { (balance of forces) } \tag{12-3}
\end{equation*}
\]

The rotational motion of a body is governed by Newton's second law in its angular momentum form, given by Eq. 11-29 as
\[
\begin{equation*}
\vec{\tau}_{\mathrm{net}}=\frac{d \vec{L}}{d t} \tag{12-4}
\end{equation*}
\]

If the body is in rotational equilibrium— that is, if \(\vec{L}\) is a constant—then \(d \vec{L} / d t=0\) and we must have
\[
\begin{equation*}
\vec{\tau}_{\text {net }}=0 \quad \text { (balance of torques). } \tag{12-5}
\end{equation*}
\]

Thus, the two requirements for a body to be in equilibrium are as follows:
1. The vector sum of all the external forces that act on the body must be zero.
2. The vector sum of all external torques that act on the body, measured about any possible point, must also be zero.

These requirements obviously hold for static equilibrium. They also hold for the more general equilibrium in which \(\vec{P}\) and \(\vec{L}\) are constant but not zero.

Equations 12-3 and 12-5, as vector equations, are each equivalent to three independent component equations, one for each direction of the coordinate axes:
\[
\begin{array}{ll}
\begin{array}{l}
\text { Balance of } \\
\text { forces }
\end{array} &
\end{array} \begin{aligned}
& \text { Balance of } \\
& \text { torques }
\end{aligned} ~ \begin{cases}\tau_{\text {net }, x}=0 \\
F_{\text {net }, x}=0 & \\
F_{\text {net }, y}=0 &  \tag{12-6}\\
\tau_{\text {net }, y}=0 \\
F_{\text {net }, z}=0 & \\
\tau_{\text {net }, z}=0\end{cases}
\]

The Main Equations. We shall simplify matters by considering only situations in which the forces that act on the body lie in the \(x y\) plane. This means that the only torques that can act on the body must tend to cause rotation around an axis parallel to


Figure 12-3 A construction worker balanced on a steel beam is in static equilibrium but is more stable parallel to the beam than perpendicular to it.
the \(z\) axis. With this assumption, we eliminate one force equation and two torque equations from Eqs. 12-6, leaving
\[
\begin{align*}
& F_{\text {net }, x}=0 \quad \text { (balance of forces) }  \tag{12-7}\\
& F_{\text {net }, y}=0 \quad \text { (balance of forces) }  \tag{12-8}\\
& \tau_{\text {net }, z}=0 \quad \text { (balance of torques). } \tag{12-9}
\end{align*}
\]

Here, \(\tau_{\text {net }, z}\) is the net torque that the external forces produce either about the \(z\) axis or about any axis parallel to it.

A hockey puck sliding at constant velocity over ice satisfies Eqs. 12-7, 12-8, and 12-9 and is thus in equilibrium but not in static equilibrium. For static equilibrium, the linear momentum \(\vec{P}\) of the puck must be not only constant but also zero; the puck must be at rest on the ice. Thus, there is another requirement for static equilibrium:
3. The linear momentum \(\vec{P}\) of the body must be zero.

\section*{Checkpoint 1}

The figure gives six overhead views of a uniform rod on which two or more forces act perpendicularly to the rod. If the magnitudes of the forces are adjusted properly (but kept nonzero), in which situations can the rod be in static equilibrium?

(a)

(d)
(b)

(e)

(c)

(f)

\section*{The Center of Gravity}

The gravitational force on an extended body is the vector sum of the gravitational forces acting on the individual elements (the atoms) of the body. Instead of considering all those individual elements, we can say that

The gravitational force \(\vec{F}_{g}\) on a body effectively acts at a single point, called the center of gravity \((\operatorname{cog})\) of the body.

Here the word "effectively" means that if the gravitational forces on the individual elements were somehow turned off and the gravitational force \(\vec{F}_{g}\) at the center of gravity were turned on, the net force and the net torque (about any point) acting on the body would not change.

Until now, we have assumed that the gravitational force \(\vec{F}_{g}\) acts at the center of mass (com) of the body. This is equivalent to assuming that the center of gravity is at the center of mass. Recall that, for a body of mass \(M\), the force \(\vec{F}_{g}\) is equal to \(M \vec{g}\), where \(\vec{g}\) is the acceleration that the force would produce if the body were
to fall freely. In the proof that follows, we show that

If \(\vec{g}\) is the same for all elements of a body, then the body's center of gravity ( \(\operatorname{cog}\) ) is coincident with the body's center of mass (com).

This is approximately true for everyday objects because \(\vec{g}\) varies only a little along Earth's surface and decreases in magnitude only slightly with altitude. Thus, for objects like a mouse or a moose, we have been justified in assuming that the gravitational force acts at the center of mass. After the following proof, we shall resume that assumption.

\section*{Proof}

First, we consider the individual elements of the body. Figure \(12-4 a\) shows an extended body, of mass \(M\), and one of its elements, of mass \(m_{i}\). A gravitational force \(\vec{F}_{g i}\) acts on each such element and is equal to \(m_{i} \vec{g}_{i}\). The subscript on \(\vec{g}_{i}\) means \(\vec{g}_{i}\) is the gravitational acceleration at the location of the element \(i\) (it can be different for other elements).

For the body in Fig. 12-4 \(a\), each force \(\vec{F}_{g i}\) acting on an element produces a torque \(\tau_{i}\) on the element about the origin \(O\), with a moment arm \(x_{i}\). Using Eq. 10\(41\left(\tau=r_{\perp} F\right)\) as a guide, we can write each torque \(\tau_{i}\) as
\[
\begin{equation*}
\tau_{i}=x_{i} F_{g i} \tag{12-10}
\end{equation*}
\]

The net torque on all the elements of the body is then
\[
\begin{equation*}
\tau_{\mathrm{net}}=\sum \tau_{i}=\sum x_{i} F_{g i} \tag{12-11}
\end{equation*}
\]

Next, we consider the body as a whole. Figure \(12-4 b\) shows the gravitational force \(\vec{F}_{g}\) acting at the body's center of gravity. This force produces a torque \(\tau\) on the body about \(O\), with moment arm \(x_{\text {cog }}\). Again using Eq. 10-41, we can write this torque as
\[
\begin{equation*}
\tau=x_{\operatorname{cog}} F_{g} \tag{12-12}
\end{equation*}
\]

The gravitational force \(\vec{F}_{g}\) on the body is equal to the sum of the gravitational forces \(\vec{F}_{g i}\) on all its elements, so we can substitute \(\Sigma F_{g i}\) for \(F_{g}\) in Eq. 12-12 to write
\[
\begin{equation*}
\tau=x_{\mathrm{cog}} \sum F_{g i} \tag{12-13}
\end{equation*}
\]

Now recall that the torque due to force \(\vec{F}_{g_{\vec{~}}}\) acting at the center of gravity is equal to the net torque due to all the forces \(\vec{F}_{g i}\) acting on all the elements of the body. (That is how we defined the center of gravity.) Thus, \(\tau\) in Eq. 12-13 is equal to \(\tau_{\text {net }}\) in Eq. 12-11. Putting those two equations together, we can write
\[
x_{\mathrm{cog}} \sum F_{g i}=\sum x_{i} F_{g i}
\]

Substituting \(m_{i} g_{i}\) for \(F_{g i}\) gives us
\[
\begin{equation*}
x_{\operatorname{cog}} \sum m_{i} g_{i}=\sum x_{i} m_{i} g_{i} \tag{12-14}
\end{equation*}
\]

Now here is a key idea: If the accelerations \(g_{i}\) at all the locations of the elements are the same, we can cancel \(g_{i}\) from this equation to write
\[
\begin{equation*}
x_{\operatorname{cog}} \sum m_{i}=\sum x_{i} m_{i} . \tag{12-15}
\end{equation*}
\]

The sum \(\Sigma m_{i}\) of the masses of all the elements is the mass \(M\) of the body. Therefore, we can rewrite Eq. 12-15 as
\[
\begin{equation*}
x_{\operatorname{cog}}=\frac{1}{M} \sum x_{i} m_{i} \tag{12-16}
\end{equation*}
\]


Figure 12-4 (a) An element of mass \(m_{i}\) in an extended body. The gravitational force \(\vec{F}_{g i}\) on the element has moment arm \(x_{i}\) about the origin \(O\) of the coordinate system. (b) The gravitational force \(\vec{F}_{g}\) on a body is said to act at the center of gravity \((\operatorname{cog})\) of the body. Here \(\vec{F}_{g}\) has moment arm \(x_{\operatorname{cog}}\) about origin \(O\).

The right side of this equation gives the coordinate \(x_{\text {com }}\) of the body's center of mass (Eq. 9-4). We now have what we sought to prove. If the acceleration of gravity is the same at all locations of the elements in a body, then the coordinates of the body's com and cog are identical:
\[
\begin{equation*}
x_{\mathrm{cog}}=x_{\mathrm{com}} . \tag{12-17}
\end{equation*}
\]

\section*{12-2 some examples of static equilibrium}

\section*{Learning Objectives}

After reading this module, you should be able to ...
12.05 Apply the force and torque conditions for static equilibrium.
12.06 Identify that a wise choice about the placement of the
origin (about which to calculate torques) can simplify the calculations by eliminating one or more unknown forces from the torque equation.

\section*{Key Ideas}
- A rigid body at rest is said to be in static equilibrium. For such a body, the vector sum of the external forces acting on it is zero:
\[
\vec{F}_{\text {net }}=0 \quad \text { (balance of forces) }
\]

If all the forces lie in the \(x y\) plane, this vector equation is equivalent to two component equations:
\[
F_{\text {net }, x}=0 \quad \text { and } \quad F_{\text {net }, y}=0 \quad \text { (balance of forces). }
\]

Static equilibrium also implies that the vector sum of the external torques acting on the body about any point is zero, or
\[
\vec{\tau}_{\text {net }}=0 \quad \text { (balance of torques) }
\]

If the forces lie in the \(x y\) plane, all torque vectors are parallel to the \(z\) axis, and the balance-of-torques equation is equivalent to the single component equation
\[
\tau_{\text {net }, z}=0 \quad \text { (balance of torques). }
\]

\section*{Some Examples of Static Equilibrium}

Here we examine several sample problems involving static equilibrium. In each, we select a system of one or more objects to which we apply the equations of equilibrium (Eqs. 12-7, 12-8, and 12-9). The forces involved in the equilibrium are all in the \(x y\) plane, which means that the torques involved are parallel to the \(z\) axis. Thus, in applying Eq. 12-9, the balance of torques, we select an axis parallel to the \(z\) axis about which to calculate the torques. Although Eq. 12-9 is satisfied for any such choice of axis, you will see that certain choices simplify the application of Eq. 12-9 by eliminating one or more unknown force terms.

\section*{Checkpoint 2}

The figure gives an overhead view of a uniform rod in static equilibrium. (a) Can you find the magnitudes of unknown forces \(\vec{F}_{1}\) and \(\vec{F}_{2}\) by balancing the forces? (b) If you wish to find the magnitude of force \(\vec{F}_{2}\) by using a balance of torques equation, where should you place a rotation axis to eliminate \(\vec{F}_{1}\) from the equation? (c) The magnitude of \(\vec{F}_{2}\) turns out to be 65 N . What then is the magnitude of \(\vec{F}_{1}\) ?


\section*{Sample Problem 12.01 Balancing a horizontal beam}

In Fig. 12-5a, a uniform beam, of length \(L\) and mass \(m=1.8 \mathrm{~kg}\), is at rest on two scales. A uniform block, with mass \(M=2.7 \mathrm{~kg}\), is at rest on the beam, with its center a distance \(L / 4\) from the beam's left end. What do the scales read?

\section*{KEY IDEAS}

The first steps in the solution of any problem about static equilibrium are these: Clearly define the system to be analyzed and then draw a free-body diagram of it, indicating all the forces on the system. Here, let us choose the system as the beam and block taken together. Then the forces on the system are shown in the free-body diagram of Fig. 12-5b. (Choosing the system takes experience, and often there can be more than one good choice.) Because the system is in static equilibrium, we can apply the balance of forces equations (Eqs. 12-7 and 12-8) and the balance of torques equation (Eq. 12-9) to it.

Calculations: The normal forces on the beam from the scales are \(\vec{F}_{l}\) on the left and \(\vec{F}_{r}\) on the right. The scale readings that we want are equal to the magnitudes of those forces. The gravitational force \(\vec{F}_{g, b e a m}\) on the beam acts at the beam's center of mass and is equal to \(m \vec{g}\). Similarly, the gravitational force \(\vec{F}_{g, \text { block }}\) on the block acts at the block's center of mass and is equal to \(M \vec{g}\). However, to simplify Fig. \(12-5 b\), the block is represented by a dot within the boundary of the beam and vector \(\vec{F}_{g, \text { block }}\) is drawn with its tail on that dot. (This shift of the vector \(\vec{F}_{g, \text { block }}\) along its line of action does not alter the torque due to \(\vec{F}_{g, \text { block }}\) about any axis perpendicular to the figure.)

The forces have no \(x\) components, so Eq. 12-7 \(\left(F_{\text {net }, x}=0\right)\) provides no information. For the \(y\) components, Eq. 12-8 \(\left(F_{\text {net }, y}=0\right)\) gives us
\[
\begin{equation*}
F_{l}+F_{r}-M g-m g=0 \tag{12-18}
\end{equation*}
\]

This equation contains two unknowns, the forces \(F_{l}\) and \(F_{r}\), so we also need to use Eq. 12-9, the balance of torques equation. We can apply it to any rotation axis perpendicular to the plane of Fig. 12-5. Let us choose a rotation axis through the left end of the beam. We shall also use our general rule for assigning signs to torques: If a torque would cause an initially stationary body to rotate clockwise about the rotation axis, the torque is negative. If the rotation would be counterclockwise, the torque is positive. Finally, we shall write the torques in the form \(r_{\perp} F\), where the moment arm \(r_{\perp}\) is 0 for \(\vec{F}_{l}, L / 4\) for \(M \vec{g}, L / 2\) for \(m \vec{g}\), and \(L\) for \(\vec{F}_{r}\).

We now can write the balancing equation \(\left(\tau_{\text {net }, z}=0\right)\) as
\[
(0)\left(F_{l}\right)-(L / 4)(M g)-(L / 2)(m g)+(L)\left(F_{r}\right)=0
\]

(b)

Figure 12-5 (a) A beam of mass \(m\) supports a block of mass \(M\). (b) A free-body diagram, showing the forces that act on the system beam + block.
which gives us
\[
\begin{aligned}
F_{r} & =\frac{1}{4} M g+\frac{1}{2} m g \\
& =\frac{1}{4}(2.7 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)+\frac{1}{2}(1.8 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =15.44 \mathrm{~N} \approx 15 \mathrm{~N} .
\end{aligned}
\]
(Answer)
Now, solving Eq. 12-18 for \(F_{l}\) and substituting this result, we find
\[
\begin{aligned}
F_{l} & =(M+m) g-F_{r} \\
& =(2.7 \mathrm{~kg}+1.8 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)-15.44 \mathrm{~N} \\
& =28.66 \mathrm{~N} \approx 29 \mathrm{~N} .
\end{aligned}
\]
(Answer)
Notice the strategy in the solution: When we wrote an equation for the balance of force components, we got stuck with two unknowns. If we had written an equation for the balance of torques around some arbitrary axis, we would have again gotten stuck with those two unknowns. However, because we chose the axis to pass through the point of application of one of the unknown forces, here \(\vec{F}_{l}\), we did not get stuck. Our choice neatly eliminated that force from the torque equation, allowing us to solve for the other unknown force magnitude \(F_{r}\). Then we returned to the equation for the balance of force components to find the remaining unknown force magnitude.

\section*{Sample Problem 12.02 Balancing a leaning boom}

Figure \(12-6 a\) shows a safe (mass \(M=430 \mathrm{~kg}\) ) hanging by a rope (negligible mass) from a boom ( \(a=1.9 \mathrm{~m}\) and \(b=\) 2.5 m ) that consists of a uniform hinged beam ( \(m=85 \mathrm{~kg}\) ) and horizontal cable (negligible mass).
(a) What is the tension \(T_{c}\) in the cable? In other words, what is the magnitude of the force \(\vec{T}_{c}\) on the beam from the cable?

\section*{KEY IDEAS}

The system here is the beam alone, and the forces on it are shown in the free-body diagram of Fig. 12-6b. The force from the cable is \(\vec{T}_{c}\). The gravitational force on the beam acts at the beam's center of mass (at the beam's center) and is represented by its equivalent \(m \vec{g}\). The vertical component of the force on the beam from the hinge is \(\vec{F}_{v}\), and the horizontal component of the force from the hinge is \(\vec{F}_{h}\). The force from the rope supporting the safe is \(\vec{T}_{r}\). Because beam, rope, and safe are stationary, the magnitude of \(\vec{T}_{r}\) is equal to the weight of the safe: \(T_{r}=M g\). We place the origin \(O\) of an \(x y\) coordinate system at the hinge. Because the system is in static equilibrium, the balancing equations apply to it.

Calculations: Let us start with Eq. 12-9 \(\left(\tau_{\text {net, }, 2}=0\right)\). Note that we are asked for the magnitude of force \(\vec{T}_{c}\) and not of forces \(\vec{F}_{\vec{h}}\) and \(\vec{F}_{v}\) acting at the hinge, at point \(O\). To eliminate \(\vec{F}_{h}\) and \(\vec{F}_{v}\) from the torque calculation, we should calculate torques about an axis that is perpendicular to the figure at point \(O\). Then \(\vec{F}_{h}\) and \(\vec{F}_{\vec{v}}\) will have moment arms of zero. The lines of action for \(\vec{T}_{c}, \vec{T}_{r}\), and \(m \vec{g}\) are dashed in Fig. 12-6b. The corresponding moment arms are \(a, b\), and \(b / 2\).

Writing torques in the form of \(r_{\perp} F\) and using our rule about signs for torques, the balancing equation \(\tau_{\text {net, } z}=0\) becomes
\[
\begin{equation*}
(a)\left(T_{c}\right)-(b)\left(T_{r}\right)-\left(\frac{1}{2} b\right)(m g)=0 \tag{12-19}
\end{equation*}
\]

Substituting \(M g\) for \(T_{r}\) and solving for \(T_{c}\), we find that
\[
\begin{aligned}
T_{c} & =\frac{g b\left(M+\frac{1}{2} m\right)}{a} \\
& =\frac{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(2.5 \mathrm{~m})(430 \mathrm{~kg}+85 / 2 \mathrm{~kg})}{1.9 \mathrm{~m}} \\
& =6093 \mathrm{~N} \approx 6100 \mathrm{~N} .
\end{aligned}
\]
(Answer)
(b) Find the magnitude \(F\) of the net force on the beam from the hinge.

\section*{KEY IDEA}

Now we want the horizontal component \(F_{h}\) and vertical component \(F_{v}\) so that we can combine them to get the

Figure 12-6 (a) A heavy safe is hung from a boom consisting of a horizontal steel cable and a uniform beam. (b) A free-body diagram for the beam.
(a)


Here is the wise choice of rotation axis.
(b)

magnitude \(F\) of the net force. Because we know \(T_{c}\), we apply the force balancing equations to the beam.
Calculations: For the horizontal balance, we can rewrite \(F_{\text {net }, x}=0\) as
\[
\begin{equation*}
F_{h}-T_{c}=0 \tag{12-20}
\end{equation*}
\]
and so
\[
F_{h}=T_{c}=6093 \mathrm{~N} .
\]

For the vertical balance, we write \(F_{\text {net }, y}=0\) as
\[
F_{v}-m g-T_{r}=0
\]

Substituting \(M g\) for \(T_{r}\) and solving for \(F_{v}\), we find that
\[
\begin{aligned}
F_{v} & =(m+M) g=(85 \mathrm{~kg}+430 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =5047 \mathrm{~N}
\end{aligned}
\]

From the Pythagorean theorem, we now have
\[
\begin{aligned}
F & =\sqrt{F_{h}^{2}+F_{v}^{2}} \\
& =\sqrt{(6093 \mathrm{~N})^{2}+(5047 \mathrm{~N})^{2}} \approx 7900 \mathrm{~N}
\end{aligned}
\]
(Answer)
Note that \(F\) is substantially greater than either the combined weights of the safe and the beam, 5000 N , or the tension in the horizontal wire, 6100 N .

\section*{Sample Problem 12.03 Balancing a leaning ladder}

In Fig. 12-7a, a ladder of length \(L=12 \mathrm{~m}\) and mass \(m=\) 45 kg leans against a slick wall (that is, there is no friction between the ladder and the wall). The ladder's upper end is at height \(h=9.3 \mathrm{~m}\) above the pavement on which the lower end is supported (the pavement is not frictionless). The ladder's center of mass is \(L / 3\) from the lower end, along the length of the ladder. A firefighter of mass \(M=72 \mathrm{~kg}\) climbs the ladder until her center of mass is \(L / 2\) from the lower end. What then are the magnitudes of the forces on the ladder from the wall and the pavement?

\section*{KEY IDEAS}

First, we choose our system as being the firefighter and ladder, together, and then we draw the free-body diagram of Fig. \(12-7 b\) to show the forces acting on the system. Because the system is in static equilibrium, the balancing equations for both forces and torques (Eqs. 12-7 through 12-9) can be applied to it.

Calculations: In Fig. 12-7b, the firefighter is represented with a dot within the boundary of the ladder. The gravitational force on her is represented with its equivalent expression \(M \vec{g}\), and that vector has been shifted along its line of action (the
line extending through the force vector), so that its tail is on the dot. (The shift does not alter a torque due to \(M \vec{g}\) about any axis perpendicular to the figure. Thus, the shift does not affect the torque balancing equation that we shall be using.)

The only force on the ladder from the wall is the horizontal force \(\vec{F}_{w}\) (there cannot be a frictional force along a frictionless wall, so there is no vertical force on the ladder from the wall). The force \(\vec{F}_{p}\) on the ladder from the pavement has two components: a horizontal component \(\vec{F}_{p x}\) that is a static frictional force and a vertical component \(\vec{F}_{p y}\) that is a normal force.

To apply the balancing equations, let's start with the torque balancing of Eq. 12-9 \(\left(\tau_{\text {net }, z}=0\right)\). To choose an axis about which to calculate the torques, note that we have unknown forces \(\left(\vec{F}_{w}\right.\) and \(\left.\vec{F}_{p}\right)\) at the two ends of the ladder. To eliminate, say, \(\vec{F}_{p}\) from the calculation, we place the axis at point \(O\), perpendicular to the figure (Fig. 12-7b). We also place the origin of an \(x y\) coordinate system at \(O\). We can find torques about \(O\) with any of Eqs. 10-39 through 10-41, but Eq. 10-41 \(\left(\tau=r_{\perp} F\right)\) is easiest to use here. Making a wise choice about the placement of the origin can make our torque calculation much easier.

To find the moment arm \(r_{\perp}\) of the horizontal force \(\vec{F}_{w}\) from the wall, we draw a line of action through that vector


Figure 12-7 (a) A firefighter climbs halfway up a ladder that is leaning against a frictionless wall. The pavement beneath the ladder is not frictionless. (b) A free-body diagram, showing the forces that act on the firefighter + ladder system. The origin \(O\) of a coordinate system is placed at the point of application of the unknown force \(\vec{F}_{p}\) (whose vector components \(\vec{F}_{p x}\) and \(\vec{F}_{p y}\) are shown). (Figure 12-7 continues on following page.)

Figure 12-7 (Continued from previous page)
(c) Calculating the torques. (d) Balancing the forces. In WileyPLUS, this figure is available as an animation with voiceover.

(
Choosing the rotation axis here eliminates the torques due to these forces.
arm is
perpendicular the ne of action.

(d)

These horizontal forces balance.

(it is the horizontal dashed line shown in Fig. 12-7c). Then \(r_{\perp}\) is the perpendicular distance between \(O\) and the line of action. In Fig. 12-7c, \(r_{\perp}\) extends along the \(y\) axis and is equal to the height \(h\). We similarly draw lines of action for the gravitational force vectors \(M \vec{g}\) and \(m \vec{g}\) and see that their moment arms extend along the \(x\) axis. For the distance \(a\) shown in Fig. \(12-7 a\), the moment arms are \(a / 2\) (the firefighter is halfway up the ladder) and \(a / 3\) (the ladder's center of mass is one-third of the way up the ladder), respectively. The moment arms for \(\vec{F}_{p x}\) and \(\vec{F}_{p y}\) are zero because the forces act at the origin.

Now, with torques written in the form \(r_{\perp} F\), the balancing equation \(\tau_{\text {net }, z}=0\) becomes
\[
\begin{align*}
-(h)\left(F_{w}\right)+(a / 2)(M g)+ & (a / 3)(m g) \\
& +(0)\left(F_{p x}\right)+(0)\left(F_{p y}\right)=0 \tag{12-21}
\end{align*}
\]
(A positive torque corresponds to counterclockwise rotation and a negative torque corresponds to clockwise rotation.)

Using the Pythagorean theorem for the right triangle made by the ladder in Fig. 11-7a, we find that
\[
a=\sqrt{L^{2}-h^{2}}=7.58 \mathrm{~m} .
\]

Then Eq. 12-21 gives us
\[
\begin{aligned}
F_{w} & =\frac{g a(M / 2+m / 3)}{h} \\
& =\frac{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(7.58 \mathrm{~m})(72 / 2 \mathrm{~kg}+45 / 3 \mathrm{~kg})}{9.3 \mathrm{~m}} \\
& =407 \mathrm{~N} \approx 410 \mathrm{~N} .
\end{aligned}
\]
(Answer)
Now we need to use the force balancing equations and Fig. 12-7d. The equation \(F_{\text {net }, x}=0\) gives us
\[
\begin{gathered}
F_{w}-F_{p x}=0 \\
F_{p x}=F_{w}=410 \mathrm{~N}
\end{gathered}
\]
(Answer)
The equation \(F_{\text {net }, y}=0\) gives us
\[
F_{p y}-M g-m g=0,
\]
so
\[
\begin{aligned}
F_{p y} & =(M+m) g=(72 \mathrm{~kg}+45 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =1146.6 \mathrm{~N} \approx 1100 \mathrm{~N} .
\end{aligned}
\]
(Answer)

\section*{Sample Problem 12.04 Balancing the leaning Tower of Pisa}

Let's assume that the Tower of Pisa is a uniform hollow cylinder of radius \(R=9.8 \mathrm{~m}\) and height \(h=60 \mathrm{~m}\). The center of mass is located at height \(h / 2\), along the cylinder's central axis. In Fig. 12-8a, the cylinder is upright. In Fig. 12-8b, it leans rightward (toward the tower's southern wall) by \(\theta=5.5^{\circ}\), which shifts the com by a distance \(d\). Let's assume that the ground exerts only two forces on the tower. A normal force \(\vec{F}_{N L}\) acts on the left (northern) wall, and a normal force \(\vec{F}_{N R}\) acts on the right (southern) wall. By what percent does the magnitude \(F_{N R}\) increase because of the leaning?

\section*{KEY IDEA}

Because the tower is still standing, it is in equilibrium and thus the sum of torques calculated around any point must be zero.

Calculations: Because we want to calculate \(F_{N R}\) on the right side and do not know or want \(F_{N L}\) on the left side, we use a pivot point on the left side to calculate torques. The forces on the upright tower are represented in Fig. 12-8c. The gravitational force \(m \vec{g}\), taken to act at the com, has a vertical line of action and a moment arm of \(R\) (the perpendicular distance from the pivot to the line of action). About the pivot, the torque associated with this force would tend to create clockwise rotation and thus is negative. The normal force \(\vec{F}_{N R}\) on the southern wall also has a vertical line of action, and its moment arm is \(2 R\). About the pivot, the torque associated with this force would tend to create counterclockwise rotation and thus is positive. We now can write the torque-balancing equation \(\left(\tau_{\text {net }, z}=0\right)\) as
\[
-(R)(m g)+(2 R)\left(F_{N R}\right)=0
\]
which yields
\[
F_{N R}=\frac{1}{2} m g .
\]

We should have been able to guess this result: With the center of mass located on the central axis (the cylinder's line of symmetry), the right side supports half the cylinder's weight.

In Fig. 12-8 \(b\), the com is shifted rightward by distance
\[
d=\frac{1}{2} h \tan \theta
\]

The only change in the balance of torques equation is that the moment arm for the gravitational force is now \(R+d\) and the normal force at the right has a new magnitude \(F_{N R}^{\prime}\) (Fig. 12-8d). Thus, we write
\[
-(R+d)(m g)+(2 R)\left(F_{N R}^{\prime}\right)=0
\]

(a)

(c)

(b)

(d)

Figure 12-8 A cylinder modeling the Tower of Pisa: (a) upright and \((b)\) leaning, with the center of mass shifted rightward. The forces and moment arms to find torques about a pivot at point \(O\) for the cylinder \((c)\) upright and \((d)\) leaning.
which gives us
\[
F_{N R}^{\prime}=\frac{(R+d)}{2 R} m g
\]

Dividing this new result for the normal force at the right by the original result and then substituting for \(d\), we obtain
\[
\frac{F_{N R}^{\prime}}{F_{N R}}=\frac{R+d}{R}=1+\frac{d}{R}=1+\frac{0.5 h \tan \theta}{R}
\]

Substituting the values of \(h=60 \mathrm{~m}, R=9.8 \mathrm{~m}\), and \(\theta=5.5^{\circ}\) leads to
\[
\frac{F_{N R}^{\prime}}{F_{N R}}=1.29
\]

Thus, our simple model predicts that, although the tilt is modest, the normal force on the tower's southern wall has increased by about \(30 \%\). One danger to the tower is that the force may cause the southern wall to buckle and explode outward. The cause of the leaning is the compressible soil beneath the tower, which worsened with each rainfall. Recently engineers have stabilized the tower and partially reversed the leaning by installing a drainage system.

Additional examples, video, and practice available at WileyPLUS

\section*{12-3 ELAStICITY}

\section*{Learning Objectives}

After reading this module, you should be able to ...
12.07 Explain what an indeterminate situation is.
12.08 For tension and compression, apply the equation that relates stress to strain and Young's modulus.
12.09 Distinguish between yield strength and ultimate strength.
12.10 For shearing, apply the equation that relates stress to strain and the shear modulus.
12.11 For hydraulic stress, apply the equation that relates fluid pressure to strain and the bulk modulus.

\section*{Key Ideas}
- Three elastic moduli are used to describe the elastic behavior (deformations) of objects as they respond to forces that act on them. The strain (fractional change in length) is linearly related to the applied stress (force per unit area) by the proper modulus, according to the general stress-strain relation
\[
\text { stress }=\text { modulus } \times \text { strain } .
\]
- When an object is under tension or compression, the stress-strain relation is written as
\[
\frac{F}{A}=E \frac{\Delta L}{L},
\]
where \(\Delta L / L\) is the tensile or compressive strain of the object, \(F\) is the magnitude of the applied force \(\vec{F}\) causing the strain, \(A\) is the cross-sectional area over which \(\vec{F}\) is applied (perpendicular to \(A\) ), and \(E\) is the Young's modulus for the object. The stress is \(F / A\).
- When an object is under a shearing stress, the stress-strain relation is written as
\[
\frac{F}{A}=G \frac{\Delta x}{L},
\]
where \(\Delta x / L\) is the shearing strain of the object, \(\Delta x\) is the displacement of one end of the object in the direction of the applied force \(\vec{F}\), and \(G\) is the shear modulus of the object. The stress is \(F / A\).
When an object undergoes hydraulic compression due to a stress exerted by a surrounding fluid, the stress-strain relation is written as
\[
p=B \frac{\Delta V}{V}
\]
where \(p\) is the pressure (hydraulic stress) on the object due to the fluid, \(\Delta V / V\) (the strain) is the absolute value of the fractional change in the object's volume due to that pressure, and \(B\) is the bulk modulus of the object.

\section*{Indeterminate Structures}

For the problems of this chapter, we have only three independent equations at our disposal, usually two balance of forces equations and one balance-of-torques equation about a given rotation axis. Thus, if a problem has more than three unknowns, we cannot solve it.

Consider an unsymmetrically loaded car. What are the forces-all differenton the four tires? Again, we cannot find them because we have only three independent equations. Similarly, we can solve an equilibrium problem for a table with three legs but not for one with four legs. Problems like these, in which there are more unknowns than equations, are called indeterminate.

Yet solutions to indeterminate problems exist in the real world. If you rest the tires of the car on four platform scales, each scale will register a definite reading, the sum of the readings being the weight of the car. What is eluding us in our efforts to find the individual forces by solving equations?

The problem is that we have assumed-without making a great point of it - that the bodies to which we apply the equations of static equilibrium are perfectly rigid. By this we mean that they do not deform when forces are applied to them. Strictly, there are no such bodies. The tires of the car, for example, deform easily under load until the car settles into a position of static equilibrium.

We have all had experience with a wobbly restaurant table, which we usually level by putting folded paper under one of the legs. If a big enough elephant sat on such a table, however, you may be sure that if the table did not collapse, it
would deform just like the tires of a car. Its legs would all touch the floor, the forces acting upward on the table legs would all assume definite (and different) values as in Fig. 12-9, and the table would no longer wobble. Of course, we (and the elephant) would be thrown out onto the street but, in principle, how do we find the individual values of those forces acting on the legs in this or similar situations where there is deformation?

To solve such indeterminate equilibrium problems, we must supplement equilibrium equations with some knowledge of elasticity, the branch of physics and engineering that describes how real bodies deform when forces are applied to them.

\section*{Checkpoint 3}

A horizontal uniform bar of weight 10 N is to hang from a ceiling by two wires that exert upward forces \(\vec{F}_{1}\) and \(\vec{F}_{2}\) on the bar. The figure shows four arrangements for the wires. Which arrangements, if any, are indeterminate (so that we cannot solve for numerical values of \(\vec{F}_{1}\) and \(\vec{F}_{2}\) )?

(a)

(c)

(b)

(d)

\section*{Elasticity}

When a large number of atoms come together to form a metallic solid, such as an iron nail, they settle into equilibrium positions in a three-dimensional lattice, a repetitive arrangement in which each atom is a well-defined equilibrium distance from its nearest neighbors. The atoms are held together by interatomic forces that are modeled as tiny springs in Fig. 12-10. The lattice is remarkably rigid, which is another way of saying that the "interatomic springs" are extremely stiff. It is for this reason that we perceive many ordinary objects, such as metal ladders, tables, and spoons, as perfectly rigid. Of course, some ordinary objects, such as garden hoses or rubber gloves, do not strike us as rigid at all. The atoms that make up these objects do not form a rigid lattice like that of Fig. 12-10 but are aligned in long, flexible molecular chains, each chain being only loosely bound to its neighbors.

All real "rigid" bodies are to some extent elastic, which means that we can change their dimensions slightly by pulling, pushing, twisting, or compressing them. To get a feeling for the orders of magnitude involved, consider a vertical steel rod 1 m long and 1 cm in diameter attached to a factory ceiling. If you hang a subcompact car from the free end of such a rod, the rod will stretch but only by about 0.5 mm , or \(0.05 \%\). Furthermore, the rod will return to its original length when the car is removed.

If you hang two cars from the rod, the rod will be permanently stretched and will not recover its original length when you remove the load. If you hang three cars from the rod, the rod will break. Just before rupture, the elongation of the


Figure 12-9 The table is an indeterminate structure. The four forces on the table legs differ from one another in magnitude and cannot be found from the laws of static equilibrium alone.


Figure 12-10 The atoms of a metallic solid are distributed on a repetitive three-dimensional lattice. The springs represent interatomic forces.


(a)


Figure 12-12 A test specimen used to determine a stress-strain curve such as that of Fig. 12-13. The change \(\Delta L\) that occurs in a certain length \(L\) is measured in a tensile stress-strain test.

Figure 12-13 A stress-strain curve for a steel test specimen such as that of Fig. 12-12. The specimen deforms permanently when the stress is equal to the yield strength of the specimen's material. It ruptures when the stress is equal to the ultimate strength of the material.

Figure 12-11 (a) A cylinder subject to tensile stress stretches by an amount \(\Delta L\). (b) A cylinder subject to shearing stress deforms by an amount \(\Delta x\), somewhat like a pack of playing cards would. (c) A solid sphere subject to uniform hydraulic stress from a fluid shrinks in volume by an amount \(\Delta V\). All the deformations shown are greatly exaggerated.
rod will be less than \(0.2 \%\). Although deformations of this size seem small, they are important in engineering practice. (Whether a wing under load will stay on an airplane is obviously important.)

Three Ways. Figure 12-11 shows three ways in which a solid might change its dimensions when forces act on it. In Fig. 12-11a, a cylinder is stretched. In Fig. 12-11b, a cylinder is deformed by a force perpendicular to its long axis, much as we might deform a pack of cards or a book. In Fig. 12-11c, a solid object placed in a fluid under high pressure is compressed uniformly on all sides. What the three deformation types have in common is that a stress, or deforming force per unit area, produces a strain, or unit deformation. In Fig. 12-11, tensile stress (associated with stretching) is illustrated in (a), shearing stress in (b), and hydraulic stress in (c).

The stresses and the strains take different forms in the three situations of Fig. 12-11, but - over the range of engineering usefulness - stress and strain are proportional to each other. The constant of proportionality is called a modulus of elasticity, so that
\[
\begin{equation*}
\text { stress }=\text { modulus } \times \text { strain } . \tag{12-22}
\end{equation*}
\]

In a standard test of tensile properties, the tensile stress on a test cylinder (like that in Fig. 12-12) is slowly increased from zero to the point at which the cylinder fractures, and the strain is carefully measured and plotted. The result is a graph of stress versus strain like that in Fig. 12-13. For a substantial range of applied stresses, the stress-strain relation is linear, and the specimen recovers its original dimensions when the stress is removed; it is here that Eq. 12-22 applies. If the stress is increased beyond the yield strength \(S_{y}\) of the specimen, the specimen becomes permanently deformed. If the stress continues to increase, the specimen eventually ruptures, at a stress called the ultimate strength \(S_{u}\).

\section*{Tension and Compression}

For simple tension or compression, the stress on the object is defined as \(F / A\), where \(F\) is the magnitude of the force applied perpendicularly to an area \(A\) on the object. The strain, or unit deformation, is then the dimensionless quantity \(\Delta L / L\), the fractional (or sometimes percentage) change in a length of the specimen. If the specimen is a long rod and the stress does not exceed the yield strength, then not only the entire rod but also every section of it experiences the same strain when a given stress is applied. Because the strain is dimensionless, the modulus in Eq. 12-22 has the same dimensions as the stress - namely, force per unit area.

The modulus for tensile and compressive stresses is called the Young's modulus and is represented in engineering practice by the symbol \(E\). Equation \(12-22\) becomes
\[
\begin{equation*}
\frac{F}{A}=E \frac{\Delta L}{L} . \tag{12-23}
\end{equation*}
\]

The strain \(\Delta L / L\) in a specimen can often be measured conveniently with a strain gage (Fig. 12-14), which can be attached directly to operating machinery with an adhesive. Its electrical properties are dependent on the strain it undergoes.

Although the Young's modulus for an object may be almost the same for tension and compression, the object's ultimate strength may well be different for the two types of stress. Concrete, for example, is very strong in compression but is so weak in tension that it is almost never used in that manner. Table 12-1 shows the Young's modulus and other elastic properties for some materials of engineering interest.

\section*{Shearing}

In the case of shearing, the stress is also a force per unit area, but the force vector lies in the plane of the area rather than perpendicular to it. The strain is the dimensionless ratio \(\Delta x / L\), with the quantities defined as shown in Fig. 12-11b. The corresponding modulus, which is given the symbol \(G\) in engineering practice, is called the shear modulus. For shearing, Eq. 12-22 is written as
\[
\begin{equation*}
\frac{F}{A}=G \frac{\Delta x}{L} \tag{12-24}
\end{equation*}
\]

Shearing occurs in rotating shafts under load and in bone fractures due to bending.

\section*{Hydraulic Stress}

In Fig. 12-11c, the stress is the fluid pressure \(p\) on the object, and, as you will see in Chapter 14 , pressure is a force per unit area. The strain is \(\Delta V / V\), where \(V\) is the original volume of the specimen and \(\Delta V\) is the absolute value of the change in volume. The corresponding modulus, with symbol \(B\), is called the bulk modulus of the material. The object is said to be under hydraulic compression, and the pressure can be called the hydraulic stress. For this situation, we write Eq. 12-22 as
\[
\begin{equation*}
p=B \frac{\Delta V}{V} \tag{12-25}
\end{equation*}
\]

The bulk modulus is \(2.2 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}\) for water and \(1.6 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}\) for steel. The pressure at the bottom of the Pacific Ocean, at its average depth of about 4000 m , is \(4.0 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}\). The fractional compression \(\Delta V / V\) of a volume of water due to this pressure is \(1.8 \%\); that for a steel object is only about \(0.025 \%\). In general, solids-with their rigid atomic lattices-are less compressible than liquids, in which the atoms or molecules are less tightly coupled to their neighbors.

Table 12-1 Some Elastic Properties of Selected Materials of Engineering Interest
\begin{tabular}{|c|c|c|c|c|}
\hline Material & Density \(\rho\) (kg/m \({ }^{3}\) ) & \begin{tabular}{l}
Young's \\
Modulus \(E\)
\[
\left(10^{9} \mathrm{~N} / \mathrm{m}^{2}\right)
\]
\end{tabular} & Ultimate Strength \(S_{u}\) \(\left(10^{6} \mathrm{~N} / \mathrm{m}^{2}\right)\) & \begin{tabular}{l}
Yield \\
Strength \(S_{y}\)
\[
\left(10^{6} \mathrm{~N} / \mathrm{m}^{2}\right)
\]
\end{tabular} \\
\hline Steel \({ }^{a}\) & 7860 & 200 & 400 & 250 \\
\hline Aluminum & 2710 & 70 & 110 & 95 \\
\hline Glass & 2190 & 65 & \(50^{b}\) & - \\
\hline Concrete \({ }^{c}\) & 2320 & 30 & \(40^{\text {b }}\) & - \\
\hline Wood \({ }^{\text {d }}\) & 525 & 13 & \(50^{b}\) & - \\
\hline Bone & 1900 & \(9^{b}\) & \(170^{\text {b }}\) & - \\
\hline Polystyrene & 1050 & 3 & 48 & - \\
\hline \multicolumn{2}{|l|}{\({ }^{a}\) Structural steel (ASTM-A36). \({ }^{c}\) High strength} & compression ouglas fir. & & \\
\hline
\end{tabular}
 of Vishay Precision Group, Raleigh, NC

Figure 12-14 A strain gage of overall dimensions 9.8 mm by 4.6 mm . The gage is fastened with adhesive to the object whose strain is to be measured; it experiences the same strain as the object. The electrical resistance of the gage varies with the strain, permitting strains up to \(3 \%\) to be measured.

\section*{Sample Problem 12.05 Stress and strain of elongated rod}

One end of a steel rod of radius \(R=9.5 \mathrm{~mm}\) and length \(L=81 \mathrm{~cm}\) is held in a vise. A force of magnitude \(F=62 \mathrm{kN}\) is then applied perpendicularly to the end face (uniformly across the area) at the other end, pulling directly away from the vise. What are the stress on the rod and the elongation \(\Delta L\) and strain of the rod?

\section*{KEY IDEAS}
(1) Because the force is perpendicular to the end face and uniform, the stress is the ratio of the magnitude \(F\) of the force to the area \(A\). The ratio is the left side of Eq. 12-23. (2) The elongation \(\Delta L\) is related to the stress and Young's modulus \(E\) by Eq. 12-23 \((F / A=E \Delta L / L)\). (3) Strain is the ratio of the elongation to the initial length \(L\).

Calculations: To find the stress, we write

\section*{Sample Problem 12.06 Balancing a wobbly table}

A table has three legs that are 1.00 m in length and a fourth leg that is longer by \(d=0.50 \mathrm{~mm}\), so that the table wobbles slightly. A steel cylinder with mass \(M=290 \mathrm{~kg}\) is placed on the table (which has a mass much less than \(M\) ) so that all four legs are compressed but unbuckled and the table is level but no longer wobbles. The legs are wooden cylinders with cross-sectional area \(A=1.0 \mathrm{~cm}^{2}\); Young's modulus is \(E=1.3 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}\). What are the magnitudes of the forces on the legs from the floor?

\section*{KEY IDEAS}

We take the table plus steel cylinder as our system. The situation is like that in Fig. 12-9, except now we have a steel cylinder on the table. If the tabletop remains level, the legs must be compressed in the following ways: Each of the short legs must be compressed by the same amount (call it \(\Delta L_{3}\) ) and thus by the same force of magnitude \(F_{3}\). The single long leg must be compressed by a larger amount \(\Delta L_{4}\) and thus by a force with a larger magnitude \(F_{4}\). In other words, for a level tabletop, we must have
\[
\begin{equation*}
\Delta L_{4}=\Delta L_{3}+d \tag{12-26}
\end{equation*}
\]

From Eq. 12-23, we can relate a change in length to the force causing the change with \(\Delta L=F L / A E\), where \(L\) is the original length of a leg. We can use this relation to replace \(\Delta L_{4}\) and \(\Delta L_{3}\) in Eq. 12-26. However, note that we can approximate the original length \(L\) as being the same for all four legs.

Calculations: Making those replacements and that approxi-
\[
\begin{aligned}
\text { stress } & =\frac{F}{A}=\frac{F}{\pi R^{2}}=\frac{6.2 \times 10^{4} \mathrm{~N}}{(\pi)\left(9.5 \times 10^{-3} \mathrm{~m}\right)^{2}} \\
& =2.2 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2} . \quad \text { (Answer) }
\end{aligned}
\]

The yield strength for structural steel is \(2.5 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}\), so this rod is dangerously close to its yield strength.

We find the value of Young's modulus for steel in Table 12-1. Then from Eq. 12-23 we find the elongation:
\[
\begin{aligned}
\Delta L & =\frac{(F / A) L}{E}=\frac{\left(2.2 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}\right)(0.81 \mathrm{~m})}{2.0 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}} \\
& =8.9 \times 10^{-4} \mathrm{~m}=0.89 \mathrm{~mm} .
\end{aligned}
\]
(Answer)
For the strain, we have
\[
\begin{aligned}
\frac{\Delta L}{L} & =\frac{8.9 \times 10^{-4} \mathrm{~m}}{0.81 \mathrm{~m}} \\
& =1.1 \times 10^{-3}=0.11 \%
\end{aligned}
\]
(Answer)
mation gives us
\[
\begin{equation*}
\frac{F_{4} L}{A E}=\frac{F_{3} L}{A E}+d \tag{12-27}
\end{equation*}
\]

We cannot solve this equation because it has two unknowns, \(F_{4}\) and \(F_{3}\).

To get a second equation containing \(F_{4}\) and \(F_{3}\), we can use a vertical \(y\) axis and then write the balance of vertical forces \(\left(F_{\text {net }, y}=0\right)\) as
\[
\begin{equation*}
3 F_{3}+F_{4}-M g=0 \tag{12-28}
\end{equation*}
\]
where \(M g\) is equal to the magnitude of the gravitational force on the system. (Three legs have force \(\vec{F}_{3}\) on them.) To solve the simultaneous equations 12-27 and 12-28 for, say, \(F_{3}\), we first use Eq. 12-28 to find that \(F_{4}=M g-3 F_{3}\). Substituting that into Eq. 12-27 then yields, after some algebra,
\[
\begin{aligned}
F_{3}= & \frac{M g}{4}-\frac{d A E}{4 L} \\
= & \frac{(290 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{4} \\
& -\frac{\left(5.0 \times 10^{-4} \mathrm{~m}\right)\left(10^{-4} \mathrm{~m}^{2}\right)\left(1.3 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}\right)}{(4)(1.00 \mathrm{~m})}
\end{aligned}
\]
\[
=548 \mathrm{~N} \approx 5.5 \times 10^{2} \mathrm{~N}
\]
(Answer)
From Eq. 12-28 we then find
\[
\begin{aligned}
F_{4} & =M g-3 F_{3}=(290 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)-3(548 \mathrm{~N}) \\
& \approx 1.2 \mathrm{kN} . \quad \text { (Answer) }
\end{aligned}
\]

You can show that the three short legs are each compressed by 0.42 mm and the single long leg by 0.92 mm .

\section*{Seview \& Summary}

Static Equilibrium A rigid body at rest is said to be in static equilibrium. For such a body, the vector sum of the external forces acting on it is zero:
\[
\begin{equation*}
\vec{F}_{\text {net }}=0 \quad \text { (balance of forces). } \tag{12-3}
\end{equation*}
\]

If all the forces lie in the \(x y\) plane, this vector equation is equivalent to two component equations:
\[
\begin{equation*}
F_{\text {net }, x}=0 \quad \text { and } \quad F_{\text {net }, y}=0 \quad \text { (balance of forces). } \tag{12-7,12-8}
\end{equation*}
\]

Static equilibrium also implies that the vector sum of the external torques acting on the body about any point is zero, or
\[
\begin{equation*}
\vec{\tau}_{\text {net }}=0 \quad \text { (balance of torques) } \tag{12-5}
\end{equation*}
\]

If the forces lie in the \(x y\) plane, all torque vectors are parallel to the \(z\) axis, and Eq. \(12-5\) is equivalent to the single component equation
\[
\begin{equation*}
\tau_{\text {net }, z}=0 \quad \text { (balance of torques). } \tag{12-9}
\end{equation*}
\]

Center of Gravity The gravitational force acts individually on each element of a body. The net effect of all individual actions may be found by imagining an equivalent total gravitational force \(\vec{F}_{g}\) acting at the center of gravity. If the gravitational acceleration \(\vec{g}\) is the same for all the elements of the body, the center of gravity is at the center of mass.

Elastic Moduli Three elastic moduli are used to describe the elastic behavior (deformations) of objects as they respond to forces that act on them. The strain (fractional change in length) is linearly related to the applied stress (force per unit area) by the proper modulus, according to the general relation
\[
\begin{equation*}
\text { stress }=\text { modulus } \times \text { strain } \tag{12-22}
\end{equation*}
\]

\section*{Questions}

1 Figure 12-15 shows three situations in which the same horizontal rod is supported by a hinge on a wall at one end and a cord at its other end. Without written calculation, rank the situations according to the magnitudes of (a) the force on the rod from the cord, (b) the vertical force on the rod from the hinge, and (c) the horizontal force on the rod from the hinge, greatest first.


Figure 12-15 Question 1.
2 In Fig. 12-16, a rigid beam is attached to two posts that are fastened to a floor. A small but heavy safe is placed at the six positions indicated, in turn. Assume that the mass of the beam is negligible


Figure 12-16 Question 2.

Tension and Compression When an object is under tension or compression, Eq. 12-22 is written as
\[
\begin{equation*}
\frac{F}{A}=E \frac{\Delta L}{L}, \tag{12-23}
\end{equation*}
\]
where \(\Delta L / L\) is the tensile or compressive strain of the object, \(F\) is the magnitude of the applied force \(\vec{F}\) causing the strain, \(A\) is the cross-sectional area over which \(\vec{F}\) is applied (perpendicular to \(A\), as in Fig. 12-11a), and \(E\) is the Young's modulus for the object. The stress is \(F / A\).

Shearing When an object is under a shearing stress, Eq. 12-22 is written as
\[
\begin{equation*}
\frac{F}{A}=G \frac{\Delta x}{L}, \tag{12-24}
\end{equation*}
\]
where \(\Delta x / L\) is the shearing strain of the object, \(\Delta x\) is the displacement of one end of the object in the direction of the applied force \(\vec{F}\) (as in Fig. 12-11b), and \(G\) is the shear modulus of the object. The stress is \(F / A\).

Hydraulic Stress When an object undergoes hydraulic compression due to a stress exerted by a surrounding fluid, Eq. 12-22 is written as
\[
\begin{equation*}
p=B \frac{\Delta V}{V} \tag{12-25}
\end{equation*}
\]
where \(p\) is the pressure (hydraulic stress) on the object due to the fluid, \(\Delta V / V\) (the strain) is the absolute value of the fractional change in the object's volume due to that pressure, and \(B\) is the bulk modulus of the object.
compared to that of the safe.(a) Rank the positions according to the force on post \(A\) due to the safe, greatest compression first, greatest tension last, and indicate where, if anywhere, the force is zero. (b) Rank them according to the force on post \(B\).
3 Figure 12-17 shows four overhead views of rotating uniform disks that are sliding across a frictionless floor. Three forces, of magnitude \(F, 2 F\), or \(3 F\), act on each disk, either at the rim, at the center, or halfway between rim and center. The force vectors rotate along with the disks, and, in the "snapshots" of Fig. 12-17, point left or right. Which disks are in equilibrium?


Figure 12-17 Question 3.
4 A ladder leans against a frictionless wall but is prevented from falling because of friction between it and the ground. Suppose you shift the base of the ladder toward the wall. Determine whether the following become larger, smaller, or stay the same (in
magnitude): (a) the normal force on the ladder from the ground, (b) the force on the ladder from the wall, (c) the static frictional force on the ladder from the ground, and (d) the maximum value \(f_{s, \text { max }}\) of the static frictional force.
5 Figure 12-18 shows a mobile of toy penguins hanging from a ceiling. Each crossbar is horizontal, has negligible mass, and extends three times as far to the right of the wire supporting it as to the left. Penguin 1 has mass \(m_{1}=48 \mathrm{~kg}\). What are the masses of (a) penguin 2 , (b) penguin 3 , and (c) penguin 4 ?


Figure 12-18 Question 5.
6 Figure 12-19 shows an overhead view of a uniform stick on which four forces act. Suppose we choose a rotation axis through point \(O\), calculate the torques about that axis due to the forces, and find that these


Figure 12-19 Question 6. torques balance. Will the torques balance if, instead, the rotation axis is chosen to be at (a) point \(A\) (on the stick), (b) point \(B\) (on line with the stick), or (c) point \(C\) (off to one side of the stick)? (d) Suppose, instead, that we find that the torques about point \(O\) do not balance. Is there another point about which the torques will balance?
7 In Fig. 12-20, a stationary \(5 \mathrm{~kg} \mathrm{rod} A C\) is held against a wall by a rope and friction between rod and wall. The uniform rod is 1 m long, and angle \(\theta=30^{\circ}\). (a) If you are to find the magnitude of the force \(\vec{T}\) on the rod from the rope with a single equation, at what labeled point should a rotation axis be placed? With that choice of axis and counterclockwise torques positive, what is the sign of (b) the torque \(\tau_{w}\) due to the rod's weight and (c) the torque \(\tau_{r}\) due to the pull on the rod by the rope? (d) Is the magnitude of \(\tau_{r}\) greater than, less than, or equal to the magnitude of \(\tau_{w}\) ?


Figure 12-20 Question 7.

What is the tension in the short cord labeled with \(T\) ?
9 In Fig. 12-22, a vertical rod is hinged at its lower end and attached to a cable at its upper end. A horizontal force \(\vec{F}_{a}\) is to be applied to the rod as shown. If the point at which the force is applied is moved up the rod, does the tension in the cable increase, decrease, or remain the same?
10 Figure 12-23 shows a horizontal block that is suspended by two wires, \(A\) and \(B\), which are identical except for their original lengths. The center of mass of the block is closer to wire \(B\) than to wire \(A\). (a) Measuring torques about the


Figure 12-22 Question 9. block's center of mass, state whether the magnitude of the torque due to wire \(A\) is greater than, less than, or equal to the magnitude of the torque due to wire \(B\). (b) Which wire exerts more force on the block? (c) If the wires are now equal in length, which one was originally shorter (before the block was suspended)?
11 The table gives the initial lengths of three rods and the changes in their lengths when forces are applied to their ends to put them under strain. Rank the rods according to their strain, greatest first.
\begin{tabular}{lcc}
\hline & Initial Length & Change in Length \\
\hline \(\operatorname{Rod} A\) & \(2 L_{0}\) & \(\Delta L_{0}\) \\
\(\operatorname{Rod} B\) & \(4 L_{0}\) & \(2 \Delta L_{0}\) \\
\(\operatorname{Rod} C\) & \(10 L_{0}\) & \(4 \Delta L_{0}\) \\
\hline
\end{tabular}

12 A physical therapist gone wild has constructed the (stationary) assembly of massless pulleys and cords seen in Fig. 12-24. One long cord wraps around all the pulleys, and shorter cords suspend pulleys from the ceiling or weights from the pulleys. Except for one, the weights (in newtons) are indicated. (a) What is that last weight? (Hint: When a cord loops halfway around a pulley as here, it pulls on the pulley with a net force that is twice the tension in the cord.) (b) What is the tension in the short cord labeled \(T\) ? (stationary) assembly of massless pulleys and cords seen in Fig. 12-21. One long cord runs from the ceiling at the right to the lower pulley at the left, looping halfway around all the pulleys. Several shorter cords suspend pulleys from the ceiling or piñatas from the pulleys. The weights (in newtons) of two piñatas are given. (a) What is the weight of the third piñata? (Hint: A cord that loops halfway around a pulley pulls on the pulley with a net force that is twice the tension in the cord.) (b)


Figure 12-21 Question 8.


Figure 12-24 Question 12.

\section*{8roblems}
\begin{tabular}{|c|c|c|c|}
\hline © 6 & \multicolumn{3}{|l|}{Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign} \\
\hline SSM & Worked-out solution available in Student Solutions Manual Number of dots indicates level of problem difficulty & WWW Worked-out solution is at ILW Interactive solution is at & \multirow[t]{2}{*}{http://www.wiley.com/college/halliday} \\
\hline +5 & dditional information available in The Flying Circus of \(P\) & & \\
\hline
\end{tabular}

\section*{Module 12-1 Equilibrium}
-1 Because \(g\) varies so little over the extent of most structures, any structure's center of gravity effectively coincides with its center of mass. Here is a fictitious example where \(g\) varies more significantly. Figure \(12-25\) shows an array of six particles, each with mass \(m\), fixed to the edge of a rigid structure of negligible mass. The distance between adjacent particles along the edge is 2.00 m . The following table gives the value of \(g\) \(\left(\mathrm{m} / \mathrm{s}^{2}\right)\) at each particle's location. Using the


Figure 12-25 Problem 1. coordinate system shown, find (a) the \(x\) coordinate \(x_{\mathrm{com}}\) and (b) the \(y\) coordinate \(y_{\mathrm{com}}\) of the center of mass of the six-particle system. Then find (c) the \(x\) coordinate \(x_{\text {cog }}\) and (d) the \(y\) coordinate \(y_{\text {cog }}\) of the center of gravity of the six-particle system.
\begin{tabular}{cc|cc}
\hline Particle & \(g\) & Particle & \(g\) \\
\hline 1 & 8.00 & 4 & 7.40 \\
2 & 7.80 & 5 & 7.60 \\
3 & 7.60 & 6 & 7.80 \\
\hline
\end{tabular}

\section*{Module 12-2 Some Examples of Static Equilibrium}
-2 An automobile with a mass of 1360 kg has 3.05 m between the front and rear axles. Its center of gravity is located 1.78 m behind the front axle. With the automobile on level ground, determine the magnitude of the force from the ground on (a) each front wheel (assuming equal forces on the front wheels) and (b) each rear wheel (assuming equal forces on the rear wheels).
-3 ssm www In Fig. 12-26, a uniform sphere of mass \(m=0.85 \mathrm{~kg}\) and radius \(r=4.2 \mathrm{~cm}\) is held in place by a massless rope attached to a frictionless wall a distance \(L=8.0 \mathrm{~cm}\) above the center of the sphere. Find (a) the tension in the rope and (b) the force on the sphere from the wall.
-4 An archer's bow is drawn at its midpoint until the tension in the string is equal to the force exerted by the archer. What is the angle between the two halves of the string?
-5 ILW A rope of negligible mass is stretched


Figure 12-26 Problem 3. horizontally between two supports that are 3.44 m apart. When an object of weight 3160 N is hung at the center of the rope, the rope is observed to sag by 35.0 cm . What is the tension in the rope?
-6 A scaffold of mass 60 kg and length 5.0 m is supported in a horizontal position by a vertical cable at each end. A window washer of mass 80 kg stands at a point 1.5 m from one end. What is the tension in (a) the nearer cable and (b) the farther cable?
-7 A 75 kg window cleaner uses a 10 kg ladder that is 5.0 m long. He places one end on the ground 2.5 m from a wall, rests the upper end against a cracked window, and climbs the ladder. He is 3.0 m up along the ladder when the window breaks. Neglect friction between the ladder and window and assume that the base of the ladder does not slip. When the window is on the verge of breaking, what are (a) the magnitude of the force on the window from the ladder, (b) the magnitude of the force on the ladder from the ground, and (c) the angle (relative to the horizontal) of that force on the ladder?
-8 A physics Brady Bunch, whose weights in newtons are indicated in Fig. 12-27, is balanced on a seesaw. What is the number of the person who causes the largest torque about the rotation axis at fulcrum \(f\) directed (a) out of the page and (b) into the page?

-9 SSM A meter stick balances horizontally on a knife-edge at the 50.0 cm mark. With two 5.00 g coins stacked over the 12.0 cm mark, the stick is found to balance at the 45.5 cm mark. What is the mass of the meter stick?
-10 ©0 The system in Fig. 12-28 is in equilibrium, with the string in the center exactly horizontal. Block \(A\) weighs 40 N , block \(B\) weighs 50 N , and angle \(\phi\) is \(35^{\circ}\). Find (a) tension \(T_{1}\), (b) tension \(T_{2}\), (c) tension \(T_{3}\), and (d) angle \(\theta\).
-11 SSM Figure 12-29 shows a diver of weight 580 N standing at the end of a diving board with a length of \(L=4.5 \mathrm{~m}\) and negligible mass. The board is fixed to two pedestals (supports) that are separated by distance \(d=1.5 \mathrm{~m}\). Of the forces acting on the board, what are the (a) magnitude and (b) direction (up or down) of the force from the left pedestal and the (c) magnitude and (d) direction (up or down) of the force from the right pedestal? (e) Which


Figure 12-28 Problem 10.


Figure 12-29 Problem 11. pedestal (left or right) is being stretched, and ( f ) which pedestal is being compressed?
-12 In Fig. 12-30, trying to get his car out of mud, a man ties one end of a rope around the front bumper and the other end tightly around a utility pole 18 m away. He then pushes sideways on the rope at its midpoint with a force of 550 N , displacing the center of the rope 0.30 m , but the car barely moves. What is the magnitude of the force on the car from the rope? (The rope stretches somewhat.)


Figure 12-30 Problem 12.
- 13 Figure 12-31 shows the anatomical structures in the lower leg and foot that are involved in standing on tiptoe, with the heel raised slightly off the floor so that the foot effectively contacts the floor only at point \(P\). Assume distance \(a=5.0 \mathrm{~cm}\), distance \(b=15 \mathrm{~cm}\), and the person's weight \(W=900 \mathrm{~N}\). Of the forces acting on the


Figure 12-31 Problem 13. foot, what are the (a) magnitude and (b) direction (up or down) of the force at point \(A\) from the calf muscle and the (c) magnitude and (d) direction (up or down) of the force at point \(B\) from the lower leg bones?
-14 In Fig. 12-32, a horizontal scaffold, of length 2.00 m and uniform mass 50.0 kg , is suspended from a building by two cables. The


Figure 12-32 Problem 14. scaffold has dozens of paint cans stacked on it at various points. The total mass of the paint cans is 75.0 kg . The tension in the cable at the right is 722 N . How far horizontally from that cable is the center of mass of the system of paint cans?
-15 ILW Forces \(\vec{F}_{1}, \vec{F}_{2}\), and \(\vec{F}_{3}\) act on the structure of Fig. 12-33, shown in an overhead view. We wish to put the structure in equilibrium by applying a fourth force, at a point such as \(P\). The fourth force has vector components \(\vec{F}_{h}\) and \(\vec{F}_{v}\). We are given that \(a=2.0 \mathrm{~m}\), \(b=3.0 \mathrm{~m}, c=1.0 \mathrm{~m}, F_{1}=20 \mathrm{~N}, F_{2}=10 \mathrm{~N}\), and \(F_{3}=5.0 \mathrm{~N}\). Find (a) \(F_{h},(\mathrm{~b}) F_{v}\), and (c) \(d\).


Figure 12-33 Problem 15.
-16 A uniform cubical crate is 0.750 m on each side and weighs 500 N. It rests on a floor with one edge against a very small, fixed obstruction. At what least height above the floor must a horizontal force of magnitude 350 N be applied to the crate to tip it?
-17 In Fig. 12-34, a uniform beam of weight 500 N and length 3.0 m is suspended horizontally. On the left it is hinged to a wall; on the right it is supported by a cable bolted to the wall at distance \(D\) above the beam. The least tension that will snap the cable is 1200 N . (a) What value of \(D\) corresponds to that tension? (b) To prevent the cable from snapping, should \(D\) be increased or decreased from that value?
-18 © - In Fig. 12-35, horizontal scaffold 2 , with uniform mass \(m_{2}=30.0\) kg and length \(L_{2}=2.00 \mathrm{~m}\), hangs from horizontal scaffold 1, with uniform mass \(m_{1}=50.0 \mathrm{~kg}\). A 20.0 kg box of nails lies on scaffold 2 , centered at distance \(d=0.500 \mathrm{~m}\) from the left end. What is the tension \(T\) in the cable indicated?
-19 To crack a certain nut in a nutcracker, forces with magnitudes of at least 40 N must act on its shell from both sides. For the nutcracker of Fig. 12-36, with distances \(L=12 \mathrm{~cm}\) and \(d=2.6 \mathrm{~cm}\), what are the force components \(F_{\perp}\) (perpendicular to the handles) corresponding to that 40 N ?
-20 A bowler holds a bowling ball


Figure 12-34 Problem 17.


Figure 12-35 Problem 18.


Figure 12-36 Problem 19. \((M=7.2 \mathrm{~kg})\) in the palm of his hand (Fig. 12-37). His upper arm is vertical; his lower arm ( 1.8 kg ) is horizontal. What is the magnitude of (a) the force of the biceps muscle on the lower arm and (b) the force between the bony structures at the elbow contact point?


Figure 12-37 Problem 20.
-021 ILW The system in Fig. 12-38 is in equilibrium. A concrete block of mass 225 kg hangs from the end of the uniform strut of mass 45.0 kg . A cable runs from the ground, over the top of the strut, and down to the block, holding the block in place. For angles \(\phi=30.0^{\circ}\) and \(\theta=45.0^{\circ}\), find (a) the tension \(T\) in the cable


Figure 12-38 Problem 21. and the (b) horizontal and (c) vertical components of the force on the strut from the hinge.
-.22 ©o In Fig. 12-39, a 55 kg rock climber is in a lie-back climb along a fissure, with hands pulling on one side of the fissure and feet pressed against the opposite side. The fissure has width \(w=0.20 \mathrm{~m}\), and the center of mass of the climber is a horizontal distance \(d=0.40 \mathrm{~m}\) from the fissure. The coefficient of static friction between hands and rock is \(\mu_{1}=0.40\), and between boots and rock it is \(\mu_{2}=1.2\). (a) What is the least horizontal pull by the hands and push by the feet that will keep the climber stable? (b) For the horizontal pull of (a), what must be the vertical distance \(h\) between hands and feet? If the climber encounters wet rock, so that \(\mu_{1}\) and \(\mu_{2}\) are reduced, what happens to (c) the answer to (a) and (d) the answer to (b)?
-23 ©0 In Fig. 12-40, one end of a uniform beam of weight 222 N is hinged to a wall; the other end is supported by a wire that makes angles \(\theta=30.0^{\circ}\) with both wall and beam. Find (a) the tension in the wire and the (b) horizontal and (c) vertical components of the force of the hinge on the beam.
\(\because 24\) In Fig. 12-41, a climber with a weight of 533.8 N is held by a belay rope connected to her climbing harness and belay device; the force of the rope on her has a line of action through her center of mass. The indicated angles are \(\theta=40.0^{\circ}\) and \(\phi=\) \(30.0^{\circ}\). If her feet are on the verge of sliding on the vertical wall, what is the coefficient of static friction between her climbing shoes and the wall?
\(\because 25\) SsM www In Fig. 12-42, what magnitude of (constant) force \(\vec{F}\) applied horizontally at the axle of the wheel is necessary to raise the wheel over a step obstacle of height \(h=3.00 \mathrm{~cm}\) ? The wheel's radius is \(r=\) 6.00 cm , and its mass is \(m=0.800 \mathrm{~kg}\).


Figure 12-39 Problem 22.


Figure 12-40 Problem 23.


Figure 12-41 Problem 24.
feet-ground contact point. If he is on the verge of sliding, what is the coefficient of static friction between feet and ground? \(\bullet 27\) ©o In Fig. 12-44, a 15 kg block is held in place via a pulley system. The person's upper arm is vertical; the forearm is at angle \(\theta=30^{\circ}\) with the horizontal. Forearm and hand together have a mass of 2.0 kg , with a center of mass at distance \(d_{1}=15 \mathrm{~cm}\) from the contact point of the forearm bone and the upper-arm bone (humerus). The triceps muscle pulls vertically upward on the forearm at distance \(d_{2}=2.5 \mathrm{~cm}\) behind that contact point. Distance \(d_{3}\) is 35 cm . What are the (a) magnitude and (b) direction (up or down) of the force on the forearm from the triceps muscle and the (c) magnitude and (d) direction (up or down) of the force on the forearm from the humerus?


Figure 12-43 Problem 26.

Figure 12-44
Problem 27.

-28 © 0 In Fig. 12-45, suppose the length \(L\) of the uniform bar is 3.00 m and its weight is 200 N . Also, let the block's weight \(W=300 \mathrm{~N}\) and the angle \(\theta=30.0^{\circ}\). The wire can withstand a maximum tension of 500 N . (a) What is the maximum possible distance \(x\) before the wire breaks? With the block placed at this maximum \(x\), what are the (b) horizontal and (c) vertical components of the force on the bar from the hinge at \(A\) ?
-029 A door has a height of 2.1 m


Figure 12-42 Problem 25.
-26 © In Fig. 12-43, a climber leans out against a vertical ice wall that has negligible friction. Distance \(a\) is 0.914 m and distance \(L\) is 2.10 m . His center of mass is distance \(d=0.940 \mathrm{~m}\) from the along a \(y\) axis that extends vertically upward and a width of 0.91 m along an \(x\) axis that extends outward from the hinged edge of the door. A hinge 0.30 m from the top and a hinge 0.30 m from the bottom each support half the door's mass, which is 27 kg . In unit-vector notation, what are the forces on the door at (a) the top hinge and (b) the bottom hinge?
-030 ©0 In Fig. 12-46, a 50.0 kg uniform square sign, of edge length \(L=2.00 \mathrm{~m}\), is hung from a horizontal rod of length \(d_{h}=3.00 \mathrm{~m}\) and negligible mass. A cable is attached to the end of the rod


Figure 12-45
Problems 28 and 34.


Figure 12-46 Problem 30.
and to a point on the wall at distance \(d_{v}=4.00 \mathrm{~m}\) above the point where the rod is hinged to the wall. (a) What is the tension in the cable? What are the (b) magnitude and (c) direction (left or right) of the horizontal component of the force on the rod from the wall, and the (d) magnitude and (e) direction (up or down) of the vertical component of this force? -•31 © In Fig. 12-47, a nonuniform bar is suspended at rest in a horizontal position by two massless cords. One cord makes the angle \(\theta=\) \(36.9^{\circ}\) with the vertical; the other makes the angle \(\phi=\) \(53.1^{\circ}\) with the vertical. If the length \(L\) of the bar is 6.10 m ,


Figure 12-47 Problem 31. compute the distance \(x\) from the left end of the bar to its center of mass.
-032 In Fig. 12-48, the driver of a car on a horizontal road makes an emergency stop by applying the brakes so that all four wheels lock and skid along the road. The coefficient of kinetic friction between tires and road is 0.40 . The separation between the front and rear axles is \(L=4.2 \mathrm{~m}\), and the center of mass of the car is located at distance \(d=1.8 \mathrm{~m}\) behind the front axle and distance \(h=0.75 \mathrm{~m}\) above the road. The car weighs 11 kN . Find the magnitude of (a) the braking acceleration of the car, (b) the normal force on each rear wheel, (c) the normal force on each front wheel, (d) the braking force on each rear wheel, and (e) the braking force on each front wheel. (Hint: Although the car is not in translational equilibrium, it is in rotational equilibrium.)

-•33 Figure 12-49a shows a vertical uniform beam of length \(L\) that is hinged at its lower end. A horizontal force \(\vec{F}_{a}\) is applied to


Figure 12-49 Problem 33.
the beam at distance \(y\) from the lower end. The beam remains vertical because of a cable attached at the upper end, at angle \(\theta\) with the horizontal. Figure \(12-49 \mathrm{~b}\) gives the tension \(T\) in the cable as a function of the position of the applied force given as a fraction \(y / L\) of the beam length. The scale of the \(T\) axis is set by \(T_{s}=600 \mathrm{~N}\). Figure \(12-49 c\) gives the magnitude \(F_{h}\) of the horizontal force on the beam from the hinge, also as a function of \(y / L\). Evaluate (a) angle \(\theta\) and (b) the magnitude of \(\vec{F}_{a}\).
-034 In Fig. 12-45, a thin horizontal bar \(A B\) of negligible weight and length \(L\) is hinged to a vertical wall at \(A\) and supported at \(B\) by a thin wire \(B C\) that makes an angle \(\theta\) with the horizontal. A block of weight \(W\) can be moved anywhere along the bar; its position is defined by the distance \(x\) from the wall to its center of mass. As a function of \(x\), find (a) the tension in the wire, and the (b) horizontal and (c) vertical components of the force on the bar from the hinge at \(A\).
-035 SSM WWw A cubical box is filled with sand and weighs 890 N . We wish to "roll" the box by pushing horizontally on one of the upper edges. (a) What minimum force is required? (b) What minimum coefficient of static friction between box and floor is required? (c) If there is a more efficient way to roll the box, find the smallest possible force that would have to be applied directly to the box to roll it. (Hint: At the onset of tipping, where is the normal force located?)
-36 Figure 12-50 shows a 70 kg climber hanging by only the crimp hold of one hand on the edge of a shallow horizontal ledge in a rock wall. (The fingers are pressed down to gain purchase.) Her feet touch the rock wall at distance \(H=2.0 \mathrm{~m}\) directly below her crimped fingers but do not provide any support. Her center of mass is distance \(a=0.20\) m from the wall. Assume that the force from the ledge supporting her fingers is equally shared by the four fingers. What are the values of the (a) horizontal component \(F_{h}\) and (b) vertical component \(F_{v}\) of the force on each fingertip?
-037 ©0 In Fig. 12-51, a uniform plank, with a length \(L\) of 6.10 m and a weight of 445 N , rests on the ground and against a frictionless roller at the top of a wall of height \(h=3.05 \mathrm{~m}\). The plank remains in equilibrium for any value of \(\theta \geq 70^{\circ}\) but slips if \(\theta<70^{\circ}\). Find the coefficient of static friction between the plank and the ground.


Figure 12-50
Problem 36.


Figure 12-51 Problem 37.
-•38 In Fig. 12-52, uniform beams \(A\) and \(B\) are attached to a wall with hinges and loosely bolted together (there is no torque of one on the other). Beam \(A\) has length \(L_{A}=2.40 \mathrm{~m}\) and mass 54.0 kg ; beam \(B\) has mass 68.0 kg . The two hinge points are separated by distance \(d=1.80 \mathrm{~m}\). In unit-vector notation, what is the force on (a) beam \(A\) due to its hinge, (b) beam \(A\) due to the bolt, (c) beam \(B\) due to its hinge, and (d) beam \(B\) due to the bolt?
-0039 For the stepladder shown in Fig. 12-53, sides \(A C\) and \(C E\) are each 2.44 m long and hinged at \(C\). Bar \(B D\) is a tie-rod 0.762 m long, halfway up. A man weighing 854 N climbs 1.80 m along the ladder. Assuming that the floor is frictionless and neglecting the mass of the ladder, find (a) the tension in the tie-rod and the magnitudes of the forces on the ladder from the floor at (b) \(A\) and (c) E. (Hint: Isolate parts of the ladder in applying the equilibrium conditions.)
~0040 Figure 12-54a shows a horizontal uniform beam of mass \(m_{b}\) and length \(L\) that is supported on the left by a hinge attached to a wall and on the right by a cable at angle \(\theta\) with the horizontal. A package of mass \(m_{p}\) is positioned on the beam at a distance \(x\) from the left end. The total mass is \(m_{b}+m_{p}=61.22 \mathrm{~kg}\). Figure 12-54b gives the tension \(T\) in the cable as a function of the package's position given as a fraction \(x / L\) of the beam length. The scale of the \(T\) axis is set by \(T_{a}=500 \mathrm{~N}\) and \(T_{b}=700 \mathrm{~N}\). Evaluate (a) angle \(\theta\),(b) mass \(m_{b}\), and (c) mass \(m_{p}\).

(a)

(b)

Figure 12-54 Problem 40.
00041 A crate, in the form of a cube with edge lengths of 1.2 m , contains a piece of machinery; the center of mass of the crate and its contents is located 0.30 m above the crate's geometrical center. The crate rests on a ramp that makes an angle \(\theta\) with the horizontal. As \(\theta\) is increased from zero, an angle will be reached at which the crate will either tip over or start to slide down the ramp. If the coefficient of static friction \(\mu_{s}\) between ramp and crate is 0.60 , (a) does the crate tip or slide and (b) at what angle \(\theta\) does this occur? If \(\mu_{s}=0.70\), (c) does the crate tip or slide and (d) at what angle \(\theta\) does this occur? (Hint: At the onset of tipping, where is the normal force located?)
00042 In Fig. 12-7 and the associated sample problem, let the coefficient of static friction \(\mu_{s}\) between the ladder and the pavement
be 0.53 . How far (in percent) up the ladder must the firefighter go to put the ladder on the verge of sliding?

\section*{Module 12-3 Elasticity}
-43 SSM ILW A horizontal aluminum rod 4.8 cm in diameter projects 5.3 cm from a wall. A 1200 kg object is suspended from the end of the rod. The shear modulus of aluminum is \(3.0 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}\). Neglecting the rod's mass, find (a) the shear stress on the rod and (b) the vertical deflection of the end of the rod.
-44 Figure 12-55 shows the stress-strain curve for a material. The scale of the stress axis is set by \(s=300\), in units of \(10^{6} \mathrm{~N} / \mathrm{m}^{2}\). What are (a) the Young's modulus and (b) the approximate yield strength for this material?
-045 In Fig. 12-56, a lead brick rests horizontally on cylinders \(A\) and \(B\). The areas of the top faces of the cylinders are related by \(A_{A}=2 A_{B}\); the Young's moduli of the cylinders are related by \(E_{A}=2 E_{B}\). The cylinders had identical lengths before the brick was placed on them. What fraction of the brick's mass is supported (a) by cylinder \(A\) and (b) by cylinder \(B\) ? The horizontal distances between the center of mass of the brick and the centerlines of the


Figure 12-55 Problem 44.


Figure 12-56 Problem 45. cylinders are \(d_{A}\) for cylinder \(A\) and \(d_{B}\) for cylinder \(B\). (c) What is the ratio \(d_{A} / d_{B}\) ?
-046 Figure 12-57 shows an approximate plot of stress versus strain for a spider-web thread, out to the point of breaking at a strain of 2.00 . The vertical axis scale is set by values \(a=0.12\) \(\mathrm{GN} / \mathrm{m}^{2}, b=0.30 \mathrm{GN} / \mathrm{m}^{2}\), and \(c=0.80 \mathrm{GN} / \mathrm{m}^{2}\). Assume that the thread has an initial length of 0.80 cm , an initial cross-sectional area of \(8.0 \times 10^{-12} \mathrm{~m}^{2}\), and (during stretching) a constant volume. The strain on the thread is the ratio of the change in the thread's length to that initial length, and the stress on the thread is the ratio of the collision force to that initial cross-sectional area. Assume that the work done on the thread by the collision force is given by the area under the curve on the graph. Assume also that when the single thread snares a flying insect, the insect's kinetic energy is transferred to the stretching of the thread. (a) How much kinetic energy would put the thread on the verge of breaking? What is the kinetic energy of (b) a fruit fly of mass 6.00 mg and speed \(1.70 \mathrm{~m} / \mathrm{s}\) and (c) a bumble bee of mass 0.388 g and speed \(0.420 \mathrm{~m} / \mathrm{s}\) ? Would (d) the fruit fly and (e) the bumble bee break the thread?


Figure 12-57 Problem 46.
-047 A tunnel of length \(L=150 \mathrm{~m}\), height \(H=7.2 \mathrm{~m}\), and width 5.8 m (with a flat roof) is to be constructed at distance \(d=60 \mathrm{~m}\) beneath the ground. (See Fig. 12-58.) The tunnel roof is to be supported entirely by square steel columns, each with a cross-sectional area of \(960 \mathrm{~cm}^{2}\). The mass of \(1.0 \mathrm{~cm}^{3}\) of the ground material is 2.8 g . (a) What is the total weight of the ground material the columns must support? (b) How many columns are needed to keep the compressive stress on each column at one-half its ultimate strength?


Figure 12-58 Problem 47.
- 48 Figure 12-59 shows the stress versus strain plot for an aluminum wire that is stretched by a machine pulling in opposite directions at the two ends of the wire. The scale of the stress axis is set by \(s=7.0\), in units of \(10^{7} \mathrm{~N} / \mathrm{m}^{2}\). The wire has an initial length of 0.800 m and an initial cross-sectional area of \(2.00 \times 10^{-6}\) \(\mathrm{m}^{2}\). How much work does the force from the machine do on the wire to produce a strain of \(1.00 \times 10^{-3}\) ?
-•49 ©o In Fig. 12-60, a 103 kg uniform \(\log\) hangs by two steel wires, \(A\) and \(B\), both of radius 1.20 mm . Initially, wire \(A\) was 2.50 m long and 2.00 mm shorter than wire \(B\). The log is now horizontal. What are the magnitudes of the forces on it from (a) wire \(A\) and (b) wire \(B\) ? (c) What is the ratio \(d_{A} / d_{B}\) ?
\(\bullet \bullet 50\) eo Figure 12-61 represents an insect caught at the midpoint of a spider-web thread. The thread breaks under a stress of \(8.20 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}\) and a strain of 2.00. Initially, it was horizontal and had a length of 2.00 cm and a cross-sectional area of \(8.00 \times\)


Figure 12-59 Problem 48.


Figure 12-60 Problem 49.


Figure 12-61 Problem 50. \(10^{-12} \mathrm{~m}^{2}\). As the thread was stretched under the weight of the insect, its volume remained constant. If the weight of the insect puts the thread on the verge of breaking, what is the insect's mass? (A spider's web is built to break if a potentially harmful insect, such as a bumble bee, becomes snared in the web.)
\(\bullet \bullet 51\) ©o Figure 12-62 is an overhead view of a rigid rod that turns about a vertical axle until the identical rubber stoppers \(A\) and \(B\)
are forced against rigid walls at distances \(r_{A}=7.0 \mathrm{~cm}\) and \(r_{B}=4.0 \mathrm{~cm}\) from the axle. Initially the stoppers touch the walls without being compressed. Then force \(\vec{F}\) of magnitude 220 N is applied perpendicular to the rod at a distance \(R=5.0 \mathrm{~cm}\) from the axle. Find the magnitude of the force compressing (a) stopper \(A\) and (b) stopper \(B\).


Figure 12-62 Problem 51.

\section*{Additional Problems}

52 After a fall, a 95 kg rock climber finds himself dangling from the end of a rope that had been 15 m long and 9.6 mm in diameter but has stretched by 2.8 cm . For the rope, calculate (a) the strain, (b) the stress, and (c) the Young's modulus.

53 SSM In Fig. 12-63, a rectangular slab of slate rests on a bedrock surface inclined at angle \(\theta=26^{\circ}\). The slab has length \(L=43 \mathrm{~m}\), thickness \(T=2.5 \mathrm{~m}\), and width \(W=12 \mathrm{~m}\), and \(1.0 \mathrm{~cm}^{3}\) of it has a mass of 3.2 g . The coefficient of static friction between slab and bedrock is 0.39 . (a)
 Calculate the component of the gravitational force on the slab parallel to the bedrock surface. (b) Calculate the magnitude of the static frictional force on the slab. By comparing (a) and (b), you can see that the slab is in danger of sliding. This is prevented only by chance protrusions of bedrock. (c) To stabilize the slab, bolts are to be driven perpendicular to the bedrock surface (two bolts are shown). If each bolt has a crosssectional area of \(6.4 \mathrm{~cm}^{2}\) and will snap under a shearing stress of \(3.6 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}\), what is the minimum number of bolts needed? Assume that the bolts do not affect the normal force.
54 A uniform ladder whose length is 5.0 m and whose weight is 400 N leans against a frictionless vertical wall. The coefficient of static friction between the level ground and the foot of the ladder is 0.46 . What is the greatest distance the foot of the ladder can be placed from the base of the wall without the ladder immediately slipping?
55 SSM In Fig. 12-64, block \(A\) (mass 10 kg ) is in equilibrium, but it would slip if block \(B\) (mass 5.0 kg ) were any heavier. For angle \(\theta=30^{\circ}\), what is the coefficient of static friction between block \(A\) and the sur-


Figure 12-64 Problem 55. face below it?
56 Figure 12-65a shows a uniform ramp between two buildings that allows for motion between the buildings due to strong winds.

At its left end, it is hinged to the building wall; at its right end, it has a roller that can roll along the building wall. There is no vertical force on the roller from the building, only a horizontal force with magnitude \(F_{h}\). The horizontal distance between the buildings is \(D=4.00 \mathrm{~m}\). The rise of the ramp is \(h=0.490 \mathrm{~m}\). A man walks across the ramp from the left. Figure \(12-65 b\) gives \(F_{h}\) as a function of the horizontal distance \(x\) of the man from the building at the left. The scale of the \(F_{h}\) axis is set by \(a=20 \mathrm{kN}\) and \(b=25 \mathrm{kN}\). What are the masses of (a) the ramp and (b) the man?


Figure 12-65 Problem 56.

57 (60 In Fig. 12-66, a 10 kg sphere is supported on a frictionless plane inclined at angle \(\theta=45^{\circ}\) from the horizontal. Angle \(\phi\) is \(25^{\circ}\). Calculate the tension in the cable.
58 In Fig. 12-67a, a uniform 40.0 kg beam is centered over two rollers. Vertical lines across the beam mark off equal lengths. Two of the lines are centered over the rollers; a 10.0 kg package of tamales is centered over roller \(B\). What are the magnitudes of the forces on the beam from (a) roller \(A\) and (b) roller \(B\) ? The beam is then rolled to the left until the right-hand end is centered over roller \(B\) (Fig. 12-67b). What now are the magnitudes of the forces on the beam from (c) roller \(A\) and (d) roller \(B\) ? Next, the beam is rolled to the right. Assume that it has a length of 0.800 m . (e) What horizontal distance between the package and roller \(B\) puts the beam on the verge of losing contact with roller \(A\) ?

59 SSIM In Fig. 12-68, an 817 kg construction bucket is suspended by a cable \(A\) that is attached at \(O\) to two other cables \(B\) and \(C\), making angles \(\theta_{1}=51.0^{\circ}\) and \(\theta_{2}=66.0^{\circ}\) with the horizontal. Find the tensions in (a) cable \(A\), (b) cable \(B\), and (c) cable C. (Hint: To avoid solving two equations in two unknowns, position the axes as shown in the figure.)

60 In Fig. 12-69, a package of mass \(m\) hangs from a short cord that is tied to the wall via cord 1 and to the ceiling via cord 2 . Cord 1 is at angle \(\phi=\) \(40^{\circ}\) with the horizontal; cord 2 is at angle \(\theta\). (a) For what value of \(\theta\) is the tension in cord 2 minimized? (b) In terms of \(m g\), what is the minimum tension in cord 2 ?
61 ILW The force \(\vec{F}\) in Fig. 12-70 keeps the 6.40 kg block and the pulleys in equilibrium. The pulleys have negligible mass and friction. Calculate the tension \(T\) in the upper cable. (Hint: When a cable wraps halfway around a pulley as here, the magnitude of its net force on the pulley is twice the tension in the cable.)
62 A mine elevator is supported by a single steel cable 2.5 cm in diameter. The total mass of the elevator cage and occupants is 670 kg . By how much does the cable stretch when the elevator hangs by (a) 12 m of cable and (b) 362 m of cable? (Neglect the mass of the cable.)
63 Four bricks of length \(L\), identical and uniform, are stacked on top of one another (Fig. 12-71) in such a way that part of each extends beyond the one beneath. Find, in terms of \(L\), the maximum values of (a) \(a_{1}\), (b) \(a_{2}\), (c) \(a_{3}\), (d) \(a_{4}\), and (e) \(h\), such that the stack is in equilibrium, on the verge of falling.


Figure 12-70 Problem 61.

64 In Fig. 12-72, two identical, uniform, and frictionless spheres, each of mass \(m\), rest in a rigid rectangular container. A line connecting their centers is at \(45^{\circ}\) to the horizontal. Find the magnitudes of the forces on the spheres from (a) the bottom of the container, (b) the left side of the container, (c) the right side of the container, and (d) each other. (Hint: The force of one sphere on the other is directed along the center-center line.)

Figure 12-72 Problem 64.
65 In Fig. 12-73, a uniform beam with a weight of 60 N and a length of 3.2 m is hinged at its lower end, and a horizontal force \(\vec{F}\) of magnitude 50 N acts at its upper end. The beam is held vertical by a cable that makes angle \(\theta=25^{\circ}\) with the ground and is attached to the beam at height \(h=\) 2.0 m . What are (a) the tension in the cable and (b) the force on the beam from the hinge in unit-vector notation?


Figure 12-73 Problem 65.

66 A uniform beam is 5.0 m long and has a mass of 53 kg . In Fig. 1274 , the beam is supported in a horizontal position by a hinge and a cable, with angle \(\theta=60^{\circ}\). In unit-vector notation, what is the force on the beam from the hinge?

67 A solid copper cube has an edge length of 85.5 cm . How much stress must be applied to the cube to reduce the edge length to 85.0 cm ? The bulk modulus of copper is \(1.4 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}\).

68 A construction worker attempts to lift a uniform beam off the floor and raise it to a vertical position. The beam is 2.50 m long and weighs 500 N . At a certain instant the worker holds the beam momentarily at rest with one end at distance \(d=\) 1.50 m above the floor, as shown in Fig. 12-75, by exerting a force \(\vec{P}\) on the beam, perpendicular to the


Figure 12-75 Problem 68. beam. (a) What is the magnitude \(P\) ?
(b) What is the magnitude of the (net) force of the floor on the beam? (c) What is the minimum value the coefficient of static friction between beam and floor can have in order for the beam not to slip at this instant?
69 SSM In Fig. 12-76, a uniform rod of mass \(m\) is hinged to a building at its lower end, while its upper end is held in place by a rope attached to the wall. If angle \(\theta_{1}=60^{\circ}\), what value must angle \(\theta_{2}\) have so that the tension in the rope is equal to \(m g / 2\) ?
70 A 73 kg man stands on a level bridge of length \(L\). He is at distance \(L / 4\) from one end. The bridge is uniform and weighs 2.7 kN . What are the magnitudes of the vertical forces on the bridge from


Figure 12-76
Problem 69. its supports at (a) the end farther from him and (b) the nearer end?
71 SSM A uniform cube of side length 8.0 cm rests on a horizontal floor. The coefficient of static friction between cube and floor is \(\mu\). A horizontal pull \(\vec{P}\) is applied perpendicular to one of the vertical faces of the cube, at a distance 7.0 cm above the floor on the vertical midline of the cube face. The magnitude of \(\vec{P}\) is gradually increased. During that increase, for what values of \(\mu\) will the cube eventually (a) begin to slide and (b) begin to tip? (Hint: At the onset of tipping, where is the normal force located?)
72 The system in Fig. 12-77 is in equilibrium. The angles are \(\theta_{1}=60^{\circ}\) and \(\theta_{2}=20^{\circ}\), and the ball has mass \(M=2.0 \mathrm{~kg}\). What is the tension in (a) string \(a b\) and (b) string \(b c\) ?


Figure 12-77 Problem 72.

73 SSM A uniform ladder is 10 m long and weighs 200 N . In Fig. 12-78, the ladder leans against a vertical, frictionless wall at height \(h=8.0 \mathrm{~m}\) above the ground. A horizontal force \(\vec{F}\) is applied to the ladder at distance \(d=2.0 \mathrm{~m}\) from its base (measured along the ladder). (a) If force magnitude \(F=50\) N , what is the force of the ground on the ladder, in unit-vector notation? (b) If \(F=150 \mathrm{~N}\), what is the force of the ground on the ladder,


Figure 12-78 Problem 73. also in unit-vector notation? (c) Suppose the coefficient of static friction between the ladder and the ground is 0.38 ; for what minimum value of the force magnitude \(F\) will the base of the ladder just barely start to move toward the wall?
74 A pan balance is made up of a rigid, massless rod with a hanging pan attached at each end. The rod is supported at and free to rotate about a point not at its center. It is balanced by unequal masses placed in the two pans. When an unknown mass \(m\) is placed in the left pan, it is balanced by a mass \(m_{1}\) placed in the right pan; when the mass \(m\) is placed in the right pan, it is balanced by a mass \(m_{2}\) in the left pan. Show that \(m=\sqrt{m_{1} m_{2}}\).
75 The rigid square frame in Fig. 12-79 consists of the four side bars \(A B, B C, C D\), and \(D A\) plus two diagonal bars \(A C\) and \(B D\), which pass each other freely at \(E\). By means of the turnbuckle \(G\), bar \(A B\) is put under tension, as if its ends were subject to horizontal, outward forces \(\vec{T}\) of magnitude 535 N . (a) Which of the other bars are in ten-


Figure 12-79 Problem 75. sion? What are the magnitudes of (b) the forces causing the tension in those bars and (c) the forces causing compression in the other bars? (Hint: Symmetry considerations can lead to considerable simplification in this problem.)
76 A gymnast with mass 46.0 kg stands on the end of a uniform balance beam as shown in Fig. 12-80. The beam is 5.00 m long and has a mass of 250 kg (excluding the mass of the two supports). Each support is 0.540 m from its end of the beam. In unit-vector notation, what are the forces on the beam due to (a) support 1 and (b) support 2?

77 Figure \(12-81\) shows a 300 kg cylinder that is horizontal. Three steel wires support the cylinder from a ceiling. Wires 1 and 3 are attached at the ends of the cylinder, and wire 2 is attached at the center. The wires each have a cross-


Figure 12-80 Problem 76.


Figure 12-81 Problem 77. sectional area of \(2.00 \times 10^{-6} \mathrm{~m}^{2}\). Initially (before the cylinder was put in place) wires 1 and 3 were 2.0000 m long and wire 2 was 6.00 mm longer than that. Now (with the cylinder in place) all three wires have been stretched. What is the tension in (a) wire 1 and (b) wire 2 ?

78 In Fig. 12-82, a uniform beam of length 12.0 m is supported by a horizontal cable and a hinge at angle \(\theta=\) \(50.0^{\circ}\). The tension in the cable is 400 N . In unit-vector notation, what are (a) the gravitational force on the beam and (b) the force on the beam from the hinge?
79 Four bricks of length \(L\), identical and uniform, are stacked on a table in two ways, as shown in Fig. 12-83 (compare with Problem


Figure 12-82 Problem 78. 63). We seek to maximize the overhang distance \(h\) in both arrangements. Find the optimum distances \(a_{1}, a_{2}, b_{1}\), and \(b_{2}\), and calculate \(h\) for the two arrangements.


Figure 12-83 Problem 79.
80 A cylindrical aluminum rod, with an initial length of 0.8000 m and radius \(1000.0 \mu \mathrm{~m}\), is clamped in place at one end and then stretched by a machine pulling parallel to its length at its other end. Assuming that the rod's density (mass per unit volume) does not change, find the force magnitude that is required of the machine to decrease the radius to \(999.9 \mu \mathrm{~m}\). (The yield strength is not exceeded.)
81 A beam of length \(L\) is carried by three men, one man at one end and the other two supporting the beam between them on a crosspiece placed so that the load of the beam is equally divided among the three men. How far from the beam's free end is the crosspiece placed? (Neglect the mass of the crosspiece.)
82 If the (square) beam in Fig. 12-6a and the associated sample problem is of Douglas fir, what must be its thickness to keep the compressive stress on it to \(\frac{1}{6}\) of its ultimate strength?
83 Figure 12-84 shows a stationary arrangement of two crayon boxes and three cords. Box \(A\) has a mass of 11.0 kg and is on a ramp at angle \(\theta=30.0^{\circ}\); box \(B\) has a mass of 7.00 kg and hangs on a cord. The cord connected to box \(A\) is parallel to the ramp, which is frictionless. (a) What is the tension in the upper cord, and (b) what angle does that cord make with the horizontal?


Figure 12-84 Problem 83.

84 A makeshift swing is constructed by making a loop in one end of a rope and tying the other end to a tree limb. A child is sitting in
the loop with the rope hanging vertically when the child's father pulls on the child with a horizontal force and displaces the child to one side. Just before the child is released from rest, the rope makes an angle of \(15^{\circ}\) with the vertical and the tension in the rope is 280 N . (a) How much does the child weigh? (b) What is the magnitude of the (horizontal) force of the father on the child just before the child is released? (c) If the maximum horizontal force the father can exert on the child is 93 N , what is the maximum angle with the vertical the rope can make while the father is pulling horizontally?

85 Figure 12-85a shows details of a finger in the crimp hold of the climber in Fig. 12-50. A tendon that runs from muscles in the forearm is attached to the far bone in the finger. Along the way, the tendon runs through several guiding sheaths called pulleys. The A2 pulley is attached to the first finger bone; the A4 pulley is attached to the second finger bone. To pull the finger toward the palm, the forearm muscles pull the tendon through the pulleys, much like strings on a marionette can be pulled to move parts of the marionette. Figure \(12-85 b\) is a simplified diagram of the second finger bone, which has length \(d\). The tendon's pull \(\vec{F}_{t}\) on the bone acts at the point where the tendon enters the A4 pulley, at distance \(d / 3\) along the bone. If the force components on each of the four crimped fingers in Fig. \(12-50\) are \(F_{h}=13.4 \mathrm{~N}\) and \(F_{v}=\) 162.4 N , what is the magnitude of \(\vec{F}_{t}\) ? The result is probably tolerable, but if the climber hangs by only one or two fingers, the A2 and A4 pulleys can be ruptured, a common ailment among rock climbers.


Figure 12-85 Problem 85.

86 A trap door in a ceiling is 0.91 m square, has a mass of 11 kg , and is hinged along one side, with a catch at the opposite side. If the center of gravity of the door is 10 cm toward the hinged side from the door's center, what are the magnitudes of the forces exerted by the door on (a) the catch and (b) the hinge?
87 A particle is acted on by forces given, in newtons, by \(\vec{F}_{1}=\) \(8.40 \hat{\mathrm{i}}-5.70 \hat{\mathrm{j}}\) and \(\vec{F}_{2}=16.0 \hat{\mathrm{i}}+4.10 \hat{\mathrm{j}}\). (a) What are the \(x\) component and (b) \(y\) component of the force \(\vec{F}_{3}\) that balances the sum of these forces? (c) What angle does \(\vec{F}_{3}\) have relative to the \(+x\) axis?
88 The leaning Tower of Pisa is 59.1 m high and 7.44 m in diameter. The top of the tower is displaced 4.01 m from the vertical. Treat the tower as a uniform, circular cylinder. (a) What additional displacement, measured at the top, would bring the tower to the verge of toppling? (b) What angle would the tower then make with the vertical?

\section*{13-1 NEWTON'S LAW OF GRAVITATION}

\section*{Learning Objectives}

After reading this module, you should be able to .
13.01 Apply Newton's law of gravitation to relate the gravitational force between two particles to their masses and their separation.
13.02 Identify that a uniform spherical shell of matter attracts a particle that is outside the shell as if all the shell's mass were concentrated as a particle at its center.
13.03 Draw a free-body diagram to indicate the gravitational force on a particle due to another particle or a uniform, spherical distribution of matter.

\section*{Key Ideas}
- Any particle in the universe attracts any other particle with a gravitational force whose magnitude is
\[
F=G \frac{m_{1} m_{2}}{r^{2}} \quad \text { (Newton's law of gravitation), }
\]
where \(m_{1}\) and \(m_{2}\) are the masses of the particles, \(r\) is their separation, and \(G\left(=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)\) is the gravitational constant.

The gravitational force between extended bodies is found by adding (integrating) the individual forces on individual particles within the bodies. However, if either of the bodies is a uniform spherical shell or a spherically symmetric solid, the net gravitational force it exerts on an external object may be computed as if all the mass of the shell or body were located at its center.

\section*{What Is Physics?}

One of the long-standing goals of physics is to understand the gravitational force-the force that holds you to Earth, holds the Moon in orbit around Earth, and holds Earth in orbit around the Sun. It also reaches out through the whole of our Milky Way galaxy, holding together the billions and billions of stars in the Galaxy and the countless molecules and dust particles between stars. We are located somewhat near the edge of this disk-shaped collection of stars and other matter, \(2.6 \times 10^{4}\) light-years \(\left(2.5 \times 10^{20} \mathrm{~m}\right)\) from the galactic center, around which we slowly revolve.

The gravitational force also reaches across intergalactic space, holding together the Local Group of galaxies, which includes, in addition to the Milky Way, the Andromeda Galaxy (Fig. 13-1) at a distance of \(2.3 \times 10^{6}\) light-years away from Earth, plus several closer dwarf galaxies, such as the Large Magellanic Cloud. The Local Group is part of the Local Supercluster of galaxies that is being drawn by the gravitational force toward an exceptionally massive region of space called the Great Attractor. This region appears to be about \(3.0 \times 10^{8}\) light-years from Earth, on the opposite side of the Milky Way. And the gravitational force is even more far-reaching because it attempts to hold together the entire universe, which is expanding.

This force is also responsible for some of the most mysterious structures in the universe: black holes. When a star considerably larger than our Sun burns out, the gravitational force between all its particles can cause the star to collapse in on itself and thereby to form a black hole. The gravitational force at the surface of such a collapsed star is so strong that neither particles nor light can escape from the surface (thus the term "black hole"). Any star coming too near a black hole can be ripped apart by the strong gravitational force and pulled into the hole. Enough captures like this yields a supermassive black hole. Such mysterious monsters appear to be common in the universe. Indeed, such a monster lurks at the center of our Milky Way galaxy-the black hole there, called Sagittarius A*, has a mass of about \(3.7 \times 10^{6}\) solar masses. The gravitational force near this black hole is so strong that it causes orbiting stars to whip around the black hole, completing an orbit in as little as 15.2 y .

Although the gravitational force is still not fully understood, the starting point in our understanding of it lies in the law of gravitation of Isaac Newton.

\section*{Newton's Law of Gravitation}

Before we get to the equations, let's just think for a moment about something that we take for granted. We are held to the ground just about right, not so strongly that we have to crawl to get to school (though an occasional exam may leave you crawling home) and not so lightly that we bump our heads on the ceiling when we take a step. It is also just about right so that we are held to the ground but not to each other (that would be awkward in any classroom) or to the objects around us (the phrase "catching a bus" would then take on a new meaning). The attraction obviously depends on how much "stuff" there is in ourselves and other objects: Earth has lots of "stuff" and produces a big attraction but another person has less "stuff" and produces a smaller (even negligible) attraction. Moreover, this "stuff" always attracts other "stuff," never repelling it (or a hard sneeze could put us into orbit).

In the past people obviously knew that they were being pulled downward (especially if they tripped and fell over), but they figured that the downward force was unique to Earth and unrelated to the apparent movement of astronomical bodies across the sky. But in 1665, the 23-year-old Isaac Newton recognized that this force is responsible for holding the Moon in its orbit. Indeed he showed that every body in the universe attracts every other body. This tendency of bodies to move toward one another is called gravitation, and the "stuff" that is involved is the mass of each body. If the myth were true that a falling apple inspired Newton to his law of gravitation, then the attraction is between the mass of the apple and the mass of Earth. It is appreciable because the mass of Earth is so large, but even then it is only about 0.8 N . The attraction between two people standing near each other on a bus is (thankfully) much less (less than \(1 \mu \mathrm{~N})\) and imperceptible.

The gravitational attraction between extended objects such as two people can be difficult to calculate. Here we shall focus on Newton's force law between two particles (which have no size). Let the masses be \(m_{1}\) and \(m_{2}\) and \(r\) be their separation. Then the magnitude of the gravitational force acting on each due to the presence of the other is given by
\[
\begin{equation*}
F=G \frac{m_{1} m_{2}}{r^{2}} \quad \text { (Newton's law of gravitation). } \tag{13-1}
\end{equation*}
\]
\(G\) is the gravitational constant:
\[
\begin{align*}
G & =6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2} \\
& =6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~s}^{2} \tag{13-2}
\end{align*}
\]


Courtesy NASA
Figure 13-1 The Andromeda Galaxy. Located \(2.3 \times 10^{6}\) light-years from us, and faintly visible to the naked eye, it is very similar to our home galaxy, the Milky Way.


Figure 13-2 (a) The gravitational force \(\vec{F}\) on particle 1 due to particle 2 is an attractive force because particle 1 is attracted to particle 2. (b) Force \(\vec{F}\) is directed along a radial coordinate axis \(r\) extending from particle 1 through particle 2. (c) \(\vec{F}\) is in the direction of a unit vector \(\hat{\mathrm{r}}\) along the \(r\) axis.


Figure 13-3 The apple pulls up on Earth just as hard as Earth pulls down on the apple.

In Fig. \(13-2 a, \vec{F}\) is the gravitational force acting on particle 1 (mass \(m_{1}\) ) due to particle 2 (mass \(m_{2}\) ). The force is directed toward particle 2 and is said to be an attractive force because particle 1 is attracted toward particle 2 . The magnitude of the force is given by Eq. 13-1. We can describe \(\vec{F}\) as being in the positive direction of an \(r\) axis extending radially from particle 1 through particle 2 (Fig. 13-2b). We can also describe \(\vec{F}\) by using a radial unit vector \(\hat{r}\) (a dimensionless vector of magnitude 1) that is directed away from particle 1 along the \(r\) axis (Fig. 13-2c). From Eq. 13-1, the force on particle 1 is then
\[
\begin{equation*}
\vec{F}=G \frac{m_{1} m_{2}}{r^{2}} \hat{\mathrm{r}} . \tag{13-3}
\end{equation*}
\]

The gravitational force on particle 2 due to particle 1 has the same magnitude as the force on particle 1 but the opposite direction. These two forces form a third-law force pair, and we can speak of the gravitational force between the two particles as having a magnitude given by Eq. 13-1. This force between two particles is not altered by other objects, even if they are located between the particles. Put another way, no object can shield either particle from the gravitational force due to the other particle.

The strength of the gravitational force - that is, how strongly two particles with given masses at a given separation attract each other-depends on the value of the gravitational constant \(G\). If \(G\)-by some miracle-were suddenly multiplied by a factor of 10 , you would be crushed to the floor by Earth's attraction. If \(G\) were divided by this factor, Earth's attraction would be so weak that you could jump over a building.

Nonparticles. Although Newton's law of gravitation applies strictly to particles, we can also apply it to real objects as long as the sizes of the objects are small relative to the distance between them. The Moon and Earth are far enough apart so that, to a good approximation, we can treat them both as particles-but what about an apple and Earth? From the point of view of the apple, the broad and level Earth, stretching out to the horizon beneath the apple, certainly does not look like a particle.

Newton solved the apple-Earth problem with the shell theorem:

A uniform spherical shell of matter attracts a particle that is outside the shell as if all the shell's mass were concentrated at its center.

Earth can be thought of as a nest of such shells, one within another and each shell attracting a particle outside Earth's surface as if the mass of that shell were at the center of the shell. Thus, from the apple's point of view, Earth does behave like a particle, one that is located at the center of Earth and has a mass equal to that of Earth.

Third-Law Force Pair. Suppose that, as in Fig. 13-3, Earth pulls down on an apple with a force of magnitude 0.80 N . The apple must then pull up on Earth with a force of magnitude 0.80 N , which we take to act at the center of Earth. In the language of Chapter 5, these forces form a force pair in Newton's third law. Although they are matched in magnitude, they produce different accelerations when the apple is released. The acceleration of the apple is about \(9.8 \mathrm{~m} / \mathrm{s}^{2}\), the familiar acceleration of a falling body near Earth's surface. The acceleration of Earth, however, measured in a reference frame attached to the center of mass of the apple-Earth system, is only about \(1 \times 10^{-25} \mathrm{~m} / \mathrm{s}^{2}\).

\section*{Checkpoint 1}

A particle is to be placed, in turn, outside four objects, each of mass \(m\) : (1) a large uniform solid sphere, (2) a large uniform spherical shell, (3) a small uniform solid sphere, and (4) a small uniform shell. In each situation, the distance between the particle and the center of the object is \(d\). Rank the objects according to the magnitude of the gravitational force they exert on the particle, greatest first.

\section*{13-2 gravitation and the principle of superposition}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
13.04 If more than one gravitational force acts on a particle, draw a free-body diagram showing those forces, with the tails of the force vectors anchored on the particle.
13.05 If more than one gravitational force acts on a particle, find the net force by adding the individual forces as vectors.

\section*{Key Ideas}
- Gravitational forces obey the principle of superposition; that is, if \(n\) particles interact, the net force \(\vec{F}_{1 \text {,net }}\) on a particle labeled particle 1 is the sum of the forces on it from all the other particles taken one at a time:
\[
\vec{F}_{1, \text { net }}=\sum_{i=2}^{n} \vec{F}_{1 i},
\]
in which the sum is a vector sum of the forces \(\vec{F}_{1 i}\) on particle 1 from particles \(2,3, \ldots\), \(n\).
- The gravitational force \(\vec{F}_{1}\) on a particle from an extended body is found by first dividing the body into units of differential mass \(d m\), each of which produces a differential force \(d \vec{F}\) on the particle, and then integrating over all those units to find the sum of those forces:
\[
\vec{F}_{1}=\int d \vec{F}
\]

\section*{Gravitation and the Principle of Superposition}

Given a group of particles, we find the net (or resultant) gravitational force on any one of them from the others by using the principle of superposition. This is a general principle that says a net effect is the sum of the individual effects. Here, the principle means that we first compute the individual gravitational forces that act on our selected particle due to each of the other particles. We then find the net force by adding these forces vectorially, just as we have done when adding forces in earlier chapters.

Let's look at two important points in that last (probably quickly read) sentence. (1) Forces are vectors and can be in different directions, and thus we must add them as vectors, taking into account their directions. (If two people pull on you in the opposite direction, their net force on you is clearly different than if they pull in the same direction.) (2) We add the individual forces. Think how impossible the world would be if the net force depended on some multiplying factor that varied from force to force depending on the situation, or if the presence of one force somehow amplified the magnitude of another force. No, thankfully, the world requires only simple vector addition of the forces.

For \(n\) interacting particles, we can write the principle of superposition for the gravitational forces on particle 1 as
\[
\begin{equation*}
\vec{F}_{1, \text { net }}=\vec{F}_{12}+\vec{F}_{13}+\vec{F}_{14}+\vec{F}_{15}+\cdots+\vec{F}_{1 n} \tag{13-4}
\end{equation*}
\]

Here \(\vec{F}_{1, \text { net }}\) is the net force on particle 1 due to the other particles and, for example, \(\vec{F}_{13}\) is the force on particle 1 from particle 3 . We can express this equation more compactly as a vector sum:
\[
\begin{equation*}
\vec{F}_{1, \text { net }}=\sum_{i=2}^{n} \vec{F}_{1 i} . \tag{13-5}
\end{equation*}
\]

Real Objects. What about the gravitational force on a particle from a real (extended) object? This force is found by dividing the object into parts small enough to treat as particles and then using Eq. 13-5 to find the vector sum of the forces on the particle from all the parts. In the limiting case, we can divide the extended object into differential parts each of mass \(d m\) and each producing a differential force \(d \vec{F}\)

\section*{Sample Problem 13.01 Net gravitational force, 2D, three particles}

Figure 13-4a shows an arrangement of three particles, particle 1 of mass \(m_{1}=6.0 \mathrm{~kg}\) and particles 2 and 3 of mass \(m_{2}=\) \(m_{3}=4.0 \mathrm{~kg}\), and distance \(a=2.0 \mathrm{~cm}\). What is the net gravitational force \(\vec{F}_{1, \text { net }}\) on particle 1 due to the other particles?

\section*{KEY IDEAS}
(1) Because we have particles, the magnitude of the gravitational force on particle 1 due to either of the other particles is given by Eq. 13-1 \(\left(F=G m_{1} m_{2} / r^{2}\right)\). (2) The direction of either gravitational force on particle 1 is toward the particle responsible for it. (3) Because the forces are not along a single axis, we cannot simply add or subtract their magnitudes or their components to get the net force. Instead, we must add them as vectors.
Calculations: From Eq. 13-1, the magnitude of the force \(\vec{F}_{12}\) on particle 1 from particle 2 is
\[
\begin{align*}
F_{12} & =\frac{G m_{1} m_{2}}{a^{2}}  \tag{13-7}\\
& =\frac{\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~s}^{2}\right)(6.0 \mathrm{~kg})(4.0 \mathrm{~kg})}{(0.020 \mathrm{~m})^{2}} \\
& =4.00 \times 10^{-6} \mathrm{~N} .
\end{align*}
\]

Similarly, the magnitude of force \(\vec{F}_{13}\) on particle 1 from particle 3 is
\[
\begin{aligned}
F_{13} & =\frac{G m_{1} m_{3}}{(2 a)^{2}} \\
& =\frac{\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~s}^{2}\right)(6.0 \mathrm{~kg})(4.0 \mathrm{~kg})}{(0.040 \mathrm{~m})^{2}} \\
& =1.00 \times 10^{-6} \mathrm{~N} .
\end{aligned}
\]

Force \(\vec{F}_{12}\) is directed in the positive direction of the \(y\) axis (Fig. \(13-4 b\) ) and has only the \(y\) component \(F_{12}\). Similarly, \(\vec{F}_{13}\) is directed in the negative direction of the \(x\) axis and has only the \(x\) component \(-F_{13}\) (Fig. 13-4c). (Note something important: We draw the force diagrams with the tail of a force vector anchored on the particle experiencing the force. Drawing them in other ways invites errors, especially on exams.)

To find the net force \(\vec{F}_{1, \text { net }}\) on particle 1, we must add the two forces as vectors (Figs. 13-4d and \(e\) ). We can do so on a vector-capable calculator. However, here we note that \(-F_{13}\) and \(F_{12}\) are actually the \(x\) and \(y\) components of \(\vec{F}_{1, \text { net }}\). Therefore, we can use Eq. 3-6 to find first the magnitude and then the direction of \(\vec{F}_{1 \text {,net. The magnitude is }}\)
\[
\begin{aligned}
F_{1, \text { net }} & =\sqrt{\left(F_{12}\right)^{2}+\left(-F_{13}\right)^{2}} \\
& =\sqrt{\left(4.00 \times 10^{-6} \mathrm{~N}\right)^{2}+\left(-1.00 \times 10^{-6} \mathrm{~N}\right)^{2}} \\
& =4.1 \times 10^{-6} \mathrm{~N} .
\end{aligned}
\]

Relative to the positive direction of the \(x\) axis, Eq. 3-6 gives the direction of \(\vec{F}_{1, \text { net }}\) as
\[
\theta=\tan ^{-1} \frac{F_{12}}{-F_{13}}=\tan ^{-1} \frac{4.00 \times 10^{-6} \mathrm{~N}}{-1.00 \times 10^{-6} \mathrm{~N}}=-76^{\circ}
\]

Is this a reasonable direction (Fig. 13-4f)? No, because the direction of \(\vec{F}_{1, \text { net }}\) must be between the directions of \(\vec{F}_{12}\) and \(\vec{F}_{13}\). Recall from Chapter 3 that a calculator displays only one of the two possible answers to a \(\tan ^{-1}\) function. We find the other answer by adding \(180^{\circ}\) :
\[
-76^{\circ}+180^{\circ}=104^{\circ}
\]
(Answer)
which is a reasonable direction for \(\vec{F}_{1, \text { net }}\) (Fig. 13-4g).

Additional examples, video, and practice available at WileyPLUS
on the particle. In this limit, the sum of Eq. 13-5 becomes an integral and we have
\[
\begin{equation*}
\vec{F}_{1}=\int d \vec{F} \tag{13-6}
\end{equation*}
\]
in which the integral is taken over the entire extended object and we drop the subscript "net." If the extended object is a uniform sphere or a spherical shell, we can avoid the integration of Eq. 13-6 by assuming that the object's mass is concentrated at the object's center and using Eq. 13-1.

\section*{Checkpoint 2}

The figure shows four arrangements of three particles of equal masses. (a) Rank the arrangements according to the magnitude of the net gravitational force on the particle labeled \(m\), greatest first. (b) In arrangement 2, is the direction of the net force closer to the line of length \(d\) or to the line of length \(D\) ?

(1)

(2)

(3)

(4)


Figure 13-4 (a) An arrangement of three particles. The force on particle 1 due to (b) particle 2 and (c) particle 3. (d)-(g) Ways to combine the forces to get the net force magnitude and orientation. In WileyPLUS, this figure is available as an animation with voiceover.

\section*{13-3 gravitation near earth's surface}

\section*{Learning Objectives}

After reading this module, you should be able to ...
13.06 Distinguish between the free-fall acceleration and the gravitational acceleration.
13.07 Calculate the gravitational acceleration near but outside a uniform, spherical astronomical body.
13.08 Distinguish between measured weight and the magnitude of the gravitational force.

\section*{Key Ideas}
- The gravitational acceleration \(a_{g}\) of a particle (of mass \(m\) ) is due solely to the gravitational force acting on it. When the particle is at distance \(r\) from the center of a uniform, spherical body of mass \(M\), the magnitude \(F\) of the gravitational force on the particle is given by Eq. 13-1. Thus, by Newton's second law,
\[
F=m a_{g}
\]
which gives
\[
a_{g}=\frac{G M}{r^{2}}
\]

Because Earth's mass is not distributed uniformly, because the planet is not perfectly spherical, and because it rotates, the actual free-fall acceleration \(\vec{g}\) of a particle near Earth differs slightly from the gravitational acceleration \(\vec{a}_{g}\), and the particle's weight (equal to \(m g\) ) differs from the magnitude of the gravitational force on it.

Table 13-1 Variation of \(a_{g}\) with Altitude
\begin{tabular}{ccc}
\hline \begin{tabular}{c} 
Altitude \\
\((\mathrm{km})\)
\end{tabular} & \begin{tabular}{c}
\(a_{g}\) \\
\(\left(\mathrm{~m} / \mathrm{s}^{2}\right)\)
\end{tabular} & \begin{tabular}{c} 
Altitude \\
Example
\end{tabular} \\
\hline 0 & 9.83 & \begin{tabular}{c} 
Mean Earth \\
surface \\
Mt. Everest \\
Highest crewed \\
balloon
\end{tabular} \\
36.6 & 9.80 & 9.71 \\
400 & 8.70 & \begin{tabular}{c} 
Space shuttle \\
orbit \\
Communications \\
satellite
\end{tabular} \\
\hline
\end{tabular}


Figure 13-5 The density of Earth as a function of distance from the center. The limits of the solid inner core, the largely liquid outer core, and the solid mantle are shown, but the crust of Earth is too thin to show clearly on this plot.

\section*{Gravitation Near Earth's Surface}

Let us assume that Earth is a uniform sphere of mass \(M\). The magnitude of the gravitational force from Earth on a particle of mass m, located outside Earth a distance \(r\) from Earth's center, is then given by Eq. 13-1 as
\[
\begin{equation*}
F=G \frac{M m}{r^{2}} . \tag{13-9}
\end{equation*}
\]

If the particle is released, it will fall toward the center of Earth, as a result of the gravitational force \(\vec{F}\), with an acceleration we shall call the gravitational acceleration \(\vec{a}_{g}\). Newton's second law tells us that magnitudes \(F\) and \(a_{g}\) are related by
\[
\begin{equation*}
F=m a_{g} . \tag{13-10}
\end{equation*}
\]

Now, substituting \(F\) from Eq. 13-9 into Eq. 13-10 and solving for \(a_{g}\), we find
\[
\begin{equation*}
a_{g}=\frac{G M}{r^{2}} \tag{13-11}
\end{equation*}
\]

Table 13-1 shows values of \(a_{g}\) computed for various altitudes above Earth's surface. Notice that \(a_{g}\) is significant even at 400 km .

Since Module 5-1, we have assumed that Earth is an inertial frame by neglecting its rotation. This simplification has allowed us to assume that the free-fall acceleration \(g\) of a particle is the same as the particle's gravitational acceleration (which we now call \(a_{g}\) ). Furthermore, we assumed that \(g\) has the constant value \(9.8 \mathrm{~m} / \mathrm{s}^{2}\) any place on Earth's surface. However, any \(g\) value measured at a given location will differ from the \(a_{g}\) value calculated with Eq. 13-11 for that location for three reasons: (1) Earth's mass is not distributed uniformly, (2) Earth is not a perfect sphere, and (3) Earth rotates. Moreover, because \(g\) differs from \(a_{g}\), the same three reasons mean that the measured weight \(m g\) of a particle differs from the magnitude of the gravitational force on the particle as given by Eq. 13-9. Let us now examine those reasons.
1. Earth's mass is not uniformly distributed. The density (mass per unit volume) of Earth varies radially as shown in Fig. 13-5, and the density of the crust (outer section) varies from region to region over Earth's surface. Thus, \(g\) varies from region to region over the surface.
2. Earth is not a sphere. Earth is approximately an ellipsoid, flattened at the poles and bulging at the equator. Its equatorial radius (from its center point out to the equator) is greater than its polar radius (from its center point out to either north or south pole) by 21 km . Thus, a point at the poles is closer to the dense core of Earth than is a point on the equator. This is one reason the free-fall acceleration \(g\) increases if you were to measure it while moving at sea level from the equator toward the north or south pole. As you move, you are actually getting closer to the center of Earth and thus, by Newton's law of gravitation, \(g\) increases.
3. Earth is rotating. The rotation axis runs through the north and south poles of Earth. An object located on Earth's surface anywhere except at those poles must rotate in a circle about the rotation axis and thus must have a centripetal acceleration directed toward the center of the circle. This centripetal acceleration requires a centripetal net force that is also directed toward that center.

To see how Earth's rotation causes \(g\) to differ from \(a_{g}\), let us analyze a simple situation in which a crate of mass \(m\) is on a scale at the equator. Figure 13-6a shows this situation as viewed from a point in space above the north pole.

Figure 13-6b, a free-body diagram for the crate, shows the two forces on the crate, both acting along a radial \(r\) axis that extends from Earth's center. The normal force \(\vec{F}_{N}\) on the crate from the scale is directed outward, in the positive direction of the \(r\) axis. The gravitational force, represented with its equivalent \(m \vec{a}_{g}\), is directed inward. Because it travels in a circle about the center of Earth


Figure 13-6 (a) A crate sitting on a scale at Earth's equator, as seen by an observer positioned on Earth's rotation axis at some point above the north pole. (b) A free-body diagram for the crate, with a radial \(r\) axis extending from Earth's center. The gravitational force on the crate is represented with its equivalent \(m \vec{a}_{g}\). The normal force on the crate from the scale is \(\vec{F}_{N}\). Because of Earth's rotation, the crate has a centripetal acceleration \(\vec{a}\) that is directed toward Earth's center.
as Earth turns, the crate has a centripetal acceleration \(\vec{a}\) directed toward Earth's center. From Eq. 10-23 ( \(\left.a_{r}=\omega^{2} r\right)\), we know this acceleration is equal to \(\omega^{2} R\), where \(\omega\) is Earth's angular speed and \(R\) is the circle's radius (approximately Earth's radius). Thus, we can write Newton's second law for forces along the \(r\) axis \(\left(F_{\text {net }, r}=m a_{r}\right)\) as
\[
\begin{equation*}
F_{N}-m a_{g}=m\left(-\omega^{2} R\right) \tag{13-12}
\end{equation*}
\]

The magnitude \(F_{N}\) of the normal force is equal to the weight \(m g\) read on the scale. With \(m g\) substituted for \(F_{N}\), Eq. 13-12 gives us
\[
\begin{equation*}
m g=m a_{g}-m\left(\omega^{2} R\right) \tag{13-13}
\end{equation*}
\]
which says
\[
\binom{\text { measured }}{\text { weight }}=\binom{\text { magnitude of }}{\text { gravitational force }}-\binom{\text { mass times }}{\text { centripetal acceleration }}
\]

Thus, the measured weight is less than the magnitude of the gravitational force on the crate, because of Earth's rotation.

Acceleration Difference. To find a corresponding expression for \(g\) and \(a_{g}\), we cancel \(m\) from Eq. 13-13 to write
\[
\begin{equation*}
g=a_{g}-\omega^{2} R \tag{13-14}
\end{equation*}
\]
which says
\[
\binom{\text { free-fall }}{\text { acceleration }}=\binom{\text { gravitational }}{\text { acceleration }}-\binom{\text { centripetal }}{\text { acceleration }} .
\]

Thus, the measured free-fall acceleration is less than the gravitational acceleration because of Earth's rotation.

Equator. The difference between accelerations \(g\) and \(a_{g}\) is equal to \(\omega^{2} R\) and is greatest on the equator (for one reason, the radius of the circle traveled by the crate is greatest there). To find the difference, we can use Eq. 10-5 \((\omega=\Delta \theta / \Delta t)\) and Earth's radius \(R=6.37 \times 10^{6} \mathrm{~m}\). For one rotation of Earth, \(\theta\) is \(2 \pi \mathrm{rad}\) and the time period \(\Delta t\) is about 24 h . Using these values (and converting hours to seconds), we find that \(g\) is less than \(a_{g}\) by only about \(0.034 \mathrm{~m} / \mathrm{s}^{2}\) (small compared to \(9.8 \mathrm{~m} / \mathrm{s}^{2}\) ). Therefore, neglecting the difference in accelerations \(g\) and \(a_{g}\) is often justified. Similarly, neglecting the difference between weight and the magnitude of the gravitational force is also often justified.

\section*{Sample Problem 13.02 Difference in acceleration at head and feet}
(a) An astronaut whose height \(h\) is 1.70 m floats "feet down" in an orbiting space shuttle at distance \(r=6.77 \times 10^{6} \mathrm{~m}\) away from the center of Earth. What is the difference between the gravitational acceleration at her feet and at her head?

\section*{KEY IDEAS}

We can approximate Earth as a uniform sphere of mass \(M_{E}\). Then, from Eq. 13-11, the gravitational acceleration at any distance \(r\) from the center of Earth is
\[
\begin{equation*}
a_{g}=\frac{G M_{E}}{r^{2}} \tag{13-15}
\end{equation*}
\]

We might simply apply this equation twice, first with \(r=\) \(6.77 \times 10^{6} \mathrm{~m}\) for the location of the feet and then with \(r=6.77 \times 10^{6} \mathrm{~m}+1.70 \mathrm{~m}\) for the location of the head. However, a calculator may give us the same value for \(a_{g}\) twice, and thus a difference of zero, because \(h\) is so much smaller than \(r\). Here's a more promising approach: Because we have a differential change \(d r\) in \(r\) between the astronaut's feet and head, we should differentiate Eq. 13-15 with respect to \(r\).

Calculations: The differentiation gives us
\[
\begin{equation*}
d a_{g}=-2 \frac{G M_{E}}{r^{3}} d r, \tag{13-16}
\end{equation*}
\]
where \(d a_{g}\) is the differential change in the gravitational acceleration due to the differential change \(d r\) in \(r\). For the astronaut, \(d r=h\) and \(r=6.77 \times 10^{6} \mathrm{~m}\). Substituting data into Eq. 13-16, we find
\[
\begin{aligned}
d a_{g} & =-2 \frac{\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~s}^{2}\right)\left(5.98 \times 10^{24} \mathrm{~kg}\right)}{\left(6.77 \times 10^{6} \mathrm{~m}\right)^{3}}(1.70 \mathrm{~m}) \\
& =-4.37 \times 10^{-6} \mathrm{~m} / \mathrm{s}^{2}, \quad \text { (Answer) }
\end{aligned}
\]
where the \(M_{E}\) value is taken from Appendix C. This result means that the gravitational acceleration of the astronaut's feet toward Earth is slightly greater than the gravitational acceleration of her head toward Earth. This difference in acceleration (often called a tidal effect) tends to stretch her body, but the difference is so small that she would never even sense the stretching, much less suffer pain from it.
(b) If the astronaut is now "feet down" at the same orbital radius \(r=6.77 \times 10^{6} \mathrm{~m}\) about a black hole of mass \(M_{h}=\) \(1.99 \times 10^{31} \mathrm{~kg}\) (10 times our Sun's mass), what is the difference between the gravitational acceleration at her feet and at her head? The black hole has a mathematical surface (event horizon) of radius \(R_{h}=2.95 \times 10^{4} \mathrm{~m}\). Nothing, not even light, can escape from that surface or anywhere inside it . Note that the astronaut is well outside the surface (at \(r=229 R_{h}\) ).

Calculations: We again have a differential change \(d r\) in \(r\) between the astronaut's feet and head, so we can again use Eq. 13-16. However, now we substitute \(M_{h}=1.99 \times 10^{31} \mathrm{~kg}\) for \(M_{E}\). We find
\[
\begin{aligned}
d a_{g} & =-2 \frac{\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~s}^{2}\right)\left(1.99 \times 10^{31} \mathrm{~kg}\right)}{\left(6.77 \times 10^{6} \mathrm{~m}\right)^{3}}(1.70 \mathrm{~m}) \\
& =-14.5 \mathrm{~m} / \mathrm{s}^{2} .
\end{aligned}
\]

This means that the gravitational acceleration of the astronaut's feet toward the black hole is noticeably larger than that of her head. The resulting tendency to stretch her body would be bearable but quite painful. If she drifted closer to the black hole, the stretching tendency would increase drastically.

PLUS Additional examples, video, and practice available at WileyPLUS

\section*{13-4 gravitation inside earth}

\section*{Learning Objectives}

After reading this module, you should be able to ...
13.09 Identify that a uniform shell of matter exerts no net gravitational force on a particle located inside it.
13.10 Calculate the gravitational force that is exerted on a particle at a given radius inside a nonrotating uniform sphere of matter.

\section*{Key Ideas}
- A uniform shell of matter exerts no net gravitational force on a particle located inside it.
- The gravitational force \(\vec{F}\) on a particle inside a uniform solid sphere, at a distance \(r\) from the center, is due only to mass \(M_{\text {ins }}\) in an "inside sphere" with that radius \(r\) :
\[
M_{\mathrm{ins}}=\frac{4}{3} \pi r^{3} \rho=\frac{M}{R^{3}} r^{3},
\]
where \(\rho\) is the solid sphere's density, \(R\) is its radius, and \(M\) is its mass. We can assign this inside mass to be that of a particle at the center of the solid sphere and then apply Newton's law of gravitation for particles. We find that the magnitude of the force acting on mass \(m\) is
\[
F=\frac{G m M}{R^{3}} r
\]

\section*{Gravitation Inside Earth}

Newton's shell theorem can also be applied to a situation in which a particle is located inside a uniform shell, to show the following:

A uniform shell of matter exerts no net gravitational force on a particle located inside it.

Caution: This statement does not mean that the gravitational forces on the particle from the various elements of the shell magically disappear. Rather, it means that the sum of the force vectors on the particle from all the elements is zero.

If Earth's mass were uniformly distributed, the gravitational force acting on a particle would be a maximum at Earth's surface and would decrease as the particle moved outward, away from the planet. If the particle were to move inward, perhaps down a deep mine shaft, the gravitational force would change for two reasons. (1) It would tend to increase because the particle would be moving closer to the center of Earth. (2) It would tend to decrease because the thickening shell of material lying outside the particle's radial position would not exert any net force on the particle.

To find an expression for the gravitational force inside a uniform Earth, let's use the plot in Pole to Pole, an early science fiction story by George Griffith. Three explorers attempt to travel by capsule through a naturally formed (and, of course, fictional) tunnel directly from the south pole to the north pole. Figure 13-7 shows the capsule (mass \(m\) ) when it has fallen to a distance \(r\) from Earth's center. At that moment, the net gravitational force on the capsule is due to the mass \(M_{\text {ins }}\) inside the sphere with radius \(r\) (the mass enclosed by the dashed outline), not the mass in the outer spherical shell (outside the dashed outline). Moreover, we can assume that the inside mass \(M_{\text {ins }}\) is concentrated as a particle at Earth's center. Thus, we can write Eq. 13-1, for the magnitude of the gravitational force on the capsule, as
\[
\begin{equation*}
F=\frac{G m M_{\mathrm{ins}}}{r^{2}} \tag{13-17}
\end{equation*}
\]

Because we assume a uniform density \(\rho\), we can write this inside mass in terms of Earth's total mass \(M\) and its radius \(R\) :
\[
\begin{aligned}
\text { density } & =\frac{\text { inside mass }}{\text { inside volume }}=\frac{\text { total mass }}{\text { total volume }} \\
\rho & =\frac{M_{\mathrm{ins}}}{\frac{4}{3} \pi r^{3}}=\frac{M}{\frac{4}{3} \pi R^{3}}
\end{aligned}
\]

Solving for \(M_{\text {ins }}\) we find
\[
\begin{equation*}
M_{\mathrm{ins}}=\frac{4}{3} \pi r^{3} \rho=\frac{M}{R^{3}} r^{3} \tag{13-18}
\end{equation*}
\]

Substituting the second expression for \(M_{\text {ins }}\) into Eq. 13-17 gives us the magnitude of the gravitational force on the capsule as a function of the capsule's distance \(r\) from Earth's center:
\[
\begin{equation*}
F=\frac{G m M}{R^{3}} r \tag{13-19}
\end{equation*}
\]

According to Griffith's story, as the capsule approaches Earth's center, the gravitational force on the explorers becomes alarmingly large and, exactly at the center, it suddenly but only momentarily disappears. From Eq. 13-19 we see that, in fact, the force magnitude decreases linearly as the capsule approaches the center, until it is zero at the center. At least Griffith got the zero-at-the-center detail correct.


Figure 13-7 A capsule of mass \(m\) falls from rest through a tunnel that connects Earth's south and north poles. When the capsule is at distance \(r\) from Earth's center, the portion of Earth's mass that is contained in a sphere of that radius is \(M_{\mathrm{ins}}\).

Equation 13-19 can also be written in terms of the force vector \(\vec{F}\) and the capsule's position vector \(\vec{r}\) along a radial axis extending from Earth's center. Letting \(K\) represent the collection of constants in Eq. 13-19, we can rewrite the force in vector form as
\[
\begin{equation*}
\vec{F}=-K \vec{r}, \tag{13-20}
\end{equation*}
\]
in which we have inserted a minus sign to indicate that \(\vec{F}\) and \(\vec{r}\) have opposite directions. Equation 13-20 has the form of Hooke's law (Eq. 7-20, \(\vec{F}=-k \vec{d}\) ). Thus, under the idealized conditions of the story, the capsule would oscillate like a block on a spring, with the center of the oscillation at Earth's center. After the capsule had fallen from the south pole to Earth's center, it would travel from the center to the north pole (as Griffith said) and then back again, repeating the cycle forever.

For the real Earth, which certainly has a nonuniform distribution of mass (Fig. 13-5), the force on the capsule would initially increase as the capsule descends. The force would then reach a maximum at a certain depth, and only then would it begin to decrease as the capsule further descends.

\section*{13-5 gravitational potential energy}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
13.11 Calculate the gravitational potential energy of a system of particles (or uniform spheres that can be treated as particles).
13.12 Identify that if a particle moves from an initial point to a final point while experiencing a gravitational force, the work done by that force (and thus the change in gravitational potential energy) is independent of which path is taken.
13.13 Using the gravitational force on a particle near an astronomical body (or some second body that is fixed in
place), calculate the work done by the force when the body moves.
13.14 Apply the conservation of mechanical energy (including gravitational potential energy) to a particle moving relative to an astronomical body (or some second body that is fixed in place).
13.15 Explain the energy requirements for a particle to escape from an astronomical body (usually assumed to be a uniform sphere).
13.16 Calculate the escape speed of a particle in leaving an astronomical body.

\section*{Key Ideas}
- The gravitational potential energy \(U(r)\) of a system of two particles, with masses \(M\) and \(m\) and separated by a distance \(r\), is the negative of the work that would be done by the gravitational force of either particle acting on the other if the separation between the particles were changed from infinite (very large) to \(r\). This energy is
\[
U=-\frac{G M m}{r} \quad \text { (gravitational potential energy). }
\]
- If a system contains more than two particles, its total gravitational potential energy \(U\) is the sum of the terms rep-
resenting the potential energies of all the pairs. As an example, for three particles, of masses \(m_{1}, m_{2}\), and \(m_{3}\),
\[
U=-\left(\frac{G m_{1} m_{2}}{r_{12}}+\frac{G m_{1} m_{3}}{r_{13}}+\frac{G m_{2} m_{3}}{r_{23}}\right)
\]
- An object will escape the gravitational pull of an astronomical body of mass \(M\) and radius \(R\) (that is, it will reach an infinite distance) if the object's speed near the body's surface is at least equal to the escape speed, given by
\[
v=\sqrt{\frac{2 G M}{R}} .
\]

\section*{Gravitational Potential Energy}

In Module 8-1, we discussed the gravitational potential energy of a particleEarth system. We were careful to keep the particle near Earth's surface, so that we could regard the gravitational force as constant. We then chose some reference configuration of the system as having a gravitational potential energy of zero. Often, in this configuration the particle was on Earth's surface. For particles not
on Earth's surface, the gravitational potential energy decreased when the separation between the particle and Earth decreased.

Here, we broaden our view and consider the gravitational potential energy \(U\) of two particles, of masses \(m\) and \(M\), separated by a distance \(r\). We again choose a reference configuration with \(U\) equal to zero. However, to simplify the equations, the separation distance \(r\) in the reference configuration is now large enough to be approximated as infinite. As before, the gravitational potential energy decreases when the separation decreases. Since \(U=0\) for \(r=\infty\), the potential energy is negative for any finite separation and becomes progressively more negative as the particles move closer together.

With these facts in mind and as we shall justify next, we take the gravitational potential energy of the two-particle system to be
\[
\begin{equation*}
U=-\frac{G M m}{r} \quad \text { (gravitational potential energy). } \tag{13-21}
\end{equation*}
\]

Note that \(U(r)\) approaches zero as \(r\) approaches infinity and that for any finite value of \(r\), the value of \(U(r)\) is negative.

Language. The potential energy given by Eq. 13-21 is a property of the system of two particles rather than of either particle alone. There is no way to divide this energy and say that so much belongs to one particle and so much to the other. However, if \(M \gg m\), as is true for Earth (mass \(M\) ) and a baseball (mass \(m\) ), we often speak of "the potential energy of the baseball." We can get away with this because, when a baseball moves in the vicinity of Earth, changes in the potential energy of the baseball-Earth system appear almost entirely as changes in the kinetic energy of the baseball, since changes in the kinetic energy of Earth are too small to be measured. Similarly, in Module 13-7 we shall speak of "the potential energy of an artificial satellite" orbiting Earth, because the satellite's mass is so much smaller than Earth's mass. When we speak of the potential energy of bodies of comparable mass, however, we have to be careful to treat them as a system.

Multiple Particles. If our system contains more than two particles, we consider each pair of particles in turn, calculate the gravitational potential energy of that pair with Eq. 13-21 as if the other particles were not there, and then algebraically sum the results. Applying Eq. 13-21 to each of the three pairs of Fig. 13-8, for example, gives the potential energy of the system as
\[
\begin{equation*}
U=-\left(\frac{G m_{1} m_{2}}{r_{12}}+\frac{G m_{1} m_{3}}{r_{13}}+\frac{G m_{2} m_{3}}{r_{23}}\right) . \tag{13-22}
\end{equation*}
\]

\section*{Proof of Equation 13-21}

Let us shoot a baseball directly away from Earth along the path in Fig. 13-9. We want to find an expression for the gravitational potential energy \(U\) of the ball at point \(P\) along its path, at radial distance \(R\) from Earth's center. To do so, we first find the work \(W\) done on the ball by the gravitational force as the ball travels from point \(P\) to a great (infinite) distance from Earth. Because the gravitational force \(\vec{F}(r)\) is a variable force (its magnitude depends on \(r\) ), we must use the techniques of Module 7-5 to find the work. In vector notation, we can write
\[
\begin{equation*}
W=\int_{R}^{\infty} \vec{F}(r) \cdot d \vec{r} \tag{13-23}
\end{equation*}
\]

The integral contains the scalar (or dot) product of the force \(\vec{F}(r)\) and the differential displacement vector \(d \vec{r}\) along the ball's path. We can expand that product as
\[
\begin{equation*}
\vec{F}(r) \cdot d \vec{r}=F(r) d r \cos \phi \tag{13-24}
\end{equation*}
\]
where \(\phi\) is the angle between the directions of \(\vec{F}(r)\) and \(d \vec{r}\). When we substitute


Figure 13-8 A system consisting of three particles. The gravitational potential energy of the system is the sum of the gravitational potential energies of all three pairs of particles.

Figure 13-9 A baseball is shot directly away from Earth, through point \(P\) at radial distance \(R\) from Earth's center. The gravitational force \(\vec{F}\) on the ball and a differential displacement vector \(d \vec{r}\) are shown, both directed along a radial \(r\) axis.


Figure 13-10 Near Earth, a baseball is moved from point \(A\) to point \(G\) along a path consisting of radial lengths and circular arcs.
\(180^{\circ}\) for \(\phi\) and Eq. 13-1 for \(F(r)\), Eq. 13-24 becomes
\[
\vec{F}(r) \cdot d \vec{r}=-\frac{G M m}{r^{2}} d r
\]
where \(M\) is Earth's mass and \(m\) is the mass of the ball.
Substituting this into Eq. 13-23 and integrating give us
\[
\begin{align*}
W & =-G M m \int_{R}^{\infty} \frac{1}{r^{2}} d r=\left[\frac{G M m}{r}\right]_{R}^{\infty} \\
& =0-\frac{G M m}{R}=-\frac{G M m}{R}, \tag{13-25}
\end{align*}
\]
where \(W\) is the work required to move the ball from point \(P\) (at distance \(R\) ) to infinity. Equation 8-1 \((\Delta U=-W)\) tells us that we can also write that work in terms of potential energies as
\[
U_{\infty}-U=-W
\]

Because the potential energy \(U_{\infty}\) at infinity is zero, \(U\) is the potential energy at \(P\), and \(W\) is given by Eq. 13-25, this equation becomes
\[
U=W=-\frac{G M m}{R}
\]

Switching \(R\) to \(r\) gives us Eq. 13-21, which we set out to prove.

\section*{Path Independence}

In Fig. 13-10, we move a baseball from point \(A\) to point \(G\) along a path consisting of three radial lengths and three circular arcs (centered on Earth). We are interested in the total work \(W\) done by Earth's gravitational force \(\vec{F}\) on the ball as it moves from \(A\) to \(G\). The work done along each circular arc is zero, because the direction of \(\vec{F}\) is perpendicular to the arc at every point. Thus, \(W\) is the sum of only the works done by \(\vec{F}\) along the three radial lengths.

Now, suppose we mentally shrink the arcs to zero. We would then be moving the ball directly from \(A\) to \(G\) along a single radial length. Does that change \(W\) ? No. Because no work was done along the arcs, eliminating them does not change the work. The path taken from \(A\) to \(G\) now is clearly different, but the work done by \(\vec{F}\) is the same.

We discussed such a result in a general way in Module 8-1. Here is the point: The gravitational force is a conservative force. Thus, the work done by the gravitational force on a particle moving from an initial point \(i\) to a final point \(f\) is independent of the path taken between the points. From Eq. 8-1, the change \(\Delta U\) in the gravitational potential energy from point \(i\) to point \(f\) is given by
\[
\begin{equation*}
\Delta U=U_{f}-U_{i}=-W \tag{13-26}
\end{equation*}
\]

Since the work \(W\) done by a conservative force is independent of the actual path taken, the change \(\Delta U\) in gravitational potential energy is also independent of the path taken.

\section*{Potential Energy and Force}

In the proof of Eq. 13-21, we derived the potential energy function \(U(r)\) from the force function \(\vec{F}(r)\). We should be able to go the other way - that is, to start from the potential energy function and derive the force function. Guided by Eq. 8-22 \((F(x)=-d U(x) / d x)\), we can write
\[
\begin{align*}
F & =-\frac{d U}{d r}=-\frac{d}{d r}\left(-\frac{G M m}{r}\right) \\
& =-\frac{G M m}{r^{2}} \tag{13-27}
\end{align*}
\]

This is Newton's law of gravitation (Eq. 13-1). The minus sign indicates that the force on mass \(m\) points radially inward, toward mass \(M\).

\section*{Escape Speed}

If you fire a projectile upward, usually it will slow, stop momentarily, and return to Earth. There is, however, a certain minimum initial speed that will cause it to move upward forever, theoretically coming to rest only at infinity. This minimum initial speed is called the (Earth) escape speed.

Consider a projectile of mass \(m\), leaving the surface of a planet (or some other astronomical body or system) with escape speed \(v\). The projectile has a kinetic energy \(K\) given by \(\frac{1}{2} m v^{2}\) and a potential energy \(U\) given by Eq. 13-21:
\[
U=-\frac{G M m}{R}
\]
in which \(M\) is the mass of the planet and \(R\) is its radius.
When the projectile reaches infinity, it stops and thus has no kinetic energy. It also has no potential energy because an infinite separation between two bodies is our zero-potential-energy configuration. Its total energy at infinity is therefore zero. From the principle of conservation of energy, its total energy at the planet's surface must also have been zero, and so

This yields
\[
\begin{gather*}
K+U=\frac{1}{2} m v^{2}+\left(-\frac{G M m}{R}\right)=0 . \\
v=\sqrt{\frac{2 G M}{R}} \tag{13-28}
\end{gather*}
\]

Note that \(v\) does not depend on the direction in which a projectile is fired from a planet. However, attaining that speed is easier if the projectile is fired in the direction the launch site is moving as the planet rotates about its axis. For example, rockets are launched eastward at Cape Canaveral to take advantage of the Cape's eastward speed of \(1500 \mathrm{~km} / \mathrm{h}\) due to Earth's rotation.

Equation 13-28 can be applied to find the escape speed of a projectile from any astronomical body, provided we substitute the mass of the body for \(M\) and the radius of the body for \(R\). Table 13-2 shows some escape speeds.

Table 13-2 Some Escape Speeds
\begin{tabular}{lrcc}
\hline Body & Mass \((\mathrm{kg})\) & Radius \((\mathrm{m})\) & Escape Speed \((\mathrm{km} / \mathrm{s})\) \\
\hline Ceres \(^{a}\) & \(1.17 \times 10^{21}\) & \(3.8 \times 10^{5}\) & 0.64 \\
Earth's moon \(^{a}\) & \(7.36 \times 10^{22}\) & \(1.74 \times 10^{6}\) & 2.38 \\
Earth & \(5.98 \times 10^{24}\) & \(6.37 \times 10^{6}\) & 11.2 \\
Jupiter & \(1.90 \times 10^{27}\) & \(7.15 \times 10^{7}\) & 59.5 \\
Sun & \(1.99 \times 10^{30}\) & \(6.96 \times 10^{8}\) & 618 \\
Sirius \(^{b}\) & \(2 \times 10^{30}\) & \(1 \times 10^{7}\) & 5200 \\
Neutron star \(^{c}\) & \(2 \times 10^{30}\) & \(1 \times 10^{4}\) & \(2 \times 10^{5}\) \\
\hline
\end{tabular}
\({ }^{a}\) The most massive of the asteroids.
\({ }^{b} \mathrm{~A}\) white dwarf (a star in a final stage of evolution) that is a companion of the bright star Sirius.
\({ }^{c}\) The collapsed core of a star that remains after that star has exploded in a supernova event.

You move a ball of mass \(m\) away from a sphere of mass \(M\). (a) Does the gravitational potential energy of the system of ball and sphere increase or decrease? (b) Is positive work or negative work done by the gravitational force between the ball and the sphere?

\section*{Sample Problem 13.03 Asteroid falling from space, mechanical energy}

An asteroid, headed directly toward Earth, has a speed of \(12 \mathrm{~km} / \mathrm{s}\) relative to the planet when the asteroid is 10 Earth radii from Earth's center. Neglecting the effects of Earth's atmosphere on the asteroid, find the asteroid's speed \(v_{f}\) when it reaches Earth's surface.

\section*{KEY IDEAS}

Because we are to neglect the effects of the atmosphere on the asteroid, the mechanical energy of the asteroid-Earth system is conserved during the fall. Thus, the final mechanical energy (when the asteroid reaches Earth's surface) is equal to the initial mechanical energy. With kinetic energy \(K\) and gravitational potential energy \(U\), we can write this as
\[
\begin{equation*}
K_{f}+U_{f}=K_{i}+U_{i} \tag{13-29}
\end{equation*}
\]

Also, if we assume the system is isolated, the system's linear momentum must be conserved during the fall. Therefore, the momentum change of the asteroid and that of Earth must be equal in magnitude and opposite in sign. However, because Earth's mass is so much greater than the asteroid's mass, the change in Earth's speed is negligible relative to the change in the asteroid's speed. So, the change in Earth's kinetic energy is also negligible. Thus, we can assume that the kinetic energies in Eq. 13-29 are those of the asteroid alone.

Calculations: Let \(m\) represent the asteroid's mass and \(M\) represent Earth's mass \(\left(5.98 \times 10^{24} \mathrm{~kg}\right)\). The asteroid is ini-
tially at distance \(10 R_{E}\) and finally at distance \(R_{E}\), where \(R_{E}\) is Earth's radius ( \(6.37 \times 10^{6} \mathrm{~m}\) ). Substituting Eq. 13-21 for \(U\) and \(\frac{1}{2} m v^{2}\) for \(K\), we rewrite Eq. 13-29 as
\[
\frac{1}{2} m v_{f}^{2}-\frac{G M m}{R_{E}}=\frac{1}{2} m v_{i}^{2}-\frac{G M m}{10 R_{E}} .
\]

Rearranging and substituting known values, we find
\[
\begin{aligned}
v_{f}^{2}= & v_{i}^{2}+\frac{2 G M}{R_{E}}\left(1-\frac{1}{10}\right) \\
= & \left(12 \times 10^{3} \mathrm{~m} / \mathrm{s}\right)^{2} \\
& +\frac{2\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~s}^{2}\right)\left(5.98 \times 10^{24} \mathrm{~kg}\right)}{6.37 \times 10^{6} \mathrm{~m}} 0.9 \\
= & 2.567 \times 10^{8} \mathrm{~m}^{2} / \mathrm{s}^{2},
\end{aligned}
\]
\[
\text { and } \quad v_{f}=1.60 \times 10^{4} \mathrm{~m} / \mathrm{s}=16 \mathrm{~km} / \mathrm{s} \text {. }
\]
(Answer)
At this speed, the asteroid would not have to be particularly large to do considerable damage at impact. If it were only 5 m across, the impact could release about as much energy as the nuclear explosion at Hiroshima. Alarmingly, about 500 million asteroids of this size are near Earth's orbit, and in 1994 one of them apparently penetrated Earth's atmosphere and exploded 20 km above the South Pacific (setting off nuclear-explosion warnings on six military satellites).

PLUS Additional examples, video, and practice available at WileyPLUS

\section*{13-6 planets and satellites: kepler's laws}

\section*{Learning Objectives}

After reading this module, you should be able to ...
13.17 Identify Kepler's three laws.
13.18 Identify which of Kepler's laws is equivalent to the law of conservation of angular momentum.
13.19 On a sketch of an elliptical orbit, identify the semimajor axis, the eccentricity, the perihelion, the aphelion, and the focal points.
13.20 For an elliptical orbit, apply the relationships between the semimajor axis, the eccentricity, the perihelion, and the aphelion.
13.21 For an orbiting natural or artificial satellite, apply Kepler's relationship between the orbital period and radius and the mass of the astronomical body being orbited.

\section*{Key Ideas}
- The motion of satellites, both natural and artificial, is governed by Kepler's laws:
1. The law of orbits. All planets move in elliptical orbits with the Sun at one focus.
2. The law of areas. A line joining any planet to the Sun sweeps out equal areas in equal time intervals. (This statement is equivalent to conservation of angular momentum.)
3. The law of periods. The square of the period \(T\) of any planet is proportional to the cube of the semimajor axis \(a\) of its orbit. For circular orbits with radius \(r\),
\[
T^{2}=\left(\frac{4 \pi^{2}}{G M}\right) r^{3} \quad \text { (law of periods), }
\]
where \(M\) is the mass of the attracting body-the Sun in the case of the solar system. For elliptical planetary orbits, the semimajor axis \(a\) is substituted for \(r\).

\section*{Planets and Satellites: Kepler’s Laws}

The motions of the planets, as they seemingly wander against the background of the stars, have been a puzzle since the dawn of history. The "loop-the-loop" motion of Mars, shown in Fig. 13-11, was particularly baffling. Johannes Kepler (1571-1630), after a lifetime of study, worked out the empirical laws that govern these motions. Tycho Brahe (1546-1601), the last of the great astronomers to make observations without the help of a telescope, compiled the extensive data from which Kepler was able to derive the three laws of planetary motion that now bear Kepler's name. Later, Newton (1642-1727) showed that his law of gravitation leads to Kepler's laws.

In this section we discuss each of Kepler's three laws. Although here we apply the laws to planets orbiting the Sun, they hold equally well for satellites, either natural or artificial, orbiting Earth or any other massive central body.

\section*{1. THE LAW OF ORBITS: All planets move in elliptical orbits, with the Sun at one focus.}

Figure 13-12 shows a planet of mass \(m\) moving in such an orbit around the Sun, whose mass is \(M\). We assume that \(M \gg m\), so that the center of mass of the planet-Sun system is approximately at the center of the Sun.

The orbit in Fig. 13-12 is described by giving its semimajor axis \(a\) and its eccentricity \(e\), the latter defined so that \(e a\) is the distance from the center of the ellipse to either focus \(F\) or \(F^{\prime}\). An eccentricity of zero corresponds to a circle, in which the two foci merge to a single central point. The eccentricities of the planetary orbits are not large; so if the orbits are drawn to scale, they look circular. The eccentricity of the ellipse of Fig. 13-12, which has been exaggerated for clarity, is 0.74 . The eccentricity of Earth's orbit is only 0.0167 .
2. THE LAW OF AREAS: A line that connects a planet to the Sun sweeps out equal areas in the plane of the planet's orbit in equal time intervals; that is, the rate \(d A / d t\) at which it sweeps out area \(A\) is constant.

Qualitatively, this second law tells us that the planet will move most slowly when it is farthest from the Sun and most rapidly when it is nearest to the Sun. As it turns out, Kepler's second law is totally equivalent to the law of conservation of angular momentum. Let us prove it.

The area of the shaded wedge in Fig. 13-13a closely approximates the area swept out in time \(\Delta t\) by a line connecting the Sun and the planet, which are separated by distance \(r\). The area \(\Delta A\) of the wedge is approximately the area of


Figure 13-13 (a) In time \(\Delta t\), the line \(r\) connecting the planet to the Sun moves through an angle \(\Delta \theta\), sweeping out an area \(\Delta A\) (shaded). (b) The linear momentum \(\vec{p}\) of the planet and the components of \(\vec{p}\).


Figure 13-11 The path seen from Earth for the planet Mars as it moved against a background of the constellation Capricorn during 1971. The planet's position on four days is marked. Both Mars and Earth are moving in orbits around the Sun so that we see the position of Mars relative to us; this relative motion sometimes results in an apparent loop in the path of Mars.


Figure 13-12 A planet of mass \(m\) moving in an elliptical orbit around the Sun. The Sun, of mass \(M\), is at one focus \(F\) of the ellipse. The other focus is \(F^{\prime}\), which is located in empty space. The semimajor axis \(a\) of the ellipse, the perihelion (nearest the Sun) distance \(R_{p}\), and the aphelion (farthest from the Sun) distance \(R_{a}\) are also shown.


Figure 13-14 A planet of mass \(m\) moving around the Sun in a circular orbit of radius \(r\).

Table 13-3 Kepler's Law of Periods for the Solar System
\begin{tabular}{lccc}
\hline & \begin{tabular}{c} 
Semimajor \\
Axis
\end{tabular} & Period \\
Planet & \(a\left(10^{10} \mathrm{~m}\right)\) & \(T(\mathrm{y})\) & \begin{tabular}{c}
\(T^{2} / a^{3}\) \\
\(\left(10^{-34}\right.\) \\
\(\left.\mathrm{y}^{2} / \mathrm{m}^{3}\right)\)
\end{tabular} \\
\hline Mercury & 5.79 & 0.241 & 2.99 \\
Venus & 10.8 & 0.615 & 3.00 \\
Earth & 15.0 & 1.00 & 2.96 \\
Mars & 22.8 & 1.88 & 2.98 \\
Jupiter & 77.8 & 11.9 & 3.01 \\
Saturn & 143 & 29.5 & 2.98 \\
Uranus & 287 & 84.0 & 2.98 \\
Neptune & 450 & 165 & 2.99 \\
Pluto & 590 & 248 & 2.99 \\
\hline
\end{tabular}
a triangle with base \(r \Delta \theta\) and height \(r\). Since the area of a triangle is one-half of the base times the height, \(\Delta A \approx \frac{1}{2} r^{2} \Delta \theta\). This expression for \(\Delta A\) becomes more exact as \(\Delta t\) (hence \(\Delta \theta\) ) approaches zero. The instantaneous rate at which area is being swept out is then
\[
\begin{equation*}
\frac{d A}{d t}=\frac{1}{2} r^{2} \frac{d \theta}{d t}=\frac{1}{2} r^{2} \omega, \tag{13-30}
\end{equation*}
\]
in which \(\omega\) is the angular speed of the line connecting Sun and planet, as the line rotates around the Sun.

Figure \(13-13 b\) shows the linear momentum \(\vec{p}\) of the planet, along with the radial and perpendicular components of \(\vec{p}\). From Eq. 11-20 \(\left(L=r p_{\perp}\right)\), the magnitude of the angular momentum \(\vec{L}\) of the planet about the Sun is given by the product of \(r\) and \(p_{\perp}\), the component of \(\vec{p}\) perpendicular to \(r\). Here, for a planet of mass \(m\),
\[
\begin{align*}
L & =r p_{\perp}=(r)\left(m \nu_{\perp}\right)=(r)(m \omega r) \\
& =m r^{2} \omega \tag{13-31}
\end{align*}
\]
where we have replaced \(v_{\perp}\) with its equivalent \(\omega r\) (Eq. 10-18). Eliminating \(r^{2} \omega\) between Eqs. 13-30 and 13-31 leads to
\[
\begin{equation*}
\frac{d A}{d t}=\frac{L}{2 m} \tag{13-32}
\end{equation*}
\]

If \(d A / d t\) is constant, as Kepler said it is, then Eq. 13-32 means that \(L\) must also be constant-angular momentum is conserved. Kepler's second law is indeed equivalent to the law of conservation of angular momentum.
3. THE LAW OF PERIODS: The square of the period of any planet is proportional to the cube of the semimajor axis of its orbit.

To see this, consider the circular orbit of Fig. 13-14, with radius \(r\) (the radius of a circle is equivalent to the semimajor axis of an ellipse). Applying Newton's second law \((F=m a)\) to the orbiting planet in Fig. 13-14 yields
\[
\begin{equation*}
\frac{G M m}{r^{2}}=(m)\left(\omega^{2} r\right) \tag{13-33}
\end{equation*}
\]

Here we have substituted from Eq. 13-1 for the force magnitude \(F\) and used Eq. 10-23 to substitute \(\omega^{2} r\) for the centripetal acceleration. If we now use Eq. 10-20 to replace \(\omega\) with \(2 \pi / T\), where \(T\) is the period of the motion, we obtain Kepler's third law:
\[
\begin{equation*}
T^{2}=\left(\frac{4 \pi^{2}}{G M}\right) r^{3} \quad \text { (law of periods). } \tag{13-34}
\end{equation*}
\]

The quantity in parentheses is a constant that depends only on the mass \(M\) of the central body about which the planet orbits.

Equation 13-34 holds also for elliptical orbits, provided we replace \(r\) with \(a\), the semimajor axis of the ellipse. This law predicts that the ratio \(T^{2} / a^{3}\) has essentially the same value for every planetary orbit around a given massive body. Table 13-3 shows how well it holds for the orbits of the planets of the solar system.

\section*{\(\sqrt{ }\) Checkpoint 4}

Satellite 1 is in a certain circular orbit around a planet, while satellite 2 is in a larger circular orbit. Which satellite has (a) the longer period and (b) the greater speed?

\section*{Sample Problem 13.04 Kepler's law of periods, Comet Halley}

Comet Halley orbits the Sun with a period of 76 years and, in 1986, had a distance of closest approach to the Sun, its perihelion distance \(R_{p}\), of \(8.9 \times 10^{10} \mathrm{~m}\). Table 13-3 shows that this is between the orbits of Mercury and Venus.
(a) What is the comet's farthest distance from the Sun, which is called its aphelion distance \(R_{a}\) ?

\section*{KEY IDEAS}

From Fig. \(13-12\), we see that \(R_{a}+R_{p}=2 a\), where \(a\) is the semimajor axis of the orbit. Thus, we can find \(R_{a}\) if we first find \(a\). We can relate \(a\) to the given period via the law of periods (Eq. 13-34) if we simply substitute the semimajor axis \(a\) for \(r\).

Calculations: Making that substitution and then solving for \(a\), we have
\[
\begin{equation*}
a=\left(\frac{G M T^{2}}{4 \pi^{2}}\right)^{1 / 3} . \tag{13-35}
\end{equation*}
\]

If we substitute the mass \(M\) of the Sun, \(1.99 \times 10^{30} \mathrm{~kg}\), and the period \(T\) of the comet, 76 years or \(2.4 \times 10^{9} \mathrm{~s}\), into Eq. 13-35, we find that \(a=2.7 \times 10^{12} \mathrm{~m}\). Now we have
\[
\begin{aligned}
R_{a} & =2 a-R_{p} \\
& =(2)\left(2.7 \times 10^{12} \mathrm{~m}\right)-8.9 \times 10^{10} \mathrm{~m} \\
& =5.3 \times 10^{12} \mathrm{~m} .
\end{aligned}
\]
(Answer)
Table 13-3 shows that this is a little less than the semimajor axis of the orbit of Pluto. Thus, the comet does not get farther from the Sun than Pluto.
(b) What is the eccentricity \(e\) of the orbit of comet Halley?

\section*{KEY IDEA}

We can relate \(e, a\), and \(R_{p}\) via Fig. 13-12, in which we see that \(e a=a-R_{p}\).

Calculation: We have
\[
\begin{align*}
e & =\frac{a-R_{p}}{a}=1-\frac{R_{p}}{a}  \tag{13-36}\\
& =1-\frac{8.9 \times 10^{10} \mathrm{~m}}{2.7 \times 10^{12} \mathrm{~m}}=0.97
\end{align*}
\]
(Answer)
This tells us that, with an eccentricity approaching unity, this orbit must be a long thin ellipse.

PLUS Additional examples, video, and practice available at WileyPLUS

\section*{13-7 satellites: orbits and energy}

\section*{Learning Objectives}

After reading this module, you should be able to ...
13.22 For a satellite in a circular orbit around an astronomical body, calculate the gravitational potential energy, the kinetic energy, and the total energy.
13.23 For a satellite in an elliptical orbit, calculate the total energy.

\section*{Key Ideas}

When a planet or satellite with mass \(m\) moves in a circular orbit with radius \(r\), its potential energy \(U\) and kinetic energy \(K\) are given by
\[
U=-\frac{G M m}{r} \quad \text { and } \quad K=\frac{G M m}{2 r} .
\]

The mechanical energy \(E=K+U\) is then
\[
E=-\frac{G M m}{2 r} .
\]

For an elliptical orbit of semimajor axis \(a\),
\[
E=-\frac{G M m}{2 a}
\]

\section*{Satellites: Orbits and Energy}

As a satellite orbits Earth in an elliptical path, both its speed, which fixes its kinetic energy \(K\), and its distance from the center of Earth, which fixes its gravitational potential energy \(U\), fluctuate with fixed periods. However, the mechanical energy \(E\) of the satellite remains constant. (Since the satellite's mass is so much smaller than Earth's mass, we assign \(U\) and \(E\) for the Earth-satellite system to the satellite alone.)


Figure 13-15 Four orbits with different eccentricities \(e\) about an object of mass \(M\). All four orbits have the same semimajor axis \(a\) and thus correspond to the same total mechanical energy \(E\).

This is a plot of a satellite's energies versus orbit radius.


Figure 13-16 The variation of kinetic energy \(K\), potential energy \(U\), and total energy \(E\) with radius \(r\) for a satellite in a circular orbit. For any value of \(r\), the values of \(U\) and \(E\) are negative, the value of \(K\) is positive, and \(E=-K\). As \(r \rightarrow \infty\), all three energy curves approach a value of zero.

The potential energy of the system is given by Eq. 13-21:
\[
U=-\frac{G M m}{r}
\]
(with \(U=0\) for infinite separation). Here \(r\) is the radius of the satellite's orbit, assumed for the time being to be circular, and \(M\) and \(m\) are the masses of Earth and the satellite, respectively.

To find the kinetic energy of a satellite in a circular orbit, we write Newton's second law \((F=m a)\) as
\[
\begin{equation*}
\frac{G M m}{r^{2}}=m \frac{v^{2}}{r} \tag{13-37}
\end{equation*}
\]
where \(v^{2} / r\) is the centripetal acceleration of the satellite. Then, from Eq. \(13-37\), the kinetic energy is
\[
\begin{equation*}
K=\frac{1}{2} m v^{2}=\frac{G M m}{2 r} \tag{13-38}
\end{equation*}
\]
which shows us that for a satellite in a circular orbit,
\[
\begin{equation*}
K=-\frac{U}{2} \quad \text { (circular orbit). } \tag{13-39}
\end{equation*}
\]

The total mechanical energy of the orbiting satellite is
or
\[
\begin{gather*}
E=K+U=\frac{G M m}{2 r}-\frac{G M m}{r} \\
E=-\frac{G M m}{2 r} \quad \text { (circular orbit). } \tag{13-40}
\end{gather*}
\]

This tells us that for a satellite in a circular orbit, the total energy \(E\) is the negative of the kinetic energy \(K\) :
\[
\begin{equation*}
E=-K \quad \text { (circular orbit) } \tag{13-41}
\end{equation*}
\]

For a satellite in an elliptical orbit of semimajor axis \(a\), we can substitute \(a\) for \(r\) in Eq. 13-40 to find the mechanical energy:
\[
\begin{equation*}
E=-\frac{G M m}{2 a} \quad \text { (elliptical orbit). } \tag{13-42}
\end{equation*}
\]

Equation 13-42 tells us that the total energy of an orbiting satellite depends only on the semimajor axis of its orbit and not on its eccentricity \(e\). For example, four orbits with the same semimajor axis are shown in Fig. 13-15; the same satellite would have the same total mechanical energy \(E\) in all four orbits. Figure 13-16 shows the variation of \(K, U\), and \(E\) with \(r\) for a satellite moving in a circular orbit about a massive central body. Note that as \(r\) is increased, the kinetic energy (and thus also the orbital speed) decreases.

\section*{Checkpoint 5}

In the figure here, a space shuttle is initially in a circular orbit of radius \(r\) about Earth. At point \(P\), the pilot briefly fires a forward-pointing thruster to decrease the shuttle's kinetic energy \(K\) and mechanical energy \(E\). (a) Which of the dashed elliptical orbits shown in the figure will the shuttle then take? (b) Is the orbital period \(T\) of the shuttle (the time to return to \(P\) ) then greater than, less than, or the same as in the circular orbit?

\section*{Sample Problem 13.05 Mechanical energy of orbiting bowling ball}

A playful astronaut releases a bowling ball, of mass \(m=\) 7.20 kg , into circular orbit about Earth at an altitude \(h\) of 350 km .
(a) What is the mechanical energy \(E\) of the ball in its orbit?

\section*{KEY IDEA}

We can get \(E\) from the orbital energy, given by Eq. 13-40 ( \(E=-G M m / 2 r\) ), if we first find the orbital radius \(r\). (It is not simply the given altitude.)

Calculations: The orbital radius must be
\[
r=R+h=6370 \mathrm{~km}+350 \mathrm{~km}=6.72 \times 10^{6} \mathrm{~m},
\]
in which \(R\) is the radius of Earth. Then, from Eq. 13-40 with Earth mass \(M=5.98 \times 10^{24} \mathrm{~kg}\), the mechanical energy is
\[
\begin{aligned}
E & =-\frac{G M m}{2 r} \\
& =-\frac{\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)\left(5.98 \times 10^{24} \mathrm{~kg}\right)(7.20 \mathrm{~kg})}{(2)\left(6.72 \times 10^{6} \mathrm{~m}\right)} \\
& =-2.14 \times 10^{8} \mathrm{~J}=-214 \mathrm{MJ} .
\end{aligned}
\]
(Answer)
(b) What is the mechanical energy \(E_{0}\) of the ball on the launchpad at the Kennedy Space Center (before launch)?
From there to the orbit, what is the change \(\Delta E\) in the ball's mechanical energy?

\section*{KEY IDEA}

On the launchpad, the ball is not in orbit and thus Eq. 13-40 does not apply. Instead, we must find \(E_{0}=K_{0}+U_{0}\), where \(K_{0}\) is the ball's kinetic energy and \(U_{0}\) is the gravitational potential energy of the ball-Earth system.

Calculations: To find \(U_{0}\), we use Eq. 13-21 to write
\[
\begin{aligned}
U_{0} & =-\frac{G M m}{R} \\
& =-\frac{\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)\left(5.98 \times 10^{24} \mathrm{~kg}\right)(7.20 \mathrm{~kg})}{6.37 \times 10^{6} \mathrm{~m}} \\
& =-4.51 \times 10^{8} \mathrm{~J}=-451 \mathrm{MJ} .
\end{aligned}
\]

The kinetic energy \(K_{0}\) of the ball is due to the ball's motion with Earth's rotation. You can show that \(K_{0}\) is less than 1 MJ , which is negligible relative to \(U_{0}\). Thus, the mechanical energy of the ball on the launchpad is
\[
E_{0}=K_{0}+U_{0} \approx 0-451 \mathrm{MJ}=-451 \mathrm{MJ}
\]
(Answer)
The increase in the mechanical energy of the ball from launchpad to orbit is
\[
\begin{aligned}
\Delta E & =E-E_{0}=(-214 \mathrm{MJ})-(-451 \mathrm{MJ}) \\
& =237 \mathrm{MJ} .
\end{aligned}
\]
(Answer)
This is worth a few dollars at your utility company. Obviously the high cost of placing objects into orbit is not due to their required mechanical energy.

\section*{Sample Problem 13.06 Transforming a circular orbit into an elliptical orbit}

A spaceship of mass \(m=4.50 \times 10^{3} \mathrm{~kg}\) is in a circular Earth orbit of radius \(r=8.00 \times 10^{6} \mathrm{~m}\) and period \(T_{0}=118.6 \mathrm{~min}=\) \(7.119 \times 10^{3} \mathrm{~s}\) when a thruster is fired in the forward direction to decrease the speed to \(96.0 \%\) of the original speed. What is the period \(T\) of the resulting elliptical orbit (Fig. 13-17)?

\section*{KEY IDEAS}
(1) The orbit of an elliptical orbit is related to the semimajor axis \(a\) by Kepler's third law, written as Eq. 13-34 \(\left(T^{2}=\right.\) \(4 \pi^{2} r^{3} / G M\) ) but with \(a\) replacing \(r\). (2) The semimajor axis \(a\) is related to the total mechanical energy \(E\) of the ship by Eq. 13-42 \((E=-G M m / 2 a)\), in which Earth's mass is \(M=\) \(5.98 \times 10^{24} \mathrm{~kg}\). (3) The potential energy of the ship at radius \(r\) from Earth's center is given by Eq. 13-21 ( \(U=-G M m / r\) ).
Calculations: Looking over the Key Ideas, we see that we need to calculate the total energy \(E\) to find the semimajor axis \(a\), so that we can then determine the period of the elliptical orbit. Let's start with the kinetic energy, calculating it just after the thruster is fired. The speed \(v\) just then is \(96 \%\) of the initial speed \(v_{0}\), which was equal to the ratio of the circumfer-

Figure 13-17 At point \(P\) a thruster is fired, changing a ship's orbit from circular to elliptical.

ence of the initial circular orbit to the initial period of the orbit. Thus, just after the thruster is fired, the kinetic energy is
\[
\begin{aligned}
K & =\frac{1}{2} m v^{2}=\frac{1}{2} m\left(0.96 v_{0}\right)^{2}=\frac{1}{2} m(0.96)^{2}\left(\frac{2 \pi r}{T_{0}}\right)^{2} \\
& =\frac{1}{2}\left(4.50 \times 10^{3} \mathrm{~kg}\right)(0.96)^{2}\left(\frac{2 \pi\left(8.00 \times 10^{6} \mathrm{~m}\right)}{7.119 \times 10^{3} \mathrm{~s}}\right)^{2} \\
& =1.0338 \times 10^{11} \mathrm{~J} .
\end{aligned}
\]

Just after the thruster is fired, the ship is still at orbital radius \(r\), and thus its gravitational potential energy is
\[
\begin{aligned}
U & =-\frac{G M m}{r} \\
& =-\frac{\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)\left(5.98 \times 10^{24} \mathrm{~kg}\right)\left(4.50 \times 10^{3} \mathrm{~kg}\right)}{8.00 \times 10^{6} \mathrm{~m}} \\
& =-2.2436 \times 10^{11} \mathrm{~J} .
\end{aligned}
\]

We can now find the semimajor axis by rearranging Eq. 13-42, substituting \(a\) for \(r\), and then substituting in our energy results:
\[
\begin{aligned}
a & =-\frac{G M m}{2 E}=-\frac{G M m}{2(K+U)} \\
& =-\frac{\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)\left(5.98 \times 10^{24} \mathrm{~kg}\right)\left(4.50 \times 10^{3} \mathrm{~kg}\right)}{2\left(1.0338 \times 10^{11} \mathrm{~J}-2.2436 \times 10^{11} \mathrm{~J}\right)} \\
& =7.418 \times 10^{6} \mathrm{~m} .
\end{aligned}
\]

OK, one more step to go. We substitute \(a\) for \(r\) in Eq. 13-34 and then solve for the period \(T\), substituting our result for \(a\) :
\[
\begin{aligned}
T & =\left(\frac{4 \pi^{2} a^{3}}{G M}\right)^{1 / 2} \\
& =\left(\frac{4 \pi^{2}\left(7.418 \times 10^{6} \mathrm{~m}\right)^{3}}{\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)\left(5.98 \times 10^{24} \mathrm{~kg}\right)}\right)^{1 / 2} \\
& =6.356 \times 10^{3} \mathrm{~s}=106 \mathrm{~min} . \quad \text { (Answer) }
\end{aligned}
\]

This is the period of the elliptical orbit that the ship takes after the thruster is fired. It is less than the period \(T_{0}\) for the circular orbit for two reasons. (1) The orbital path length is now less. (2) The elliptical path takes the ship closer to Earth everywhere except at the point of firing (Fig. 13-17). The resulting decrease in gravitational potential energy increases the kinetic energy and thus also the speed of the ship.

PLUS Additional examples, video, and practice available at WileyPLUS

\section*{13-8 EINSTEIN AND gravitation}

\section*{Learning Objectives}

After reading this module, you should be able to ... 13.24 Explain Einstein's principle of equivalence.
13.25 Identify Einstein's model for gravitation as being due to the curvature of spacetime.

\section*{Key Idea}
- Einstein pointed out that gravitation and acceleration are equivalent. This principle of equivalence led him to a theory of gravitation (the general theory of relativity) that explains gravitational effects in terms of a curvature of space.

\section*{Einstein and Gravitation}

\section*{Principle of Equivalence}

Albert Einstein once said: "I was . . . in the patent office at Bern when all of a sudden a thought occurred to me: 'If a person falls freely, he will not feel his own weight.' I was startled. This simple thought made a deep impression on me. It impelled me toward a theory of gravitation."

Thus Einstein tells us how he began to form his general theory of relativity. The fundamental postulate of this theory about gravitation (the gravitating of objects toward each other) is called the principle of equivalence, which says that gravitation and acceleration are equivalent. If a physicist were locked up in a small box as in Fig. 13-18, he would not be able to tell whether the box was at

Figure 13-18 (a) A physicist in a box resting on Earth sees a cantaloupe falling with acceleration \(a=9.8 \mathrm{~m} / \mathrm{s}^{2}\). (b) If he and the box accelerate in deep space at \(9.8 \mathrm{~m} / \mathrm{s}^{2}\), the cantaloupe has the same acceleration relative to him. It is not possible, by doing experiments within the box, for the physicist to tell which situation he is in. For example, the platform scale on which he stands reads the same weight in both situations.

rest on Earth (and subject only to Earth's gravitational force), as in Fig. 13-18a, or accelerating through interstellar space at \(9.8 \mathrm{~m} / \mathrm{s}^{2}\) (and subject only to the force producing that acceleration), as in Fig. 13-18b. In both situations he would feel the same and would read the same value for his weight on a scale. Moreover, if he watched an object fall past him, the object would have the same acceleration relative to him in both situations.

\section*{Curvature of Space}

We have thus far explained gravitation as due to a force between masses. Einstein showed that, instead, gravitation is due to a curvature of space that is caused by the masses. (As is discussed later in this book, space and time are entangled, so the curvature of which Einstein spoke is really a curvature of spacetime, the combined four dimensions of our universe.)

Picturing how space (such as vacuum) can have curvature is difficult. An analogy might help: Suppose that from orbit we watch a race in which two boats begin on Earth's equator with a separation of 20 km and head due south (Fig. 13-19a). To the sailors, the boats travel along flat, parallel paths. However, with time the boats draw together until, nearer the south pole, they touch. The sailors in the boats can interpret this drawing together in terms of a force acting on the boats. Looking on from space, however, we can see that the boats draw together simply because of the curvature of Earth's surface. We can see this because we are viewing the race from "outside" that surface.

Figure \(13-19 b\) shows a similar race: Two horizontally separated apples are dropped from the same height above Earth. Although the apples may appear to travel along parallel paths, they actually move toward each other because they both fall toward Earth's center. We can interpret the motion of the apples in terms of the gravitational force on the apples from Earth. We can also interpret the motion in terms of a curvature of the space near Earth, a curvature due to the presence of Earth's mass. This time we cannot see the curvature because we cannot get "outside" the curved space, as we got "outside" the curved Earth in the boat example. However, we can depict the curvature with a drawing like Fig. 13-19c; there the apples would move along a surface that curves toward Earth because of Earth's mass.

When light passes near Earth, the path of the light bends slightly because of the curvature of space there, an effect called gravitational lensing. When light passes a more massive structure, like a galaxy or a black hole having large mass, its path can be bent more. If such a massive structure is between us and a quasar (an extremely bright, extremely distant source of light), the light from the quasar


Figure 13-19 (a) Two objects moving along lines of longitude toward the south pole converge because of the curvature of Earth's surface. (b) Two objects falling freely near Earth move along lines that converge toward the center of Earth because of the curvature of space near Earth. (c) Far from Earth (and other masses), space is flat and parallel paths remain parallel. Close to Earth, the parallel paths begin to converge because space is curved by Earth's mass.

Figure 13-20 (a) Light from a distant quasar follows curved paths around a galaxy or a large black hole because the mass of the galaxy or black hole has curved the adjacent space. If the light is detected, it appears to have originated along the backward extensions of the final paths (dashed lines). (b) The Einstein ring known as MG1131+0456 on the computer screen of a telescope. The source of the light (actually, radio waves, which are a form of invisible light) is far behind the large, unseen galaxy that produces the ring; a portion of the source appears as the two bright spots seen along the ring.

(a)

(b)
can bend around the massive structure and toward us (Fig. 13-20a). Then, because the light seems to be coming to us from a number of slightly different directions in the sky, we see the same quasar in all those different directions. In some situations, the quasars we see blend together to form a giant luminous arc, which is called an Einstein ring (Fig. 13-20b).

Should we attribute gravitation to the curvature of spacetime due to the presence of masses or to a force between masses? Or should we attribute it to the actions of a type of fundamental particle called a graviton, as conjectured in some modern physics theories? Although our theories about gravitation have been enormously successful in describing everything from falling apples to planetary and stellar motions, we still do not fully understand it on either the cosmological scale or the quantum physics scale.

\section*{8,8eview \& Summary}

The Law of Gravitation Any particle in the universe attracts any other particle with a gravitational force whose magnitude is
\[
\begin{equation*}
F=G \frac{m_{1} m_{2}}{r^{2}} \quad \text { (Newton's law of gravitation), } \tag{13-1}
\end{equation*}
\]
where \(m_{1}\) and \(m_{2}\) are the masses of the particles, \(r\) is their separation, and \(G\left(=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)\) is the gravitational constant.

\section*{Gravitational Behavior of Uniform Spherical Shells} The gravitational force between extended bodies is found by adding (integrating) the individual forces on individual particles within the bodies. However, if either of the bodies is a uniform spherical shell or a spherically symmetric solid, the net gravitational force it exerts on an external object may be computed as if all the mass of the shell or body were located at its center.

Superposition Gravitational forces obey the principle of superposition; that is, if \(n\) particles interact, the net force \(\vec{F}_{1 \text {,net }}\) on a particle labeled particle 1 is the sum of the forces on it from all the other particles taken one at a time:
\[
\begin{equation*}
\vec{F}_{1, \text { net }}=\sum_{i=2}^{n} \vec{F}_{1 i} \tag{13-5}
\end{equation*}
\]
in which the sum is a vector sum of the forces \(\vec{F}_{1 i}\) on particle 1 from particles \(2,3, \ldots, n\). The gravitational force \(\vec{F}_{1}\) on a
particle from an extended body is found by dividing the body into units of differential mass \(d m\), each of which produces a differential force \(d \vec{F}\) on the particle, and then integrating to find the sum of those forces:
\[
\begin{equation*}
\vec{F}_{1}=\int d \vec{F} \tag{13-6}
\end{equation*}
\]

Gravitational Acceleration The gravitational acceleration \(a_{g}\) of a particle (of mass \(m\) ) is due solely to the gravitational force acting on it. When the particle is at distance \(r\) from the center of a uniform, spherical body of mass \(M\), the magnitude \(F\) of the gravitational force on the particle is given by Eq. 13-1.Thus, by Newton's second law,
\[
\begin{equation*}
F=m a_{g}, \tag{13-10}
\end{equation*}
\]
which gives
\[
\begin{equation*}
a_{g}=\frac{G M}{r^{2}} \tag{13-11}
\end{equation*}
\]

Free-Fall Acceleration and Weight Because Earth's mass is not distributed uniformly, because the planet is not perfectly spherical, and because it rotates, the actual free-fall acceleration \(\vec{g}\) of a particle near Earth differs slightly from the gravitational acceleration \(\vec{a}_{g}\), and the particle's weight (equal to \(m g\) ) differs from the magnitude of the gravitational force on it as calculated by Newton's law of gravitation (Eq. 13-1).

Gravitation Within a Spherical Shell A uniform shell of matter exerts no net gravitational force on a particle located inside it. This means that if a particle is located inside a uniform solid sphere at distance \(r\) from its center, the gravitational force exerted on the particle is due only to the mass that lies inside a sphere of radius \(r\) (the inside sphere). The force magnitude is given by
\[
\begin{equation*}
F=\frac{G m M}{R^{3}} r \tag{13-19}
\end{equation*}
\]
where \(M\) is the sphere's mass and \(R\) is its radius.
Gravitational Potential Energy The gravitational potential energy \(U(r)\) of a system of two particles, with masses \(M\) and \(m\) and separated by a distance \(r\), is the negative of the work that would be done by the gravitational force of either particle acting on the other if the separation between the particles were changed from infinite (very large) to \(r\). This energy is
\[
\begin{equation*}
U=-\frac{G M m}{r} \quad \text { (gravitational potential energy). } \tag{13-21}
\end{equation*}
\]

Potential Energy of a System If a system contains more than two particles, its total gravitational potential energy \(U\) is the sum of the terms representing the potential energies of all the pairs. As an example, for three particles, of masses \(m_{1}, m_{2}\), and \(m_{3}\),
\[
\begin{equation*}
U=-\left(\frac{G m_{1} m_{2}}{r_{12}}+\frac{G m_{1} m_{3}}{r_{13}}+\frac{G m_{2} m_{3}}{r_{23}}\right) \tag{13-22}
\end{equation*}
\]

Escape Speed An object will escape the gravitational pull of an astronomical body of mass \(M\) and radius \(R\) (that is, it will reach an infinite distance) if the object's speed near the body's surface is at least equal to the escape speed, given by
\[
\begin{equation*}
v=\sqrt{\frac{2 G M}{R}} \tag{13-28}
\end{equation*}
\]

\section*{Questions}

1 In Fig. 13-21, a central particle of mass \(M\) is surrounded by a square array of other particles, separated by either distance \(d\) or distance \(d / 2\) along the perimeter of the square. What are the magnitude and direction of the net gravitational force on the central particle due to the other particles?
2 Figure 13-22 shows three


Figure 13-21 Question 1. arrangements of the same identical particles, with three of them placed on a circle of radius 0.20 m and the fourth one placed at the center of the circle. (a) Rank the arrangements according to the magnitude of the net gravitational force on the central particle due to the other


Figure 13-22 Question 2. three particles, greatest first. (b) Rank them according to the gravitational potential energy of the four-particle system, least negative first.
3 In Fig. 13-23, a central particle is surrounded by two circular

Kepler's Laws The motion of satellites, both natural and artificial, is governed by these laws:
1. The law of orbits. All planets move in elliptical orbits with the Sun at one focus.
2. The law of areas. A line joining any planet to the Sun sweeps out equal areas in equal time intervals. (This statement is equivalent to conservation of angular momentum.)
3. The law of periods. The square of the period \(T\) of any planet is proportional to the cube of the semimajor axis \(a\) of its orbit. For circular orbits with radius \(r\),
\[
\begin{equation*}
T^{2}=\left(\frac{4 \pi^{2}}{G M}\right) r^{3} \quad \text { (law of periods) } \tag{13-34}
\end{equation*}
\]
where \(M\) is the mass of the attracting body - the Sun in the case of the solar system. For elliptical planetary orbits, the semimajor axis \(a\) is substituted for \(r\).

Energy in Planetary Motion When a planet or satellite with mass \(m\) moves in a circular orbit with radius \(r\), its potential energy \(U\) and kinetic energy \(K\) are given by
\[
\begin{equation*}
U=-\frac{G M m}{r} \quad \text { and } \quad K=\frac{G M m}{2 r} \tag{13-21,13-38}
\end{equation*}
\]

The mechanical energy \(E=K+U\) is then
\[
\begin{equation*}
E=-\frac{G M m}{2 r} \tag{13-40}
\end{equation*}
\]

For an elliptical orbit of semimajor axis \(a\),
\[
\begin{equation*}
E=-\frac{G M m}{2 a} \tag{13-42}
\end{equation*}
\]

Einstein's View of Gravitation Einstein pointed out that gravitation and acceleration are equivalent. This principle of equivalence led him to a theory of gravitation (the general theory of relativity) that explains gravitational effects in terms of a curvature of space.
rings of particles, at radii \(r\) and \(R\), with \(R>r\). All the particles have mass \(m\). What are the magnitude and direction of the net gravitational force on the central particle due to the particles in the rings?
4 In Fig. 13-24, two particles, of masses \(m\) and \(2 m\), are fixed in place on an axis. (a) Where on the axis can a third particle of mass \(3 m\) be placed (other than at infinity) so that the net gravitational force on it from the first two particles is zero: to the left of the first two particles, to their right, between them but closer to the more massive particle, or between them but closer to the less


Figure 13-23 Question 3.


Figure 13-24 Question 4. massive particle? (b) Does the answer change if the third particle has, instead, a mass of \(16 m\) ? (c) Is there a point off the axis (other than infinity) at which the net force on the third particle would be zero?

5 Figure 13-25 shows three situations involving a point particle \(P\) with mass \(m\) and a spherical shell with a uniformly distributed mass \(M\). The radii of the shells are given. Rank the situations according to the magnitude of the gravitational force on particle \(P\) due to the shell, greatest first.


Figure 13-25 Question 5.

6 In Fig. 13-26, three particles are fixed in place. The mass of \(B\) is greater than the mass of \(C\). Can a fourth particle (particle \(D\) ) be placed somewhere so that the net gravitational force on particle \(A\) from particles \(B, C\), and \(D\) is zero? If so, in which quadrant should it be placed and which axis should it be near?

7 Rank the four systems of equal-


Figure 13-26 Question 6. mass particles shown in Checkpoint 2 according to the absolute value of the gravitational potential energy of the system, greatest first.
8 Figure 13-27 gives the gravitational acceleration \(a_{g}\) for four planets as a function of the radial distance \(r\) from the center of the planet, starting at the surface of the planet (at radius \(R_{1}, R_{2}, R_{3}\), or \(R_{4}\) ). Plots 1 and 2 coincide for \(r \geq R_{2}\); plots 3 and 4 coincide for \(r \geq R_{4}\). Rank the four planets according to (a) mass and (b) mass per unit volume, greatest first.


Figure 13-27 Question 8.

9 Figure 13-28 shows three particles initially fixed in place, with \(B\) and \(C\) identical and positioned symmetrically about the \(y\) axis, at distance \(d\) from \(A\). (a) In what direction is the net gravitational force \(\vec{F}_{\text {net }}\) on \(A\) ? (b) If we move \(C\) directly away from the origin, does \(\vec{F}_{\text {net }}\) change in direction? If so, how and what is the limit of the change?
10 Figure 13-29 shows six paths by which a rocket orbiting a moon might move from point \(a\) to point \(b\). Rank the paths according to (a) the corresponding change in the gravitational potential energy of the rocket-moon system and (b) the net work done on the rocket by the gravitational force from the moon, greatest first.


Figure 13-28 Question 9.


Figure 13-29 Question 10.

11 Figure \(13-30\) shows three uniform spherical planets that are identical in size and mass. The periods of rotation \(T\) for the planets are given, and six lettered points are indicated-three points are on the equators of the planets and three points are on the north poles. Rank the points according to the value of the free-fall acceleration \(g\) at them, greatest first.


Figure 13-30 Question 11.
12 In Fig. 13-31, a particle of mass \(m\) (which is not shown) is to be moved from an infinite distance to one of the three possible locations \(a, b\), and \(c\). Two other particles, of masses \(m\) and \(2 m\), are already fixed in place on the axis, as shown. Rank the three possible locations according to the work done by the net gravitational force on the moving particle due to the fixed particles, greatest first.


Figure 13-31 Question 12.

\section*{Problems}


\section*{Module 13-1 Newton's Law of Gravitation}
-1 ILw A mass \(M\) is split into two parts, \(m\) and \(M-m\), which are then separated by a certain distance. What ratio \(m / M\) maximizes the magnitude of the gravitational force between the parts?
-2 Moon effect. Some people believe that the Moon controls their activities. If the Moon moves from being directly on the opposite side of Earth from you to being directly overhead, by what percent does (a) the Moon's gravitational pull on you
increase and (b) your weight (as measured on a scale) decrease? Assume that the Earth-Moon (center-to-center) distance is \(3.82 \times 10^{8} \mathrm{~m}\) and Earth's radius is \(6.37 \times 10^{6} \mathrm{~m}\).
-3 SSM What must the separation be between a 5.2 kg particle and a 2.4 kg particle for their gravitational attraction to have a magnitude of \(2.3 \times 10^{-12} \mathrm{~N}\) ?
-4 The Sun and Earth each exert a gravitational force on the Moon. What is the ratio \(F_{\text {Sun }} / F_{\text {Earth }}\) of these two forces? (The average Sun-Moon distance is equal to the Sun-Earth distance.)
-5 Miniature black holes. Left over from the big-bang beginning of the universe, tiny black holes might still wander through the universe. If one with a mass of \(1 \times 10^{11} \mathrm{~kg}\) (and a radius of only \(1 \times 10^{-16} \mathrm{~m}\) ) reached Earth, at what distance from your head would its gravitational pull on you match that of Earth's?
Module 13-2 Gravitation and the Principle of Superposition -6 ©o In Fig. 13-32, a square of edge length 20.0 cm is formed by four spheres of masses \(m_{1}=5.00 \mathrm{~g}, m_{2}=3.00 \mathrm{~g}, m_{3}=1.00 \mathrm{~g}\), and \(m_{4}=5.00 \mathrm{~g}\). In unit-vector notation, what is the net gravitational force from them on a central sphere with mass \(m_{5}=2.50 \mathrm{~g}\) ?
\(\cdot 7\) One dimension. In Fig. 13-33, two point particles are fixed on an \(x\) axis separated by distance \(d\). Particle \(A\) has mass \(m_{A}\) and particle \(B\) has mass \(3.00 m_{A}\). A third particle \(C\), of mass \(75.0 m_{A}\), is to be placed on the \(x\) axis and near particles \(A\) and \(B\). In terms of distance \(d\), at what \(x\) coordinate should \(C\) be placed so that the net gravitational force on particle \(A\) from particles \(B\) and \(C\) is zero?
-8 In Fig. 13-34, three 5.00 kg spheres are lo-


Figure 13-32
Problem 6.


Figure 13-33
Problem 7. cated at distances \(d_{1}=0.300 \mathrm{~m}\) and \(d_{2}=0.400\) m . What are the (a) magnitude and (b) direction (relative to the positive direction of the \(x\) axis) of the net gravitational force on sphere \(B\) due to spheres \(A\) and \(C\) ?


Figure 13-34 Problem 8.
-9 SSM Www We want to position a space probe along a line that extends directly toward the Sun in order to monitor solar flares. How far from Earth's center is the point on the line where the Sun's gravitational pull on the probe balances Earth's pull?
\(\bullet 10\) ©o Two dimensions. In Fig. 13-35, three point particles are fixed in place in an \(x y\) plane. Particle \(A\) has mass \(m_{A}\), particle \(B\) has mass \(2.00 m_{A}\), and particle \(C\) has mass \(3.00 m_{A}\). A fourth particle \(D\), with mass \(4.00 m_{A}\), is to be placed near the other three particles. In terms of dis-


Figure 13-35 Problem 10.
tance \(d\), at what (a) \(x\) coordinate and (b) \(y\) coordinate should particle \(D\) be placed so that the net gravitational force on particle \(A\) from particles \(B, C\), and \(D\) is zero?
\(\bullet 11\) As seen in Fig. 13-36, two spheres of mass \(m\) and a third sphere of mass \(M\) form an equilateral triangle, and a fourth sphere of mass \(m_{4}\) is at the center of the triangle. The net gravitational force on that central sphere from the three other spheres is zero. (a) What is \(M\) in terms of \(m\) ? (b) If we double the value of \(m_{4}\), what then is the magnitude of the net gravitational force on the central sphere?


Figure 13-36
Problem 11.
\(\bullet 12\) ©o In Fig. 13-37a, particle \(A\) is fixed in place at \(x=-0.20 \mathrm{~m}\) on the \(x\) axis and particle \(B\), with a mass of 1.0 kg , is fixed in place at the origin. Particle \(C\) (not shown) can be moved along the \(x\) axis, between particle \(B\) and \(x=\infty\). Figure 13-37b shows the \(x\) component \(F_{\text {net }, x}\) of the net gravitational force on particle \(B\) due to particles \(A\) and \(C\), as a function of position \(x\) of particle \(C\). The plot actually extends to the right, approaching an asymptote of \(-4.17 \times 10^{-10} \mathrm{~N}\) as \(x \rightarrow \infty\). What are the masses of (a) particle \(A\) and (b) particle \(C\) ?

(a)

(b)

Figure 13-37 Problem 12.
-•13 Figure 13-38 shows a spherical hollow inside a lead sphere of radius \(R=4.00 \mathrm{~cm}\); the surface of the hollow passes through the center of the sphere and "touches" the right side of the sphere. The mass of the sphere before hollowing was \(M=\)


Figure 13-38 Problem 13. 2.95 kg . With what gravitational force does the hollowed-out lead sphere attract a small sphere of mass \(m=0.431 \mathrm{~kg}\) that lies at a distance \(d=9.00 \mathrm{~cm}\) from the center of the lead sphere, on the straight line connecting the centers of the spheres and of the hollow?
\(\bullet 14\) © Three point particles are fixed in position in an \(x y\) plane. Two of them, particle \(A\) of mass 6.00 g and particle \(B\) of mass 12.0 g , are shown in Fig. 13-39, with a separation of \(d_{A B}=0.500\) m at angle \(\theta=30^{\circ}\). Particle \(C\), with mass 8.00 g , is not shown. The net gravitational force acting on particle \(A\) due to


Figure 13-39 Problem 14. particles \(B\) and \(C\) is \(2.77 \times 10^{-14} \mathrm{~N}\) at an angle of \(-163.8^{\circ}\) from the positive direction of the \(x\) axis. What are (a) the \(x\) coordinate and (b) the \(y\) coordinate of particle \(C\) ?
\(\because 00\) Three dimensions. Three point particles are fixed in place in an \(x y z\) coordinate system. Particle \(A\), at the origin, has mass \(m_{A}\).

Particle \(B\), at \(x y z\) coordinates ( \(2.00 d, 1.00 d, 2.00 d\) ), has mass \(2.00 m_{A}\), and particle \(C\), at coordinates \((-1.00 d, 2.00 d,-3.00 d\) ), has mass \(3.00 m_{A}\). A fourth particle \(D\), with mass \(4.00 m_{A}\), is to be placed near the other particles. In terms of distance \(d\), at what (a) \(x\), (b) \(y\), and (c) \(z\) coordinate should \(D\) be placed so that the net gravitational force on \(A\) from \(B, C\), and \(D\) is zero?
©0016 ©o In Fig. 13-40, a particle of mass \(m_{1}=0.67 \mathrm{~kg}\) is a distance \(d=23 \mathrm{~cm}\) from one end of a uniform rod with length \(L=\) 3.0 m and mass \(M=5.0 \mathrm{~kg}\). What
 is the magnitude of the gravitational force \(\vec{F}\) on the particle from the rod?

\section*{Module 13-3 Gravitation Near Earth's Surface}
\(\cdot 17\) (a) What will an object weigh on the Moon's surface if it weighs 100 N on Earth's surface? (b) How many Earth radii must this same object be from the center of Earth if it is to weigh the same as it does on the Moon?
-18 Mountain pull. A large mountain can slightly affect the direction of "down" as determined by a plumb line. Assume that we can model a mountain as a sphere of radius \(R=2.00 \mathrm{~km}\) and density (mass per unit volume) \(2.6 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\). Assume also that we hang a 0.50 m plumb line at a distance of \(3 R\) from the sphere's center and such that the sphere pulls horizontally on the lower end. How far would the lower end move toward the sphere?
-19 SSM At what altitude above Earth's surface would the gravitational acceleration be \(4.9 \mathrm{~m} / \mathrm{s}^{2}\) ?
-20 Mile-high building. In 1956, Frank Lloyd Wright proposed the construction of a mile-high building in Chicago. Suppose the building had been constructed. Ignoring Earth's rotation, find the change in your weight if you were to ride an elevator from the street level, where you weigh 600 N , to the top of the building.
\(\bullet 21\) ILW Certain neutron stars (extremely dense stars) are believed to be rotating at about \(1 \mathrm{rev} / \mathrm{s}\). If such a star has a radius of 20 km , what must be its minimum mass so that material on its surface remains in place during the rapid rotation?
-022 The radius \(R_{h}\) and mass \(M_{h}\) of a black hole are related by \(R_{h}=2 G M_{h} / c^{2}\), where \(c\) is the speed of light. Assume that the gravitational acceleration \(a_{g}\) of an object at a distance \(r_{o}=1.001 R_{h}\) from the center of a black hole is given by Eq. 13-11 (it is, for large black holes). (a) In terms of \(M_{h}\), find \(a_{g}\) at \(r_{o}\). (b) Does \(a_{g}\) at \(r_{o}\) increase or decrease as \(M_{h}\) increases? (c) What is \(a_{g}\) at \(r_{o}\) for a very large black hole whose mass is \(1.55 \times 10^{12}\) times the solar mass of \(1.99 \times 10^{30} \mathrm{~kg}\) ? (d) If an astronaut of height 1.70 m is at \(r_{o}\) with her feet down, what is the difference in gravitational acceleration between her head and feet? (e) Is the tendency to stretch the astronaut severe?
-23 One model for a certain planet has a core of radius \(R\) and mass \(M\) surrounded by an outer shell of inner radius \(R\), outer radius \(2 R\), and mass \(4 M\). If \(M=4.1 \times 10^{24} \mathrm{~kg}\) and \(R=6.0 \times 10^{6} \mathrm{~m}\), what is the gravitational acceleration of a particle at points (a) \(R\) and (b) \(3 R\) from the center of the planet?
Module 13-4 Gravitation Inside Earth -24 Two concentric spherical shells with uniformly distributed masses \(M_{1}\) and \(M_{2}\) are situated as shown in Fig. 13-41. Find the magnitude of the net gravitational force on a particle of mass \(m\), due to the


Figure 13-41 Problem 24.
shells, when the particle is located at radial distance (a) \(a\), (b) \(b\), and (c) \(c\).
-25 A solid sphere has a uniformly distributed mass of \(1.0 \times 10^{4}\) kg and a radius of 1.0 m . What is the magnitude of the gravitational force due to the sphere on a particle of mass \(m\) when the particle is located at a distance of (a) 1.5 m and (b) 0.50 m from the center of the sphere? (c) Write a general expression for the magnitude of the gravitational force on the particle at a distance \(r \leq 1.0 \mathrm{~m}\) from the center of the sphere.
-26 A uniform solid sphere of radius \(R\) produces a gravitational acceleration of \(a_{g}\) on its surface. At what distance from the sphere's center are there points (a) inside and (b) outside the sphere where the gravitational acceleration is \(a_{g} / 3\) ?
\(\bullet 27\) Figure 13-42 shows, not to scale, a cross section through the interior of Earth. Rather than being uniform throughout, Earth is divided into three zones: an outer crust, a mantle, and an inner core. The dimensions of these zones and the masses contained within them are shown on the figure. Earth has a total mass of \(5.98 \times 10^{24} \mathrm{~kg}\) and a radius of 6370 km . Ignore rotation and assume that Earth is spherical. (a) Calculate \(a_{g}\) at the surface. (b) Suppose that a bore hole (the Mohole) is driven to the crust-mantle interface at a depth of 25.0 km ; what would be the value of \(a_{g}\) at the bottom of the hole? (c) Suppose that Earth were a uniform sphere with the same total mass and size. What would be the value of \(a_{g}\) at a depth of 25.0 km ? (Precise measurements of \(a_{g}\) are sensitive probes of the interior structure of Earth, although results can be clouded by local variations in mass distribution.)


Figure 13-42 Problem 27.
\(\bullet 28\) ©o Assume a planet is a uniform sphere of radius \(R\) that (somehow) has a narrow radial tunnel through its center (Fig. 13-7). Also assume we can position an apple anywhere along the tunnel or outside the sphere. Let \(F_{R}\) be the magnitude of the gravitational force on the apple when it is located at the planet's surface. How far from the surface is there a point where the magnitude is \(\frac{1}{2} F_{R}\) if we move the apple (a) away from the planet and (b) into the tunnel?

Module 13-5 Gravitational Potential Energy
-29 Figure 13-43 gives the potential energy function \(U(r)\) of a projectile, plotted outward from


Figure 13-43 Problems 29 and 34.
the surface of a planet of radius \(R_{s}\). What least kinetic energy is required of a projectile launched at the surface if the projectile is to "escape" the planet?
-30 In Problem 1, what ratio \(m / M\) gives the least gravitational potential energy for the system?
-31 SSM The mean diameters of Mars and Earth are \(6.9 \times 10^{3} \mathrm{~km}\) and \(1.3 \times 10^{4} \mathrm{~km}\), respectively. The mass of Mars is 0.11 times Earth's mass. (a) What is the ratio of the mean density (mass per unit volume) of Mars to that of Earth? (b) What is the value of the gravitational acceleration on Mars? (c) What is the escape speed on Mars?
-32 (a) What is the gravitational potential energy of the twoparticle system in Problem 3? If you triple the separation between the particles, how much work is done (b) by the gravitational force between the particles and (c) by you?
-33 What multiple of the energy needed to escape from Earth gives the energy needed to escape from (a) the Moon and (b) Jupiter?
-34 Figure 13-43 gives the potential energy function \(U(r)\) of a projectile, plotted outward from the surface of a planet of radius \(R_{s}\). If the projectile is launched radially outward from the surface with a mechanical energy of \(-2.0 \times 10^{9} \mathrm{~J}\), what are (a) its kinetic energy at radius \(r=1.25 R_{s}\) and (b) its turning point (see Module 8-3) in terms of \(R_{s}\) ?
\(\bullet 35\) © • Figure 13-44 shows four particles, each of mass 20.0 g , that form a square with an edge length of \(d=0.600 \mathrm{~m}\). If \(d\) is reduced to 0.200 m , what is the change in the gravitational potential energy of the four-particle system?
-36 ©o Zero, a hypothetical planet, has a mass of \(5.0 \times 10^{23} \mathrm{~kg}\), a radius of \(3.0 \times 10^{6} \mathrm{~m}\), and no atmosphere. A 10 kg space probe is to be


Figure 13-44
Problem 35. launched vertically from its surface. (a) If the probe is launched with an initial energy of \(5.0 \times 10^{7} \mathrm{~J}\), what will be its kinetic energy when it is \(4.0 \times 10^{6} \mathrm{~m}\) from the center of Zero? (b) If the probe is to achieve a maximum distance of \(8.0 \times 10^{6} \mathrm{~m}\) from the center of Zero, with what initial kinetic energy must it be launched from the surface of Zero?
\(\bullet 37\) (6) The three spheres in Fig. 13-45, with masses \(m_{A}=80 \mathrm{~g}\), \(m_{B}=10 \mathrm{~g}\), and \(m_{C}=20 \mathrm{~g}\), have their centers on a common line, with \(L=12 \mathrm{~cm}\) and \(d=4.0 \mathrm{~cm}\). You move sphere \(B\) along the line until its center-to-center separation from \(C\) is \(d=4.0 \mathrm{~cm}\). How much work is done on sphere \(B\) (a) by you and (b) by the net gravitational force on \(B\) due to spheres \(A\) and \(C\) ?


Figure 13-45 Problem 37.
-•38 In deep space, sphere \(A\) of mass 20 kg is located at the origin of an \(x\) axis and sphere \(B\) of mass 10 kg is located on the axis at \(x=\) 0.80 m . Sphere \(B\) is released from rest while sphere \(A\) is held at the origin. (a) What is the gravitational potential energy of the twosphere system just as \(B\) is released? (b) What is the kinetic energy of \(B\) when it has moved 0.20 m toward \(A\) ?
-•39 SSM (a) What is the escape speed on a spherical asteroid whose radius is 500 km and whose gravitational acceleration at the surface is \(3.0 \mathrm{~m} / \mathrm{s}^{2}\) ? (b) How far from the surface will a particle go if it leaves the asteroid's surface with a radial speed of \(1000 \mathrm{~m} / \mathrm{s}\) ? (c) With what speed will an object hit the asteroid if it is dropped from 1000 km above the surface?
\(\bullet 40\) A projectile is shot directly away from Earth's surface. Neglect the rotation of Earth. What multiple of Earth's radius \(R_{E}\) gives the radial distance a projectile reaches if (a) its initial speed is 0.500 of the escape speed from Earth and (b) its initial kinetic energy is 0.500 of the kinetic energy required to escape Earth? (c) What is the least initial mechanical energy required at launch if the projectile is to escape Earth?
- 41 SSM Two neutron stars are separated by a distance of \(1.0 \times 10^{10} \mathrm{~m}\). They each have a mass of \(1.0 \times 10^{30} \mathrm{~kg}\) and a radius of \(1.0 \times 10^{5} \mathrm{~m}\). They are initially at rest with respect to each other. As measured from that rest frame, how fast are they moving when (a) their separation has decreased to one-half its initial value and (b) they are about to collide?
\(\bullet 42\) ©o Figure 13-46a shows a particle \(A\) that can be moved along a \(y\) axis from an infinite distance to the origin. That origin lies at the midpoint between particles \(B\) and \(C\), which have identical masses, and the \(y\) axis is a perpendicular bisector between them. Distance \(D\) is 0.3057 m . Figure \(13-46 b\) shows the potential energy \(U\) of the three-particle system as a function of the position of particle \(A\) along the \(y\) axis. The curve actually extends rightward and approaches an asymptote of \(-2.7 \times 10^{-11} \mathrm{~J}\) as \(y \rightarrow \infty\). What are the masses of (a) particles \(B\) and \(C\) and (b) particle \(A\) ?


Figure 13-46 Problem 42.
Module 13-6 Planets and Satellites: Kepler's Laws
-43 (a) What linear speed must an Earth satellite have to be in a circular orbit at an altitude of 160 km above Earth's surface? (b) What is the period of revolution?
-44 A satellite is put in a circular orbit about Earth with a radius equal to one-half the radius of the Moon's orbit. What is its period of revolution in lunar months? (A lunar month is the period of revolution of the Moon.)
-45 The Martian satellite Phobos travels in an approximately circular orbit of radius \(9.4 \times 10^{6} \mathrm{~m}\) with a period of 7 h 39 min . Calculate the mass of Mars from this information.
-46 The first known collision between space debris and a functioning satellite occurred in 1996: At an altitude of 700 km , a yearold French spy satellite was hit by a piece of an Ariane rocket. A stabilizing boom on the satellite was demolished, and the satellite
was sent spinning out of control. Just before the collision and in kilometers per hour, what was the speed of the rocket piece relative to the satellite if both were in circular orbits and the collision was (a) head-on and (b) along perpendicular paths?
-47 SSM Www The Sun, which is \(2.2 \times 10^{20} \mathrm{~m}\) from the center of the Milky Way galaxy, revolves around that center once every \(2.5 \times 10^{8}\) years. Assuming each star in the Galaxy has a mass equal to the Sun's mass of \(2.0 \times 10^{30} \mathrm{~kg}\), the stars are distributed uniformly in a sphere about the galactic center, and the Sun is at the edge of that sphere, estimate the number of stars in the Galaxy.
-48 The mean distance of Mars from the Sun is 1.52 times that of Earth from the Sun. From Kepler's law of periods, calculate the number of years required for Mars to make one revolution around the Sun; compare your answer with the value given in Appendix C.
-49 A comet that was seen in April 574 by Chinese astronomers on a day known by them as the Woo Woo day was spotted again in May 1994. Assume the time between observations is the period of the Woo Woo day comet and its eccentricity is 0.9932 . What are (a) the semimajor axis of the comet's orbit and (b) its greatest distance from the Sun in terms of the mean orbital radius \(R_{P}\) of Pluto?
\(\cdot 50\) An orbiting satellite stays over a certain spot on the equator of (rotating) Earth. What is the altitude of the orbit (called a geosynchronous orbit)?
-51 SSM A satellite, moving in an elliptical orbit, is 360 km above Earth's surface at its farthest point and 180 km above at its closest point. Calculate (a) the semimajor axis and (b) the eccentricity of the orbit.
-52 The Sun's center is at one focus of Earth's orbit. How far from this focus is the other focus, (a) in meters and (b) in terms of the solar radius, \(6.96 \times 10^{8} \mathrm{~m}\) ? The eccentricity is 0.0167 , and the semimajor axis is \(1.50 \times 10^{11} \mathrm{~m}\).
-•53 A 20 kg satellite has a circular orbit with a period of 2.4 h and a radius of \(8.0 \times 10^{6} \mathrm{~m}\) around a planet of unknown mass. If the magnitude of the gravitational acceleration on the surface of the planet is \(8.0 \mathrm{~m} / \mathrm{s}^{2}\), what is the radius of the planet?
\(\bullet 54\) (6) Hunting a black hole. Observations of the light from a certain star indicate that it is part of a binary (two-star) system. This visible star has orbital speed \(v=270\) \(\mathrm{km} / \mathrm{s}\), orbital period \(T=1.70\) days, and approximate mass \(m_{1}=6 M_{s}\), where \(M_{s}\) is the Sun's mass, \(1.99 \times\) \(10^{30} \mathrm{~kg}\). Assume that the visible star and its companion star, which is dark and unseen, are both in circular orbits (Fig. 13-47). What integer multiple of \(M_{s}\) gives the approxi-


Figure 13-47 Problem 54. mate mass \(m_{2}\) of the dark star?
-•55 In 1610, Galileo used his telescope to discover four moons around Jupiter, with these mean orbital radii \(a\) and periods \(T\) :
\begin{tabular}{lcc}
\hline \multicolumn{1}{c}{ Name } & \(a\left(10^{8} \mathrm{~m}\right)\) & \(T\) (days) \\
\hline Io & 4.22 & 1.77 \\
Europa & 6.71 & 3.55 \\
Ganymede & 10.7 & 7.16 \\
Callisto & 18.8 & 16.7 \\
\hline
\end{tabular}
(a) Plot \(\log a\) ( \(y\) axis) against \(\log T\) ( \(x\) axis) and show that you get a straight line. (b) Measure the slope of the line and compare it with the value that you expect from Kepler's third law. (c) Find the mass of Jupiter from the intercept of this line with the \(y\) axis.
-•56 In 1993 the spacecraft Galileo sent an image (Fig. 13-48) of asteroid 243 Ida and a tiny orbiting moon (now known as Dactyl), the first confirmed example of an asteroid-moon system. In the image, the moon, which is 1.5 km wide, is 100 km from the center of the asteroid, which is 55 km long. Assume the moon's orbit is circular with a period of 27 h . (a) What is the mass of the asteroid? (b) The volume of the asteroid, measured from the Galileo images, is \(14100 \mathrm{~km}^{3}\). What is the density (mass per unit volume) of the asteroid?


Figure 13-48 Problem 56. A tiny moon (at right) orbits asteroid 243 Ida.
-•57 ILW In a certain binary-star system, each star has the same mass as our Sun, and they revolve about their center of mass. The distance between them is the same as the distance between Earth and the Sun. What is their period of revolution in years?
\(\bullet \bullet 58\) ©0 The presence of an unseen planet orbiting a distant star can sometimes be inferred from the motion of the star as we see it. As the star and planet orbit the center of mass of the star-planet system, the star moves toward and away from us with what is called the line of sight velocity, a motion that can be detected. Figure 13-49 shows a graph of the line of sight velocity versus time for the star 14 Herculis. The star's mass is believed to be 0.90 of the mass of our Sun. Assume that only one planet orbits the star and that our view is along the plane of the orbit. Then approximate (a) the planet's mass in terms of Jupiter's mass \(m_{J}\) and (b) the planet's orbital radius in terms of Earth's orbital radius \(r_{E}\).


Figure 13-49 Problem 58.
-•55 Three identical stars of mass \(M\) form an equilateral triangle that rotates around the triangle's center as the stars move in a common circle about that center. The triangle has edge length \(L\). What is the speed of the stars?

\section*{Module 13-7 Satellites: Orbits and Energy}
\(\bullet 60\) In Fig. 13-50, two satellites, \(A\) and \(B\), both of mass \(m=125 \mathrm{~kg}\), move in the same circular orbit of radius \(r=7.87 \times 10^{6}\) m around Earth but in opposite senses of rotation and therefore on a collision course. (a) Find the total mechanical energy \(E_{A}+E_{B}\) of the two satellites + Earth system before the collision. (b) If the collision is completely inelastic so that the wreckage remains as one piece of tan-


Figure 13-50
Problem 60. gled material (mass \(=2 m\) ), find the total mechanical energy immediately after the collision. (c) Just after the collision, is the wreckage falling directly toward Earth's center or orbiting around Earth?
\(\bullet 61\) (a) At what height above Earth's surface is the energy required to lift a satellite to that height equal to the kinetic energy required for the satellite to be in orbit at that height? (b) For greater heights, which is greater, the energy for lifting or the kinetic energy for orbiting?
-62 Two Earth satellites, \(A\) and \(B\), each of mass \(m\), are to be launched into circular orbits about Earth's center. Satellite \(A\) is to orbit at an altitude of 6370 km . Satellite \(B\) is to orbit at an altitude of 19110 km . The radius of Earth \(R_{E}\) is 6370 km . (a) What is the ratio of the potential energy of satellite \(B\) to that of satellite \(A\), in orbit? (b) What is the ratio of the kinetic energy of satellite \(B\) to that of satellite \(A\), in orbit? (c) Which satellite has the greater total energy if each has a mass of 14.6 kg ? (d) By how much?
-63 SSIM Www An asteroid, whose mass is \(2.0 \times 10^{-4}\) times the mass of Earth, revolves in a circular orbit around the Sun at a distance that is twice Earth's distance from the Sun. (a) Calculate the period of revolution of the asteroid in years. (b) What is the ratio of the kinetic energy of the asteroid to the kinetic energy of Earth?
-64 A satellite orbits a planet of unknown mass in a circle of radius \(2.0 \times 10^{7} \mathrm{~m}\). The magnitude of the gravitational force on the satellite from the planet is \(F=80 \mathrm{~N}\). (a) What is the kinetic energy of the satellite in this orbit? (b) What would \(F\) be if the orbit radius were increased to \(3.0 \times 10^{7} \mathrm{~m}\) ?
-065 A satellite is in a circular Earth orbit of radius \(r\). The area \(A\) enclosed by the orbit depends on \(r^{2}\) because \(A=\pi r^{2}\). Determine how the following properties of the satellite depend on \(r\) : (a) period, (b) kinetic energy, (c) angular momentum, and (d) speed.
-066 One way to attack a satellite in Earth orbit is to launch a swarm of pellets in the same orbit as the satellite but in the opposite direction. Suppose a satellite in a circular orbit 500 km above Earth's surface collides with a pellet having mass 4.0 g . (a) What is the kinetic energy of the pellet in the reference frame of the satellite just before the collision? (b) What is the ratio of this kinetic energy to the kinetic energy of a 4.0 g bullet from a modern army rifle with a muzzle speed of \(950 \mathrm{~m} / \mathrm{s}\) ?
~0067 What are (a) the speed and (b) the period of a 220 kg satellite in an approximately circular orbit 640 km above the surface of Earth? Suppose the satellite loses mechanical energy at the average rate of \(1.4 \times 10^{5} \mathrm{~J}\) per orbital revolution. Adopting the reasonable approximation that the satellite's orbit becomes a "circle of slowly diminishing radius," determine the satellite's (c) altitude, (d) speed, and (e) period at the end of its 1500th revolution. (f) What
is the magnitude of the average retarding force on the satellite? Is angular momentum around Earth's center conserved for (g) the satellite and (h) the satellite-Earth system (assuming that system is isolated)?
-•068 (60 Two small spaceships, each with mass \(m=2000 \mathrm{~kg}\), are in the circular Earth orbit of Fig. 13-51, at an altitude \(h\) of 400 km . Igor, the commander of one of the ships, arrives at any fixed point in the orbit 90 s ahead of Picard, the commander of the other ship. What are the (a) period \(T_{0}\) and (b) speed \(v_{0}\) of the ships? At point \(P\) in Fig. 13-51, Picard fires an instantaneous burst in the forward direction, reducing his ship's speed by \(1.00 \%\). After this burst, he follows the elliptical orbit shown dashed in the figure. What are the (c) kinetic energy and (d) potential energy of


Figure 13-51 Problem 68. his ship immediately after the burst? In Picard's new elliptical orbit, what are (e) the total energy \(E\), (f) the semimajor axis \(a\), and (g) the orbital period \(T\) ? (h) How much earlier than Igor will Picard return to \(P\) ?

\section*{Module 13-8 Einstein and Gravitation}
-69 In Fig. 13-18b, the scale on which the 60 kg physicist stands reads 220 N . How long will the cantaloupe take to reach the floor if the physicist drops it (from rest relative to himself) at a height of 2.1 m above the floor?

\section*{Additional Problems}

70 © The radius \(R_{h}\) of a black hole is the radius of a mathematical sphere, called the event horizon, that is centered on the black hole. Information from events inside the event horizon cannot reach the outside world. According to Einstein's general theory of relativity, \(R_{h}=2 G M / c^{2}\), where \(M\) is the mass of the black hole and \(c\) is the speed of light.

Suppose that you wish to study a black hole near it, at a radial distance of \(50 R_{h}\). However, you do not want the difference in gravitational acceleration between your feet and your head to exceed \(10 \mathrm{~m} / \mathrm{s}^{2}\) when you are feet down (or head down) toward the black hole. (a) As a multiple of our Sun's mass \(M_{S}\), approximately what is the limit to the mass of the black hole you can tolerate at the given radial distance? (You need to estimate your height.) (b) Is the limit an upper limit (you can tolerate smaller masses) or a lower limit (you can tolerate larger masses)?
71 Several planets (Jupiter, Saturn, Uranus) are encircled by rings, perhaps composed of material that failed to form a satellite. In addition, many galaxies contain ring-like structures. Consider a homogeneous thin ring of mass \(M\) and outer radius \(R\) (Fig. 13-52). (a) What gravitational attraction does it exert on a particle of mass \(m\) located on the


Figure 13-52
Problem 71. ring's central axis a distance \(x\) from the ring center? (b) Suppose the particle falls from rest as a result of the attraction of the ring of matter. What is the speed with which it passes through the center of the ring?
72 A typical neutron star may have a mass equal to that of the Sun but a radius of only 10 km . (a) What is the gravitational acceleration at the surface of such a star? (b) How fast would an object be
moving if it fell from rest through a distance of 1.0 m on such a star? (Assume the star does not rotate.)
73 Figure 13-53 is a graph of the kinetic energy \(K\) of an asteroid versus its distance \(r\) from Earth's center, as the asteroid falls directly in toward that center. (a) What is the (approximate) mass of the asteroid? (b) What is its speed at \(r=1.945 \times 10^{7} \mathrm{~m}\) ?


Figure 13-53 Problem 73.

74 The mysterious visitor that appears in the enchanting story The Little Prince was said to come from a planet that "was scarcely any larger than a house!" Assume that the mass per unit volume of the planet is about that of Earth and that the planet does not appreciably spin. Approximate (a) the free-fall acceleration on the planet's surface and (b) the escape speed from the planet.
75 ILW The masses and coordinates of three spheres are as follows: \(20 \mathrm{~kg}, x=0.50 \mathrm{~m}, y=1.0 \mathrm{~m} ; 40 \mathrm{~kg}, x=-1.0 \mathrm{~m}, y=-1.0 \mathrm{~m}\); \(60 \mathrm{~kg}, x=0 \mathrm{~m}, y=-0.50 \mathrm{~m}\). What is the magnitude of the gravitational force on a 20 kg sphere located at the origin due to these three spheres?
76 SSM A very early, simple satellite consisted of an inflated spherical aluminum balloon 30 m in diameter and of mass 20 kg . Suppose a meteor having a mass of 7.0 kg passes within 3.0 m of the surface of the satellite. What is the magnitude of the gravitational force on the meteor from the satellite at the closest approach?
77 ©0 Four uniform spheres, with masses \(m_{A}=40 \mathrm{~kg}, m_{B}=35 \mathrm{~kg}\), \(m_{C}=200 \mathrm{~kg}\), and \(m_{D}=50 \mathrm{~kg}\), have \((x, y)\) coordinates of \((0,50 \mathrm{~cm})\), \((0,0),(-80 \mathrm{~cm}, 0)\), and \((40 \mathrm{~cm}, 0)\), respectively. In unit-vector notation, what is the net gravitational force on sphere \(B\) due to the other spheres?
78 (a) In Problem 77, remove sphere \(A\) and calculate the gravitational potential energy of the remaining three-particle system. (b) If \(A\) is then put back in place, is the potential energy of the four-particle system more or less than that of the system in (a)? (c) In (a), is the work done by you to remove \(A\) positive or negative? (d) In (b), is the work done by you to replace \(A\) positive or negative?
79 SSM A certain triple-star system consists of two stars, each of mass \(m\), revolving in the same circular orbit of radius \(r\) around a central star of mass \(M\) (Fig. 13-54). The two orbiting stars are always at opposite ends of a diameter of the orbit. Derive an expression for the period of revolution of the stars.


Figure 13-54
Problem 79.

80 The fastest possible rate of rotation of a planet is that for which the gravitational force on material at the equator just barely provides the centripetal force needed for the rotation. (Why?) (a) Show that the corresponding shortest period of rotation is
\[
T=\sqrt{\frac{3 \pi}{G \rho}}
\]
where \(\rho\) is the uniform density (mass per unit volume) of the spherical planet. (b) Calculate the rotation period assuming a density of \(3.0 \mathrm{~g} / \mathrm{cm}^{3}\), typical of many planets, satellites, and asteroids. No astronomical object has ever been found to be spinning with a period shorter than that determined by this analysis.
81 SSM In a double-star system, two stars of mass \(3.0 \times 10^{30} \mathrm{~kg}\) each rotate about the system's center of mass at radius \(1.0 \times 10^{11} \mathrm{~m}\). (a) What is their common angular speed? (b) If a meteoroid passes through the system's center of mass perpendicular to their orbital plane, what minimum speed must it have at the center of mass if it is to escape to "infinity" from the two-star system?
82 A satellite is in elliptical orbit with a period of \(8.00 \times 10^{4} \mathrm{~s}\) about a planet of mass \(7.00 \times 10^{24} \mathrm{~kg}\). At aphelion, at radius \(4.5 \times\) \(10^{7} \mathrm{~m}\), the satellite's angular speed is \(7.158 \times 10^{-5} \mathrm{rad} / \mathrm{s}\). What is its angular speed at perihelion?
83 SSIM In a shuttle craft of mass \(m=3000 \mathrm{~kg}\), Captain Janeway orbits a planet of mass \(M=9.50 \times 10^{25} \mathrm{~kg}\), in a circular orbit of radius \(r=4.20 \times 10^{7} \mathrm{~m}\). What are (a) the period of the orbit and (b) the speed of the shuttle craft? Janeway briefly fires a forwardpointing thruster, reducing her speed by \(2.00 \%\). Just then, what are (c) the speed, (d) the kinetic energy, (e) the gravitational potential energy, and (f) the mechanical energy of the shuttle craft? (g) What is the semimajor axis of the elliptical orbit now taken by the craft? (h) What is the difference between the period of the original circular orbit and that of the new elliptical orbit? (i) Which orbit has the smaller period?
84 Consider a pulsar, a collapsed star of extremely high density, with a mass \(M\) equal to that of the Sun \(\left(1.98 \times 10^{30} \mathrm{~kg}\right)\), a radius \(R\) of only 12 km , and a rotational period \(T\) of 0.041 s . By what percentage does the free-fall acceleration \(g\) differ from the gravitational acceleration \(a_{g}\) at the equator of this spherical star?
85 ILW A projectile is fired vertically from Earth's surface with an initial speed of \(10 \mathrm{~km} / \mathrm{s}\). Neglecting air drag, how far above the surface of Earth will it go?
86 An object lying on Earth's equator is accelerated (a) toward the center of Earth because Earth rotates, (b) toward the Sun because Earth revolves around the Sun in an almost circular orbit, and (c) toward the center of our galaxy because the Sun moves around the galactic center. For the latter, the period is \(2.5 \times 10^{8} \mathrm{y}\) and the radius is \(2.2 \times 10^{20} \mathrm{~m}\). Calculate these three accelerations as multiples of \(g=9.8 \mathrm{~m} / \mathrm{s}^{2}\).
87 (a) If the legendary apple of Newton could be released from rest at a height of 2 m from the surface of a neutron star with a mass 1.5 times that of our Sun and a radius of 20 km , what would be the apple's speed when it reached the surface of the star? (b) If the apple could rest on the surface of the star, what would be the approximate difference between the gravitational acceleration at the top and at the bottom of the apple? (Choose a reasonable size for an apple; the answer indicates that an apple would never survive near a neutron star.)

88 With what speed would mail pass through the center of Earth if falling in a tunnel through the center?

89 SSM The orbit of Earth around the Sun is almost circular: The closest and farthest distances are \(1.47 \times 10^{8} \mathrm{~km}\) and \(1.52 \times 10^{8} \mathrm{~km}\) respectively. Determine the corresponding variations in (a) total energy, (b) gravitational potential energy, (c) kinetic energy, and (d) orbital speed. (Hint: Use conservation of energy and conservation of angular momentum.)
90 A 50 kg satellite circles planet Cruton every 6.0 h . The magnitude of the gravitational force exerted on the satellite by Cruton is 80 N . (a) What is the radius of the orbit? (b) What is the kinetic energy of the satellite? (c) What is the mass of planet Cruton?
91 We watch two identical astronomical bodies \(A\) and \(B\), each of mass \(m\), fall toward each other from rest because of the gravitational force on each from the other. Their initial center-to-center separation is \(R_{i}\). Assume that we are in an inertial reference frame that is stationary with respect to the center of mass of this twobody system. Use the principle of conservation of mechanical energy \(\left(K_{f}+U_{f}=K_{i}+U_{i}\right)\) to find the following when the center-to-center separation is \(0.5 R_{i}\) : (a) the total kinetic energy of the system, (b) the kinetic energy of each body, (c) the speed of each body relative to us, and (d) the speed of body \(B\) relative to body \(A\).

Next assume that we are in a reference frame attached to body \(A\) (we ride on the body). Now we see body \(B\) fall from rest toward us. From this reference frame, again use \(K_{f}+U_{f}=K_{i}+U_{i}\) to find the following when the center-to-center separation is \(0.5 R_{i}\) : (e) the kinetic energy of body \(B\) and (f) the speed of body \(B\) relative to body \(A\). (g) Why are the answers to (d) and (f) different? Which answer is correct?

92 A 150.0 kg rocket moving radially outward from Earth has a speed of \(3.70 \mathrm{~km} / \mathrm{s}\) when its engine shuts off 200 km above Earth's surface. (a) Assuming negligible air drag acts on the rocket, find the rocket's kinetic energy when the rocket is 1000 km above Earth's surface. (b) What maximum height above the surface is reached by the rocket?
93 Planet Roton, with a mass of \(7.0 \times 10^{24} \mathrm{~kg}\) and a radius of 1600 km , gravitationally attracts a meteorite that is initially at rest relative to the planet, at a distance great enough to take as infinite. The meteorite falls toward the planet. Assuming the planet is airless, find the speed of the meteorite when it reaches the planet's surface.
94 Two 20 kg spheres are fixed in place on a \(y\) axis, one at \(y=0.40 \mathrm{~m}\) and the other at \(y=-0.40 \mathrm{~m}\). A 10 kg ball is then released from rest at a point on the \(x\) axis that is at a great distance (effectively infinite) from the spheres. If the only forces acting on the ball are the gravitational forces from the spheres, then when the ball reaches the \((x, y)\) point \((0.30 \mathrm{~m}, 0)\), what are (a) its kinetic energy and (b) the net force on it from the spheres, in unit-vector notation?

95 Sphere \(A\) with mass 80 kg is located at the origin of an \(x y\) coordinate system; sphere \(B\) with mass 60 kg is located at coordinates ( \(0.25 \mathrm{~m}, 0\) ); sphere \(C\) with mass 0.20 kg is located in the first quadrant 0.20 m from \(A\) and 0.15 m from \(B\). In unit-vector notation, what is the gravitational force on \(C\) due to \(A\) and \(B\) ?
96 In his 1865 science fiction novel From the Earth to the Moon, Jules Verne described how three astronauts are shot to the Moon by means of a huge gun. According to Verne, the aluminum capsule containing the astronauts is accelerated by ignition of
nitrocellulose to a speed of \(11 \mathrm{~km} / \mathrm{s}\) along the gun barrel's length of 220 m . (a) In \(g\) units, what is the average acceleration of the capsule and astronauts in the gun barrel? (b) Is that acceleration tolerable or deadly to the astronauts?

A modern version of such gun-launched spacecraft (although without passengers) has been proposed. In this modern version, called the SHARP (Super High Altitude Research Project) gun, ignition of methane and air shoves a piston along the gun's tube, compressing hydrogen gas that then launches a rocket. During this launch, the rocket moves 3.5 km and reaches a speed of \(7.0 \mathrm{~km} / \mathrm{s}\). Once launched, the rocket can be fired to gain additional speed. (c) In \(g\) units, what would be the average acceleration of the rocket within the launcher? (d) How much additional speed is needed (via the rocket engine) if the rocket is to orbit Earth at an altitude of 700 km ?

97 An object of mass \(m\) is initially held in place at radial distance \(r=3 R_{E}\) from the center of Earth, where \(R_{E}\) is the radius of Earth. Let \(M_{E}\) be the mass of Earth. A force is applied to the object to move it to a radial distance \(r=4 R_{E}\), where it again is held in place. Calculate the work done by the applied force during the move by integrating the force magnitude.
98 To alleviate the traffic congestion between two cities such as Boston and Washington, D.C., engineers have proposed building a rail tunnel along a chord line connecting the cities (Fig. 13-55). A train, unpropelled by any engine and starting from rest, would fall through the first half of the tunnel and then move up the second half. Assuming Earth is a uniform sphere and ignoring air drag and friction, find the city-to-city travel time.


Figure 13-55 Problem 98.

99 A thin rod with mass \(M=5.00 \mathrm{~kg}\) is bent in a semicircle of radius \(R=0.650 \mathrm{~m}\) (Fig. 13-56). (a) What is its gravitational force (both magnitude and direction on a particle with mass \(m=3.0 \times 10^{-3} \mathrm{~kg}\) at \(P\), the center of curvature? (b) What would be the force on the particle if the rod were a complete circle?
100 In Fig. 13-57, identical blocks with identical masses \(m=2.00 \mathrm{~kg}\) hang from strings of different lengths on a balance at Earth's surface. The strings have negligible mass and differ in length by \(h=\) 5.00 cm . Assume Earth is spherical with a uniform density \(\rho=5.50 \mathrm{~g} / \mathrm{cm}^{3}\). What is the difference in the weight of the blocks due to one being closer to Earth than the other?
101 A spaceship is on a straight-line path between Earth and the Moon. At what distance from Earth is the net gravitational force on the spaceship zero?

\section*{14-1 fluids, density, and pressure}

\section*{Learning Objectives}

After reading this module, you should be able to ...
14.01 Distinguish fluids from solids.
14.02 When mass is uniformly distributed, relate density to mass and volume.
14.03 Apply the relationship between hydrostatic pressure, force, and the surface area over which that force acts.

\section*{Key Ideas}
- The density \(\rho\) of any material is defined as the material's mass per unit volume:
\[
\rho=\frac{\Delta m}{\Delta V}
\]

Usually, where a material sample is much larger than atomic dimensions, we can write this as
\[
\rho=\frac{m}{V} .
\]
- A fluid is a substance that can flow; it conforms to the boundaries of its container because it cannot withstand
shearing stress. It can, however, exert a force perpendicular to its surface. That force is described in terms of pressure \(p\) :
\[
p=\frac{\Delta F}{\Delta A}
\]
in which \(\Delta F\) is the force acting on a surface element of area \(\Delta A\). If the force is uniform over a flat area, this can be written as
\[
p=\frac{F}{A} .
\]
- The force resulting from fluid pressure at a particular point in a fluid has the same magnitude in all directions.

\section*{What Is Physics?}

The physics of fluids is the basis of hydraulic engineering, a branch of engineering that is applied in a great many fields. A nuclear engineer might study the fluid flow in the hydraulic system of an aging nuclear reactor, while a medical engineer might study the blood flow in the arteries of an aging patient. An environmental engineer might be concerned about the drainage from waste sites or the efficient irrigation of farmlands. A naval engineer might be concerned with the dangers faced by a deep-sea diver or with the possibility of a crew escaping from a downed submarine. An aeronautical engineer might design the hydraulic systems controlling the wing flaps that allow a jet airplane to land. Hydraulic engineering is also applied in many Broadway and Las Vegas shows, where huge sets are quickly put up and brought down by hydraulic systems.

Before we can study any such application of the physics of fluids, we must first answer the question "What is a fluid?"

\section*{What Is a Fluid?}

A fluid, in contrast to a solid, is a substance that can flow. Fluids conform to the boundaries of any container in which we put them. They do so because a fluid cannot sustain a force that is tangential to its surface. (In the more formal language of Module 12-3, a fluid is a substance that flows because it cannot
withstand a shearing stress. It can, however, exert a force in the direction perpendicular to its surface.) Some materials, such as pitch, take a long time to conform to the boundaries of a container, but they do so eventually; thus, we classify even those materials as fluids.

You may wonder why we lump liquids and gases together and call them fluids. After all (you may say), liquid water is as different from steam as it is from ice. Actually, it is not. Ice, like other crystalline solids, has its constituent atoms organized in a fairly rigid three-dimensional array called a crystalline lattice. In neither steam nor liquid water, however, is there any such orderly long-range arrangement.

\section*{Density and Pressure}

When we discuss rigid bodies, we are concerned with particular lumps of matter, such as wooden blocks, baseballs, or metal rods. Physical quantities that we find useful, and in whose terms we express Newton's laws, are mass and force. We might speak, for example, of a 3.6 kg block acted on by a 25 N force.

With fluids, we are more interested in the extended substance and in properties that can vary from point to point in that substance. It is more useful to speak of density and pressure than of mass and force.

Density
To find the density \(\rho\) of a fluid at any point, we isolate a small volume element \(\Delta V\) around that point and measure the mass \(\Delta m\) of the fluid contained within that element. The density is then
\[
\begin{equation*}
\rho=\frac{\Delta m}{\Delta V} \tag{14-1}
\end{equation*}
\]

In theory, the density at any point in a fluid is the limit of this ratio as the volume element \(\Delta V\) at that point is made smaller and smaller. In practice, we assume that a fluid sample is large relative to atomic dimensions and thus is "smooth" (with uniform density), rather than "lumpy" with atoms. This assumption allows us to write the density in terms of the mass \(m\) and volume \(V\) of the sample:
\[
\begin{equation*}
\rho=\frac{m}{V} \quad \text { (uniform density). } \tag{14-2}
\end{equation*}
\]

Density is a scalar property; its SI unit is the kilogram per cubic meter. Table 14-1 shows the densities of some substances and the average densities of some objects. Note that the density of a gas (see Air in the table) varies considerably with pressure, but the density of a liquid (see Water) does not; that is, gases are readily compressible but liquids are not.

\section*{Pressure}

Let a small pressure-sensing device be suspended inside a fluid-filled vessel, as in Fig. 14-1 \(a\). The sensor (Fig. 14-1b) consists of a piston of surface area \(\Delta A\) riding in a close-fitting cylinder and resting against a spring. A readout arrangement allows us to record the amount by which the (calibrated) spring is compressed by the surrounding fluid, thus indicating the magnitude \(\Delta F\) of the force that acts normal to the piston. We define the pressure on the piston as
\[
\begin{equation*}
p=\frac{\Delta F}{\Delta A} \tag{14-3}
\end{equation*}
\]

In theory, the pressure at any point in the fluid is the limit of this ratio as the surface area \(\Delta A\) of the piston, centered on that point, is made smaller and smaller. However, if the force is uniform over a flat area \(A\) (it is evenly distributed over every point of

Table 14-1 Some Densities
\begin{tabular}{lc}
\hline Material or Object & Density \(\left(\mathrm{kg} / \mathrm{m}^{3}\right)\) \\
\hline Interstellar space & \(10^{-20}\) \\
Best laboratory vacuum & \(10^{-17}\) \\
Air: \(20^{\circ} \mathrm{C}\) and 1 atm pressure & 1.21 \\
\(\quad 20^{\circ} \mathrm{C}\) and 50 atm & 60.5 \\
Styrofoam & \(1 \times 10^{2}\) \\
Ice & \(0.917 \times 10^{3}\) \\
Water: \(20^{\circ} \mathrm{C}\) and 1 atm & \(0.998 \times 10^{3}\) \\
\(\quad 20^{\circ} \mathrm{C}\) and 50 atm & \(1.000 \times 10^{3}\) \\
Seawater: 20 \({ }^{\circ} \mathrm{C}\) and 1 atm & \(1.024 \times 10^{3}\) \\
Whole blood & \(1.060 \times 10^{3}\) \\
Iron & \(7.9 \times 10^{3}\) \\
Mercury (the metal, & \(13.6 \times 10^{3}\) \\
\(\quad\) not the planet) & \(5.5 \times 10^{3}\) \\
Earth: average & \(9.5 \times 10^{3}\) \\
\(\quad\) core & \(2.8 \times 10^{3}\) \\
\(\quad\) crust & \(1.4 \times 10^{3}\) \\
Sun: average & \(1.6 \times 10^{5}\) \\
\(\quad\) core & \(10^{10}\) \\
White dwarf star (core) & \(3 \times 10^{17}\) \\
Uranium nucleus & \(10^{18}\) \\
Neutron star (core) & \\
\hline
\end{tabular}

(b)

Figure 14-1 (a) A fluid-filled vessel containing a small pressure sensor, shown in \((b)\). The pressure is measured by the relative position of the movable piston in the sensor.

Table 14-2 Some Pressures
\begin{tabular}{|c|c|}
\hline & Pressure (Pa) \\
\hline Center of the Sun & \(2 \times 10^{16}\) \\
\hline Center of Earth & \(4 \times 10^{11}\) \\
\hline Highest sustained laboratory pressure & \(1.5 \times 10^{10}\) \\
\hline Deepest ocean trench (bottom) & \(1.1 \times 10^{8}\) \\
\hline Spike heels on a dance floor & \(10^{6}\) \\
\hline Automobile tire \({ }^{a}\) & \(2 \times 10^{5}\) \\
\hline Atmosphere at sea level & \(1.0 \times 10^{5}\) \\
\hline Normal blood systolic pressure \({ }^{a, b}\) & \(1.6 \times 10^{4}\) \\
\hline Best laboratory vacuum & \(10^{-12}\) \\
\hline
\end{tabular}
\({ }^{a}\) Pressure in excess of atmospheric pressure. \({ }^{b}\) Equivalent to 120 torr on the physician's pressure gauge.
the area), we can write Eq. 14-3 as
\[
\begin{equation*}
p=\frac{F}{A} \quad \text { (pressure of uniform force on flat area) } \tag{14-4}
\end{equation*}
\]
where \(F\) is the magnitude of the normal force on area \(A\).
We find by experiment that at a given point in a fluid at rest, the pressure \(p\) defined by Eq. 14-4 has the same value no matter how the pressure sensor is oriented. Pressure is a scalar, having no directional properties. It is true that the force acting on the piston of our pressure sensor is a vector quantity, but Eq. 14-4 involves only the magnitude of that force, a scalar quantity.

The SI unit of pressure is the newton per square meter, which is given a special name, the pascal \((\mathrm{Pa})\). In metric countries, tire pressure gauges are calibrated in kilopascals. The pascal is related to some other common (non-SI) pressure units as follows:
\[
1 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~Pa}=760 \text { torr }=14.7 \mathrm{lb} / \mathrm{in.}^{2} .
\]

The atmosphere (atm) is, as the name suggests, the approximate average pressure of the atmosphere at sea level. The torr (named for Evangelista Torricelli, who invented the mercury barometer in 1674) was formerly called the millimeter of mercury ( mm Hg ). The pound per square inch is often abbreviated psi. Table 14-2 shows some pressures.

\section*{Sample Problem 14.01 Atmospheric pressure and force}

A living room has floor dimensions of 3.5 m and 4.2 m and a height of 2.4 m .
(a) What does the air in the room weigh when the air pressure is 1.0 atm ?

\section*{KEY IDEAS}
(1) The air's weight is equal to \(m g\), where \(m\) is its mass.
(2) Mass \(m\) is related to the air density \(\rho\) and the air volume \(V\) by Eq. 14-2 \((\rho=m / V)\).
Calculation: Putting the two ideas together and taking the density of air at 1.0 atm from Table 14-1, we find
\[
\begin{aligned}
m g & =(\rho V) g \\
& =\left(1.21 \mathrm{~kg} / \mathrm{m}^{3}\right)(3.5 \mathrm{~m} \times 4.2 \mathrm{~m} \times 2.4 \mathrm{~m})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =418 \mathrm{~N} \approx 420 \mathrm{~N} .
\end{aligned}
\]
(Answer)
This is the weight of about 110 cans of Pepsi.
(b) What is the magnitude of the atmosphere's downward force on the top of your head, which we take to have an area of \(0.040 \mathrm{~m}^{2}\) ?

\section*{KEY IDEA}

When the fluid pressure \(p\) on a surface of area \(A\) is uniform, the fluid force on the surface can be obtained from Eq. 14-4 ( \(p=F / A\) ).

Calculation: Although air pressure varies daily, we can approximate that \(p=1.0 \mathrm{~atm}\). Then Eq. \(14-4\) gives
\[
\begin{aligned}
F & =p A=(1.0 \mathrm{~atm})\left(\frac{1.01 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}}{1.0 \mathrm{~atm}}\right)\left(0.040 \mathrm{~m}^{2}\right) \\
& =4.0 \times 10^{3} \mathrm{~N} .
\end{aligned}
\]

This large force is equal to the weight of the air column from the top of your head to the top of the atmosphere.

PLU'S
Additional examples, video, and practice available at WileyPLUS

\section*{14-2 fluIds at rest}

\section*{Learning Objectives}

After reading this module, you should be able to .
14.04 Apply the relationship between the hydrostatic pressure, fluid density, and the height above or below a reference level.
14.05 Distinguish between total pressure (absolute pressure) and gauge pressure.

\section*{Key Ideas}
- Pressure in a fluid at rest varies with vertical position \(y\). For \(y\) measured positive upward,
\[
p_{2}=p_{1}+\rho g\left(y_{1}-y_{2}\right)
\]

If \(h\) is the depth of a fluid sample below some reference level at which the pressure is \(p_{0}\), this equation becomes
\[
p=p_{0}+\rho g h
\]
where \(p\) is the pressure in the sample.
- The pressure in a fluid is the same for all points at the same level.
- Gauge pressure is the difference between the actual pressure (or absolute pressure) at a point and the atmospheric pressure.

\section*{Fluids at Rest}

Figure 14-2a shows a tank of water - or other liquid-open to the atmosphere. As every diver knows, the pressure increases with depth below the air-water interface. The diver's depth gauge, in fact, is a pressure sensor much like that of Fig. 14-1b. As every mountaineer knows, the pressure decreases with altitude as one ascends into the atmosphere. The pressures encountered by the diver and the mountaineer are usually called hydrostatic pressures, because they are due to fluids that are static (at rest). Here we want to find an expression for hydrostatic pressure as a function of depth or altitude.

Let us look first at the increase in pressure with depth below the water's surface. We set up a vertical \(y\) axis in the tank, with its origin at the air-water interface and the positive direction upward. We next consider a water sample con-

Three forces act on this sample of water.
(a)


This downward force is due to the water pressure pushing on the top surface.
(b)


Gravity pulls downward on the sample.
(d)


Figure 14-2 (a) A tank of water in which a sample of water is contained in an imaginary cylinder of horizontal base area \(A\). (b)-(d) Force \(\vec{F}_{1}\) acts at the top surface of the cylinder; force \(\vec{F}_{2}\) acts at the bottom surface of the cylinder; the gravitational force on the water in the cylinder is represented by \(m \vec{g}\). (e) A free-body diagram of the water sample. In WileyPLUS, this figure is available as an animation with voiceover.


Figure 14-3 The pressure \(p\) increases with depth \(h\) below the liquid surface according to Eq. 14-8.
tained in an imaginary right circular cylinder of horizontal base (or face) area \(A\), such that \(y_{1}\) and \(y_{2}\) (both of which are negative numbers) are the depths below the surface of the upper and lower cylinder faces, respectively.

Figure \(14-2 e\) is a free-body diagram for the water in the cylinder. The water is in static equilibrium; that is, it is stationary and the forces on it balance. Three forces act on it vertically: Force \(\vec{F}_{1}\) acts at the top surface of the cylinder and is due to the water above the cylinder (Fig. 14-2b). Force \(\vec{F}_{2}\) acts at the bottom surface of the cylinder and is due to the water just below the cylinder (Fig. 14-2c). The gravitational force on the water is \(m \vec{g}\), where \(m\) is the mass of the water in the cylinder (Fig. 14-2d). The balance of these forces is written as
\[
\begin{equation*}
F_{2}=F_{1}+m g . \tag{14-5}
\end{equation*}
\]

To involve pressures, we use Eq. 14-4 to write
\[
\begin{equation*}
F_{1}=p_{1} A \quad \text { and } \quad F_{2}=p_{2} A \tag{14-6}
\end{equation*}
\]

The mass \(m\) of the water in the cylinder is, from Eq. 14-2, \(m=\rho V\), where the cylinder's volume \(V\) is the product of its face area \(A\) and its height \(y_{1}-y_{2}\). Thus, \(m\) is equal to \(\rho A\left(y_{1}-y_{2}\right)\). Substituting this and Eq. 14-6 into Eq. 14-5, we find
\[
p_{2} A=p_{1} A+\rho A g\left(y_{1}-y_{2}\right)
\]
or
\[
\begin{equation*}
p_{2}=p_{1}+\rho g\left(y_{1}-y_{2}\right) \tag{14-7}
\end{equation*}
\]

This equation can be used to find pressure both in a liquid (as a function of depth) and in the atmosphere (as a function of altitude or height). For the former, suppose we seek the pressure \(p\) at a depth \(h\) below the liquid surface. Then we choose level 1 to be the surface, level 2 to be a distance \(h\) below it (as in Fig. 14-3), and \(p_{0}\) to represent the atmospheric pressure on the surface. We then substitute
\[
y_{1}=0, \quad p_{1}=p_{0} \quad \text { and } \quad y_{2}=-h, \quad p_{2}=p
\]
into Eq. 14-7, which becomes
\[
\begin{equation*}
p=p_{0}+\rho g h \quad(\text { pressure at depth } h) \tag{14-8}
\end{equation*}
\]

Note that the pressure at a given depth in the liquid depends on that depth but not on any horizontal dimension.

The pressure at a point in a fluid in static equilibrium depends on the depth of that point but not on any horizontal dimension of the fluid or its container.

Thus, Eq. 14-8 holds no matter what the shape of the container. If the bottom surface of the container is at depth \(h\), then Eq. 14-8 gives the pressure \(p\) there.

In Eq. \(14-8, p\) is said to be the total pressure, or absolute pressure, at level 2. To see why, note in Fig. 14-3 that the pressure \(p\) at level 2 consists of two contributions: (1) \(p_{0}\), the pressure due to the atmosphere, which bears down on the liquid, and (2) \(\rho g h\), the pressure due to the liquid above level 2 , which bears down on level 2. In general, the difference between an absolute pressure and an atmospheric pressure is called the gauge pressure (because we use a gauge to measure this pressure difference). For Fig. 14-3, the gauge pressure is \(\rho g h\).

Equation 14-7 also holds above the liquid surface: It gives the atmospheric pressure at a given distance above level 1 in terms of the atmospheric pressure \(p_{1}\) at level 1 (assuming that the atmospheric density is uniform over that distance). For example, to find the atmospheric pressure at a distance \(d\) above level 1 in Fig. 14-3, we substitute
\[
y_{1}=0, \quad p_{1}=p_{0} \quad \text { and } \quad y_{2}=d, \quad p_{2}=p .
\]

Then with \(\rho=\rho_{\text {air }}\), we obtain
\[
p=p_{0}-\rho_{\mathrm{air}} g d
\]

The figure shows four containers of olive oil. Rank them according to the pressure at depth \(h\), greatest first.


\section*{Sample Problem 14.02 Gauge pressure on a scuba diver}

A novice scuba diver practicing in a swimming pool takes enough air from his tank to fully expand his lungs before abandoning the tank at depth \(L\) and swimming to the surface, failing to exhale during his ascent. At the surface, the difference \(\Delta p\) between the external pressure on him and the air pressure in his lungs is 9.3 kPa . From what depth does he start? What potentially lethal danger does he face?

\section*{KEY IDEA}

The pressure at depth \(h\) in a liquid of density \(\rho\) is given by Eq. 14-8 \(\left(p=p_{0}+\rho g h\right)\), where the gauge pressure \(\rho g h\) is added to the atmospheric pressure \(p_{0}\).

Calculations: Here, when the diver fills his lungs at depth \(L\), the external pressure on him (and thus the air pressure within his lungs) is greater than normal and given by Eq. 14-8 as
\[
p=p_{0}+\rho g L
\]
where \(\rho\) is the water's density \(\left(998 \mathrm{~kg} / \mathrm{m}^{3}\right.\), Table 14-1). As he
ascends, the external pressure on him decreases, until it is atmospheric pressure \(p_{0}\) at the surface. His blood pressure also decreases, until it is normal. However, because he does not exhale, the air pressure in his lungs remains at the value it had at depth \(L\). At the surface, the pressure difference \(\Delta p\) is
so
\[
\begin{aligned}
L & =\frac{\Delta p}{\rho g}=\frac{9300 \mathrm{~Pa}}{\left(998 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)} \\
& =0.95 \mathrm{~m}
\end{aligned}
\]
(Answer)
This is not deep! Yet, the pressure difference of 9.3 kPa (about \(9 \%\) of atmospheric pressure) is sufficient to rupture the diver's lungs and force air from them into the depressurized blood, which then carries the air to the heart, killing the diver. If the diver follows instructions and gradually exhales as he ascends, he allows the pressure in his lungs to equalize with the external pressure, and then there is no danger.

\section*{Sample Problem 14.03 Balancing of pressure in a U-tube}

The U-tube in Fig. 14-4 contains two liquids in static equilibrium: Water of density \(\rho_{w}\left(=998 \mathrm{~kg} / \mathrm{m}^{3}\right)\) is in the right arm, and oil of unknown density \(\rho_{x}\) is in the left. Measurement gives \(l=135 \mathrm{~mm}\) and \(d=12.3 \mathrm{~mm}\). What is the density of the oil?

\section*{KEY IDEAS}
(1) The pressure \(p_{\text {int }}\) at the level of the oil-water interface in the left arm depends on the density \(\rho_{x}\) and height of the oil above the interface. (2) The water in the right arm at the same level must be at the same pressure \(p_{\text {int }}\). The reason is that, because the water is in static equilibrium, pressures at points in the water at the same level must be the same.
Calculations: In the right arm, the interface is a distance \(l\) below the free surface of the water, and we have, from Eq. 14-8,
\[
p_{\text {int }}=p_{0}+\rho_{w} g l \quad \text { (right arm) }
\]

In the left arm, the interface is a distance \(l+d\) below the free surface of the oil, and we have, again from Eq. 14-8,
\[
p_{\text {int }}=p_{0}+\rho_{x} g(l+d) \quad(\text { left arm })
\]

This much oil balances...


Figure 14-4 The oil in the left arm stands higher than the water.
Equating these two expressions and solving for the unknown density yield
\[
\begin{aligned}
\rho_{x} & =\rho_{w} \frac{l}{l+d}=\left(998 \mathrm{~kg} / \mathrm{m}^{3}\right) \frac{135 \mathrm{~mm}}{135 \mathrm{~mm}+12.3 \mathrm{~mm}} \\
& =915 \mathrm{~kg} / \mathrm{m}^{3} .
\end{aligned}
\]

Note that the answer does not depend on the atmospheric pressure \(p_{0}\) or the free-fall acceleration \(g\).

\section*{14-3 measuring pressure}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
14.06 Describe how a barometer can measure atmospheric pressure.
14.07 Describe how an open-tube manometer can measure the gauge pressure of a gas.

\section*{Key Ideas}
- A mercury barometer can be used to measure atmospheric pressure.
- An open-tube manometer can be used to measure the gauge pressure of a confined gas.

\section*{Measuring Pressure}

\section*{The Mercury Barometer}


Figure \(14-5 a\) shows a very basic mercury barometer, a device used to measure the pressure of the atmosphere. The long glass tube is filled with mercury and inverted with its open end in a dish of mercury, as the figure shows. The space above the mercury column contains only mercury vapor, whose pressure is so small at ordinary temperatures that it can be neglected.

We can use Eq. 14-7 to find the atmospheric pressure \(p_{0}\) in terms of the height \(h\) of the mercury column. We choose level 1 of Fig. 14-2 to be that of the air-mercury interface and level 2 to be that of the top of the mercury column, as labeled in Fig. 14-5a. We then substitute
\[
y_{1}=0, \quad p_{1}=p_{0} \quad \text { and } \quad y_{2}=h, \quad p_{2}=0
\]
into Eq. 14-7, finding that
\[
\begin{equation*}
p_{0}=\rho g h, \tag{14-9}
\end{equation*}
\]
where \(\rho\) is the density of the mercury.
For a given pressure, the height \(h\) of the mercury column does not depend on the cross-sectional area of the vertical tube. The fanciful mercury barometer of Fig. 14-5b gives the same reading as that of Fig. 14-5a; all that counts is the vertical distance \(h\) between the mercury levels.

Equation 14-9 shows that, for a given pressure, the height of the column of mercury depends on the value of \(g\) at the location of the barometer and on the density of mercury, which varies with temperature. The height of the column (in millimeters) is numerically equal to the pressure (in torr) only if the barometer is at a place where \(g\) has its accepted standard value of \(9.80665 \mathrm{~m} / \mathrm{s}^{2}\) and the temperature of the mercury is \(0^{\circ} \mathrm{C}\). If these conditions do not prevail (and they rarely do), small corrections must be made before the height of the mercury column can be transformed into a pressure.

\section*{The Open-Tube Manometer}

An open-tube manometer (Fig. 14-6) measures the gauge pressure \(p_{g}\) of a gas. It consists of a U-tube containing a liquid, with one end of the tube connected to the vessel whose gauge pressure we wish to measure and the other end open to the atmosphere. We can use Eq. 14-7 to find the gauge pressure in terms of the height \(h\) shown in Fig. 14-6. Let us choose levels 1 and 2 as shown in Fig. 14-6. With
\[
y_{1}=0, \quad p_{1}=p_{0} \quad \text { and } \quad y_{2}=-h, \quad p_{2}=p
\]

Figure 14-6 An open-tube manometer, connected to measure the gauge pressure of the gas in the tank on the left. The right arm of the \(\mathbf{U}\)-tube is open to the atmosphere.
\[
\begin{equation*}
p_{g}=p-p_{0}=\rho g h, \tag{14-10}
\end{equation*}
\]
where \(\rho\) is the liquid's density. The gauge pressure \(p_{g}\) is directly proportional to \(h\).

The gauge pressure can be positive or negative, depending on whether \(p>p_{0}\) or \(p<p_{0}\). In inflated tires or the human circulatory system, the (absolute) pressure is greater than atmospheric pressure, so the gauge pressure is a positive quantity, sometimes called the overpressure. If you suck on a straw to pull fluid up the straw, the (absolute) pressure in your lungs is actually less than atmospheric pressure. The gauge pressure in your lungs is then a negative quantity.

\section*{14-4 PASCAL'S PRINCIPLE}

\section*{Learning Objectives}

After reading this module, you should be able to ...
14.08 Identify Pascal's principle.
14.09 For a hydraulic lift, apply the relationship between the
input area and displacement and the output area and displacement.

\section*{Key Idea}
- Pascal's principle states that a change in the pressure applied to an enclosed fluid is transmitted undiminished to every portion of the fluid and to the walls of the containing vessel.

\section*{Pascal's Principle}

When you squeeze one end of a tube to get toothpaste out the other end, you are watching Pascal's principle in action. This principle is also the basis for the Heimlich maneuver, in which a sharp pressure increase properly applied to the abdomen is transmitted to the throat, forcefully ejecting food lodged there. The principle was first stated clearly in 1652 by Blaise Pascal (for whom the unit of pressure is named):

A change in the pressure applied to an enclosed incompressible fluid is transmitted undiminished to every portion of the fluid and to the walls of its container.

\section*{Demonstrating Pascal's Principle}

Consider the case in which the incompressible fluid is a liquid contained in a tall cylinder, as in Fig. 14-7. The cylinder is fitted with a piston on which a container of lead shot rests. The atmosphere, container, and shot exert pressure \(p_{\text {ext }}\) on the piston and thus on the liquid. The pressure \(p\) at any point \(P\) in the liquid is then
\[
\begin{equation*}
p=p_{\mathrm{ext}}+\rho g h . \tag{14-11}
\end{equation*}
\]

Let us add a little more lead shot to the container to increase \(p_{\text {ext }}\) by an amount \(\Delta p_{\text {ext }}\). The quantities \(\rho, g\), and \(h\) in Eq. 14-11 are unchanged, so the pressure change at \(P\) is
\[
\begin{equation*}
\Delta p=\Delta p_{\text {ext }} \tag{14-12}
\end{equation*}
\]

This pressure change is independent of \(h\), so it must hold for all points within the liquid, as Pascal's principle states.

\section*{Pascal's Principle and the Hydraulic Lever}

Figure 14-8 shows how Pascal's principle can be made the basis of a hydraulic lever. In operation, let an external force of magnitude \(F_{i}\) be directed downward on the lefthand (or input) piston, whose surface area is \(A_{i}\). An incompressible liquid in the device then produces an upward force of magnitude \(F_{o}\) on the right-hand (or output) piston, whose surface area is \(A_{o}\). To keep the system in equilibrium, there must be a downward force of magnitude \(F_{o}\) on the output piston from an external load (not


Figure 14-7 Lead shot (small balls of lead) loaded onto the piston create a pressure \(p_{\text {ext }}\) at the top of the enclosed (incompressible) liquid. If \(p_{\text {ext }}\) is increased, by adding more lead shot, the pressure increases by the same amount at all points within the liquid.


Figure 14-8 A hydraulic arrangement that can be used to magnify a force \(\vec{F}_{i}\). The work done is, however, not magnified and is the same for both the input and output forces.
shown). The force \(\vec{F}_{i}\) applied on the left and the downward force \(\vec{F}_{o}\) from the load on the right produce a change \(\Delta p\) in the pressure of the liquid that is given by
\[
\begin{gather*}
\Delta p=\frac{F_{i}}{A_{i}}=\frac{F_{o}}{A_{o}} \\
F_{o}=F_{i} \frac{A_{o}}{A_{i}} . \tag{14-13}
\end{gather*}
\]

Equation 14-13 shows that the output force \(F_{o}\) on the load must be greater than the input force \(F_{i}\) if \(A_{o}>A_{i}\), as is the case in Fig. 14-8.

If we move the input piston downward a distance \(d_{i}\), the output piston moves upward a distance \(d_{o}\), such that the same volume \(V\) of the incompressible liquid is displaced at both pistons. Then
\[
V=A_{i} d_{i}=A_{o} d_{o}
\]
which we can write as
\[
\begin{equation*}
d_{o}=d_{i} \frac{A_{i}}{A_{o}} \tag{14-14}
\end{equation*}
\]

This shows that, if \(A_{o}>A_{i}\) (as in Fig. 14-8), the output piston moves a smaller distance than the input piston moves.

From Eqs. 14-13 and 14-14 we can write the output work as
\[
\begin{equation*}
W=F_{o} d_{o}=\left(F_{i} \frac{A_{o}}{A_{i}}\right)\left(d_{i} \frac{A_{i}}{A_{o}}\right)=F_{i} d_{i}, \tag{14-15}
\end{equation*}
\]
which shows that the work \(W\) done on the input piston by the applied force is equal to the work \(W\) done by the output piston in lifting the load placed on it.

The advantage of a hydraulic lever is this:

With a hydraulic lever, a given force applied over a given distance can be transformed to a greater force applied over a smaller distance.

The product of force and distance remains unchanged so that the same work is done. However, there is often tremendous advantage in being able to exert the larger force. Most of us, for example, cannot lift an automobile directly but can with a hydraulic jack, even though we have to pump the handle farther than the automobile rises and in a series of small strokes.

\section*{14-5 ARCHIMEDES' PRINCIPLE}

\section*{Learning Objectives}

After reading this module, you should be able to ...
14.10 Describe Archimedes' principle.
14.11 Apply the relationship between the buoyant force on a body and the mass of the fluid displaced by the body.
14.12 For a floating body, relate the buoyant force to the gravitational force.
14.13 For a floating body, relate the gravitational force to the mass of the fluid displaced by the body.
14.14 Distinguish between apparent weight and actual weight.
14.15 Calculate the apparent weight of a body that is fully or partially submerged.

\section*{Key Ideas}
- Archimedes' principle states that when a body is fully or partially submerged in a fluid, the fluid pushes upward with a buoyant force with magnitude
\[
F_{b}=m_{f} g
\]
where \(m_{f}\) is the mass of the fluid that has been pushed out of the way by the body.
- When a body floats in a fluid, the magnitude \(F_{b}\) of the (upward) buoyant force on the body is equal to the magnitude \(F_{g}\) of the (downward) gravitational force on the body.
- The apparent weight of a body on which a buoyant force acts is related to its actual weight by
\[
\text { weight }_{\text {app }}=\text { weight }-F_{b} \text {. }
\]

\section*{Archimedes' Principle}

Figure 14-9 shows a student in a swimming pool, manipulating a very thin plastic sack (of negligible mass) that is filled with water. She finds that the sack and its contained water are in static equilibrium, tending neither to rise nor to sink. The downward gravitational force \(\vec{F}_{g}\) on the contained water must be balanced by a net upward force from the water surrounding the sack.

This net upward force is a buoyant force \(\vec{F}_{b}\). It exists because the pressure in the surrounding water increases with depth below the surface. Thus, the pressure near the bottom of the sack is greater than the pressure near the top, which means the forces on the sack due to this pressure are greater in magnitude near the bottom of the sack than near the top. Some of the forces are represented in Fig. 14-10a, where the space occupied by the sack has been left empty. Note that the force vectors drawn near the bottom of that space (with upward components) have longer lengths than those drawn near the top of the sack (with downward components). If we vectorially add all the forces on the sack from the water, the horizontal components cancel and the vertical components add to yield the upward buoyant force \(\vec{F}_{b}\) on the sack. (Force \(\vec{F}_{b}\) is shown to the right of the pool in Fig. 14-10a.)

Because the sack of water is in static equilibrium, the magnitude of \(\vec{F}_{b}\) is equal to the magnitude \(m_{f} g\) of the gravitational force \(\vec{F}_{g}\) on the sack of water: \(F_{b}=m_{f} g\). (Subscript \(f\) refers to fluid, here the water.) In words, the magnitude of the buoyant force is equal to the weight of the water in the sack.

In Fig. 14-10b, we have replaced the sack of water with a stone that exactly fills the hole in Fig. 14-10a. The stone is said to displace the water, meaning that the stone occupies space that would otherwise be occupied by water. We have changed nothing about the shape of the hole, so the forces at the hole's surface must be the same as when the water-filled sack was in place. Thus, the same upward buoyant force that acted on the water-filled sack now acts on the stone; that is, the magnitude \(F_{b}\) of the buoyant force is equal to \(m_{f} g\), the weight of the water displaced by the stone.

Unlike the water-filled sack, the stone is not in static equilibrium. The downward gravitational force \(\vec{F}_{g}\) on the stone is greater in magnitude than the upward buoyant force (Fig. 14-10b). The stone thus accelerates downward, sinking.

Let us next exactly fill the hole in Fig. 14-10a with a block of lightweight wood, as in Fig. 14-10c. Again, nothing has changed about the forces at the hole's surface, so the magnitude \(F_{b}\) of the buoyant force is still equal to \(m_{f} g\), the weight


Figure 14-9 A thin-walled plastic sack of water is in static equilibrium in the pool. The gravitational force on the sack must be balanced by a net upward force on it from the surrounding water.

(a)
(b)


Figure 14-10 (a) The water surrounding the hole in the water produces a net upward buoyant force on whatever fills the hole. (b) For a stone of the same volume as the hole, the gravitational force exceeds the buoyant force in magnitude. (c) For a lump of wood of the same volume, the gravitational force is less than the buoyant force in magnitude.

The net force is upward, so the wood accelerates upward.
of the displaced water. Like the stone, the block is not in static equilibrium. However, this time the gravitational force \(\vec{F}_{g}\) is lesser in magnitude than the buoyant force (as shown to the right of the pool), and so the block accelerates upward, rising to the top surface of the water.

Our results with the sack, stone, and block apply to all fluids and are summarized in Archimedes' principle:

When a body is fully or partially submerged in a fluid, a buoyant force \(\vec{F}_{b}\) from the surrounding fluid acts on the body. The force is directed upward and has a magnitude equal to the weight \(m_{f} g\) of the fluid that has been displaced by the body.

The buoyant force on a body in a fluid has the magnitude
\[
\begin{equation*}
F_{b}=m_{f} g \quad(\text { buoyant force }), \tag{14-16}
\end{equation*}
\]
where \(m_{f}\) is the mass of the fluid that is displaced by the body.

\section*{Floating}

When we release a block of lightweight wood just above the water in a pool, the block moves into the water because the gravitational force on it pulls it downward. As the block displaces more and more water, the magnitude \(F_{b}\) of the upward buoyant force acting on it increases. Eventually, \(F_{b}\) is large enough to equal the magnitude \(F_{g}\) of the downward gravitational force on the block, and the block comes to rest. The block is then in static equilibrium and is said to be floating in the water. In general,

When a body floats in a fluid, the magnitude \(F_{b}\) of the buoyant force on the body is equal to the magnitude \(F_{g}\) of the gravitational force on the body.

We can write this statement as
\[
\begin{equation*}
F_{b}=F_{g} \quad \text { (floating). } \tag{14-17}
\end{equation*}
\]

From Eq. 14-16, we know that \(F_{b}=m_{f} g\). Thus,

When a body floats in a fluid, the magnitude \(F_{g}\) of the gravitational force on the body is equal to the weight \(m_{f} g\) of the fluid that has been displaced by the body.

We can write this statement as
\[
\begin{equation*}
F_{g}=m_{f} g \quad \text { (floating). } \tag{14-18}
\end{equation*}
\]

In other words, a floating body displaces its own weight of fluid.

\section*{Apparent Weight in a Fluid}

If we place a stone on a scale that is calibrated to measure weight, then the reading on the scale is the stone's weight. However, if we do this underwater, the upward buoyant force on the stone from the water decreases the reading. That reading is then an apparent weight. In general, an apparent weight is related to the actual weight of a body and the buoyant force on the body by
\[
\binom{\text { apparent }}{\text { weight }}=\binom{\text { actual }}{\text { weight }}-\binom{\text { magnitude of }}{\text { buoyant force }},
\]
which we can write as
\[
\begin{equation*}
\text { weight }_{\text {app }}=\text { weight }-F_{b} \quad(\text { apparent weight }) . \tag{14-19}
\end{equation*}
\]

If, in some test of strength, you had to lift a heavy stone, you could do it more easily with the stone underwater. Then your applied force would need to exceed only the stone's apparent weight, not its larger actual weight.

The magnitude of the buoyant force on a floating body is equal to the body's weight. Equation 14-19 thus tells us that a floating body has an apparent weight of zero - the body would produce a reading of zero on a scale. For example, when astronauts prepare to perform a complex task in space, they practice the task floating underwater, where their suits are adjusted to give them an apparent weight of zero.

\section*{Checkpoint 2}

A penguin floats first in a fluid of density \(\rho_{0}\), then in a fluid of density \(0.95 \rho_{0}\), and then in a fluid of density \(1.1 \rho_{0}\). (a) Rank the densities according to the magnitude of the buoyant force on the penguin, greatest first. (b) Rank the densities according to the amount of fluid displaced by the penguin, greatest first.

\section*{Sample Problem 14.04 Floating, buoyancy, and density}

In Fig. 14-11, a block of density \(\rho=800 \mathrm{~kg} / \mathrm{m}^{3}\) floats face down in a fluid of density \(\rho_{f}=1200 \mathrm{~kg} / \mathrm{m}^{3}\). The block has height \(H=6.0 \mathrm{~cm}\).
(a) By what depth \(h\) is the block submerged?

\section*{KEY IDEAS}
(1) Floating requires that the upward buoyant force on the block match the downward gravitational force on the block.
(2) The buoyant force is equal to the weight \(m_{f} g\) of the fluid displaced by the submerged portion of the block.
Calculations: From Eq. 14-16, we know that the buoyant force has the magnitude \(F_{b}=m_{f} g\), where \(m_{f}\) is the mass of the fluid displaced by the block's submerged volume \(V_{f}\). From Eq. 14-2 \((\rho=m / V)\), we know that the mass of the displaced fluid is \(m_{f}=\rho_{f} V_{f}\). We don't know \(V_{f}\) but if we symbolize the block's face length as \(L\) and its width as \(W\), then from Fig. 14-11 we see that the submerged volume must be \(V_{f}=L W h\). If we now combine our three expressions, we find that the upward buoyant force has magnitude
\[
\begin{equation*}
F_{b}=m_{f} g=\rho_{f} V_{f} g=\rho_{f} L W h g . \tag{14-20}
\end{equation*}
\]

Similarly, we can write the magnitude \(F_{g}\) of the gravitational force on the block, first in terms of the block's mass \(m\), then in terms of the block's density \(\rho\) and (full) volume \(V\), and then in terms of the block's dimensions \(L, W\), and \(H\) (the full height):
\[
\begin{equation*}
F_{g}=m g=\rho V g=\rho_{f} L W H g . \tag{14-21}
\end{equation*}
\]

The floating block is stationary. Thus, writing Newton's second law for components along a vertical \(y\) axis with the positive direction upward \(\left(F_{\text {net, } y}=m a_{y}\right)\), we have
\[
F_{b}-F_{g}=m(0)
\]

\section*{Floating means} that the buoyant force matches the gravitational force.

Figure 14-11 Block of height \(H\) floats in a fluid, to a depth of \(h\).
or from Eqs. 14-20 and 14-21,
\[
\rho_{f} L W h g-\rho L W H g=0,
\]
which gives us
\[
\begin{aligned}
h & =\frac{\rho}{\rho_{f}} H=\frac{800 \mathrm{~kg} / \mathrm{m}^{3}}{1200 \mathrm{~kg} / \mathrm{m}^{3}}(6.0 \mathrm{~cm}) \\
& =4.0 \mathrm{~cm}
\end{aligned}
\]
(Answer)
(b) If the block is held fully submerged and then released, what is the magnitude of its acceleration?

Calculations: The gravitational force on the block is the same but now, with the block fully submerged, the volume of the displaced water is \(V=L W H\). (The full height of the block is used.) This means that the value of \(F_{b}\) is now larger, and the block will no longer be stationary but will accelerate upward. Now Newton's second law yields
\[
F_{b}-F_{g}=m a,
\]
or
\[
\rho_{f} L W H g-\rho L W H g=\rho L W H a
\]
where we inserted \(\rho L W H\) for the mass \(m\) of the block. Solving for \(a\) leads to
\[
\begin{aligned}
a & =\left(\frac{\rho_{f}}{\rho}-1\right) g=\left(\frac{1200 \mathrm{~kg} / \mathrm{m}^{3}}{800 \mathrm{~kg} / \mathrm{m}^{3}}-1\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =4.9 \mathrm{~m} / \mathrm{s}^{2} .
\end{aligned} \text { (Answer) }
\]

\section*{14-6 the equation of continuity}

\section*{Learning Objectives}

After reading this module, you should be able to ...
14.16 Describe steady flow, incompressible flow, nonviscous flow, and irrotational flow.
14.17 Explain the term streamline.
14.18 Apply the equation of continuity to relate the
cross-sectional area and flow speed at one point in a tube to those quantities at a different point.
14.19 Identify and calculate volume flow rate.
14.20 Identify and calculate mass flow rate.

\section*{Key Ideas}
- An ideal fluid is incompressible and lacks viscosity, and its flow is steady and irrotational.
- A streamline is the path followed by an individual fluid particle.
- A tube of flow is a bundle of streamlines.
- The flow within any tube of flow obeys the equation of continuity:
in which \(R_{V}\) is the volume flow rate, \(A\) is the cross-sectional area of the tube of flow at any point, and \(v\) is the speed of the fluid at that point.
- The mass flow rate \(R_{m}\) is
\[
R_{m}=\rho R_{V}=\rho A v=\text { a constant. }
\]


Will McIntyre/Photo Researchers, Inc.
Figure 14-12 At a certain point, the rising flow of smoke and heated gas changes from steady to turbulent.

\section*{Ideal Fluids in Motion}

The motion of real fluids is very complicated and not yet fully understood. Instead, we shall discuss the motion of an ideal fluid, which is simpler to handle mathematically and yet provides useful results. Here are four assumptions that we make about our ideal fluid; they all are concerned with flow:
1. Steady flow In steady (or laminar) flow, the velocity of the moving fluid at any fixed point does not change with time. The gentle flow of water near the center of a quiet stream is steady; the flow in a chain of rapids is not. Figure 14-12 shows a transition from steady flow to nonsteady (or nonlaminar or turbulent) flow for a rising stream of smoke. The speed of the smoke particles increases as they rise and, at a certain critical speed, the flow changes from steady to nonsteady.
2. Incompressible flow We assume, as for fluids at rest, that our ideal fluid is incompressible; that is, its density has a constant, uniform value.
3. Nonviscousflow Roughly speaking, the viscosity of a fluid is a measure of how resistive the fluid is to flow. For example, thick honey is more resistive to flow than water, and so honey is said to be more viscous than water. Viscosity is the fluid analog of friction between solids; both are mechanisms by which the kinetic energy of moving objects can be transferred to thermal energy. In the absence of friction, a block could glide at constant speed along a horizontal surface. In the same way, an object moving through a nonviscous fluid would experience no viscous drag force - that is, no resistive force due to viscosity; it could move at constant speed through the fluid. The British scientist Lord Rayleigh noted that in an ideal fluid a ship's propeller would not work, but, on the other hand, in an ideal fluid a ship (once set into motion) would not need a propeller!
4. Irrotational flow Although it need not concern us further, we also assume that the flow is irrotational. To test for this property, let a tiny grain of dust move with the fluid. Although this test body may (or may not) move in a circular path, in irrotational flow the test body will not rotate about an axis through its own center of mass. For a loose analogy, the motion of a Ferris wheel is rotational; that of its passengers is irrotational.

We can make the flow of a fluid visible by adding a tracer. This might be a dye injected into many points across a liquid stream (Fig. 14-13) or smoke

Figure 14-13 The steady flow of a fluid around a cylinder, as revealed by a dye tracer that was injected into the fluid upstream of the cylinder.


Courtesy D. H. Peregrine, University of Bristol
particles added to a gas flow (Fig. 14-12). Each bit of a tracer follows a streamline, which is the path that a tiny element of the fluid would take as the fluid flows. Recall from Chapter 4 that the velocity of a particle is always tangent to the path taken by the particle. Here the particle is the fluid element, and its velocity \(\vec{v}\) is always tangent to a streamline (Fig. 14-14). For this reason, two streamlines can never intersect; if they did, then an element arriving at their intersection would have two different velocities simultaneously - an impossibility.

\section*{The Equation of Continuity}

You may have noticed that you can increase the speed of the water emerging from a garden hose by partially closing the hose opening with your thumb. Apparently the speed \(v\) of the water depends on the cross-sectional area \(A\) through which the water flows.

Here we wish to derive an expression that relates \(v\) and \(A\) for the steady flow of an ideal fluid through a tube with varying cross section, like that in Fig. 14-15. The flow there is toward the right, and the tube segment shown (part of a longer tube) has length \(L\). The fluid has speeds \(v_{1}\) at the left end of the segment and \(v_{2}\) at the right end. The tube has cross-sectional areas \(A_{1}\) at the left end and \(A_{2}\) at the right end. Suppose that in a time interval \(\Delta t\) a volume \(\Delta V\) of fluid enters the tube segment at its left end (that volume is colored purple in Fig. 14-15). Then, because the fluid is incompressible, an identical volume \(\Delta V\) must emerge from the right end of the segment (it is colored green in Fig. 14-15).


Figure 14-14 A fluid element traces out a streamline as it moves. The velocity vector of the element is tangent to the streamline at every point.

Figure 14-15 Fluid flows from left to right at a steady rate through a tube segment of length \(L\). The fluid's speed is \(v_{1}\) at the left side and \(v_{2}\) at the right side. The tube's cross-sectional area is \(A_{1}\) at the left side and \(A_{2}\) at the right side. From time \(t\) in \((a)\) to time \(t+\Delta t\) in \((b)\), the amount of fluid shown in purple enters at the left side and the equal amount of fluid shown in green emerges at the right side.

The volume flow per second here must match ...


(b) Time \(t+\Delta t\)

Figure 14-16 Fluid flows at a constant speed \(v\) through a tube. (a) At time \(t\), fluid element \(e\) is about to pass the dashed line. (b) At time \(t+\Delta t\), element \(e\) is a distance \(\Delta x=v \Delta t\) from the dashed line.

We can use this common volume \(\Delta V\) to relate the speeds and areas. To do so, we first consider Fig. 14-16, which shows a side view of a tube of uniform cross-sectional area \(A\). In Fig. 14-16a, a fluid element \(e\) is about to pass through the dashed line drawn across the tube width. The element's speed is \(v\), so during a time interval \(\Delta t\), the element moves along the tube a distance \(\Delta x=v \Delta t\). The volume \(\Delta V\) of fluid that has passed through the dashed line in that time interval \(\Delta t\) is
\[
\begin{equation*}
\Delta V=A \Delta x=A v \Delta t . \tag{14-22}
\end{equation*}
\]

Applying Eq. 14-22 to both the left and right ends of the tube segment in Fig. 14-15, we have
or
\[
\begin{equation*}
A_{1} v_{1}=A_{2} v_{2} \quad \text { (equation of continuity). } \tag{14-23}
\end{equation*}
\]

This relation between speed and cross-sectional area is called the equation of continuity for the flow of an ideal fluid. It tells us that the flow speed increases when we decrease the cross-sectional area through which the fluid flows.

Equation 14-23 applies not only to an actual tube but also to any so-called tube of flow, or imaginary tube whose boundary consists of streamlines. Such a tube acts like a real tube because no fluid element can cross a streamline; thus, all the fluid within a tube of flow must remain within its boundary. Figure 14-17 shows a tube of flow in which the cross-sectional area increases from area \(A_{1}\) to area \(A_{2}\) along the flow direction. From Eq. 14-23 we know that, with the increase in area, the speed must decrease, as is indicated by the greater spacing between streamlines at the right in Fig. 14-17. Similarly, you can see that in Fig. 14-13 the speed of the flow is greatest just above and just below the cylinder.

We can rewrite Eq. 14-23 as
\[
\begin{equation*}
R_{V}=A v=\text { a constant } \quad \text { (volume flow rate, equation of continuity), } \tag{14-24}
\end{equation*}
\]
in which \(R_{V}\) is the volume flow rate of the fluid (volume past a given point per unit time). Its SI unit is the cubic meter per second ( \(\mathrm{m}^{3} / \mathrm{s}\) ). If the density \(\rho\) of the fluid is uniform, we can multiply Eq. 14-24 by that density to get the mass flow rate \(R_{m}\) (mass per unit time):
\[
\begin{equation*}
R_{m}=\rho R_{V}=\rho A v=\text { a constant } \quad \text { (mass flow rate). } \tag{14-25}
\end{equation*}
\]

The SI unit of mass flow rate is the kilogram per second (kg/s). Equation 14-25 says that the mass that flows into the tube segment of Fig. 14-15 each second must be equal to the mass that flows out of that segment each second.

\section*{Checkpoint 3}

The figure shows a pipe and gives the volume flow rate (in \(\mathrm{cm}^{3} / \mathrm{s}\) ) and the direction of flow for all but one section. What are the volume flow rate and the direction of flow
 for that section?

\section*{Sample Problem 14.05 A water stream narrows as it falls}

Figure 14-18 shows how the stream of water emerging from a faucet "necks down" as it falls. This change in the horizontal cross-sectional area is characteristic of any laminar (nonturbulant) falling stream because the gravitational force increases the speed of the stream. Here the indicated crosssectional areas are \(A_{0}=1.2 \mathrm{~cm}^{2}\) and \(A=0.35 \mathrm{~cm}^{2}\). The two levels are separated by a vertical distance \(h=45 \mathrm{~mm}\). What is the volume flow rate from the tap?


Figure 14-18 As water falls from a tap, its speed increases. Because the volume flow rate must be the same at all horizontal cross sections of the stream, the stream must "neck down" (narrow).

\section*{KEY IDEA}

The volume flow rate through the higher cross section must be the same as that through the lower cross section.
Calculations: From Eq. 14-24, we have
\[
\begin{equation*}
A_{0} v_{0}=A v \tag{14-26}
\end{equation*}
\]
where \(v_{0}\) and \(v\) are the water speeds at the levels corresponding to \(A_{0}\) and \(A\). From Eq. 2-16 we can also write, because the water is falling freely with acceleration \(g\),
\[
\begin{equation*}
v^{2}=v_{0}^{2}+2 g h \tag{14-27}
\end{equation*}
\]

Eliminating \(v\) between Eqs. 14-26 and 14-27 and solving for \(v_{0}\), we obtain
\[
\begin{aligned}
v_{0} & =\sqrt{\frac{2 g h A^{2}}{A_{0}^{2}-A^{2}}} \\
& =\sqrt{\frac{(2)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(0.045 \mathrm{~m})\left(0.35 \mathrm{~cm}^{2}\right)^{2}}{\left(1.2 \mathrm{~cm}^{2}\right)^{2}-\left(0.35 \mathrm{~cm}^{2}\right)^{2}}} \\
& =0.286 \mathrm{~m} / \mathrm{s}=28.6 \mathrm{~cm} / \mathrm{s}
\end{aligned}
\]

From Eq. 14-24, the volume flow rate \(R_{V}\) is then
\[
\begin{aligned}
R_{V} & =A_{0} v_{0}=\left(1.2 \mathrm{~cm}^{2}\right)(28.6 \mathrm{~cm} / \mathrm{s}) \\
& =34 \mathrm{~cm}^{3} / \mathrm{s} .
\end{aligned}
\]
(Answer)

Additional examples, video, and practice available at WileyPLUS

\section*{14-7 bernoulli's equation}

\section*{Learning Objectives}

After reading this module, you should be able to .
14.21 Calculate the kinetic energy density in terms of a fluid's density and flow speed.
14.22 Identify the fluid pressure as being a type of energy density.
14.23 Calculate the gravitational potential energy density.
14.24 Apply Bernoulli's equation to relate the total energy density at one point on a streamline to the value at another point.
14.25 Identify that Bernoulli's equation is a statement of the conservation of energy.

\section*{Key Idea}
- Applying the principle of conservation of mechanical energy to the flow of an ideal fluid leads to Bernoulli's equation:
\[
p+\frac{1}{2} \rho v^{2}+\rho g y=\mathrm{a} \text { constant }
\]
along any tube of flow.

\section*{Bernoulli's Equation}

Figure 14-19 represents a tube through which an ideal fluid is flowing at a steady rate. In a time interval \(\Delta t\), suppose that a volume of fluid \(\Delta V\), colored purple in Fig. 14-19, enters the tube at the left (or input) end and an identical volume,

(b)

Figure 14-19 Fluid flows at a steady rate through a length \(L\) of a tube, from the input end at the left to the output end at the right. From time \(t\) in (a) to time \(t+\Delta t\) in (b), the amount of fluid shown in purple enters the input end and the equal amount shown in green emerges from the output end.
colored green in Fig. 14-19, emerges at the right (or output) end. The emerging volume must be the same as the entering volume because the fluid is incompressible, with an assumed constant density \(\rho\).

Let \(y_{1}, v_{1}\), and \(p_{1}\) be the elevation, speed, and pressure of the fluid entering at the left, and \(y_{2}, v_{2}\), and \(p_{2}\) be the corresponding quantities for the fluid emerging at the right. By applying the principle of conservation of energy to the fluid, we shall show that these quantities are related by
\[
\begin{equation*}
p_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g y_{1}=p_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g y_{2} . \tag{14-28}
\end{equation*}
\]

In general, the term \(\frac{1}{2} \rho v^{2}\) is called the fluid's kinetic energy density (kinetic energy per unit volume). We can also write Eq. 14-28 as
\[
\begin{equation*}
p+\frac{1}{2} \rho v^{2}+\rho g y=\text { a constant } \quad \text { (Bernoulli's equation). } \tag{14-29}
\end{equation*}
\]

Equations 14-28 and 14-29 are equivalent forms of Bernoulli's equation, after Daniel Bernoulli, who studied fluid flow in the 1700s.* Like the equation of continuity (Eq. 14-24), Bernoulli's equation is not a new principle but simply the reformulation of a familiar principle in a form more suitable to fluid mechanics. As a check, let us apply Bernoulli's equation to fluids at rest, by putting \(v_{1}=v_{2}=0\) in Eq. 14-28. The result is Eq. 14-7:
\[
p_{2}=p_{1}+\rho g\left(y_{1}-y_{2}\right) .
\]

A major prediction of Bernoulli's equation emerges if we take \(y\) to be a constant ( \(y=0\), say) so that the fluid does not change elevation as it flows. Equation 14-28 then becomes
\[
\begin{equation*}
p_{1}+\frac{1}{2} \rho v_{1}^{2}=p_{2}+\frac{1}{2} \rho v_{2}^{2}, \tag{14-30}
\end{equation*}
\]
which tells us that:

If the speed of a fluid element increases as the element travels along a horizontal streamline, the pressure of the fluid must decrease, and conversely.

Put another way, where the streamlines are relatively close together (where the velocity is relatively great), the pressure is relatively low, and conversely.

The link between a change in speed and a change in pressure makes sense if you consider a fluid element that travels through a tube of various widths. Recall that the element's speed in the narrower regions is fast and its speed in the wider regions is slow. By Newton's second law, forces (or pressures) must cause the changes in speed (the accelerations). When the element nears a narrow region, the higher pressure behind it accelerates it so that it then has a greater speed in the narrow region. When it nears a wide region, the higher pressure ahead of it decelerates it so that it then has a lesser speed in the wide region.

Bernoulli's equation is strictly valid only to the extent that the fluid is ideal. If viscous forces are present, thermal energy will be involved, which here we neglect.

\section*{Proof of Bernoulli's Equation}

Let us take as our system the entire volume of the (ideal) fluid shown in Fig. 14-19. We shall apply the principle of conservation of energy to this system as it moves from its initial state (Fig. 14-19a) to its final state (Fig. 14-19b). The fluid lying between the two vertical planes separated by a distance \(L\) in Fig. 14-19 does not change its properties during this process; we need be concerned only with changes that take place at the input and output ends.

\footnotetext{
*For irrotational flow (which we assume), the constant in Eq. 14-29 has the same value for all points within the tube of flow; the points do not have to lie along the same streamline. Similarly, the points 1 and 2 in Eq. 14-28 can lie anywhere within the tube of flow.
}

First, we apply energy conservation in the form of the work-kinetic energy theorem,
\[
\begin{equation*}
W=\Delta K \tag{14-31}
\end{equation*}
\]
which tells us that the change in the kinetic energy of our system must equal the net work done on the system. The change in kinetic energy results from the change in speed between the ends of the tube and is
\[
\begin{align*}
\Delta K & =\frac{1}{2} \Delta m v_{2}^{2}-\frac{1}{2} \Delta m v_{1}^{2} \\
& =\frac{1}{2} \rho \Delta V\left(v_{2}^{2}-v_{1}^{2}\right), \tag{14-32}
\end{align*}
\]
in which \(\Delta m(=\rho \Delta V)\) is the mass of the fluid that enters at the input end and leaves at the output end during a small time interval \(\Delta t\).

The work done on the system arises from two sources. The work \(W_{g}\) done by the gravitational force ( \(\Delta m \vec{g}\) ) on the fluid of mass \(\Delta m\) during the vertical lift of the mass from the input level to the output level is
\[
\begin{align*}
W_{g} & =-\Delta m g\left(y_{2}-y_{1}\right) \\
& =-\rho g \Delta V\left(y_{2}-y_{1}\right) . \tag{14-33}
\end{align*}
\]

This work is negative because the upward displacement and the downward gravitational force have opposite directions.

Work must also be done on the system (at the input end) to push the entering fluid into the tube and by the system (at the output end) to push forward the fluid that is located ahead of the emerging fluid. In general, the work done by a force of magnitude \(F\), acting on a fluid sample contained in a tube of area \(A\) to move the fluid through a distance \(\Delta x\), is
\[
F \Delta x=(p A)(\Delta x)=p(A \Delta x)=p \Delta V
\]

The work done on the system is then \(p_{1} \Delta V\), and the work done by the system is \(-p_{2} \Delta V\). Their sum \(W_{p}\) is
\[
\begin{align*}
W_{p} & =-p_{2} \Delta V+p_{1} \Delta V \\
& =-\left(p_{2}-p_{1}\right) \Delta V . \tag{14-34}
\end{align*}
\]

The work - kinetic energy theorem of Eq. 14-31 now becomes
\[
W=W_{g}+W_{p}=\Delta K
\]

Substituting from Eqs. 14-32, 14-33, and 14-34 yields
\[
-\rho g \Delta V\left(y_{2}-y_{1}\right)-\Delta V\left(p_{2}-p_{1}\right)=\frac{1}{2} \rho \Delta V\left(v_{2}^{2}-v_{1}^{2}\right) .
\]

This, after a slight rearrangement, matches Eq. 14-28, which we set out to prove.

\section*{Checkpoint 4}

Water flows smoothly through the pipe shown in the figure, descending in the process. Rank the four numbered sections of pipe according to (a) the volume flow rate \(R_{V}\) through them, (b) the flow speed \(v\) through them, and (c) the water pressure \(p\) within them, greatest first.


\section*{Sample Problem 14.06 Bernoulli principle of fluid through a narrowing pipe}

Ethanol of density \(\rho=791 \mathrm{~kg} / \mathrm{m}^{3}\) flows smoothly through a horizontal pipe that tapers (as in Fig. 14-15) in crosssectional area from \(A_{1}=1.20 \times 10^{-3} \mathrm{~m}^{2}\) to \(A_{2}=A_{1} / 2\).

The pressure difference between the wide and narrow sections of pipe is 4120 Pa . What is the volume flow rate \(R_{V}\) of the ethanol?

\section*{KEY IDEAS}
(1) Because the fluid flowing through the wide section of pipe must entirely pass through the narrow section, the volume flow rate \(R_{V}\) must be the same in the two sections. Thus, from Eq. 14-24,
\[
\begin{equation*}
R_{V}=v_{1} A_{1}=v_{2} A_{2} \tag{14-35}
\end{equation*}
\]

However, with two unknown speeds, we cannot evaluate this equation for \(R_{V}\). (2) Because the flow is smooth, we can apply Bernoulli's equation. From Eq. 14-28, we can write
\[
\begin{equation*}
p_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g y=p_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g y, \tag{14-36}
\end{equation*}
\]
where subscripts 1 and 2 refer to the wide and narrow sections of pipe, respectively, and \(y\) is their common elevation. This equation hardly seems to help because it does not contain the desired \(R_{V}\) and it contains the unknown speeds \(v_{1}\) and \(v_{2}\).
Calculations: There is a neat way to make Eq. 14-36 work for us: First, we can use Eq. 14-35 and the fact that \(A_{2}=A_{1} / 2\) to write
\[
\begin{equation*}
v_{1}=\frac{R_{V}}{A_{1}} \quad \text { and } \quad v_{2}=\frac{R_{V}}{A_{2}}=\frac{2 R_{V}}{A_{1}} . \tag{14-37}
\end{equation*}
\]

Then we can substitute these expressions into Eq. 14-36 to eliminate the unknown speeds and introduce the desired volume flow rate. Doing this and solving for \(R_{V}\) yield
\[
\begin{equation*}
R_{V}=A_{1} \sqrt{\frac{2\left(p_{1}-p_{2}\right)}{3 \rho}} \tag{14-38}
\end{equation*}
\]

We still have a decision to make: We know that the pressure difference between the two sections is 4120 Pa , but does that mean that \(p_{1}-p_{2}\) is 4120 Pa or -4120 Pa ? We could guess the former is true, or otherwise the square root in Eq. 14-38 would give us an imaginary number. However, let's try some reasoning. From Eq. \(14-35\) we see that speed \(v_{2}\) in the narrow section (small \(A_{2}\) ) must be greater than speed \(v_{1}\) in the wider section (larger \(A_{1}\) ). Recall that if the speed of a fluid increases as the fluid travels along a horizontal path (as here), the pressure of the fluid must decrease. Thus, \(p_{1}\) is greater than \(p_{2}\), and \(p_{1}-p_{2}=4120 \mathrm{~Pa}\). Inserting this and known data into Eq. 14-38 gives
\[
\begin{aligned}
R_{V} & =1.20 \times 10^{-3} \mathrm{~m}^{2} \sqrt{\frac{(2)(4120 \mathrm{~Pa})}{(3)\left(791 \mathrm{~kg} / \mathrm{m}^{3}\right)}} \\
& =2.24 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s} .
\end{aligned}
\]
(Answer)

\section*{Sample Problem 14.07 Bernoulli principle for a leaky water tank}

In the old West, a desperado fires a bullet into an open water tank (Fig. 14-20), creating a hole a distance \(h\) below the water surface. What is the speed \(v\) of the water exiting the tank?

\section*{KEY IDEAS}
(1) This situation is essentially that of water moving (downward) with speed \(v_{0}\) through a wide pipe (the tank) of crosssectional area \(A\) and then moving (horizontally) with speed \(v\) through a narrow pipe (the hole) of cross-sectional area \(a\). (2) Because the water flowing through the wide pipe must entirely pass through the narrow pipe, the volume flow rate \(R_{V}\) must be the same in the two "pipes." (3) We can also relate \(v\) to \(v_{0}\) (and to \(h\) ) through Bernoulli's equation (Eq. 14-28).

Calculations: From Eq. 14-24,
and thus
\[
R_{V}=a v=A v_{0}
\]
\[
\text { and thus } \quad v_{0}=\frac{a}{A} v .
\]

Because \(a \ll A\), we see that \(v_{0} \ll v\). To apply Bernoulli's equation, we take the level of the hole as our reference level for measuring elevations (and thus gravitational potential energy). Noting that the pressure at the top of the tank and at the bullet hole is the atmospheric pressure \(p_{0}\) (because both places are exposed to the atmosphere), we write Eq. 14-28 as
\[
\begin{equation*}
p_{0}+\frac{1}{2} \rho v_{0}^{2}+\rho g h=p_{0}+\frac{1}{2} \rho v^{2}+\rho g(0) \tag{14-39}
\end{equation*}
\]

(Here the top of the tank is represented by the left side of the equation and the hole by the right side. The zero on the right indicates that the hole is at our reference level.) Before we solve Eq. 14-39 for \(v\), we can use our result that \(v_{0} \ll v\) to simplify it: We assume that \(v_{0}^{2}\), and thus the term \(\frac{1}{2} \rho v_{0}^{2}\) in Eq. \(14-39\), is negligible relative to the other terms, and we drop it. Solving the remaining equation for \(v\) then yields
\[
v=\sqrt{2 g h}
\]
(Answer)
This is the same speed that an object would have when falling a height \(h\) from rest.

\section*{\&eview \& Summary}

Density The density \(\rho\) of any material is defined as the material's mass per unit volume:
\[
\begin{equation*}
\rho=\frac{\Delta m}{\Delta V} \tag{14-1}
\end{equation*}
\]

Usually, where a material sample is much larger than atomic dimensions, we can write Eq. 14-1 as
\[
\begin{equation*}
\rho=\frac{m}{V} \tag{14-2}
\end{equation*}
\]

Fluid Pressure A fluid is a substance that can flow; it conforms to the boundaries of its container because it cannot withstand shearing stress. It can, however, exert a force perpendicular to its surface. That force is described in terms of pressure \(p\) :
\[
\begin{equation*}
p=\frac{\Delta F}{\Delta A} \tag{14-3}
\end{equation*}
\]
in which \(\Delta F\) is the force acting on a surface element of area \(\Delta A\). If the force is uniform over a flat area, Eq. 14-3 can be written as
\[
\begin{equation*}
p=\frac{F}{A} \tag{14-4}
\end{equation*}
\]

The force resulting from fluid pressure at a particular point in a fluid has the same magnitude in all directions. Gauge pressure is the difference between the actual pressure (or absolute pressure) at a point and the atmospheric pressure.

Pressure Variation with Height and Depth Pressure in a fluid at rest varies with vertical position \(y\). For \(y\) measured positive upward,
\[
\begin{equation*}
p_{2}=p_{1}+\rho g\left(y_{1}-y_{2}\right) \tag{14-7}
\end{equation*}
\]

The pressure in a fluid is the same for all points at the same level. If \(h\) is the depth of a fluid sample below some reference level at which the pressure is \(p_{0}\), then the pressure in the sample is
\[
\begin{equation*}
p=p_{0}+\rho g h \tag{14-8}
\end{equation*}
\]

\section*{Questions}

1 We fully submerge an irregular 3 kg lump of material in a certain fluid. The fluid that would have been in the space now occupied by the lump has a mass of 2 kg . (a) When we release the lump, does it move upward, move downward, or remain in place? (b) If we next fully submerge the lump in a less dense fluid and again release it, what does it do?
2 Figure 14-21 shows four situations in which a red liquid and a gray liquid are in a U-tube. In one situation the liquids cannot be in static equilibrium. (a) Which situation is that? (b) For the other three sit-


Figure 14-21 Question 2.

Pascal's Principle A change in the pressure applied to an enclosed fluid is transmitted undiminished to every portion of the fluid and to the walls of the containing vessel.

Archimedes' Principle When a body is fully or partially submerged in a fluid, a buoyant force \(\vec{F}_{b}\) from the surrounding fluid acts on the body. The force is directed upward and has a magnitude given by
\[
\begin{equation*}
F_{b}=m_{f} g, \tag{14-16}
\end{equation*}
\]
where \(m_{f}\) is the mass of the fluid that has been displaced by the body (that is, the fluid that has been pushed out of the way by the body).

When a body floats in a fluid, the magnitude \(F_{b}\) of the (upward) buoyant force on the body is equal to the magnitude \(F_{g}\) of the (downward) gravitational force on the body. The apparent weight of a body on which a buoyant force acts is related to its actual weight by
\[
\begin{equation*}
\text { weight }_{\text {app }}=\text { weight }-F_{b} \text {. } \tag{14-19}
\end{equation*}
\]

Flow of Ideal Fluids An ideal fluid is incompressible and lacks viscosity, and its flow is steady and irrotational. A streamline is the path followed by an individual fluid particle. A tube of flow is a bundle of streamlines. The flow within any tube of flow obeys the equation of continuity:
\[
\begin{equation*}
R_{V}=A v=\text { a constant } \tag{14-24}
\end{equation*}
\]
in which \(R_{V}\) is the volume flow rate, \(A\) is the cross-sectional area of the tube of flow at any point, and \(v\) is the speed of the fluid at that point. The mass flow rate \(R_{m}\) is
\[
\begin{equation*}
R_{m}=\rho R_{V}=\rho A v=\text { a constant } \tag{14-25}
\end{equation*}
\]

Bernoulli's Equation Applying the principle of conservation of mechanical energy to the flow of an ideal fluid leads to Bernoulli's equation along any tube of flow:
\[
\begin{equation*}
p+\frac{1}{2} \rho v^{2}+\rho g y=\text { a constant. } \tag{14-29}
\end{equation*}
\]
uations, assume static equilibrium. For each of them, is the density of the red liquid greater than, less than, or equal to the density of the gray liquid?
3 A boat with an anchor on board floats in a swimming pool that is somewhat wider than the boat. Does the pool water level move up, move down, or remain the same if the anchor is (a) dropped into the water or (b) thrown onto the surrounding ground? (c) Does the water level in the pool move upward, move downward, or remain the same if, instead, a cork is dropped from the boat into the water, where it floats?
4 Figure 14-22 shows a tank filled with water. Five horizontal floors and ceilings are indicated; all have the same area and are located at distances \(L, 2 L\), or \(3 L\) below the top of the tank. Rank them according to the force on them due to the water, greatest first.


Figure 14-22 Question 4.

5 The teapot effect. Water poured slowly from a teapot spout can double back under the spout for a considerable distance (held there by atmospheric pressure) before detaching and falling. In Fig. 14-23, the four points are at the top or bottom of the water layers, inside or


Figure 14-23 Question 5. outside. Rank those four points according to the gauge pressure in the water there, most positive first. 6 Figure 14-24 shows three identical open-top containers filled to the brim with water; toy ducks float in two of them. Rank the containers and contents according to their weight, greatest first.


Figure 14-24 Question 6.
7 Figure 14-25 shows four arrangements of pipes through which

water flows smoothly toward the right. The radii of the pipe sections are indicated. In which arrangements is the net work done on a unit volume of water moving from the leftmost section to the rightmost section (a) zero, (b) positive, and (c) negative?
8 A rectangular block is pushed face-down into three liquids, in turn. The apparent weight \(W_{\text {app }}\) of the block versus depth \(h\) in the three liquids is plotted in Fig. 14-26. Rank the liquids according to their weight per unit volume, greatest first.
9 Water flows smoothly in a horizontal pipe. Figure 14-27 shows the kinetic energy \(K\) of a water element as it moves along an \(x\) axis that runs along the pipe. Rank the three lettered sections of the pipe according to the pipe radius, greatest first.


Figure 14-26 Question 8.


Figure 14-27 Question 9.

10 We have three containers with different liquids. The gauge pressure \(p_{g}\) versus depth \(h\) is plotted in Fig. 14-28 for the liquids. In each container, we will fully submerge a rigid plastic bead. Rank the plots according to the magnitude of the buoyant force on the bead, greatest first.


Figure 14-28 Question 10.

Figure 14-25 Question 7.

\section*{Problems}


\section*{Module 14-1 Fluids, Density, and Pressure}
\(\bullet 1\) ILW A fish maintains its depth in fresh water by adjusting the air content of porous bone or air sacs to make its average density the same as that of the water. Suppose that with its air sacs collapsed, a fish has a density of \(1.08 \mathrm{~g} / \mathrm{cm}^{3}\). To what fraction of its expanded body volume must the fish inflate the air sacs to reduce its density to that of water?
-2 A partially evacuated airtight container has a tight-fitting lid of surface area \(77 \mathrm{~m}^{2}\) and negligible mass. If the force required to remove the lid is 480 N and the atmospheric pressure is \(1.0 \times 10^{5}\) Pa , what is the internal air pressure?
\(\bullet 3\) SSM Find the pressure increase in the fluid in a syringe when a nurse applies a force of 42 N to the syringe's circular piston, which has a radius of 1.1 cm .
-4 Three liquids that will not mix are poured into a cylindrical container. The volumes and densities of the liquids are \(0.50 \mathrm{~L}, 2.6 \mathrm{~g} / \mathrm{cm}^{3}\); \(0.25 \mathrm{~L}, 1.0 \mathrm{~g} / \mathrm{cm}^{3}\); and \(0.40 \mathrm{~L}, 0.80 \mathrm{~g} / \mathrm{cm}^{3}\). What is the force on the bottom of the container due to these liquids? One liter \(=1 \mathrm{~L}=\) \(1000 \mathrm{~cm}^{3}\). (Ignore the contribution due to the atmosphere.)
\(\cdot 5\) SSM An office window has dimensions 3.4 m by 2.1 m . As a result of the passage of a storm, the outside air pressure drops to 0.96 atm , but inside the pressure is held at 1.0 atm . What net force pushes out on the window?
-6 You inflate the front tires on your car to 28 psi. Later, you measure your blood pressure, obtaining a reading of \(120 / 80\), the readings being in mm Hg . In metric countries (which is to say, most of the world), these pressures are customarily reported in kilopascals (kPa). In kilopascals, what are (a) your tire pressure and (b) your blood pressure?
-•7 In 1654 Otto von Guericke, inventor of the air pump, gave a demonstration before the noblemen of the Holy Roman Empire in which two teams of eight horses could not pull apart two evacuated brass hemispheres. (a) Assuming the hemispheres have (strong) thin walls, so that \(R\) in Fig. 14-29 may be considered both the inside and outside radius, show that the force \(\vec{F}\) required to pull apart the hemispheres has magnitude \(F=\pi R^{2} \Delta p\), where \(\Delta p\) is the difference between the pressures outside and inside the sphere. (b) Taking \(R\) as 30 cm , the inside pressure as 0.10 atm , and the outside pressure as 1.00 atm , find the force magnitude the teams of horses would have had to exert to pull apart the hemispheres. (c) Explain why one team of horses could have proved the point just as well if the hemispheres were attached to a sturdy wall.

\section*{Module 14-2 Fluids at Rest}
-8 The bends during flight. Anyone who scuba dives is advised not to fly within the next 24 h because the air mixture for diving can introduce nitrogen to the bloodstream. Without allowing the nitrogen to come out of solution slowly, any sudden air-pressure reduction (such as during airplane ascent) can result in the nitrogen forming bubbles in the blood, creating the bends, which can be painful and even fatal. Military special operation forces are especially at risk. What is the change in pressure on such a special-op soldier who must scuba dive at a depth of 20 m in seawater one day and parachute at an altitude of 7.6 km the next day? Assume that the average air density within the altitude range is \(0.87 \mathrm{~kg} / \mathrm{m}^{3}\).
\({ }^{-9}\) Blood pressure in Argentinosaurus. (a) If this longnecked, gigantic sauropod had a head height of 21 m and a heart height of 9.0 m , what (hydrostatic) gauge pressure in its blood was required at the heart such that the blood pressure at the brain was 80 torr (just enough to perfuse the brain with blood)? Assume the blood had a density of \(1.06 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\). (b) What was the blood pressure (in torr or mm Hg ) at the feet?
-10 The plastic tube in Fig. \(14-30\) has a cross-sectional area of \(5.00 \mathrm{~cm}^{2}\). The tube is filled with water until the short arm (of length \(d=0.800 \mathrm{~m}\) ) is full. Then the short arm is sealed and more water is gradually poured into the long arm. If the seal will pop off when the force on it exceeds 9.80 N , what total height of water in the long arm will put the seal on the verge of popping?
-11 Giraffe bending to drink. In a giraffe with its head 2.0 m above its heart, and its heart 2.0 m above its feet, the (hydrostatic) gauge pressure in the blood at its heart is 250 torr. Assume that the giraffe stands upright and the blood density is \(1.06 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\). In torr (or mm Hg ), find the (gauge) blood pressure (a) at the brain (the pressure is enough to perfuse the brain with blood, to keep the giraffe from fainting) and (b) at the feet (the pressure must be countered by tight-fitting skin acting like a pressure stocking). (c) If the giraffe were to lower its head to drink from a pond without splaying its legs and moving slowly, what would be the increase in the blood pressure in the brain? (Such action would probably be lethal.)
\(\cdot 12\) The maximum depth \(d_{\max }\) that a diver can snorkel is set by the density of the water and the fact that human lungs can func-


Figure 14-30 Problems 10 and 81 . ne


Figure 14-29 Problem 7.
tion against a maximum pressure difference (between inside and outside the chest cavity) of 0.050 atm . What is the difference in \(d_{\max }\) for fresh water and the water of the Dead Sea (the saltiest natural water in the world, with a density of \(\left.1.5 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\) ?
-13 At a depth of 10.9 km , the Challenger Deep in the Marianas Trench of the Pacific Ocean is the deepest site in any ocean. Yet, in 1960, Donald Walsh and Jacques Piccard reached the Challenger Deep in the bathyscaph Trieste. Assuming that seawater has a uniform density of \(1024 \mathrm{~kg} / \mathrm{m}^{3}\), approximate the hydrostatic pressure (in atmospheres) that the Trieste had to withstand. (Even a slight defect in the Trieste structure would have been disastrous.)
-14 Calculate the hydrostatic difference in blood pressure between the brain and the foot in a person of height 1.83 m . The density of blood is \(1.06 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\).
-15 What gauge pressure must a machine produce in order to suck mud of density \(1800 \mathrm{~kg} / \mathrm{m}^{3}\) up a tube by a height of 1.5 m ?
-16 Snorkeling by humans and elephants. When a person snorkels, the lungs are connected directly to the atmosphere through the snorkel tube and thus are at atmospheric pressure. In atmospheres, what is the difference \(\Delta p\) between this internal air pressure and the water pressure against the


Figure 14-31 Problem 16. body if the length of the snorkel tube is (a) 20 cm (standard situation) and (b) 4.0 m (probably lethal situation)? In the latter, the pressure difference causes blood vessels on the walls of the lungs to rupture, releasing blood into the lungs. As depicted in Fig. 14-31, an elephant can safely snorkel through its trunk while swimming with its lungs 4.0 m below the water surface because the membrane around its lungs contains connective tissue that holds and protects the blood vessels, preventing rupturing.
-17 Ssm Crew members attempt to escape from a damaged submarine 100 m below the surface. What force must be applied to a pop-out hatch, which is 1.2 m by 0.60 m , to push it out at that depth? Assume that the density of the ocean water is 1024 \(\mathrm{kg} / \mathrm{m}^{3}\) and the internal air pressure is at 1.00 atm .
-18 In Fig. 14-32, an open tube of length \(L=1.8 \mathrm{~m}\) and cross-sectional area \(A=\) \(4.6 \mathrm{~cm}^{2}\) is fixed to the top of a cylindrical barrel of diameter \(D=1.2 \mathrm{~m}\) and height \(H=\) 1.8 m . The barrel and tube are filled with water (to the top of the tube). Calculate the ratio of the hydrostatic force on the bottom of the barrel to the gravitational force on the water contained in the barrel. Why is that ratio not equal to 1.0 ? (You need not consider the atmospheric pressure.)
-019 ©0 A large aquarium of height 5.00 m is filled with fresh water to a depth of 2.00 m . One wall of the aquarium consists of thick plastic 8.00 m wide. By how much does the total force on that wall increase if the aquarium is next filled to a depth of 4.00 m ?

Figure 14-32
Problem 18.

\(\bullet 20\) The L-shaped fish tank shown in Fig. 14-33 is filled with water and is open at the top. If \(d=5.0 \mathrm{~m}\), what is the (total) force exerted by the water (a) on face \(A\) and (b) on face \(B\) ?
-•21 SSM Two identical cylindrical vessels with their bases at the same level each contain a liquid of density \(1.30 \times 10^{3}\) \(\mathrm{kg} / \mathrm{m}^{3}\). The area of each base is \(4.00 \mathrm{~cm}^{2}\), but in one vessel the liquid height is 0.854 m and in the other it is 1.560 m . Find the work done by the gravitational force in equalizing the levels when the two vessels are connected.
-22 2 -LOC in dogfights. When a pilot takes a tight turn at high speed in a modern fighter airplane, the blood pressure at the brain level decreases, blood no longer perfuses the brain, and the blood in the brain drains. If the heart maintains the (hydrostatic) gauge pressure in the aorta at 120 torr ( or mm Hg ) when the pilot undergoes a horizontal centripetal acceleration of \(4 g\), what is the blood pressure (in torr) at the brain, 30 cm radially inward from the heart? The perfusion in the brain is small enough that the vision switches to black and white and narrows to "tunnel vision" and the pilot can undergo \(g\)-LOC (" \(g\) induced loss of consciousness"). Blood density is \(1.06 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\).
\(\bullet 23\) © In analyzing certain geological features, it is often appropriate to assume that the pressure at some horizontal level of compensation, deep inside Earth, is the same over a large region and is equal to the pressure due to the gravitational force on the overlying material. Thus, the pressure on the level of compensation is given by the fluid pressure formula. This model requires, for one thing, that mountains have roots of continen-


Figure 14-34 Problem 23. tal rock extending into the denser mantle (Fig. 14-34). Consider a mountain of height \(H=6.0 \mathrm{~km}\) on a continent of thickness \(T=32 \mathrm{~km}\). The continental rock has a density of \(2.9 \mathrm{~g} / \mathrm{cm}^{3}\), and beneath this rock the mantle has a density of \(3.3 \mathrm{~g} / \mathrm{cm}^{3}\). Calculate the depth \(D\) of the root. (Hint: Set the pressure at points \(a\) and \(b\) equal; the depth \(y\) of the level of compensation will cancel out.)
-0024 so In Fig. 14-35, water stands at depth \(D=35.0 \mathrm{~m}\) behind the vertical upstream face of a dam of width \(W=314 \mathrm{~m}\). Find (a) the net horizontal force on the dam from the gauge pressure of the water and (b) the net torque due to that force about a horizontal line through \(O\)


Figure 14-35 Problem 24. parallel to the (long) width of the dam. This torque tends to rotate the dam around that line, which would cause the dam to fail. (c) Find the moment arm of the torque.

\section*{Module 14-3 Measuring Pressure}
-25 In one observation, the column in a mercury barometer (as is shown in Fig. 14-5a) has a measured height \(h\) of 740.35 mm . The temperature is \(-5.0^{\circ} \mathrm{C}\), at which temperature the density of mercury \(\rho\) is \(1.3608 \times 10^{4} \mathrm{~kg} / \mathrm{m}^{3}\). The free-fall acceleration \(g\) at the site of the barom-
eter is \(9.7835 \mathrm{~m} / \mathrm{s}^{2}\). What is the atmospheric pressure at that site in pascals and in torr (which is the common unit for barometer readings)?
-26 To suck lemonade of density \(1000 \mathrm{~kg} / \mathrm{m}^{3}\) up a straw to a maximum height of 4.0 cm , what minimum gauge pressure (in atmospheres) must you produce in your lungs?
\(\bullet 27\) SSM What would be the height of the atmosphere if the air density (a) were uniform and (b) decreased linearly to zero with height? Assume that at sea level the air pressure is 1.0 atm and the air density is \(1.3 \mathrm{~kg} / \mathrm{m}^{3}\).

\section*{Module 14-4 Pascal's Principle} -28 A piston of cross-sectional area \(a\) is used in a hydraulic press to exert a small force of magnitude \(f\) on the enclosed liquid. A connecting pipe leads to a larger piston of crosssectional area \(A\) (Fig. 14-36). (a) What force magnitude \(F\) will the larger piston sustain without moving? (b) If


Figure 14-36 Problem 28. the piston diameters are 3.80 cm and 53.0 cm , what force magnitude on the small piston will balance a 20.0 kN force on the large piston?
-229 In Fig. 14-37, a spring of spring constant \(3.00 \times 10^{4} \mathrm{~N} / \mathrm{m}\) is between a rigid beam and the output piston of a hydraulic lever. An empty container with negligible mass sits on the input piston. The input piston has area \(A_{i}\), and the output piston has area \(18.0 A_{i}\). Initially the spring is at its rest length.


Figure 14-37 Problem 29. How many kilograms of sand must be (slowly) poured into the container to compress the spring by 5.00 cm ?

\section*{Module 14-5 Archimedes' Principle}
-30 A 5.00 kg object is released from rest while fully submerged in a liquid. The liquid displaced by the submerged object has a mass of 3.00 kg . How far and in what direction does the object move in 0.200 s , assuming that it moves freely and that the drag force on it from the liquid is negligible?
-31 SSM A block of wood floats in fresh water with two-thirds of its volume \(V\) submerged and in oil with 0.90 V submerged. Find the density of (a) the wood and (b) the oil.
-32 In Fig. 14-38, a cube of edge length \(L=0.600 \mathrm{~m}\) and mass 450 kg is suspended by a rope in an open tank of liquid of density \(1030 \mathrm{~kg} / \mathrm{m}^{3}\). Find (a) the magnitude of the total downward force on the top of the cube from the liquid and the atmosphere, assuming atmospheric pressure is 1.00 atm , (b) the magnitude of the total upward force on the bot-


Figure 14-38 Problem 32. tom of the cube, and (c) the tension in the rope. (d) Calculate the magnitude of the buoyant force on the cube using Archimedes' principle. What relation exists among all these quantities?
-33 SSM An iron anchor of density \(7870 \mathrm{~kg} / \mathrm{m}^{3}\) appears 200 N lighter in water than in air. (a) What is the volume of the anchor? (b) How much does it weigh in air?
-34 A boat floating in fresh water displaces water weighing
35.6 kN . (a) What is the weight of the water this boat displaces when floating in salt water of density \(1.10 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\) ? (b) What is the difference between the volume of fresh water displaced and the volume of salt water displaced?
-35 Three children, each of weight 356 N, make a log raft by lashing together logs of diameter 0.30 m and length 1.80 m . How many logs will be needed to keep them
 afloat in fresh water? Take the density of the logs to be \(800 \mathrm{~kg} / \mathrm{m}^{3}\).
\(\bullet 36\) ©o In Fig. 14-39a, a rectangular block is gradually pushed face-down into a liquid. The block has height \(d\); on the bottom and top the face area is \(A=5.67 \mathrm{~cm}^{2}\). Figure 14-39b gives the apparent weight \(W_{\text {app }}\) of the block as a function of the depth \(h\) of its lower face. The scale on the vertical axis is set by \(W_{s}=0.20 \mathrm{~N}\). What is the

(b)

Figure 14-39 Problem 36. density of the liquid?
-•37 ILW A hollow spherical iron shell floats almost completely submerged in water. The outer diameter is 60.0 cm , and the density of iron is \(7.87 \mathrm{~g} / \mathrm{cm}^{3}\). Find the inner diameter. \(\bullet 38\) (6) A small solid ball is released from rest while fully submerged in a liquid and then its kinetic energy is measured when it has moved 4.0 cm in the liquid. Figure 14-40 gives the results after many liquids are used: The kinetic energy \(K\) is plotted versus the liquid density \(\rho_{\mathrm{liq}}\), and \(K_{s}=1.60 \mathrm{~J}\)


Figure 14-40 Problem 38. sets the scale on the vertical axis. What are (a) the density and (b) the volume of the ball?
\(\bullet 39\) SSM Www A hollow sphere of inner radius 8.0 cm and outer radius 9.0 cm floats half-submerged in a liquid of density \(800 \mathrm{~kg} / \mathrm{m}^{3}\). (a) What is the mass of the sphere? (b) Calculate the density of the material of which the sphere is made.
\(\bullet 40\) Lurking alligators. An alligator waits for prey by floating with only the top of its head exposed, so that the prey cannot easily see it. One way it can adjust the extent of


Figure 14-41 Problem 40. sinking is by controlling the size of its lungs. Another way may be by swallowing stones (gastrolithes) that then reside in the stomach. Figure \(14-41\) shows a highly simplified model (a "rhombohedron gater") of mass 130 kg that roams with its head partially exposed. The top head surface has area \(0.20 \mathrm{~m}^{2}\). If the alligator were to swallow stones with a total mass of \(1.0 \%\) of its body mass (a typical amount), how far would it sink?
\(\bullet 41\) What fraction of the volume of an iceberg (density \(917 \mathrm{~kg} / \mathrm{m}^{3}\) ) would be visible if the iceberg floats (a) in the ocean (salt water, density \(1024 \mathrm{~kg} / \mathrm{m}^{3}\) ) and (b) in a river (fresh water, density \(1000 \mathrm{~kg} / \mathrm{m}^{3}\) )? (When salt water freezes to form ice, the salt is excluded. So, an iceberg could provide fresh water to a community.)
\(\bullet 42\) A flotation device is in the shape of a right cylinder, with a height of 0.500 m and a face area of \(4.00 \mathrm{~m}^{2}\) on top and bottom, and its density is 0.400 times that of fresh water. It is initially held fully submerged in fresh water, with its top face at the water surface. Then
it is allowed to ascend gradually until it begins to float. How much work does the buoyant force do on the device during the ascent?
\(\bullet 43\) When researchers find a reasonably complete fossil of a dinosaur, they can determine the mass and weight of the living dinosaur with a scale model sculpted from plastic and based on the dimensions of the fossil bones. The scale of the model is \(1 / 20\); that is, lengths are \(1 / 20\) actual length, areas are \((1 / 20)^{2}\) actual areas, and volumes are \((1 / 20)^{3}\) actual


Figure 14-42 Problem 43. volumes. First, the model is suspended from one arm of a balance and weights are added to the other arm until equilibrium is reached. Then the model is fully submerged in water and enough weights are removed from the second arm to reestablish equilibrium (Fig. 14-42). For a model of a particular T. rex fossil, 637.76 g had to be removed to reestablish equilibrium. What was the volume of (a) the model and (b) the actual T. rex? (c) If the density of T. rex was approximately the density of water, what was its mass?
\(\bullet 44\) A wood block (mass 3.67 kg , density \(600 \mathrm{~kg} / \mathrm{m}^{3}\) ) is fitted with lead (density \(1.14 \times 10^{4} \mathrm{~kg} / \mathrm{m}^{3}\) ) so that it floats in water with 0.900 of its volume submerged. Find the lead mass if the lead is fitted to the block's (a) top and (b) bottom.
\(\bullet 45\) ©0 An iron casting containing a number of cavities weighs 6000 N in air and 4000 N in water. What is the total cavity volume in the casting? The density of solid iron is \(7.87 \mathrm{~g} / \mathrm{cm}^{3}\).
-•46 ©0 Suppose that you release a small ball from rest at a depth of 0.600 m below the surface in a pool of water. If the density of the ball is 0.300 that of water and if the drag force on the ball from the water is negligible, how high above the water surface will the ball shoot as it emerges from the water? (Neglect any transfer of energy to the splashing and waves produced by the emerging ball.)
\(\bullet 47\) The volume of air space in the passenger compartment of an 1800 kg car is \(5.00 \mathrm{~m}^{3}\). The volume of the motor and front wheels is \(0.750 \mathrm{~m}^{3}\), and the volume of the rear wheels, gas tank, and trunk is 0.800 \(\mathrm{m}^{3}\); water cannot enter these two regions. The car rolls into a lake. (a) At first, no water enters the passenger compartment. How much of the car, in cubic meters, is below the water surface with the car floating (Fig. 14-43)? (b) As water slowly enters, the car sinks. How many cubic meters of water are in the car as it disappears below the water surface? (The car, with a heavy load in the trunk, remains horizontal.)


Figure 14-43 Problem 47.
-•4 48 Figure 14-44 shows an iron ball suspended by thread of negligible mass from an upright cylinder that floats partially submerged in water. The cylinder has a height of 6.00 cm , a face area of 12.0 \(\mathrm{cm}^{2}\) on the top and bottom, and a density of \(0.30 \mathrm{~g} / \mathrm{cm}^{3}\), and 2.00 cm of its height is above the water surface. What is the radius of the iron ball?


Figure 14-44
Problem 48.

\section*{Module 14-6 The Equation of Continuity}
-49 Canal effect. Figure 14-45 shows an anchored barge that extends across a canal by distance \(d=30 \mathrm{~m}\) and into the water by distance \(b=12 \mathrm{~m}\). The canal has a width \(D=55 \mathrm{~m}\), a water depth \(H=14 \mathrm{~m}\), and a uniform water-flow speed \(v_{i}=1.5 \mathrm{~m} / \mathrm{s}\). Assume that the flow around the barge is uniform. As the water passes the bow, the water level undergoes a dramatic dip known as the canal effect. If the dip


Figure 14-45 Problem 49. has depth \(h=0.80 \mathrm{~m}\), what is the water speed alongside the boat through the vertical cross sections at (a) point \(a\) and (b) point \(b\) ? The erosion due to the speed increase is a common concern to hydraulic engineers.
-50 Figure 14-46 shows two sections of an old pipe system that runs through a hill, with distances \(d_{A}=d_{B}=30 \mathrm{~m}\) and \(D=110 \mathrm{~m}\). On each side of the hill, the pipe radius is


Figure 14-46 Problem 50. 2.00 cm . However, the radius of the pipe inside the hill is no longer known. To determine it, hydraulic engineers first establish that water flows through the left and right sections at \(2.50 \mathrm{~m} / \mathrm{s}\). Then they release a dye in the water at point \(A\) and find that it takes 88.8 s to reach point \(B\). What is the average radius of the pipe within the hill? \(\cdot 51\) SSM A garden hose with an internal diameter of 1.9 cm is connected to a (stationary) lawn sprinkler that consists merely of a container with 24 holes, each 0.13 cm in diameter. If the water in the hose has a speed of \(0.91 \mathrm{~m} / \mathrm{s}\), at what speed does it leave the sprinkler holes?
-52 Two streams merge to form a river. One stream has a width of 8.2 m , depth of 3.4 m , and current speed of \(2.3 \mathrm{~m} / \mathrm{s}\). The other stream is 6.8 m wide and 3.2 m deep, and flows at \(2.6 \mathrm{~m} / \mathrm{s}\). If the river has width 10.5 m and speed \(2.9 \mathrm{~m} / \mathrm{s}\), what is its depth?
\(\bullet 53\) SSIM Water is pumped steadily out of a flooded basement at \(5.0 \mathrm{~m} / \mathrm{s}\) through a hose of radius 1.0 cm , passing through a window 3.0 m above the waterline. What is the pump's power?
\(\because 54\) © The water flowing through a 1.9 cm (inside diameter) pipe flows out through three 1.3 cm pipes. (a) If the flow rates in the three smaller pipes are 26,19 , and \(11 \mathrm{~L} / \mathrm{min}\), what is the flow rate in the 1.9 cm pipe? (b) What is the ratio of the speed in the 1.9 cm pipe to that in the pipe carrying \(26 \mathrm{~L} / \mathrm{min}\) ?

\section*{Module 14-7 Bernoulli's Equation}
-55 How much work is done by pressure in forcing \(1.4 \mathrm{~m}^{3}\) of water through a pipe having an internal diameter of 13 mm if the difference in pressure at the two ends of the pipe is 1.0 atm ?
-56 Suppose that two tanks, 1 and 2, each with a large opening at the top, contain different liquids. A small hole is made in the side of each tank at the same depth \(h\) below the liquid surface, but the hole in tank 1 has half the cross-sectional area of the hole in tank 2. (a) What is the ratio \(\rho_{1} / \rho_{2}\) of the densities of the liquids if the mass flow rate is the same for the two holes? (b) What is the ratio \(R_{V 1} / R_{V 2}\) of the volume flow rates from the two tanks? (c) At one instant, the liquid in tank 1 is 12.0 cm above the hole. If the tanks are to have equal volume flow rates, what height above the hole must the liquid in tank 2 be just then?
-57 SSM A cylindrical tank with a large diameter is filled with water to a depth \(D=0.30 \mathrm{~m}\). A hole of cross-sectional area \(A=6.5 \mathrm{~cm}^{2}\) in the bottom of the tank allows water to drain out. (a) What is the drainage rate in cubic meters per second? (b) At what distance below the bottom of the tank is the cross-sectional area of the stream equal to one-half the area of the hole?
-58 The intake in Fig. 14-47 has cross-sectional area of \(0.74 \mathrm{~m}^{2}\) and water flow at \(0.40 \mathrm{~m} / \mathrm{s}\). At the outlet, distance \(D=180 \mathrm{~m}\) below the intake, the cross-sectional area is smaller than at the intake and the water flows out at \(9.5 \mathrm{~m} / \mathrm{s}\) into equipment. What is the pressure dif-


Figure 14-47 Problem 58. ference between inlet and outlet?
- 59 SSM Water is moving with a speed of \(5.0 \mathrm{~m} / \mathrm{s}\) through a pipe with a cross-sectional area of \(4.0 \mathrm{~cm}^{2}\). The water gradually descends 10 m as the pipe cross-sectional area increases to \(8.0 \mathrm{~cm}^{2}\). (a) What is the speed at the lower level? (b) If the pressure at the upper level is \(1.5 \times 10^{5} \mathrm{~Pa}\), what is the pressure at the lower level?
-60 Models of torpedoes are sometimes tested in a horizontal pipe of flowing water, much as a wind tunnel is used to test model airplanes. Consider a circular pipe of internal diameter 25.0 cm and a torpedo model aligned along the long axis of the pipe. The model has a 5.00 cm diameter and is to be tested with water flowing past it at \(2.50 \mathrm{~m} / \mathrm{s}\). (a) With what speed must the water flow in the part of the pipe that is unconstricted by the model? (b) What will the pressure difference be between the constricted and unconstricted parts of the pipe?
\(\bullet 61\) ILW A water pipe having a 2.5 cm inside diameter carries water into the basement of a house at a speed of \(0.90 \mathrm{~m} / \mathrm{s}\) and a pressure of 170 kPa . If the pipe tapers to 1.2 cm and rises to the second floor 7.6 m above the input point, what are the (a) speed and (b) water pressure at the second floor?
\(\bullet 062\) A pitot tube (Fig. 14-48) is used to determine the airspeed of an airplane. It consists of an outer tube with a number of small holes \(B\) (four are shown) that allow air into the tube; that tube is connected to one arm of a U-tube. The other arm of the U -tube is connected to hole \(A\) at the front end of the device, which points in the direction the plane is headed. At \(A\) the air becomes stagnant so that \(v_{A}=0\). At \(B\), however, the speed of the air presumably equals the airspeed \(v\) of the plane. (a) Use Bernoulli's equation to show that
\[
v=\sqrt{\frac{2 \rho g h}{\rho_{\mathrm{air}}}}
\]
where \(\rho\) is the density of the liquid in the \(\mathbf{U}\)-tube and \(h\) is the difference in the liquid levels in that tube. (b) Suppose that the tube contains alcohol and the level difference \(h\) is 26.0 cm . What is the plane's speed relative to the air? The density of the air is \(1.03 \mathrm{~kg} / \mathrm{m}^{3}\) and that of alcohol is \(810 \mathrm{~kg} / \mathrm{m}^{3}\).

-•63 A pitot tube (see Problem 62) on a high-altitude aircraft measures a differential pressure of 180 Pa . What is the aircraft's airspeed if the density of the air is \(0.031 \mathrm{~kg} / \mathrm{m}^{3}\) ?
\(\bullet\) •64 ©0 In Fig. 14-49, water flows through a horizontal pipe and then out into the atmosphere at a speed \(v_{1}=15\) \(\mathrm{m} / \mathrm{s}\). The diameters of the left and right sections of the pipe are 5.0 cm and 3.0


Figure 14-49 Problem 64. cm . (a) What volume of water flows into the atmosphere during a 10 min period? In the left section of the pipe, what are (b) the speed \(v_{2}\) and (c) the gauge pressure?
\(\bullet \bullet 65\) SSM WWW A venturi meter is used to measure the flow speed of a fluid in a pipe. The meter is connected between two sections of the pipe (Fig. 14-50); the cross-sectional area \(A\) of the entrance and exit of the meter matches the pipe's cross-sectional area. Between the entrance and exit, the fluid flows from the pipe with speed \(V\) and then through a narrow "throat" of crosssectional area \(a\) with speed \(v\). A manometer connects the wider portion of the meter to the narrower portion. The change in the fluid's speed is accompanied by a change \(\Delta p\) in the fluid's pressure, which causes a height difference \(h\) of the liquid in the two arms of the manometer. (Here \(\Delta p\) means pressure in the throat minus pressure in the pipe.) (a) By applying Bernoulli's equation and the equation of continuity to points 1 and 2 in Fig. 14-50, show that
\[
V=\sqrt{\frac{2 a^{2} \Delta p}{\rho\left(a^{2}-A^{2}\right)}}
\]
where \(\rho\) is the density of the fluid. (b) Suppose that the fluid is fresh water, that the cross-sectional areas are \(64 \mathrm{~cm}^{2}\) in the pipe and \(32 \mathrm{~cm}^{2}\) in the throat, and that the pressure is 55 kPa in the pipe and 41 kPa in the throat. What is the rate of water flow in cubic meters per second?


Figure 14-50 Problems 65 and 66.
-•66 Consider the venturi tube of Problem 65 and Fig. 14-50 without the manometer. Let \(A\) equal \(5 a\). Suppose the pressure \(p_{1}\) at \(A\) is 2.0 atm . Compute the values of (a) the speed \(V\) at \(A\) and (b) the speed \(v\) at \(a\) that make the pressure \(p_{2}\) at \(a\) equal to zero. (c) Compute the corresponding volume flow rate if the diameter at \(A\) is 5.0 cm . The phenomenon that occurs at \(a\) when \(p_{2}\) falls to nearly zero is known as cavitation. The water vaporizes into small bubbles.
-•67 ILW In Fig. 14-51, the fresh water behind a reservoir dam has depth \(D=15 \mathrm{~m}\). A horizontal pipe 4.0 cm in diameter passes through the dam at depth \(d=6.0 \mathrm{~m}\). A plug secures the pipe
opening. (a) Find the magnitude of the frictional force between plug and pipe wall. (b) The plug is removed. What water volume exits the pipe in 3.0 h ? -•68 ©o Fresh water flows horizontally from pipe section 1 of cross-sectional area \(A_{1}\) into pipe section 2 of cross-sectional area \(A_{2}\). Figure 14-52 gives a plot of the pressure difference \(p_{2}-p_{1}\) versus the inverse area squared \(A_{1}^{-2}\) that would be expected for a volume flow rate of a certain value if the water flow were laminar under all circumstances. The scale on the vertical axis is set by \(\Delta p_{s}=300 \mathrm{kN} / \mathrm{m}^{2}\). For the conditions of the figure, what are the values of (a) \(A_{2}\) and (b) the volume flow rate? \(\bullet 69\) A liquid of density \(900 \mathrm{~kg} / \mathrm{m}^{3}\)


Figure 14-51 Problem 67.


Figure 14-52 Problem 68. flows through a horizontal pipe that has a cross-sectional area of \(1.90 \times 10^{-2} \mathrm{~m}^{2}\) in region \(A\) and a cross-sectional area of \(9.50 \times 10^{-2} \mathrm{~m}^{2}\) in region \(B\). The pressure difference between the two regions is \(7.20 \times 10^{3} \mathrm{~Pa}\). What are (a) the volume flow rate and (b) the mass flow rate?
\(\bullet\) •70 ©o In Fig. 14-53, water flows steadily from the left pipe section (radius \(r_{1}=2.00 R\) ), through the middle section (radius \(R\) ), and into the right section (radius \(r_{3}=3.00 R\) ). The speed of the water in the middle sec-


Figure 14-53 Problem 70. tion is \(0.500 \mathrm{~m} / \mathrm{s}\). What is the net work done on \(0.400 \mathrm{~m}^{3}\) of the water as it moves from the left section to the right section?
\(\bullet 71\) Figure 14-54 shows a stream of water flowing through a hole at depth \(h=10 \mathrm{~cm}\) in a tank holding water to height \(H=40 \mathrm{~cm}\). (a) At what distance \(x\) does the stream strike the floor? (b) At what depth should a second hole be made to give the same value of \(x\) ? (c) At what depth should a hole be made to maximize \(x\) ?
\(\bullet 0072\) © A very simplified schem-


Figure 14-54 Problem 71. atic of the rain drainage system for a home is shown in Fig. 14-55. Rain falling on the slanted roof runs off into gutters around the roof edge; it then drains through downspouts (only one is shown) into a main drainage pipe \(M\) below the basement, which carries the water to an even larger pipe below the street. In Fig. 14-55, a floor drain in the basement is also connected to drainage pipe \(M\). Suppose the following apply:
(1) the downspouts have height \(h_{1}=11 \mathrm{~m}\), (2) the floor drain has height \(h_{2}=\) 1.2 m , (3) pipe \(M\) has radius 3.0 cm , (4) the house has side width \(w=30 \mathrm{~m}\) and front length \(L=60 \mathrm{~m},(5)\) all


Figure 14-55 Problem 72.
the water striking the roof goes through pipe \(M\), (6) the initial speed of the water in a downspout is negligible, and (7) the wind speed is negligible (the rain falls vertically).

At what rainfall rate, in centimeters per hour, will water from pipe \(M\) reach the height of the floor drain and threaten to flood the basement?

\section*{Additional Problems}

73 About one-third of the body of a person floating in the Dead Sea will be above the waterline. Assuming that the human body density is \(0.98 \mathrm{~g} / \mathrm{cm}^{3}\), find the density of the water in the Dead Sea. (Why is it so much greater than \(1.0 \mathrm{~g} / \mathrm{cm}^{3}\) ?)
74 A simple open U-tube contains mercury. When 11.2 cm of water is poured into the right arm of the tube, how high above its initial level does the mercury rise in the left arm?
75 If a bubble in sparkling water accelerates upward at the rate of \(0.225 \mathrm{~m} / \mathrm{s}^{2}\) and has a radius of 0.500 mm , what is its mass? Assume that the drag force on the bubble is negligible.

76 Suppose that your body has a uniform density of 0.95 times that of water. (a) If you float in a swimming pool, what fraction of your body's volume is above the water surface?

Quicksand is a fluid produced when water is forced up into sand, moving the sand grains away from one another so they are no longer locked together by friction. Pools of quicksand can form when water drains underground from hills into valleys where there are sand pockets. (b) If you float in a deep pool of quicksand that has a density 1.6 times that of water, what fraction of your body's volume is above the quicksand surface? (c) Are you unable to breathe?

77 A glass ball of radius 2.00 cm sits at the bottom of a container of milk that has a density of \(1.03 \mathrm{~g} / \mathrm{cm}^{3}\). The normal force on the ball from the container's lower surface has magnitude \(9.48 \times 10^{-2} \mathrm{~N}\). What is the mass of the ball?

78 Caught in an avalanche, a skier is fully submerged in flowing snow of density \(96 \mathrm{~kg} / \mathrm{m}^{3}\). Assume that the average density of the skier, clothing, and skiing equipment is \(1020 \mathrm{~kg} / \mathrm{m}^{3}\). What percentage of the gravitational force on the skier is offset by the buoyant force from the snow?
79 An object hangs from a spring balance. The balance registers 30 N in air, 20 N when this object is immersed in water, and 24 N when the object is immersed in another liquid of unknown density. What is the density of that other liquid?
80 In an experiment, a rectangular block with height \(h\) is allowed to float in four separate liquids. In the first liquid, which is water, it floats fully submerged. In liquids \(A, B\), and \(C\), it floats with heights \(h / 2,2 h / 3\), and \(h / 4\) above the liquid surface, respectively. What are the relative densities (the densities relative to that of water) of (a) \(A\), (b) \(B\), and (c) \(C\) ?

81 SSM Figure \(14-30\) shows a modified \(U\)-tube: the right arm is shorter than the left arm. The open end of the right arm is height \(d=10.0 \mathrm{~cm}\) above the laboratory bench. The radius throughout the tube is 1.50 cm . Water is gradually poured into the open end of the left arm until the water begins to flow out the open end of the right arm. Then a liquid of density \(0.80 \mathrm{~g} / \mathrm{cm}^{3}\) is gradually added to the left arm until its height in that arm is 8.0 cm (it does not mix with the water). How much water flows out of the right arm?
82 What is the acceleration of a rising hot-air balloon if the ratio of the air density outside the balloon to that inside is 1.39 ? Neglect the mass of the balloon fabric and the basket.

83
 Figure \(14-56\) shows a siphon, which is a device for removing liquid from a container. Tube \(A B C\) must initially be filled, but once this has been done, liquid will flow through the tube until the liquid surface in the container is level with the tube opening at \(A\). The liquid has density \(1000 \mathrm{~kg} / \mathrm{m}^{3}\) and negligible viscosity. The distances shown are \(h_{1}=25 \mathrm{~cm}, d=\) 12 cm , and \(h_{2}=40 \mathrm{~cm}\). (a) With what speed does the liquid emerge from the tube at \(C\) ? (b) If the atmospheric pressure is \(1.0 \times 10^{5} \mathrm{~Pa}\),


Figure 14-56 Problem 83. what is the pressure in the liquid at the topmost point \(B\) ? (c) Theoretically, what is the greatest possible height \(h_{1}\) that a siphon can lift water?

84 When you cough, you expel air at high speed through the trachea and upper bronchi so that the air will remove excess mucus lining the pathway. You produce the high speed by this procedure: You breathe in a large amount of air, trap it by closing the glottis (the narrow opening in the larynx), increase the air pressure by contracting the lungs, partially collapse the trachea and upper bronchi to narrow the pathway, and then expel the air through the pathway by suddenly reopening the glottis. Assume that during the expulsion the volume flow rate is \(7.0 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}\). What multiple of \(343 \mathrm{~m} / \mathrm{s}\) (the speed of sound \(v_{s}\) ) is the airspeed through the trachea if the trachea diameter (a) remains its normal value of 14 mm and (b) contracts to 5.2 mm ?

85 A tin can has a total volume of \(1200 \mathrm{~cm}^{3}\) and a mass of 130 g . How many grams of lead shot of density \(11.4 \mathrm{~g} / \mathrm{cm}^{3}\) could it carry without sinking in water?

86 The tension in a string holding a solid block below the surface of a liquid (of density greater than the block) is \(T_{0}\) when the container (Fig. 14-57) is at rest. When the container is given an upward acceleration of 0.250 g , what multiple of \(T_{0}\) gives the tension in the string?


Figure 14-57
Problem 86.

87 What is the minimum area (in square meters) of the top surface of an ice slab 0.441 m thick floating on fresh water that will hold up a 938 kg automobile? Take the densities of ice and fresh water to be \(917 \mathrm{~kg} / \mathrm{m}^{3}\) and \(998 \mathrm{~kg} / \mathrm{m}^{3}\), respectively.
88 A 8.60 kg sphere of radius 6.22 cm is at a depth of 2.22 km in seawater that has an average density of \(1025 \mathrm{~kg} / \mathrm{m}^{3}\). What are the (a) gauge pressure, (b) total pressure, and (c) corresponding total force compressing the sphere's surface? What are (d) the magnitude of the buoyant force on the sphere and (e) the magnitude of the sphere's acceleration if it is free to move? Take atmospheric pressure to be \(1.01 \times 10^{5} \mathrm{~Pa}\).
89 (a) For seawater of density \(1.03 \mathrm{~g} / \mathrm{cm}^{3}\), find the weight of water on top of a submarine at a depth of 255 m if the horizontal cross-sectional hull area is \(2200.0 \mathrm{~m}^{2}\). (b) In atmospheres, what water pressure would a diver experience at this depth?
90 The sewage outlet of a house constructed on a slope is 6.59 m below street level. If the sewer is 2.16 m below street level, find the minimum pressure difference that must be created by the sewage pump to transfer waste of average density \(1000.00 \mathrm{~kg} / \mathrm{m}^{3}\) from outlet to sewer.

\section*{Oscillations}

\section*{15-1 SIMPLE HARMONIC MOTION}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
15.01 Distinguish simple harmonic motion from other types of periodic motion.
15.02 For a simple harmonic oscillator, apply the relationship between position \(x\) and time \(t\) to calculate either if given a value for the other.
15.03 Relate period \(T\), frequency \(f\), and angular frequency \(\omega\).
15.04 Identify (displacement) amplitude \(x_{m}\), phase constant (or phase angle) \(\phi\), and phase \(\omega t+\phi\).
15.05 Sketch a graph of the oscillator's position \(x\) versus time \(t\), identifying amplitude \(x_{m}\) and period \(T\).
15.06 From a graph of position versus time, velocity versus time, or acceleration versus time, determine the amplitude of the plot and the value of the phase constant \(\phi\).
15.07 On a graph of position \(x\) versus time \(t\) describe the effects of changing period \(T\), frequency \(f\), amplitude \(x_{m}\), or phase constant \(\phi\).
15.08 Identify the phase constant \(\phi\) that corresponds to the starting time \((t=0)\) being set when a particle in SHM is at an extreme point or passing through the center point.
15.09 Given an oscillator's position \(x(t)\) as a function of time, find its velocity \(v(t)\) as a function of time, identify the velocity amplitude \(v_{m}\) in the result, and calculate the velocity at any given time.
15.10 Sketch a graph of an oscillator's velocity \(v\) versus time \(t\), identifying the velocity amplitude \(v_{m}\).
15.11 Apply the relationship between velocity amplitude \(v_{m}\), angular frequency \(\omega\), and (displacement) amplitude \(x_{m}\).
15.12 Given an oscillator's velocity \(v(t)\) as a function of time, calculate its acceleration \(a(t)\) as a function of time, identify the acceleration amplitude \(a_{m}\) in the result, and calculate the acceleration at any given time.
15.13 Sketch a graph of an oscillator's acceleration \(a\) versus time \(t\), identifying the acceleration amplitude \(a_{m}\).
15.14 Identify that for a simple harmonic oscillator the acceleration \(a\) at any instant is always given by the product of a negative constant and the displacement \(x\) just then.
15.15 For any given instant in an oscillation, apply the relationship between acceleration \(a\), angular frequency \(\omega\), and displacement \(x\).
15.16 Given data about the position \(x\) and velocity \(v\) at one instant, determine the phase \(\omega t+\phi\) and phase constant \(\phi\).
15.17 For a spring-block oscillator, apply the relationships between spring constant \(k\) and mass \(m\) and either period \(T\) or angular frequency \(\omega\).
15.18 Apply Hooke's law to relate the force \(F\) on a simple harmonic oscillator at any instant to the displacement \(x\) of the oscillator at that instant.

\section*{Key Ideas}
- The frequency \(f\) of periodic, or oscillatory, motion is the number of oscillations per second. In the SI system, it is measured in hertz: \(1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}\).
- The period \(T\) is the time required for one complete oscillation, or cycle. It is related to the frequency by \(T=1 / f\).
- In simple harmonic motion (SHM), the displacement \(x(t)\) of a particle from its equilibrium position is described by the equation
\[
x=x_{m} \cos (\omega t+\phi) \quad(\text { displacement })
\]
in which \(x_{m}\) is the amplitude of the displacement, \(\omega t+\phi\) is the phase of the motion, and \(\phi\) is the phase constant. The angular frequency \(\omega\) is related to the period and frequency of the motion by \(\omega=2 \pi / T=2 \pi f\).
- Differentiating \(x(t)\) leads to equations for the particle's SHM velocity and acceleration as functions of time:
\[
\begin{array}{ll}
v=-\omega x_{m} \sin (\omega t+\phi) \quad \text { (velocity) } \\
\text { and } \quad a=-\omega^{2} x_{m} \cos (\omega t+\phi) \quad \text { (acceleration). }
\end{array}
\]

In the velocity function, the positive quantity \(\omega x_{m}\) is the velocity amplitude \(v_{m}\). In the acceleration function, the positive quantity \(\omega^{2} x_{m}\) is the acceleration amplitude \(a_{m}\).
- A particle with mass \(m\) that moves under the influence of a Hooke's law restoring force given by \(F=-k x\) is a linear simple harmonic oscillator with
and
\[
\begin{aligned}
\omega & =\sqrt{\frac{k}{m}} \quad \text { (angular frequency) } \\
T & =2 \pi \sqrt{\frac{m}{k}} \quad \text { (period) }
\end{aligned}
\]

\section*{What Is Physics?}

Our world is filled with oscillations in which objects move back and forth repeatedly. Many oscillations are merely amusing or annoying, but many others are dangerous or financially important. Here are a few examples: When a bat hits a baseball, the bat may oscillate enough to sting the batter's hands or even to break apart. When wind blows past a power line, the line may oscillate ("gallop" in electrical engineering terms) so severely that it rips apart, shutting off the power supply to a community. When an airplane is in flight, the turbulence of the air flowing past the wings makes them oscillate, eventually leading to metal fatigue and even failure. When a train travels around a curve, its wheels oscillate horizontally ("hunt" in mechanical engineering terms) as they are forced to turn in new directions (you can hear the oscillations).

When an earthquake occurs near a city, buildings may be set oscillating so severely that they are shaken apart. When an arrow is shot from a bow, the feathers at the end of the arrow manage to snake around the bow staff without hitting it because the arrow oscillates. When a coin drops into a metal collection plate, the coin oscillates with such a familiar ring that the coin's denomination can be determined from the sound. When a rodeo cowboy rides a bull, the cowboy oscillates wildly as the bull jumps and turns (at least the cowboy hopes to be oscillating).

The study and control of oscillations are two of the primary goals of both physics and engineering. In this chapter we discuss a basic type of oscillation called simple harmonic motion.

Heads \(\boldsymbol{U p}\). This material is quite challenging to most students. One reason is that there is a truckload of definitions and symbols to sort out, but the main reason is that we need to relate an object's oscillations (something that we can see or even experience) to the equations and graphs for the oscillations. Relating the real, visible motion to the abstraction of an equation or graph requires a lot of hard work.

\section*{Simple Harmonic Motion}

Figure 15-1 shows a particle that is oscillating about the origin of an \(x\) axis, repeatedly going left and right by identical amounts. The frequency \(f\) of the oscillation is the number of times per second that it completes a full oscillation (a cycle) and has the unit of hertz (abbreviated Hz ), where
\[
\begin{equation*}
1 \text { hertz }=1 \mathrm{~Hz}=1 \text { oscillation per second }=1 \mathrm{~s}^{-1} \tag{15-1}
\end{equation*}
\]

The time for one full cycle is the period \(T\) of the oscillation, which is
\[
\begin{equation*}
T=\frac{1}{f} \tag{15-2}
\end{equation*}
\]

Any motion that repeats at regular intervals is called periodic motion or harmonic motion. However, here we are interested in a particular type of periodic motion called simple harmonic motion (SHM). Such motion is a sinusoidal function of time \(t\). That is, it can be written as a sine or a cosine of time \(t\). Here we arbitrarily choose the cosine function and write the displacement (or position) of the particle in Fig. 15-1 as
\[
\begin{equation*}
\left.x(t)=x_{m} \cos (\omega t+\phi) \quad \text { (displacement }\right) \tag{15-3}
\end{equation*}
\]
in which \(x_{m}, \omega\), and \(\phi\) are quantities that we shall define.
Freeze-Frames. Let's take some freeze-frames of the motion and then arrange them one after another down the page (Fig. 15-2a). Our first freeze-frame is at \(t=0\) when the particle is at its rightmost position on the \(x\) axis. We label that coordinate as \(x_{m}\) (the subscript means maximum); it is the symbol in front of the cosine

(a)

The speed is zero at the extreme points.

The speed is greatest at the midpoint.
(b)



Figure 15-2 (a) A sequence of "freeze-frames" (taken at equal time intervals) showing the position of a particle as it oscillates back and forth about the origin of an \(x\) axis, between the limits \(+x_{m}\) and \(-x_{m}\). \((b)\) The vector arrows are scaled to indicate the speed of the particle. The speed is maximum when the particle is at the origin and zero when it is at \(\pm x_{m}\). If the time \(t\) is chosen to be zero when the particle is at \(+x_{m}\), then the particle returns to \(+x_{m}\) at \(t=T\), where \(T\) is the period of the motion. The motion is then repeated. (c) Rotating the figure reveals the motion forms a cosine function of time, as shown in \((d)\). (e) The speed (the slope) changes.


Figure 15-3 A handy guide to the quantities in Eq. 15-3 for simple harmonic motion.

Figure 15-4 Values of \(\phi\) corresponding to the position of the particle at time \(t=0\).
function in Eq. 15-3. In the next freeze-frame, the particle is a bit to the left of \(x_{m}\). It continues to move in the negative direction of \(x\) until it reaches the leftmost position, at coordinate \(-x_{m}\). Thereafter, as time takes us down the page through more freeze-frames, the particle moves back to \(x_{m}\) and thereafter repeatedly oscillates between \(x_{m}\) and \(-x_{m}\). In Eq. 15-3, the cosine function itself oscillates between +1 and -1 . The value of \(x_{m}\) determines how far the particle moves in its oscillations and is called the amplitude of the oscillations (as labeled in the handy guide of Fig. 15-3).

Figure 15-2b indicates the velocity of the particle with respect to time, in the series of freeze-frames. We'll get to a function for the velocity soon, but for now just notice that the particle comes to a momentary stop at the extreme points and has its greatest speed (longest velocity vector) as it passes through the center point.

Mentally rotate Fig. 15-2a counterclockwise by \(90^{\circ}\), so that the freeze-frames then progress rightward with time. We set time \(t=0\) when the particle is at \(x_{m}\). The particle is back at \(x_{m}\) at time \(t=T\) (the period of the oscillation), when it starts the next cycle of oscillation. If we filled in lots of the intermediate freezeframes and drew a line through the particle positions, we would have the cosine curve shown in Fig. 15-2d. What we already noted about the speed is displayed in Fig. 15-2e. What we have in the whole of Fig. 15-2 is a transformation of what we can see (the reality of an oscillating particle) into the abstraction of a graph. (In WileyPLUS the transformation of Fig. 15-2 is available as an animation with voiceover.) Equation 15-3 is a concise way to capture the motion in the abstraction of an equation.

More Quantities. The handy guide of Fig. 15-3 defines more quantities about the motion. The argument of the cosine function is called the phase of the motion. As it varies with time, the value of the cosine function varies. The constant \(\phi\) is called the phase angle or phase constant. It is in the argument only because we want to use Eq. 15-3 to describe the motion regardless of where the particle is in its oscillation when we happen to set the clock time to 0 . In Fig. 15-2, we set \(t=0\) when the particle is at \(x_{m}\). For that choice, Eq. 15-3 works just fine if we also set \(\phi=0\). However, if we set \(t=0\) when the particle happens to be at some other location, we need a different value of \(\phi\). A few values are indicated in Fig. 15-4. For example, suppose the particle is at its leftmost position when we happen to start the clock at \(t=0\). Then Eq. 15-3 describes the motion if \(\phi=\pi \mathrm{rad}\). To check, substitute \(t=0\) and \(\phi=\pi\) rad into Eq. 15-3. See, it gives \(x=-x_{m}\) just then. Now check the other examples in Fig. 15-4.

The quantity \(\omega\) in Eq. 15-3 is the angular frequency of the motion. To relate it to the frequency \(f\) and the period \(T\), let's first note that the position \(x(t)\) of the particle must (by definition) return to its initial value at the end of a period. That is, if \(x(t)\) is the position at some chosen time \(t\), then the particle must return to that same position at time \(t+T\). Let's use Eq. 15-3 to express this condition, but let's also just set \(\phi=0\) to get it out of the way. Returning to the same position can then be written as
\[
\begin{equation*}
x_{m} \cos \omega t=x_{m} \cos \omega(t+T) \tag{15-4}
\end{equation*}
\]

The cosine function first repeats itself when its argument (the phase, remember) has increased by \(2 \pi \mathrm{rad}\). So, Eq. 15-4 tells us that
or
\[
\begin{gathered}
\omega(t+T)=\omega t+2 \pi \\
\omega T=2 \pi .
\end{gathered}
\]

Thus, from Eq. 15-2 the angular frequency is
\[
\begin{equation*}
\omega=\frac{2 \pi}{T}=2 \pi f . \tag{15-5}
\end{equation*}
\]

The SI unit of angular frequency is the radian per second.


We've had a lot of quantities here, quantities that we could experimentally change to see the effects on the particle's SHM. Figure 15-5 gives some examples. The curves in Fig. 15-5a show the effect of changing the amplitude. Both curves have the same period. (See how the "peaks" line up?) And both are for \(\phi=0\). (See how the maxima of the curves both occur at \(t=0\) ?) In Fig. 15-5b, the two curves have the same amplitude \(x_{m}\) but one has twice the period as the other (and thus half the frequency as the other). Figure \(15-5 c\) is probably more difficult to understand. The curves have the same amplitude and same period but one is shifted relative to the other because of the different \(\phi\) values. See how the one with \(\phi=0\) is just a regular cosine curve? The one with the negative \(\phi\) is shifted rightward from it. That is a general result: negative \(\phi\) values shift the regular cosine curve rightward and positive \(\phi\) values shift it leftward. (Try this on a graphing calculator.)

\section*{Checkpoint 1}

A particle undergoing simple harmonic oscillation of period \(T\) (like that in Fig. 15-2) is at \(-x_{m}\) at time \(t=0\). Is it at \(-x_{m}\), at \(+x_{m}\), at 0 , between \(-x_{m}\) and 0 , or between 0 and \(+x_{m}\) when (a) \(t=2.00 T\), (b) \(t=3.50 T\), and (c) \(t=5.25 T\) ?

\section*{The Velocity of SHM}

We briefly discussed velocity as shown in Fig. 15-2b, finding that it varies in magnitude and direction as the particle moves between the extreme points (where the speed is momentarily zero) and through the central point (where the speed is maximum). To find the velocity \(v(t)\) as a function of time, let's take a time derivative of the position function \(x(t)\) in Eq. 15-3:
\[
v(t)=\frac{d x(t)}{d t}=\frac{d}{d t}\left[x_{m} \cos (\omega t+\phi)\right]
\]
or
\[
\begin{equation*}
v(t)=-\omega x_{m} \sin (\omega t+\phi) \quad(\text { velocity }) \tag{15-6}
\end{equation*}
\]

The velocity depends on time because the sine function varies with time, between the values of +1 and -1 . The quantities in front of the sine function


Figure 15-6 (a) The displacement \(x(t)\) of a particle oscillating in SHM with phase angle \(\phi\) equal to zero. The period \(T\) marks one complete oscillation. (b) The velocity \(v(t)\) of the particle. \((c)\) The acceleration \(a(t)\) of the particle.
determine the extent of the variation in the velocity, between \(+\omega x_{m}\) and \(-\omega x_{m}\). We say that \(\omega x_{m}\) is the velocity amplitude \(v_{m}\) of the velocity variation. When the particle is moving rightward through \(x=0\), its velocity is positive and the magnitude is at this greatest value. When it is moving leftward through \(x=0\), its velocity is negative and the magnitude is again at this greatest value. This variation with time (a negative sine function) is displayed in the graph of Fig. 15-6b for a phase constant of \(\phi=0\), which corresponds to the cosine function for the displacement versus time shown in Fig. 15-6a.

Recall that we use a cosine function for \(x(t)\) regardless of the particle's position at \(t=0\). We simply choose an appropriate value of \(\phi\) so that Eq. 15-3 gives us the correct position at \(t=0\). That decision about the cosine function leads us to a negative sine function for the velocity in Eq. \(15-6\), and the value of \(\phi\) now gives the correct velocity at \(t=0\).

\section*{The Acceleration of SHM}

Let's go one more step by differentiating the velocity function of Eq. 15-6 with respect to time to get the acceleration function of the particle in simple harmonic motion:
\[
\begin{equation*}
a(t)=\frac{d v(t)}{d t}=\frac{d}{d t}\left[-\omega x_{m} \sin (\omega t+\phi)\right] \tag{15-7}
\end{equation*}
\]
or \(\quad a(t)=-\omega^{2} x_{m} \cos (\omega t+\phi) \quad\) (acceleration).
We are back to a cosine function but with a minus sign out front. We know the drill by now. The acceleration varies because the cosine function varies with time, between +1 and -1 . The variation in the magnitude of the acceleration is set by the acceleration amplitude \(a_{m}\), which is the product \(\omega^{2} x_{m}\) that multiplies the cosine function.

Figure \(15-6 c\) displays Eq. 15-7 for a phase constant \(\phi=0\), consistent with Figs. 15-6a and 15-6b. Note that the acceleration magnitude is zero when the cosine is zero, which is when the particle is at \(x=0\). And the acceleration magnitude is maximum when the cosine magnitude is maximum, which is when the particle is at an extreme point, where it has been slowed to a stop so that its motion can be reversed. Indeed, comparing Eqs. 15-3 and 15-7 we see an extremely neat relationship:
\[
\begin{equation*}
a(t)=-\omega^{2} x(t) \tag{15-8}
\end{equation*}
\]

This is the hallmark of SHM: (1) The particle's acceleration is always opposite its displacement (hence the minus sign) and (2) the two quantities are always related by a constant \(\left(\omega^{2}\right)\). If you ever see such a relationship in an oscillating situation (such as with, say, the current in an electrical circuit, or the rise and fall of water in a tidal bay), you can immediately say that the motion is SHM and immediately identify the angular frequency \(\omega\) of the motion. In a nutshell:

In SHM, the acceleration \(a\) is proportional to the displacement \(x\) but opposite in sign, and the two quantities are related by the square of the angular frequency \(\omega\).

\section*{Checkpoint 2}

Which of the following relationships between a particle's acceleration \(a\) and its position \(x\) indicates simple harmonic oscillation: (a) \(a=3 x^{2}\), (b) \(a=5 x\), (c) \(a=-4 x\), (d) \(a=-2 / x\) ? For the SHM, what is the angular frequency (assume the unit of rad/s)?

\section*{The Force Law for Simple Harmonic Motion}

Now that we have an expression for the acceleration in terms of the displacement in Eq. 15-8, we can apply Newton's second law to describe the force responsible for SHM:
\[
\begin{equation*}
F=m a=m\left(-\omega^{2} x\right)=-\left(m \omega^{2}\right) x \tag{15-9}
\end{equation*}
\]

The minus sign means that the direction of the force on the particle is opposite the direction of the displacement of the particle. That is, in SHM the force is a restoring force in the sense that it fights against the displacement, attempting to restore the particle to the center point at \(x=0\). We've seen the general form of Eq. 15-9 back in Chapter 8 when we discussed a block on a spring as in Fig. 15-7. There we wrote Hooke's law,
\[
\begin{equation*}
F=-k x \tag{15-10}
\end{equation*}
\]
for the force acting on the block. Comparing Eqs. 15-9 and 15-10, we can now relate the spring constant \(k\) (a measure of the stiffness of the spring) to the mass of the block and the resulting angular frequency of the SHM:
\[
\begin{equation*}
k=m \omega^{2} . \tag{15-11}
\end{equation*}
\]

Equation \(15-10\) is another way to write the hallmark equation for SHM.

Simple harmonic motion is the motion of a particle when the force acting on it is proportional to the particle's displacement but in the opposite direction.

The block-spring system of Fig. 15-7 is called a linear simple harmonic oscillator (linear oscillator, for short), where linear indicates that \(F\) is proportional to \(x\) to the first power (and not to some other power).

If you ever see a situation in which the force in an oscillation is always proportional to the displacement but in the opposite direction, you can immediately say that the oscillation is SHM. You can also immediately identify the associated spring constant \(k\). If you know the oscillating mass, you can then determine the angular frequency of the motion by rewriting Eq. 15-11 as
\[
\begin{equation*}
\omega=\sqrt{\frac{k}{m}} \quad \text { (angular frequency). } \tag{15-12}
\end{equation*}
\]
(This is usually more important than the value of \(k\).) Further, you can determine the period of the motion by combining Eqs. 15-5 and 15-12 to write
\[
\begin{equation*}
T=2 \pi \sqrt{\frac{m}{k}} \quad \text { (period). } \tag{15-13}
\end{equation*}
\]

Let's make a bit of physical sense of Eqs. 15-12 and 15-13. Can you see that a stiff spring (large \(k\) ) tends to produce a large \(\omega\) (rapid oscillations) and thus a small period \(T\) ? Can you also see that a large mass \(m\) tends to result in a small \(\omega\) (sluggish oscillations) and thus a large period \(T\) ?

Every oscillating system, be it a diving board or a violin string, has some element of "springiness" and some element of "inertia" or mass. In Fig. 15-7, these elements are separated: The springiness is entirely in the spring, which we assume to be massless, and the inertia is entirely in the block, which we assume to be rigid. In a violin string, however, the two elements are both within the string.

\section*{Checkpoint 3}

Which of the following relationships between the force \(F\) on a particle and the particle's position \(x\) gives SHM: (a) \(F=-5 x\), (b) \(F=-400 x^{2}\), (c) \(F=10 x\), (d) \(F=3 x^{2}\) ?


Figure 15-7 A linear simple harmonic oscillator. The surface is frictionless. Like the particle of Fig. 15-2, the block moves in simple harmonic motion once it has been either pulled or pushed away from the \(x=0\) position and released. Its displacement is then given by Eq. 15-3.

\section*{Sample Problem 15.01 Block-spring SHM, amplitude, acceleration, phase constant}

A block whose mass \(m\) is 680 g is fastened to a spring whose spring constant \(k\) is \(65 \mathrm{~N} / \mathrm{m}\). The block is pulled a distance \(x=11 \mathrm{~cm}\) from its equilibrium position at \(x=0\) on a frictionless surface and released from rest at \(t=0\).
(a) What are the angular frequency, the frequency, and the period of the resulting motion?

\section*{KEY IDEA}

The block-spring system forms a linear simple harmonic oscillator, with the block undergoing SHM.

Calculations: The angular frequency is given by Eq. 15-12:
\[
\begin{aligned}
\omega & =\sqrt{\frac{k}{m}}=\sqrt{\frac{65 \mathrm{~N} / \mathrm{m}}{0.68 \mathrm{~kg}}}=9.78 \mathrm{rad} / \mathrm{s} \\
& \approx 9.8 \mathrm{rad} / \mathrm{s} .
\end{aligned}
\]
(Answer)
The frequency follows from Eq. 15-5, which yields
\[
f=\frac{\omega}{2 \pi}=\frac{9.78 \mathrm{rad} / \mathrm{s}}{2 \pi \mathrm{rad}}=1.56 \mathrm{~Hz} \approx 1.6 \mathrm{~Hz} . \quad \text { (Answer) }
\]

The period follows from Eq. 15-2, which yields
\[
T=\frac{1}{f}=\frac{1}{1.56 \mathrm{~Hz}}=0.64 \mathrm{~s}=640 \mathrm{~ms}
\]
(Answer)
(b) What is the amplitude of the oscillation?

\section*{KEY IDEA}

With no friction involved, the mechanical energy of the springblock system is conserved.

Reasoning: The block is released from rest 11 cm from its equilibrium position, with zero kinetic energy and the elastic potential energy of the system at a maximum. Thus, the block will have zero kinetic energy whenever it is again 11 cm from its equilibrium position, which means it will never be farther than 11 cm from that position. Its maximum displacement is 11 cm :
\[
x_{m}=11 \mathrm{~cm}
\]
(Answer)
(c) What is the maximum speed \(v_{m}\) of the oscillating block, and where is the block when it has this speed?

\section*{KEY IDEA}

The maximum speed \(v_{m}\) is the velocity amplitude \(\omega x_{m}\) in Eq. 15-6.
Calculation: Thus, we have
\[
\begin{aligned}
v_{m} & =\omega x_{m}=(9.78 \mathrm{rad} / \mathrm{s})(0.11 \mathrm{~m}) \\
& =1.1 \mathrm{~m} / \mathrm{s} .
\end{aligned}
\]
(Answer)

This maximum speed occurs when the oscillating block is rushing through the origin; compare Figs. 15-6a and 15-6b, where you can see that the speed is a maximum whenever \(x=0\).
(d) What is the magnitude \(a_{m}\) of the maximum acceleration of the block?

\section*{KEY IDEA}

The magnitude \(a_{m}\) of the maximum acceleration is the acceleration amplitude \(\omega^{2} x_{m}\) in Eq. 15-7.

Calculation: So, we have
\[
\begin{aligned}
a_{m} & =\omega^{2} x_{m}=(9.78 \mathrm{rad} / \mathrm{s})^{2}(0.11 \mathrm{~m}) \\
& =11 \mathrm{~m} / \mathrm{s}^{2} .
\end{aligned}
\]
(Answer)
This maximum acceleration occurs when the block is at the ends of its path, where the block has been slowed to a stop so that its motion can be reversed. At those extreme points, the force acting on the block has its maximum magnitude; compare Figs. 15-6a and 15-6c, where you can see that the magnitudes of the displacement and acceleration are maximum at the same times, when the speed is zero, as you can see in Fig. 15-6b.
(e) What is the phase constant \(\phi\) for the motion?

Calculations: Equation 15-3 gives the displacement of the block as a function of time. We know that at time \(t=0\), the block is located at \(x=x_{m}\). Substituting these initial conditions, as they are called, into Eq. 15-3 and canceling \(x_{m}\) give us
\[
\begin{equation*}
1=\cos \phi \tag{15-14}
\end{equation*}
\]

Taking the inverse cosine then yields
\[
\phi=0 \mathrm{rad} .
\]
(Answer)
(Any angle that is an integer multiple of \(2 \pi \mathrm{rad}\) also satisfies Eq. 15-14; we chose the smallest angle.)
(f) What is the displacement function \(x(t)\) for the spring-block system?

Calculation: The function \(x(t)\) is given in general form by Eq. 15-3. Substituting known quantities into that equation gives us
\[
\begin{aligned}
x(t) & =x_{m} \cos (\omega t+\phi) \\
& =(0.11 \mathrm{~m}) \cos [(9.8 \mathrm{rad} / \mathrm{s}) t+0] \\
& =0.11 \cos (9.8 t)
\end{aligned}
\]
(Answer)
where \(x\) is in meters and \(t\) is in seconds.

\section*{Sample Problem 15.02 Finding SHM phase constant from displacement and velocity}

At \(t=0\), the displacement \(x(0)\) of the block in a linear oscillator like that of Fig. 15-7 is -8.50 cm . (Read \(x(0)\) as " \(x\) at time zero.") The block's velocity \(v(0)\) then is \(-0.920 \mathrm{~m} / \mathrm{s}\), and its acceleration \(a(0)\) is \(+47.0 \mathrm{~m} / \mathrm{s}^{2}\).
(a) What is the angular frequency \(\omega\) of this system?

\section*{KEY IDEA}

With the block in SHM, Eqs. 15-3, 15-6, and 15-7 give its displacement, velocity, and acceleration, respectively, and each contains \(\omega\).

Calculations: Let's substitute \(t=0\) into each to see whether we can solve any one of them for \(\omega\). We find
\[
\begin{align*}
& x(0)=x_{m} \cos \phi,  \tag{15-15}\\
& \text { and } \quad v(0)=-\omega x_{m} \sin \phi,  \tag{15-16}\\
& a(0)=-\omega^{2} x_{m} \cos \phi . \tag{15-17}
\end{align*}
\]

In Eq. 15-15, \(\omega\) has disappeared. In Eqs. 15-16 and 15-17, we know values for the left sides, but we do not know \(x_{m}\) and \(\phi\). However, if we divide Eq. 15-17 by Eq. 15-15, we neatly eliminate both \(x_{m}\) and \(\phi\) and can then solve for \(\omega\) as
\[
\begin{aligned}
\omega & =\sqrt{-\frac{a(0)}{x(0)}}=\sqrt{-\frac{47.0 \mathrm{~m} / \mathrm{s}^{2}}{-0.0850 \mathrm{~m}}} \\
& =23.5 \mathrm{rad} / \mathrm{s}
\end{aligned}
\]
(Answer)

Calculations: We know \(\omega\) and want \(\phi\) and \(x_{m}\). If we divide Eq. \(15-16\) by Eq. 15-15, we eliminate one of those unknowns and reduce the other to a single trig function:
\[
\frac{v(0)}{x(0)}=\frac{-\omega x_{m} \sin \phi}{x_{m} \cos \phi}=-\omega \tan \phi
\]

Solving for \(\tan \phi\), we find
\[
\begin{aligned}
\tan \phi & =-\frac{v(0)}{\omega x(0)}=-\frac{-0.920 \mathrm{~m} / \mathrm{s}}{(23.5 \mathrm{rad} / \mathrm{s})(-0.0850 \mathrm{~m})} \\
& =-0.461
\end{aligned}
\]

This equation has two solutions:
\[
\phi=-25^{\circ} \text { and } \phi=180^{\circ}+\left(-25^{\circ}\right)=155^{\circ} .
\]

Normally only the first solution here is displayed by a calculator, but it may not be the physically possible solution. To choose the proper solution, we test them both by using them to compute values for the amplitude \(x_{m}\). From Eq. 15-15, we find that if \(\phi=-25^{\circ}\), then
\[
x_{m}=\frac{x(0)}{\cos \phi}=\frac{-0.0850 \mathrm{~m}}{\cos \left(-25^{\circ}\right)}=-0.094 \mathrm{~m} .
\]

We find similarly that if \(\phi=155^{\circ}\), then \(x_{m}=0.094 \mathrm{~m}\). Because the amplitude of SHM must be a positive constant, the correct phase constant and amplitude here are
\[
\phi=155^{\circ} \quad \text { and } \quad x_{m}=0.094 \mathrm{~m}=9.4 \mathrm{~cm} . \quad \text { (Answer) }
\]

\section*{15-2 energy in simple harmonic motion}

\section*{Learning Objectives}

After reading this module, you should be able to ...
15.19 For a spring-block oscillator, calculate the kinetic energy and elastic potential energy at any given time.
15.20 Apply the conservation of energy to relate the total energy of a spring-block oscillator at one instant to the total energy at another instant.

\section*{Key Ideas}
- A particle in simple harmonic motion has, at any time, kinetic energy \(K=\frac{1}{2} m v^{2}\) and potential energy \(U=\frac{1}{2} k x^{2}\). If no
15.21 Sketch a graph of the kinetic energy, potential energy, and total energy of a spring-block oscillator, first as a function of time and then as a function of the oscillator's position. 15.22 For a spring-block oscillator, determine the block's position when the total energy is entirely kinetic energy and when it is entirely potential energy.

\section*{Energy in Simple Harmonic Motion}

Let's now examine the linear oscillator of Chapter 8, where we saw that the energy transfers back and forth between kinetic energy and potential energy, while the sum of the two-the mechanical energy \(E\) of the oscillator-remains constant. The


\({ }^{(b)}\) As position changes, the energy shifts between the two types, but the total is constant.

Figure 15-8 (a) Potential energy \(U(t)\), kinetic energy \(K(t)\), and mechanical energy \(E\) as functions of time \(t\) for a linear harmonic oscillator. Note that all energies are positive and that the potential energy and the kinetic energy peak twice during every period. (b) Potential energy \(U(x)\), kinetic energy \(K(x)\), and mechanical energy \(E\) as functions of position \(x\) for a linear harmonic oscillator with amplitude \(x_{m}\). For \(x=0\) the energy is all kinetic, and for \(x= \pm x_{m}\) it is all potential.
potential energy of a linear oscillator like that of Fig. 15-7 is associated entirely with the spring. Its value depends on how much the spring is stretched or compressed - that is, on \(x(t)\). We can use Eqs. 8-11 and 15-3 to find
\[
\begin{equation*}
U(t)=\frac{1}{2} k x^{2}=\frac{1}{2} k x_{m}^{2} \cos ^{2}(\omega t+\phi) \tag{15-18}
\end{equation*}
\]

Caution: A function written in the form \(\cos ^{2} A\) (as here) means \((\cos A)^{2}\) and is not the same as one written \(\cos A^{2}\), which means \(\cos \left(A^{2}\right)\).

The kinetic energy of the system of Fig. 15-7 is associated entirely with the block. Its value depends on how fast the block is moving - that is, on \(v(t)\). We can use Eq. \(15-6\) to find
\[
\begin{equation*}
K(t)=\frac{1}{2} m v^{2}=\frac{1}{2} m \omega^{2} x_{m}^{2} \sin ^{2}(\omega t+\phi) . \tag{15-19}
\end{equation*}
\]

If we use Eq. 15-12 to substitute \(k / m\) for \(\omega^{2}\), we can write Eq. 15-19 as
\[
\begin{equation*}
K(t)=\frac{1}{2} m v^{2}=\frac{1}{2} k x_{m}^{2} \sin ^{2}(\omega t+\phi) . \tag{15-20}
\end{equation*}
\]

The mechanical energy follows from Eqs. 15-18 and 15-20 and is
\[
\begin{aligned}
E & =U+K \\
& =\frac{1}{2} k x_{m}^{2} \cos ^{2}(\omega t+\phi)+\frac{1}{2} k x_{m}^{2} \sin ^{2}(\omega t+\phi) \\
& =\frac{1}{2} k x_{m}^{2}\left[\cos ^{2}(\omega t+\phi)+\sin ^{2}(\omega t+\phi)\right] .
\end{aligned}
\]

For any angle \(\alpha\),
\[
\cos ^{2} \alpha+\sin ^{2} \alpha=1
\]

Thus, the quantity in the square brackets above is unity and we have
\[
\begin{equation*}
E=U+K=\frac{1}{2} k x_{m}^{2} . \tag{15-21}
\end{equation*}
\]

The mechanical energy of a linear oscillator is indeed constant and independent of time. The potential energy and kinetic energy of a linear oscillator are shown as functions of time \(t\) in Fig. 15-8a and as functions of displacement \(x\) in Fig. 15-8b. In any oscillating system, an element of springiness is needed to store the potential energy and an element of inertia is needed to store the kinetic energy.

\section*{Checkpoint 4}

In Fig. 15-7, the block has a kinetic energy of 3 J and the spring has an elastic potential energy of 2 J when the block is at \(x=+2.0 \mathrm{~cm}\). (a) What is the kinetic energy when the block is at \(x=0\) ? What is the elastic potential energy when the block is at (b) \(x=-2.0 \mathrm{~cm}\) and (c) \(x=-x_{m}\) ?

\section*{Sample Problem 15.03 SHM potential energy, kinetic energy, mass dampers}

Many tall buildings have mass dampers, which are anti-sway devices to prevent them from oscillating in a wind. The device might be a block oscillating at the end of a spring and on a lubricated track. If the building sways, say, eastward, the block also moves eastward but delayed enough so that when it finally moves, the building is then moving back westward. Thus, the motion of the oscillator is out of step with the motion of the building.

Suppose the block has mass \(m=2.72 \times 10^{5} \mathrm{~kg}\) and is designed to oscillate at frequency \(f=10.0 \mathrm{~Hz}\) and with amplitude \(x_{m}=20.0 \mathrm{~cm}\).
(a) What is the total mechanical energy \(E\) of the springblock system?

\section*{KEY IDEA}

The mechanical energy \(E\) (the sum of the kinetic energy \(K=\frac{1}{2} m v^{2}\) of the block and the potential energy \(U=\frac{1}{2} k x^{2}\) of the spring) is constant throughout the motion of the oscillator. Thus, we can evaluate \(E\) at any point during the motion.
Calculations: Because we are given amplitude \(x_{m}\) of the oscillations, let's evaluate \(E\) when the block is at position \(x=x_{m}\),
where it has velocity \(v=0\). However, to evaluate \(U\) at that point, we first need to find the spring constant \(k\). From Eq. 15-12 \((\omega=\sqrt{k / m})\) and Eq. 15-5 \((\omega=2 \pi f)\), we find
\[
\begin{aligned}
k & =m \omega^{2}=m(2 \pi f)^{2} \\
& =\left(2.72 \times 10^{5} \mathrm{~kg}\right)(2 \pi)^{2}(10.0 \mathrm{~Hz})^{2} \\
& =1.073 \times 10^{9} \mathrm{~N} / \mathrm{m} .
\end{aligned}
\]

We can now evaluate \(E\) as
\[
\begin{aligned}
E & =K+U=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2} \\
& =0+\frac{1}{2}\left(1.073 \times 10^{9} \mathrm{~N} / \mathrm{m}\right)(0.20 \mathrm{~m})^{2} \\
& =2.147 \times 10^{7} \mathrm{~J} \approx 2.1 \times 10^{7} \mathrm{~J}
\end{aligned}
\]
(Answer)
(b) What is the block's speed as it passes through the equilibrium point?

Calculations: We want the speed at \(x=0\), where the potential energy is \(U=\frac{1}{2} k x^{2}=0\) and the mechanical energy is entirely kinetic energy. So, we can write
\[
\begin{gathered}
E=K+U=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2} \\
2.147 \times 10^{7} \mathrm{~J}=\frac{1}{2}\left(2.72 \times 10^{5} \mathrm{~kg}\right) v^{2}+0 \\
v=12.6 \mathrm{~m} / \mathrm{s} .
\end{gathered}
\]
(Answer)
Because \(E\) is entirely kinetic energy, this is the maximum speed \(v_{m}\).

PLUS
Additional examples, video, and practice available at WileyPLUS

\section*{15-3 an angular simple harmonic oscillator}

\section*{Learning Objectives}

After reading this module, you should be able to ...
15.23 Describe the motion of an angular simple harmonic oscillator.
15.24 For an angular simple harmonic oscillator, apply the relationship between the torque \(\tau\) and the angular displacement \(\theta\) (from equilibrium).
15.25 For an angular simple harmonic oscillator, apply the relationship between the period \(T\) (or frequency \(f\) ), the rotational inertia \(I\), and the torsion constant \(\kappa\).
15.26 For an angular simple harmonic oscillator at any instant, apply the relationship between the angular acceleration \(\alpha\), the angular frequency \(\omega\), and the angular displacement \(\theta\).

\section*{Key Idea}
- A torsion pendulum consists of an object suspended on a wire. When the wire is twisted and then released, the object oscillates in angular simple harmonic motion with a period given by
\[
T=2 \pi \sqrt{\frac{I}{\kappa}}
\]
where \(I\) is the rotational inertia of the object about the axis of rotation and \(\kappa\) is the torsion constant of the wire.

\section*{An Angular Simple Harmonic Oscillator}

Figure 15-9 shows an angular version of a simple harmonic oscillator; the element of springiness or elasticity is associated with the twisting of a suspension wire rather than the extension and compression of a spring as we previously had. The device is called a torsion pendulum, with torsion referring to the twisting.

If we rotate the disk in Fig. 15-9 by some angular displacement \(\theta\) from its rest position (where the reference line is at \(\theta=0\) ) and release it, it will oscillate about that position in angular simple harmonic motion. Rotating the disk through an angle \(\theta\) in either direction introduces a restoring torque given by
\[
\begin{equation*}
\tau=-\kappa \theta \tag{15-22}
\end{equation*}
\]

Here \(\kappa(\) Greek kappa \()\) is a constant, called the torsion constant, that depends on the length, diameter, and material of the suspension wire.

Comparison of Eq. 15-22 with Eq. 15-10 leads us to suspect that Eq. 15-22 is the angular form of Hooke's law, and that we can transform Eq. 15-13, which gives the period of linear SHM, into an equation for the period of angular SHM: We replace the spring constant \(k\) in Eq. 15-13 with its equivalent, the constant


Figure 15-9 A torsion pendulum is an angular version of a linear simple harmonic oscillator. The disk oscillates in a horizontal plane; the reference line oscillates with angular amplitude \(\theta_{m}\). The twist in the suspension wire stores potential energy as a spring does and provides the restoring torque.
\(\kappa\) of Eq. \(15-22\), and we replace the mass \(m\) in Eq. \(15-13\) with its equivalent, the rotational inertia \(I\) of the oscillating disk. These replacements lead to
\[
\begin{equation*}
T=2 \pi \sqrt{\frac{I}{\kappa}} \quad \text { (torsion pendulum). } \tag{15-23}
\end{equation*}
\]

\section*{Sample Problem 15.04 Angular simple harmonic oscillator, rotational inertia, period}

Figure \(15-10 a\) shows a thin rod whose length \(L\) is 12.4 cm and whose mass \(m\) is 135 g , suspended at its midpoint from a long wire. Its period \(T_{a}\) of angular SHM is measured to be 2.53 s . An irregularly shaped object, which we call object \(X\), is then hung from the same wire, as in Fig. 15-10b, and its period \(T_{b}\) is found to be 4.76 s . What is the rotational inertia of object \(X\) about its suspension axis?

\section*{KEY IDEA}

The rotational inertia of either the rod or object \(X\) is related to the measured period by Eq. 15-23.

Calculations: In Table 10-2e, the rotational inertia of a thin rod about a perpendicular axis through its midpoint is given as \(\frac{1}{12} m L^{2}\).Thus, we have, for the rod in Fig. 15-10a,
\[
\begin{aligned}
I_{a} & =\frac{1}{12} m L^{2}=\left(\frac{1}{12}\right)(0.135 \mathrm{~kg})(0.124 \mathrm{~m})^{2} \\
& =1.73 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
\]

Now let us write Eq. 15-23 twice, once for the rod and once for object \(X\) :
\[
T_{a}=2 \pi \sqrt{\frac{I_{a}}{\kappa}} \quad \text { and } \quad T_{b}=2 \pi \sqrt{\frac{I_{b}}{\kappa}}
\]

The constant \(\kappa\), which is a property of the wire, is the same for both figures; only the periods and the rotational inertias differ.

Let us square each of these equations, divide the second by the first, and solve the resulting equation for \(I_{b}\). The result is
\[
\begin{aligned}
I_{b} & =I_{a} \frac{T_{b}^{2}}{T_{a}^{2}}=\left(1.73 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right) \frac{(4.76 \mathrm{~s})^{2}}{(2.53 \mathrm{~s})^{2}} \\
& =6.12 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2} .
\end{aligned}
\]
(Answer)

Figure 15-10 Two torsion pendulums, consisting of \((a)\) a wire and a rod and \((b)\) the same wire and an irregularly shaped object.

(a)

PLU'S
Additional examples, video, and practice available at WileyPLUS

\section*{15-4 PENDULUMS, CIRCULAR MOTION}

\section*{Learning Objectives}

After reading this module, you should be able to ...
15.27 Describe the motion of an oscillating simple pendulum.
15.28 Draw a free-body diagram of a pendulum bob with the pendulum at angle \(\theta\) to the vertical.
15.29 For small-angle oscillations of a simple pendulum, relate the period \(T\) (or frequency \(f\) ) to the pendulum's length \(L\).
15.30 Distinguish between a simple pendulum and a physical pendulum.
15.31 For small-angle oscillations of a physical pendulum, relate the period \(T\) (or frequency \(f\) ) to the distance \(h\) between the pivot and the center of mass.
15.32 For an angular oscillating system, determine the angular frequency \(\omega\) from either an equation relating torque \(\tau\) and angular displacement \(\theta\) or an equation relating angular acceleration \(\alpha\) and angular displacement \(\theta\).
15.33 Distinguish between a pendulum's angular frequency \(\omega\) (having to do with the rate at which cycles are completed) and its \(d \theta / d t\) (the rate at which its angle with the vertical changes).
15.34 Given data about the angular position \(\theta\) and rate of change \(d \theta / d t\) at one instant, determine the phase constant \(\phi\) and amplitude \(\theta_{m}\).
15.35 Describe how the free-fall acceleration can be measured with a simple pendulum.
15.36 For a given physical pendulum, determine the location of the center of oscillation and identify the meaning of that phrase in terms of a simple pendulum.
15.37 Describe how simple harmonic motion is related to uniform circular motion.

\section*{Key Ideas}
- A simple pendulum consists of a rod of negligible mass that pivots about its upper end, with a particle (the bob) attached at its lower end. If the rod swings through only small angles, its motion is approximately simple harmonic motion with a period given by
\[
T=2 \pi \sqrt{\frac{I}{m g L}} \quad \text { (simple pendulum) }
\]
where \(I\) is the particle's rotational inertia about the pivot, \(m\) is the particle's mass, and \(L\) is the rod's length.

A physical pendulum has a more complicated distribution of mass. For small angles of swinging, its motion is simple harmonic motion with a period given by
\[
T=2 \pi \sqrt{\frac{I}{m g h}} \quad \text { (physical pendulum) }
\]
where \(I\) is the pendulum's rotational inertia about the pivot, \(m\) is the pendulum's mass, and \(h\) is the distance between the pivot and the pendulum's center of mass.
- Simple harmonic motion corresponds to the projection of uniform circular motion onto a diameter of the circle.

\section*{Pendulums}

We turn now to a class of simple harmonic oscillators in which the springiness is associated with the gravitational force rather than with the elastic properties of a twisted wire or a compressed or stretched spring.

\section*{The Simple Pendulum}

If an apple swings on a long thread, does it have simple harmonic motion? If so, what is the period \(T\) ? To answer, we consider a simple pendulum, which consists of a particle of mass \(m\) (called the bob of the pendulum) suspended from one end of an unstretchable, massless string of length \(L\) that is fixed at the other end, as in Fig. 15-11a. The bob is free to swing back and forth in the plane of the page, to the left and right of a vertical line through the pendulum's pivot point.

The Restoring Torque. The forces acting on the bob are the force \(\vec{T}\) from the string and the gravitational force \(\vec{F}_{g}\), as shown in Fig. 15-11b, where the string makes an angle \(\theta\) with the vertical. We resolve \(\vec{F}_{g}\) into a radial component \(F_{g} \cos \theta\) and a component \(F_{g} \sin \theta\) that is tangent to the path taken by the bob. This tangential component produces a restoring torque about the pendulum's pivot point because the component always acts opposite the displacement of the bob so as to bring the bob back toward its central location. That location is called the equilibrium position ( \(\theta=0\) ) because the pendulum would be at rest there were it not swinging.

From Eq. 10-41 \(\left(\tau=r_{\perp} F\right)\), we can write this restoring torque as
\[
\begin{equation*}
\tau=-L\left(F_{g} \sin \theta\right) \tag{15-24}
\end{equation*}
\]
where the minus sign indicates that the torque acts to reduce \(\theta\) and \(L\) is the moment arm of the force component \(F_{g} \sin \theta\) about the pivot point. Substituting Eq. 15-24 into Eq. 10-44 \((\tau=I \alpha)\) and then substituting \(m g\) as the magnitude of \(F_{g}\), we obtain
\[
\begin{equation*}
-L(m g \sin \theta)=I \alpha \tag{15-25}
\end{equation*}
\]
where \(I\) is the pendulum's rotational inertia about the pivot point and \(\alpha\) is its angular acceleration about that point.

We can simplify Eq. 15-25 if we assume the angle \(\theta\) is small, for then we can approximate \(\sin \theta\) with \(\theta\) (expressed in radian measure). (As an example, if \(\theta=\) \(5.00^{\circ}=0.0873 \mathrm{rad}\), then \(\sin \theta=0.0872\), a difference of only about \(0.1 \%\).) With that approximation and some rearranging, we then have
\[
\begin{equation*}
\alpha=-\frac{m g L}{I} \theta . \tag{15-26}
\end{equation*}
\]

This equation is the angular equivalent of Eq. 15-8, the hallmark of SHM. It tells us that the angular acceleration \(\alpha\) of the pendulum is proportional to the angular displacement \(\theta\) but opposite in sign. Thus, as the pendulum bob moves to the right, as in Fig. 15-11a, its acceleration to the left increases until the bob stops and

(b)

Figure 15-11 (a) A simple pendulum. (b) The forces acting on the bob are the gravitational force \(\vec{F}_{g}\) and the force \(\vec{T}\) from the string. The tangential component \(F_{g} \sin \theta\) of the gravitational force is a restoring force that tends to bring the pendulum back to its central position.


Figure 15-12 A physical pendulum. The restoring torque is \(h F_{g} \sin \theta\). When \(\theta=0\), center of mass \(C\) hangs directly below pivot point \(O\).
begins moving to the left. Then, when it is to the left of the equilibrium position, its acceleration to the right tends to return it to the right, and so on, as it swings back and forth in SHM. More precisely, the motion of a simple pendulum swinging through only small angles is approximately SHM. We can state this restriction to small angles another way: The angular amplitude \(\theta_{m}\) of the motion (the maximum angle of swing) must be small.

Angular Frequency. Here is a neat trick. Because Eq. 15-26 has the same form as Eq. 15-8 for SHM, we can immediately identify the pendulum's angular frequency as being the square root of the constants in front of the displacement:
\[
\omega=\sqrt{\frac{m g L}{I}}
\]

In the homework problems you might see oscillating systems that do not seem to resemble pendulums. However, if you can relate the acceleration (linear or angular) to the displacement (linear or angular), you can then immediately identify the angular frequency as we have just done here.

Period. Next, if we substitute this expression for \(\omega\) into Eq. 15-5 \((\omega=2 \pi / T)\), we see that the period of the pendulum may be written as
\[
\begin{equation*}
T=2 \pi \sqrt{\frac{I}{m g L}} \tag{15-27}
\end{equation*}
\]

All the mass of a simple pendulum is concentrated in the mass \(m\) of the particlelike bob, which is at radius \(L\) from the pivot point. Thus, we can use Eq. 10-33 \(\left(I=m r^{2}\right)\) to write \(I=m L^{2}\) for the rotational inertia of the pendulum. Substituting this into Eq. 15-27 and simplifying then yield
\[
\begin{equation*}
T=2 \pi \sqrt{\frac{L}{g}} \quad \text { (simple pendulum, small amplitude). } \tag{15-28}
\end{equation*}
\]

We assume small-angle swinging in this chapter.

\section*{The Physical Pendulum}

A real pendulum, usually called a physical pendulum, can have a complicated distribution of mass. Does it also undergo SHM? If so, what is its period?

Figure 15-12 shows an arbitrary physical pendulum displaced to one side by angle \(\theta\). The gravitational force \(\vec{F}_{g}\) acts at its center of mass \(C\), at a distance \(h\) from the pivot point \(O\). Comparison of Figs. 15-12 and 15-11b reveals only one important difference between an arbitrary physical pendulum and a simple pendulum. For a physical pendulum the restoring component \(F_{g} \sin \theta\) of the gravitational force has a moment arm of distance \(h\) about the pivot point, rather than of string length \(L\). In all other respects, an analysis of the physical pendulum would duplicate our analysis of the simple pendulum up through Eq. 15-27. Again (for small \(\theta_{m}\) ), we would find that the motion is approximately SHM.

If we replace \(L\) with \(h\) in Eq. 15-27, we can write the period as
\[
\begin{equation*}
T=2 \pi \sqrt{\frac{I}{m g h}} \quad \text { (physical pendulum, small amplitude). } \tag{15-29}
\end{equation*}
\]

As with the simple pendulum, \(I\) is the rotational inertia of the pendulum about \(O\). However, now \(I\) is not simply \(m L^{2}\) (it depends on the shape of the physical pendulum), but it is still proportional to \(m\).

A physical pendulum will not swing if it pivots at its center of mass. Formally, this corresponds to putting \(h=0\) in Eq. 15-29. That equation then predicts \(T \rightarrow \infty\), which implies that such a pendulum will never complete one swing.

Corresponding to any physical pendulum that oscillates about a given pivot point \(O\) with period \(T\) is a simple pendulum of length \(L_{0}\) with the same period \(T\). We can find \(L_{0}\) with Eq. 15-28. The point along the physical pendulum at distance \(L_{0}\) from point \(O\) is called the center of oscillation of the physical pendulum for the given suspension point.

\section*{Measuring \(\boldsymbol{g}\)}

We can use a physical pendulum to measure the free-fall acceleration \(g\) at a particular location on Earth's surface. (Countless thousands of such measurements have been made during geophysical prospecting.)

To analyze a simple case, take the pendulum to be a uniform rod of length \(L\), suspended from one end. For such a pendulum, \(h\) in Eq. 15-29, the distance between the pivot point and the center of mass, is \(\frac{1}{2} L\). Table \(10-2 e\) tells us that the rotational inertia of this pendulum about a perpendicular axis through its center of mass is \(\frac{1}{12} m L^{2}\). From the parallel-axis theorem of Eq. 10-36 ( \(I=I_{\text {com }}+M h^{2}\) ), we then find that the rotational inertia about a perpendicular axis through one end of the rod is
\[
\begin{equation*}
I=I_{\mathrm{com}}+m h^{2}=\frac{1}{12} m L^{2}+m\left(\frac{1}{2} L\right)^{2}=\frac{1}{3} m L^{2} . \tag{15-30}
\end{equation*}
\]

If we put \(h=\frac{1}{2} L\) and \(I=\frac{1}{3} m L^{2}\) in Eq. 15-29 and solve for \(g\), we find
\[
\begin{equation*}
g=\frac{8 \pi^{2} L}{3 T^{2}} \tag{15-31}
\end{equation*}
\]

Thus, by measuring \(L\) and the period \(T\), we can find the value of \(g\) at the pendulum's location. (If precise measurements are to be made, a number of refinements are needed, such as swinging the pendulum in an evacuated chamber.)

\section*{Checkpoint 5}

Three physical pendulums, of masses \(m_{0}, 2 m_{0}\), and \(3 m_{0}\), have the same shape and size and are suspended at the same point. Rank the masses according to the periods of the pendulums, greatest first.

\section*{Sample Problem 15.05 Physical pendulum, period and length}

In Fig. 15-13 \(a\), a meter stick swings about a pivot point at one end, at distance \(h\) from the stick's center of mass.
(a) What is the period of oscillation \(T\) ?

\section*{KEY IDEA}

The stick is not a simple pendulum because its mass is not concentrated in a bob at the end opposite the pivot point so the stick is a physical pendulum.

Calculations: The period for a physical pendulum is given by Eq. 15-29, for which we need the rotational inertia \(I\) of the stick about the pivot point. We can treat the stick as a uniform rod of length \(L\) and mass \(m\). Then Eq. 15-30 tells us that \(I=\frac{1}{3} m L^{2}\), and the distance \(h\) in Eq. \(15-29\) is \(\frac{1}{2} L\). Substituting these quantities into Eq. 15-29,


Figure 15-13 (a) A meter stick suspended from one end as a physical pendulum. (b) A simple pendulum whose length \(L_{0}\) is chosen so that the periods of the two pendulums are equal. Point \(P\) on the pendulum of \((a)\) marks the center of oscillation.
we find
\[
\begin{align*}
T & =2 \pi \sqrt{\frac{I}{m g h}}=2 \pi \sqrt{\frac{\frac{1}{3} m L^{2}}{m g\left(\frac{1}{2} L\right)}}  \tag{15-32}\\
& =2 \pi \sqrt{\frac{2 L}{3 g}}  \tag{15-33}\\
& =2 \pi \sqrt{\frac{(2)(1.00 \mathrm{~m})}{(3)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}}=1.64 \mathrm{~s}
\end{align*}
\]
(Answer)
Note the result is independent of the pendulum's mass \(m\).
(b) What is the distance \(L_{0}\) between the pivot point \(O\) of the stick and the center of oscillation of the stick?

Calculations: We want the length \(L_{0}\) of the simple pendu-
lum (drawn in Fig. 15-13b) that has the same period as the physical pendulum (the stick) of Fig. 15-13a. Setting Eqs. 15-28 and 15-33 equal yields
\[
\begin{equation*}
T=2 \pi \sqrt{\frac{L_{0}}{g}}=2 \pi \sqrt{\frac{2 L}{3 g}} . \tag{15-34}
\end{equation*}
\]

You can see by inspection that
\[
\begin{align*}
L_{0} & =\frac{2}{3} L  \tag{15-35}\\
& =\left(\frac{2}{3}\right)(100 \mathrm{~cm})=66.7 \mathrm{~cm}
\end{align*}
\]
(Answer)
In Fig. 15-13a, point \(P\) marks this distance from suspension point \(O\). Thus, point \(P\) is the stick's center of oscillation for the given suspension point. Point \(P\) would be different for a different suspension choice.

\section*{Simple Harmonic Motion and Uniform Circular Motion}

In 1610, Galileo, using his newly constructed telescope, discovered the four principal moons of Jupiter. Over weeks of observation, each moon seemed to him to be moving back and forth relative to the planet in what today we would call simple harmonic motion; the disk of the planet was the midpoint of the motion. The record of Galileo's observations, written in his own hand, is actually still available. A. P. French of MIT used Galileo's data to work out the position of the moon Callisto relative to Jupiter (actually, the angular distance from Jupiter as seen from Earth) and found that the data approximates the curve shown in Fig. 15-14. The curve strongly suggests Eq. 15-3, the displacement function for simple harmonic motion. A period of about 16.8 days can be measured from the plot, but it is a period of what exactly? After all, a moon cannot possibly be oscillating back and forth like a block on the end of a spring, and so why would Eq. 15-3 have anything to do with it?

Actually, Callisto moves with essentially constant speed in an essentially circular orbit around Jupiter. Its true motion-far from being simple harmonicis uniform circular motion along that orbit. What Galileo saw - and what you can see with a good pair of binoculars and a little patience-is the projection of this uniform circular motion on a line in the plane of the motion. We are led by Galileo's remarkable observations to the conclusion that simple harmonic


Figure 15-14 The angle between Jupiter and its moon Callisto as seen from Earth. Galileo's 1610 measurements approximate this curve, which suggests simple harmonic motion. At Jupiter's mean distance from Earth, 10 minutes of arc corresponds to about \(2 \times 10^{6} \mathrm{~km}\). (Based on A. P. French, Newtonian Mechanics, W. W. Norton \& Company, New York, 1971, p. 288.)


Figure 15-15 (a) A reference particle \(P^{\prime}\) moving with uniform circular motion in a reference circle of radius \(x_{m}\). Its projection \(P\) on the \(x\) axis executes simple harmonic motion. (b) The projection of the velocity \(\vec{v}\) of the reference particle is the velocity of SHM. (c) The projection of the radial acceleration \(\vec{a}\) of the reference particle is the acceleration of SHM.
motion is uniform circular motion viewed edge-on. In more formal language:

Simple harmonic motion is the projection of uniform circular motion on a diameter of the circle in which the circular motion occurs.

Figure 15-15a gives an example. It shows a reference particle \(P^{\prime}\) moving in uniform circular motion with (constant) angular speed \(\omega\) in a reference circle. The radius \(x_{m}\) of the circle is the magnitude of the particle's position vector. At any time \(t\), the angular position of the particle is \(\omega t+\phi\), where \(\phi\) is its angular position at \(t=0\).

Position. The projection of particle \(P^{\prime}\) onto the \(x\) axis is a point \(P\), which we take to be a second particle. The projection of the position vector of particle \(P^{\prime}\) onto the \(x\) axis gives the location \(x(t)\) of \(P\). (Can you see the \(x\) component in the triangle in Fig. 15-5a?) Thus, we find
\[
\begin{equation*}
x(t)=x_{m} \cos (\omega t+\phi), \tag{15-36}
\end{equation*}
\]
which is precisely Eq. 15-3. Our conclusion is correct. If reference particle \(P^{\prime}\) moves in uniform circular motion, its projection particle \(P\) moves in simple harmonic motion along a diameter of the circle.

Velocity. Figure \(15-15 b\) shows the velocity \(\vec{v}\) of the reference particle. From Eq. 10-18 \((v=\omega r)\), the magnitude of the velocity vector is \(\omega x_{m}\); its projection on the \(x\) axis is
\[
\begin{equation*}
v(t)=-\omega x_{m} \sin (\omega t+\phi) \tag{15-37}
\end{equation*}
\]
which is exactly Eq. 15-6. The minus sign appears because the velocity component of \(P\) in Fig. 15-15b is directed to the left, in the negative direction of \(x\). (The minus sign is consistent with the derivative of Eq. \(15-36\) with respect to time.)

Acceleration. Figure 15-15c shows the radial acceleration \(\vec{a}\) of the reference particle. From Eq. 10-23 \(\left(a_{r}=\omega^{2} r\right)\), the magnitude of the radial acceleration vector is \(\omega^{2} x_{m}\); its projection on the \(x\) axis is
\[
\begin{equation*}
a(t)=-\omega^{2} x_{m} \cos (\omega t+\phi) \tag{15-38}
\end{equation*}
\]
which is exactly Eq. 15-7. Thus, whether we look at the displacement, the velocity, or the acceleration, the projection of uniform circular motion is indeed simple harmonic motion.

\section*{15-5 dAMPED SIMPLE HARMONIC MOTION}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
15.38 Describe the motion of a damped simple harmonic oscillator and sketch a graph of the oscillator's position as a function of time.
15.39 For any particular time, calculate the position of a damped simple harmonic oscillator.
15.40 Determine the amplitude of a damped simple harmonic oscillator at any given time.
15.41 Calculate the angular frequency of a damped simple harmonic oscillator in terms of the spring constant, the damping constant, and the mass, and approximate the angular frequency when the damping constant is small. 15.42 Apply the equation giving the (approximate) total energy of a damped simple harmonic oscillator as a function of time.

\section*{Key Ideas}
- The mechanical energy \(E\) in a real oscillating system decreases during the oscillations because external forces, such as a drag force, inhibit the oscillations and transfer mechanical energy to thermal energy. The real oscillator and its motion are then said to be damped.
- If the damping force is given by \(\vec{F}_{d}=-b \vec{v}\), where \(\vec{v}\) is the velocity of the oscillator and \(b\) is a damping constant, then the displacement of the oscillator is given by
\[
x(t)=x_{m} e^{-b t / 2 m} \cos \left(\omega^{\prime} t+\phi\right)
\]
where \(\omega^{\prime}\), the angular frequency of the damped oscillator, is given by
\[
\omega^{\prime}=\sqrt{\frac{k}{m}-\frac{b^{2}}{4 m^{2}}}
\]
- If the damping constant is small \((b \ll \sqrt{k m})\), then \(\omega^{\prime} \approx \omega\), where \(\omega\) is the angular frequency of the undamped oscillator. For small \(b\), the mechanical energy \(E\) of the oscillator is given by
\[
E(t) \approx \frac{1}{2} k x_{m}^{2} e^{-b t / m}
\]


Figure 15-16 An idealized damped simple harmonic oscillator. A vane immersed in a liquid exerts a damping force on the block as the block oscillates parallel to the \(x\) axis.

\section*{Damped Simple Harmonic Motion}

A pendulum will swing only briefly underwater, because the water exerts on the pendulum a drag force that quickly eliminates the motion. A pendulum swinging in air does better, but still the motion dies out eventually, because the air exerts a drag force on the pendulum (and friction acts at its support point), transferring energy from the pendulum's motion.

When the motion of an oscillator is reduced by an external force, the oscillator and its motion are said to be damped. An idealized example of a damped oscillator is shown in Fig. 15-16, where a block with mass \(m\) oscillates vertically on a spring with spring constant \(k\). From the block, a rod extends to a vane (both assumed massless) that is submerged in a liquid. As the vane moves up and down, the liquid exerts an inhibiting drag force on it and thus on the entire oscillating system. With time, the mechanical energy of the block-spring system decreases, as energy is transferred to thermal energy of the liquid and vane.

Let us assume the liquid exerts a damping force \(\vec{F}_{d}\) that is proportional to the velocity \(\vec{v}\) of the vane and block (an assumption that is accurate if the vane moves slowly). Then, for force and velocity components along the \(x\) axis in Fig. 15-16, we have
\[
\begin{equation*}
F_{d}=-b v, \tag{15-39}
\end{equation*}
\]
where \(b\) is a damping constant that depends on the characteristics of both the vane and the liquid and has the SI unit of kilogram per second. The minus sign indicates that \(\vec{F}_{d}\) opposes the motion.

Damped Oscillations. The force on the block from the spring is \(F_{s}=-k x\). Let us assume that the gravitational force on the block is negligible relative to \(F_{d}\) and \(F_{s}\). Then we can write Newton's second law for components along the \(x\) axis \(\left(F_{\text {net }, x}=m a_{x}\right)\) as
\[
\begin{equation*}
-b v-k x=m a \tag{15-40}
\end{equation*}
\]


Figure 15-17 The displacement function \(x(t)\) for the damped oscillator of Fig. 15-16. The amplitude, which is \(x_{m} e^{-b t / 2 m}\), decreases exponentially with time.

Substituting \(d x / d t\) for \(v\) and \(d^{2} x / d t^{2}\) for \(a\) and rearranging give us the differential equation
\[
\begin{equation*}
m \frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+k x=0 \tag{15-41}
\end{equation*}
\]

The solution of this equation is
\[
\begin{equation*}
x(t)=x_{m} e^{-b t / 2 m} \cos \left(\omega^{\prime} t+\phi\right) \tag{15-42}
\end{equation*}
\]
where \(x_{m}\) is the amplitude and \(\omega^{\prime}\) is the angular frequency of the damped oscillator. This angular frequency is given by
\[
\begin{equation*}
\omega^{\prime}=\sqrt{\frac{k}{m}-\frac{b^{2}}{4 m^{2}}} \tag{15-43}
\end{equation*}
\]

If \(b=0\) (there is no damping), then Eq. 15-43 reduces to Eq. 15-12 \((\omega=\sqrt{k / m})\) for the angular frequency of an undamped oscillator, and Eq. 15-42 reduces to Eq. 15-3 for the displacement of an undamped oscillator. If the damping constant is small but not zero (so that \(b \ll \sqrt{k m}\) ), then \(\omega^{\prime} \approx \omega\).

Damped Energy. We can regard Eq. 15-42 as a cosine function whose amplitude, which is \(x_{m} e^{-b t 2 m}\), gradually decreases with time, as Fig. 15-17 suggests. For an undamped oscillator, the mechanical energy is constant and is given by Eq. 15-21 ( \(E=\) \(\frac{1}{2} k x_{m}^{2}\) ). If the oscillator is damped, the mechanical energy is not constant but decreases with time. If the damping is small, we can find \(E(t)\) by replacing \(x_{m}\) in Eq. 15-21 with \(x_{m} e^{-b t 2 m}\), the amplitude of the damped oscillations. By doing so, we find that
\[
\begin{equation*}
E(t) \approx \frac{1}{2} k x_{m}^{2} e^{-b t / m} \tag{15-44}
\end{equation*}
\]
which tells us that, like the amplitude, the mechanical energy decreases exponentially with time.

\section*{Checkpoint 6}

Here are three sets of values for the spring constant, damping constant, and mass for the damped oscillator of Fig. 15-16. Rank the sets according to the time required for the mechanical energy to decrease to one-fourth of its initial value, greatest first.
\begin{tabular}{lrrr}
\hline Set 1 & \(2 k_{0}\) & \(b_{0}\) & \(m_{0}\) \\
Set 2 & \(k_{0}\) & \(6 b_{0}\) & \(4 m_{0}\) \\
Set 3 & \(3 k_{0}\) & \(3 b_{0}\) & \(m_{0}\) \\
\hline
\end{tabular}

\section*{Sample Problem 15.06 Damped harmonic oscillator, time to decay, energy}

For the damped oscillator of Fig. 15-16, \(m=250 \mathrm{~g}, k=\) \(85 \mathrm{~N} / \mathrm{m}\), and \(b=70 \mathrm{~g} / \mathrm{s}\).
(a) What is the period of the motion?

\section*{KEY IDEA}

Because \(b<\sqrt{\mathrm{km}}=4.6 \mathrm{~kg} / \mathrm{s}\), the period is approximately that of the undamped oscillator.

Calculation: From Eq. 15-13, we then have
\[
T=2 \pi \sqrt{\frac{m}{k}}=2 \pi \sqrt{\frac{0.25 \mathrm{~kg}}{85 \mathrm{~N} / \mathrm{m}}}=0.34 \mathrm{~s} .
\]
(Answer)
(b) How long does it take for the amplitude of the damped oscillations to drop to half its initial value?

\section*{KEY IDEA}

The amplitude at time \(t\) is displayed in Eq. 15-42 as \(x_{m} e^{-b t / 2 m}\).
Calculations: The amplitude has the value \(x_{m}\) at \(t=0\). Thus, we must find the value of \(t\) for which
\[
x_{m} e^{-b t / 2 m}=\frac{1}{2} x_{m}
\]

Canceling \(x_{m}\) and taking the natural logarithm of the equation that remains, we have \(\ln \frac{1}{2}\) on the right side and
\[
\ln \left(e^{-b t / 2 m}\right)=-b t / 2 m
\]
on the left side. Thus,
\[
\begin{aligned}
t & =\frac{-2 m \ln \frac{1}{2}}{b}=\frac{-(2)(0.25 \mathrm{~kg})\left(\ln \frac{1}{2}\right)}{0.070 \mathrm{~kg} / \mathrm{s}} \\
& =5.0 \mathrm{~s}
\end{aligned}
\]
(Answer)
Because \(T=0.34 \mathrm{~s}\), this is about 15 periods of oscillation.
(c) How long does it take for the mechanical energy to drop to one-half its initial value?

\section*{KEY IDEA}

From Eq. 15-44, the mechanical energy at time \(t\) is \(\frac{1}{2} k x_{m}^{2} e^{-b t m}\).

Calculations: The mechanical energy has the value \(\frac{1}{2} k x_{m}^{2}\) at \(t=0\). Thus, we must find the value of \(t\) for which
\[
\frac{1}{2} k x_{m}^{2} e^{-b t / m}=\frac{1}{2}\left(\frac{1}{2} k x_{m}^{2}\right)
\]

If we divide both sides of this equation by \(\frac{1}{2} k x_{m}^{2}\) and solve for \(t\) as we did above, we find
\[
t=\frac{-m \ln \frac{1}{2}}{b}=\frac{-(0.25 \mathrm{~kg})\left(\ln \frac{1}{2}\right)}{0.070 \mathrm{~kg} / \mathrm{s}}=2.5 \mathrm{~s} .
\]
(Answer)
This is exactly half the time we calculated in (b), or about 7.5 periods of oscillation. Figure \(15-17\) was drawn to illustrate this sample problem.

PLU'S Additional examples, video, and practice available at WileyPLUS

\section*{15-6 forced oscillations and resonance}

\section*{Learning Objectives}

After reading this module, you should be able to ...
15.43 Distinguish between natural angular frequency \(\omega\) and driving angular frequency \(\omega_{d}\).
15.44 For a forced oscillator, sketch a graph of the oscillation amplitude versus the ratio \(\omega_{d} / \omega\) of driving angular fre-
quency to natural angular frequency, identify the approximate location of resonance, and indicate the effect of increasing the damping constant.
15.45 For a given natural angular frequency \(\omega\), identify the approximate driving angular frequency \(\omega_{d}\) that gives resonance.

\section*{Key Ideas}
- If an external driving force with angular frequency \(\omega_{d}\) acts on an oscillating system with natural angular frequency \(\omega\), the system oscillates with angular frequency \(\omega_{d}\).
- The velocity amplitude \(v_{m}\) of the system is greatest when
\[
\omega_{d}=\omega,
\]
a condition called resonance. The amplitude \(x_{m}\) of the system is (approximately) greatest under the same condition.

\section*{Forced Oscillations and Resonance}

A person swinging in a swing without anyone pushing it is an example of free oscillation. However, if someone pushes the swing periodically, the swing has
forced, or driven, oscillations. Two angular frequencies are associated with a system undergoing driven oscillations: (1) the natural angular frequency \(\omega\) of the system, which is the angular frequency at which it would oscillate if it were suddenly disturbed and then left to oscillate freely, and (2) the angular frequency \(\omega_{d}\) of the external driving force causing the driven oscillations.

We can use Fig. 15-16 to represent an idealized forced simple harmonic oscillator if we allow the structure marked "rigid support" to move up and down at a variable angular frequency \(\omega_{d}\). Such a forced oscillator oscillates at the angular frequency \(\omega_{d}\) of the driving force, and its displacement \(x(t)\) is given by
\[
\begin{equation*}
x(t)=x_{m} \cos \left(\omega_{d} t+\phi\right), \tag{15-45}
\end{equation*}
\]
where \(x_{m}\) is the amplitude of the oscillations.
How large the displacement amplitude \(x_{m}\) is depends on a complicated function of \(\omega_{d}\) and \(\omega\). The velocity amplitude \(v_{m}\) of the oscillations is easier to describe: it is greatest when
\[
\begin{equation*}
\omega_{d}=\omega \quad(\text { resonance }) \tag{15-46}
\end{equation*}
\]
a condition called resonance. Equation 15-46 is also approximately the condition at which the displacement amplitude \(x_{m}\) of the oscillations is greatest. Thus, if you push a swing at its natural angular frequency, the displacement and velocity amplitudes will increase to large values, a fact that children learn quickly by trial and error. If you push at other angular frequencies, either higher or lower, the displacement and velocity amplitudes will be smaller.

Figure 15-18 shows how the displacement amplitude of an oscillator depends on the angular frequency \(\omega_{d}\) of the driving force, for three values of the damping coefficient \(b\). Note that for all three the amplitude is approximately greatest when \(\omega_{d} / \omega=1\) (the resonance condition of Eq. 15-46). The curves of Fig. 15-18 show that less damping gives a taller and narrower resonance peak.

Examples. All mechanical structures have one or more natural angular frequencies, and if a structure is subjected to a strong external driving force that matches one of these angular frequencies, the resulting oscillations of the structure may rupture it. Thus, for example, aircraft designers must make sure that none of the natural angular frequencies at which a wing can oscillate matches the angular frequency of the engines in flight. A wing that flaps violently at certain engine speeds would obviously be dangerous.

Resonance appears to be one reason buildings in Mexico City collapsed in September 1985 when a major earthquake ( 8.1 on the Richter scale) occurred on the western coast of Mexico. The seismic waves from the earthquake should have been too weak to cause extensive damage when they reached Mexico City about 400 km away. However, Mexico City is largely built on an ancient lake bed, where the soil is still soft with water. Although the amplitude of the seismic waves was small in the firmer ground en route to Mexico City, their amplitude substantially increased in the loose soil of the city. Acceleration amplitudes of the waves were as much as \(0.20 g\), and the angular frequency was (surprisingly) concentrated around \(3 \mathrm{rad} / \mathrm{s}\). Not only was the ground severely oscillated, but many intermediate-height buildings had resonant angular frequencies of about \(3 \mathrm{rad} / \mathrm{s}\). Most of those buildings collapsed during the shaking (Fig. 15-19), while shorter buildings (with higher resonant angular frequencies) and taller buildings (with lower resonant angular frequencies) remained standing.

During a 1989 earthquake in the San Francisco-Oakland area, a similar resonant oscillation collapsed part of a freeway, dropping an upper deck onto a lower deck. That section of the freeway had been constructed on a loosely structured mudfill.


Figure 15-18 The displacement amplitude \(x_{m}\) of a forced oscillator varies as the angular frequency \(\omega_{d}\) of the driving force is varied. The curves here correspond to three values of the damping constant \(b\).


John T. Barr/Getty Images, Inc.
Figure 15-19 In 1985, buildings of intermediate height collapsed in Mexico City as a result of an earthquake far from the city. Taller and shorter buildings remained standing.

\section*{Seview \& Summary}

Frequency The frequency \(f\) of periodic, or oscillatory, motion is the number of oscillations per second. In the SI system, it is measured in hertz:
\[
\begin{equation*}
1 \text { hertz }=1 \mathrm{~Hz}=1 \text { oscillation per second }=1 \mathrm{~s}^{-1} . \tag{15-1}
\end{equation*}
\]

Period The period \(T\) is the time required for one complete oscillation, or cycle. It is related to the frequency by
\[
\begin{equation*}
T=\frac{1}{f} \tag{15-2}
\end{equation*}
\]

Simple Harmonic Motion In simple harmonic motion (SHM), the displacement \(x(t)\) of a particle from its equilibrium position is described by the equation
\[
\begin{equation*}
\left.x=x_{m} \cos (\omega t+\phi) \quad \text { (displacement }\right) \tag{15-3}
\end{equation*}
\]
in which \(x_{m}\) is the amplitude of the displacement, \(\omega t+\phi\) is the phase of the motion, and \(\phi\) is the phase constant. The angular frequency \(\omega\) is related to the period and frequency of the motion by
\[
\begin{equation*}
\omega=\frac{2 \pi}{T}=2 \pi f \quad \text { (angular frequency). } \tag{15-5}
\end{equation*}
\]

Differentiating Eq. 15-3 leads to equations for the particle's SHM velocity and acceleration as functions of time:
\[
\begin{array}{lll} 
& v & =-\omega x_{m} \sin (\omega t+\phi) \\
\text { and } & a & =-\omega^{2} x_{m} \operatorname{col} \cos (\omega t+\phi)  \tag{15-7}\\
\text { (acceleration). }
\end{array}
\]

In Eq. 15-6, the positive quantity \(\omega x_{m}\) is the velocity amplitude \(v_{m}\) of the motion. In Eq. 15-7, the positive quantity \(\omega^{2} x_{m}\) is the acceleration amplitude \(a_{m}\) of the motion.

The Linear Oscillator A particle with mass \(m\) that moves under the influence of a Hooke's law restoring force given by \(F=\) \(-k x\) exhibits simple harmonic motion with
and
\[
\begin{gather*}
\omega=\sqrt{\frac{k}{m}} \quad \text { (angular frequency) }  \tag{15-12}\\
T=2 \pi \sqrt{\frac{m}{k}} \quad \text { (period). } \tag{15-13}
\end{gather*}
\]

Such a system is called a linear simple harmonic oscillator.
Energy A particle in simple harmonic motion has, at any time, kinetic energy \(K=\frac{1}{2} m v^{2}\) and potential energy \(U=\frac{1}{2} k x^{2}\). If no friction is present, the mechanical energy \(E=K+U\) remains constant even though \(K\) and \(U\) change.

Pendulums Examples of devices that undergo simple harmonic motion are the torsion pendulum of Fig. 15-9, the simple pendulum of Fig. 15-11, and the physical pendulum of Fig. 15-12. Their periods of oscillation for small oscillations are, respectively,
\[
\begin{align*}
T & =2 \pi \sqrt{I / \kappa} \quad \text { (torsion pendulum) }  \tag{15-23}\\
T & =2 \pi \sqrt{L / g} \quad \text { (simple pendulum) }  \tag{15-28}\\
T & =2 \pi \sqrt{I / m g h} \quad \text { (physical pendulum). } \tag{15-29}
\end{align*}
\]

\section*{Simple Harmonic Motion and Uniform Circular Motion}

Simple harmonic motion is the projection of uniform circular motion onto the diameter of the circle in which the circular motion occurs. Figure \(15-15\) shows that all parameters of circular motion (position, velocity, and acceleration) project to the corresponding values for simple harmonic motion.

Damped Harmonic Motion The mechanical energy \(E\) in a real oscillating system decreases during the oscillations because external forces, such as a drag force, inhibit the oscillations and transfer mechanical energy to thermal energy. The real oscillator and its motion are then said to be damped. If the damping force is given by \(\vec{F}_{d}=\) \(-b \vec{v}\), where \(\vec{v}\) is the velocity of the oscillator and \(b\) is a damping constant, then the displacement of the oscillator is given by
\[
\begin{equation*}
x(t)=x_{m} e^{-b t / 2 m} \cos \left(\omega^{\prime} t+\phi\right), \tag{15-42}
\end{equation*}
\]
where \(\omega^{\prime}\), the angular frequency of the damped oscillator, is given by
\[
\begin{equation*}
\omega^{\prime}=\sqrt{\frac{k}{m}-\frac{b^{2}}{4 m^{2}}} . \tag{15-43}
\end{equation*}
\]

If the damping constant is small \((b<\sqrt{k m})\), then \(\omega^{\prime} \approx \omega\), where \(\omega\) is the angular frequency of the undamped oscillator. For small \(b\), the mechanical energy \(E\) of the oscillator is given by
\[
\begin{equation*}
E(t) \approx \frac{1}{2} k x_{m}^{2} e^{-b t m} . \tag{15-44}
\end{equation*}
\]

Forced Oscillations and Resonance If an external driving force with angular frequency \(\omega_{d}\) acts on an oscillating system with natural angular frequency \(\omega\), the system oscillates with angular frequency \(\omega_{d}\). The velocity amplitude \(v_{m}\) of the system is greatest when
\[
\begin{equation*}
\omega_{d}=\omega \tag{15-46}
\end{equation*}
\]
a condition called resonance. The amplitude \(x_{m}\) of the system is (approximately) greatest under the same condition.
and (d) point \(B\) ? Is the speed of the particle increasing or decreasing at (e) point \(A\) and (f) point \(B\) ?

(a)

(b)

Figure 15-20 Questions 1 and 2.

3 The acceleration \(a(t)\) of a particle undergoing SHM is graphed in Fig. 15-21. (a) Which of the labeled points corresponds to the particle at \(-x_{m}\) ? (b) At point 4, is the velocity of the particle positive, negative, or zero? (c) At point 5, is the particle at \(-x_{m}\), at \(+x_{m}\), at 0 , between \(-x_{m}\) and 0 , or between 0 and \(+x_{m}\) ?


Figure 15-21 Question 3.

4 Which of the following relationships between the acceleration \(a\) and the displacement \(x\) of a particle involve SHM: (a) \(a=0.5 x\), (b) \(a=400 x^{2}\) \(x^{2}\), (c) \(a=-20\)
(d) \(a=-3 x^{2}\) ?

5 You are to complete Fig. 15-22a so that it is a plot of velocity \(v\) versus time \(t\) for the spring-block oscillator that is shown in Fig. 15-22b for \(t=0\). (a) In Fig. 15-22a, at which lettered point or in what region between the points should the (vertical) \(v\) axis intersect the \(t\) axis? (For example, should it intersect at point \(A\), or maybe in the region between points \(A\) and \(B\) ?) (b) If the block's velocity is given by \(v=-v_{m} \sin (\omega t+\phi)\), what is the value of \(\phi\) ? Make it positive, and if you cannot specify the value (such as \(+\pi / 2 \mathrm{rad}\) ), then give a range of values (such as between 0 and \(\pi / 2 \mathrm{rad}\) ).
6 You are to complete Fig. 15-23a so that it is a plot of acceleration \(a\) versus time \(t\) for the spring-block oscillator that is shown in Fig. 15\(23 b\) for \(t=0\). (a) In Fig. 15-23a, at which lettered point or in what region between the points should the (vertical) \(a\) axis intersect the \(t\) axis? (For example, should it intersect at point \(A\), or maybe in the region between points \(A\) and \(B\) ?) (b) If the block's acceleration is given by \(a=\)


Figure 15-22 Question 5.

(a)

(b)

Figure 15-23 Question 6. \(-a_{m} \cos (\omega t+\phi)\), what is the value of \(\phi\) ? Make it positive, and if you cannot specify the value (such as \(+\pi / 2 \mathrm{rad}\) ), then give a range of values (such as between 0 and \(\pi / 2\) ).

7 Figure 15-24 shows the \(x(t)\) curves for three experiments involving a particular spring-box system oscillating in SHM. Rank the curves according to (a) the system's angular frequency, (b) the spring's potential energy at time \(t=0\), (c) the box's kinetic en-


Figure 15-24 Question 7. ergy at \(t=0\), (d) the box's speed at \(t=0\), and (e) the box's maximum kinetic energy, greatest first.
8 Figure \(15-25\) shows plots of the kinetic energy \(K\) versus position \(x\) for three harmonic oscillators that have the same mass.

Rank the plots according to (a) the corresponding spring constant and (b) the corresponding period of the oscillator, greatest first.
9 Figure 15-26 shows three physical pendulums consisting of identical uniform spheres of the same mass that are rigidly connected by identical rods of negligible mass. Each pendulum is vertical and can pivot about suspension point \(O\). Rank the pendulums according to their period of oscillation, greatest first.
10 You are to build the oscillation transfer device shown in Fig. 15-27. It consists of two spring-block systems hanging from a flexible rod. When the spring of system 1 is stretched and then released, the resulting SHM of system 1 at frequency \(f_{1}\) oscillates


Figure 15-25 Question 8.


Figure 15-26 Question 9. the rod. The rod then exerts a driving force on system 2 , at the same frequency \(f_{1}\). You can choose from four springs with spring constants \(k\) of \(1600,1500,1400\), and \(1200 \mathrm{~N} / \mathrm{m}\), and four blocks with masses \(m\) of \(800,500,400\), and 200 kg . Mentally determine which spring should go with which block in each of the two systems to maximize the amplitude of oscillations in system 2.


System 1 Sytem 2
Figure 15-27 Question 10.
11 In Fig. 15-28, a spring-block system is put into SHM in two experiments. In the first, the block is pulled from the equilibrium position through a displacement \(d_{1}\) and then released. In the second, it is pulled from the equilibrium position


Figure 15-28 Question 11. through a greater displacement \(d_{2}\) and then released. Are the (a) amplitude, (b) period, (c) frequency, (d) maximum kinetic energy, and (e) maximum potential energy in the second experiment greater than, less than, or the same as those in the first experiment?
12 Figure 15-29 gives, for three situations, the displacements \(x(t)\) of a pair of simple harmonic oscillators \((A\) and \(B)\) that are identical except for phase. For each pair, what phase shift (in radians and in degrees) is needed to shift the curve for \(A\) to coincide with the curve for \(B\) ? Of the many possible answers, choose the shift with the smallest absolute magnitude.


Figure 15-29 Question 12.

\section*{Problems}
```

Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign
Worked-out solution available in Student Solutions Manual WWW Worked-out solution is at
Number of dots indicates level of problem difficulty ILW Interactive solution is a
Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

```

\section*{Module 15-1 Simple Harmonic Motion}
-1 An object undergoing simple harmonic motion takes 0.25 s to travel from one point of zero velocity to the next such point. The distance between those points is 36 cm . Calculate the (a) period, (b) frequency, and (c) amplitude of the motion.
-2 A 0.12 kg body undergoes simple harmonic motion of amplitude 8.5 cm and period 0.20 s . (a) What is the magnitude of the maximum force acting on it? (b) If the oscillations are produced by a spring, what is the spring constant?
-3 What is the maximum acceleration of a platform that oscillates at amplitude 2.20 cm and frequency 6.60 Hz ?
-4 An automobile can be considered to be mounted on four identical springs as far as vertical oscillations are concerned. The springs of a certain car are adjusted so that the oscillations have a frequency of 3.00 Hz. (a) What is the spring constant of each spring if the mass of the car is 1450 kg and the mass is evenly distributed over the springs? (b) What will be the oscillation frequency if five passengers, averaging 73.0 kg each, ride in the car with an even distribution of mass?
-5 SSM In an electric shaver, the blade moves back and forth over a distance of 2.0 mm in simple harmonic motion, with frequency
120 Hz . Find (a) the amplitude, (b) the maximum blade speed, and (c) the magnitude of the maximum blade acceleration.
-6 A particle with a mass of \(1.00 \times 10^{-20} \mathrm{~kg}\) is oscillating with simple harmonic motion with a period of \(1.00 \times 10^{-5} \mathrm{~s}\) and a maximum speed of \(1.00 \times 10^{3} \mathrm{~m} / \mathrm{s}\). Calculate (a) the angular frequency and (b) the maximum displacement of the particle.
\(\bullet 7\) SSIM A loudspeaker produces a musical sound by means of the oscillation of a diaphragm whose amplitude is limited to \(1.00 \mu \mathrm{~m}\). (a) At what frequency is the magnitude \(a\) of the diaphragm's acceleration equal to \(g\) ? (b) For greater frequencies, is \(a\) greater than or less than \(g\) ?
-8 What is the phase constant for the harmonic oscillator with the position function \(x(t)\) given in Fig. 1530 if the position function has the form \(x=x_{m} \cos (\omega t+\phi)\) ? The vertical axis scale is set by \(x_{s}=6.0 \mathrm{~cm}\). -9 The position function \(x=\) \((6.0 \mathrm{~m}) \cos [(3 \pi \mathrm{rad} / \mathrm{s}) t+\pi / 3 \mathrm{rad}]\) gives the simple harmonic motion of a body. At \(t=2.0 \mathrm{~s}\), what are the


Figure 15-30 Problem 8. (a) displacement, (b) velocity, (c) acceleration, and (d) phase of the motion? Also, what are the (e) frequency and (f) period of the motion?
-10 An oscillating block-spring system takes 0.75 s to begin repeating its motion. Find (a) the period, (b) the frequency in hertz, and (c) the angular frequency in radians per second.
\(\bullet 11\) In Fig. 15-31, two identical springs of spring constant \(7580 \mathrm{~N} / \mathrm{m}\)


Figure 15-31
Problems 11 and 21.
are attached to a block of mass 0.245 kg . What is the frequency of oscillation on the frictionless floor?
-12 What is the phase constant for the harmonic oscillator with the velocity function \(v(t)\) given in Fig. 15-32 if the position function \(x(t)\) has the form \(x=x_{m} \cos (\omega t+\phi)\) ? The vertical axis scale is set by \(v_{s}=4.0 \mathrm{~cm} / \mathrm{s}\).
-13 SSM An oscillator consists of a


Figure 15-32 Problem 12. block of mass 0.500 kg connected to a spring. When set into oscillation with amplitude 35.0 cm , the oscillator repeats its motion every 0.500 s . Find the (a) period, (b) frequency, (c) angular frequency, (d) spring constant, (e) maximum speed, and (f) magnitude of the maximum force on the block from the spring.
-•14 A simple harmonic oscillator consists of a block of mass 2.00 kg attached to a spring of spring constant \(100 \mathrm{~N} / \mathrm{m}\). When \(t=1.00 \mathrm{~s}\), the position and velocity of the block are \(x=0.129\) m and \(v=3.415 \mathrm{~m} / \mathrm{s}\). (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at \(t=0 \mathrm{~s}\) ?
-•15 SSM Two particles oscillate in simple harmonic motion along a common straight-line segment of length \(A\). Each particle has a period of 1.5 s , but they differ in phase by \(\pi / 6 \mathrm{rad}\). (a) How far apart are they (in terms of \(A\) ) 0.50 s after the lagging particle leaves one end of the path? (b) Are they then moving in the same direction, toward each other, or away from each other?
- 16 Two particles execute simple harmonic motion of the same amplitude and frequency along close parallel lines. They pass each other moving in opposite directions each time their displacement is half their amplitude. What is their phase difference?
-•17 ILW An oscillator consists of a block attached to a spring ( \(k=\) \(400 \mathrm{~N} / \mathrm{m}\) ). At some time \(t\), the position (measured from the system's equilibrium location), velocity, and acceleration of the block are \(x=0.100 \mathrm{~m}, v=-13.6 \mathrm{~m} / \mathrm{s}\), and \(a=-123 \mathrm{~m} / \mathrm{s}^{2}\). Calculate (a) the frequency of oscillation, (b) the mass of the block, and (c) the amplitude of the motion.
- 18 ©o At a certain harbor, the tides cause the ocean surface to rise and fall a distance \(d\) (from highest level to lowest level) in simple harmonic motion, with a period of 12.5 h . How long does it take for the water to fall a distance \(0.250 d\) from its highest level?
- 19 A block rides on a piston (a squat cylindrical piece) that is moving vertically with simple harmonic motion. (a) If the SHM has period 1.0 s , at what amplitude of motion will the block and piston separate? (b) If the piston has an amplitude of 5.0 cm , what is the maximum frequency for which the block and piston will be in contact continuously?
-20 © Figure \(15-33 a\) is a partial graph of the position function \(x(t)\) for a simple harmonic oscillator with an angular frequency of
\(1.20 \mathrm{rad} / \mathrm{s}\); Fig. \(15-33 b\) is a partial graph of the corresponding velocity function \(v(t)\). The vertical axis scales are set by \(x_{s}=\) 5.0 cm and \(v_{s}=5.0 \mathrm{~cm} / \mathrm{s}\). What is the phase constant of the SHM if the position function \(x(t)\) is in the general form \(x=\) \(x_{m} \cos (\omega t+\phi)\) ?
-021 ILw In Fig. 15-31, two springs are attached to a block that can oscillate over a frictionless floor. If the left spring is removed, the block oscillates at a frequency of 30 Hz . If, instead, the spring on the right is removed, the block oscillates at a frequency of 45 Hz. At what frequency does the block oscillate with both springs attached?
-022 ©0 Figure 15-34 shows block 1 of mass 0.200 kg sliding to the right over a frictionless elevated surface at a speed of \(8.00 \mathrm{~m} / \mathrm{s}\). The block undergoes an elastic collision with stationary block 2 , which is attached to a spring of spring constant \(1208.5 \mathrm{~N} / \mathrm{m}\). (Assume

(a)

(b)

Figure 15-33 Problem 20.


Figure 15-34 Problem 22. that the spring does not affect the collision.) After the collision, block 2 oscillates in SHM with a period of 0.140 s , and block 1 slides off the opposite end of the elevated surface, landing a distance \(d\) from the base of that surface after falling height \(h=4.90\) m . What is the value of \(d\) ?
\(\because 23\) SSM Www A block is on a horizontal surface (a shake table) that is moving back and forth horizontally with simple harmonic motion of frequency 2.0 Hz . The coefficient of static friction between block and surface is 0.50 . How great can the amplitude of the SHM be if the block is not to slip along the surface?
\({ }^{\circ 0024}\) In Fig. 15-35, two springs are joined and connected to a block of mass 0.245 kg that is set oscillating over a frictionless floor. The springs each have spring constant \(k=\) \(6430 \mathrm{~N} / \mathrm{m}\). What is the frequency of the oscillations?

00025 © In Fig. 15-36, a block weighing 14.0 N , which can slide without friction on an incline at angle \(\theta=40.0^{\circ}\), is connected to the top of the incline by a massless spring of unstretched length 0.450 m and spring constant \(120 \mathrm{~N} / \mathrm{m}\). (a) How far from the top of the incline


Figure 15-35 Problem 24.


Figure 15-36 Problem 25. is the block's equilibrium point? (b) If the block is pulled slightly down the incline and released, what is the period of the resulting oscillations?
00026 © In Fig. 15-37, two blocks ( \(m=1.8 \mathrm{~kg}\) and \(M=10 \mathrm{~kg}\) ) and
a spring ( \(k=200 \mathrm{~N} / \mathrm{m}\) ) are arranged on a horizontal, frictionless surface. The coefficient of static friction between the two blocks is 0.40 . What amplitude of simple harmonic motion of the spring-blocks system puts the smaller block on


Figure 15-37 Problem 26. the verge of slipping over the larger block?

\section*{Module 15-2 Energy in Simple Harmonic Motion}
-27 SSM When the displacement in SHM is one-half the amplitude \(x_{m}\), what fraction of the total energy is (a) kinetic energy and (b) potential energy? (c) At what displacement, in terms of the amplitude, is the energy of the system half kinetic energy and half potential energy?
-28 Figure 15-38 gives the onedimensional potential energy well for a 2.0 kg particle (the function \(U(x)\) has the form \(b x^{2}\) and the vertical axis scale is set by \(U_{s}=2.0 \mathrm{~J}\) ). (a) If the particle passes through the equilibrium position with a velocity of \(85 \mathrm{~cm} / \mathrm{s}\), will it be turned back before it reaches \(x=15 \mathrm{~cm}\) ?
(b) If yes, at what position, and if no, what is the speed of the parti-


Figure 15-38 Problem 28. cle at \(x=15 \mathrm{~cm}\) ?
-29 SSM Find the mechanical energy of a block-spring system with a spring constant of \(1.3 \mathrm{~N} / \mathrm{cm}\) and an amplitude of 2.4 cm .
-30 An oscillating block-spring system has a mechanical energy of 1.00 J , an amplitude of 10.0 cm , and a maximum speed of \(1.20 \mathrm{~m} / \mathrm{s}\). Find (a) the spring constant, (b) the mass of the block, and (c) the frequency of oscillation.
-31 ILW A 5.00 kg object on a horizontal frictionless surface is attached to a spring with \(k=1000 \mathrm{~N} / \mathrm{m}\). The object is displaced from equilibrium 50.0 cm horizontally and given an initial velocity of 10.0 \(\mathrm{m} / \mathrm{s}\) back toward the equilibrium position. What are (a) the motion's frequency, (b) the initial potential energy of the block-spring system, (c) the initial kinetic energy, and (d) the motion's amplitude?
-32 Figure \(15-39\) shows the kinetic energy \(K\) of a simple harmonic oscillator versus its position \(x\). The vertical axis scale is set by \(K_{s}=4.0 \mathrm{~J}\). What is the spring constant?
-033 © A block of mass \(M=5.4\) kg , at rest on a horizontal frictionless table, is attached to a rigid support by a spring of constant \(k=6000 \mathrm{~N} / \mathrm{m}\). A bullet of mass \(m=9.5 \mathrm{~g}\) and velocity \(\vec{v}\) of magnitude \(630 \mathrm{~m} / \mathrm{s}\) strikes and is embedded in the block (Fig. 1540). Assuming the compression of the spring is negligible until the bullet is embedded, determine (a) the speed of the block immedi-


Figure 15-39 Problem 32.


Figure 15-40 Problem 33. ately after the collision and (b) the amplitude of the resulting simple harmonic motion.
-•34 © In Fig. 15-41, block 2 of mass 2.0 kg oscillates on the end of a spring in SHM with a period of 20 ms . The block's position is given by \(x=(1.0 \mathrm{~cm}) \cos (\omega t+\pi / 2)\). Block 1


Figure 15-41 Problem 34. of mass 4.0 kg slides toward block 2 with a velocity of magnitude \(6.0 \mathrm{~m} / \mathrm{s}\), directed along the spring's length. The two blocks undergo a completely inelastic collision at time \(t=5.0 \mathrm{~ms}\). (The duration of the collision is much less than the period of motion.) What is the amplitude of the SHM after the collision?
-035 A 10 g particle undergoes SHM with an amplitude of 2.0 mm , a maximum acceleration of magnitude \(8.0 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}\), and an unknown phase constant \(\phi\). What are (a) the period of the motion, (b) the maximum speed of the particle, and (c) the total mechanical energy of the oscillator? What is the magnitude of the force on the particle when the particle is at (d) its maximum displacement and (e) half its maximum displacement?
-036 If the phase angle for a block-spring system in SHM is \(\pi / 6\) \(\operatorname{rad}\) and the block's position is given by \(x=x_{m} \cos (\omega t+\phi)\), what is the ratio of the kinetic energy to the potential energy at time \(t=0\) ?
\(\because 037\) (60 A massless spring hangs from the ceiling with a small object attached to its lower end. The object is initially held at rest in a position \(y_{i}\) such that the spring is at its rest length. The object is then released from \(y_{i}\) and oscillates up and down, with its lowest position being 10 cm below \(y_{i}\). (a) What is the frequency of the oscillation? (b) What is the speed of the object when it is 8.0 cm below the initial position? (c) An object of mass 300 g is attached to the first object, after which the system oscillates with half the original frequency. What is the mass of the first object? (d) How far below \(y_{i}\) is the new equilibrium (rest) position with both objects attached to the spring?

\section*{Module 15-3 An Angular Simple Harmonic Oscillator}
-38 A 95 kg solid sphere with a 15 cm radius is suspended by a vertical wire. A torque of \(0.20 \mathrm{~N} \cdot \mathrm{~m}\) is required to rotate the sphere through an angle of 0.85 rad and then maintain that orientation. What is the period of the oscillations that result when the sphere is then released?
-•39 SSM www The balance wheel of an old-fashioned watch oscillates with angular amplitude \(\pi\) rad and period 0.500 s . Find (a) the maximum angular speed of the wheel, (b) the angular speed at displacement \(\pi / 2 \mathrm{rad}\), and (c) the magnitude of the angular acceleration at displacement \(\pi / 4 \mathrm{rad}\).

\section*{Module 15-4 Pendulums, Circular Motion}
-40 ILW A physical pendulum consists of a meter stick that is pivoted at a small hole drilled through the stick a distance \(d\) from the 50 cm mark. The period of oscillation is 2.5 s . Find \(d\).
\(\bullet 41\) ssm In Fig. 15-42, the pendulum consists of a uniform disk with radius \(r=10.0 \mathrm{~cm}\) and mass 500 g attached to a uniform rod with length \(L=500 \mathrm{~mm}\) and mass 270 g. (a) Calculate the rotational inertia of the pendulum about the pivot point. (b) What is the distance between the pivot point and


Figure 15-42 Problem 41.
the center of mass of the pendulum? (c) Calculate the period of oscillation.
-42 Suppose that a simple pendulum consists of a small 60.0 g bob at the end of a cord of negligible mass. If the angle \(\theta\) between the cord and the vertical is given by
\[
\theta=(0.0800 \mathrm{rad}) \cos [(4.43 \mathrm{rad} / \mathrm{s}) t+\phi],
\]
what are (a) the pendulum's length and (b) its maximum kinetic energy?
-43 (a) If the physical pendulum of Fig. 15-13 and the associated sample problem is inverted and suspended at point \(P\), what is its period of oscillation? (b) Is the period now greater than, less than, or equal to its previous value?
-44 A physical pendulum consists of two me-ter-long sticks joined together as shown in Fig. \(15-43\). What is the pendulum's period of oscillation about a pin inserted through point \(A\) at the center of the horizontal stick?
.45 A performer seated on a trapeze is swinging back and forth with a period of 8.85 s .


Figure 15-43 Problem 44. If she stands up, thus raising the center of mass of the trapeze + performer system by 35.0 cm , what will be the new period of the system? Treat trapeze + performer as a simple pendulum.
-46 A physical pendulum has a center of oscillation at distance \(2 L / 3\) from its point of suspension. Show that the distance between the point of suspension and the center of oscillation for a physical pendulum of any form is \(I / m h\), where \(I\) and \(h\) have the meanings in Eq. 15-29 and \(m\) is the mass of the pendulum.
-47 In Fig. 15-44, a physical pendulum consists of a uniform solid disk (of radius \(R=2.35 \mathrm{~cm}\) ) supported in a vertical plane by a pivot located a distance \(d=1.75 \mathrm{~cm}\) from the center of the disk. The disk is displaced by a small angle and released. What is the period of the resulting simple harmonic motion?
0048 ©0 A rectangular block, with face


Figure 15-44 Problem 47. lengths \(a=35 \mathrm{~cm}\) and \(b=45 \mathrm{~cm}\), is to be suspended on a thin horizontal rod running through a narrow hole in the block. The block is then to be set swinging about the rod like a pendulum, through small angles so that it is in SHM. Figure 15-45 shows one possible position of the hole, at distance \(r\) from the block's center, along a line connecting the center with a corner. (a) Plot the period versus distance \(r\) along that line such that the minimum in the curve is apparent. (b) For what value of \(r\) does that minimum occur? There is a line of points around the block's center for which the period of swinging has the same minimum value. (c) What shape does that line make?
-•49 ©0 The angle of the pendulum of Fig. \(15-11 b\) is given by \(\theta=\) \(\theta_{m} \cos [(4.44 \mathrm{rad} / \mathrm{s}) t+\phi]\). If at \(t=0\), \(\theta=0.040 \mathrm{rad}\) and \(d \theta / d t=-0.200\)


Figure 15-45 Problem 48. \(\mathrm{rad} / \mathrm{s}\), what are (a) the phase constant \(\phi\) and (b) the maximum angle \(\theta_{m}\) ? (Hint: Don't confuse the rate \(d \theta / d t\) at which \(\theta\) changes with the \(\omega\) of the SHM.)
-050 A thin uniform rod (mass \(=0.50 \mathrm{~kg}\) ) swings about an axis that passes through one end of the rod and is perpendicular to the plane of the swing. The rod swings with a period of 1.5 s and an angular amplitude of \(10^{\circ}\). (a) What is the length of the rod? (b) What is the maximum kinetic energy of the rod as it swings?
-051 ©0 In Fig. 15-46, a stick of length \(L=1.85 \mathrm{~m}\) oscillates as a physical pendulum. (a) What value of distance \(x\) between the stick's center of mass and its pivot point \(O\) gives the least period? (b) What is that least period?


Figure 15-46 Problem 51.
-052 © The 3.00 kg cube in Fig. 15-47 has edge lengths \(d=6.00 \mathrm{~cm}\) and is mounted on an axle through its center. A spring ( \(k=1200 \mathrm{~N} / \mathrm{m}\) ) connects the cube's upper corner to a rigid wall. Initially the spring is at its rest length. If the cube is rotated \(3^{\circ}\) and released, what is the period of the resulting SHM?
-053 SSM ILW In the overhead view of Fig. 1548 , a long uniform rod of mass 0.600 kg is free to


Figure 15-47 Problem 52. rotate in a horizontal plane about a vertical axis through its center. A spring with force constant \(k=1850\) \(\mathrm{N} / \mathrm{m}\) is connected horizontally between one end of the rod and a fixed wall. When the rod is in equilibrium, it is parallel to the wall.


Figure 15-48 Problem 53. What is the period of the small oscillations that result when the rod is rotated slightly and released?
-०54 ©0 In Fig. 15-49a, a metal plate is mounted on an axle through its center of mass. A spring with \(k=2000 \mathrm{~N} / \mathrm{m}\) connects a wall with a point on the rim a distance \(r=2.5 \mathrm{~cm}\) from the center of mass. Initially the spring is at its rest length. If the plate is rotated by \(7^{\circ}\) and released, it rotates about the axle in SHM, with its angular position given by Fig. \(15-49 b\). The horizontal axis scale is set by \(t_{s}=20 \mathrm{~ms}\). What is the rotational inertia of the plate about its center of mass?


Figure 15-49 Problem 54.
~o055 (60 A pendulum is formed by pivoting a long thin rod about a point on the rod. In a series of experiments, the period is measured as a function of the distance \(x\) between the pivot point and the rod's center. (a) If the rod's length is \(L=2.20 \mathrm{~m}\) and its mass is \(m=22.1 \mathrm{~g}\), what is the minimum period? (b) If \(x\) is cho-
sen to minimize the period and then \(L\) is increased, does the period increase, decrease, or remain the same? (c) If, instead, \(m\) is increased without \(L\) increasing, does the period increase, decrease, or remain the same?
-0056 ©0 In Fig. 15-50, a 2.50 kg disk of diameter \(D=42.0 \mathrm{~cm}\) is supported by a rod of length \(L=76.0\) cm and negligible mass that is pivoted at its end. (a) With the massless torsion spring unconnected, what is the period of oscillation? (b) With the torsion spring connected, the rod is vertical at equilibrium. What is the torsion constant of the spring if the period of oscillation has been de-


Figure 15-50 Problem 56. creased by 0.500 s ?

\section*{Module 15-5 Damped Simple Harmonic Motion}
-57 The amplitude of a lightly damped oscillator decreases by \(3.0 \%\) during each cycle. What percentage of the mechanical energy of the oscillator is lost in each cycle?
- 58 For the damped oscillator system shown in Fig. 15-16, with \(m=250 \mathrm{~g}, k=85 \mathrm{~N} / \mathrm{m}\), and \(b=70 \mathrm{~g} / \mathrm{s}\), what is the ratio of the oscillation amplitude at the end of 20 cycles to the initial oscillation amplitude?
-59 SSm www For the damped oscillator system shown in Fig. \(15-16\), the block has a mass of 1.50 kg and the spring constant is \(8.00 \mathrm{~N} / \mathrm{m}\). The damping force is given by \(-b(d x / d t)\), where \(b=230\) \(\mathrm{g} / \mathrm{s}\). The block is pulled down 12.0 cm and released. (a) Calculate the time required for the amplitude of the resulting oscillations to fall to one-third of its initial value. (b) How many oscillations are made by the block in this time?
©60 The suspension system of a 2000 kg automobile "sags" 10 cm when the chassis is placed on it. Also, the oscillation amplitude decreases by \(50 \%\) each cycle. Estimate the values of (a) the spring constant \(k\) and (b) the damping constant \(b\) for the spring and shock absorber system of one wheel, assuming each wheel supports 500 kg .

\section*{Module 15-6 Forced Oscillations and Resonance}
-61 For Eq. \(15-45\), suppose the amplitude \(x_{m}\) is given by
\[
x_{m}=\frac{F_{m}}{\left[m^{2}\left(\omega_{d}^{2}-\omega^{2}\right)^{2}+b^{2} \omega_{d}^{2}\right]^{1 / 2}},
\]
where \(F_{m}\) is the (constant) amplitude of the external oscillating force exerted on the spring by the rigid support in Fig. 15-16. At resonance, what are the (a) amplitude and (b) velocity amplitude of the oscillating object?
-62 Hanging from a horizontal beam are nine simple pendulums of the following lengths: (a) 0.10 , (b) 0.30 , (c) 0.40 , (d) 0.80 , (e) 1.2 , (f) 2.8 , (g) 3.5 , (h) 5.0 , and (i) 6.2 m . Suppose the beam undergoes horizontal oscillations with angular frequencies in the range from \(2.00 \mathrm{rad} / \mathrm{s}\) to \(4.00 \mathrm{rad} / \mathrm{s}\). Which of the pendulums will be (strongly) set in motion?
-063 A 1000 kg car carrying four 82 kg people travels over a "washboard" dirt road with corrugations 4.0 m apart. The car bounces with maximum amplitude when its speed is \(16 \mathrm{~km} / \mathrm{h}\). When the car stops, and the people get out, by how much does the car body rise on its suspension?

\section*{Additional Problems}

64 Although California is known for earthquakes, it has large regions dotted with precariously balanced rocks that would be easily toppled by even a mild earthquake. Apparently no major earthquakes have occurred in those regions. If an earthquake were to put such a rock into sinusoidal oscillation (parallel to the ground) with a frequency of 2.2 Hz , an oscillation amplitude of 1.0 cm would cause the rock to topple. What would be the magnitude of the maximum acceleration of the oscillation, in terms of \(g\) ?
65 A loudspeaker diaphragm is oscillating in simple harmonic motion with a frequency of 440 Hz and a maximum displacement of 0.75 mm . What are the (a) angular frequency, (b) maximum speed, and (c) magnitude of the maximum acceleration?
66 A uniform spring with \(k=8600 \mathrm{~N} / \mathrm{m}\) is cut into pieces 1 and 2 of unstretched lengths \(L_{1}=7.0 \mathrm{~cm}\) and \(L_{2}=10 \mathrm{~cm}\). What are (a) \(k_{1}\) and (b) \(k_{2}\) ? A block attached to the original spring as in Fig. 15-7 oscillates at 200 Hz . What is the oscillation frequency of the block attached to (c) piece 1 and (d) piece 2 ?
67 ©o In Fig. 15-51, three 10000 kg ore cars are held at rest on a mine railway using a cable that is parallel to the rails, which are inclined at angle \(\theta=30^{\circ}\). The cable stretches 15 cm just before the coupling between the two lower cars breaks, detaching the lowest car. Assuming that the cable obeys Hooke's law, find the (a) frequency and (b) amplitude of the resulting oscillations of the remaining two cars.
68 A 2.00 kg block hangs from a


Figure 15-51 Problem 67. spring. A 300 g body hung below the block stretches the spring 2.00 cm farther. (a) What is the spring constant? (b) If the 300 g body is removed and the block is set into oscillation, find the period of the motion.
69 SSM In the engine of a locomotive, a cylindrical piece known as a piston oscillates in SHM in a cylinder head (cylindrical chamber) with an angular frequency of \(180 \mathrm{rev} / \mathrm{min}\). Its stroke (twice the amplitude) is 0.76 m . What is its maximum speed?
70 © A wheel is free to rotate about its fixed axle. A spring is attached to one of its spokes a distance \(r\) from the axle, as shown in Fig. 15-52. (a) Assuming that the wheel is a hoop of mass \(m\) and radius \(R\), what is the angular frequency \(\omega\) of small oscillations of this system in terms of \(m, R, r\), and the spring constant \(k\) ? What is \(\omega\) if (b) \(r=R\) and (c) \(r=0\) ?
71 A 50.0 g stone is attached to the bottom of a vertical spring and set vibrating. If the maximum speed of the stone is \(15.0 \mathrm{~cm} / \mathrm{s}\) and the pe-


Figure 15-52 Problem 70. riod is 0.500 s , find the (a) spring constant of the spring, (b) amplitude of the motion, and (c) frequency of oscillation.
72 A uniform circular disk whose radius \(R\) is 12.6 cm is suspended as a physical pendulum from a point on its rim. (a) What is its period? (b) At what radial distance \(r<R\) is there a pivot point that gives the same period?
73 SSM A vertical spring stretches 9.6 cm when a 1.3 kg block
is hung from its end. (a) Calculate the spring constant. This block is then displaced an additional 5.0 cm downward and released from rest. Find the (b) period, (c) frequency, (d) amplitude, and (e) maximum speed of the resulting SHM.

74 A massless spring with spring constant \(19 \mathrm{~N} / \mathrm{m}\) hangs vertically. A body of mass 0.20 kg is attached to its free end and then released. Assume that the spring was unstretched before the body was released. Find (a) how far below the initial position the body descends, and the (b) frequency and (c) amplitude of the resulting SHM.
75 A 4.00 kg block is suspended from a spring with \(k=500 \mathrm{~N} / \mathrm{m}\). A 50.0 g bullet is fired into the block from directly below with a speed of \(150 \mathrm{~m} / \mathrm{s}\) and becomes embedded in the block. (a) Find the amplitude of the resulting SHM. (b) What percentage of the original kinetic energy of the bullet is transferred to mechanical energy of the oscillator?
76 A 55.0 g block oscillates in SHM on the end of a spring with \(k=1500 \mathrm{~N} / \mathrm{m}\) according to \(x=x_{m} \cos (\omega t+\phi)\). How long does the block take to move from position \(+0.800 x_{m}\) to (a) position \(+0.600 x_{m}\) and (b) position \(-0.800 x_{m}\) ?
77 Figure 15-53 gives the position of a 20 g block oscillating in SHM on the end of a spring. The horizontal axis scale is set by \(t_{s}=40.0 \mathrm{~ms}\). What are (a) the maximum kinetic energy of the block and (b) the number of times per second that maximum is reached? (Hint: Measuring a slope will probably not be very accurate. Find another approach.)


Figure 15-53 Problems 77 and 78.

78 Figure 15-53 gives the position \(x(t)\) of a block oscillating in SHM on the end of a spring \(\left(t_{s}=40.0 \mathrm{~ms}\right)\). What are (a) the speed and (b) the magnitude of the radial acceleration of a particle in the corresponding uniform circular motion?

79 Figure \(15-54\) shows the kinetic energy \(K\) of a simple pendulum versus its angle \(\theta\) from the vertical. The vertical axis scale is set by \(K_{s}=10.0 \mathrm{~mJ}\). The pendulum bob has mass 0.200 kg . What is the length of the pendulum?
80 A block is in SHM on the end of a spring, with position given by \(x=x_{m} \cos (\omega t+\phi)\). If \(\phi=\pi / 5 \mathrm{rad}\),


Figure 15-54 Problem 79. then at \(t=0\) what percentage of the total mechanical energy is potential energy?
81 A simple harmonic oscillator consists of a 0.50 kg block attached to a spring. The block slides back and forth along a straight line on a frictionless surface with equilibrium point \(x=0\). At \(t=0\) the block is at \(x=0\) and moving in the positive \(x\) direction. A graph of the magnitude of the net force \(\vec{F}\) on the block as a function of its
position is shown in Fig. 15-55. The vertical scale is set by \(F_{s}=\) 75.0 N . What are (a) the amplitude and (b) the period of the motion, (c) the magnitude of the maximum acceleration, and (d) the maximum kinetic energy?
82 A simple pendulum of length 20 cm and mass 5.0 g is suspended in a race car traveling with constant speed \(70 \mathrm{~m} / \mathrm{s}\) around a circle of radius 50 m . If the pendulum undergoes small oscillations in a radial direction about its equilibrium position, what is the frequency of oscillation?
83 The scale of a spring balance that reads from 0 to 15.0 kg is 12.0 cm long. A package suspended from the balance is found to oscillate vertically with a frequency of 2.00 Hz . (a) What is the spring constant? (b) How much does the package weigh?
84 A 0.10 kg block oscillates back and forth along a straight line on a frictionless horizontal surface. Its displacement from the origin is given by
\[
x=(10 \mathrm{~cm}) \cos [(10 \mathrm{rad} / \mathrm{s}) t+\pi / 2 \mathrm{rad}] .
\]
(a) What is the oscillation frequency? (b) What is the maximum speed acquired by the block? (c) At what value of \(x\) does this occur? (d) What is the magnitude of the maximum acceleration of the block? (e) At what value of \(x\) does this occur? (f) What force, applied to the block by the spring, results in the given oscillation?
85 The end point of a spring oscillates with a period of 2.0 s when a block with mass \(m\) is attached to it. When this mass is increased by 2.0 kg , the period is found to be 3.0 s . Find \(m\).
86 The tip of one prong of a tuning fork undergoes SHM of frequency 1000 Hz and amplitude 0.40 mm . For this tip, what is the magnitude of the (a) maximum acceleration, (b) maximum velocity, (c) acceleration at tip displacement 0.20 mm , and (d) velocity at tip displacement 0.20 mm ?
87 A flat uniform circular disk has a mass of 3.00 kg and a radius of 70.0 cm . It is suspended in a horizontal plane by a vertical wire attached to its center. If the disk is rotated 2.50 rad about the wire, a torque of \(0.0600 \mathrm{~N} \cdot \mathrm{~m}\) is required to maintain that orientation. Calculate (a) the rotational inertia of the disk about the wire, (b) the torsion constant, and (c) the angular frequency of this torsion pendulum when it is set oscillating.
88 A block weighing 20 N oscillates at one end of a vertical spring for which \(k=100 \mathrm{~N} / \mathrm{m}\); the other end of the spring is attached to a ceiling. At a certain instant the spring is stretched 0.30 m beyond its relaxed length (the length when no object is attached) and the block has zero velocity. (a) What is the net force on the block at this instant? What are the (b) amplitude and (c) period of the resulting simple harmonic motion? (d) What is the maximum kinetic energy of the block as it oscillates?
89 A 3.0 kg particle is in simple harmonic motion in one dimension and moves according to the equation
\[
x=(5.0 \mathrm{~m}) \cos [(\pi / 3 \mathrm{rad} / \mathrm{s}) t-\pi / 4 \mathrm{rad}],
\]
with \(t\) in seconds. (a) At what value of \(x\) is the potential energy of the particle equal to half the total energy? (b) How long does the particle take to move to this position \(x\) from the equilibrium position?

90 A particle executes linear SHM with frequency 0.25 Hz about the point \(x=0\). At \(t=0\), it has displacement \(x=0.37 \mathrm{~cm}\) and zero velocity. For the motion, determine the (a) period, (b) angular frequency, (c) amplitude, (d) displacement \(x(t)\), (e) velocity \(v(t)\), (f) maximum speed, (g) magnitude of the maximum acceleration, (h) displacement at \(t=3.0 \mathrm{~s}\), and (i) speed at \(t=3.0 \mathrm{~s}\).

91 SSM What is the frequency of a simple pendulum 2.0 m long (a) in a room, (b) in an elevator accelerating upward at a rate of \(2.0 \mathrm{~m} / \mathrm{s}^{2}\), and (c) in free fall?
92 A grandfather clock has a pendulum that consists of a thin brass disk of radius \(r=15.00 \mathrm{~cm}\) and mass 1.000 kg that is attached to a long thin rod of negligible mass. The pendulum swings freely about an axis perpendicular to the rod and through the end of the rod opposite the disk, as shown in Fig. \(15-56\). If the pendulum is to have a period of 2.000 s for small oscillations at a place where \(g=9.800 \mathrm{~m} / \mathrm{s}^{2}\), what must be the rod length \(L\) to the nearest tenth of a millimeter?
93 A 4.00 kg block hangs from a spring, extending it 16.0 cm from its


Figure 15-56 Problem 92. unstretched position. (a) What is the spring constant? (b) The block is removed, and a 0.500 kg body is hung from the same spring. If the spring is then stretched and released, what is its period of oscillation?
94 What is the phase constant for SMH with \(a(t)\) given in Fig. 15-57 if the position function \(x(t)\) has the form \(x=x_{m} \cos (\omega t+\phi)\) and \(a_{s}=4.0 \mathrm{~m} / \mathrm{s}^{2}\) ?

95 An engineer has an odd-shaped 10 kg object and needs to find its rotational inertia about an axis through its center of mass. The object is supported on a wire stretched along the desired axis. The wire has a torsion constant


Figure 15-57 Problem 94. \(\kappa=0.50 \mathrm{~N} \cdot \mathrm{~m}\). If this torsion pendulum oscillates through 20 cycles in 50 s , what is the rotational inertia of the object?
96 A spider can tell when its web has captured, say, a fly because the fly's thrashing causes the web threads to oscillate. A spider can even determine the size of the fly by the frequency of the oscillations. Assume that a fly oscillates on the capture thread on which it is caught like a block on a spring. What is the ratio of oscillation frequency for a fly with mass \(m\) to a fly with mass \(2.5 m\) ?

97 A torsion pendulum consists of a metal disk with a wire running through its center and soldered in place. The wire is mounted vertically on clamps and pulled taut. Figure \(15-58 a\) gives the magnitude \(\tau\) of the torque


Figure 15-58 Problem 97.
needed to rotate the disk about its center (and thus twist the wire) versus the rotation angle \(\theta\). The vertical axis scale is set by \(\tau_{s}=4.0 \times 10^{-3} \mathrm{~N} \cdot \mathrm{~m}\). The disk is rotated to \(\theta=0.200 \mathrm{rad}\) and then released. Figure \(15-58 b\) shows the resulting oscillation in terms of angular position \(\theta\) versus time \(t\). The horizontal axis scale is set by \(t_{s}=0.40 \mathrm{~s}\). (a) What is the rotational inertia of the disk about its center? (b) What is the maximum angular speed \(d \theta / d t\) of the disk? (Caution: Do not confuse the (constant) angular frequency of the SHM with the (varying) angular speed of the rotating disk, even though they usually have the same symbol \(\omega\). Hint: The potential energy \(U\) of a torsion pendulum is equal to \(\frac{1}{2} \kappa \theta^{2}\), analogous to \(U=\frac{1}{2} k x^{2}\) for a spring.)
98 When a 20 N can is hung from the bottom of a vertical spring, it causes the spring to stretch 20 cm . (a) What is the spring constant? (b) This spring is now placed horizontally on a frictionless table. One end of it is held fixed, and the other end is attached to a 5.0 N can. The can is then moved (stretching the spring) and released from rest. What is the period of the resulting oscillation?
99 For a simple pendulum, find the angular amplitude \(\theta_{m}\) at which the restoring torque required for simple harmonic motion deviates from the actual restoring torque by \(1.0 \%\). (See "Trigonometric Expansions" in Appendix E.)

100 In Fig. 15-59, a solid cylinder attached to a horizontal spring ( \(k=\) \(3.00 \mathrm{~N} / \mathrm{m}\) ) rolls without slipping along a horizontal surface. If the system is released from rest when the spring is stretched by 0.250 m , find


Figure 15-59 Problem 100 (a) the translational kinetic energy and (b) the rotational kinetic energy of the cylinder as it passes through the equilibrium position. (c) Show that under these conditions the cylinder's center of mass executes simple harmonic motion with period
\[
T=2 \pi \sqrt{\frac{3 M}{2 k}}
\]
where \(M\) is the cylinder mass. (Hint: Find the time derivative of the total mechanical energy.)

101 SSM A 1.2 kg block sliding on a horizontal frictionless surface is attached to a horizontal spring with \(k=480 \mathrm{~N} / \mathrm{m}\). Let \(x\) be the displacement of the block from the position at which the spring is unstretched. At \(t=0\) the block passes through \(x=0\) with a speed of \(5.2 \mathrm{~m} / \mathrm{s}\) in the positive \(x\) direction. What are the (a) frequency and (b) amplitude of the block's motion? (c) Write an expression for \(x\) as a function of time.
102 A simple harmonic oscillator consists of an 0.80 kg block attached to a spring \((k=200 \mathrm{~N} / \mathrm{m})\). The block slides on a horizontal frictionless surface about the equilibrium point \(x=0\) with a total mechanical energy of 4.0 J . (a) What is the amplitude of the oscillation? (b) How many oscillations does the block complete in 10 s ? (c) What is the maximum kinetic energy attained by the block? (d) What is the speed of the block at \(x=0.15 \mathrm{~m}\) ?
103 A block sliding on a horizontal frictionless surface is attached to a horizontal spring with a spring constant of \(600 \mathrm{~N} / \mathrm{m}\). The block executes SHM about its equilibrium position with a period of 0.40 s and an amplitude of 0.20 m . As the block slides through its equilibrium position, a 0.50 kg putty wad is dropped
vertically onto the block. If the putty wad sticks to the block, determine (a) the new period of the motion and (b) the new amplitude of the motion.

104 A damped harmonic oscillator consists of a block ( \(m=\) \(2.00 \mathrm{~kg})\), a spring \((k=10.0 \mathrm{~N} / \mathrm{m})\), and a damping force \((F=-b v)\). Initially, it oscillates with an amplitude of 25.0 cm ; because of the damping, the amplitude falls to three-fourths of this initial value at the completion of four oscillations. (a) What is the value of \(b\) ? (b) How much energy has been "lost" during these four oscillations?
105 A block weighing 10.0 N is attached to the lower end of a vertical spring \((k=200.0 \mathrm{~N} / \mathrm{m})\), the other end of which is attached to a ceiling. The block oscillates vertically and has a kinetic energy of 2.00 J as it passes through the point at which the spring is unstretched. (a) What is the period of the oscillation? (b) Use the law of conservation of energy to determine the maximum distance the block moves both above and below the point at which the spring is unstretched. (These are not necessarily the same.) (c) What is the amplitude of the oscillation? (d) What is the maximum kinetic energy of the block as it oscillates?
106 A simple harmonic oscillator consists of a block attached to a spring with \(k=200 \mathrm{~N} / \mathrm{m}\). The block slides on a frictionless surface, with equilibrium point \(x=0\) and amplitude 0.20 m . A graph of the block's velocity \(v\) as a function of time \(t\) is shown in Fig. 15-60. The horizontal scale is set by \(t_{s}=0.20 \mathrm{~s}\). What are (a) the period of the SHM, (b) the block's mass, (c) its displacement at \(t=0,(\mathrm{~d})\) its acceleration at \(t=0.10 \mathrm{~s}\), and (e) its maximum kinetic energy?


Figure 15-60 Problem 106.

107 The vibration frequencies of atoms in solids at normal temperatures are of the order of \(10^{13} \mathrm{~Hz}\). Imagine the atoms to be connected to one another by springs. Suppose that a single silver atom in a solid vibrates with this frequency and that all the other atoms are at rest. Compute the effective spring constant. One mole of silver \((6.02 \times\) \(10^{23}\) atoms) has a mass of 108 g .
108 Figure 15-61 shows that if we hang a block on the end of a spring with spring constant \(k\), the spring is stretched by distance \(h=2.0 \mathrm{~cm}\). If we pull down on the block a short distance and then release it, it oscillates vertically with a certain frequency. What length must a simple pendulum have to swing with that frequency?


109 The physical pendulum in Fig. 15-62 has two possible pivot points \(A\) and \(B\). Point \(A\) has a fixed position but \(B\) is adjustable along the length of the pendulum as indicated by the scaling. When suspended from \(A\), the pendulum has a period of \(T=1.80 \mathrm{~s}\). The pendulum is then suspended from \(B\), which is moved until the pendulum again has that period. What is the distance \(L\) between \(A\) and \(B\) ?

110 A common device for entertaining a toddler is a jump seat that hangs from the horizontal portion of a doorframe via elastic cords (Fig. 15-63). Assume that only one cord is on each side in spite of the more realistic


Figure 15-62 Problem 109. arrangement shown. When a child is placed in the seat, they both descend by a distance \(d_{s}\) as the cords stretch (treat them as springs). Then the seat is pulled down an extra distance \(d_{m}\) and released, so that the child oscillates vertically, like a block on the end of a spring. Suppose you are the safety engineer for the manufacturer of the seat. You do not want the magnitude of the child's acceleration to exceed 0.20 g for fear of hurting the child's neck. If \(d_{m}=10 \mathrm{~cm}\), what value of \(d_{s}\) corresponds to that acceleration magnitude?


Figure 15-63 Problem 110.

111 A 2.0 kg block executes SHM while attached to a horizontal spring of spring constant \(200 \mathrm{~N} / \mathrm{m}\). The maximum speed of the block as it slides on a horizontal frictionless surface is \(3.0 \mathrm{~m} / \mathrm{s}\). What are (a) the amplitude of the block's motion, (b) the magnitude of its maximum acceleration, and (c) the magnitude of its minimum acceleration? (d) How long does the block take to complete 7.0 cycles of its motion?

112 In Fig. 15-64, a 2500 kg demolition ball swings from the end of a crane. The length of the swinging segment of cable is 17 m . (a) Find the period of the swinging, assuming that the system can be treated as a simple pendulum. (b) Does the period depend on the ball's mass?
113 The center of oscillation of a


Figure 15-64 Problem 112. physical pendulum
has this interesting property: If an impulse (assumed horizontal and in the plane of oscillation) acts at the center of oscillation, no oscillations are felt at the point of support. Baseball players (and players of many other sports) know that unless the ball hits the bat at this point (called the "sweet spot" by athletes), the oscillations due to the impact will sting their hands. To prove this property, let the stick in Fig. 15-13a simulate a baseball bat. Suppose that a horizontal force \(\vec{F}\) (due to impact with the ball) acts toward the right at \(P\), the center of oscillation. The batter is assumed to hold the bat at \(O\), the pivot point of the stick. (a) What acceleration does the point \(O\) undergo as a result of \(\vec{F}\) ? (b) What angular acceleration is produced by \(\vec{F}\) about the center of mass of the stick? (c) As a result of the angular acceleration in (b), what linear acceleration does point \(O\) undergo? (d) Considering the magnitudes and directions of the accelerations in (a) and (c), convince yourself that \(P\) is indeed the "sweet spot."
114 A (hypothetical) large slingshot is stretched 2.30 m to launch a 170 g projectile with speed sufficient to escape from Earth ( \(11.2 \mathrm{~km} / \mathrm{s}\) ). Assume the elastic bands of the slingshot obey Hooke's law. (a) What is the spring constant of the device if all the elastic potential energy is converted to kinetic energy? (b) Assume that an average person can exert a force of 490 N. How many people are required to stretch the elastic bands?

115 What is the length of a simple pendulum whose full swing from left to right and then back again takes 3.2 s ?
116 A 2.0 kg block is attached to the end of a spring with a spring constant of \(350 \mathrm{~N} / \mathrm{m}\) and forced to oscillate by an applied force \(F=\) \((15 \mathrm{~N}) \sin \left(\omega_{d} t\right)\), where \(\omega_{d}=35 \mathrm{rad} / \mathrm{s}\). The damping constant is \(b=\) \(15 \mathrm{~kg} / \mathrm{s}\). At \(t=0\), the block is at rest with the spring at its rest length. (a) Use numerical integration to plot the displacement of the block for the first 1.0 s . Use the motion near the end of the 1.0 s interval to estimate the amplitude, period, and angular frequency. Repeat the calculation for (b) \(\omega_{d}=\sqrt{k / m}\) and (c) \(\omega_{d}=20 \mathrm{rad} / \mathrm{s}\).

\section*{16-1 transverse waves}

\section*{Learning Objectives}

After reading this module, you should be able to .
16.01 Identify the three main types of waves.
16.02 Distinguish between transverse waves and longitudinal waves.
16.03 Given a displacement function for a traverse wave, determine amplitude \(y_{m}\), angular wave number \(k\), angular frequency \(\omega\), phase constant \(\phi\), and direction of travel, and calculate the phase \(k x \pm \omega t+\phi\) and the displacement at any given time and position.
16.04 Given a displacement function for a traverse wave, calculate the time between two given displacements.
16.05 Sketch a graph of a transverse wave as a function of position, identifying amplitude \(y_{m}\), wavelength \(\lambda\), where the slope is greatest, where it is zero, and where the string elements have positive velocity, negative velocity, and zero velocity.
16.06 Given a graph of displacement versus time for a transverse wave, determine amplitude \(y_{m}\) and period \(T\).

\section*{Key Ideas}
- Mechanical waves can exist only in material media and are governed by Newton's laws. Transverse mechanical waves, like those on a stretched string, are waves in which the particles of the medium oscillate perpendicular to the wave's direction of travel. Waves in which the particles of the medium oscillate parallel to the wave's direction of travel are longitudinal waves.
- A sinusoidal wave moving in the positive direction of an \(x\) axis has the mathematical form
\[
y(x, t)=y_{m} \sin (k x-\omega t)
\]
where \(y_{m}\) is the amplitude (magnitude of the maximum displacement) of the wave, \(k\) is the angular wave number, \(\omega\) is the angular frequency, and \(k x-\omega t\) is the phase. The wavelength \(\lambda\) is related to \(k\) by
\[
k=\frac{2 \pi}{\lambda}
\]
16.07 Describe the effect on a transverse wave of changing phase constant \(\phi\).
16.08 Apply the relation between the wave speed \(v\), the distance traveled by the wave, and the time required for that travel.
16.09 Apply the relationships between wave speed \(v\), angular frequency \(\omega\), angular wave number \(k\), wavelength \(\lambda\), period \(T\), and frequency \(f\).
16.10 Describe the motion of a string element as a transverse wave moves through its location, and identify when its transverse speed is zero and when it is maximum.
16.11 Calculate the transverse velocity \(u(t)\) of a string element as a transverse wave moves through its location.
16.12 Calculate the transverse acceleration \(a(t)\) of a string element as a transverse wave moves through its location.
16.13 Given a graph of displacement, transverse velocity, or transverse acceleration, determine the phase constant \(\phi\).
- The period \(T\) and frequency \(f\) of the wave are related to \(\omega\) by
\[
\frac{\omega}{2 \pi}=f=\frac{1}{T} .
\]
- The wave speed \(v\) (the speed of the wave along the string) is related to these other parameters by
\[
v=\frac{\omega}{k}=\frac{\lambda}{T}=\lambda f .
\]
- Any function of the form
\[
y(x, t)=h(k x \pm \omega t)
\]
can represent a traveling wave with a wave speed as given above and a wave shape given by the mathematical form of \(h\). The plus sign denotes a wave traveling in the negative direction of the \(x\) axis, and the minus sign a wave traveling in the positive direction.

\section*{What Is Physics?}

One of the primary subjects of physics is waves. To see how important waves are in the modern world, just consider the music industry. Every piece of music you hear, from some retro-punk band playing in a campus dive to the most eloquent concerto playing on the web, depends on performers producing waves and your detecting those waves. In between production and detection, the information carried by the waves might need to be transmitted (as in a live performance on the web) or recorded and then reproduced (as with CDs, DVDs, or the other devices currently being developed in engineering labs worldwide). The financial importance of controlling music waves is staggering, and the rewards to engineers who develop new control techniques can be rich.

This chapter focuses on waves traveling along a stretched string, such as on a guitar. The next chapter focuses on sound waves, such as those produced by a guitar string being played. Before we do all this, though, our first job is to classify the countless waves of the everyday world into basic types.

\section*{Types of Waves}

Waves are of three main types:
1. Mechanical waves. These waves are most familiar because we encounter them almost constantly; common examples include water waves, sound waves, and seismic waves. All these waves have two central features: They are governed by Newton's laws, and they can exist only within a material medium, such as water, air, and rock.
2. Electromagnetic waves. These waves are less familiar, but you use them constantly; common examples include visible and ultraviolet light, radio and television waves, microwaves, \(x\) rays, and radar waves. These waves require no material medium to exist. Light waves from stars, for example, travel through the vacuum of space to reach us. All electromagnetic waves travel through a vacuum at the same speed \(c=299792458 \mathrm{~m} / \mathrm{s}\).
3. Matter waves. Although these waves are commonly used in modern technology, they are probably very unfamiliar to you. These waves are associated with electrons, protons, and other fundamental particles, and even atoms and molecules. Because we commonly think of these particles as constituting matter, such waves are called matter waves.

Much of what we discuss in this chapter applies to waves of all kinds. However, for specific examples we shall refer to mechanical waves.

\section*{Transverse and Longitudinal Waves}

A wave sent along a stretched, taut string is the simplest mechanical wave. If you give one end of a stretched string a single up-and-down jerk, a wave in the form of a single pulse travels along the string. This pulse and its motion can occur because the string is under tension. When you pull your end of the string upward, it begins to pull upward on the adjacent section of the string via tension between the two sections. As the adjacent section moves upward, it begins to pull the next section upward, and so on. Meanwhile, you have pulled down on your end of the string. As each section moves upward in turn, it begins to be pulled back downward by neighboring sections that are already on the way down. The net result is that a distortion in the string's shape (a pulse, as in Fig. 16-1a) moves along the string at some velocity \(\vec{v}\).


Figure 16-1 (a) A single pulse is sent along a stretched string. A typical string element (marked with a dot) moves up once and then down as the pulse passes. The element's motion is perpendicular to the wave's direction of travel, so the pulse is a transverse wave. (b) A sinusoidal wave is sent along the string. A typical string element moves up and down continuously as the wave passes. This too is a transverse wave.


Figure 16-2 A sound wave is set up in an airfilled pipe by moving a piston back and forth. Because the oscillations of an element of the air (represented by the dot) are parallel to the direction in which the wave travels, the wave is a longitudinal wave.

If you move your hand up and down in continuous simple harmonic motion, a continuous wave travels along the string at velocity \(\vec{v}\). Because the motion of your hand is a sinusoidal function of time, the wave has a sinusoidal shape at any given instant, as in Fig. 16-1b; that is, the wave has the shape of a sine curve or a cosine curve.

We consider here only an "ideal" string, in which no friction-like forces within the string cause the wave to die out as it travels along the string. In addition, we assume that the string is so long that we need not consider a wave rebounding from the far end.

One way to study the waves of Fig. 16-1 is to monitor the wave forms (shapes of the waves) as they move to the right. Alternatively, we could monitor the motion of an element of the string as the element oscillates up and down while a wave passes through it. We would find that the displacement of every such oscillating string element is perpendicular to the direction of travel of the wave, as indicated in Fig. 16-1b. This motion is said to be transverse, and the wave is said to be a transverse wave.

Longitudinal Waves. Figure 16-2 shows how a sound wave can be produced by a piston in a long, air-filled pipe. If you suddenly move the piston rightward and then leftward, you can send a pulse of sound along the pipe. The rightward motion of the piston moves the elements of air next to it rightward, changing the air pressure there. The increased air pressure then pushes rightward on the elements of air somewhat farther along the pipe. Moving the piston leftward reduces the air pressure next to it. As a result, first the elements nearest the piston and then farther elements move leftward. Thus, the motion of the air and the change in air pressure travel rightward along the pipe as a pulse.

If you push and pull on the piston in simple harmonic motion, as is being done in Fig. 16-2, a sinusoidal wave travels along the pipe. Because the motion of the elements of air is parallel to the direction of the wave's travel, the motion is said to be longitudinal, and the wave is said to be a longitudinal wave. In this chapter we focus on transverse waves, and string waves in particular; in Chapter 17 we focus on longitudinal waves, and sound waves in particular.

Both a transverse wave and a longitudinal wave are said to be traveling waves because they both travel from one point to another, as from one end of the string to the other end in Fig. 16-1 and from one end of the pipe to the other end in Fig. 16-2. Note that it is the wave that moves from end to end, not the material (string or air) through which the wave moves.

\section*{Wavelength and Frequency}

To completely describe a wave on a string (and the motion of any element along its length), we need a function that gives the shape of the wave. This means that we need a relation in the form
\[
\begin{equation*}
y=h(x, t) \tag{16-1}
\end{equation*}
\]
in which \(y\) is the transverse displacement of any string element as a function \(h\) of the time \(t\) and the position \(x\) of the element along the string. In general, a sinusoidal shape like the wave in Fig. 16-1b can be described with \(h\) being either a sine or cosine function; both give the same general shape for the wave. In this chapter we use the sine function.

Sinusoidal Function. Imagine a sinusoidal wave like that of Fig. 16-1 \(b\) traveling in the positive direction of an \(x\) axis. As the wave sweeps through succeeding elements (that is, very short sections) of the string, the elements oscillate parallel to the \(y\) axis. At time \(t\), the displacement \(y\) of the element located at position \(x\) is given by
\[
\begin{equation*}
y(x, t)=y_{m} \sin (k x-\omega t) . \tag{16-2}
\end{equation*}
\]

Because this equation is written in terms of position \(x\), it can be used to find the displacements of all the elements of the string as a function of time. Thus, it can tell us the shape of the wave at any given time.

The names of the quantities in Eq. 16-2 are displayed in Fig. 16-3 and defined next. Before we discuss them, however, let us examine Fig. 16-4, which shows five "snapshots" of a sinusoidal wave traveling in the positive direction of an \(x\) axis. The movement of the wave is indicated by the rightward progress of the short arrow pointing to a high point of the wave. From snapshot to snapshot, the short arrow moves to the right with the wave shape, but the string moves only parallel to the \(y\) axis. To see that, let us follow the motion of the red-dyed string element at \(x=0\). In the first snapshot (Fig. 16-4a), this element is at displacement \(y=0\). In the next snapshot, it is at its extreme downward displacement because a valley (or extreme low point) of the wave is passing through it. It then moves back up through \(y=0\). In the fourth snapshot, it is at its extreme upward displacement because a peak (or extreme high point) of the wave is passing through it. In the fifth snapshot, it is again at \(y=0\), having completed one full oscillation.

\section*{Amplitude and Phase}

The amplitude \(y_{m}\) of a wave, such as that in Fig. 16-4, is the magnitude of the maximum displacement of the elements from their equilibrium positions as the wave passes through them. (The subscript \(m\) stands for maximum.) Because \(y_{m}\) is a magnitude, it is always a positive quantity, even if it is measured downward instead of upward as drawn in Fig. 16-4a.

The phase of the wave is the argument \(k x-\omega t\) of the sine in Eq. 16-2. As the wave sweeps through a string element at a particular position \(x\), the phase changes linearly with time \(t\). This means that the sine also changes, oscillating between +1 and -1 . Its extreme positive value \((+1)\) corresponds to a peak of the wave moving through the element; at that instant the value of \(y\) at position \(x\) is \(y_{m}\). Its extreme negative value ( -1 ) corresponds to a valley of the wave moving through the element; at that instant the value of \(y\) at position \(x\) is \(-y_{m}\). Thus, the sine function and the time-dependent phase of a wave correspond to the oscillation of a string element, and the amplitude of the wave determines the extremes of the element's displacement.

Caution: When evaluating the phase, rounding off the numbers before you evaluate the sine function can throw of the calculation considerably.

\section*{Wavelength and Angular Wave Number}

The wavelength \(\lambda\) of a wave is the distance (parallel to the direction of the wave's travel) between repetitions of the shape of the wave (or wave shape). A typical wavelength is marked in Fig. 16-4a, which is a snapshot of the wave at time \(t=0\). At that time, Eq. 16-2 gives, for the description of the wave shape,
\[
\begin{equation*}
y(x, 0)=y_{m} \sin k x . \tag{16-3}
\end{equation*}
\]

By definition, the displacement \(y\) is the same at both ends of this wavelength - that is, at \(x=x_{1}\) and \(x=x_{1}+\lambda\). Thus, by Eq. 16-3,
\[
\begin{align*}
y_{m} \sin k x_{1} & =y_{m} \sin k\left(x_{1}+\lambda\right) \\
& =y_{m} \sin \left(k x_{1}+k \lambda\right) . \tag{16-4}
\end{align*}
\]

A sine function begins to repeat itself when its angle (or argument) is increased by \(2 \pi \mathrm{rad}\), so in Eq. \(16-4\) we must have \(k \lambda=2 \pi\), or
\[
\begin{equation*}
k=\frac{2 \pi}{\lambda} \quad \text { (angular wave number) } \tag{16-5}
\end{equation*}
\]

We call \(k\) the angular wave number of the wave; its SI unit is the radian per meter, or the inverse meter. (Note that the symbol \(k\) here does not represent a spring constant as previously.)

Notice that the wave in Fig. 16-4 moves to the right by \(\frac{1}{4} \lambda\) from one snapshot to the next. Thus, by the fifth snapshot, it has moved to the right by \(1 \lambda\).


Figure 16-3 The names of the quantities in Eq. 16-2, for a transverse sinusoidal wave.

Watch this spot in this series of snapshots.

(b)

(c)


Figure 16-4 Five "snapshots" of a string wave traveling in the positive direction of an \(x\) axis. The amplitude \(y_{m}\) is indicated. A typical wavelength \(\lambda\), measured from an arbitrary position \(x_{1}\), is also indicated.


Figure 16-5 A graph of the displacement of the string element at \(x=0\) as a function of time, as the sinusoidal wave of Fig. 16-4 passes through the element. The amplitude \(y_{m}\) is indicated. A typical period \(T\), measured from an arbitrary time \(t_{1}\), is also indicated.


(a)

(b)

Figure 16-6 A sinusoidal traveling wave at \(t=0\) with a phase constant \(\phi\) of \((a) 0\) and (b) \(\pi / 5 \mathrm{rad}\).

\section*{Period, Angular Frequency, and Frequency}

Figure 16-5 shows a graph of the displacement \(y\) of Eq. \(16-2\) versus time \(t\) at a certain position along the string, taken to be \(x=0\). If you were to monitor the string, you would see that the single element of the string at that position moves up and down in simple harmonic motion given by Eq. \(16-2\) with \(x=0\) :
\[
\begin{align*}
y(0, t) & =y_{m} \sin (-\omega t) \\
& =-y_{m} \sin \omega t \quad(x=0) . \tag{16-6}
\end{align*}
\]

Here we have made use of the fact that \(\sin (-\alpha)=-\sin \alpha\), where \(\alpha\) is any angle. Figure 16-5 is a graph of this equation, with displacement plotted versus time; it does not show the shape of the wave. (Figure \(16-4\) shows the shape and is a picture of reality; Fig. 16-5 is a graph and thus an abstraction.)

We define the period of oscillation \(T\) of a wave to be the time any string element takes to move through one full oscillation. A typical period is marked on the graph of Fig. 16-5. Applying Eq. 16-6 to both ends of this time interval and equating the results yield
\[
\begin{align*}
-y_{m} \sin \omega t_{1} & =-y_{m} \sin \omega\left(t_{1}+T\right) \\
& =-y_{m} \sin \left(\omega t_{1}+\omega T\right) . \tag{16-7}
\end{align*}
\]

This can be true only if \(\omega T=2 \pi\), or if
\[
\begin{equation*}
\omega=\frac{2 \pi}{T} \quad \text { (angular frequency). } \tag{16-8}
\end{equation*}
\]

We call \(\omega\) the angular frequency of the wave; its SI unit is the radian per second.
Look back at the five snapshots of a traveling wave in Fig. 16-4. The time between snapshots is \(\frac{1}{4} T\). Thus, by the fifth snapshot, every string element has made one full oscillation.

The frequency \(f\) of a wave is defined as \(1 / T\) and is related to the angular frequency \(\omega\) by
\[
\begin{equation*}
f=\frac{1}{T}=\frac{\omega}{2 \pi} \quad \text { (frequency). } \tag{16-9}
\end{equation*}
\]

Like the frequency of simple harmonic motion in Chapter 15 , this frequency \(f\) is a number of oscillations per unit time - here, the number made by a string element as the wave moves through it. As in Chapter \(15, f\) is usually measured in hertz or its multiples, such as kilohertz.

\section*{Checkpoint 1}

The figure is a composite of three snapshots, each of a wave traveling along a particular string. The phases for the waves are given by (a) \(2 x-4 t\), (b) \(4 x-8 t\), and (c) \(8 x-16 t\). Which phase corresponds to which wave in the figure?

\section*{Phase Constant}

When a sinusoidal traveling wave is given by the wave function of Eq. 16-2, the wave near \(x=0\) looks like Fig. \(16-6 a\) when \(t=0\). Note that at \(x=0\), the displacement is \(y=0\) and the slope is at its maximum positive value. We can generalize Eq. 16-2 by inserting a phase constant \(\phi\) in the wave function:
\[
\begin{equation*}
y=y_{m} \sin (k x-\omega t+\phi) . \tag{16-10}
\end{equation*}
\]

The value of \(\phi\) can be chosen so that the function gives some other displacement and slope at \(x=0\) when \(t=0\). For example, a choice of \(\phi=+\pi / 5 \mathrm{rad}\) gives the displacement and slope shown in Fig. 16-6b when \(t=0\). The wave is still sinusoidal with the same values of \(y_{m}, k\), and \(\omega\), but it is now shifted from what you see in Fig. 16-6a (where \(\phi=0\) ). Note also the direction of the shift. A positive value of \(\phi\) shifts the curve in the negative direction of the \(x\) axis; a negative value shifts the curve in the positive direction.

\section*{The Speed of a Traveling Wave}

Figure 16-7 shows two snapshots of the wave of Eq. 16-2, taken a small time interval \(\Delta t\) apart. The wave is traveling in the positive direction of \(x\) (to the right in Fig. 16-7), the entire wave pattern moving a distance \(\Delta x\) in that direction during the interval \(\Delta t\). The ratio \(\Delta x / \Delta t\) (or, in the differential limit, \(d x / d t\) ) is the wave speed \(v\). How can we find its value?

As the wave in Fig. 16-7 moves, each point of the moving wave form, such as point \(A\) marked on a peak, retains its displacement \(y\). (Points on the string do not retain their displacement, but points on the wave form do.) If point \(A\) retains its displacement as it moves, the phase in Eq. 16-2 giving it that displacement must remain a constant:
\[
\begin{equation*}
k x-\omega t=\text { a constant } . \tag{16-11}
\end{equation*}
\]

Note that although this argument is constant, both \(x\) and \(t\) are changing. In fact, as \(t\) increases, \(x\) must also, to keep the argument constant. This confirms that the wave pattern is moving in the positive direction of \(x\).

To find the wave speed \(v\), we take the derivative of Eq. 16-11, getting
or
\[
\begin{gather*}
k \frac{d x}{d t}-\omega=0 \\
\frac{d x}{d t}=v=\frac{\omega}{k} \tag{16-12}
\end{gather*}
\]

Using Eq. 16-5 \((k=2 \pi / \lambda)\) and Eq. 16-8 \((\omega=2 \pi / T)\), we can rewrite the wave speed as
\[
\begin{equation*}
v=\frac{\omega}{k}=\frac{\lambda}{T}=\lambda f \quad(\text { wave speed }) \tag{16-13}
\end{equation*}
\]

The equation \(v=\lambda / T\) tells us that the wave speed is one wavelength per period; the wave moves a distance of one wavelength in one period of oscillation.

Equation 16-2 describes a wave moving in the positive direction of \(x\). We can find the equation of a wave traveling in the opposite direction by replacing \(t\) in Eq. 16-2 with \(-t\). This corresponds to the condition
\[
\begin{equation*}
k x+\omega t=\text { a constant } \tag{16-14}
\end{equation*}
\]
which (compare Eq. 16-11) requires that \(x\) decrease with time. Thus, a wave traveling in the negative direction of \(x\) is described by the equation
\[
\begin{equation*}
y(x, t)=y_{m} \sin (k x+\omega t) . \tag{16-15}
\end{equation*}
\]

If you analyze the wave of Eq. 16-15 as we have just done for the wave of Eq. 16-2, you will find for its velocity
\[
\begin{equation*}
\frac{d x}{d t}=-\frac{\omega}{k} \tag{16-16}
\end{equation*}
\]

The minus sign (compare Eq. 16-12) verifies that the wave is indeed moving in the negative direction of \(x\) and justifies our switching the sign of the time variable.


Figure 16-7 Two snapshots of the wave of Fig. 16-4, at time \(t=0\) and then at time \(t=\Delta t\). As the wave moves to the right at velocity \(\vec{v}\), the entire curve shifts a distance \(\Delta x\) during \(\Delta t\). Point \(A\) "rides" with the wave form, but the string elements move only up and down.

Consider now a wave of arbitrary shape, given by
\[
\begin{equation*}
y(x, t)=h(k x \pm \omega t) \tag{16-17}
\end{equation*}
\]
where \(h\) represents any function, the sine function being one possibility. Our previous analysis shows that all waves in which the variables \(x\) and \(t\) enter into the combination \(k x \pm \omega t\) are traveling waves. Furthermore, all traveling waves must be of the form of Eq. 16-17. Thus, \(y(x, t)=\sqrt{a x+b t}\) represents a possible (though perhaps physically a little bizarre) traveling wave. The function \(y(x, t)=\sin \left(a x^{2}-b t\right)\), on the other hand, does not represent a traveling wave.

\section*{Checkpoint 2}

Here are the equations of three waves:
(1) \(y(x, t)=2 \sin (4 x-2 t)\), (2) \(y(x, t)=\sin (3 x-4 t)\), (3) \(y(x, t)=2 \sin (3 x-3 t)\). Rank the waves according to their (a) wave speed and (b) maximum speed perpendicular to the wave's direction of travel (the transverse speed), greatest first.

\section*{Sample Problem 16.01 Determining the quantities in an equation for a transverse wave}

A transverse wave traveling along an \(x\) axis has the form given by
\[
\begin{equation*}
y=y_{m} \sin (k x \pm \omega t+\phi) \tag{16-18}
\end{equation*}
\]

Figure 16-8a gives the displacements of string elements as a function of \(x\), all at time \(t=0\). Figure 16-8b gives the displacements of the element at \(x=0\) as a function of \(t\). Find the values of the quantities shown in Eq. 16-18, including the correct choice of sign.

\section*{KEY IDEAS}
(1) Figure \(16-8 a\) is effectively a snapshot of reality (something that we can see), showing us motion spread out over the \(x\) axis. From it we can determine the wavelength \(\lambda\) of the wave along that axis, and then we can find the angular wave number \(k(=2 \pi / \lambda)\) in Eq. 16-18. (2) Figure \(16-8 b\) is an ab-
straction, showing us motion spread out over time. From it we can determine the period \(T\) of the string element in its SHM and thus also of the wave itself. From \(T\) we can then find angular frequency \(\omega(=2 \pi / T)\) in Eq. 16-18. (3) The phase constant \(\phi\) is set by the displacement of the string at \(x=0\) and \(t=0\).
Amplitude: From either Fig. 16-8a or \(16-8 b\) we see that the maximum displacement is 3.0 mm . Thus, the wave's amplitude \(x_{m}=3.0 \mathrm{~mm}\).

Wavelength: In Fig. 16-8a, the wavelength \(\lambda\) is the distance along the \(x\) axis between repetitions in the pattern. The easiest way to measure \(\lambda\) is to find the distance from one crossing point to the next crossing point where the string has the same slope. Visually we can roughly measure that distance with the scale on the axis. Instead, we can lay the edge of a

paper sheet on the graph, mark those crossing points, slide the sheet to align the left-hand mark with the origin, and then read off the location of the right-hand mark. Either way we find \(\lambda=10 \mathrm{~mm}\). From Eq. 16-5, we then have
\[
k=\frac{2 \pi}{\lambda}=\frac{2 \pi}{0.010 \mathrm{~m}}=200 \pi \mathrm{rad} / \mathrm{m}
\]

Period: The period \(T\) is the time interval that a string element's SHM takes to begin repeating itself. In Fig. 16-8b, \(T\) is the distance along the \(t\) axis from one crossing point to the next crossing point where the plot has the same slope. Measuring the distance visually or with the aid of a sheet of paper, we find \(T=20 \mathrm{~ms}\). From Eq. 16-8, we then have
\[
\omega=\frac{2 \pi}{T}=\frac{2 \pi}{0.020 \mathrm{~s}}=100 \pi \mathrm{rad} / \mathrm{s}
\]

Direction of travel: To find the direction, we apply a bit of reasoning to the figures. In the snapshot at \(t=0\) given in Fig. 16-8a, note that if the wave is moving rightward, then just after the snapshot, the depth of the wave at \(x=0\) should in-
crease (mentally slide the curve slightly rightward). If, instead, the wave is moving leftward, then just after the snapshot, the depth at \(x=0\) should decrease. Now let's check the graph in Fig. 16-8b. It tells us that just after \(t=0\), the depth increases. Thus, the wave is moving rightward, in the positive direction of \(x\), and we choose the minus sign in Eq. 16-18.
Phase constant: The value of \(\phi\) is set by the conditions at \(x=0\) at the instant \(t=0\). From either figure we see that at that location and time, \(y=-2.0 \mathrm{~mm}\). Substituting these three values and also \(y_{m}=3.0 \mathrm{~mm}\) into Eq. 16-18 gives us
or
\[
\begin{aligned}
-2.0 \mathrm{~mm} & =(3.0 \mathrm{~mm}) \sin (0+0+\phi) \\
\phi & =\sin ^{-1}\left(-\frac{2}{3}\right)=-0.73 \mathrm{rad} .
\end{aligned}
\]

Note that this is consistent with the rule that on a plot of \(y\) versus \(x\), a negative phase constant shifts the normal sine function rightward, which is what we see in Fig. 16-8a.
Equation: Now we can fill out Eq. 16-18:
\[
y=(3.0 \mathrm{~mm}) \sin (200 \pi x-100 \pi t-0.73 \mathrm{rad}), \quad(\text { Answer })
\]
with \(x\) in meters and \(t\) in seconds.

\section*{Sample Problem 16.02 Transverse velocity and transverse acceleration of a string element}

A wave traveling along a string is described by
\[
y(x, t)=(0.00327 \mathrm{~m}) \sin (72.1 x-2.72 t)
\]
in which the numerical constants are in SI units ( \(72.1 \mathrm{rad} / \mathrm{m}\) and \(2.72 \mathrm{rad} / \mathrm{s})\).
(a) What is the transverse velocity \(u\) of the string element at \(x=22.5 \mathrm{~cm}\) at time \(t=18.9 \mathrm{~s}\) ? (This velocity, which is associated with the transverse oscillation of a string element, is parallel to the \(y\) axis. Don't confuse it with \(v\), the constant velocity at which the wave form moves along the \(x\) axis.)

\section*{KEY IDEAS}

The transverse velocity \(u\) is the rate at which the displacement \(y\) of the element is changing. In general, that displacement is given by
\[
\begin{equation*}
y(x, t)=y_{m} \sin (k x-\omega t) \tag{16-19}
\end{equation*}
\]

For an element at a certain location \(x\), we find the rate of change of \(y\) by taking the derivative of Eq. 16-19 with respect to \(t\) while treating \(x\) as a constant. A derivative taken while one (or more) of the variables is treated as a constant is called a partial derivative and is represented by a symbol such as \(\partial / \partial t\) rather than \(d / d t\).

Calculations: Here we have
\[
\begin{equation*}
u=\frac{\partial y}{\partial t}=-\omega y_{m} \cos (k x-\omega t) \tag{16-20}
\end{equation*}
\]

Next, substituting numerical values but suppressing the units, which are SI, we write
\[
\begin{aligned}
u & =(-2.72)(0.00327) \cos [(72.1)(0.225)-(2.72)(18.9)] \\
& =0.00720 \mathrm{~m} / \mathrm{s}=7.20 \mathrm{~mm} / \mathrm{s} . \quad \text { (Answer) }
\end{aligned}
\]

Thus, at \(t=18.9 \mathrm{~s}\) our string element is moving in the positive direction of \(y\) with a speed of \(7.20 \mathrm{~mm} / \mathrm{s}\). (Caution: In evaluating the cosine function, we keep all the significant figures in the argument or the calculation can be off considerably. For example, round off the numbers to two significant figures and then see what you get for \(u\).)
(b) What is the transverse acceleration \(a_{y}\) of our string element at \(t=18.9 \mathrm{~s}\) ?

\section*{KEY IDEA}

The transverse acceleration \(a_{y}\) is the rate at which the element's transverse velocity is changing.

Calculations: From Eq. 16-20, again treating \(x\) as a constant but allowing \(t\) to vary, we find
\[
\begin{equation*}
a_{y}=\frac{\partial u}{\partial t}=-\omega^{2} y_{m} \sin (k x-\omega t) \tag{16-21}
\end{equation*}
\]

Substituting numerical values but suppressing the units, which are SI, we have
\[
\begin{aligned}
a_{y} & =-(2.72)^{2}(0.00327) \sin [(72.1)(0.225)-(2.72)(18.9)] \\
& =-0.0142 \mathrm{~m} / \mathrm{s}^{2}=-14.2 \mathrm{~mm} / \mathrm{s}^{2} .
\end{aligned}
\]

From part (a) we learn that at \(t=18.9 \mathrm{~s}\) our string element is moving in the positive direction of \(y\), and here we learn that
it is slowing because its acceleration is in the opposite direction of \(u\).

\section*{16-2 Wave speed on a stretched string}

\section*{Learning Objectives}

After reading this module, you should be able to ...
16.14 Calculate the linear density \(\mu\) of a uniform string in terms of the total mass and total length.
16.15 Apply the relationship between wave speed \(v\), tension \(\tau\), and linear density \(\mu\).

\section*{Key Ideas}
- The speed of a wave on a stretched string is set by properties of the string, not properties of the wave such as frequency or amplitude.
- The speed of a wave on a string with tension \(\tau\) and linear density \(\mu\) is
\[
v=\sqrt{\frac{\tau}{\mu}}
\]

\section*{Wave Speed on a Stretched String}

The speed of a wave is related to the wave's wavelength and frequency by Eq. 16-13, but it is set by the properties of the medium. If a wave is to travel through a medium such as water, air, steel, or a stretched string, it must cause the particles of that medium to oscillate as it passes, which requires both mass (for kinetic energy) and elasticity (for potential energy). Thus, the mass and elasticity determine how fast the wave can travel. Here, we find that dependency in two ways.

\section*{Dimensional Analysis}

In dimensional analysis we carefully examine the dimensions of all the physical quantities that enter into a given situation to determine the quantities they produce. In this case, we examine mass and elasticity to find a speed \(v\), which has the dimension of length divided by time, or \(L T^{-1}\).

For the mass, we use the mass of a string element, which is the mass \(m\) of the string divided by the length \(l\) of the string. We call this ratio the linear density \(\mu\) of the string. Thus, \(\mu=m / l\), its dimension being mass divided by length, \(M L^{-1}\).

You cannot send a wave along a string unless the string is under tension, which means that it has been stretched and pulled taut by forces at its two ends. The tension \(\tau\) in the string is equal to the common magnitude of those two forces. As a wave travels along the string, it displaces elements of the string by causing additional stretching, with adjacent sections of string pulling on each other because of the tension. Thus, we can associate the tension in the string with the stretching (elasticity) of the string. The tension and the stretching forces it produces have the dimension of a force-namely, \(M L T^{-2}\) (from \(F=m a\) ).

We need to combine \(\mu\) (dimension \(M L^{-1}\) ) and \(\tau\left(\right.\) dimension \(M L T^{-2}\) ) to get \(v\) (dimension \(L T^{-1}\) ).A little juggling of various combinations suggests
\[
\begin{equation*}
v=C \sqrt{\frac{\tau}{\mu}} \tag{16-22}
\end{equation*}
\]
in which \(C\) is a dimensionless constant that cannot be determined with dimensional analysis. In our second approach to determining wave speed, you will see that Eq. \(16-22\) is indeed correct and that \(C=1\).

\section*{Derivation from Newton's Second Law}

Instead of the sinusoidal wave of Fig. 16-1b, let us consider a single symmetrical pulse such as that of Fig. 16-9, moving from left to right along a string with speed \(v\). For convenience, we choose a reference frame in which the pulse remains stationary; that is, we run along with the pulse, keeping it constantly in view. In this frame, the string appears to move past us, from right to left in Fig. 16-9, with speed \(v\).

Consider a small string element of length \(\Delta l\) within the pulse, an element that forms an arc of a circle of radius \(R\) and subtending an angle \(2 \theta\) at the center of that circle. A force \(\vec{\tau}\) with a magnitude equal to the tension in the string pulls tangentially on this element at each end. The horizontal components of these forces cancel, but the vertical components add to form a radial restoring force \(\vec{F}\). In magnitude,
\[
\begin{equation*}
F=2(\tau \sin \theta) \approx \tau(2 \theta)=\tau \frac{\Delta l}{R} \quad \text { (force) } \tag{16-23}
\end{equation*}
\]
where we have approximated \(\sin \theta\) as \(\theta\) for the small angles \(\theta\) in Fig. 16-9. From that figure, we have also used \(2 \theta=\Delta l / R\). The mass of the element is given by
\[
\begin{equation*}
\Delta m=\mu \Delta l \quad(\mathrm{mass}) \tag{16-24}
\end{equation*}
\]
where \(\mu\) is the string's linear density.
At the moment shown in Fig. 16-9, the string element \(\Delta l\) is moving in an arc of a circle. Thus, it has a centripetal acceleration toward the center of that circle, given by
\[
\begin{equation*}
a=\frac{v^{2}}{R} \quad \text { (acceleration) } \tag{16-25}
\end{equation*}
\]

Equations 16-23, 16-24, and 16-25 contain the elements of Newton's second law. Combining them in the form
gives
\[
\text { force }=\text { mass } \times \text { acceleration }
\]
\[
\frac{\tau \Delta l}{R}=(\mu \Delta l) \frac{v^{2}}{R}
\]

Solving this equation for the speed \(v\) yields
\[
\begin{equation*}
v=\sqrt{\frac{\tau}{\mu}} \quad(\text { speed }) \tag{16-26}
\end{equation*}
\]
in exact agreement with Eq. 16-22 if the constant \(C\) in that equation is given the value unity. Equation 16-26 gives the speed of the pulse in Fig. 16-9 and the speed of any other wave on the same string under the same tension.

Equation 16-26 tells us:

The speed of a wave along a stretched ideal string depends only on the tension and linear density of the string and not on the frequency of the wave.

The frequency of the wave is fixed entirely by whatever generates the wave (for example, the person in Fig. 16-1b). The wavelength of the wave is then fixed by Eq. 16-13 in the form \(\lambda=v / f\).

\section*{Checkpoint 3}

You send a traveling wave along a particular string by oscillating one end. If you increase the frequency of the oscillations, do (a) the speed of the wave and (b) the wavelength of the wave increase, decrease, or remain the same? If, instead, you increase the tension in the string, do (c) the speed of the wave and (d) the wavelength of the wave increase, decrease, or remain the same?


Figure 16-9 A symmetrical pulse, viewed from a reference frame in which the pulse is stationary and the string appears to move right to left with speed \(v\). We find speed \(v\) by applying Newton's second law to a string element of length \(\Delta l\), located at the top of the pulse.

\section*{16-3 energy and power of a wave traveling along a string}

\section*{Learning Objective}

After reading this module, you should be able to .
16.16 Calculate the average rate at which energy is transported by a transverse wave.

\section*{Key Idea}
- The average power of, or average rate at which energy is transmitted by, a sinusoidal wave on a stretched string is
given by
\[
P_{\text {avg }}=\frac{1}{2} \mu \nu \omega^{2} y_{m}^{2} .
\]


Figure 16-10 A snapshot of a traveling wave on a string at time \(t=0\). String element \(a\) is at displacement \(y=y_{m}\), and string element \(b\) is at displacement \(y=0\). The kinetic energy of the string element at each position depends on the transverse velocity of the element. The potential energy depends on the amount by which the string element is stretched as the wave passes through it.

\section*{Energy and Power of a Wave Traveling Along a String}

When we set up a wave on a stretched string, we provide energy for the motion of the string. As the wave moves away from us, it transports that energy as both kinetic energy and elastic potential energy. Let us consider each form in turn.

\section*{Kinetic Energy}

A string element of mass \(d m\), oscillating transversely in simple harmonic motion as the wave passes through it, has kinetic energy associated with its transverse velocity \(\vec{u}\). When the element is rushing through its \(y=0\) position (element \(b\) in Fig. 16-10), its transverse velocity - and thus its kinetic energy - is a maximum. When the element is at its extreme position \(y=y_{m}\) (as is element \(a\) ), its transverse velocity - and thus its kinetic energy - is zero.

\section*{Elastic Potential Energy}

To send a sinusoidal wave along a previously straight string, the wave must necessarily stretch the string. As a string element of length \(d x\) oscillates transversely, its length must increase and decrease in a periodic way if the string element is to fit the sinusoidal wave form. Elastic potential energy is associatzed with these length changes, just as for a spring.

When the string element is at its \(y=y_{m}\) position (element \(a\) in Fig. 16-10), its length has its normal undisturbed value \(d x\), so its elastic potential energy is zero. However, when the element is rushing through its \(y=0\) position, it has maximum stretch and thus maximum elastic potential energy.

\section*{Energy Transport}

The oscillating string element thus has both its maximum kinetic energy and its maximum elastic potential energy at \(y=0\). In the snapshot of Fig. 16-10, the regions of the string at maximum displacement have no energy, and the regions at zero displacement have maximum energy. As the wave travels along the string, forces due to the tension in the string continuously do work to transfer energy from regions with energy to regions with no energy.

As in Fig. 16-1b, let's set up a wave on a string stretched along a horizontal \(x\) axis such that Eq. 16-2 applies. As we oscillate one end of the string, we continuously provide energy for the motion and stretching of the string - as the string sections oscillate perpendicularly to the \(x\) axis, they have kinetic energy and elastic potential energy. As the wave moves into sections that were previously at rest, energy is transferred into those new sections. Thus, we say that the wave transports the energy along the string.

\section*{The Rate of Energy Transmission}

The kinetic energy \(d K\) associated with a string element of mass \(d m\) is given by
\[
\begin{equation*}
d K=\frac{1}{2} d m u^{2} \tag{16-27}
\end{equation*}
\]
where \(u\) is the transverse speed of the oscillating string element. To find \(u\), we differentiate Eq. 16-2 with respect to time while holding \(x\) constant:
\[
\begin{equation*}
u=\frac{\partial y}{\partial t}=-\omega y_{m} \cos (k x-\omega t) \tag{16-28}
\end{equation*}
\]

Using this relation and putting \(d m=\mu d x\), we rewrite Eq. 16-27 as
\[
\begin{equation*}
d K=\frac{1}{2}(\mu d x)\left(-\omega y_{m}\right)^{2} \cos ^{2}(k x-\omega t) \tag{16-29}
\end{equation*}
\]

Dividing Eq. 16-29 by \(d t\) gives the rate at which kinetic energy passes through a string element, and thus the rate at which kinetic energy is carried along by the wave. The \(d x / d t\) that then appears on the right of Eq. 16-29 is the wave speed \(v\), so
\[
\begin{equation*}
\frac{d K}{d t}=\frac{1}{2} \mu v \omega^{2} y_{m}^{2} \cos ^{2}(k x-\omega t) \tag{16-30}
\end{equation*}
\]

The average rate at which kinetic energy is transported is
\[
\begin{align*}
\left(\frac{d K}{d t}\right)_{\mathrm{avg}} & =\frac{1}{2} \mu \nu \omega^{2} y_{m}^{2}\left[\cos ^{2}(k x-\omega t)\right]_{\mathrm{avg}} \\
& =\frac{1}{4} \mu \nu \omega^{2} y_{m}^{2} . \tag{16-31}
\end{align*}
\]

Here we have taken the average over an integer number of wavelengths and have used the fact that the average value of the square of a cosine function over an integer number of periods is \(\frac{1}{2}\).

Elastic potential energy is also carried along with the wave, and at the same average rate given by Eq. 16-31. Although we shall not examine the proof, you should recall that, in an oscillating system such as a pendulum or a spring-block system, the average kinetic energy and the average potential energy are equal.

The average power, which is the average rate at which energy of both kinds is transmitted by the wave, is then
\[
\begin{equation*}
P_{\text {avg }}=2\left(\frac{d K}{d t}\right)_{\text {avg }} \tag{16-32}
\end{equation*}
\]
or, from Eq. 16-31,
\[
\begin{equation*}
P_{\text {avg }}=\frac{1}{2} \mu \nu \omega^{2} y_{m}^{2} \quad \text { (average power). } \tag{16-33}
\end{equation*}
\]

The factors \(\mu\) and \(v\) in this equation depend on the material and tension of the string. The factors \(\omega\) and \(y_{m}\) depend on the process that generates the wave. The dependence of the average power of a wave on the square of its amplitude and also on the square of its angular frequency is a general result, true for waves of all types.

\section*{Sample Problem 16.03 Average power of a transverse wave}

A string has linear density \(\mu=525 \mathrm{~g} / \mathrm{m}\) and is under tension \(\tau=45 \mathrm{~N}\). We send a sinusoidal wave with frequency \(f=120 \mathrm{~Hz}\) and amplitude \(y_{m}=8.5 \mathrm{~mm}\) along the string. At what average rate does the wave transport energy?

\section*{KEY IDEA}

The average rate of energy transport is the average power \(P_{\text {avg }}\) as given by Eq. 16-33.

Calculations: To use Eq. 16 - 33 , we first must calculate
angular frequency \(\omega\) and wave speed \(v\). From Eq. 16-9,
\[
\omega=2 \pi f=(2 \pi)(120 \mathrm{~Hz})=754 \mathrm{rad} / \mathrm{s} .
\]

From Eq. 16 - 26 we have
\[
v=\sqrt{\frac{\tau}{\mu}}=\sqrt{\frac{45 \mathrm{~N}}{0.525 \mathrm{~kg} / \mathrm{m}}}=9.26 \mathrm{~m} / \mathrm{s} .
\]

Equation 16-33 then yields
\[
\begin{aligned}
P_{\text {avg }} & =\frac{1}{2} \mu \nu \omega^{2} y_{m}^{2} \\
& =\left(\frac{1}{2}\right)(0.525 \mathrm{~kg} / \mathrm{m})(9.26 \mathrm{~m} / \mathrm{s})(754 \mathrm{rad} / \mathrm{s})^{2}(0.0085 \mathrm{~m})^{2} \\
& \approx 100 \mathrm{~W} .
\end{aligned}
\]

\section*{16-4 the wave equation}

\section*{Learning Objective}

After reading this module, you should be able to ...
16.17 For the equation giving a string-element displacement as a function of position \(x\) and time \(t\), apply the relationship
between the second derivative with respect to \(x\) and the second derivative with respect to \(t\).

\section*{Key Idea}
- The general differential equation that governs the travel of waves of all types is
\[
\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}} .
\]

Here the waves travel along an \(x\) axis and oscillate parallel to the \(y\) axis, and they move with speed \(v\), in either the positive \(x\) direction or the negative \(x\) direction.

\section*{The Wave Equation}

As a wave passes through any element on a stretched string, the element moves perpendicularly to the wave's direction of travel (we are dealing with a transverse wave). By applying Newton's second law to the element's motion, we can derive a general differential equation, called the wave equation, that governs the travel of waves of any type.

Figure 16-11a shows a snapshot of a string element of mass \(d m\) and length \(\ell\) as a wave travels along a string of linear density \(\mu\) that is stretched along a horizontal \(x\) axis. Let us assume that the wave amplitude is small so that the element can be tilted only slightly from the \(x\) axis as the wave passes. The force \(\vec{F}_{2}\) on the right end of the element has a magnitude equal to tension \(\tau\) in the string and is directed slightly upward. The force \(\vec{F}_{1}\) on the left end of the element also has a magnitude equal to the tension \(\tau\) but is directed slightly downward. Because of the slight curvature of the element, these two forces are not simply in opposite direction so that they cancel. Instead, they combine to produce a net force that causes the element to have an upward acceleration \(a_{y}\). Newton's second law written for \(y\) components ( \(F_{\text {net, }, y}=m a_{y}\) ) gives us
\[
\begin{equation*}
F_{2 y}-F_{1 y}=d m a_{y} . \tag{16-34}
\end{equation*}
\]

Let's analyze this equation in parts, first the mass \(d m\), then the acceleration component \(a_{y}\), then the individual force components \(F_{2 y}\) and \(F_{1 y}\), and then finally the net force that is on the left side of Eq. 16-34.

Mass. The element's mass \(d m\) can be written in terms of the string's linear density \(\mu\) and the element's length \(\ell\) as \(d m=\mu \ell\). Because the element can have only a slight tilt, \(\ell \approx d x\) (Fig. 16-11a) and we have the approximation
\[
\begin{equation*}
d m=\mu d x \tag{16-35}
\end{equation*}
\]


Figure 16-11 (a) A string element as a sinusoidal transverse wave travels on a stretched string. Forces \(\vec{F}_{1}\) and \(\vec{F}_{2}\) act at the left and right ends, producing acceleration \(\vec{a}\) having a vertical component \(a_{y .}(b)\) The force at the element's right end is directed along a tangent to the element's right side.

Acceleration. The acceleration \(a_{y}\) in Eq. 16-34 is the second derivative of the displacement \(y\) with respect to time:
\[
\begin{equation*}
a_{y}=\frac{d^{2} y}{d t^{2}} \tag{16-36}
\end{equation*}
\]

Forces. Figure \(16-11 b\) shows that \(\vec{F}_{2}\) is tangent to the string at the right end of the string element. Thus we can relate the components of the force to the string slope \(S_{2}\) at the right end as
\[
\begin{equation*}
\frac{F_{2 y}}{F_{2 x}}=S_{2} \tag{16-37}
\end{equation*}
\]

We can also relate the components to the magnitude \(F_{2}(=\tau)\) with
or
\[
\begin{align*}
F_{2} & =\sqrt{F_{2 x}^{2}+F_{2 y}^{2}} \\
\tau & =\sqrt{F_{2 x}^{2}+F_{2 y}^{2}} . \tag{16-38}
\end{align*}
\]

However, because we assume that the element is only slightly tilted, \(F_{2 y} \ll F_{2 x}\) and therefore we can rewrite Eq. 16-38 as
\[
\begin{equation*}
\tau=F_{2 x} \tag{16-39}
\end{equation*}
\]

Substituting this into Eq. 16-37 and solving for \(F_{2 y}\) yield
\[
\begin{equation*}
F_{2 y}=\tau S_{2} \tag{16-40}
\end{equation*}
\]

Similar analysis at the left end of the string element gives us
\[
\begin{equation*}
F_{1 y}=\tau S_{1} . \tag{16-41}
\end{equation*}
\]

Net Force. We can now substitute Eqs. 16-35, 16-36, 16-40, and 16-41 into Eq. 16-34 to write
or
\[
\begin{align*}
\tau S_{2}-\tau S_{1} & =(\mu d x) \frac{d^{2} y}{d t^{2}} \\
\frac{S_{2}-S_{1}}{d x} & =\frac{\mu}{\tau} \frac{d^{2} y}{d t^{2}} \tag{16-42}
\end{align*}
\]

Because the string element is short, slopes \(S_{2}\) and \(S_{1}\) differ by only a differential amount \(d S\), where \(S\) is the slope at any point:
\[
\begin{equation*}
S=\frac{d y}{d x} \tag{16-43}
\end{equation*}
\]

First replacing \(S_{2}-S_{1}\) in Eq. 16-42 with \(d S\) and then using Eq. 16-43 to substitute \(d y / d x\) for \(S\), we find
and
\[
\begin{align*}
\frac{d S}{d x} & =\frac{\mu}{\tau} \frac{d^{2} y}{d t^{2}} \\
\frac{d(d y / d x)}{d x} & =\frac{\mu}{\tau} \frac{d^{2} y}{d t^{2}} \\
\frac{\partial^{2} y}{\partial x^{2}} & =\frac{\mu}{\tau} \frac{\partial^{2} y}{\partial t^{2}} \tag{16-44}
\end{align*}
\]

In the last step, we switched to the notation of partial derivatives because on the left we differentiate only with respect to \(x\) and on the right we differentiate only with respect to \(t\). Finally, substituting from Eq. 16-26 \((v=\sqrt{\tau / \mu})\), we find
\[
\begin{equation*}
\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}} \quad \text { (wave equation). } \tag{16-45}
\end{equation*}
\]

This is the general differential equation that governs the travel of waves of all types.

\section*{16-5 interference of waves}

\section*{Learning Objectives}

After reading this module, you should be able to ...
16.18 Apply the principle of superposition to show that two overlapping waves add algebraically to give a resultant (or net) wave.
16.19 For two transverse waves with the same amplitude and wavelength and that travel together, find the displacement equation for the resultant wave and calculate the amplitude in terms of the individual wave amplitude and the phase difference.
16.20 Describe how the phase difference between two transverse waves (with the same amplitude and wavelength) can result in fully constructive interference, fully destructive interference, and intermediate interference.
16.21 With the phase difference between two interfering waves expressed in terms of wavelengths, quickly determine the type of interference the waves have.

\section*{Key Ideas}
- When two or more waves traverse the same medium, the displacement of any particle of the medium is the sum of the displacements that the individual waves would give it, an effect known as the principle of superposition for waves.
- Two sinusoidal waves on the same string exhibit interference, adding or canceling according to the principle of superposition. If the two are traveling in the same direction and have the same amplitude \(y_{m}\) and
frequency (hence the same wavelength) but differ in phase by a phase constant \(\phi\), the result is a single wave with this same frequency:
\[
y^{\prime}(x, t)=\left[2 y_{m} \cos \frac{1}{2} \phi\right] \sin \left(k x-\omega t+\frac{1}{2} \phi\right) .
\]

If \(\phi=0\), the waves are exactly in phase and their interference is fully constructive; if \(\phi=\pi \mathrm{rad}\), they are exactly out of phase and their interference is fully destructive.


\section*{The Principle of Superposition for Waves}

It often happens that two or more waves pass simultaneously through the same region. When we listen to a concert, for example, sound waves from many instruments fall simultaneously on our eardrums. The electrons in the antennas of our radio and television receivers are set in motion by the net effect of many electromagnetic waves from many different broadcasting centers. The water of a lake or harbor may be churned up by waves in the wakes of many boats.

Suppose that two waves travel simultaneously along the same stretched string. Let \(y_{1}(x, t)\) and \(y_{2}(x, t)\) be the displacements that the string would experience if each wave traveled alone. The displacement of the string when the waves overlap is then the algebraic sum
\[
\begin{equation*}
y^{\prime}(x, t)=y_{1}(x, t)+y_{2}(x, t) \tag{16-46}
\end{equation*}
\]

This summation of displacements along the string means that

Overlapping waves algebraically add to produce a resultant wave (or net wave).
This is another example of the principle of superposition, which says that when several effects occur simultaneously, their net effect is the sum of the individual effects. (We should be thankful that only a simple sum is needed. If two effects somehow amplified each other, the resulting nonlinear world would be very difficult to manage and understand.)

Figure 16-12 shows a sequence of snapshots of two pulses traveling in opposite directions on the same stretched string. When the pulses overlap, the resultant pulse is their sum. Moreover,

Overlapping waves do not in any way alter the travel of each other.

\section*{Interference of Waves}

Suppose we send two sinusoidal waves of the same wavelength and amplitude in the same direction along a stretched string. The superposition principle applies. What resultant wave does it predict for the string?

The resultant wave depends on the extent to which the waves are in phase (in step) with respect to each other - that is, how much one wave form is shifted from the other wave form. If the waves are exactly in phase (so that the peaks and valleys of one are exactly aligned with those of the other), they combine to double the displacement of either wave acting alone. If they are exactly out of phase (the peaks of one are exactly aligned with the valleys of the other), they combine to cancel everywhere, and the string remains straight. We call this phenomenon of combining waves interference, and the waves are said to interfere. (These terms refer only to the wave displacements; the travel of the waves is unaffected.)

Let one wave traveling along a stretched string be given by
\[
\begin{equation*}
y_{1}(x, t)=y_{m} \sin (k x-\omega t) \tag{16-47}
\end{equation*}
\]
and another, shifted from the first, by
\[
\begin{equation*}
y_{2}(x, t)=y_{m} \sin (k x-\omega t+\phi) . \tag{16-48}
\end{equation*}
\]

These waves have the same angular frequency \(\omega\) (and thus the same frequency \(f\) ), the same angular wave number \(k\) (and thus the same wavelength \(\lambda\) ), and the same amplitude \(y_{m}\). They both travel in the positive direction of the \(x\) axis, with the same speed, given by Eq. 16-26. They differ only by a constant angle \(\phi\), the phase constant. These waves are said to be out of phase by \(\phi\) or to have a phase difference of \(\phi\), or one wave is said to be phase-shifted from the other by \(\phi\).

From the principle of superposition (Eq. 16-46), the resultant wave is the algebraic sum of the two interfering waves and has displacement
\[
\begin{align*}
y^{\prime}(x, t) & =y_{1}(x, t)+y_{2}(x, t) \\
& =y_{m} \sin (k x-\omega t)+y_{m} \sin (k x-\omega t+\phi) \tag{16-49}
\end{align*}
\]

In Appendix E we see that we can write the sum of the sines of two angles \(\alpha\) and \(\beta\) as
\[
\begin{equation*}
\sin \alpha+\sin \beta=2 \sin \frac{1}{2}(\alpha+\beta) \cos \frac{1}{2}(\alpha-\beta) . \tag{16-50}
\end{equation*}
\]

Applying this relation to Eq. 16-49 leads to
\[
\begin{equation*}
y^{\prime}(x, t)=\left[2 y_{m} \cos \frac{1}{2} \phi\right] \sin \left(k x-\omega t+\frac{1}{2} \phi\right) . \tag{16-51}
\end{equation*}
\]

As Fig. 16-13 shows, the resultant wave is also a sinusoidal wave traveling in the direction of increasing \(x\). It is the only wave you would actually see on the string (you would not see the two interfering waves of Eqs. 16-47 and 16-48).

If two sinusoidal waves of the same amplitude and wavelength travel in the same direction along a stretched string, they interfere to produce a resultant sinusoidal wave traveling in that direction.

The resultant wave differs from the interfering waves in two respects: (1) its phase constant is \(\frac{1}{2} \phi\), and (2) its amplitude \(y_{m}^{\prime}\) is the magnitude of the quantity in the brackets in Eq. 16-51:
\[
\begin{equation*}
y_{m}^{\prime}=\left|2 y_{m} \cos \frac{1}{2} \phi\right| \quad \text { (amplitude) } \tag{16-52}
\end{equation*}
\]

If \(\phi=0 \mathrm{rad}\) (or \(0^{\circ}\) ), the two interfering waves are exactly in phase and Eq. \(16-51\) reduces to
\[
\begin{equation*}
y^{\prime}(x, t)=2 y_{m} \sin (k x-\omega t) \quad(\phi=0) \tag{16-53}
\end{equation*}
\]
\[
\overbrace{y^{\prime}(x, t)}^{\text {Displacement }}=\underbrace{\text { in }}_{\begin{array}{c}
\text { Magnitude } \\
\begin{array}{c}
\text { gives } \\
\text { amplitude }
\end{array}
\end{array} \underbrace{\left[2 y_{m} \cos \frac{1}{2} \phi\right]}_{\begin{array}{c}
\text { Oscillating } \\
\text { term }
\end{array}} \underbrace{\sin \left(k x-\omega t+\frac{1}{2} \phi\right)}}
\]

Figure 16-13 The resultant wave of Eq. 16-51, due to the interference of two sinusoidal transverse waves, is also a sinusoidal transverse wave, with an amplitude and an oscillating term.

Figure 16-14 Two identical sinusoidal waves, \(y_{1}(x, t)\) and \(y_{2}(x, t)\), travel along a string in the positive direction of an \(x\) axis. They interfere to give a resultant wave \(y^{\prime}(x, t)\). The resultant wave is what is actually seen on the string. The phase difference \(\phi\) between the two interfering waves is (a) 0 rad or \(0^{\circ},(b) \pi \mathrm{rad}\) or \(180^{\circ}\), and (c) \(\frac{2}{3} \pi \mathrm{rad}\) or \(120^{\circ}\).The corresponding resultant waves are shown in \((d),(e)\), and \((f)\).


The two waves are shown in Fig. 16-14a, and the resultant wave is plotted in Fig. 16-14d. Note from both that plot and Eq. 16-53 that the amplitude of the resultant wave is twice the amplitude of either interfering wave. That is the greatest amplitude the resultant wave can have, because the cosine term in Eqs. 16-51 and 16-52 has its greatest value (unity) when \(\phi=0\). Interference that produces the greatest possible amplitude is called fully constructive interference.

If \(\phi=\pi \mathrm{rad}\) ( or \(180^{\circ}\) ), the interfering waves are exactly out of phase as in Fig. \(16-14 b\). Then \(\cos \frac{1}{2} \phi\) becomes \(\cos \pi / 2=0\), and the amplitude of the resultant wave as given by Eq. 16-52 is zero. We then have, for all values of \(x\) and \(t\),
\[
\begin{equation*}
y^{\prime}(x, t)=0 \quad(\phi=\pi \mathrm{rad}) \tag{16-54}
\end{equation*}
\]

The resultant wave is plotted in Fig. 16-14e. Although we sent two waves along the string, we see no motion of the string. This type of interference is called fully destructive interference.

Because a sinusoidal wave repeats its shape every \(2 \pi \mathrm{rad}\), a phase difference of \(\phi=2 \pi \mathrm{rad}\) ( or \(360^{\circ}\) ) corresponds to a shift of one wave relative to the other wave by a distance equivalent to one wavelength. Thus, phase differences can be described in terms of wavelengths as well as angles. For example, in Fig. 16-14b the waves may be said to be 0.50 wavelength out of phase. Table \(16-1\) shows some other examples of phase differences and the interference they produce. Note that when interference is neither fully constructive nor fully destructive, it is called intermediate interference. The amplitude of the resultant wave is then intermediate between 0 and \(2 y_{m}\). For example, from Table 16-1, if the interfering waves have a phase difference of \(120^{\circ}\left(\phi=\frac{2}{3} \pi \mathrm{rad}=0.33\right.\) wavelength \()\), then the resultant wave has an amplitude of \(y_{m}\), the same as that of the interfering waves (see Figs. 16-14c and \(f\) ).

Two waves with the same wavelength are in phase if their phase difference is zero or any integer number of wavelengths. Thus, the integer part of any phase difference expressed in wavelengths may be discarded. For example, a phase difference of 0.40 wavelength (an intermediate interference, close to fully destructive interference) is equivalent in every way to one of 2.40 wavelengths,

Table 16-1 Phase Difference and Resulting Interference Types \({ }^{a}\)
\begin{tabular}{ccccl} 
& \multicolumn{2}{c}{ Phase Difference, in } & \begin{tabular}{c} 
Amplitude \\
of Resultant \\
Wave
\end{tabular} & \begin{tabular}{c} 
Type of \\
Interference
\end{tabular} \\
\hline Degrees & Radians & Wavelengths & & \begin{tabular}{c} 
Then
\end{tabular} \\
\hline 0 & 0 & 0 & \(2 y_{m}\) & Fully constructive \\
120 & \(\frac{2}{3} \pi\) & 0.33 & \(y_{m}\) & Intermediate \\
180 & \(\pi\) & 0.50 & 0 & Fully destructive \\
240 & \(\frac{4}{3} \pi\) & 0.67 & \(y_{m}\) & Intermediate \\
360 & \(2 \pi\) & 1.00 & \(2 y_{m}\) & Fully constructive \\
\hline 865 & 15.1 & 2.40 & \(0.60 y_{m}\) & Intermediate \\
\hline
\end{tabular}
\({ }^{a}\) The phase difference is between two otherwise identical waves, with amplitude \(y_{m}\), moving in the same direction.
and so the simpler of the two numbers can be used in computations. Thus, by looking at only the decimal number and comparing it to \(0,0.5\), or 1.0 wavelength, you can quickly tell what type of interference two waves have.

\section*{Checkpoint 4}

Here are four possible phase differences between two identical waves, expressed in wavelengths: \(0.20,0.45,0.60\), and 0.80 . Rank them according to the amplitude of the resultant wave, greatest first.

\section*{Sample Problem 16.04 Interference of two waves, same direction, same amplitude}

Two identical sinusoidal waves, moving in the same direction along a stretched string, interfere with each other. The amplitude \(y_{m}\) of each wave is 9.8 mm , and the phase difference \(\phi\) between them is \(100^{\circ}\).
(a) What is the amplitude \(y_{m}^{\prime}\) of the resultant wave due to the interference, and what is the type of this interference?

\section*{KEY IDEA}

These are identical sinusoidal waves traveling in the same direction along a string, so they interfere to produce a sinusoidal traveling wave.

Calculations: Because they are identical, the waves have the same amplitude. Thus, the amplitude \(y_{m}^{\prime}\) of the resultant wave is given by Eq. 16-52:
\[
\begin{aligned}
y_{m}^{\prime}=\left|2 y_{m} \cos \frac{1}{2} \phi\right| & =\left|(2)(9.8 \mathrm{~mm}) \cos \left(100^{\circ} / 2\right)\right| \\
& =13 \mathrm{~mm} .
\end{aligned}
\]
(Answer)
We can tell that the interference is intermediate in two ways. The phase difference is between 0 and \(180^{\circ}\), and, correspondingly, the amplitude \(y_{m}^{\prime}\) is between 0 and \(2 y_{m}(=19.6 \mathrm{~mm})\).
(b) What phase difference, in radians and wavelengths, will give the resultant wave an amplitude of 4.9 mm ?

Calculations: Now we are given \(y_{m}^{\prime}\) and seek \(\phi\). From Eq. 16-52,
\[
y_{m}^{\prime}=\left|2 y_{m} \cos \frac{1}{2} \phi\right|
\]
we now have
\[
4.9 \mathrm{~mm}=(2)(9.8 \mathrm{~mm}) \cos \frac{1}{2} \phi
\]
which gives us (with a calculator in the radian mode)
\[
\begin{aligned}
\phi & =2 \cos ^{-1} \frac{4.9 \mathrm{~mm}}{(2)(9.8 \mathrm{~mm})} \\
& = \pm 2.636 \mathrm{rad} \approx \pm 2.6 \mathrm{rad} .
\end{aligned}
\]
(Answer)
There are two solutions because we can obtain the same resultant wave by letting the first wave lead (travel ahead of) or lag (travel behind) the second wave by 2.6 rad . In wavelengths, the phase difference is
\[
\begin{aligned}
\frac{\phi}{2 \pi \mathrm{rad} / \text { wavelength }} & =\frac{ \pm 2.636 \mathrm{rad}}{2 \pi \mathrm{rad} / \text { wavelength }} \\
& = \pm 0.42 \text { wavelength. }
\end{aligned}
\]
(Answer)

PLU@S Additional examples, video, and practice available at WileyPLUS

\section*{16-6 phasors}

\section*{Learning Objectives}

After reading this module, you should be able to .
16.22 Using sketches, explain how a phasor can represent the oscillations of a string element as a wave travels through its location.
16.23 Sketch a phasor diagram for two overlapping waves traveling together on a string, indicating their amplitudes and phase difference on the sketch.
16.24 By using phasors, find the resultant wave of two transverse waves traveling together along a string, calculating the amplitude and phase and writing out the displacement equation, and then displaying all three phasors in a phasor diagram that shows the amplitudes, the leading or lagging, and the relative phases.

\section*{Key Idea}
- A wave \(y(x, t)\) can be represented with a phasor. This is a vector that has a magnitude equal to the amplitude \(y_{m}\) of the wave and that rotates about an origin with an angular speed
equal to the angular frequency \(\omega\) of the wave. The projection of the rotating phasor on a vertical axis gives the displacement \(y\) of a point along the wave's travel.

\section*{Phasors}

Adding two waves as discussed in the preceding module is strictly limited to waves with identical amplitudes. If we have such waves, that technique is easy enough to use, but we need a more general technique that can be applied to any waves, whether or not they have the same amplitudes. One neat way is to use phasors to represent the waves. Although this may seem bizarre at first, it is essentially a graphical technique that uses the vector addition rules of Chapter 3 instead of messy trig additions.

A phasor is a vector that rotates around its tail, which is pivoted at the origin of a coordinate system. The magnitude of the vector is equal to the amplitude \(y_{m}\) of the wave that it represents. The angular speed of the rotation is equal to the angular frequency \(\omega\) of the wave. For example, the wave
\[
\begin{equation*}
y_{1}(x, t)=y_{m 1} \sin (k x-\omega t) \tag{16-55}
\end{equation*}
\]
is represented by the phasor shown in Figs. 16-15a to \(d\). The magnitude of the phasor is the amplitude \(y_{m 1}\) of the wave. As the phasor rotates around the origin at angular speed \(\omega\), its projection \(y_{1}\) on the vertical axis varies sinusoidally, from a maximum of \(y_{m 1}\) through zero to a minimum of \(-y_{m 1}\) and then back to \(y_{m 1}\). This variation corresponds to the sinusoidal variation in the displacement \(y_{1}\) of any point along the string as the wave passes through that point. (All this is shown as an animation with voiceover in WileyPLUS.)

When two waves travel along the same string in the same direction, we can represent them and their resultant wave in a phasor diagram. The phasors in Fig. 16-15e represent the wave of Eq. 16-55 and a second wave given by
\[
\begin{equation*}
y_{2}(x, t)=y_{m 2} \sin (k x-\omega t+\phi) . \tag{16-56}
\end{equation*}
\]

This second wave is phase-shifted from the first wave by phase constant \(\phi\). Because the phasors rotate at the same angular speed \(\omega\), the angle between the two phasors is always \(\phi\). If \(\phi\) is a positive quantity, then the phasor for wave 2 lags the phasor for wave 1 as they rotate, as drawn in Fig. 16-15e. If \(\phi\) is a negative quantity, then the phasor for wave 2 leads the phasor for wave 1.

Because waves \(y_{1}\) and \(y_{2}\) have the same angular wave number \(k\) and angular frequency \(\omega\), we know from Eqs. 16-51 and 16-52 that their resultant is of the form
\[
\begin{equation*}
y^{\prime}(x, t)=y_{m}^{\prime} \sin (k x-\omega t+\beta) \tag{16-57}
\end{equation*}
\]


Figure 16-15 (a)-(d) A phasor of magnitude \(y_{m 1}\) rotating about an origin at angular speed \(\omega\) represents a sinusoidal wave. The phasor's projection \(y_{1}\) on the vertical axis represents the displacement of a point through which the wave passes. (e) A second phasor, also of angular speed \(\omega\) but of magnitude \(y_{m 2}\) and rotating at a constant angle \(\phi\) from the first phasor, represents a second wave, with a phase constant \(\phi .(f)\) The resultant wave is represented by the vector sum \(y_{m}^{\prime}\) of the two phasors.
where \(y_{m}^{\prime}\) is the amplitude of the resultant wave and \(\beta\) is its phase constant. To find the values of \(y_{m}^{\prime}\) and \(\beta\), we would have to sum the two combining waves, as we did to obtain Eq. 16-51. To do this on a phasor diagram, we vectorially add the two phasors at any instant during their rotation, as in Fig. 16-15f where phasor \(y_{m 2}\) has been shifted to the head of phasor \(y_{m 1}\). The magnitude of the vector sum equals the amplitude \(y_{m}^{\prime}\) in Eq. 16-57. The angle between the vector sum and the phasor for \(y_{1}\) equals the phase constant \(\beta\) in Eq. 16-57.

Note that, in contrast to the method of Module 16-5:

We can use phasors to combine waves even if their amplitudes are different.

\section*{Sample Problem 16.05 Interference of two waves, same direction, phasors, any amplitudes}

Two sinusoidal waves \(y_{1}(x, t)\) and \(y_{2}(x, t)\) have the same wavelength and travel together in the same direction along a string. Their amplitudes are \(y_{m 1}=4.0 \mathrm{~mm}\) and \(y_{m 2}=3.0\) mm , and their phase constants are 0 and \(\pi / 3 \mathrm{rad}\), respectively. What are the amplitude \(y_{m}^{\prime}\) and phase constant \(\beta\) of the resultant wave? Write the resultant wave in the form of Eq. 16-57.

\section*{KEY IDEAS}
(1) The two waves have a number of properties in common: Because they travel along the same string, they must have the same speed \(v\), as set by the tension and linear density of the string according to Eq. 16-26. With the same wavelength \(\lambda\), they have the same angular wave number \(k(=2 \pi / \lambda)\). Also, because they have the same wave number \(k\) and speed \(v\), they must have the same angular frequency \(\omega(=k v)\).
(2) The waves (call them waves 1 and 2 ) can be represented by phasors rotating at the same angular speed \(\omega\) about an origin. Because the phase constant for wave 2 is greater than that for wave 1 by \(\pi / 3\), phasor 2 must lag phasor 1 by \(\pi / 3 \mathrm{rad}\) in their clockwise rotation, as shown in Fig. 16-16a. The resultant wave due to the interference of waves 1 and 2 can then be represented by a phasor that is the vector sum of phasors 1 and 2 .

Calculations: To simplify the vector summation, we drew phasors 1 and 2 in Fig. 16-16a at the instant when phasor 1 lies along the horizontal axis. We then drew lagging phasor 2 at positive angle \(\pi / 3\) rad. In Fig. 16-16b we shifted phasor 2 so its tail is at the head of phasor 1. Then we can draw the phasor \(y_{m}^{\prime}\) of the resultant wave from the tail of phasor 1 to the head of phasor 2. The phase constant \(\beta\) is the angle phasor \(y_{m}^{\prime}\) makes with phasor 1 .

To find values for \(y_{m}^{\prime}\) and \(\beta\), we can sum phasors 1 and 2 as vectors on a vector-capable calculator. However, here
we shall sum them by components. (They are called horizontal and vertical components, because the symbols \(x\) and \(y\) are already used for the waves themselves.) For the horizontal components we have
\[
\begin{aligned}
y_{m h}^{\prime} & =y_{m 1} \cos 0+y_{m 2} \cos \pi / 3 \\
& =4.0 \mathrm{~mm}+(3.0 \mathrm{~mm}) \cos \pi / 3=5.50 \mathrm{~mm}
\end{aligned}
\]

For the vertical components we have
\[
\begin{aligned}
y_{m v}^{\prime} & =y_{m 1} \sin 0+y_{m 2} \sin \pi / 3 \\
& =0+(3.0 \mathrm{~mm}) \sin \pi / 3=2.60 \mathrm{~mm} .
\end{aligned}
\]

Thus, the resultant wave has an amplitude of
\[
\begin{aligned}
y_{m}^{\prime} & =\sqrt{(5.50 \mathrm{~mm})^{2}+(2.60 \mathrm{~mm})^{2}} \\
& =6.1 \mathrm{~mm}
\end{aligned}
\]
(Answer) and a phase constant of
\[
\beta=\tan ^{-1} \frac{2.60 \mathrm{~mm}}{5.50 \mathrm{~mm}}=0.44 \mathrm{rad}
\]
(Answer)
From Fig. 16-16b, phase constant \(\beta\) is a positive angle relative to phasor 1.Thus, the resultant wave lags wave 1 in their travel by phase constant \(\beta=+0.44\) rad. From Eq. 16-57, we can write the resultant wave as
\[
y^{\prime}(x, t)=(6.1 \mathrm{~mm}) \sin (k x-\omega t+0.44 \mathrm{rad}) .
\]
(Answer)


Figure 16-16 (a) Two phasors of magnitudes \(y_{m 1}\) and \(y_{m 2}\) and with phase difference \(\pi / 3\). (b) Vector addition of these phasors at any instant during their rotation gives the magnitude \(y_{m}^{\prime}\) of the phasor for the resultant wave.

\section*{16-7 standing waves and resonance}

\section*{Learning Objectives}

After reading this module, you should be able to ...
16.25 For two overlapping waves (same amplitude and wavelength) that are traveling in opposite directions, sketch snapshots of the resultant wave, indicating nodes and antinodes.
16.26 For two overlapping waves (same amplitude and wavelength) that are traveling in opposite directions, find the displacement equation for the resultant wave and calculate the amplitude in terms of the individual wave amplitude.
16.27 Describe the SHM of a string element at an antinode of a standing wave.
16.28 For a string element at an antinode of a standing wave, write equations for the displacement, transverse velocity, and transverse acceleration as functions of time.
16.29 Distinguish between "hard" and "soft" reflections of string waves at a boundary.
16.30 Describe resonance on a string tied taut between two supports, and sketch the first several standing wave patterns, indicating nodes and antinodes.
16.31 In terms of string length, determine the wavelengths required for the first several harmonics on a string under tension. 16.32 For any given harmonic, apply the relationship between frequency, wave speed, and string length.

\section*{Key Ideas}
- The interference of two identical sinusoidal waves moving in opposite directions produces standing waves. For a string with fixed ends, the standing wave is given by
\[
y^{\prime}(x, t)=\left[2 y_{m} \sin k x\right] \cos \omega t .
\]

Standing waves are characterized by fixed locations of zero displacement called nodes and fixed locations of maximum displacement called antinodes.
- Standing waves on a string can be set up by reflection of traveling waves from the ends of the string. If an end is fixed, it must be the position of a node. This limits the frequencies at
which standing waves will occur on a given string. Each possible frequency is a resonant frequency, and the corresponding standing wave pattern is an oscillation mode. For a stretched string of length \(L\) with fixed ends, the resonant frequencies are
\[
f=\frac{v}{\lambda}=n \frac{v}{2 L}, \quad \text { for } n=1,2,3, \ldots
\]

The oscillation mode corresponding to \(n=1\) is called the fundamental mode or the first harmonic; the mode corresponding to \(n=2\) is the second harmonic; and so on.

\section*{Standing Waves}

In Module 16-5, we discussed two sinusoidal waves of the same wavelength and amplitude traveling in the same direction along a stretched string. What if they travel in opposite directions? We can again find the resultant wave by applying the superposition principle.

Figure \(16-17\) suggests the situation graphically. It shows the two combining waves, one traveling to the left in Fig. 16-17a, the other to the right in Fig. 16-17b. Figure 16-17c shows their sum, obtained by applying the superposition

Figure 16-17 (a) Five snapshots of a wave traveling to the left, at the times \(t\) indicated below part (c) ( \(T\) is the period of oscillation). (b) Five snapshots of a wave identical to that in (a) but traveling to the right, at the same times \(t\).(c) Corresponding snapshots for the superposition of the two waves on the same string. At \(t=0, \frac{1}{2} T\), and \(T\), fully constructive interference occurs because of the alignment of peaks with peaks and valleys with valleys. At \(t=\frac{1}{4} T\) and \(\frac{3}{4} T\), fully destructive interference occurs because of the alignment of peaks with valleys. Some points (the nodes, marked with dots) never oscillate; some points (the antinodes) oscillate the most.

\(\overbrace{y^{\prime}(x, t)}^{\text {Displacement }}=\underbrace{\cos }_{\begin{array}{c}\text { Magnitude } \\ \begin{array}{c}\text { gives } \\ \text { amplitude } \\ \text { at position } x\end{array}\end{array} \underbrace{\left[2 y_{m} \sin k x\right]}_{\begin{array}{c}\text { Oscillating } \\ \text { term }\end{array}} \cos \omega \mathrm{t}}\)
Figure 16-18 The resultant wave of Eq. 16-60 is a standing wave and is due to the interference of two sinusoidal waves of the same amplitude and wavelength that travel in opposite directions.
principle graphically. The outstanding feature of the resultant wave is that there are places along the string, called nodes, where the string never moves. Four such nodes are marked by dots in Fig. 16-17c. Halfway between adjacent nodes are antinodes, where the amplitude of the resultant wave is a maximum. Wave patterns such as that of Fig. 16-17c are called standing waves because the wave patterns do not move left or right; the locations of the maxima and minima do not change.

If two sinusoidal waves of the same amplitude and wavelength travel in opposite directions along a stretched string, their interference with each other produces a standing wave.

To analyze a standing wave, we represent the two waves with the equations
and
\[
\begin{align*}
& y_{1}(x, t)=y_{m} \sin (k x-\omega t)  \tag{16-58}\\
& y_{2}(x, t)=y_{m} \sin (k x+\omega t) \tag{16-59}
\end{align*}
\]

The principle of superposition gives, for the combined wave,
\[
y^{\prime}(x, t)=y_{1}(x, t)+y_{2}(x, t)=y_{m} \sin (k x-\omega t)+y_{m} \sin (k x+\omega t) .
\]

Applying the trigonometric relation of Eq. 16-50 leads to Fig. 16-18 and
\[
\begin{equation*}
y^{\prime}(x, t)=\left[2 y_{m} \sin k x\right] \cos \omega t . \tag{16-60}
\end{equation*}
\]

This equation does not describe a traveling wave because it is not of the form of Eq. 16-17. Instead, it describes a standing wave.

The quantity \(2 y_{m} \sin k x\) in the brackets of Eq. 16-60 can be viewed as the amplitude of oscillation of the string element that is located at position \(x\). However, since an amplitude is always positive and \(\sin k x\) can be negative, we take the absolute value of the quantity \(2 y_{m} \sin k x\) to be the amplitude at \(x\).

In a traveling sinusoidal wave, the amplitude of the wave is the same for all string elements. That is not true for a standing wave, in which the amplitude varies with position. In the standing wave of Eq. 16-60, for example, the amplitude is zero for values of \(k x\) that give \(\sin k x=0\). Those values are
\[
\begin{equation*}
k x=n \pi, \quad \text { for } n=0,1,2, \ldots \tag{16-61}
\end{equation*}
\]

Substituting \(k=2 \pi / \lambda\) in this equation and rearranging, we get
\[
\begin{equation*}
x=n \frac{\lambda}{2}, \quad \text { for } n=0,1,2, \ldots \quad \text { (nodes) } \tag{16-62}
\end{equation*}
\]
as the positions of zero amplitude-the nodes-for the standing wave of Eq. 16-60. Note that adjacent nodes are separated by \(\lambda / 2\), half a wavelength.

The amplitude of the standing wave of Eq. 16-60 has a maximum value of \(2 y_{m}\), which occurs for values of \(k x\) that give \(|\sin k x|=1\). Those values are
\[
\begin{align*}
k x & =\frac{1}{2} \pi, \frac{3}{2} \pi, \frac{5}{2} \pi, \ldots \\
& =\left(n+\frac{1}{2}\right) \pi, \quad \text { for } n=0,1,2, \ldots \tag{16-63}
\end{align*}
\]

Substituting \(k=2 \pi / \lambda\) in Eq. 16-63 and rearranging, we get
\[
\begin{equation*}
x=\left(n+\frac{1}{2}\right) \frac{\lambda}{2}, \quad \text { for } n=0,1,2, \ldots \quad \text { (antinodes) } \tag{16-64}
\end{equation*}
\]
as the positions of maximum amplitude - the antinodes - of the standing wave of Eq. 16-60. Antinodes are separated by \(\lambda / 2\) and are halfway between nodes.

\section*{Reflections at a Boundary}

We can set up a standing wave in a stretched string by allowing a traveling wave to be reflected from the far end of the string so that the wave travels back
through itself. The incident (original) wave and the reflected wave can then be described by Eqs. 16-58 and 16-59, respectively, and they can combine to form a pattern of standing waves.

In Fig. 16-19, we use a single pulse to show how such reflections take place. In Fig. 16-19a, the string is fixed at its left end. When the pulse arrives at that end, it exerts an upward force on the support (the wall). By Newton's third law, the support exerts an opposite force of equal magnitude on the string. This second force generates a pulse at the support, which travels back along the string in the direction opposite that of the incident pulse. In a "hard" reflection of this kind, there must be a node at the support because the string is fixed there. The reflected and incident pulses must have opposite signs, so as to cancel each other at that point.

In Fig. 16-19b, the left end of the string is fastened to a light ring that is free to slide without friction along a rod. When the incident pulse arrives, the ring moves up the rod. As the ring moves, it pulls on the string, stretching the string and producing a reflected pulse with the same sign and amplitude as the incident pulse. Thus, in such a "soft" reflection, the incident and reflected pulses reinforce each other, creating an antinode at the end of the string; the maximum displacement of the ring is twice the amplitude of either of these two pulses.

\section*{Checkpoint 5}

Two waves with the same amplitude and wavelength interfere in three different situations to produce resultant waves with the following equations:
(1) \(y^{\prime}(x, t)=4 \sin (5 x-4 t)\)
(2) \(y^{\prime}(x, t)=4 \sin (5 x) \cos (4 t)\)
(3) \(y^{\prime}(x, t)=4 \sin (5 x+4 t)\)

In which situation are the two combining waves traveling (a) toward positive \(x\), (b) toward negative \(x\), and (c) in opposite directions?

\section*{Standing Waves and Resonance}

Consider a string, such as a guitar string, that is stretched between two clamps. Suppose we send a continuous sinusoidal wave of a certain frequency along the string, say, toward the right. When the wave reaches the right end, it reflects and begins to travel back to the left. That left-going wave then overlaps the wave that is still traveling to the right. When the left-going wave reaches the left end, it reflects again and the newly reflected wave begins to travel to the right, overlapping the left-going and right-going waves. In short, we very soon have many overlapping traveling waves, which interfere with one another.

For certain frequencies, the interference produces a standing wave pattern (or oscillation mode) with nodes and large antinodes like those in Fig. 16-20. Such a standing wave is said to be produced at resonance, and the string is said to resonate at these certain frequencies, called resonant frequencies. If the string

There are two ways a pulse can reflect from the end of a string.


Figuer 16-19 (a) A pulse incident from the right is reflected at the left end of the string, which is tied to a wall. Note that the reflected pulse is inverted from the incident pulse. (b) Here the left end of the string is tied to a ring that can slide without friction up and down the rod. Now the pulse is not inverted by the reflection.


Figure 16-20 Stroboscopic photographs reveal (imperfect) standing wave patterns on a string being made to oscillate by an oscillator at the left end. The patterns occur at certain frequencies of oscillation.


Second harmonic

Third harmonic

Figure 16-21 A string, stretched between two clamps, is made to oscillate in standing wave patterns. (a) The simplest possible pattern consists of one loop, which refers to the composite shape formed by the string in its extreme displacements (the solid and dashed lines). (b) The next simplest pattern has two loops. (c) The next has three loops.


Courtesy Thomas D. Rossing, Northern Illinois University

Figure 16-22 One of many possible standing wave patterns for a kettledrum head, made visible by dark powder sprinkled on the drumhead. As the head is set into oscillation at a single frequency by a mechanical oscillator at the upper left of the photograph, the powder collects at the nodes, which are circles and straight lines in this two-dimensional example.
is oscillated at some frequency other than a resonant frequency, a standing wave is not set up. Then the interference of the right-going and left-going traveling waves results in only small, temporary (perhaps even imperceptible) oscillations of the string.

Let a string be stretched between two clamps separated by a fixed distance \(L\). To find expressions for the resonant frequencies of the string, we note that a node must exist at each of its ends, because each end is fixed and cannot oscillate. The simplest pattern that meets this key requirement is that in Fig. 16-21a, which shows the string at both its extreme displacements (one solid and one dashed, together forming a single "loop"). There is only one antinode, which is at the center of the string. Note that half a wavelength spans the length \(L\), which we take to be the string's length. Thus, for this pattern, \(\lambda / 2=L\). This condition tells us that if the left-going and right-going traveling waves are to set up this pattern by their interference, they must have the wavelength \(\lambda=2 L\).

A second simple pattern meeting the requirement of nodes at the fixed ends is shown in Fig. 16-21b. This pattern has three nodes and two antinodes and is said to be a two-loop pattern. For the left-going and right-going waves to set it up, they must have a wavelength \(\lambda=L\). A third pattern is shown in Fig. 16-21c. It has four nodes, three antinodes, and three loops, and the wavelength is \(\lambda=\frac{2}{3} L\). We could continue this progression by drawing increasingly more complicated patterns. In each step of the progression, the pattern would have one more node and one more antinode than the preceding step, and an additional \(\lambda / 2\) would be fitted into the distance \(L\).

Thus, a standing wave can be set up on a string of length \(L\) by a wave with a wavelength equal to one of the values
\[
\begin{equation*}
\lambda=\frac{2 L}{n}, \quad \text { for } n=1,2,3, \ldots \tag{16-65}
\end{equation*}
\]

The resonant frequencies that correspond to these wavelengths follow from Eq. 16-13:
\[
\begin{equation*}
f=\frac{v}{\lambda}=n \frac{v}{2 L}, \quad \text { for } n=1,2,3, \ldots \tag{16-66}
\end{equation*}
\]

Here \(v\) is the speed of traveling waves on the string.
Equation 16-66 tells us that the resonant frequencies are integer multiples of the lowest resonant frequency, \(f=v / 2 L\), which corresponds to \(n=1\). The oscillation mode with that lowest frequency is called the fundamental mode or the first harmonic. The second harmonic is the oscillation mode with \(n=2\), the third harmonic is that with \(n=3\), and so on. The frequencies associated with these modes are often labeled \(f_{1}, f_{2}, f_{3}\), and so on. The collection of all possible oscillation modes is called the harmonic series, and \(n\) is called the harmonic number of the \(n\)th harmonic.

For a given string under a given tension, each resonant frequency corresponds to a particular oscillation pattern. Thus, if the frequency is in the audible range, you can hear the shape of the string. Resonance can also occur in two dimensions (such as on the surface of the kettledrum in Fig. 16-22) and in three dimensions (such as in the wind-induced swaying and twisting of a tall building).

\section*{Checkpoint 6}

In the following series of resonant frequencies, one frequency (lower than 400 Hz ) is missing: \(150,225,300,375 \mathrm{~Hz}\). (a) What is the missing frequency? (b) What is the frequency of the seventh harmonic?

\section*{Sample Problem 16.06 Resonance of transverse waves, standing waves, harmonics}

Figure 16-23 shows resonant oscillation of a string of mass \(m=2.500 \mathrm{~g}\) and length \(L=0.800 \mathrm{~m}\) and that is under tension \(\tau=325.0 \mathrm{~N}\). What is the wavelength \(\lambda\) of the transverse waves producing the standing wave pattern, and what is the harmonic number \(n\) ? What is the frequency \(f\) of the transverse waves and of the oscillations of the moving string elements? What is the maximum magnitude of the transverse velocity \(u_{m}\) of the element oscillating at coordinate \(x=0.180 \mathrm{~m}\) ? At what point during the element's oscillation is the transverse velocity maximum?

\section*{KEY IDEAS}
(1) The traverse waves that produce a standing wave pattern must have a wavelength such that an integer number \(n\) of half-wavelengths fit into the length \(L\) of the string. (2) The frequency of those waves and of the oscillations of the string elements is given by Eq. 16-66 \((f=n v / 2 L)\). (3) The displacement of a string element as a function of position \(x\) and time \(t\) is given by Eq. 16-60:
\[
\begin{equation*}
y^{\prime}(x, t)=\left[2 y_{m} \sin k x\right] \cos \omega t \tag{16-67}
\end{equation*}
\]

Wavelength and harmonic number: In Fig. 16-23, the solid line, which is effectively a snapshot (or freeze-frame) of the oscillations, reveals that 2 full wavelengths fit into the length \(L=0.800 \mathrm{~m}\) of the string. Thus, we have
or
\[
\begin{align*}
2 \lambda & =L, \\
\lambda & =\frac{L}{2} .  \tag{16-68}\\
& =\frac{0.800 \mathrm{~m}}{2}=0.400 \mathrm{~m} .
\end{align*}
\]
(Answer)
By counting the number of loops (or half-wavelengths) in Fig. 16-23, we see that the harmonic number is
\[
n=4
\]
(Answer)
We also find \(n=4\) by comparing Eqs. 16-68 and 16-65 ( \(\lambda=\) \(2 L / n)\). Thus, the string is oscillating in its fourth harmonic.

Frequency: We can get the frequency \(f\) of the transverse waves from Eq. 16-13 \((v=\lambda f)\) if we first find the speed \(v\) of the waves. That speed is given by Eq. 16-26, but we must substitute \(m / L\) for the unknown linear density \(\mu\). We obtain
\[
\begin{aligned}
v & =\sqrt{\frac{\tau}{\mu}}=\sqrt{\frac{\tau}{m / L}}=\sqrt{\frac{\tau L}{m}} \\
& =\sqrt{\frac{(325 \mathrm{~N})(0.800 \mathrm{~m})}{2.50 \times 10^{-3} \mathrm{~kg}}}=322.49 \mathrm{~m} / \mathrm{s} .
\end{aligned}
\]

After rearranging Eq. 16-13, we write
\[
f=\frac{v}{\lambda}=\frac{322.49 \mathrm{~m} / \mathrm{s}}{0.400 \mathrm{~m}}
\]


Figure 16-23 Resonant oscillation of a string under tension.
\[
=806.2 \mathrm{~Hz} \approx 806 \mathrm{~Hz}
\]
(Answer)
Note that we get the same answer by substituting into Eq. 16-66:
\[
\begin{aligned}
f & =n \frac{v}{2 L}=4 \frac{322.49 \mathrm{~m} / \mathrm{s}}{2(0.800 \mathrm{~m})} \\
& =806 \mathrm{~Hz} .
\end{aligned}
\]
(Answer)
Now note that this 806 Hz is not only the frequency of the waves producing the fourth harmonic but also it is said to be the fourth harmonic, as in the statement, "The fourth harmonic of this oscillating string is 806 Hz ." It is also the frequency of the string elements as they oscillate vertically in the figure in simple harmonic motion, just as a block on a vertical spring would oscillate in simple harmonic motion. Finally, it is also the frequency of the sound you would hear as the oscillating string periodically pushes against the air.

Transverse velocity: The displacement \(y^{\prime}\) of the string element located at coordinate \(x\) is given by Eq. \(16-67\) as a function of time \(t\). The term \(\cos \omega t\) contains the dependence on time and thus provides the "motion" of the standing wave. The term \(2 y_{m} \sin k x\) sets the extent of the motionthat is, the amplitude. The greatest amplitude occurs at an antinode, where \(\sin k x\) is +1 or -1 and thus the greatest amplitude is \(2 y_{m}\). From Fig. 16-23, we see that \(2 y_{m}=4.00 \mathrm{~mm}\), which tells us that \(y_{m}=2.00 \mathrm{~mm}\).

We want the transverse velocity-the velocity of a string element parallel to the \(y\) axis. To find it, we take the time derivative of Eq. 16-67:
\[
\begin{align*}
u(x, t) & =\frac{\partial y^{\prime}}{\partial t}=\frac{\partial}{\partial t}\left[\left(2 y_{m} \sin k x\right) \cos \omega t\right] \\
& =\left[-2 y_{m} \omega \sin k x\right] \sin \omega t \tag{16-69}
\end{align*}
\]

Here the term \(\sin \omega t\) provides the variation with time and the term \(-2 y_{m} \omega \sin k x\) provides the extent of that variation. We want the absolute magnitude of that extent:
\[
u_{m}=\left|-2 y_{m} \omega \sin k x\right|
\]

To evaluate this for the element at \(x=0.180 \mathrm{~m}\), we first note that \(y_{m}=2.00 \mathrm{~mm}, k=2 \pi / \lambda=2 \pi /(0.400 \mathrm{~m})\), and \(\omega=\) \(2 \pi f=2 \pi(806.2 \mathrm{~Hz})\). Then the maximum speed of the element at \(x=0.180 \mathrm{~m}\) is
\[
\begin{aligned}
u_{m}= & \mid-2\left(2.00 \times 10^{-3} \mathrm{~m}\right)(2 \pi)(806.2 \mathrm{~Hz}) \\
& \left.\times \sin \left(\frac{2 \pi}{0.400 \mathrm{~m}}(0.180 \mathrm{~m})\right) \right\rvert\, \\
= & 6.26 \mathrm{~m} / \mathrm{s}
\end{aligned}
\]
(Answer)

To determine when the string element has this maximum speed, we could investigate Eq. 16-69. However, a little thought can save a lot of work. The element is undergoing SHM and must come to a momentary stop at its extreme upward position and extreme downward position. It has the greatest speed as it zips through the midpoint of its oscillation, just as a block does in a block - spring oscillator.

\section*{SReview \& Summary}

Transverse and Longitudinal Waves Mechanical waves can exist only in material media and are governed by Newton's laws. Transverse mechanical waves, like those on a stretched string, are waves in which the particles of the medium oscillate perpendicular to the wave's direction of travel. Waves in which the particles of the medium oscillate parallel to the wave's direction of travel are longitudinal waves.

Sinusoidal Waves A sinusoidal wave moving in the positive direction of an \(x\) axis has the mathematical form
\[
\begin{equation*}
y(x, t)=y_{m} \sin (k x-\omega t) \tag{16-2}
\end{equation*}
\]
where \(y_{m}\) is the amplitude of the wave, \(k\) is the angular wave number, \(\omega\) is the angular frequency, and \(k x-\omega t\) is the phase. The wavelength \(\lambda\) is related to \(k\) by
\[
\begin{equation*}
k=\frac{2 \pi}{\lambda} . \tag{16-5}
\end{equation*}
\]

The period \(T\) and frequency \(f\) of the wave are related to \(\omega\) by
\[
\begin{equation*}
\frac{\omega}{2 \pi}=f=\frac{1}{T} \tag{16-9}
\end{equation*}
\]

Finally, the wave speed \(v\) is related to these other parameters by
\[
\begin{equation*}
v=\frac{\omega}{k}=\frac{\lambda}{T}=\lambda f \tag{16-13}
\end{equation*}
\]

Equation of a Traveling Wave Any function of the form
\[
\begin{equation*}
y(x, t)=h(k x \pm \omega t) \tag{16-17}
\end{equation*}
\]
can represent a traveling wave with a wave speed given by Eq. 16-13 and a wave shape given by the mathematical form of \(h\). The plus sign denotes a wave traveling in the negative direction of the \(x\) axis, and the minus sign a wave traveling in the positive direction.

Wave Speed on Stretched String The speed of a wave on a stretched string is set by properties of the string. The speed on a string with tension \(\tau\) and linear density \(\mu\) is
\[
\begin{equation*}
v=\sqrt{\frac{\tau}{\mu}} \tag{16-26}
\end{equation*}
\]

Power The average power of, or average rate at which energy is transmitted by, a sinusoidal wave on a stretched string is given by
\[
\begin{equation*}
P_{\text {avg }}=\frac{1}{2} \mu \nu \omega^{2} y_{m}^{2} \text {. } \tag{16-33}
\end{equation*}
\]

Superposition of Waves When two or more waves traverse the same medium, the displacement of any particle of the medium is the sum of the displacements that the individual waves would give it.

Interference of Waves Two sinusoidal waves on the same string exhibit interference, adding or canceling according to the principle of superposition. If the two are traveling in the same direction and have the same amplitude \(y_{m}\) and frequency (hence the same wavelength) but differ in phase by a phase constant \(\phi\), the result is a single wave with this same frequency:
\[
\begin{equation*}
y^{\prime}(x, t)=\left[2 y_{m} \cos \frac{1}{2} \phi\right] \sin \left(k x-\omega t+\frac{1}{2} \phi\right) . \tag{16-51}
\end{equation*}
\]

If \(\phi=0\), the waves are exactly in phase and their interference is fully constructive; if \(\phi=\pi \mathrm{rad}\), they are exactly out of phase and their interference is fully destructive.

Phasors A wave \(y(x, t)\) can be represented with a phasor. This is a vector that has a magnitude equal to the amplitude \(y_{m}\) of the wave and that rotates about an origin with an angular speed equal to the angular frequency \(\omega\) of the wave. The projection of the rotating phasor on a vertical axis gives the displacement \(y\) of a point along the wave's travel.

Standing Waves The interference of two identical sinusoidal waves moving in opposite directions produces standing waves. For a string with fixed ends, the standing wave is given by
\[
\begin{equation*}
y^{\prime}(x, t)=\left[2 y_{m} \sin k x\right] \cos \omega t . \tag{16-60}
\end{equation*}
\]

Standing waves are characterized by fixed locations of zero displacement called nodes and fixed locations of maximum displacement called antinodes.

Resonance Standing waves on a string can be set up by reflection of traveling waves from the ends of the string. If an end is fixed, it must be the position of a node. This limits the frequencies at which standing waves will occur on a given string. Each possible frequency is a resonant frequency, and the corresponding standing wave pattern is an oscillation mode. For a stretched string of length \(L\) with fixed ends, the resonant frequencies are
\[
\begin{equation*}
f=\frac{v}{\lambda}=n \frac{v}{2 L}, \quad \text { for } n=1,2,3, \ldots \tag{16-66}
\end{equation*}
\]

The oscillation mode corresponding to \(n=1\) is called the fundamental mode or the first harmonic; the mode corresponding to \(n=2\) is the second harmonic; and so on.

\section*{Questions}

1 The following four waves are sent along strings with the same linear densities ( \(x\) is in meters and \(t\) is in seconds). Rank the waves according to (a) their wave speed and (b) the tension in the strings along which they travel, greatest first:
(1) \(y_{1}=(3 \mathrm{~mm}) \sin (x-3 t)\),
(3) \(y_{3}=(1 \mathrm{~mm}) \sin (4 x-t)\),
(2) \(y_{2}=(6 \mathrm{~mm}) \sin (2 x-t)\),
(4) \(y_{4}=(2 \mathrm{~mm}) \sin (x-2 t)\).

2 In Fig. 16-24, wave 1 consists of a rectangular peak of height 4 units and width \(d\), and a rectangular valley of depth 2 units and width \(d\). The wave travels rightward along an \(x\) axis. Choices 2,3 , and 4 are similar waves, with the same heights, depths, and widths, that will travel leftward along that axis and through wave 1 . Right-going wave 1 and one of the left-going waves will interfere as they pass through each other. With which left-going wave will the interference give, for an instant, (a) the deepest valley, (b) a flat line, and (c) a flat peak \(2 d\) wide?


Figure 16-24 Question 2.
3 Figure 16-25a gives a snapshot of a wave traveling in the direction of positive \(x\) along a string under tension. Four string elements are indicated by the lettered points. For each of those elements, determine whether, at the instant of the snapshot, the element is moving upward or downward or is momentarily at rest. (Hint: Imagine the wave as it moves through the four string elements, as if you were watching a video of the wave as it traveled rightward.)

Figure \(16-25 b\) gives the displacement of a string element located at, say, \(x=0\) as a function of time. At the lettered times, is the element moving upward or downward or is it momentarily at rest?


Figure 16-25 Question 3.
4 Figure 16-26 shows three waves that are separately sent along a string that is stretched under a certain tension along an \(x\) axis. Rank the waves according to their (a) wavelengths, (b) speeds, and (c) angular frequencies, greatest first.

5 If you start with two sinusoidal waves of the same amplitude traveling in phase on a string and then


Figure 16-26 Question 4. somehow phase-shift one of them by 5.4 wavelengths, what type of interference will occur on the string?

6 The amplitudes and phase differences for four pairs of waves of equal wavelengths are (a) \(2 \mathrm{~mm}, 6 \mathrm{~mm}\), and \(\pi \mathrm{rad}\); (b) \(3 \mathrm{~mm}, 5 \mathrm{~mm}\), and \(\pi \mathrm{rad}\); (c) \(7 \mathrm{~mm}, 9 \mathrm{~mm}\), and \(\pi \mathrm{rad}\); (d) 2 mm , 2 mm , and 0 rad . Each pair travels in the same direction along the same string. Without written calculation, rank the four pairs according to the amplitude of their resultant wave, greatest first. (Hint: Construct phasor diagrams.)
7 A sinusoidal wave is sent along a cord under tension, transporting energy at the average rate of \(P_{\text {avg }, 1}\). Two waves, identical to that first one, are then to be sent along the cord with a phase difference \(\phi\) of either \(0,0.2\) wavelength, or 0.5 wavelength. (a) With only mental calculation, rank those choices of \(\phi\) according to the average rate at which the waves will transport energy, greatest first. (b) For the first choice of \(\phi\), what is the average rate in terms of \(P_{\text {avg }, 1}\) ?
8 (a) If a standing wave on a string is given by
\[
y^{\prime}(t)=(3 \mathrm{~mm}) \sin (5 x) \cos (4 t)
\]
is there a node or an antinode of the oscillations of the string at \(x=0\) ? (b) If the standing wave is given by
\[
y^{\prime}(t)=(3 \mathrm{~mm}) \sin (5 x+\pi / 2) \cos (4 t)
\]
is there a node or an antinode at \(x=0\) ?
9 Strings \(A\) and \(B\) have identical lengths and linear densities, but string \(B\) is under greater tension than string \(A\). Figure \(16-27\) shows four situations, (a) through \((d)\), in which standing wave patterns exist on the two strings. In which situations is there the possibility that strings \(A\) and \(B\) are oscillating at the same resonant frequency?

(a)


(b)


(c)


(d)

Figure 16-27 Question 9.

10 If you set up the seventh harmonic on a string, (a) how many nodes are present, and (b) is there a node, antinode, or some intermediate state at the midpoint? If you next set up the sixth harmonic, (c) is its resonant wavelength longer or shorter than that for the seventh harmonic, and (d) is
the resonant frequency higher or lower?
11 Figure 16-28 shows phasor diagrams for three situations in which two waves travel along the


Figure 16-28 Question 11. same string. All six waves have the same amplitude. Rank the situations according to the amplitude of the net wave on the string, greatest first.

\section*{Problems}
```

Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign
SSM Worked-out solution available in Student Solutions Manual WWW Worked-out solution is a

- Number of dots indicates level of problem difficulty ILW Interactive solution is at http://www.wiley.com/college/halliday
Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

```

\section*{Module 16-1 Transverse Waves}
-1 If a wave \(y(x, t)=(6.0 \mathrm{~mm}) \sin (k x+(600 \mathrm{rad} / \mathrm{s}) t+\phi)\) travels along a string, how much time does any given point on the string take to move between displacements \(y=+2.0 \mathrm{~mm}\) and \(y=-2.0 \mathrm{~mm}\) ?
-2 A human wave. During sporting events within large, densely packed stadiums, spectators will send a wave (or pulse) around the stadium (Fig. 16-29). As the wave reaches a group of spectators, they stand with a cheer and then sit. At any instant, the width \(w\) of the wave


Figure 16-29 Problem 2. is the distance from the leading edge (people are just about to stand) to the trailing edge (people have just sat down). Suppose a human wave travels a distance of 853 seats around a stadium in 39 s , with spectators requiring about 1.8 s to respond to the wave's passage by standing and then sitting. What are (a) the wave speed \(v\) (in seats per second) and (b) width \(w\) (in number of seats)?
-3 A wave has an angular frequency of \(110 \mathrm{rad} / \mathrm{s}\) and a wavelength of 1.80 m . Calculate (a) the angular wave number and (b) the speed of the wave.
-4 A sand scorpion can detect the motion of a nearby beetle (its prey) by the waves the motion sends along the sand surface (Fig. 16-30). The waves are of two types: transverse waves traveling at \(v_{t}=50 \mathrm{~m} / \mathrm{s}\) and longitudinal waves traveling at \(v_{l}=150 \mathrm{~m} / \mathrm{s}\). If a sudden motion sends out such waves, a scorpion can tell the distance of the beetle from the difference \(\Delta t\) in the arrival times of the waves at its leg nearest the beetle. If \(\Delta t=4.0 \mathrm{~ms}\), what is the beetle's distance?
-5 A sinusoidal wave travels along


Figure 16-30 Problem 4. a string. The time for a particular point to move from maximum displacement to zero is 0.170 s . What are the (a) period and (b) frequency? (c) The wavelength is 1.40 m ; what is the wave speed?
-•6 (60 A sinusoidal wave travels along a string under tension. Figure 16-31 gives the slopes along the string at time \(t=0\). The scale of the \(x\) axis is set by \(x_{s}=\) 0.80 m . What is the amplitude of


Figure 16-31 Problem 6. the wave?
\(\bullet 7\) A transverse sinusoidal wave is moving along a string in the positive direction of an \(x\) axis with a speed of \(80 \mathrm{~m} / \mathrm{s}\). At \(t=0\), the string particle at \(x=0\) has a transverse displacement of 4.0 cm from its equilibrium position and is not moving. The maximum
transverse speed of the string particle at \(x=0\) is \(16 \mathrm{~m} / \mathrm{s}\). (a) What is the frequency of the wave? (b) What is the wavelength of the wave? If \(y(x, t)=y_{m} \sin (k x \pm \omega t+\phi)\) is the form of the wave equation, what are (c) \(y_{m}\), (d) \(k\), (e) \(\omega\), (f) \(\phi\), and (g) the correct choice of sign in front of \(\omega\) ?
-๐ © Figure 16-32 shows the transverse velocity \(u\) versus time \(t\) of the point on a string at \(x=0\), as a wave passes through it. The scale on the vertical axis is set by \(u_{s}=4.0 \mathrm{~m} / \mathrm{s}\). The wave has the generic form \(y(x, t)=\) \(y_{m} \sin (k x-\omega t+\phi)\). What then is \(\phi\) ? (Caution: A calculator does not always give the proper inverse trig function, so


Figure 16-32 Problem 8. check your answer by substituting it and an assumed value of \(\omega\) into \(y(x, t)\) and then plotting the function.)
\(\bullet 9\) A sinusoidal wave moving along a string is shown twice in Fig. 16-33, as crest \(A\) travels in the positive direction of an \(x\) axis by distance \(d=6.0 \mathrm{~cm}\) in 4.0 ms . The tick marks along the axis are separated by 10 cm ; height \(H=6.00 \mathrm{~mm}\). The equation for the wave is in the form \(y(x, t)=y_{m} \sin (k x \pm \omega t)\), so what are (a) \(y_{m}\), (b) \(k\), (c) \(\omega\), and (d) the correct choice of sign in front of \(\omega\) ?
- 10 The equation of a transverse wave traveling along a very long string is \(y=6.0 \sin (0.020 \pi x+4.0 \pi t)\), where \(x\) and \(y\) are expressed in centimeters and \(t\) is in seconds. Determine (a) the amplitude, (b) the wavelength, (c) the frequency, (d) the speed, (e) the direction of propagation of the wave, and (f) the maximum transverse speed of a particle in the string. (g) What is the transverse displacement at \(x=3.5 \mathrm{~cm}\) when \(t=\) 0.26 s?
-011 ©0 A sinusoidal transverse wave of wavelength 20 cm travels along a string in the positive direction of an \(x\) axis. The displacement \(y\) of the string particle at \(x=0\) is given in


Figure 16-34 Problem 11. Fig. 16-34 as a function of time \(t\). The scale of the vertical axis is set by \(y_{s}=4.0 \mathrm{~cm}\). The wave equation is to be in the form \(y(x, t)=y_{m} \sin (k x \pm \omega t+\phi)\). (a) At \(t=0\), is a plot of \(y\) versus \(x\) in the shape of a positive sine function or a negative sine function? What are (b) \(y_{m}\), (c) \(k\), (d) \(\omega\), (e) \(\phi\), (f) the sign in front of \(\omega\), and (g) the speed of the wave? (h) What is the transverse velocity of the particle at \(x=0\) when \(t=5.0 \mathrm{~s}\) ?
-12 ©0 The function \(y(x, t)=(15.0 \mathrm{~cm}) \cos (\pi x-15 \pi t)\), with \(x\) in meters and \(t\) in seconds, describes a wave on a taut string. What is
the transverse speed for a point on the string at an instant when that point has the displacement \(y=+12.0 \mathrm{~cm}\) ?
-•13 ILW A sinusoidal wave of frequency 500 Hz has a speed of \(350 \mathrm{~m} / \mathrm{s}\). (a) How far apart are two points that differ in phase by \(\pi / 3\) rad? (b) What is the phase difference between two displacements at a certain point at times 1.00 ms apart?

Module 16-2 Wave Speed on a Stretched String
-14 The equation of a transverse wave on a string is
\[
y=(2.0 \mathrm{~mm}) \sin \left[\left(20 \mathrm{~m}^{-1}\right) x-\left(600 \mathrm{~s}^{-1}\right) t\right]
\]

The tension in the string is 15 N . (a) What is the wave speed? (b) Find the linear density of this string in grams per meter.
-15 SSM WWW A stretched string has a mass per unit length of \(5.00 \mathrm{~g} / \mathrm{cm}\) and a tension of 10.0 N . A sinusoidal wave on this string has an amplitude of 0.12 mm and a frequency of 100 Hz and is traveling in the negative direction of an \(x\) axis. If the wave equation is of the form \(y(x, t)=y_{m} \sin \left(k x \pm \omega t\right.\), what are (a) \(y_{m}\), (b) \(k\), (c) \(\omega\), and (d) the correct choice of sign in front of \(\omega\) ?
-16 The speed of a transverse wave on a string is \(170 \mathrm{~m} / \mathrm{s}\) when the string tension is 120 N . To what value must the tension be changed to raise the wave speed to \(180 \mathrm{~m} / \mathrm{s}\) ?
-17 The linear density of a string is \(1.6 \times 10^{-4} \mathrm{~kg} / \mathrm{m}\). A transverse wave on the string is described by the equation
\[
y=(0.021 \mathrm{~m}) \sin \left[\left(2.0 \mathrm{~m}^{-1}\right) x+\left(30 \mathrm{~s}^{-1}\right) t\right]
\]

What are (a) the wave speed and (b) the tension in the string?
-18 The heaviest and lightest strings on a certain violin have linear densities of 3.0 and \(0.29 \mathrm{~g} / \mathrm{m}\). What is the ratio of the diameter of the heaviest string to that of the lightest string, assuming that the strings are of the same material?
-19 SSM What is the speed of a transverse wave in a rope of length 2.00 m and mass 60.0 g under a tension of 500 N ?
-20 The tension in a wire clamped at both ends is doubled without appreciably changing the wire's length between the clamps. What is the ratio of the new to the old wave speed for transverse waves traveling along this wire?
\(\bullet 21\) ILW A 100 g wire is held under a tension of 250 N with one end at \(x=0\) and the other at \(x=10.0 \mathrm{~m}\). At time \(t=0\), pulse 1 is sent along the wire from the end at \(x=10.0 \mathrm{~m}\). At time \(t=30.0\) ms , pulse 2 is sent along the wire from the end at \(x=0\). At what position \(x\) do the pulses begin to meet?
-222 A sinusoidal wave is traveling on a string with speed \(40 \mathrm{~cm} / \mathrm{s}\). The displacement of the particles of the string at \(x=10 \mathrm{~cm}\) varies with time according to \(y=(5.0 \mathrm{~cm}) \sin \left[1.0-\left(4.0 \mathrm{~s}^{-1}\right) t\right]\). The linear density of the string is \(4.0 \mathrm{~g} / \mathrm{cm}\). What are (a) the frequency and (b) the wavelength of the wave? If the wave equation is of the form \(y(x, t)=\) \(y_{m} \sin (k x \pm \omega t)\), what are (c) \(y_{m}\), (d) \(k\), (e) \(\omega\), and (f) the correct choice of sign in front of \(\omega\) ? (g) What is the tension in the string?
-223 SSM ILW A sinusoidal transverse wave is traveling along a string in the negative direction of an \(x\) axis. Figure 16-35 shows a plot of the dis-


Figure 16-35 Problem 23.
placement as a function of position at time \(t=0\); the scale of the \(y\) axis is set by \(y_{s}=4.0 \mathrm{~cm}\). The string tension is 3.6 N , and its linear density is \(25 \mathrm{~g} / \mathrm{m}\). Find the (a) amplitude, (b) wavelength, (c) wave speed, and (d) period of the wave. (e) Find the maximum transverse speed of a particle in the string. If the wave is of the form \(y(x, t)=y_{m} \sin (k x \pm \omega t+\phi)\), what are (f) \(k,(\mathrm{~g}) \omega,(\mathrm{h})\) \(\phi\), and (i) the correct choice of sign in front of \(\omega\) ?
\(\cdots 24\) In Fig. 16-36a, string 1 has a linear density of \(3.00 \mathrm{~g} / \mathrm{m}\), and string 2 has a linear density of 5.00 \(\mathrm{g} / \mathrm{m}\). They are under tension due to the hanging block of mass \(M=500\) g. Calculate the wave speed on (a) string 1 and (b) string 2. (Hint: When a string loops halfway around a pulley, it pulls on the pulley with a net force that is twice the tension in the string.) Next the block is divided into two blocks (with \(M_{1}+M_{2}=M\) ) and the apparatus is rearranged as shown in Fig. 16-36b. Find (c) \(M_{1}\) and (d) \(M_{2}\) such that the wave speeds in the two strings are equal.
\(\bullet 25\) A uniform rope of mass \(m\) and length \(L\) hangs from a ceiling. (a) Show that the speed of a transverse wave on the rope is a function


Figure 16-36 Problem 24. of \(y\), the distance from the lower end, and is given by \(v=\sqrt{g y}\). (b) Show that the time a transverse wave takes to travel the length of the rope is given by \(t=2 \sqrt{L / g}\).

\section*{Module 16-3 Energy and Power of a Wave Traveling \\ Along a String}
-26 A string along which waves can travel is 2.70 m long and has a mass of 260 g . The tension in the string is 36.0 N . What must be the frequency of traveling waves of amplitude 7.70 mm for the average power to be 85.0 W ?
\(\bullet 27\) © 0 A sinusoidal wave is sent along a string with a linear density of \(2.0 \mathrm{~g} / \mathrm{m}\). As it travels, the kinetic energies of the mass elements along the string vary. Figure 16-37a gives the rate \(d K / d t\) at which kinetic energy passes through the string elements at a particular instant, plotted as a function of distance \(x\) along the string. Figure \(16-37 b\) is similar except that it gives the rate at which kinetic energy passes through a particular mass element (at a particular location), plotted as a function of time \(t\). For both figures, the scale on the vertical (rate) axis is set by \(R_{s}=10 \mathrm{~W}\). What is the amplitude of the wave?


Figure 16-37 Problem 27.

\section*{Module 16-4 The Wave Equation}
-28 Use the wave equation to find the speed of a wave given by
\[
y(x, t)=(3.00 \mathrm{~mm}) \sin \left[\left(4.00 \mathrm{~m}^{-1}\right) x-\left(7.00 \mathrm{~s}^{-1}\right) t\right] .
\]
-29 Use the wave equation to find the speed of a wave given by
\[
y(x, t)=(2.00 \mathrm{~mm})\left[\left(20 \mathrm{~m}^{-1}\right) x-\left(4.0 \mathrm{~s}^{-1}\right) t\right]^{0.5} .
\]
\({ }^{\circ} \circ 30\) Use the wave equation to find the speed of a wave given in terms of the general function \(h(x, t)\) :
\[
y(x, t)=(4.00 \mathrm{~mm}) h\left[\left(30 \mathrm{~m}^{-1}\right) x+\left(6.0 \mathrm{~s}^{-1}\right) t\right] .
\]

\section*{Module 16-5 Interference of Waves}
-31 SSM Two identical traveling waves, moving in the same direction, are out of phase by \(\pi / 2 \mathrm{rad}\). What is the amplitude of the resultant wave in terms of the common amplitude \(y_{m}\) of the two combining waves?
-32 What phase difference between two identical traveling waves, moving in the same direction along a stretched string, results in the combined wave having an amplitude 1.50 times that of the common amplitude of the two combining waves? Express your answer in (a) degrees, (b) radians, and (c) wavelengths.
-•33 © Two sinusoidal waves with the same amplitude of 9.00 mm and the same wavelength travel together along a string that is stretched along an \(x\) axis. Their resultant wave is shown twice in Fig. 16-38, as valley \(A\) travels in the negative direction of the \(x\) axis by distance \(d=56.0 \mathrm{~cm}\) in 8.0 ms . The tick marks along the axis are separated by 10 cm , and height \(H\) is 8.0 mm . Let the equation for one wave be of the form \(y(x, t)=y_{m} \sin \left(k x \pm \omega t+\phi_{1}\right)\), where \(\phi_{1}=0\) and you must choose the correct sign in front of \(\omega\). For the equation for the other wave, what are (a) \(y_{m}\), (b) \(k\), (c) \(\omega\), (d) \(\phi_{2}\), and (e) the sign in front of \(\omega\) ?
©0034 (60 A sinusoidal wave of angular frequency \(1200 \mathrm{rad} / \mathrm{s}\) and amplitude 3.00 mm is sent along a cord with linear density \(2.00 \mathrm{~g} / \mathrm{m}\) and tension 1200 N . (a) What is the average rate at which energy is transported by the wave to the opposite end of the cord? (b) If, simultaneously, an identical wave travels along an adjacent, identical cord, what is the total average rate at which energy is transported to the opposite ends of the two cords by the waves? If, instead, those two waves are sent along the same cord simultaneously, what is the total average rate at which they transport energy when their phase difference is (c) 0, (d) \(0.4 \pi \mathrm{rad}\), and (e) \(\pi \mathrm{rad}\) ?

\section*{Module 16-6 Phasors}
-35 SSM Two sinusoidal waves of the same frequency travel in the same direction along a string. If \(y_{m 1}=3.0 \mathrm{~cm}, y_{m 2}=4.0 \mathrm{~cm}\), \(\phi_{1}=0\), and \(\phi_{2}=\pi / 2 \mathrm{rad}\), what is the amplitude of the resultant wave?
-•36 Four waves are to be sent along the same string, in the same direction:
\[
\begin{aligned}
& y_{1}(x, t)=(4.00 \mathrm{~mm}) \sin (2 \pi x-400 \pi t) \\
& y_{2}(x, t)=(4.00 \mathrm{~mm}) \sin (2 \pi x-400 \pi t+0.7 \pi) \\
& y_{3}(x, t)=(4.00 \mathrm{~mm}) \sin (2 \pi x-400 \pi t+\pi) \\
& y_{4}(x, t)=(4.00 \mathrm{~mm}) \sin (2 \pi x-400 \pi t+1.7 \pi) .
\end{aligned}
\]

What is the amplitude of the resultant wave?
-•37 (60 These two waves travel along the same string:
\[
\begin{aligned}
& y_{1}(x, t)=(4.60 \mathrm{~mm}) \sin (2 \pi x-400 \pi t) \\
& y_{2}(x, t)=(5.60 \mathrm{~mm}) \sin (2 \pi x-400 \pi t+0.80 \pi \mathrm{rad})
\end{aligned}
\]

What are (a) the amplitude and (b) the phase angle (relative to wave 1) of the resultant wave? (c) If a third wave of amplitude 5.00 mm is also to be sent along the string in the same direction as the first two waves, what should be its phase angle in order to maximize the amplitude of the new resultant wave?
-038 Two sinusoidal waves of the same frequency are to be sent in the same direction along a taut string. One wave has an amplitude of 5.0 mm , the other 8.0 mm . (a) What phase difference \(\phi_{1}\) between the two waves results in the smallest amplitude of the resultant wave? (b) What is that smallest amplitude? (c) What phase difference \(\phi_{2}\) results in the largest amplitude of the resultant wave? (d) What is that largest amplitude? (e) What is the resultant amplitude if the phase angle is \(\left(\phi_{1}-\phi_{2}\right) / 2\) ?
-039 Two sinusoidal waves of the same period, with amplitudes of 5.0 and 7.0 mm , travel in the same direction along a stretched string; they produce a resultant wave with an amplitude of 9.0 mm . The phase constant of the 5.0 mm wave is 0 . What is the phase constant of the 7.0 mm wave?

\section*{Module 16-7 Standing Waves and Resonance}
-40 Two sinusoidal waves with identical wavelengths and amplitudes travel in opposite directions along a string with a speed of \(10 \mathrm{~cm} / \mathrm{s}\). If the time interval between instants when the string is flat is 0.50 s , what is the wavelength of the waves?
041 SSM A string fixed at both ends is 8.40 m long and has a mass of 0.120 kg . It is subjected to a tension of 96.0 N and set oscillating. (a) What is the speed of the waves on the string? (b) What is the longest possible wavelength for a standing wave? (c) Give the frequency of that wave.
-42 A string under tension \(\tau_{i}\) oscillates in the third harmonic at frequency \(f_{3}\), and the waves on the string have wavelength \(\lambda_{3}\). If the tension is increased to \(\tau_{f}=4 \tau_{i}\) and the string is again made to oscillate in the third harmonic, what then are (a) the frequency of oscillation in terms of \(f_{3}\) and (b) the wavelength of the waves in terms of \(\lambda_{3}\) ?
\(\bullet 43\) SSM Www What are (a) the lowest frequency, (b) the second lowest frequency, and (c) the third lowest frequency for standing waves on a wire that is 10.0 m long, has a mass of 100 g , and is stretched under a tension of 250 N ?
-44 A 125 cm length of string has mass 2.00 g and tension 7.00 N . (a) What is the wave speed for this string? (b) What is the lowest resonant frequency of this string?
-45 SSM ILW A string that is stretched between fixed supports separated by 75.0 cm has resonant frequencies of 420 and 315 Hz , with no intermediate resonant frequencies. What are (a) the lowest resonant frequency and (b) the wave speed?
-46 String \(A\) is stretched between two clamps separated by distance \(L\). String \(B\), with the same linear density and under the same tension as string \(A\), is stretched between two clamps separated by distance \(4 L\). Consider the first eight harmonics of string \(B\). For which of these eight harmonics of \(B\) (if any) does the frequency match the frequency of (a) \(A\) 's first harmonic, (b) \(A\) 's second harmonic, and (c) \(A\) 's third harmonic?
-47 One of the harmonic frequencies for a particular string under tension is 325 Hz . The next higher harmonic frequency is 390 Hz .

What harmonic frequency is next higher after the harmonic frequency 195 Hz ?
-48 If a transmission line in a cold climate collects ice, the increased diameter tends to cause vortex formation in a passing wind. The air pressure variations in the vortexes tend to cause the line to oscillate (gallop), especially if the frequency of the variations matches a resonant frequency of the line. In long lines, the resonant frequencies are so close that almost any wind speed can set up a resonant mode vigorous enough to pull down support towers or cause the line to short out with an adjacent line. If a transmission line has a length of 347 m , a linear density of \(3.35 \mathrm{~kg} / \mathrm{m}\), and a tension of 65.2 MN , what are (a) the frequency of the fundamental mode and (b) the frequency difference between successive modes?
-49 ILW A nylon guitar string has a linear density of \(7.20 \mathrm{~g} / \mathrm{m}\) and is under a tension of 150 N . The fixed supports are distance \(D=90.0 \mathrm{~cm}\) apart. The string is oscillating in the standing wave pat-


Figure 16-39 Problem 49. tern shown in Fig. 16-39. Calculate the (a) speed, (b) wavelength, and (c) frequency of the traveling waves whose superposition gives this standing wave.
-•50 For a particular transverse standing wave on a long string, one of the antinodes is at \(x=0\) and an adjacent node is at \(x=0.10 \mathrm{~m}\). The displacement \(y(t)\) of the string particle at \(x=0\) is shown in Fig. 16-40, where the scale of the \(y\) axis is set by \(y_{s}=4.0 \mathrm{~cm}\). When \(t=0.50 \mathrm{~s}\), what is the displacement of the string particle


Figure 16-40 Problem 50. at (a) \(x=0.20 \mathrm{~m}\) and (b) \(x=0.30 \mathrm{~m}\) ? What is the transverse velocity of the string particle at \(x=0.20 \mathrm{~m}\) at (c) \(t=0.50 \mathrm{~s}\) and (d) \(t=1.0 \mathrm{~s}\) ? (e) Sketch the standing wave at \(t=\) 0.50 s for the range \(x=0\) to \(x=0.40 \mathrm{~m}\).
\(\because 51\) SSM Www Two waves are generated on a string of length 3.0 m to produce a three-loop standing wave with an amplitude of 1.0 cm . The wave speed is \(100 \mathrm{~m} / \mathrm{s}\). Let the equation for one of the waves be of the form \(y(x, t)=y_{m} \sin (k x+\omega t)\). In the equation for the other wave, what are (a) \(y_{m}\), (b) \(k\), (c) \(\omega\), and (d) the sign in front of \(\omega\) ? -052 A rope, under a tension of 200 N and fixed at both ends, oscillates in a second-harmonic standing wave pattern. The displacement of the rope is given by
\[
y=(0.10 \mathrm{~m})(\sin \pi x / 2) \sin 12 \pi t
\]
where \(x=0\) at one end of the rope, \(x\) is in meters, and \(t\) is in seconds. What are (a) the length of the rope, (b) the speed of the waves on the rope, and (c) the mass of the rope? (d) If the rope oscillates in a third-harmonic standing wave pattern, what will be the period of oscillation?
-•53 A string oscillates according to the equation
\[
y^{\prime}=(0.50 \mathrm{~cm}) \sin \left[\left(\frac{\pi}{3} \mathrm{~cm}^{-1}\right) x\right] \cos \left[\left(40 \pi \mathrm{~s}^{-1}\right) t\right] .
\]

What are the (a) amplitude and (b) speed of the two waves (identical except for direction of travel) whose superposition gives this oscillation? (c) What is the distance between nodes? (d) What is the transverse speed of a particle of the string at the position \(x=1.5 \mathrm{~cm}\) when \(t=\frac{9}{8} \mathrm{~s}\) ?
-054 © Two sinusoidal waves with the same amplitude and wavelength travel through each other along a string that is stretched along an \(x\) axis. Their resultant wave is shown twice in Fig. 16-41, as the antinode \(A\) travels from an extreme upward displacement to an extreme downward displacement


Figure 16-41 Problem 54. in 6.0 ms . The tick marks along the axis are separated by 10 cm ; height \(H\) is 1.80 cm . Let the equation for one of the two waves be of the form \(y(x, t)=y_{m} \sin (k x+\omega t)\). In the equation for the other wave, what are (a) \(y_{m}\), (b) \(k\), (c) \(\omega\), and (d) the sign in front of \(\omega\) ?
-055 ©0 The following two waves are sent in opposite directions on a horizontal string so as to create a standing wave in a vertical plane:
\[
\begin{aligned}
& y_{1}(x, t)=(6.00 \mathrm{~mm}) \sin (4.00 \pi x-400 \pi t) \\
& y_{2}(x, t)=(6.00 \mathrm{~mm}) \sin (4.00 \pi x+400 \pi t)
\end{aligned}
\]
with \(x\) in meters and \(t\) in seconds. An antinode is located at point \(A\). In the time interval that point takes to move from maximum upward displacement to maximum downward displacement, how far does each wave move along the string?
\(\because 55\) A standing wave pattern on a string is described by
\[
y(x, t)=0.040(\sin 5 \pi x)(\cos 40 \pi t),
\]
where \(x\) and \(y\) are in meters and \(t\) is in seconds. For \(x \geq 0\), what is the location of the node with the (a) smallest, (b) second smallest, and (c) third smallest value of \(x\) ? (d) What is the period of the oscillatory motion of any (nonnode) point? What are the (e) speed and (f) amplitude of the two traveling waves that interfere to produce this wave? For \(t \geq 0\), what are the (g) first, (h) second, and (i) third time that all points on the string have zero transverse velocity?
-057 A generator at one end of a very long string creates a wave given by
\[
y=(6.0 \mathrm{~cm}) \cos \frac{\pi}{2}\left[\left(2.00 \mathrm{~m}^{-1}\right) x+\left(8.00 \mathrm{~s}^{-1}\right) t\right]
\]
and a generator at the other end creates the wave
\[
y=(6.0 \mathrm{~cm}) \cos \frac{\pi}{2}\left[\left(2.00 \mathrm{~m}^{-1}\right) x-\left(8.00 \mathrm{~s}^{-1}\right) t\right] .
\]

Calculate the (a) frequency, (b) wavelength, and (c) speed of each wave. For \(x \geq 0\), what is the location of the node having the (d) smallest, (e) second smallest, and (f) third smallest value of \(x\) ? For \(x \geq 0\), what is the location of the antinode having the (g) smallest, (h) second smallest, and (i) third smallest value of \(x\) ?
-058 ©0 In Fig. 16-42, a string, tied to a sinusoidal oscillator at \(P\) and running over a support at \(Q\), is stretched by a block of mass \(m\). Separation \(L=1.20 \mathrm{~m}\), linear density \(\mu=1.6 \mathrm{~g} / \mathrm{m}\), and the oscillator


Figure 16-42 Problems 58 and 60.
frequency \(f=120 \mathrm{~Hz}\). The amplitude of the motion at \(P\) is small enough for that point to be considered a node. A node also exists at \(Q\). (a) What mass \(m\) allows the oscillator to set up the fourth harmonic on the string? (b) What standing wave mode, if any, can be set up if \(m=1.00 \mathrm{~kg}\) ?
\(\bullet \bullet 059\) © In Fig. 16-43, an aluminum wire, of length \(L_{1}=60.0 \mathrm{~cm}\), cross-sectional area 1.00 \(\times 10^{-2} \mathrm{~cm}^{2}\), and density \(2.60 \mathrm{~g} / \mathrm{cm}^{3}\), is joined to a steel wire, of density \(7.80 \mathrm{~g} / \mathrm{cm}^{3}\) and the same


Figure 16-43 Problem 59. cross-sectional area. The compound wire, loaded with a block of mass \(m=10.0 \mathrm{~kg}\), is arranged so that the distance \(L_{2}\) from the joint to the supporting pulley is 86.6 cm . Transverse waves are set up on the wire by an external source of variable frequency; a node is located at the pulley. (a) Find the lowest frequency that generates a standing wave having the joint as one of the nodes. (b) How many nodes are observed at this frequency?
\(\bullet \bullet \bullet 60\) ©o In Fig. 16-42, a string, tied to a sinusoidal oscillator at \(P\) and running over a support at \(Q\), is stretched by a block of mass \(m\). The separation \(L\) between \(P\) and \(Q\) is 1.20 m , and the frequency \(f\) of the oscillator is fixed at 120 Hz . The amplitude of the motion at \(P\) is small enough for that point to be considered a node. A node also exists at \(Q\). A standing wave appears when the mass of the hanging block is 286.1 g or 447.0 g , but not for any intermediate mass. What is the linear density of the string?

\section*{Additional Problems}

61 ©o In an experiment on standing waves, a string 90 cm long is attached to the prong of an electrically driven tuning fork that oscillates perpendicular to the length of the string at a frequency of 60 Hz . The mass of the string is 0.044 kg . What tension must the string be under (weights are attached to the other end) if it is to oscillate in four loops?
62 A sinusoidal transverse wave traveling in the positive direction of an \(x\) axis has an amplitude of 2.0 cm , a wavelength of 10 cm , and a frequency of 400 Hz . If the wave equation is of the form \(y(x, t)=y_{m} \sin (k x \pm \omega t)\), what are (a) \(y_{m}\), (b) \(k\), (c) \(\omega\), and (d) the correct choice of sign in front of \(\omega\) ? What are (e) the maximum transverse speed of a point on the cord and (f) the speed of the wave?
63 A wave has a speed of \(240 \mathrm{~m} / \mathrm{s}\) and a wavelength of 3.2 m . What are the (a) frequency and (b) period of the wave?
64 The equation of a transverse wave traveling along a string is
\[
y=0.15 \sin (0.79 x-13 t)
\]
in which \(x\) and \(y\) are in meters and \(t\) is in seconds. (a) What is the displacement \(y\) at \(x=2.3 \mathrm{~m}, t=0.16 \mathrm{~s}\) ? A second wave is to be added to the first wave to produce standing waves on the string. If the second wave is of the form \(y(x, t)=y_{m} \sin (k x \pm \omega t)\), what are (b) \(y_{m}\), (c) \(k\), (d) \(\omega\), and (e) the correct choice of sign in front of \(\omega\) for this second wave? (f) What is the displacement of the resultant standing wave at \(x=2.3 \mathrm{~m}, t=0.16 \mathrm{~s}\) ?
65 The equation of a transverse wave traveling along a string is
\[
y=(2.0 \mathrm{~mm}) \sin \left[\left(20 \mathrm{~m}^{-1}\right) x-\left(600 \mathrm{~s}^{-1}\right) t\right]
\]

Find the (a) amplitude, (b) frequency, (c) velocity (including
sign), and (d) wavelength of the wave. (e) Find the maximum transverse speed of a particle in the string.

66 Figure \(16-44\) shows the displacement \(y\) versus time \(t\) of the point on a string at \(x=0\), as a wave passes through that point. The scale of the \(y\) axis is set by \(y_{s}=6.0 \mathrm{~mm}\). The wave is given by \(y(x, t)=y_{m} \sin (k x-\omega t+\phi)\). What is \(\phi\) ? (Caution: A calculator does not always give the proper


Figure 16-44 Problem 66. inverse trig function, so check your answer by substituting it and an assumed value of \(\omega\) into \(y(x, t)\) and then plotting the function.)
67 Two sinusoidal waves, identical except for phase, travel in the same direction along a string, producing the net wave \(y^{\prime}(x, t)=(3.0 \mathrm{~mm}) \sin (20 x-4.0 t+0.820 \mathrm{rad})\), with \(x\) in meters and \(t\) in seconds. What are (a) the wavelength \(\lambda\) of the two waves, (b) the phase difference between them, and (c) their amplitude \(y_{m}\) ?

68 A single pulse, given by \(h(x-5.0 t)\), is shown in Fig. 16-45 for \(t=0\). The scale of the vertical axis is set by \(h_{s}=2\). Here \(x\) is in centimeters and \(t\) is in seconds. What are the (a) speed and (b) direction of travel of the pulse? (c) Plot \(h(x-5 t)\) as a function of \(x\) for \(t=2\) s. (d) Plot \(h(x-5 t)\) as a func-


Figure 16-45 Problem 68. tion of \(t\) for \(x=10 \mathrm{~cm}\).
69 SSM Three sinusoidal waves of the same frequency travel along a string in the positive direction of an \(x\) axis. Their amplitudes are \(y_{1}, y_{1} / 2\), and \(y_{1} / 3\), and their phase constants are \(0, \pi / 2\), and \(\pi\), respectively. What are the (a) amplitude and (b) phase constant of the resultant wave? (c) Plot the wave form of the resultant wave at \(t=0\), and discuss its behavior as \(t\) increases.
70 © Figure 16-46 shows transverse acceleration \(a_{y}\) versus time \(t\) of the point on a string at \(x=0\), as a wave in the form of \(y(x, t)=y_{m} \sin (k x-\omega t+\phi)\) passes through that point. The scale of the vertical axis is set by \(a_{s}=400 \mathrm{~m} / \mathrm{s}^{2}\). What is \(\phi\) ?


Figure 16-46 Problem 70. (Caution: A calculator does not always give the proper inverse trig function, so check your answer by substituting it and an assumed value of \(\omega\) into \(y(x, t)\) and then plotting the function.)
71 A transverse sinusoidal wave is generated at one end of a long, horizontal string by a bar that moves up and down through a distance of 1.00 cm . The motion is continuous and is repeated regularly 120 times per second. The string has linear density 120 \(\mathrm{g} / \mathrm{m}\) and is kept under a tension of 90.0 N . Find the maximum value of (a) the transverse speed \(u\) and (b) the transverse component of the tension \(\tau\).
(c) Show that the two maximum values calculated above occur at the same phase values for the wave. What is the transverse displacement \(y\) of the string at these phases? (d) What is the maximum rate of energy transfer along the string? (e) What is the transverse displacement \(y\) when this maximum transfer occurs? (f) What is the minimum rate of energy transfer along the
string? (g) What is the transverse displacement \(y\) when this minimum transfer occurs?

72 Two sinusoidal 120 Hz waves, of the same frequency and amplitude, are to be sent in the positive direction of an \(x\) axis that is directed along a cord under tension. The waves can be sent in phase, or they can be phase-shifted. Figure 16-47 shows the amplitude \(y^{\prime}\) of the resulting wave versus the distance of the shift (how far one wave is shifted from the other wave). The scale of the vertical axis is set by \(y_{s}^{\prime}=6.0 \mathrm{~mm}\). If the equations for the two waves are of the form \(y(x, t)=y_{m} \sin (k x \pm \omega t)\), what are (a) \(y_{m}\), (b) \(k\), (c) \(\omega\), and (d) the correct choice of sign in front of \(\omega\) ?

73 At time \(t=0\) and at position \(x=0 \mathrm{~m}\) along a string, a traveling sinusoidal wave with an angular frequency of \(440 \mathrm{rad} / \mathrm{s}\) has displacement \(y=+4.5 \mathrm{~mm}\) and transverse velocity \(u=-0.75 \mathrm{~m} / \mathrm{s}\). If the wave has the general form \(y(x, t)=y_{m} \sin (k x-\omega t+\phi)\), what is phase constant \(\phi\) ?
74 Energy is transmitted at rate \(P_{1}\) by a wave of frequency \(f_{1}\) on a string under tension \(\tau_{1}\). What is the new energy transmission rate \(P_{2}\) in terms of \(P_{1}(\mathrm{a})\) if the tension is increased to \(\tau_{2}=4 \tau_{1}\) and (b) if, instead, the frequency is decreased to \(f_{2}=f_{1} / 2\) ?

75 (a) What is the fastest transverse wave that can be sent along a steel wire? For safety reasons, the maximum tensile stress to which steel wires should be subjected is \(7.00 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}\). The density of steel is \(7800 \mathrm{~kg} / \mathrm{m}^{3}\). (b) Does your answer depend on the diameter of the wire?

76 A standing wave results from the sum of two transverse traveling waves given by
\[
\text { and } \quad y_{2}=0.050 \cos (\pi x+4 \pi t)
\]
where \(x, y_{1}\), and \(y_{2}\) are in meters and \(t\) is in seconds. (a) What is the smallest positive value of \(x\) that corresponds to a node? Beginning at \(t=0\), what is the value of the (b) first, (c) second, and (d) third time the particle at \(x=0\) has zero velocity?
77 SSIM The type of rubber band used inside some baseballs and golf balls obeys Hooke's law over a wide range of elongation of the band. A segment of this material has an unstretched length \(\ell\) and a mass \(m\). When a force \(F\) is applied, the band stretches an additional length \(\Delta \ell\). (a) What is the speed (in terms of \(m, \Delta \ell\), and the spring constant \(k\) ) of transverse waves on this stretched rubber band? (b) Using your answer to (a), show that the time required for a transverse pulse to travel the length of the rubber band is proportional to \(1 / \sqrt{\Delta \ell}\) if \(\Delta \ell \ll\) and is constant if \(\Delta \ell \gg\).
78 The speed of electromagnetic waves (which include visible light, radio, and \(x\) rays) in vacuum is \(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\). (a) Wavelengths of visible light waves range from about 400 nm in the violet to about 700 nm in the red. What is the range of frequencies of these waves? (b) The range of frequencies for shortwave radio (for example, FM radio and VHF television) is 1.5 to 300 MHz . What is the corresponding wavelength range? (c) X-ray wavelengths range from about 5.0 nm to about \(1.0 \times 10^{-2} \mathrm{~nm}\). What is the frequency range for x rays?

79 SSM A 1.50 m wire has a mass of 8.70 g and is under a tension of 120 N . The wire is held rigidly at both ends and set into oscillation. (a) What is the speed of waves on the wire? What is the wavelength of the waves that produce (b) one-loop and (c) twoloop standing waves? What is the frequency of the waves that produce (d) one-loop and (e) two-loop standing waves?
80 When played in a certain manner, the lowest resonant frequency of a certain violin string is concert \(\mathrm{A}(440 \mathrm{~Hz})\). What is the frequency of the (a) second and (b) third harmonic of the string?

81 A sinusoidal transverse wave traveling in the negative direction of an \(x\) axis has an amplitude of 1.00 cm , a frequency of 550 Hz , and a speed of \(330 \mathrm{~m} / \mathrm{s}\). If the wave equation is of the form \(y(x, t)=y_{m} \sin (k x \pm \omega t)\), what are (a) \(y_{m}\), (b) \(\omega\), (c) \(k\), and (d) the correct choice of sign in front of \(\omega\) ?
82 Two sinusoidal waves of the same wavelength travel in the same direction along a stretched string. For wave \(1, y_{m}=3.0 \mathrm{~mm}\) and \(\phi=\) 0 ; for wave \(2, y_{m}=5.0 \mathrm{~mm}\) and \(\phi=70^{\circ}\). What are the (a) amplitude and (b) phase constant of the resultant wave?
83 SSM A sinusoidal transverse wave of amplitude \(y_{m}\) and wavelength \(\lambda\) travels on a stretched cord. (a) Find the ratio of the maximum particle speed (the speed with which a single particle in the cord moves transverse to the wave) to the wave speed. (b) Does this ratio depend on the material of which the cord is made?
84 Oscillation of a 600 Hz tuning fork sets up standing waves in a string clamped at both ends. The wave speed for the string is \(400 \mathrm{~m} / \mathrm{s}\). The standing wave has four loops and an amplitude of 2.0 mm . (a) What is the length of the string? (b) Write an equation for the displacement of the string as a function of position and time.
85 A 120 cm length of string is stretched between fixed supports. What are the (a) longest, (b) second longest, and (c) third longest wavelength for waves traveling on the string if standing waves are to be set up? (d) Sketch those standing waves.
86 (a) Write an equation describing a sinusoidal transverse wave traveling on a cord in the positive direction of a \(y\) axis with an angular wave number of \(60 \mathrm{~cm}^{-1}\), a period of 0.20 s , and an amplitude of 3.0 mm . Take the transverse direction to be the \(z\) direction. (b) What is the maximum transverse speed of a point on the cord?

87 A wave on a string is described by
\[
y(x, t)=15.0 \sin (\pi x / 8-4 \pi t)
\]
where \(x\) and \(y\) are in centimeters and \(t\) is in seconds. (a) What is the transverse speed for a point on the string at \(x=6.00 \mathrm{~cm}\) when \(t=0.250 \mathrm{~s}\) ? (b) What is the maximum transverse speed of any point on the string? (c) What is the magnitude of the transverse acceleration for a point on the string at \(x=6.00 \mathrm{~cm}\) when \(t=0.250 \mathrm{~s}\) ? (d) What is the magnitude of the maximum transverse acceleration for any point on the string?
88 Body armor. When a high-speed projectile such as a bullet or bomb fragment strikes modern body armor, the fabric of the armor stops the projectile and prevents penetration by quickly spreading the projectile's energy over a large area. This spreading is done by longitudinal and transverse pulses that move radially from the impact point, where the projectile pushes a cone-shaped dent into the fabric. The longitudinal pulse, racing along the fibers of the fabric at speed \(v_{l}\) ahead of the denting, causes the fibers to thin and stretch, with material flowing radially inward into the dent. One such radial fiber is shown in Fig. 16-48a. Part of the projectile's energy goes into this motion and stretching. The transverse
pulse, moving at a slower speed \(v_{t}\), is due to the denting. As the projectile increases the dent's depth, the dent increases in radius, causing the material in the fibers to move in the same direction as the projectile (perpendicular to the transverse pulse's direction of travel). The rest of the projectile's energy goes into this motion. All the energy that does not eventually go into permanently deforming the fibers ends up as thermal energy.

Figure \(16-48 b\) is a graph of speed \(v\) versus time \(t\) for a bullet of mass 10.2 g fired from a 38 Special revolver directly into body armor. The scales of the vertical and horizontal axes are set by \(v_{s}=\) \(300 \mathrm{~m} / \mathrm{s}\) and \(t_{s}=40.0 \mu \mathrm{~s}\). Take \(v_{l}=2000 \mathrm{~m} / \mathrm{s}\), and assume that the half-angle \(\theta\) of the conical dent is \(60^{\circ}\). At the end of the collision, what are the radii of (a) the thinned region and (b) the dent (assuming that the person wearing the armor remains stationary)?

(a)

(b)

Figure 16-48 Problem 88.
Two waves are described by
\[
\begin{array}{ll} 
& y_{1}=0.30 \sin [\pi(5 x-200 t)] \\
\text { and } & y_{2}=0.30 \sin [\pi(5 x-200 t)+\pi / 3]
\end{array}
\]
where \(y_{1}, y_{2}\), and \(x\) are in meters and \(t\) is in seconds. When these two waves are combined, a traveling wave is produced. What are the (a) amplitude, (b) wave speed, and (c) wavelength of that traveling wave?
90 A certain transverse sinusoidal wave of wavelength 20 cm is moving in the positive direction of an \(x\) axis. The transverse velocity of the particle at \(x=0\) as a function of time is shown in Fig. 16-49, where the scale of


Figure 16-49 Problem 90. the vertical axis is set by \(u_{s}=5.0 \mathrm{~cm} / \mathrm{s}\). What are the (a) wave speed, (b) amplitude, and (c) frequency? (d) Sketch the wave between \(x=0\) and \(x=20 \mathrm{~cm}\) at \(t=2.0 \mathrm{~s}\).

91 SSM In a demonstration, a 1.2 kg horizontal rope is fixed in place at its two ends ( \(x=0\) and \(x=2.0 \mathrm{~m}\) ) and made to oscillate up and down in the fundamental mode, at frequency 5.0 Hz . At \(t=0\), the point at \(x=1.0 \mathrm{~m}\) has zero displacement and is
moving upward in the positive direction of a \(y\) axis with a transverse velocity of \(5.0 \mathrm{~m} / \mathrm{s}\). What are (a) the amplitude of the motion of that point and (b) the tension in the rope? (c) Write the standing wave equation for the fundamental mode.

\section*{92 Two waves,}
\[
y_{1}=(2.50 \mathrm{~mm}) \sin [(25.1 \mathrm{rad} / \mathrm{m}) x-(440 \mathrm{rad} / \mathrm{s}) t]
\]
and \(\quad y_{2}=(1.50 \mathrm{~mm}) \sin [(25.1 \mathrm{rad} / \mathrm{m}) x+(440 \mathrm{rad} / \mathrm{s}) t]\),
travel along a stretched string. (a) Plot the resultant wave as a function of \(t\) for \(x=0, \lambda / 8, \lambda / 4,3 \lambda / 8\), and \(\lambda / 2\), where \(\lambda\) is the wavelength. The graphs should extend from \(t=0\) to a little over one period. (b) The resultant wave is the superposition of a standing wave and a traveling wave. In which direction does the traveling wave move? (c) How can you change the original waves so the resultant wave is the superposition of standing and traveling waves with the same amplitudes as before but with the traveling wave moving in the opposite direction? Next, use your graphs to find the place at which the oscillation amplitude is (d) maximum and (e) minimum. (f) How is the maximum amplitude related to the amplitudes of the original two waves? (g) How is the minimum amplitude related to the amplitudes of the original two waves?
93 A traveling wave on a string is described by
\[
y=2.0 \sin \left[2 \pi\left(\frac{t}{0.40}+\frac{x}{80}\right)\right],
\]
where \(x\) and \(y\) are in centimeters and \(t\) is in seconds. (a) For \(t=0\), plot \(y\) as a function of \(x\) for \(0 \leq x \leq 160 \mathrm{~cm}\). (b) Repeat (a) for \(t=0.05 \mathrm{~s}\) and \(t=0.10 \mathrm{~s}\). From your graphs, determine (c) the wave speed and (d) the direction in which the wave is traveling.
94 In Fig. 16-50, a circular loop of string is set spinning about the center point in a place with negligible gravity. The radius is 4.00 cm and the tangential speed of a string segment is 5.00 \(\mathrm{cm} / \mathrm{s}\). The string is plucked. At what speed do transverse waves move along the string? (Hint: Apply Newton's second law to a small, but finite, section of the string.)

95 A continuous traveling wave with amplitude \(A\) is incident on a boundary. The continuous reflection, with a smaller amplitude \(B\), travels back through the incoming wave. The resulting interference pattern is displayed in Fig. 16-51. The standing wave ratio is defined to be
\[
\mathrm{SWR}=\frac{A+B}{A-B}
\]

The reflection coefficient \(R\) is the ratio of the power of the reflected wave to the power of the incoming wave and is thus proportional to the ratio \((B / A)^{2}\). What is the
 SWR for (a) total reflection and (b) no reflection? (c) For SWR \(=1.50\), what is \(R\) expressed as a percentage?
96 Consider a loop in the standing wave created by two waves (amplitude 5.00 mm and frequency 120 Hz ) traveling in opposite directions along a string with length 2.25 m and mass 125 g and under tension 40 N . At what rate does energy enter the loop from (a) each side and (b) both sides? (c) What is the maximum kinetic energy of the string in the loop during its oscillation?

\section*{\(\begin{array}{lllllllll}\text { C } & \mathrm{H} & \mathrm{A} & \mathrm{P} & \mathbf{T} & \mathrm{E} & \mathrm{R} & \mathbf{1} & \mathbf{7}\end{array}\) \\ Waves-II}

\section*{17-1 SPEED OF SOUND}

\section*{Learning Objectives}

After reading this module, you should be able to .
17.01 Distinguish between a longitudinal wave and a transverse wave.
17.02 Explain wavefronts and rays.
17.03 Apply the relationship between the speed of sound
through a material, the material's bulk modulus, and the material's density.
17.04 Apply the relationship between the speed of sound, the distance traveled by a sound wave, and the time required to travel that distance.

\section*{Key Idea}
- Sound waves are longitudinal mechanical waves that can travel through solids, liquids, or gases. The speed \(v\) of a sound wave in a medium having bulk modulus \(B\) and density \(\rho\) is
\[
v=\sqrt{\frac{B}{\rho}} \quad(\text { speed of sound })
\]

In air at \(20^{\circ} \mathrm{C}\), the speed of sound is \(343 \mathrm{~m} / \mathrm{s}\).

\section*{What Is Physics?}

The physics of sound waves is the basis of countless studies in the research journals of many fields. Here are just a few examples. Some physiologists are concerned with how speech is produced, how speech impairment might be corrected, how hearing loss can be alleviated, and even how snoring is produced. Some acoustic engineers are concerned with improving the acoustics of cathedrals and concert halls, with reducing noise near freeways and road construction, and with reproducing music by speaker systems. Some aviation engineers are concerned with the shock waves produced by supersonic aircraft and the aircraft noise produced in communities near an airport. Some medical researchers are concerned with how noises produced by the heart and lungs can signal a medical problem in a patient. Some paleontologists are concerned with how a dinosaur's fossil might reveal the dinosaur's vocalizations. Some military engineers are concerned with how the sounds of sniper fire might allow a soldier to pinpoint the sniper's location, and, on the gentler side, some biologists are concerned with how a cat purrs.

To begin our discussion of the physics of sound, we must first answer the question "What are sound waves?"

\section*{Sound Waves}

As we saw in Chapter 16, mechanical waves are waves that require a material medium to exist. There are two types of mechanical waves: Transverse waves involve oscillations perpendicular to the direction in which the wave travels; longitudinal waves involve oscillations parallel to the direction of wave travel.

In this book, a sound wave is defined roughly as any longitudinal wave. Seismic prospecting teams use such waves to probe Earth's crust for oil. Ships


Mauro Fermariello/SPL/Photo Researchers, Inc.
Figure 17-1 A loggerhead turtle is being checked with ultrasound (which has a frequency above your hearing range); an image of its interior is being produced on a monitor off to the right.


Figure 17-2 A sound wave travels from a point source \(S\) through a three-dimensional medium. The wavefronts form spheres centered on \(S\); the rays are radial to \(S\). The short, double-headed arrows indicate that elements of the medium oscillate parallel to the rays.
carry sound-ranging gear (sonar) to detect underwater obstacles. Submarines use sound waves to stalk other submarines, largely by listening for the characteristic noises produced by the propulsion system. Figure 17-1 suggests how sound waves can be used to explore the soft tissues of an animal or human body. In this chapter we shall focus on sound waves that travel through the air and that are audible to people.

Figure 17-2 illustrates several ideas that we shall use in our discussions. Point \(S\) represents a tiny sound source, called a point source, that emits sound waves in all directions. The wavefronts and rays indicate the direction of travel and the spread of the sound waves. Wavefronts are surfaces over which the oscillations due to the sound wave have the same value; such surfaces are represented by whole or partial circles in a two-dimensional drawing for a point source. Rays are directed lines perpendicular to the wavefronts that indicate the direction of travel of the wavefronts. The short double arrows superimposed on the rays of Fig. 17-2 indicate that the longitudinal oscillations of the air are parallel to the rays.

Near a point source like that of Fig. 17-2, the wavefronts are spherical and spread out in three dimensions, and there the waves are said to be spherical. As the wavefronts move outward and their radii become larger, their curvature decreases. Far from the source, we approximate the wavefronts as planes (or lines on two-dimensional drawings), and the waves are said to be planar.

\section*{The Speed of Sound}

The speed of any mechanical wave, transverse or longitudinal, depends on both an inertial property of the medium (to store kinetic energy) and an elastic property of the medium (to store potential energy). Thus, we can generalize Eq. 16-26, which gives the speed of a transverse wave along a stretched string, by writing
\[
\begin{equation*}
v=\sqrt{\frac{\tau}{\mu}}=\sqrt{\frac{\text { elastic property }}{\text { inertial property }}}, \tag{17-1}
\end{equation*}
\]
where (for transverse waves) \(\tau\) is the tension in the string and \(\mu\) is the string's linear density. If the medium is air and the wave is longitudinal, we can guess that the inertial property, corresponding to \(\mu\), is the volume density \(\rho\) of air. What shall we put for the elastic property?

In a stretched string, potential energy is associated with the periodic stretching of the string elements as the wave passes through them. As a sound wave passes through air, potential energy is associated with periodic compressions and expansions of small volume elements of the air. The property that determines the extent to which an element of a medium changes in volume when the pressure (force per unit area) on it changes is the bulk modulus \(B\), defined (from Eq. 12-25) as
\[
\begin{equation*}
B=-\frac{\Delta p}{\Delta V / V} \quad \text { (definition of bulk modulus). } \tag{17-2}
\end{equation*}
\]

Here \(\Delta V / V\) is the fractional change in volume produced by a change in pressure \(\Delta p\). As explained in Module 14-1, the SI unit for pressure is the newton per square meter, which is given a special name, the pascal ( Pa ). From Eq. \(17-2\) we see that the unit for \(B\) is also the pascal. The signs of \(\Delta p\) and \(\Delta V\) are always opposite: When we increase the pressure on an element ( \(\Delta p\) is positive), its volume decreases ( \(\Delta V\) is negative). We include a minus sign in Eq. \(17-2\) so that \(B\) is always a positive quantity. Now substituting \(B\) for \(\tau\) and \(\rho\) for \(\mu\) in Eq. 17-1 yields
\[
\begin{equation*}
v=\sqrt{\frac{B}{\rho}} \quad \text { (speed of sound) } \tag{17-3}
\end{equation*}
\]
as the speed of sound in a medium with bulk modulus \(B\) and density \(\rho\). Table 17-1 lists the speed of sound in various media.

The density of water is almost 1000 times greater than the density of air. If this were the only relevant factor, we would expect from Eq. 17-3 that the speed of sound in water would be considerably less than the speed of sound in air. However, Table 17-1 shows us that the reverse is true. We conclude (again from Eq. 17-3) that the bulk modulus of water must be more than 1000 times greater than that of air. This is indeed the case. Water is much more incompressible than air, which (see Eq. \(17-2\) ) is another way of saying that its bulk modulus is much greater.

\section*{Formal Derivation of Eq. 17-3}

We now derive Eq. 17-3 by direct application of Newton's laws. Let a single pulse in which air is compressed travel (from right to left) with speed \(v\) through the air in a long tube, like that in Fig. 16-2. Let us run along with the pulse at that speed, so that the pulse appears to stand still in our reference frame. Figure \(17-3 a\) shows the situation as it is viewed from that frame. The pulse is standing still, and air is moving at speed \(v\) through it from left to right.

Let the pressure of the undisturbed air be \(p\) and the pressure inside the pulse be \(p+\Delta p\), where \(\Delta p\) is positive due to the compression. Consider an element of air of thickness \(\Delta x\) and face area \(A\), moving toward the pulse at speed \(v\). As this element enters the pulse, the leading face of the element encounters a region of higher pressure, which slows the element to speed \(v+\Delta v\), in which \(\Delta v\) is negative. This slowing is complete when the rear face of the element reaches the pulse, which requires time interval
\[
\begin{equation*}
\Delta t=\frac{\Delta x}{v} \tag{17-4}
\end{equation*}
\]

Let us apply Newton's second law to the element. During \(\Delta t\), the average force on the element's trailing face is \(p A\) toward the right, and the average force on the leading face is \((p+\Delta p) A\) toward the left (Fig. 17-3b). Therefore, the average net force on the element during \(\Delta t\) is
\[
\begin{align*}
F & =p A-(p+\Delta p) A \\
& =-\Delta p A \quad \text { (net force) } . \tag{17-5}
\end{align*}
\]

The minus sign indicates that the net force on the air element is directed to the left in Fig. 17-3b. The volume of the element is \(A \Delta x\), so with the aid of Eq. 17-4, we can write its mass as
\[
\begin{equation*}
\Delta m=\rho \Delta V=\rho A \Delta x=\rho A v \Delta t \quad(\text { mass }) \tag{17-6}
\end{equation*}
\]

The average acceleration of the element during \(\Delta t\) is
\[
\begin{equation*}
a=\frac{\Delta v}{\Delta t} \quad \text { (acceleration) } \tag{17-7}
\end{equation*}
\]


Table 17-1 The Speed of Sound \({ }^{a}\)
\begin{tabular}{lc}
\hline Medium & Speed \((\mathrm{m} / \mathrm{s})\) \\
\hline Gases & \\
Air \(\left(0^{\circ} \mathrm{C}\right)\) & 331 \\
Air \(\left(20^{\circ} \mathrm{C}\right)\) & 343 \\
Helium & 965 \\
Hydrogen & 1284 \\
Liquids & \\
Water \(\left(0^{\circ} \mathrm{C}\right)\) & 1402 \\
Water \(\left(20^{\circ} \mathrm{C}\right)\) & 1482 \\
Seawater \({ }^{b}\) & 1522 \\
Solids & \\
Aluminum & 6420 \\
Steel & 5941 \\
Granite & 6000 \\
\hline
\end{tabular}
\({ }^{a} \mathrm{At} 0^{\circ} \mathrm{C}\) and 1 atm pressure, except where noted.
\({ }^{b} \mathrm{At} 20^{\circ} \mathrm{C}\) and \(3.5 \%\) salinity.

Figure 17-3 A compression pulse is sent from right to left down a long air-filled tube. The reference frame of the figure is chosen so that the pulse is at rest and the air moves from left to right. (a) An element of air of width \(\Delta x\) moves toward the pulse with speed \(v\).(b) The leading face of the element enters the pulse. The forces acting on the leading and trailing faces (due to air pressure) are shown.

Thus, from Newton's second law \((F=m a)\), we have, from Eqs. 17-5, 17-6, and 17-7,
\[
\begin{equation*}
-\Delta p A=(\rho A v \Delta t) \frac{\Delta v}{\Delta t} \tag{17-8}
\end{equation*}
\]
which we can write as
\[
\begin{equation*}
\rho v^{2}=-\frac{\Delta p}{\Delta v / v} \tag{17-9}
\end{equation*}
\]

The air that occupies a volume \(V(=A v \Delta t)\) outside the pulse is compressed by an amount \(\Delta V(=A \Delta v \Delta t)\) as it enters the pulse. Thus,
\[
\begin{equation*}
\frac{\Delta V}{V}=\frac{A \Delta v \Delta t}{A v \Delta t}=\frac{\Delta v}{v} \tag{17-10}
\end{equation*}
\]

Substituting Eq. 17-10 and then Eq. 17-2 into Eq. 17-9 leads to
\[
\begin{equation*}
\rho v^{2}=-\frac{\Delta p}{\Delta v / v}=-\frac{\Delta p}{\Delta V / V}=B . \tag{17-11}
\end{equation*}
\]

Solving for \(v\) yields Eq. 17-3 for the speed of the air toward the right in Fig. 17-3, and thus for the actual speed of the pulse toward the left.

\section*{17-2 traveling sound waves}

\section*{Learning Objectives}

After reading this module, you should be able to ...
17.05 For any particular time and position, calculate the displacement \(s(x, t)\) of an element of air as a sound wave travels through its location.
17.06 Given a displacement function \(s(x, t)\) for a sound wave, calculate the time between two given displacements.
17.07 Apply the relationships between wave speed \(v\), angular frequency \(\omega\), angular wave number \(k\), wavelength \(\lambda\), period \(T\), and frequency \(f\).
17.08 Sketch a graph of the displacement \(s(x)\) of an element of air as a function of position, and identify the amplitude \(s_{m}\) and wavelength \(\lambda\).
17.09 For any particular time and position, calculate the pres-
sure variation \(\Delta p\) (variation from atmospheric pressure) of an element of air as a sound wave travels through its location.
17.10 Sketch a graph of the pressure variation \(\Delta p(x)\) of an element as a function of position, and identify the amplitude \(\Delta p_{m}\) and wavelength \(\lambda\).
17.11 Apply the relationship between pressure-variation amplitude \(\Delta p_{m}\) and displacement amplitude \(s_{m}\).
17.12 Given a graph of position \(s\) versus time for a sound wave, determine the amplitude \(s_{m}\) and the period \(T\).
17.13 Given a graph of pressure variation \(\Delta p\) versus time for a sound wave, determine the amplitude \(\Delta p_{m}\) and the period \(T\).

\section*{Key Ideas}
- A sound wave causes a longitudinal displacement \(s\) of a mass element in a medium as given by
\[
s=s_{m} \cos (k x-\omega t)
\]
where \(s_{m}\) is the displacement amplitude (maximum displacement) from equilibrium, \(k=2 \pi / \lambda\), and \(\omega=2 \pi f, \lambda\) and \(f\) being the wavelength and frequency, respectively, of the sound wave.
- The sound wave also causes a pressure change \(\Delta p\) of the medium from the equilibrium pressure:
\[
\Delta p=\Delta p_{m} \sin (k x-\omega t)
\]
where the pressure amplitude is
\[
\Delta p_{m}=(v \rho \omega) s_{m}
\]

\section*{Traveling Sound Waves}

Here we examine the displacements and pressure variations associated with a sinusoidal sound wave traveling through air. Figure 17-4a displays such a wave traveling rightward through a long air-filled tube. Recall from Chapter 16 that we can produce such a wave by sinusoidally moving a piston at the left end of

Figure 17-4 (a) A sound wave, traveling through a long air-filled tube with speed \(v\), consists of a moving, periodic pattern of expansions and compressions of the air. The wave is shown at an arbitrary instant. (b) A horizontally expanded view of a short piece of the tube. As the wave passes, an air element of thickness \(\Delta x\) oscillates left and right in simple harmonic motion about its equilibrium position. At the instant shown in (b), the element happens to be displaced a distance \(s\) to the right of its equilibrium position. Its maximum displacement, either right or left, is \(s_{m}\).

the tube (as in Fig. 16-2). The piston's rightward motion moves the element of air next to the piston face and compresses that air; the piston's leftward motion allows the element of air to move back to the left and the pressure to decrease. As each element of air pushes on the next element in turn, the right-left motion of the air and the change in its pressure travel along the tube as a sound wave.

Consider the thin element of air of thickness \(\Delta x\) shown in Fig. 17-4b. As the wave travels through this portion of the tube, the element of air oscillates left and right in simple harmonic motion about its equilibrium position. Thus, the oscillations of each air element due to the traveling sound wave are like those of a string element due to a transverse wave, except that the air element oscillates longitudinally rather than transversely. Because string elements oscillate parallel to the \(y\) axis, we write their displacements in the form \(y(x, t)\). Similarly, because air elements oscillate parallel to the \(x\) axis, we could write their displacements in the confusing form \(x(x, t)\), but we shall use \(s(x, t)\) instead.

Displacement. To show that the displacements \(s(x, t)\) are sinusoidal functions of \(x\) and \(t\), we can use either a sine function or a cosine function. In this chapter we use a cosine function, writing
\[
\begin{equation*}
s(x, t)=s_{m} \cos (k x-\omega t) \tag{17-12}
\end{equation*}
\]

Figure 17-5a labels the various parts of this equation. In it, \(s_{m}\) is the displacement amplitude - that is, the maximum displacement of the air element to either side of its equilibrium position (see Fig. 17-4b). The angular wave number \(k\), angular frequency \(\omega\), frequency \(f\), wavelength \(\lambda\), speed \(v\), and period \(T\) for a sound (longitudinal) wave are defined and interrelated exactly as for a transverse wave, except that \(\lambda\) is now the distance (again along the direction of travel) in which the pattern of compression and expansion due to the wave begins to repeat itself (see Fig. 17-4a). (We assume \(s_{m}\) is much less than \(\lambda\).)

Pressure. As the wave moves, the air pressure at any position \(x\) in Fig. 17-4a varies sinusoidally, as we prove next. To describe this variation we write
\[
\begin{equation*}
\Delta p(x, t)=\Delta p_{m} \sin (k x-\omega t) \tag{17-13}
\end{equation*}
\]

Figure 17-5b labels the various parts of this equation. A negative value of \(\Delta p\) in Eq. 17-13 corresponds to an expansion of the air, and a positive value to a compression. Here \(\Delta p_{m}\) is the pressure amplitude, which is the maximum increase or decrease in pressure due to the wave; \(\Delta p_{m}\) is normally very much less than the pressure \(p\) present when there is no wave. As we shall prove, the pressure ampli-


Figure 17-5 (a) The displacement function and \((b)\) the pressure-variation function of a traveling sound wave consist of an amplitude and an oscillating term.


Figure 17-6 (a) A plot of the displacement function (Eq. 17-12) for \(t=0\). (b) A similar plot of the pressure-variation function (Eq. 17-13). Both plots are for a 1000 Hz sound wave whose pressure amplitude is at the threshold of pain.
tude \(\Delta p_{m}\) is related to the displacement amplitude \(s_{m}\) in Eq. 17-12 by
\[
\begin{equation*}
\Delta p_{m}=(v \rho \omega) s_{m} \tag{17-14}
\end{equation*}
\]

Figure 17-6 shows plots of Eqs. \(17-12\) and \(17-13\) at \(t=0\); with time, the two curves would move rightward along the horizontal axes. Note that the displacement and pressure variation are \(\pi / 2 \mathrm{rad}\left(\right.\) or \(\left.90^{\circ}\right)\) out of phase. Thus, for example, the pressure variation \(\Delta p\) at any point along the wave is zero when the displacement there is a maximum.

\section*{Checkpoint 1}

When the oscillating air element in Fig. 17-4b is moving rightward through the point of zero displacement, is the pressure in the element at its equilibrium value, just beginning to increase, or just beginning to decrease?

\section*{Derivation of Eqs. 17-13 and 17-14}

Figure \(17-4 b\) shows an oscillating element of air of cross-sectional area \(A\) and thickness \(\Delta x\), with its center displaced from its equilibrium position by distance \(s\). From Eq. 17-2 we can write, for the pressure variation in the displaced element,
\[
\begin{equation*}
\Delta p=-B \frac{\Delta V}{V} \tag{17-15}
\end{equation*}
\]

The quantity \(V\) in Eq. 17-15 is the volume of the element, given by
\[
\begin{equation*}
V=A \Delta x \tag{17-16}
\end{equation*}
\]

The quantity \(\Delta V\) in Eq. \(17-15\) is the change in volume that occurs when the element is displaced. This volume change comes about because the displacements of the two faces of the element are not quite the same, differing by some amount \(\Delta s\). Thus, we can write the change in volume as
\[
\begin{equation*}
\Delta V=A \Delta s \tag{17-17}
\end{equation*}
\]

Substituting Eqs. 17-16 and 17-17 into Eq. 17-15 and passing to the differential limit yield
\[
\begin{equation*}
\Delta p=-B \frac{\Delta s}{\Delta x}=-B \frac{\partial s}{\partial x} \tag{17-18}
\end{equation*}
\]

The symbols \(\partial\) indicate that the derivative in Eq. 17-18 is a partial derivative, which tells us how \(s\) changes with \(x\) when the time \(t\) is fixed. From Eq. 17-12 we then have, treating \(t\) as a constant,
\[
\frac{\partial s}{\partial x}=\frac{\partial}{\partial x}\left[s_{m} \cos (k x-\omega t)\right]=-k s_{m} \sin (k x-\omega t) .
\]

Substituting this quantity for the partial derivative in Eq. 17-18 yields
\[
\Delta p=B k s_{m} \sin (k x-\omega t)
\]

This tells us that the pressure varies as a sinusoidal function of time and that the amplitude of the variation is equal to the terms in front of the sine function. Setting \(\Delta p_{m}=B k s_{m}\), this yields Eq. 17-13, which we set out to prove.

Using Eq. 17-3, we can now write
\[
\Delta p_{m}=(B k) s_{m}=\left(v^{2} \rho k\right) s_{m}
\]

Equation 17-14, which we also wanted to prove, follows at once if we substitute \(\omega / v\) for \(k\) from Eq. 16-12.

\section*{Sample Problem 17.01 Pressure amplitude, displacement amplitude}

The maximum pressure amplitude \(\Delta p_{m}\) that the human ear can tolerate in loud sounds is about 28 Pa (which is very much less than the normal air pressure of about \(10^{5} \mathrm{~Pa}\) ). What is the displacement amplitude \(s_{m}\) for such a sound in air of density \(\rho=\) \(1.21 \mathrm{~kg} / \mathrm{m}^{3}\), at a frequency of 1000 Hz and a speed of \(343 \mathrm{~m} / \mathrm{s}\) ?

\section*{KEY IDEA}

The displacement amplitude \(s_{m}\) of a sound wave is related to the pressure amplitude \(\Delta p_{m}\) of the wave according to Eq. 17-14.

Calculations: Solving that equation for \(s_{m}\) yields
\[
s_{m}=\frac{\Delta p_{m}}{v \rho \omega}=\frac{\Delta p_{m}}{v \rho(2 \pi f)}
\]

Substituting known data then gives us
\[
\begin{aligned}
s_{m} & =\frac{28 \mathrm{~Pa}}{(343 \mathrm{~m} / \mathrm{s})\left(1.21 \mathrm{~kg} / \mathrm{m}^{3}\right)(2 \pi)(1000 \mathrm{~Hz})} \\
& =1.1 \times 10^{-5} \mathrm{~m}=11 \mu \mathrm{~m} .
\end{aligned}
\]
(Answer)
That is only about one-seventh the thickness of a book page. Obviously, the displacement amplitude of even the loudest sound that the ear can tolerate is very small. Temporary exposure to such loud sound produces temporary hearing loss, probably due to a decrease in blood supply to the inner ear. Prolonged exposure produces permanent damage.

The pressure amplitude \(\Delta p_{m}\) for the faintest detectable sound at 1000 Hz is \(2.8 \times 10^{-5} \mathrm{~Pa}\). Proceeding as above leads to \(s_{m}=1.1 \times 10^{-11} \mathrm{~m}\) or 11 pm , which is about onetenth the radius of a typical atom. The ear is indeed a sensitive detector of sound waves.

PLUS Additional examples, video, and practice available at WileyPLUS

\section*{17-3 interfermence}

\section*{Learning Objectives}

After reading this module, you should be able to ...
17.14 If two waves with the same wavelength begin in phase but reach a common point by traveling along different paths, calculate their phase difference \(\phi\) at that point by relating the path length difference \(\Delta L\) to the wavelength \(\lambda\).
17.15 Given the phase difference between two sound
waves with the same amplitude, wavelength, and travel direction, determine the type of interference between the waves (fully destructive interference, fully constructive interference, or indeterminate interference).
17.16 Convert a phase difference between radians, degrees, and number of wavelengths.

\section*{Key Ideas}
- The interference of two sound waves with identical wavelengths passing through a common point depends on their phase difference \(\phi\) there. If the sound waves were emitted in phase and are traveling in approximately the same direction, \(\phi\) is given by
\[
\phi=\frac{\Delta L}{\lambda} 2 \pi
\]
where \(\Delta L\) is their path length difference.
- Fully constructive interference occurs when \(\phi\) is an integer multiple of \(2 \pi\),
\[
\phi=m(2 \pi), \quad \text { for } m=0,1,2, \ldots,
\]
and, equivalently, when \(\Delta L\) is related to wavelength \(\lambda\) by
\[
\frac{\Delta L}{\lambda}=0,1,2, \ldots
\]
- Fully destructive interference occurs when \(\phi\) is an odd multiple of \(\pi\),
\[
\phi=(2 m+1) \pi, \quad \text { for } m=0,1,2, \ldots
\]
\(\frac{\Delta L}{\lambda}=0.5,1.5,2.5, \ldots\)

\section*{Interference}

Like transverse waves, sound waves can undergo interference. In fact, we can write equations for the interference as we did in Module 16-5 for transverse waves. Suppose two sound waves with the same amplitude and wavelength are traveling in the positive direction of an \(x\) axis with a phase difference of \(\phi\). We can express the waves in the form of Eqs. 16-47 and 16-48 but, to be consistent with Eq. 17-12, we use cosine functions instead of sine functions:
\[
s_{1}(x, t)=s_{m} \cos (k x-\omega t)
\]

(a)


If the difference is equal to, say, \(2.0 \lambda\), then the waves arrive exactly in phase. This is how transverse waves would look.
(b)


If the difference is equal to, say, \(2.5 \lambda\), then the waves arrive exactly out of phase. This is how transverse waves would look.
(c)

Figure 17-7 (a) Two point sources \(S_{1}\) and \(S_{2}\) emit spherical sound waves in phase. The rays indicate that the waves pass through a common point \(P\). The waves (represented with transverse waves) arrive at \(P(b)\) exactly in phase and \((c)\) exactly out of phase.
and
\[
s_{2}(x, t)=s_{m} \cos (k x-\omega t+\phi)
\]

These waves overlap and interfere. From Eq. 16-51, we can write the resultant wave as
\[
s^{\prime}=\left[2 s_{m} \cos \frac{1}{2} \phi\right] \cos \left(k x-\omega t+\frac{1}{2} \phi\right) .
\]

As we saw with transverse waves, the resultant wave is itself a traveling wave. Its amplitude is the magnitude
\[
\begin{equation*}
s_{m}^{\prime}=\left|2 s_{m} \cos \frac{1}{2} \phi\right| \tag{17-19}
\end{equation*}
\]

As with transverse waves, the value of \(\phi\) determines what type of interference the individual waves undergo.

One way to control \(\phi\) is to send the waves along paths with different lengths. Figure 17-7a shows how we can set up such a situation: Two point sources \(S_{1}\) and \(S_{2}\) emit sound waves that are in phase and of identical wavelength \(\lambda\). Thus, the sources themselves are said to be in phase; that is, as the waves emerge from the sources, their displacements are always identical. We are interested in the waves that then travel through point \(P\) in Fig. 17-7a. We assume that the distance to \(P\) is much greater than the distance between the sources so that we can approximate the waves as traveling in the same direction at \(P\).

If the waves traveled along paths with identical lengths to reach point \(P\), they would be in phase there. As with transverse waves, this means that they would undergo fully constructive interference there. However, in Fig. 17-7a, path \(L_{2}\) traveled by the wave from \(S_{2}\) is longer than path \(L_{1}\) traveled by the wave from \(S_{1}\). The difference in path lengths means that the waves may not be in phase at point \(P\). In other words, their phase difference \(\phi\) at \(P\) depends on their path length difference \(\Delta L=\left|L_{2}-L_{1}\right|\).

To relate phase difference \(\phi\) to path length difference \(\Delta L\), we recall (from Module 16-1) that a phase difference of \(2 \pi \mathrm{rad}\) corresponds to one wavelength. Thus, we can write the proportion
\[
\begin{equation*}
\frac{\phi}{2 \pi}=\frac{\Delta L}{\lambda}, \tag{17-20}
\end{equation*}
\]
from which
\[
\begin{equation*}
\phi=\frac{\Delta L}{\lambda} 2 \pi \tag{17-21}
\end{equation*}
\]

Fully constructive interference occurs when \(\phi\) is zero, \(2 \pi\), or any integer multiple of \(2 \pi\). We can write this condition as
\[
\begin{equation*}
\phi=m(2 \pi), \quad \text { for } m=0,1,2, \ldots \quad \text { (fully constructive interference). } \tag{17-22}
\end{equation*}
\]

From Eq. 17-21, this occurs when the ratio \(\Delta L / \lambda\) is
\[
\begin{equation*}
\frac{\Delta L}{\lambda}=0,1,2, \ldots \quad \text { (fully constructive interference). } \tag{17-23}
\end{equation*}
\]

For example, if the path length difference \(\Delta L=\left|L_{2}-L_{1}\right|\) in Fig. 17-7a is equal to \(2 \lambda\), then \(\Delta L / \lambda=2\) and the waves undergo fully constructive interference at point \(P\) (Fig. 17-7b). The interference is fully constructive because the wave from \(S_{2}\) is phase-shifted relative to the wave from \(S_{1}\) by \(2 \lambda\), putting the two waves exactly in phase at \(P\).

Fully destructive interference occurs when \(\phi\) is an odd multiple of \(\pi\) :
\(\phi=(2 m+1) \pi, \quad\) for \(m=0,1,2, \ldots \quad\) (fully destructive interference).

From Eq. 17-21, this occurs when the ratio \(\Delta L / \lambda\) is
\[
\begin{equation*}
\frac{\Delta L}{\lambda}=0.5,1.5,2.5, \ldots \quad \text { (fully destructive interference). } \tag{17-25}
\end{equation*}
\]

For example, if the path length difference \(\Delta L=\left|L_{2}-L_{1}\right|\) in Fig. 17-7a is equal to \(2.5 \lambda\), then \(\Delta L / \lambda=2.5\) and the waves undergo fully destructive interference at point \(P\) (Fig. 17-7c). The interference is fully destructive because the wave from \(S_{2}\) is phase-shifted relative to the wave from \(S_{1}\) by 2.5 wavelengths, which puts the two waves exactly out of phase at \(P\).

Of course, two waves could produce intermediate interference as, say, when \(\Delta L / \lambda=1.2\). This would be closer to fully constructive interference \((\Delta L / \lambda=1.0)\) than to fully destructive interference ( \(\Delta L / \lambda=1.5\) ).

\section*{Sample Problem 17.02 Interference points along a big circle}

In Fig. 17-8a, two point sources \(S_{1}\) and \(S_{2}\), which are in phase and separated by distance \(D=1.5 \lambda\), emit identical sound waves of wavelength \(\lambda\).
(a) What is the path length difference of the waves from \(S_{1}\) and \(S_{2}\) at point \(P_{1}\), which lies on the perpendicular bisector of distance \(D\), at a distance greater than \(D\) from the sources (Fig. 17-8b)? (That is, what is the difference in the distance from source \(S_{1}\) to point \(P_{1}\) and the distance from source \(S_{2}\) to \(P_{1}\) ?) What type of interference occurs at \(P_{1}\) ?
Reasoning: Because the waves travel identical distances to reach \(P_{1}\), their path length difference is
\[
\Delta L=0
\]
(Answer)
From Eq. 17-23, this means that the waves undergo fully constructive interference at \(P_{1}\) because they start in phase at the sources and reach \(P_{1}\) in phase.
(b) What are the path length difference and type of interference at point \(P_{2}\) in Fig. 17-8c?

Reasoning: The wave from \(S_{1}\) travels the extra distance \(D\) ( \(=1.5 \lambda\) ) to reach \(P_{2}\). Thus, the path length difference is
\[
\Delta L=1.5 \lambda .
\]
(Answer)
From Eq. 17-25, this means that the waves are exactly out of phase at \(P_{2}\) and undergo fully destructive interference there.
(c) Figure \(17-8 d\) shows a circle with a radius much greater than \(D\), centered on the midpoint between sources \(S_{1}\) and \(S_{2}\). What is the number of points \(N\) around this circle at which the interference is fully constructive? (That is, at how many points do the waves arrive exactly in phase?)

Reasoning: Starting at point \(a\), let's move clockwise along the circle to point \(d\). As we move, path length difference \(\Delta L\) increases and so the type of interference changes. From (a), we know that is \(\Delta L=0 \lambda\) at point \(a\). From (b), we know that \(\Delta L=1.5 \lambda\) at point \(d\). Thus, there must be


Figure 17-8 (a) Two point sources \(S_{1}\) and \(S_{2}\), separated by distance \(D\), emit spherical sound waves in phase. (b) The waves travel equal distances to reach point \(P_{1}\). (c) Point \(P_{2}\) is on the line extending through \(S_{1}\) and \(S_{2}\). (d) We move around a large circle. (Figure continues)


Figure 17-8 (continued) (e) Another point of fully constructive interference. ( \(f\) ) Using symmetry to determine other points. \((g)\) The six points of fully constructive interference.
one point between \(a\) and \(d\) at which \(\Delta L=\lambda\) (Fig. 17-8e). From Eq. 17-23, fully constructive interference occurs at that point. Also, there can be no other point along the way from point \(a\) to point \(d\) at which fully constructive interference occurs, because there is no other integer than 1 between 0 at point \(a\) and 1.5 at point \(d\).

We can now use symmetry to locate other points of fully constructive or destructive interference (Fig. 17-8f). Symmetry about line \(c d\) gives us point \(b\), at which \(\Delta L=0 \lambda\). Also, there are three more points at which \(\Delta L=\lambda\). In all (Fig. 17-8g) we have
\[
N=6
\]
(Answer)

PLUS Additional examples, video, and practice available at WileyPLUS

\section*{17-4 INTENSITY AND SOUND LEVEL}

\section*{Learning Objectives}

After reading this module, you should be able to .
17.17 Calculate the sound intensity \(I\) at a surface as the ratio of the power \(P\) to the surface area \(A\).
17.18 Apply the relationship between the sound intensity \(I\) and the displacement amplitude \(s_{m}\) of the sound wave.
17.19 Identify an isotropic point source of sound.
17.20 For an isotropic point source, apply the relationship involving the emitting power \(P_{s}\), the distance \(r\) to a detector, and the sound intensity \(I\) at the detector.
17.21 Apply the relationship between the sound level \(\beta\), the sound intensity \(I\), and the standard reference intensity \(I_{0}\).
17.22 Evaluate a logarithm function (log) and an antilogarithm function ( \(\log ^{-1}\) ).
17.23 Relate the change in a sound level to the change in sound intensity.

\section*{Key Ideas}
- The intensity \(I\) of a sound wave at a surface is the average rate per unit area at which energy is transferred by the wave through or onto the surface:
\[
I=\frac{P}{A}
\]
where \(P\) is the time rate of energy transfer (power) of the sound wave and \(A\) is the area of the surface intercepting the sound. The intensity \(I\) is related to the displacement amplitude \(s_{m}\) of the sound wave by
\[
I=\frac{1}{2} \rho v \omega^{2} s_{m}^{2} .
\]
- The intensity at a distance \(r\) from a point source that emits sound waves of power \(P_{s}\) equally in all directions (isotropically) is
\[
I=\frac{P_{s}}{4 \pi r^{2}} .
\]
- The sound level \(\beta\) in decibels ( dB ) is defined as
\[
\beta=(10 \mathrm{~dB}) \log \frac{I}{I_{0}}
\]
where \(I_{0}\left(=10^{-12} \mathrm{~W} / \mathrm{m}^{2}\right)\) is a reference intensity level to which all intensities are compared. For every factor-of-10 increase in intensity, 10 dB is added to the sound level.

\section*{Intensity and Sound Level}

If you have ever tried to sleep while someone played loud music nearby, you are well aware that there is more to sound than frequency, wavelength, and speed. There is also intensity. The intensity \(I\) of a sound wave at a surface is the average rate per unit area at which energy is transferred by the wave through or onto the surface. We can write this as
\[
\begin{equation*}
I=\frac{P}{A} \tag{17-26}
\end{equation*}
\]
where \(P\) is the time rate of energy transfer (the power) of the sound wave and \(A\) is the area of the surface intercepting the sound. As we shall derive shortly, the intensity \(I\) is related to the displacement amplitude \(s_{m}\) of the sound wave by
\[
\begin{equation*}
I=\frac{1}{2} \rho v \omega^{2} s_{m}^{2} . \tag{17-27}
\end{equation*}
\]

Intensity can be measured on a detector. Loudness is a perception, something that you sense. The two can differ because your perception depends on factors such as the sensitivity of your hearing mechanism to various frequencies.

\section*{Variation of Intensity with Distance}

How intensity varies with distance from a real sound source is often complex. Some real sources (like loudspeakers) may transmit sound only in particular directions, and the environment usually produces echoes (reflected sound waves) that overlap the direct sound waves. In some situations, however, we can ignore echoes and assume that the sound source is a point source that emits the sound isotropically-that is, with equal intensity in all directions. The wavefronts spreading from such an isotropic point source \(S\) at a particular instant are shown in Fig. 17-9.

Let us assume that the mechanical energy of the sound waves is conserved as they spread from this source. Let us also center an imaginary sphere of radius \(r\) on the source, as shown in Fig. 17-9. All the energy emitted by the source must pass through the surface of the sphere. Thus, the time rate at which energy is transferred through the surface by the sound waves must equal the time rate at which energy is emitted by the source (that is, the power \(P_{s}\) of the source). From Eq. 17-26, the intensity \(I\) at the sphere must then be
\[
\begin{equation*}
I=\frac{P_{s}}{4 \pi r^{2}} \tag{17-28}
\end{equation*}
\]
where \(4 \pi r^{2}\) is the area of the sphere. Equation 17-28 tells us that the intensity of sound from an isotropic point source decreases with the square of the distance \(r\) from the source.

\section*{Checkpoint 2}

The figure indicates three small patches 1,2 , and 3 that lie on the surfaces of two imaginary spheres; the spheres are centered on an isotropic point source \(S\) of sound. The rates at which energy is transmitted through the three patches by the sound waves are equal. Rank the patches according to (a) the intensity of the sound on them and (b) their area, greatest first.



Figure 17-9 A point source \(S\) emits sound waves uniformly in all directions. The waves pass through an imaginary sphere of radius \(r\) that is centered on \(S\).

© Ben Rose
Sound can cause the wall of a drinking glass to oscillate. If the sound produces a standing wave of oscillations and if the intensity of the sound is large enough, the glass will shatter.

Table 17-2 Some Sound Levels (dB)
\begin{tabular}{lr} 
Hearing threshold & 0 \\
Rustle of leaves & 10 \\
Conversation & 60 \\
Rock concert & 110 \\
Pain threshold & 120 \\
Jet engine & 130 \\
\hline
\end{tabular}

\section*{The Decibel Scale}

The displacement amplitude at the human ear ranges from about \(10^{-5} \mathrm{~m}\) for the loudest tolerable sound to about \(10^{-11} \mathrm{~m}\) for the faintest detectable sound, a ratio of \(10^{6}\). From Eq. 17-27 we see that the intensity of a sound varies as the square of its amplitude, so the ratio of intensities at these two limits of the human auditory system is \(10^{12}\). Humans can hear over an enormous range of intensities.

We deal with such an enormous range of values by using logarithms. Consider the relation
\[
y=\log x
\]
in which \(x\) and \(y\) are variables. It is a property of this equation that if we multiply \(x\) by 10 , then \(y\) increases by 1 . To see this, we write
\[
y^{\prime}=\log (10 x)=\log 10+\log x=1+y
\]

Similarly, if we multiply \(x\) by \(10^{12}, y\) increases by only 12 .
Thus, instead of speaking of the intensity \(I\) of a sound wave, it is much more convenient to speak of its sound level \(\beta\), defined as
\[
\begin{equation*}
\beta=(10 \mathrm{~dB}) \log \frac{I}{I_{0}} \tag{17-29}
\end{equation*}
\]

Here dB is the abbreviation for decibel, the unit of sound level, a name that was chosen to recognize the work of Alexander Graham Bell. \(I_{0}\) in Eq. 17-29 is a standard reference intensity ( \(=10^{-12} \mathrm{~W} / \mathrm{m}^{2}\) ), chosen because it is near the lower limit of the human range of hearing. For \(I=I_{0}\), Eq. 17-29 gives \(\beta=10 \log 1=0\), so our standard reference level corresponds to zero decibels. Then \(\beta\) increases by 10 dB every time the sound intensity increases by an order of magnitude (a factor of 10). Thus, \(\beta=40\) corresponds to an intensity that is \(10^{4}\) times the standard reference level. Table 17-2 lists the sound levels for a variety of environments.

\section*{Derivation of Eq. 17-27}

Consider, in Fig. 17-4a, a thin slice of air of thickness \(d x\), area \(A\), and mass \(d m\), oscillating back and forth as the sound wave of Eq. 17-12 passes through it. The kinetic energy \(d K\) of the slice of air is
\[
\begin{equation*}
d K=\frac{1}{2} d m v_{s}^{2} \tag{17-30}
\end{equation*}
\]

Here \(v_{s}\) is not the speed of the wave but the speed of the oscillating element of air, obtained from Eq. 17-12 as
\[
v_{s}=\frac{\partial s}{\partial t}=-\omega s_{m} \sin (k x-\omega t) .
\]

Using this relation and putting \(d m=\rho A d x\) allow us to rewrite Eq. 17-30 as
\[
\begin{equation*}
d K=\frac{1}{2}(\rho A d x)\left(-\omega s_{m}\right)^{2} \sin ^{2}(k x-\omega t) \tag{17-31}
\end{equation*}
\]

Dividing Eq. 17-31 by \(d t\) gives the rate at which kinetic energy moves along with the wave. As we saw in Chapter 16 for transverse waves, \(d x / d t\) is the wave speed \(v\), so we have
\[
\begin{equation*}
\frac{d K}{d t}=\frac{1}{2} \rho A v \omega^{2} s_{m}^{2} \sin ^{2}(k x-\omega t) \tag{17-32}
\end{equation*}
\]

The average rate at which kinetic energy is transported is
\[
\begin{align*}
\left(\frac{d K}{d t}\right)_{\text {avg }} & =\frac{1}{2} \rho A v \omega^{2} s_{m}^{2}\left[\sin ^{2}(k x-\omega t)\right]_{\mathrm{avg}} \\
& =\frac{1}{4} \rho A v \omega^{2} s_{m}^{2} . \tag{17-33}
\end{align*}
\]

To obtain this equation, we have used the fact that the average value of the square of a sine (or a cosine) function over one full oscillation is \(\frac{1}{2}\).

We assume that potential energy is carried along with the wave at this same average rate. The wave intensity \(I\), which is the average rate per unit area at which energy of both kinds is transmitted by the wave, is then, from Eq. 17-33,
\[
I=\frac{2(d K / d t)_{\mathrm{avg}}}{A}=\frac{1}{2} \rho v \omega^{2} s_{m}^{2}
\]
which is Eq. 17-27, the equation we set out to derive.

\section*{Sample Problem 17.03 Intensity change with distance, cylindrical sound wave}

An electric spark jumps along a straight line of length \(L=10 \mathrm{~m}\), emitting a pulse of sound that travels radially outward from the spark. (The spark is said to be a line source of sound.) The power of this acoustic emission is \(P_{s}=1.6 \times 10^{4} \mathrm{~W}\).
(a) What is the intensity \(I\) of the sound when it reaches a distance \(r=12 \mathrm{~m}\) from the spark?

\section*{KEY IDEAS}
(1) Let us center an imaginary cylinder of radius \(r=12 \mathrm{~m}\) and length \(L=10 \mathrm{~m}\) (open at both ends) on the spark, as shown in Fig. 17-10. Then the intensity \(I\) at the cylindrical surface is the ratio \(P / A\), where \(P\) is the time rate at which sound energy passes through the surface and \(A\) is the surface area. (2) We assume that the principle of conservation of energy applies to the sound energy. This means that the rate \(P\) at which energy is transferred through the cylinder must equal the rate \(P_{s}\) at which energy is emitted by the source.


Figure 17-10 A spark along a straight line of length \(L\) emits sound waves radially outward. The waves pass through an imaginary cylinder of radius \(r\) and length \(L\) that is centered on the spark.

Calculations: Putting these ideas together and noting that the area of the cylindrical surface is \(A=2 \pi r L\), we have
\[
\begin{equation*}
I=\frac{P}{A}=\frac{P_{s}}{2 \pi r L} \tag{17-34}
\end{equation*}
\]

This tells us that the intensity of the sound from a line source decreases with distance \(r\) (and not with the square of distance \(r\) as for a point source). Substituting the given data, we find
\[
\begin{aligned}
I & =\frac{1.6 \times 10^{4} \mathrm{~W}}{2 \pi(12 \mathrm{~m})(10 \mathrm{~m})} \\
& =21.2 \mathrm{~W} / \mathrm{m}^{2} \approx 21 \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
\]
(Answer)
(b) At what time rate \(P_{d}\) is sound energy intercepted by an acoustic detector of area \(A_{d}=2.0 \mathrm{~cm}^{2}\), aimed at the spark and located a distance \(r=12 \mathrm{~m}\) from the spark?

Calculations: We know that the intensity of sound at the detector is the ratio of the energy transfer rate \(P_{d}\) there to the detector's area \(A_{d}\) :
\[
\begin{equation*}
I=\frac{P_{d}}{A_{d}} \tag{17-35}
\end{equation*}
\]

We can imagine that the detector lies on the cylindrical surface of (a). Then the sound intensity at the detector is the intensity \(I\left(=21.2 \mathrm{~W} / \mathrm{m}^{2}\right)\) at the cylindrical surface. Solving Eq. 17-35 for \(P_{d}\) gives us
\[
P_{d}=\left(21.2 \mathrm{~W} / \mathrm{m}^{2}\right)\left(2.0 \times 10^{-4} \mathrm{~m}^{2}\right)=4.2 \mathrm{~mW} . \quad \text { (Answer) }
\]

Additional examples, video, and practice available at WileyPLUS

\section*{Sample Problem 17.04 Decibels, sound level, change in intensity}

Many veteran rockers suffer from acute hearing damage because of the high sound levels they endured for years. Many rockers now wear special earplugs to protect their hearing during performances (Fig. 17-11). If an earplug decreases the sound level of the sound waves by 20 dB , what is the ratio of the final intensity \(I_{f}\) of the waves to their initial intensity \(I_{i}\) ?

\section*{KEY IDEA}

For both the final and initial waves, the sound level \(\beta\) is related to the intensity by the definition of sound level in Eq. 17-29.

Calculations: For the final waves we have
\[
\beta_{f}=(10 \mathrm{~dB}) \log \frac{I_{f}}{I_{0}}
\]
and for the initial waves we have
\[
\beta_{i}=(10 \mathrm{~dB}) \log \frac{I_{i}}{I_{0}}
\]

The difference in the sound levels is
\[
\begin{equation*}
\beta_{f}-\beta_{i}=(10 \mathrm{~dB})\left(\log \frac{I_{f}}{I_{0}}-\log \frac{I_{i}}{I_{0}}\right) \tag{17-36}
\end{equation*}
\]

Using the identity
\[
\log \frac{a}{b}-\log \frac{c}{d}=\log \frac{a d}{b c}
\]
we can rewrite Eq. 17-36 as
\[
\begin{equation*}
\beta_{f}-\beta_{i}=(10 \mathrm{~dB}) \log \frac{I_{f}}{I_{i}} \tag{17-37}
\end{equation*}
\]

Rearranging and then substituting the given decrease in

Figure 17-11 Lars Ulrich of Metallica is an advocate for the organization HEAR (Hearing Education and Awareness for Rockers), which warns about the damage high sound levels can have on hearing.


Tim Mosenfelder/Getty Images, Inc.
sound level as \(\beta_{f}-\beta_{i}=-20 \mathrm{~dB}\), we find
\[
\log \frac{I_{f}}{I_{i}}=\frac{\beta_{f}-\beta_{i}}{10 \mathrm{~dB}}=\frac{-20 \mathrm{~dB}}{10 \mathrm{~dB}}=-2.0
\]

We next take the antilog of the far left and far right sides of this equation. (Although the antilog \(10^{-2.0}\) can be evaluated mentally, you could use a calculator by keying in \(10^{\wedge}-2.0\) or using the \(10^{x}\) key.) We find
\[
\frac{I_{f}}{I_{i}}=\log ^{-1}(-2.0)=0.010
\]
(Answer)
Thus, the earplug reduces the intensity of the sound waves to 0.010 of their initial intensity (two orders of magnitude).

\section*{17-5 sources of musical sound}

\section*{Learning Objectives}

After reading this module, you should be able to ...
17.24 Using standing wave patterns for string waves, sketch the standing wave patterns for the first several acoustical harmonics of a pipe with only one open end and with two open ends.
17.25 For a standing wave of sound, relate the distance between nodes and the wavelength.
17.26 Identify which type of pipe has even harmonics. 17.27 For any given harmonic and for a pipe with only one open end or with two open ends, apply the relationships between the pipe length \(L\), the speed of sound \(v\), the wavelength \(\lambda\), the harmonic frequency \(f\), and the harmonic number \(n\).

\section*{Key Ideas}
- Standing sound wave patterns can be set up in pipes (that is, resonance can be set up) if sound of the proper wavelength is introduced in the pipe.
- A pipe open at both ends will resonate at frequencies
\[
f=\frac{v}{\lambda}=\frac{n v}{2 L}, \quad n=1,2,3, \ldots
\]
where \(v\) is the speed of sound in the air in the pipe.
- For a pipe closed at one end and open at the other, the resonant frequencies are
\[
f=\frac{v}{\lambda}=\frac{n v}{4 L}, \quad n=1,3,5, \ldots
\]

\section*{Sources of Musical Sound}

Musical sounds can be set up by oscillating strings (guitar, piano, violin), membranes (kettledrum, snare drum), air columns (flute, oboe, pipe organ, and the didgeridoo of Fig. 17-12), wooden blocks or steel bars (marimba, xylophone), and many other oscillating bodies. Most common instruments involve more than a single oscillating part.

Recall from Chapter 16 that standing waves can be set up on a stretched string that is fixed at both ends. They arise because waves traveling along the string are reflected back onto the string at each end. If the wavelength of the waves is suitably matched to the length of the string, the superposition of waves traveling in opposite directions produces a standing wave pattern (or oscillation mode). The wavelength required of the waves for such a match is one that corresponds to a resonant frequency of the string. The advantage of setting up standing waves is that the string then oscillates with a large, sustained amplitude, pushing back and forth against the surrounding air and thus generating a noticeable sound wave with the same frequency as the oscillations of the string. This production of sound is of obvious importance to, say, a guitarist.

Sound Waves. We can set up standing waves of sound in an air-filled pipe in a similar way. As sound waves travel through the air in the pipe, they are reflected at each end and travel back through the pipe. (The reflection occurs even if an end is open, but the reflection is not as complete as when the end is closed.) If the wavelength of the sound waves is suitably matched to the length of the pipe, the superposition of waves traveling in opposite directions through the pipe sets up a standing wave pattern. The wavelength required of the sound waves for such a match is one that corresponds to a resonant frequency of the pipe. The advantage of such a standing wave is that the air in the pipe oscillates with a large, sustained amplitude, emitting at any open end a sound wave that has the same frequency as the oscillations in the pipe. This emission of sound is of obvious importance to, say, an organist.

Many other aspects of standing sound wave patterns are similar to those of string waves: The closed end of a pipe is like the fixed end of a string in that there must be a node (zero displacement) there, and the open end of a pipe is like the end of a string attached to a freely moving ring, as in Fig. 16-19b, in that there must be an antinode there. (Actually, the antinode for the open end of a pipe is located slightly beyond the end, but we shall not dwell on that detail.)

Two Open Ends. The simplest standing wave pattern that can be set up in a pipe with two open ends is shown in Fig. 17-13a. There is an antinode across each


Figure 17-13 (a) The simplest standing wave pattern of displacement for (longitudinal) sound waves in a pipe with both ends open has an antinode (A) across each end and a node ( N ) across the middle. (The longitudinal displacements represented by the double arrows are greatly exaggerated.) (b) The corresponding standing wave pattern for (transverse) string waves.


Figure 17-12 The air column within a didgeridoo ("a pipe") oscillates when the instrument is played.


Figure 17-14 Standing wave patterns for string waves superimposed on pipes to represent standing sound wave patterns in the pipes. (a) With both ends of the pipe open, any harmonic can be set up in the pipe. (b) With only one end open, only odd harmonics can be set up.
open end, as required. There is also a node across the middle of the pipe. An easier way of representing this standing longitudinal sound wave is shown in Fig. 17-13b - by drawing it as a standing transverse string wave.

The standing wave pattern of Fig. 17-13a is called the fundamental mode or first harmonic. For it to be set up, the sound waves in a pipe of length \(L\) must have a wavelength given by \(L=\lambda / 2\), so that \(\lambda=2 L\). Several more standing sound wave patterns for a pipe with two open ends are shown in Fig. 17-14a using string wave representations. The second harmonic requires sound waves of wavelength \(\lambda=L\), the third harmonic requires wavelength \(\lambda=2 L / 3\), and so on.

More generally, the resonant frequencies for a pipe of length \(L\) with two open ends correspond to the wavelengths
\[
\begin{equation*}
\lambda=\frac{2 L}{n}, \quad \text { for } n=1,2,3, \ldots \tag{17-38}
\end{equation*}
\]
where \(n\) is called the harmonic number. Letting \(v\) be the speed of sound, we write the resonant frequencies for a pipe with two open ends as
\[
\begin{equation*}
f=\frac{v}{\lambda}=\frac{n v}{2 L}, \quad \text { for } n=1,2,3, \ldots \quad \text { (pipe, two open ends). } \tag{17-39}
\end{equation*}
\]

One Open End. Figure \(17-14 b\) shows (using string wave representations) some of the standing sound wave patterns that can be set up in a pipe with only one open end. As required, across the open end there is an antinode and across the closed end there is a node. The simplest pattern requires sound waves having a wavelength given by \(L=\lambda / 4\), so that \(\lambda=4 L\). The next simplest pattern requires a wavelength given by \(L=3 \lambda / 4\), so that \(\lambda=4 L / 3\), and so on.

More generally, the resonant frequencies for a pipe of length \(L\) with only one open end correspond to the wavelengths
\[
\begin{equation*}
\lambda=\frac{4 L}{n}, \quad \text { for } n=1,3,5, \ldots \tag{17-40}
\end{equation*}
\]
in which the harmonic number \(n\) must be an odd number. The resonant frequencies are then given by
\[
\begin{equation*}
f=\frac{v}{\lambda}=\frac{n v}{4 L}, \quad \text { for } n=1,3,5, \ldots \quad \text { (pipe, one open end). } \tag{17-41}
\end{equation*}
\]

Note again that only odd harmonics can exist in a pipe with one open end. For example, the second harmonic, with \(n=2\), cannot be set up in such a pipe. Note also that for such a pipe the adjective in a phrase such as "the third harmonic" still refers to the harmonic number \(n\) (and not to, say, the third possible harmonic). Finally note that Eqs. 17-38 and 17-39 for two open ends contain the

Figure 17-15 The saxophone and violin families, showing the relations between instrument length and frequency range. The frequency range of each instrument is indicated by a horizontal bar along a frequency scale suggested by the keyboard at the bottom; the frequency increases toward


\section*{リIIIIIIIIIIIIIIIIIIIIIIIIII} the right.


Figure 17-16 The wave forms produced by \((a)\) a flute and \((b)\) an oboe when played at the same note, with the same first harmonic frequency.

\section*{Sample Problem 17.05 Resonance between pipes of different lengths}

Pipe \(A\) is open at both ends and has length \(L_{A}=0.343 \mathrm{~m}\). We want to place it near three other pipes in which standing waves have been set up, so that the sound can set up a standing wave in pipe \(A\). Those other three pipes are each closed at one end and have lengths \(L_{B}=0.500 L_{A}, L_{C}=0.250 L_{A}\), and \(L_{D}=2.00 L_{A}\). For each of these three pipes, which of their harmonics can excite a harmonic in pipe \(A\) ?

\section*{KEY IDEAS}
(1) The sound from one pipe can set up a standing wave in another pipe only if the harmonic frequencies match. (2) Equation 17-39 gives the harmonic frequencies in a pipe with two open ends (a symmetric pipe) as \(f=n v / 2 L\), for \(n=1,2,3, \ldots\), that is, for any positive integer. (3) Equation

17-41 gives the harmonic frequencies in a pipe with only one open end (an asymmetric pipe) as \(f=n v / 4 L\), for \(n=\) \(1,3,5, \ldots\), that is, for only odd positive integers.

Pipe A: Let's first find the resonant frequencies of symmetric pipe \(A\) (with two open ends) by evaluating Eq. 17-39:
\[
\begin{aligned}
f_{A} & =\frac{n_{A} v}{2 L_{A}}=\frac{n_{A}(343 \mathrm{~m} / \mathrm{s})}{2(0.343 \mathrm{~m})} \\
& =n_{A}(500 \mathrm{~Hz})=n_{A}(0.50 \mathrm{kHz}), \quad \text { for } n_{A}=1,2,3, \ldots .
\end{aligned}
\]

The first six harmonic frequencies are shown in the top plot in Fig. 17-17.

Pipe B: Next let's find the resonant frequencies of asymmetric pipe \(B\) (with only one open end) by evaluating Eq. 17-41, being careful to use only odd integers for the harmonic numbers:
\[
\begin{aligned}
f_{B} & =\frac{n_{B} v}{4 L_{B}}=\frac{n_{B} v}{4\left(0.500 L_{A}\right)}=\frac{n_{B}(343 \mathrm{~m} / \mathrm{s})}{2(0.343 \mathrm{~m})} \\
& =n_{B}(500 \mathrm{~Hz})=n_{B}(0.500 \mathrm{kHz}), \quad \text { for } n_{B}=1,3,5, \ldots
\end{aligned}
\]

Comparing our two results, we see that we get a match for each choice of \(n_{B}\) :
\[
f_{A}=f_{B} \quad \text { for } n_{A}=n_{B} \quad \text { with } n_{B}=1,3,5, \ldots . \quad \text { (Answer) }
\]

For example, as shown in Fig. 17-17, if we set up the fifth harmonic in pipe \(B\) and bring the pipe close to pipe \(A\), the fifth harmonic will then be set up in pipe \(A\). However, no harmonic in \(B\) can set up an even harmonic in \(A\).

Pipe C: Let's continue with pipe \(C\) (with only one end) by writing Eq. 17-41 as
\[
\begin{aligned}
f_{C} & =\frac{n_{C} v}{4 L_{C}}=\frac{n_{C} v}{4\left(0.250 L_{A}\right)}=\frac{n_{C}(343 \mathrm{~m} / \mathrm{s})}{0.343 \mathrm{~m} / \mathrm{s}} \\
& =n_{C}(1000 \mathrm{~Hz})=n_{C}(1.00 \mathrm{kHz}), \quad \text { for } n_{C}=1,3,5, \ldots .
\end{aligned}
\]

From this we see that \(C\) can excite some of the harmonics of \(A\) but only those with harmonic numbers \(n_{A}\) that are twice an odd integer:
\[
f_{A}=f_{C} \quad \text { for } n_{A}=2 n_{C}, \quad \text { with } n_{C}=1,3,5, \ldots . \quad \text { (Answer) }
\]

Pipe D: Finally, let's check \(D\) with our same procedure:
\[
\begin{aligned}
f_{D} & =\frac{n_{D} v}{4 L_{D}}=\frac{n_{D} v}{4\left(2 L_{A}\right)}=\frac{n_{D}(343 \mathrm{~m} / \mathrm{s})}{8(0.343 \mathrm{~m} / \mathrm{s})} \\
& =n_{D}(125 \mathrm{~Hz})=n_{D}(0.125 \mathrm{kHz}), \quad \text { for } n_{D}=1,3,5, \ldots
\end{aligned}
\]

As shown in Fig. 17-17, none of these frequencies match a harmonic frequency of \(A\). (Can you see that we would get a match if \(n_{D}=4 n_{A}\) ? But that is impossible because \(4 n_{A}\) cannot yield an odd integer, as required of \(n_{D}\).) Thus \(D\) cannot set up a standing wave in \(A\).


Figure 17-17 Harmonic frequencies of four pipes.

\section*{17-6 веатs}

\section*{Learning Objectives}

After reading this module, you should be able to ...

\subsection*{17.28 Explain how beats are produced.}
17.29 Add the displacement equations for two sound waves of the same amplitude and slightly different angular frequencies to find the displacement equation of the resultant wave and identify the time-varying amplitude.
17.30 Apply the relationship between the beat frequency and the frequencies of two sound waves that have the same amplitude when the frequencies (or, equivalently, the angular frequencies) differ by a small amount.

\section*{Key Idea}
- Beats arise when two waves having slightly different frequencies, \(f_{1}\) and \(f_{2}\), are detected together. The beat frequency is
\[
f_{\text {beat }}=f_{1}-f_{2} .
\]

\section*{Beats}

If we listen, a few minutes apart, to two sounds whose frequencies are, say, 552 and 564 Hz , most of us cannot tell one from the other because the frequencies are so close to each other. However, if the sounds reach our ears simultaneously, what we hear is a sound whose frequency is 558 Hz , the average of the two combining frequencies. We also hear a striking variation in the intensity of this sound-it increases and decreases in slow, wavering beats that repeat at a frequency of 12 Hz , the difference between the two combining frequencies. Figure 17-18 shows this beat phenomenon.

Let the time-dependent variations of the displacements due to two sound waves of equal amplitude \(s_{m}\) be
\[
\begin{equation*}
s_{1}=s_{m} \cos \omega_{1} t \quad \text { and } \quad s_{2}=s_{m} \cos \omega_{2} t \tag{17-42}
\end{equation*}
\]
where \(\omega_{1}>\omega_{2}\). From the superposition principle, the resultant displacement is the sum of the individual displacements:
\[
s=s_{1}+s_{2}=s_{m}\left(\cos \omega_{1} t+\cos \omega_{2} t\right)
\]

Using the trigonometric identity (see Appendix E)
\[
\cos \alpha+\cos \beta=2 \cos \left[\frac{1}{2}(\alpha-\beta)\right] \cos \left[\frac{1}{2}(\alpha+\beta)\right]
\]
allows us to write the resultant displacement as
\[
\begin{equation*}
s=2 s_{m} \cos \left[\frac{1}{2}\left(\omega_{1}-\omega_{2}\right) t\right] \cos \left[\frac{1}{2}\left(\omega_{1}+\omega_{2}\right) t\right] \tag{17-43}
\end{equation*}
\]

If we write
\[
\begin{equation*}
\omega^{\prime}=\frac{1}{2}\left(\omega_{1}-\omega_{2}\right) \quad \text { and } \quad \omega=\frac{1}{2}\left(\omega_{1}+\omega_{2}\right) \tag{17-44}
\end{equation*}
\]
we can then write Eq. 17-43 as
\[
\begin{equation*}
s(t)=\left[2 s_{m} \cos \omega^{\prime} t\right] \cos \omega t \tag{17-45}
\end{equation*}
\]

We now assume that the angular frequencies \(\omega_{1}\) and \(\omega_{2}\) of the combining waves are almost equal, which means that \(\omega \gg \omega^{\prime}\) in Eq. 17-44. We can then regard Eq. 17-45 as a cosine function whose angular frequency is \(\omega\) and whose amplitude (which is not constant but varies with angular frequency \(\omega^{\prime}\) ) is the absolute value of the quantity in the brackets.

A maximum amplitude will occur whenever \(\cos \omega^{\prime} t\) in Eq. 17-45 has the value +1 or -1 , which happens twice in each repetition of the cosine function. Because \(\cos \omega^{\prime} t\) has angular frequency \(\omega^{\prime}\), the angular frequency \(\omega_{\text {beat }}\) at which beats occur is \(\omega_{\text {beat }}=2 \omega^{\prime}\). Then, with the aid of Eq. 17-44, we can write the beat angular frequency as
\[
\omega_{\text {beat }}=2 \omega^{\prime}=(2)\left(\frac{1}{2}\right)\left(\omega_{1}-\omega_{2}\right)=\omega_{1}-\omega_{2}
\]

Because \(\omega=2 \pi f\), we can recast this as
\[
\begin{equation*}
f_{\text {beat }}=f_{1}-f_{2} \quad \text { (beat frequency). } \tag{17-46}
\end{equation*}
\]

Musicians use the beat phenomenon in tuning instruments. If an instrument is sounded against a standard frequency (for example, the note called "concert A" played on an orchestra's first oboe) and tuned until the beat disappears, the instrument is in tune with that standard. In musical Vienna, concert A \((440 \mathrm{~Hz})\) is available as a convenient telephone service for the city's many musicians.

Figure 17-18 \((a, b)\) The pressure variations \(\Delta p\) of two sound waves as they would be detected separately. The frequencies of the waves are nearly equal. (c) The resultant pressure variation if the two waves are detected simultaneously.
(a)

(b)


\section*{Sample Problem 17.06 Beat frequencies and penguins finding one another}

When an emperor penguin returns from a search for food, how can it find its mate among the thousands of penguins huddled together for warmth in the harsh Antarctic weather? It is not by sight, because penguins all look alike, even to a penguin.

The answer lies in the way penguins vocalize. Most birds vocalize by using only one side of their two-sided vocal organ, called the syrinx. Emperor penguins, however, vocalize by using both sides simultaneously. Each side sets up acoustic standing waves in the bird's throat and mouth, much like in a pipe with two open ends. Suppose that the frequency of the first harmonic produced by side \(A\) is \(f_{A 1}=\) 432 Hz and the frequency of the first harmonic produced by side \(B\) is \(f_{B 1}=371 \mathrm{~Hz}\). What is the beat frequency between those two first-harmonic frequencies and between the two second-harmonic frequencies?

\section*{KEY IDEA}

The beat frequency between two frequencies is their difference, as given by Eq. 17-46 ( \(\left.f_{\text {beat }}=f_{1}-f_{2}\right)\).

Calculations: For the two first-harmonic frequencies \(f_{A 1}\) and \(f_{B 1}\), the beat frequency is
\[
\begin{aligned}
f_{\text {beat }, 1} & =f_{A 1}-f_{B 1}=432 \mathrm{~Hz}-371 \mathrm{~Hz} \\
& =61 \mathrm{~Hz} .
\end{aligned}
\]
(Answer)

Because the standing waves in the penguin are effectively in a pipe with two open ends, the resonant frequencies are given by Eq. \(17-39(f=n v / 2 L)\), in which \(L\) is the (unknown) length of the effective pipe. The first-harmonic frequency is \(f_{1}=v / 2 L\), and the second-harmonic frequency is \(f_{2}=2 v / 2 L\). Comparing these two frequencies, we see that, in general,
\[
f_{2}=2 f_{1} .
\]

For the penguin, the second harmonic of side \(A\) has frequency \(f_{A 2}=2 f_{A 1}\) and the second harmonic of side \(B\) has frequency \(f_{B 2}=2 f_{B 1}\). Using Eq. 17-46 with frequencies \(f_{A 2}\) and \(f_{B 2}\), we find that the corresponding beat frequency associated with the second harmonics is
\[
\begin{aligned}
f_{\text {beat }, 2} & =f_{A 2}-f_{B 2}=2 f_{A 1}-2 f_{B 1} \\
& =2(432 \mathrm{~Hz})-2(371 \mathrm{~Hz}) \\
& =122 \mathrm{~Hz} .
\end{aligned}
\]
(Answer)
Experiments indicate that penguins can perceive such large beat frequencies. (Humans cannot hear a beat frequency any higher than about 12 Hz - we perceive the two separate frequencies.) Thus, a penguin's cry can be rich with different harmonics and different beat frequencies, allowing the voice to be recognized even among the voices of thousands of other, closely huddled penguins.

\section*{17-7 the doppler effect}

\section*{Learning Objectives}

After reading this module, you should be able to ...
17.31 Identify that the Doppler effect is the shift in the detected frequency from the frequency emitted by a sound source due to the relative motion between the source and the detector.
17.32 Identify that in calculating the Doppler shift in sound, the speeds are measured relative to the medium (such as air or water), which may be moving.
17.33 Calculate the shift in sound frequency for (a) a source
moving either directly toward or away from a stationary detector, (b) a detector moving either directly toward or away from a stationary source, and (c) both source and detector moving either directly toward each other or directly away from each other.
17.34 Identify that for relative motion between a sound source and a sound detector, motion toward tends to shift the frequency up and motion away tends to shift it down.

\section*{Key Ideas}
- The Doppler effect is a change in the observed frequency of a wave when the source or the detector moves relative to the transmitting medium (such as air). For sound the observed frequency \(f^{\prime}\) is given in terms of the source frequency \(f\) by
\[
f^{\prime}=f \frac{v \pm v_{D}}{v \pm v_{S}} \quad \text { (general Doppler effect) }
\]
where \(v_{D}\) is the speed of the detector relative to the medium, \(v_{S}\) is that of the source, and \(v\) is the speed of sound in the medium.
- The signs are chosen such that \(f^{\prime}\) tends to be greater for relative motion toward (one of the objects moves toward the other) and less for motion away.

\section*{The Doppler Effect}

A police car is parked by the side of the highway, sounding its 1000 Hz siren. If you are also parked by the highway, you will hear that same frequency. However, if there is relative motion between you and the police car, either toward or away from each other, you will hear a different frequency. For example, if you are driving toward the police car at \(120 \mathrm{~km} / \mathrm{h}\) (about \(75 \mathrm{mi} / \mathrm{h}\) ), you will hear a higher frequency \((1096 \mathrm{~Hz}\), an increase of 96 Hz\()\). If you are driving away from the police car at that same speed, you will hear a lower frequency \((904 \mathrm{~Hz}\), a decrease of 96 Hz ).

These motion-related frequency changes are examples of the Doppler effect. The effect was proposed (although not fully worked out) in 1842 by Austrian physicist Johann Christian Doppler. It was tested experimentally in 1845 by Buys Ballot in Holland, "using a locomotive drawing an open car with several trumpeters."

The Doppler effect holds not only for sound waves but also for electromagnetic waves, including microwaves, radio waves, and visible light. Here, however, we shall consider only sound waves, and we shall take as a reference frame the body of air through which these waves travel. This means that we shall measure the speeds of a source \(S\) of sound waves and a detector \(D\) of those waves relative to that body of air. (Unless otherwise stated, the body of air is stationary relative to the ground, so the speeds can also be measured relative to the ground.) We shall assume that \(S\) and \(D\) move either directly toward or directly away from each other, at speeds less than the speed of sound.

General Equation. If either the detector or the source is moving, or both are moving, the emitted frequency \(f\) and the detected frequency \(f^{\prime}\) are related by
\[
\begin{equation*}
f^{\prime}=f \frac{v \pm v_{D}}{v \pm v_{S}} \quad(\text { general Doppler effect }) \tag{17-47}
\end{equation*}
\]
where \(v\) is the speed of sound through the air, \(v_{D}\) is the detector's speed relative to the air, and \(v_{S}\) is the source's speed relative to the air. The choice of plus or minus signs is set by this rule:

When the motion of detector or source is toward the other, the sign on its speed must give an upward shift in frequency. When the motion of detector or source is away from the other, the sign on its speed must give a downward shift in frequency.

In short, toward means shift up, and away means shift down.
Here are some examples of the rule. If the detector moves toward the source, use the plus sign in the numerator of Eq. 17-47 to get a shift up in the frequency. If it moves away, use the minus sign in the numerator to get a shift down. If it is stationary, substitute 0 for \(v_{D}\). If the source moves toward the detector, use the minus sign in the denominator of Eq. 17-47 to get a shift up in the frequency. If it moves away, use the plus sign in the denominator to get a shift down. If the source is stationary, substitute 0 for \(v_{s}\).

Next, we derive equations for the Doppler effect for the following two specific situations and then derive Eq. 17-47 for the general situation.
1. When the detector moves relative to the air and the source is stationary relative to the air, the motion changes the frequency at which the detector intercepts wavefronts and thus changes the detected frequency of the sound wave.
2. When the source moves relative to the air and the detector is stationary relative to the air, the motion changes the wavelength of the sound wave and thus changes the detected frequency (recall that frequency is related to wavelength).


Figure 17-20 The wavefronts of Fig. 17-19, assumed planar, (a) reach and (b) pass a stationary detector \(D\); they move a distance \(v t\) to the right in time \(t\).


Figure 17-21 Wavefronts traveling to the right (a) reach and (b) pass detector \(D\), which moves in the opposite direction. In time \(t\), the wavefronts move a distance \(v t\) to the right and \(D\) moves a distance \(v_{D} t\) to the left.

Figure 17-19 A stationary source of sound \(S\) emits spherical wavefronts, shown one wavelength apart, that expand outward at speed \(v\). A sound detector \(D\), represented by an ear, moves with velocity \(\vec{v}_{D}\) toward the source. The detector senses a higher frequency because of its motion.


\section*{Detector Moving, Source Stationary}

In Fig. 17-19, a detector \(D\) (represented by an ear) is moving at speed \(v_{D}\) toward a stationary source \(S\) that emits spherical wavefronts, of wavelength \(\lambda\) and frequency \(f\), moving at the speed \(v\) of sound in air. The wavefronts are drawn one wavelength apart. The frequency detected by detector \(D\) is the rate at which \(D\) intercepts wavefronts (or individual wavelengths). If \(D\) were stationary, that rate would be \(f\), but since \(D\) is moving into the wavefronts, the rate of interception is greater, and thus the detected frequency \(f^{\prime}\) is greater than \(f\).

Let us for the moment consider the situation in which \(D\) is stationary (Fig. 17-20). In time \(t\), the wavefronts move to the right a distance \(v t\). The number of wavelengths in that distance \(v t\) is the number of wavelengths intercepted by \(D\) in time \(t\), and that number is \(v t / \lambda\). The rate at which \(D\) intercepts wavelengths, which is the frequency \(f\) detected by \(D\), is
\[
\begin{equation*}
f=\frac{v t / \lambda}{t}=\frac{v}{\lambda} \tag{17-48}
\end{equation*}
\]

In this situation, with \(D\) stationary, there is no Doppler effect-the frequency detected by \(D\) is the frequency emitted by \(S\).

Now let us again consider the situation in which \(D\) moves in the direction opposite the wavefront velocity (Fig. 17-21). In time \(t\), the wavefronts move to the right a distance \(v t\) as previously, but now \(D\) moves to the left a distance \(v_{D} t\). Thus, in this time \(t\), the distance moved by the wavefronts relative to \(D\) is \(v t+\) \(v_{D} t\). The number of wavelengths in this relative distance \(v t+v_{D} t\) is the number of wavelengths intercepted by \(D\) in time \(t\) and is \(\left(v t+v_{D} t\right) / \lambda\). The rate at which \(D\) intercepts wavelengths in this situation is the frequency \(f^{\prime}\), given by
\[
\begin{equation*}
f^{\prime}=\frac{\left(v t+v_{D} t\right) / \lambda}{t}=\frac{v+v_{D}}{\lambda} \tag{17-49}
\end{equation*}
\]

From Eq. 17-48, we have \(\lambda=v / f\). Then Eq. 17-49 becomes
\[
\begin{equation*}
f^{\prime}=\frac{v+v_{D}}{v / f}=f \frac{v+v_{D}}{v} \tag{17-50}
\end{equation*}
\]

Note that in Eq. 17-50, \(f^{\prime}>f\) unless \(v_{D}=0\) (the detector is stationary).
Similarly, we can find the frequency detected by \(D\) if \(D\) moves away from the source. In this situation, the wavefronts move a distance \(v t-v_{D} t\) relative to \(D\) in time \(t\), and \(f^{\prime}\) is given by
\[
\begin{equation*}
f^{\prime}=f \frac{v-v_{D}}{v} . \tag{17-51}
\end{equation*}
\]

In Eq. 17-51, \(f^{\prime}<f\) unless \(v_{D}=0\). We can summarize Eqs. 17-50 and 17-51 with
\[
\begin{equation*}
f^{\prime}=f \frac{v \pm v_{D}}{v} \quad \text { (detector moving, source stationary). } \tag{17-52}
\end{equation*}
\]

Figure 17-22 A detector \(D\) is stationary, and a source \(S\) is moving toward it at speed \(v_{S}\). Wavefront \(W_{1}\) was emitted when the source was at \(S_{1}\), wavefront \(W_{7}\) when it was at \(S_{7}\). At the moment depicted, the source is at \(S\). The detector senses a higher frequency because the moving source, chasing its own wavefronts, emits a reduced wavelength \(\lambda^{\prime}\) in the direction of its motion.


\section*{Source Moving, Detector Stationary}

Let detector \(D\) be stationary with respect to the body of air, and let source \(S\) move toward \(D\) at speed \(v_{S}\) (Fig. 17-22). The motion of \(S\) changes the wavelength of the sound waves it emits and thus the frequency detected by \(D\).

To see this change, let \(T(=1 / f)\) be the time between the emission of any pair of successive wavefronts \(W_{1}\) and \(W_{2}\). During \(T\), wavefront \(W_{1}\) moves a distance \(v T\) and the source moves a distance \(v_{S} T\). At the end of \(T\), wavefront \(W_{2}\) is emitted. In the direction in which \(S\) moves, the distance between \(W_{1}\) and \(W_{2}\), which is the wavelength \(\lambda^{\prime}\) of the waves moving in that direction, is \(v T-v_{S} T\). If \(D\) detects those waves, it detects frequency \(f^{\prime}\) given by
\[
\begin{align*}
f^{\prime} & =\frac{v}{\lambda^{\prime}}=\frac{v}{v T-v_{S} T}=\frac{v}{v / f-v_{S} / f} \\
& =f \frac{v}{v-v_{S}} . \tag{17-53}
\end{align*}
\]

Note that \(f^{\prime}\) must be greater than \(f\) unless \(v_{S}=0\).
In the direction opposite that taken by \(S\), the wavelength \(\lambda^{\prime}\) of the waves is again the distance between successive waves but now that distance is \(v T+v_{S} T\). If \(D\) detects those waves, it detects frequency \(f^{\prime}\) given by
\[
\begin{equation*}
f^{\prime}=f \frac{v}{v+v_{S}} \tag{17-54}
\end{equation*}
\]

Now \(f^{\prime}\) must be less than \(f\) unless \(v_{S}=0\).
We can summarize Eqs. 17-53 and 17-54 with
\[
\begin{equation*}
f^{\prime}=f \frac{v}{v \pm v_{S}} \quad \text { (source moving, detector stationary). } \tag{17-55}
\end{equation*}
\]

\section*{General Doppler Effect Equation}

We can now derive the general Doppler effect equation by replacing \(f\) in Eq. 17-55 (the source frequency) with \(f^{\prime}\) of Eq. 17-52 (the frequency associated with motion of the detector). That simple replacement gives us Eq. 17-47 for the general Doppler effect. That general equation holds not only when both detector and source are moving but also in the two specific situations we just discussed. For the situation in which the detector is moving and the source is stationary, substitution of \(v_{S}=0\) into Eq. 17-47 gives us Eq. 17-52, which we previously found. For the situation in which the source is moving and the detector is stationary, substitution of \(v_{D}=0\) into Eq. 17-47 gives us Eq. 17-55, which we previously found.Thus, Eq. 17-47 is the equation to remember.

\section*{Checkpoint 4}

The figure indicates the directions of motion of a sound source and a detector for six situations in stationary air. For each situation, is the detected frequency greater than or less than the emitted frequency, or can't we tell without more information about the actual speeds?
\begin{tabular}{|c|c|c|c|c|}
\hline Source & Detector & & Source & Detector \\
\hline (a) & - 0 speed & (d) & & \\
\hline (b) & - 0 speed & (e) & & \\
\hline (c) & & (f) & \(\longleftarrow\) & \(\longrightarrow\) \\
\hline
\end{tabular}

\section*{Sample Problem 17.07 Double Doppler shift in the echoes used by bats}

Bats navigate and search out prey by emitting, and then detecting reflections of, ultrasonic waves, which are sound waves with frequencies greater than can be heard by a human. Suppose a bat emits ultrasound at frequency \(f_{b e}=82.52\) kHz while flying with velocity \(\vec{v}_{b}=(9.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}\) as it chases a moth that flies with velocity \(\vec{v}_{m}=(8.00 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}\). What frequency \(f_{m d}\) does the moth detect? What frequency \(f_{b d}\) does the bat detect in the returning echo from the moth?

\section*{KEY IDEAS}

The frequency is shifted by the relative motion of the bat and moth. Because they move along a single axis, the shifted frequency is given by Eq. 17-47. Motion toward tends to shift the frequency up, and motion away tends to shift it down.

Detection by moth: The general Doppler equation is
\[
\begin{equation*}
f^{\prime}=f \frac{v \pm v_{D}}{v \pm v_{S}} \tag{17-56}
\end{equation*}
\]

Here, the detected frequency \(f^{\prime}\) that we want to find is the frequency \(f_{m d}\) detected by the moth. On the right side, the emitted frequency \(f\) is the bat's emission frequency \(f_{b e}=82.52 \mathrm{kHz}\), the speed of sound is \(v=343 \mathrm{~m} / \mathrm{s}\), the speed \(v_{D}\) of the detector is the moth's speed \(v_{m}=8.00 \mathrm{~m} / \mathrm{s}\), and the speed \(v_{S}\) of the source is the bat's speed \(v_{b}=9.00 \mathrm{~m} / \mathrm{s}\).

The decisions about the plus and minus signs can be tricky. Think in terms of toward and away. We have the speed of the moth (the detector) in the numerator of Eq. 17-56. The moth moves away from the bat, which tends to lower the detected frequency. Because the speed is in the
numerator, we choose the minus sign to meet that tendency (the numerator becomes smaller). These reasoning steps are shown in Table 17-3.

We have the speed of the bat in the denominator of Eq. 17-56. The bat moves toward the moth, which tends to increase the detected frequency. Because the speed is in the denominator, we choose the minus sign to meet that tendency (the denominator becomes smaller).

With these substitutions and decisions, we have
\[
\begin{aligned}
f_{m d} & =f_{b e} \frac{v-v_{m}}{v-v_{b}} \\
& =(82.52 \mathrm{kHz}) \frac{343 \mathrm{~m} / \mathrm{s}-8.00 \mathrm{~m} / \mathrm{s}}{343 \mathrm{~m} / \mathrm{s}-9.00 \mathrm{~m} / \mathrm{s}} \\
& =82.767 \mathrm{kHz} \approx 82.8 \mathrm{kHz} .
\end{aligned}
\]
(Answer)
Detection of echo by bat: In the echo back to the bat, the moth acts as a source of sound, emitting at the frequency \(f_{m d}\) we just calculated. So now the moth is the source (moving away) and the bat is the detector (moving toward). The reasoning steps are shown in Table 17-3. To find the frequency \(f_{b d}\) detected by the bat, we write Eq. 17-56 as
\[
\begin{aligned}
f_{b d} & =f_{m d} \frac{v+v_{b}}{v+v_{m}} \\
& =(82.767 \mathrm{kHz}) \frac{343 \mathrm{~m} / \mathrm{s}+9.00 \mathrm{~m} / \mathrm{s}}{343 \mathrm{~m} / \mathrm{s}+8.00 \mathrm{~m} / \mathrm{s}} \\
& =83.00 \mathrm{kHz} \approx 83.0 \mathrm{kHz} .
\end{aligned}
\]
(Answer)
Some moths evade bats by "jamming" the detection system with ultrasonic clicks.

Table 17-3
\begin{tabular}{cccc}
\hline \multicolumn{2}{c}{ Bat to Moth } & \multicolumn{2}{c}{ Echo Back to Bat } \\
\hline Detector & Source & Detector & Source \\
\hline moth & bat & bat & moth \\
speed \(v_{D}=v_{m}\) & speed \(v_{S}=v_{b}\) & speed \(v_{D}=v_{b}\) & speed \(v_{S}=v_{m}\) \\
away & toward & toward & away \\
shift down & shift up & shift up & shift down \\
numerator & deminator & minus & numerator
\end{tabular}

PLU'S

\section*{17-8 SUPERSONIC SPEEDS, SHOCK WAVES}

\section*{Learning Objectives}

After reading this module, you should be able to ...
17.35 Sketch the bunching of wavefronts for a sound source traveling at the speed of sound or faster.
17.36 Calculate the Mach number for a sound source exceeding the speed of sound.
17.37 For a sound source exceeding the speed of sound, apply the relationship between the Mach cone angle, the speed of sound, and the speed of the source.

\section*{Key Idea}
- If the speed of a source relative to the medium exceeds the speed of sound in the medium, the Doppler equation no longer applies. In such a case, shock waves result. The half-angle \(\theta\) of the Mach cone is given by
\[
\sin \theta=\frac{v}{v_{S}} \quad(\text { Mach cone angle })
\]

\section*{Supersonic Speeds, Shock Waves}

If a source is moving toward a stationary detector at a speed \(v_{S}\) equal to the speed of sound \(v\), Eqs. 17-47 and 17-55 predict that the detected frequency \(f^{\prime}\) will be infinitely great. This means that the source is moving so fast that it keeps pace with its own spherical wavefronts (Fig. 17-23a). What happens when \(v_{S}>v\) ? For such supersonic speeds, Eqs. 17-47 and \(17-55\) no longer apply. Figure 17-23b depicts the spherical wavefronts that originated at various positions of the source. The radius of any wavefront is \(v t\), where \(t\) is the time that has elapsed since the source emitted that wavefront. Note that all the wavefronts bunch along a V-shaped envelope in this two-dimensional drawing. The wavefronts actually extend in three dimensions, and the bunching actually forms a cone called the Mach cone. A shock wave exists along the surface of this cone, because the bunching of wavefronts causes an abrupt rise and fall of air pressure as the surface passes through any point. From Fig. 17-23b, we see that the half-angle \(\theta\) of the cone (the Mach cone angle) is given by
\[
\begin{equation*}
\sin \theta=\frac{v t}{v_{S} t}=\frac{v}{v_{S}} \quad(\text { Mach cone angle }) . \tag{17-57}
\end{equation*}
\]

The ratio \(v_{S} / v\) is the Mach number. If a plane flies at Mach 2.3, its speed is 2.3 times the speed of sound in the air through which the plane is flying. The shock wave generated by a supersonic aircraft (Fig. 17-24)

U.S. Navy photo by Ensign John Gay

Figure 17-24 Shock waves produced by the wings of a Navy FA 18 jet. The shock waves are visible because the sudden decrease in air pressure in them caused water molecules in the air to condense, forming a fog.


Figure 17-23 (a) A source of sound \(S\) moves at speed \(v_{S}\) equal to the speed of sound and thus as fast as the wavefronts it generates. (b) A source \(S\) moves at speed \(v_{S}\) faster than the speed of sound and thus faster than the wavefronts. When the source was at position \(S_{1}\) it generated wavefront \(W_{1}\), and at position \(S_{6}\) it generated \(W_{6}\). All the spherical wavefronts expand at the speed of sound \(v\) and bunch along the surface of a cone called the Mach cone, forming a shock wave. The surface of the cone has half-angle \(\theta\) and is tangent to all the wavefronts.
or projectile produces a burst of sound, called a sonic boom, in which the air pressure first suddenly increases and then suddenly decreases below normal before returning to normal. Part of the sound that is heard when a rifle is fired is the sonic boom produced by the bullet. When a long bull whip is snapped, its tip is moving faster than sound and produces a small sonic boom - the crack of the whip.

\section*{8eview \& Summary}

Sound Waves Sound waves are longitudinal mechanical waves that can travel through solids, liquids, or gases. The speed \(v\) of a sound wave in a medium having bulk modulus \(B\) and density \(\rho\) is
\[
\begin{equation*}
v=\sqrt{\frac{B}{\rho}} \quad \text { (speed of sound). } \tag{17-3}
\end{equation*}
\]

In air at \(20^{\circ} \mathrm{C}\), the speed of sound is \(343 \mathrm{~m} / \mathrm{s}\).
A sound wave causes a longitudinal displacement \(s\) of a mass element in a medium as given by
\[
\begin{equation*}
s=s_{m} \cos (k x-\omega t), \tag{17-12}
\end{equation*}
\]
where \(s_{m}\) is the displacement amplitude (maximum displacement) from equilibrium, \(k=2 \pi / \lambda\), and \(\omega=2 \pi f, \lambda\) and \(f\) being the wavelength and frequency of the sound wave. The wave also causes a pressure change \(\Delta p\) from the equilibrium pressure:
\[
\begin{equation*}
\Delta p=\Delta p_{m} \sin (k x-\omega t) \tag{17-13}
\end{equation*}
\]
where the pressure amplitude is
\[
\begin{equation*}
\Delta p_{m}=(v \rho \omega) s_{m} . \tag{17-14}
\end{equation*}
\]

Interference The interference of two sound waves with identical wavelengths passing through a common point depends on their phase difference \(\phi\) there. If the sound waves were emitted in phase and are traveling in approximately the same direction, \(\phi\) is given by
\[
\begin{equation*}
\phi=\frac{\Delta L}{\lambda} 2 \pi, \tag{17-21}
\end{equation*}
\]
where \(\Delta L\) is their path length difference (the difference in the distances traveled by the waves to reach the common point). Fully constructive interference occurs when \(\phi\) is an integer multiple of \(2 \pi\),
\[
\begin{equation*}
\phi=m(2 \pi), \quad \text { for } m=0,1,2, \ldots, \tag{17-22}
\end{equation*}
\]
and, equivalently, when \(\Delta L\) is related to wavelength \(\lambda\) by
\[
\begin{equation*}
\frac{\Delta L}{\lambda}=0,1,2, \ldots . \tag{17-23}
\end{equation*}
\]

Fully destructive interference occurs when \(\phi\) is an odd multiple of \(\pi\),
\[
\begin{equation*}
\phi=(2 m+1) \pi, \quad \text { for } m=0,1,2, \ldots, \tag{17-24}
\end{equation*}
\]
and, equivalently, when \(\Delta L\) is related to \(\lambda\) by
\[
\begin{equation*}
\frac{\Delta L}{\lambda}=0.5,1.5,2.5, \ldots \tag{17-25}
\end{equation*}
\]

Sound Intensity The intensity \(I\) of a sound wave at a surface is the average rate per unit area at which energy is transferred by the wave through or onto the surface:
\[
\begin{equation*}
I=\frac{P}{A} \tag{17-26}
\end{equation*}
\]
where \(P\) is the time rate of energy transfer (power) of the sound wave
and \(A\) is the area of the surface intercepting the sound. The intensity \(I\) is related to the displacement amplitude \(s_{m}\) of the sound wave by
\[
\begin{equation*}
I=\frac{1}{2} \rho v \omega^{2} s_{m}^{2} . \tag{17-27}
\end{equation*}
\]

The intensity at a distance \(r\) from a point source that emits sound waves of power \(P_{s}\) is
\[
\begin{equation*}
I=\frac{P_{s}}{4 \pi r^{2}} . \tag{17-28}
\end{equation*}
\]

Sound Level in Decibels The sound level \(\beta\) in decibels (dB) is defined as
\[
\begin{equation*}
\beta=(10 \mathrm{~dB}) \log \frac{I}{I_{0}}, \tag{17-29}
\end{equation*}
\]
where \(I_{0}\left(=10^{-12} \mathrm{~W} / \mathrm{m}^{2}\right)\) is a reference intensity level to which all intensities are compared. For every factor-of-10 increase in intensity, 10 dB is added to the sound level.

Standing Wave Patterns in Pipes Standing sound wave patterns can be set up in pipes. A pipe open at both ends will resonate at frequencies
\[
\begin{equation*}
f=\frac{v}{\lambda}=\frac{n v}{2 L}, \quad n=1,2,3, \ldots, \tag{17-39}
\end{equation*}
\]
where \(v\) is the speed of sound in the air in the pipe. For a pipe closed at one end and open at the other, the resonant frequencies are
\[
\begin{equation*}
f=\frac{v}{\lambda}=\frac{n v}{4 L}, \quad n=1,3,5, \ldots \tag{17-41}
\end{equation*}
\]

Beats Beats arise when two waves having slightly different frequencies, \(f_{1}\) and \(f_{2}\), are detected together. The beat frequency is
\[
\begin{equation*}
f_{\text {beat }}=f_{1}-f_{2} \text {. } \tag{17-46}
\end{equation*}
\]

The Doppler Effect The Doppler effect is a change in the observed frequency of a wave when the source or the detector moves relative to the transmitting medium (such as air). For sound the observed frequency \(f^{\prime}\) is given in terms of the source frequency \(f\) by
\[
\begin{equation*}
f^{\prime}=f \frac{v \pm v_{D}}{v \pm v_{S}} \quad \text { (general Doppler effect), } \tag{17-47}
\end{equation*}
\]
where \(v_{D}\) is the speed of the detector relative to the medium, \(v_{S}\) is that of the source, and \(v\) is the speed of sound in the medium. The signs are chosen such that \(f^{\prime}\) tends to be greater for motion toward and less for motion away.

Shock Wave If the speed of a source relative to the medium exceeds the speed of sound in the medium, the Doppler equation no longer applies. In such a case, shock waves result. The half-angle \(\theta\) of the Mach cone is given by
\[
\begin{equation*}
\sin \theta=\frac{v}{v_{S}} \quad \text { (Mach cone angle). } \tag{17-57}
\end{equation*}
\]

\section*{Questions}

1 In a first experiment, a sinusoidal sound wave is sent through a long tube of air, transporting energy at the average rate of \(P_{\text {avg }, 1}\). In a second experiment, two other sound waves, identical to the first one, are to be sent simultaneously through the tube with a phase difference \(\phi\) of either \(0,0.2\) wavelength, or 0.5 wavelength between the waves. (a) With only mental calculation, rank those choices of \(\phi\) according to the average rate at which the waves will transport energy, greatest first. (b) For the first choice of \(\phi\), what is the average rate in terms of \(P_{\text {avg } 1}\) ?
2 In Fig. 17-25, two point sources \(S_{1}\) and \(S_{2}\), which are in phase, emit identical sound waves of wavelength 2.0 m . In terms of wavelengths, what is the phase differ-


Figure 17-25 Question 2. ence between the waves arriving at point \(P\) if (a) \(L_{1}=38 \mathrm{~m}\) and \(L_{2}=34 \mathrm{~m}\), and (b) \(L_{1}=39 \mathrm{~m}\) and \(L_{2}=36 \mathrm{~m}\) ? (c) Assuming that the source separation is much smaller than \(L_{1}\) and \(L_{2}\), what type of interference occurs at \(P\) in situations (a) and (b)?
3 In Fig. 17-26, three long tubes ( \(A, B\), and \(C\) ) are filled with different gases under different pressures. The ratio of the bulk modulus to the density is indicated for each gas in terms of a basic value \(B_{0} / \rho_{0}\). Each tube has a piston at its left end that can send a sound pulse through the tube (as in Fig. 16-2). The three pulses are sent simultaneously. Rank the tubes according to the time of arrival of the pulses at the open right ends of the tubes, earliest first.


Figure 17-26 Question 3.

4 The sixth harmonic is set up in a pipe. (a) How many open ends does the pipe have (it has at least one)? (b) Is there a node, antinode, or some intermediate state at the midpoint?
5 In Fig. 17-27, pipe \(A\) is made to oscillate in its third harmonic by a small internal sound source. Sound emitted at the right end happens to resonate four nearby pipes, each with only one open end (they are not drawn to scale). Pipe \(B\) oscillates in its lowest harmonic, pipe \(C\) in its second lowest harmonic, pipe \(D\) in its third lowest harmonic, and pipe \(E\) in its fourth lowest harmonic. Without computation, rank all five pipes according to their length, greatest first. (Hint: Draw the standing waves to scale and then draw the pipes to scale.)


Figure 17-27 Question 5.

6 Pipe \(A\) has length \(L\) and one open end. Pipe \(B\) has length \(2 L\) and two open ends. Which harmonics of pipe \(B\) have a frequency that matches a resonant frequency of pipe \(A\) ?
7 Figure 17-28 shows a moving sound source \(S\) that emits at a certain frequency, and four stationary sound detectors. Rank the detectors according to the frequency of the sound they detect from the source, greatest first.


Figure 17-28 Question 7.
8 A friend rides, in turn, the rims of three fast merry-go-rounds while holding a sound source that emits isotropically at a certain frequency. You stand far from each merry-go-round. The frequency you hear for each of your friend's three rides varies as the merry-goround rotates. The variations in frequency for the three rides are given by the three curves in Fig. 17-29. Rank the curves according to (a) the linear speed \(v\) of the sound source, (b) the angular speeds \(\omega\) of the merry-go-rounds, and (c) the radii \(r\) of the merry-go-rounds, greatest first.


Figure 17-29 Question 8.
9 For a particular tube, here are four of the six harmonic frequencies below \(1000 \mathrm{~Hz}: 300,600,750\), and 900 Hz . What two frequencies are missing from the list?
10 Figure 17-30 shows a stretched string of length \(L\) and pipes \(a\), \(b, c\), and \(d\) of lengths \(L, 2 L, L / 2\), and \(L / 2\), respectively. The string's tension is adjusted until the speed of waves on the string equals the speed of sound waves in the air. The fundamental mode of oscillation is then set up on the string. In which pipe will the sound produced by the string cause resonance, and what oscillation mode will that sound set up?


11 You are given four tuning forks. The fork with the lowest frequency oscillates at 500 Hz . By striking two tuning forks at a time, you can produce the following beat frequencies, \(1,2,3,5,7\), and 8 Hz . What are the possible frequencies of the other three forks? (There are two sets of answers.)

\section*{8roblems}
Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign
\begin{tabular}{llrl} 
SSM & Worked-out solution available in Student Solutions Manual & WWW Worked-out solution is at \\
-- oos & Number of dots indicates level of problem difficulty & ILW & Interactive solution is at
\end{tabular}
http://www.wiley.com/college/halliday
Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

Where needed in the problems, use
speed of sound in air \(=343 \mathrm{~m} / \mathrm{s}\)
and \(\quad\) density of air \(=1.21 \mathrm{~kg} / \mathrm{m}^{3}\)
unless otherwise specified.

\section*{Module 17-1 Speed of Sound}
-1 Two spectators at a soccer game see, and a moment later hear, the ball being kicked on the playing field. The time delay for spectator \(A\) is 0.23 s , and for spectator \(B\) it is 0.12 s . Sight lines from the two spectators to the player kicking the ball meet at an angle of \(90^{\circ}\). How far are (a) spectator \(A\) and (b) spectator \(B\) from the player? (c) How far are the spectators from each other?
-2 What is the bulk modulus of oxygen if 32.0 g of oxygen occupies 22.4 L and the speed of sound in the oxygen is \(317 \mathrm{~m} / \mathrm{s}\) ?
-3 When the door of the Chapel of the Mausoleum in Hamilton, Scotland, is slammed shut, the last echo heard by someone standing just inside the door reportedly comes 15 s later. (a) If that echo were due to a single reflection off a wall opposite the door, how far from the door is the wall? (b) If, instead, the wall is 25.7 m away, how many reflections (back and forth) occur?
-4 A column of soldiers, marching at 120 paces per minute, keep in step with the beat of a drummer at the head of the column. The soldiers in the rear end of the column are striding forward with the left foot when the drummer is advancing with the right foot. What is the approximate length of the column?
\(\bullet 5\) SSM ILW Earthquakes generate sound waves inside Earth. Unlike a gas, Earth can experience both transverse (S) and longitudinal ( P ) sound waves. Typically, the speed of \(S\) waves is about \(4.5 \mathrm{~km} / \mathrm{s}\), and that of P waves \(8.0 \mathrm{~km} / \mathrm{s}\). A seismograph records P and S waves from an earthquake. The first P waves arrive 3.0 min before the first \(S\) waves. If the waves travel in a straight line, how far away did the earthquake occur?
\(\because 6\) A man strikes one end of a thin rod with a hammer. The speed of sound in the rod is 15 times the speed of sound in air. A woman, at the other end with her ear close to the rod, hears the sound of the blow twice with a 0.12 s interval between; one sound comes through the rod and the other comes through the air alongside the rod. If the speed of sound in air is \(343 \mathrm{~m} / \mathrm{s}\), what is the length of the rod?
\(\bullet 7\) SSM Www A stone is dropped into a well. The splash is heard 3.00 s later. What is the depth of the well?
-०8 ©o Hot chocolate effect. Tap a metal spoon inside a mug of water and note the frequency \(f_{i}\) you hear. Then add a spoonful of powder (say, chocolate mix or instant coffee) and tap again as you stir the powder. The frequency you hear has a lower value \(f_{s}\) because the tiny air bubbles released by the powder change the water's bulk modulus. As the bubbles reach the water surface and disappear, the frequency gradually shifts back to its initial value. During the effect, the bubbles don't appreciably change the water's density or volume or the sound's wavelength.

Rather, they change the value of \(d V / d p\) - that is, the differential change in volume due to the differential change in the pressure caused by the sound wave in the water. If \(f_{s} / f_{i}=0.333\), what is the ratio \((d V / d p)_{s} /(d V / d p)_{i}\) ?

\section*{Module 17-2 Traveling Sound Waves}
-9 If the form of a sound wave traveling through air is
\[
s(x, t)=(6.0 \mathrm{~nm}) \cos (k x+(3000 \mathrm{rad} / \mathrm{s}) t+\phi)
\]
how much time does any given air molecule along the path take to move between displacements \(s=+2.0 \mathrm{~nm}\) and \(s=-2.0 \mathrm{~nm}\) ?
\(\bullet 10\) Underwater illusion. One clue used by your brain to determine the direction of a source of sound is the time delay \(\Delta t\) between the arrival of the sound at the ear closer to the source and the arrival at the farther ear. Assume that the source is distant so that a wavefront from it is approximately planar when it reaches you,


Figure 17-31 Problem 10. and let \(D\) represent the separation between your ears. (a) If the source is located at angle \(\theta\) in front of you (Fig. 17-31), what is \(\Delta t\) in terms of \(D\) and the speed of sound \(v\) in air? (b) If you are submerged in water and the sound source is directly to your right, what is \(\Delta t\) in terms of \(D\) and the speed of sound \(v_{w}\) in water? (c) Based on the time-delay clue, your brain interprets the submerged sound to arrive at an angle \(\theta\) from the forward direction. Evaluate \(\theta\) for fresh water at \(20^{\circ} \mathrm{C}\).
-11 SSM Diagnostic ultrasound of frequency 4.50 MHz is used to examine tumors in soft tissue. (a) What is the wavelength in air of such a sound wave? (b) If the speed of sound in tissue is \(1500 \mathrm{~m} / \mathrm{s}\), what is the wavelength of this wave in tissue?
-12 The pressure in a traveling sound wave is given by the equation
\[
\Delta p=(1.50 \mathrm{~Pa}) \sin \pi\left[\left(0.900 \mathrm{~m}^{-1}\right) x-\left(315 \mathrm{~s}^{-1}\right) t\right]
\]

Find the (a) pressure amplitude, (b) frequency, (c) wavelength, and (d) speed of the wave.
-•13 A sound wave of the form \(s=s_{m} \cos (k x-\omega t+\phi)\) travels at \(343 \mathrm{~m} / \mathrm{s}\) through air in a long horizontal tube. At one instant, air molecule \(A\) at \(x=2.000 \mathrm{~m}\) is at its maximum positive displacement of 6.00 nm and air molecule \(B\) at \(x=2.070 \mathrm{~m}\) is at a positive displacement of 2.00 nm . All the molecules between \(A\) and \(B\) are at intermediate displacements. What is the frequency of the wave?
\(\bullet 14\) Figure 17-32 shows the output from a pressure monitor mounted at a point along the


Figure 17-32 Problem 14.
path taken by a sound wave of a single frequency traveling at 343 \(\mathrm{m} / \mathrm{s}\) through air with a uniform density of \(1.21 \mathrm{~kg} / \mathrm{m}^{3}\). The vertical axis scale is set by \(\Delta p_{s}=4.0 \mathrm{mPa}\). If the displacement function of the wave is \(s(x, t)=s_{m} \cos (k x-\omega t)\), what are (a) \(s_{m}\), (b) \(k\), and (c) \(\omega\) ? The air is then cooled so that its density is \(1.35 \mathrm{~kg} / \mathrm{m}^{3}\) and the speed of a sound wave through it is \(320 \mathrm{~m} / \mathrm{s}\). The sound source again emits the sound wave at the same frequency and same pressure amplitude. What now are (d) \(s_{m}\), (e) \(k\), and (f) \(\omega\) ?
-15 A handclap on stage in an amphitheater sends out sound waves that scatter from terraces of width \(w=0.75 \mathrm{~m}\) (Fig. 17-33). The sound returns to the stage as a periodic series of pulses, one from each terrace; the parade of pulses sounds like a played note. (a) Assuming that all the rays in Fig. 17-33 are horizontal, find the frequency at which the pulses return (that is, the frequency of the perceived note). (b) If the width \(w\) of the terraces were smaller, would the frequency be higher or lower?


Figure 17-33 Problem 15.

\section*{Module 17-3 Interference}
-16 Two sound waves, from two different sources with the same frequency, 540 Hz , travel in the same direction at \(330 \mathrm{~m} / \mathrm{s}\). The sources are in phase. What is the phase difference of the waves at a point that is 4.40 m from one source and 4.00 m from the other?
-•17 ILW Two loud speakers are located 3.35 m apart on an outdoor stage. A listener is 18.3 m from one and 19.5 m from the other. During the sound check, a signal generator drives the two speakers in phase with the same amplitude and frequency. The transmitted frequency is swept through the audible range ( 20 Hz to 20 kHz ). (a) What is the lowest frequency \(f_{\min , 1}\) that gives minimum signal (destructive interference) at the listener's location? By what number must \(f_{\min , 1}\) be multiplied to get (b) the second lowest frequency \(f_{\min , 2}\) that gives minimum signal and (c) the third lowest frequency \(f_{\min , 3}\) that gives minimum signal? (d) What is the lowest frequency \(f_{\text {max }, 1}\) that gives maximum signal (constructive interference) at the listener's location? By what number must \(f_{\text {max }, 1}\) be multiplied to get (e) the second lowest frequency \(f_{\text {max, } 2}\) that gives maximum signal and (f) the third lowest frequency \(f_{\max , 3}\) that gives maximum signal?
\(\bullet 18\) ©o In Fig. 17-34, sound waves \(A\) and \(B\), both of wavelength \(\lambda\), are initially in phase and traveling rightward, as indicated by the two rays. Wave \(A\) is reflected from four surfaces but ends up traveling in its original direction. Wave \(B\) ends in that direction after reflecting from two surfaces. Let distance \(L\) in the figure be expressed as a multiple \(q\) of \(\lambda: L=\)


Figure 17-34 Problem 18.
\(q \lambda\). What are the (a) smallest and (b) second smallest values of \(q\) that put \(A\) and \(B\) exactly out of phase with each other after the reflections?
-19 ©o Figure 17-35 shows two isotropic point sources of sound, \(S_{1}\) and \(S_{2}\). The sources emit waves in phase at wavelength 0.50 m ; they are


Figure 17-35
Problems 19 and 105. separated by \(D=1.75 \mathrm{~m}\). If we move a sound detector along a large circle centered at the midpoint between the sources, at how many points do waves arrive at the detector (a) exactly in phase and (b) exactly out of phase?
-220 Figure 17-36 shows four isotropic point sources of sound that are uniformly spaced on an \(x\) axis. The sources emit sound at the same wavelength \(\lambda\) and same amplitude \(s_{m}\), and they emit in phase. A point \(P\) is shown on the \(x\) axis. Assume that as the sound waves travel to \(P\), the decrease in their amplitude is negligible. What multiple of \(s_{m}\) is the amplitude of the net wave at \(P\) if distance \(d\) in the figure is (a) \(\lambda / 4\), (b) \(\lambda / 2\), and (c) \(\lambda\) ?


Figure 17-36 Problem 20.
-21 Ssm In Fig. 17-37, two speakers separated by distance \(d_{1}=2.00 \mathrm{~m}\) are in phase. Assume the amplitudes of the sound waves from the speakers are approximately the same at the listener's ear at distance \(d_{2}=3.75 \mathrm{~m}\) directly in front of one speaker. Consider the full audible range for normal hearing, 20 Hz to 20 kHz . (a)


Figure 17-37 Problem 21. What is the lowest frequency \(f_{\text {min, } 1}\) that gives minimum signal (destructive interference) at the listener's ear? By what number must \(f_{\text {min, } 1}\) be multiplied to get (b) the second lowest frequency \(f_{\min , 2}\) that gives minimum signal and (c) the third lowest frequency \(f_{\text {min, } 3}\) that gives minimum signal?
(d) What is the lowest frequency \(f_{\text {max }, 1}\) that gives maximum signal (constructive interference) at the listener's ear? By what number must \(f_{\text {max, } 1}\) be multiplied to get (e) the second lowest frequency \(f_{\text {max }, 2}\) that gives maximum signal and (f) the third lowest frequency \(f_{\text {max, } 3}\) that gives maximum signal?
\(\because 22\) In Fig. 17-38, sound with a 40.0 cm wavelength travels rightward from a source and through a tube that consists of a straight portion and a half-circle. Part of the sound wave travels through the halfcircle and then rejoins the rest of the wave, which goes directly through the straight portion. This rejoining results in interference. What is the smallest radius \(r\) that results in an intensity minimum at the detector?

0023 ©o Figure 17-39 shows two point sources \(S_{1}\) and \(S_{2}\) that emit sound of wavelength \(\lambda=2.00 \mathrm{~m}\). The emissions are isotropic and in phase, and the separation between


Figure 17-38 Problem 22.


Figure 17-39 Problem 23.
the sources is \(d=16.0 \mathrm{~m}\). At any point \(P\) on the \(x\) axis, the wave from \(S_{1}\) and the wave from \(S_{2}\) interfere. When \(P\) is very far away \((x \approx \infty)\), what are (a) the phase difference between the arriving waves from \(S_{1}\) and \(S_{2}\) and (b) the type of interference they produce? Now move point \(P\) along the \(x\) axis toward \(S_{1}\). (c) Does the phase difference between the waves increase or decrease? At what distance \(x\) do the waves have a phase difference of (d) \(0.50 \lambda\), (e) \(1.00 \lambda\), and (f) \(1.50 \lambda\) ?

\section*{Module 17-4 Intensity and Sound Level}
-24 Suppose that the sound level of a conversation is initially at an angry 70 dB and then drops to a soothing 50 dB . Assuming that the frequency of the sound is 500 Hz , determine the (a) initial and (b) final sound intensities and the (c) initial and (d) final sound wave amplitudes.
-25 A sound wave of frequency 300 Hz has an intensity of \(1.00 \mu \mathrm{~W} / \mathrm{m}^{2}\). What is the amplitude of the air oscillations caused by this wave?
-26 A 1.0 W point source emits sound waves isotropically. Assuming that the energy of the waves is conserved, find the intensity (a) 1.0 m from the source and (b) 2.5 m from the source.
\(\cdot 27\) SSM Www A certain sound source is increased in sound level by 30.0 dB . By what multiple is (a) its intensity increased and (b) its pressure amplitude increased?
-28 Two sounds differ in sound level by 1.00 dB . What is the ratio of the greater intensity to the smaller intensity?
- 29 SSM A point source emits sound waves isotropically. The intensity of the waves 2.50 m from the source is \(1.91 \times 10^{-4} \mathrm{~W} / \mathrm{m}^{2}\). Assuming that the energy of the waves is conserved, find the power of the source.
-30 The source of a sound wave has a power of \(1.00 \mu \mathrm{~W}\). If it is a point source, (a) what is the intensity 3.00 m away and (b) what is the sound level in decibels at that distance?
-31 (so When you "crack" a knuckle, you suddenly widen the knuckle cavity, allowing more volume for the synovial fluid inside it and causing a gas bubble suddenly to appear in the fluid. The sudden production of the bubble, called "cavitation," produces a sound pulse - the cracking sound. Assume that the sound is transmitted uniformly in all directions and that it fully passes from the knuckle interior to the outside. If the pulse has a sound level of 62 dB at your ear, estimate the rate at which energy is produced by the cavitation.
-32 Approximately a third of people with normal hearing have ears that continuously emit a low-intensity sound outward through the ear canal. A person with such spontaneous otoacoustic emission is rarely aware of the sound, except perhaps in a noisefree environment, but occasionally the emission is loud enough to be heard by someone else nearby. In one observation, the sound wave had a frequency of 1665 Hz and a pressure amplitude of \(1.13 \times 10^{-3} \mathrm{~Pa}\). What were (a) the displacement amplitude and (b) the intensity of the wave emitted by the ear?
-33 Male Rana catesbeiana bullfrogs are known for their loud mating call. The call is emitted not by the frog's mouth but by its eardrums, which lie on the surface of the head. And, surprisingly, the sound has nothing to do with the frog's inflated throat. If the emitted sound has a frequency of 260 Hz and a sound level of 85 dB (near the eardrum), what is the amplitude of the eardrum's oscillation? The air density is \(1.21 \mathrm{~kg} / \mathrm{m}^{3}\).
-034 ©o Two atmospheric sound sources \(A\) and \(B\) emit isotropically at constant power. The sound levels \(\beta\) of their emissions are plotted in Fig. 17-40 versus the radial distance \(r\) from the sources. The vertical axis scale is set by \(\beta_{1}=85.0 \mathrm{~dB}\) and \(\beta_{2}=65.0 \mathrm{~dB}\). What are (a) the ratio of the larger power to the smaller power and (b) the sound level difference at \(r=10 \mathrm{~m}\) ?

-•35 A point source emits 30.0 W of sound isotropically. A small microphone intercepts the sound in an area of \(0.750 \mathrm{~cm}^{2}, 200 \mathrm{~m}\) from the source. Calculate (a) the sound intensity there and (b) the power intercepted by the microphone.
-36 Party hearing. As the number of people at a party increases, you must raise your voice for a listener to hear you against the background noise of the other partygoers. However, once you reach the level of yelling, the only way you can be heard is if you move closer to your listener, into the listener's "personal space." Model the situation by replacing you with an isotropic point source of fixed power \(P\) and replacing your listener with a point that absorbs part of your sound waves. These points are initially separated by \(r_{i}=1.20 \mathrm{~m}\). If the background noise increases by \(\Delta \beta=5 \mathrm{~dB}\), the sound level at your listener must also increase. What separation \(r_{f}\) is then required?
-0037 © A sound source sends a sinusoidal sound wave of angular frequency \(3000 \mathrm{rad} / \mathrm{s}\) and amplitude 12.0 nm through a tube of air. The internal radius of the tube is 2.00 cm . (a) What is the average rate at which energy (the sum of the kinetic and potential energies) is transported to the opposite end of the tube? (b) If, simultaneously, an identical wave travels along an adjacent, identical tube, what is the total average rate at which energy is transported to the opposite ends of the two tubes by the waves? If, instead, those two waves are sent along the same tube simultaneously, what is the total average rate at which they transport energy when their phase difference is (c) 0 , (d) \(0.40 \pi \mathrm{rad}\), and (e) \(\pi \mathrm{rad}\) ?

\section*{Module 17-5 Sources of Musical Sound}
-38 The water level in a vertical glass tube 1.00 m long can be adjusted to any position in the tube. A tuning fork vibrating at 686 Hz is held just over the open top end of the tube, to set up a standing wave of sound in the air-filled top portion of the tube. (That airfilled top portion acts as a tube with one end closed and the other end open.) (a) For how many different positions of the water level will sound from the fork set up resonance in the tube's air-filled portion? What are the (b) least and (c) second least water heights in the tube for resonance to occur?
-39 SSM ILW (a) Find the speed of waves on a violin string of mass 800 mg and length 22.0 cm if the fundamental frequency is 920 Hz . (b) What is the tension in the string? For the fundamental, what is the wavelength of (c) the waves on the string and (d) the sound waves emitted by the string?
-40 Organ pipe \(A\), with both ends open, has a fundamental frequency of 300 Hz . The third harmonic of organ pipe \(B\), with one end open, has the same frequency as the second harmonic of pipe \(A\). How long are (a) pipe \(A\) and (b) pipe \(B\) ?
-41 A violin string 15.0 cm long and fixed at both ends oscillates in its \(n=1\) mode. The speed of waves on the string is \(250 \mathrm{~m} / \mathrm{s}\), and the speed of sound in air is \(348 \mathrm{~m} / \mathrm{s}\). What are the (a) frequency and (b) wavelength of the emitted sound wave?
-42 A sound wave in a fluid medium is reflected at a barrier so that a standing wave is formed. The distance between nodes is 3.8 cm , and the speed of propagation is \(1500 \mathrm{~m} / \mathrm{s}\). Find the frequency of the sound wave.
-43 SSM In Fig. 17-41, \(S\) is a small loudspeaker driven by an audio oscillator with a frequency that is varied from 1000 Hz to 2000 Hz , and \(D\) is a cylindrical pipe with two open ends and a length of 45.7 cm . The speed of sound in the air-filled pipe is \(344 \mathrm{~m} / \mathrm{s}\). (a) At how many frequencies does the sound from the loudspeaker set up resonance in the pipe? What are the (b) lowest and (c) second


Figure 17-41 Problem 43. lowest frequencies at which resonance occurs?
-44 The crest of a Parasaurolophus dinosaur skull is shaped somewhat like a trombone and contains a nasal passage in the form of a long, bent tube open at both ends. The dinosaur may have used the passage to produce sound by setting up the fundamental mode in it. (a) If the nasal passage in a certain Parasaurolophus fossil is 2.0 m long, what frequency would have been produced? (b) If that dinosaur could be recreated (as in Jurassic Park), would a person with a hearing range of 60 Hz to 20 kHz be able to hear that fundamental mode and, if so, would the sound be high or low frequency? Fossil skulls that contain shorter nasal passages are thought to be those of the female Parasaurolophus. (c) Would that make the female's fundamental frequency higher or lower than the male's?
-45 In pipe \(A\), the ratio of a particular harmonic frequency to the next lower harmonic frequency is 1.2 . In pipe \(B\), the ratio of a particular harmonic frequency to the next lower harmonic frequency is 1.4. How many open ends are in (a) pipe \(A\) and (b) pipe \(B\) ?
\(\bullet 46\) ©o Pipe \(A\), which is 1.20 m long and open at both ends, oscillates at its third lowest harmonic frequency. It is filled with air for which the speed of sound is \(343 \mathrm{~m} / \mathrm{s}\). Pipe \(B\), which is closed at one end, oscillates at its second lowest harmonic frequency. This frequency of \(B\) happens to match the frequency of \(A\). An \(x\) axis extends along the interior of \(B\), with \(x=0\) at the closed end. (a) How many nodes are along that axis? What are the (b) smallest and (c) second smallest value of \(x\) locating those nodes? (d) What is the fundamental frequency of \(B\) ?
-•47 A well with vertical sides and water at the bottom resonates at 7.00 Hz and at no lower frequency. The air-filled portion of the well acts as a tube with one closed end (at the bottom) and one open end (at the top). The air in the well has a density of \(1.10 \mathrm{~kg} / \mathrm{m}^{3}\) and a bulk modulus of \(1.33 \times 10^{5} \mathrm{~Pa}\). How far down in the well is the water surface?
-•48 One of the harmonic frequencies of tube \(A\) with two open ends is 325 Hz . The next-highest harmonic frequency is 390 Hz . (a) What harmonic frequency is next highest after the harmonic frequency 195 Hz ? (b) What is the number of this next-highest harmonic? One of the harmonic frequencies of tube \(B\) with only
one open end is 1080 Hz . The next-highest harmonic frequency is 1320 Hz . (c) What harmonic frequency is next highest after the harmonic frequency 600 Hz ? (d) What is the number of this nexthighest harmonic?
\(\bullet 49\) SSM A violin string 30.0 cm long with linear density \(0.650 \mathrm{~g} / \mathrm{m}\) is placed near a loudspeaker that is fed by an audio oscillator of variable frequency. It is found that the string is set into oscillation only at the frequencies 880 and 1320 Hz as the frequency of the oscillator is varied over the range \(500-1500 \mathrm{~Hz}\). What is the tension in the string?
\(\because 50\) ©o A tube 1.20 m long is closed at one end. A stretched wire is placed near the open end. The wire is 0.330 m long and has a mass of 9.60 g . It is fixed at both ends and oscillates in its fundamental mode. By resonance, it sets the air column in the tube into oscillation at that column's fundamental frequency. Find (a) that frequency and (b) the tension in the wire.

\section*{Module 17-6 Beats}
-51 The A string of a violin is a little too tightly stretched. Beats at 4.00 per second are heard when the string is sounded together with a tuning fork that is oscillating accurately at concert A \((440 \mathrm{~Hz})\). What is the period of the violin string oscillation?
-52 A tuning fork of unknown frequency makes 3.00 beats per second with a standard fork of frequency 384 Hz . The beat frequency decreases when a small piece of wax is put on a prong of the first fork. What is the frequency of this fork?
-•53 SSM Two identical piano wires have a fundamental frequency of 600 Hz when kept under the same tension. What fractional increase in the tension of one wire will lead to the occurrence of 6.0 beats/s when both wires oscillate simultaneously?
-•54 You have five tuning forks that oscillate at close but different resonant frequencies. What are the (a) maximum and (b) minimum number of different beat frequencies you can produce by sounding the forks two at a time, depending on how the resonant frequencies differ?

\section*{Module 17-7 The Doppler Effect}
-55 ILW A whistle of frequency 540 Hz moves in a circle of radius 60.0 cm at an angular speed of \(15.0 \mathrm{rad} / \mathrm{s}\). What are the (a) lowest and (b) highest frequencies heard by a listener a long distance away, at rest with respect to the center of the circle?
-56 An ambulance with a siren emitting a whine at 1600 Hz overtakes and passes a cyclist pedaling a bike at \(2.44 \mathrm{~m} / \mathrm{s}\). After being passed, the cyclist hears a frequency of 1590 Hz . How fast is the ambulance moving?
-57 A state trooper chases a speeder along a straight road; both vehicles move at \(160 \mathrm{~km} / \mathrm{h}\). The siren on the trooper's vehicle produces sound at a frequency of 500 Hz . What is the Doppler shift in the frequency heard by the speeder?
-•58 A sound source \(A\) and a reflecting surface \(B\) move directly toward each other. Relative to the air, the speed of source \(A\) is \(29.9 \mathrm{~m} / \mathrm{s}\), the speed of surface \(B\) is \(65.8 \mathrm{~m} / \mathrm{s}\), and the speed of sound is \(329 \mathrm{~m} / \mathrm{s}\). The source emits waves at frequency 1200 Hz as measured in the source frame. In the reflector frame, what are the (a) frequency and (b) wavelength of the arriving sound waves? In the source frame, what are the (c) frequency and (d) wavelength of the sound waves reflected back to the source?

In Fig. 17-42, a French submarine and a U.S. submarine move toward each other during maneuvers in motionless water in the North Atlantic. The French sub moves at speed \(v_{\mathrm{F}}=\) \(50.00 \mathrm{~km} / \mathrm{h}\), and the U.S. sub at \(v_{\text {US }}=70.00 \mathrm{~km} / \mathrm{h}\). The French sub sends out a sonar signal (sound wave in water) at \(1.000 \times 10^{3} \mathrm{~Hz}\). Sonar waves travel at \(5470 \mathrm{~km} / \mathrm{h}\). (a) What is the signal's frequency as detected by the U.S. sub? (b) What frequency is detected by the French sub in the signal reflected back to it by the U.S. sub?

-•60 A stationary motion detector sends sound waves of frequency 0.150 MHz toward a truck approaching at a speed of \(45.0 \mathrm{~m} / \mathrm{s}\). What is the frequency of the waves reflected back to the detector?
©61 © 0 A bat is flitting about in a cave, navigating via ultrasonic bleeps. Assume that the sound emission frequency of the bat is 39000 Hz . During one fast swoop directly toward a flat wall surface, the bat is moving at 0.025 times the speed of sound in air. What frequency does the bat hear reflected off the wall?
-•62 Figure 17-43 shows four tubes with lengths 1.0 m or 2.0 m , with one or two open ends as drawn. The third harmonic is set up in each tube, and some of the sound that escapes from them is detected by detector \(D\), which moves directly away from the tubes. In terms of the speed of sound \(v\), what speed must the detector have such that the detected frequency of the sound from (a) tube 1, (b) tube 2, (c) tube 3 , and (d) tube 4 is equal to the tube's fundamental frequency?
locomotive whistle emits sound at frequency 500.0 Hz . The air is still. (a) What frequency does the uncle hear? (b) What frequency does the girl hear? A wind begins to blow from the east at 10.00 \(\mathrm{m} / \mathrm{s}\). (c) What frequency does the uncle now hear? (d) What frequency does the girl now hear?

\section*{Module 17-8 Supersonic Speeds, Shock Waves}
-68 The shock wave off the cockpit of the FA 18 in Fig. 17-24 has an angle of about \(60^{\circ}\). The airplane was traveling at about \(1350 \mathrm{~km} / \mathrm{h}\) when the photograph was taken. Approximately what was the speed of sound at the airplane's altitude?
\(\bullet 69\) SSM A jet plane passes over you at a height of 5000 m and a speed of Mach 1.5. (a) Find the Mach cone angle (the sound speed is \(331 \mathrm{~m} / \mathrm{s}\) ). (b) How long after the jet passes directly overhead does the shock wave reach you?
-•70 A plane flies at 1.25 times the speed of sound. Its sonic boom reaches a man on the ground 1.00 min after the plane passes directly overhead. What is the altitude of the plane? Assume the speed of sound to be \(330 \mathrm{~m} / \mathrm{s}\).

\section*{Additional Problems}

71 At a distance of 10 km , a 100 Hz horn, assumed to be an isotropic point source, is barely audible. At what distance would it begin to cause pain?
72 A bullet is fired with a speed of \(685 \mathrm{~m} / \mathrm{s}\). Find the angle made by the shock cone with the line of motion of the bullet.
73 A sperm whale (Fig. 17-44a) vocalizes by producing a series of clicks. Actually, the whale makes only a single sound near the front of its head to start the series. Part of that sound then emerges from the head into the water to become the first click of the series. The rest of the sound travels backward through the spermaceti sac (a body of fat), reflects from the frontal sac (an air layer), and then travels forward through the spermaceti sac. When it reaches the distal sac (another air layer) at the front of the head, some of the sound escapes into the water to form the second click, and the rest is sent back through the spermaceti sac (and ends up forming later clicks).

Figure 17-44b shows a strip-chart recording of a series of clicks. A unit time interval of 1.0 ms is indicated on the chart. Assuming that the speed of sound in the spermaceti sac is \(1372 \mathrm{~m} / \mathrm{s}\), find the length of the spermaceti sac. From such a calculation, marine scientists estimate the length of a whale from its click series.


74 The average density of Earth's crust 10 km beneath the continents is \(2.7 \mathrm{~g} / \mathrm{cm}^{3}\). The speed of longitudinal seismic waves at that depth, found by timing their arrival from distant earthquakes, is \(5.4 \mathrm{~km} / \mathrm{s}\). Find the bulk modulus of Earth's crust at that depth. For comparison, the bulk modulus of steel is about \(16 \times 10^{10} \mathrm{~Pa}\).
75 A certain loudspeaker system emits sound isotropically with a frequency of 2000 Hz and an intensity of \(0.960 \mathrm{~mW} / \mathrm{m}^{2}\) at a distance of 6.10 m . Assume that there are no reflections. (a) What is the intensity at 30.0 m ? At 6.10 m , what are (b) the displacement amplitude and (c) the pressure amplitude?
76 Find the ratios (greater to smaller) of the (a) intensities, (b) pressure amplitudes, and (c) particle displacement amplitudes for two sounds whose sound levels differ by 37 dB .
77 In Fig. 17-45, sound waves \(A\) and \(B\), both of wavelength \(\lambda\), are initially in phase and traveling rightward, as indicated by the two rays. Wave \(A\) is reflected from four surfaces but ends up traveling in its original direction. What multiple of wavelength \(\lambda\) is the smallest value of distance \(L\) in the figure that puts \(A\) and \(B\) exactly out of phase with each other after the reflections?
78 A trumpet player on a moving
 railroad flatcar moves toward a second trumpet player standing alongside the track while both play a 440 Hz note. The sound waves heard by a stationary observer between the two players have a beat frequency of 4.0 beats/s. What is the flatcar's speed?
79 ©o In Fig. 17-46, sound of wavelength 0.850 m is emitted isotropically by point source \(S\). Sound ray 1 extends directly to detector \(D\), at distance \(L=10.0 \mathrm{~m}\). Sound ray 2 extends to \(D\) via a reflection (effectively, a "bouncing") of the sound at a flat surface. That reflection occurs on a perpendicular bisector to the \(S D\) line, at distance \(d\) from the line. Assume that the reflection shifts the sound wave by \(0.500 \lambda\). For what least value of \(d\) (other than zero) do the direct sound and the reflected sound arrive at \(D\) (a) exactly out of phase and (b) exactly in phase?


80 © A detector initially moves at constant velocity directly toward a stationary sound source and then (after passing it) directly from it. The emitted frequency is \(f\). During the approach the detected frequency is \(f_{\text {app }}^{\prime}\) and during the recession it is \(f_{\text {rec }}^{\prime}\). If the frequencies are related by \(\left(f_{\text {app }}^{\prime}-f_{\text {rec }}^{\prime}\right) / f=0.500\), what is the ratio \(v_{D} / v\) of the speed of the detector to the speed of sound?
81 SSM (a) If two sound waves, one in air and one in (fresh) water, are equal in intensity and angular frequency, what is the ratio of the pressure amplitude of the wave in water to that of the wave in air? Assume the water and the air are at \(20^{\circ} \mathrm{C}\). (See Table 14-1.) (b) If the pressure amplitudes are equal instead, what is the ratio of the intensities of the waves?

82 A continuous sinusoidal longitudinal wave is sent along a very long coiled spring from an attached oscillating source. The wave travels in the negative direction of an \(x\) axis; the source frequency is 25 Hz ; at any instant the distance between successive points of maximum expansion in the spring is 24 cm ; the maximum longitudinal displacement of a spring particle is 0.30 cm ; and the particle at \(x=0\) has zero displacement at time \(t=0\). If the wave is written in the form \(s(x, t)=s_{m} \cos \left(k x \pm \omega t\right.\), what are (a) \(s_{m}\), (b) \(k\), (c) \(\omega\), (d) the wave speed, and (e) the correct choice of sign in front of \(\omega\) ?

83 SSM Ultrasound, which consists of sound waves with frequencies above the human audible range, can be used to produce an image of the interior of a human body. Moreover, ultrasound can be used to measure the speed of the blood in the body; it


Figure 17-47 Problem 83. does so by comparing the frequency of the ultrasound sent into the body with the frequency of the ultrasound reflected back to the body's surface by the blood. As the blood pulses, this detected frequency varies.

Suppose that an ultrasound image of the arm of a patient shows an artery that is angled at \(\theta=20^{\circ}\) to the ultrasound's line of travel (Fig. 17-47). Suppose also that the frequency of the ultrasound reflected by the blood in the artery is increased by a maximum of 5495 Hz from the original ultrasound frequency of 5.000000 MHz . (a) In Fig. 17-47, is the direction of the blood flow rightward or leftward? (b) The speed of sound in the human arm is \(1540 \mathrm{~m} / \mathrm{s}\). What is the maximum speed of the blood? (Hint: The Doppler effect is caused by the component of the blood's velocity along the ultrasound's direction of travel.) (c) If angle \(\theta\) were greater, would the reflected frequency be greater or less?
84 The speed of sound in a certain metal is \(v_{m}\). One end of a long pipe of that metal of length \(L\) is struck a hard blow. A listener at the other end hears two sounds, one from the wave that travels along the pipe's metal wall and the other from the wave that travels through the air inside the pipe. (a) If \(v\) is the speed of sound in air, what is the time interval \(\Delta t\) between the arrivals of the two sounds at the listener's ear? (b) If \(\Delta t=1.00 \mathrm{~s}\) and the metal is steel, what is the length \(L\) ?

85 An avalanche of sand along some rare desert sand dunes can produce a booming that is loud enough to be heard 10 km away. The booming apparently results from a periodic oscillation of the sliding layer of sand - the layer's thickness expands and contracts. If the emitted frequency is 90 Hz , what are (a) the period of the thickness oscillation and (b) the wavelength of the sound?
86 A sound source moves along an \(x\) axis, between detectors \(A\) and \(B\). The wavelength of the sound detected at \(A\) is 0.500 that of the sound detected at \(B\). What is the ratio \(\nu_{s} / v\) of the speed of the source to the speed of sound?
87 SSM A siren emitting a sound of frequency 1000 Hz moves away from you toward the face of a cliff at a speed of \(10 \mathrm{~m} / \mathrm{s}\). Take the speed of sound in air as \(330 \mathrm{~m} / \mathrm{s}\). (a) What is the frequency of the sound you hear coming directly from the siren? (b) What is the frequency of the sound you hear reflected off the cliff? (c) What is the beat frequency between the two sounds? Is it perceptible (less than 20 Hz )?
88 At a certain point, two waves produce pressure variations given by \(\Delta p_{1}=\Delta p_{m} \sin \omega t\) and \(\Delta p_{2}=\Delta p_{m} \sin (\omega t-\phi)\). At this point,
what is the ratio \(\Delta p_{r} / \Delta p_{m}\), where \(\Delta p_{r}\) is the pressure amplitude of the resultant wave, if \(\phi\) is (a) 0 , (b) \(\pi / 2\), (c) \(\pi / 3\), and (d) \(\pi / 4\) ?
89 Two sound waves with an amplitude of 12 nm and a wavelength of 35 cm travel in the same direction through a long tube, with a phase difference of \(\pi / 3 \mathrm{rad}\). What are the (a) amplitude and (b) wavelength of the net sound wave produced by their interference? If, instead, the sound waves travel through the tube in opposite directions, what are the (c) amplitude and (d) wavelength of the net wave?
90 A sinusoidal sound wave moves at \(343 \mathrm{~m} / \mathrm{s}\) through air in the positive direction of an \(x\) axis. At one instant during the oscillations, air molecule \(A\) is at its maximum displacement in the negative direction of the axis while air molecule \(B\) is at its equilibrium position. The separation between those molecules is 15.0 cm , and the molecules between \(A\) and \(B\) have intermediate displacements in the negative direction of the axis. (a) What is the frequency of the sound wave?

In a similar arrangement but for a different sinusoidal sound wave, at one instant air molecule \(C\) is at its maximum displacement in the positive direction while molecule \(D\) is at its maximum displacement in the negative direction. The separation between the molecules is again 15.0 cm , and the molecules between \(C\) and \(D\) have intermediate displacements. (b) What is the frequency of the sound wave?

91 Two identical tuning forks can oscillate at 440 Hz . A person is located somewhere on the line between them. Calculate the beat frequency as measured by this individual if (a) she is standing still and the tuning forks move in the same direction along the line at \(3.00 \mathrm{~m} / \mathrm{s}\), and (b) the tuning forks are stationary and the listener moves along the line at \(3.00 \mathrm{~m} / \mathrm{s}\).
92 You can estimate your distance from a lightning stroke by counting the seconds between the flash you see and the thunder you later hear. By what integer should you divide the number of seconds to get the distance in kilometers?
93 SSM Figure 17-48 shows an airfilled, acoustic interferometer, used to demonstrate the interference of sound waves. Sound source \(S\) is an oscillating diaphragm; \(D\) is a sound detector, such as the ear or a microphone. Path \(S B D\) can be varied in length, but path \(S A D\) is fixed. At \(D\), the sound wave coming along path \(S B D\) interferes with that coming along path \(S A D\). In one demonstration, the sound intensity at \(D\) has a minimum value of 100 units at one position of the movable arm and continuously climbs to a maximum value of 900 units when that arm is shifted by 1.65 cm . Find (a) the frequency of the sound emitted by the source and (b) the ratio of the amplitude at \(D\) of the \(S A D\) wave to that of the \(S B D\) wave. (c) How can it happen that these waves have different amplitudes, considering that they originate at the same source?

94 On July 10, 1996, a granite block broke away from a wall in Yosemite Valley and, as it began to slide down the wall, was launched into projectile motion. Seismic waves produced by its impact with the ground triggered seismographs as far away as 200 km . Later measurements indicated that the block had a mass between \(7.3 \times 10^{7} \mathrm{~kg}\) and \(1.7 \times 10^{8} \mathrm{~kg}\) and that it landed 500 m vertically below the launch point and 30 m horizontally from it.
(The launch angle is not known.) (a) Estimate the block's kinetic energy just before it landed.

Consider two types of seismic waves that spread from the impact point-a hemispherical body wave traveled through the ground in an expanding hemisphere and a cylindrical surface wave traveled along the ground in an expanding shallow vertical cylinder (Fig. 17-49). Assume that the impact lasted 0.50 s , the vertical cylinder had a depth \(d\) of 5.0 m , and each wave type received \(20 \%\) of the energy the block had just before impact. Neglecting any mechanical energy loss the waves experienced as they traveled, determine the intensities of (b) the body wave and (c) the surface wave when they reached a seismograph 200 km away. (d) On the basis of these results, which wave is more easily detected on a distant seismograph?


Figure 17-49 Problem 94.

95 SSM The sound intensity is \(0.0080 \mathrm{~W} / \mathrm{m}^{2}\) at a distance of 10 m from an isotropic point source of sound. (a) What is the power of the source? (b) What is the sound intensity 5.0 m from the source? (c) What is the sound level 10 m from the source?

96 Four sound waves are to be sent through the same tube of air, in the same direction:
\[
\begin{aligned}
& s_{1}(x, t)=(9.00 \mathrm{~nm}) \cos (2 \pi x-700 \pi t) \\
& s_{2}(x, t)=(9.00 \mathrm{~nm}) \cos (2 \pi x-700 \pi t+0.7 \pi) \\
& s_{3}(x, t)=(9.00 \mathrm{~nm}) \cos (2 \pi x-700 \pi t+\pi) \\
& s_{4}(x, t)=(9.00 \mathrm{~nm}) \cos (2 \pi x-700 \pi t+1.7 \pi) .
\end{aligned}
\]

What is the amplitude of the resultant wave? (Hint: Use a phasor diagram to simplify the problem.)
97 Straight line \(A B\) connects two point sources that are 5.00 m apart, emit 300 Hz sound waves of the same amplitude, and emit exactly out of phase. (a) What is the shortest distance between the midpoint of \(A B\) and a point on \(A B\) where the interfering waves cause maximum oscillation of the air molecules? What are the (b) second and (c) third shortest distances?

98 A point source that is stationary on an \(x\) axis emits a sinusoidal sound wave at a frequency of 686 Hz and speed \(343 \mathrm{~m} / \mathrm{s}\). The wave travels radially outward from the source, causing air molecules to oscillate radially inward and outward. Let us define a wavefront as a line that connects points where the air molecules have the maximum, radially outward displacement. At any given instant, the wavefronts are concentric circles that are centered on the source. (a) Along \(x\), what is the adjacent wavefront separation? Next, the source moves along \(x\) at a speed of \(110 \mathrm{~m} / \mathrm{s}\). Along \(x\), what are the wavefront separations (b) in front of and (c) behind the source?

99 You are standing at a distance \(D\) from an isotropic point source of sound. You walk 50.0 m toward the source and observe that the intensity of the sound has doubled. Calculate the distance \(D\).

100 Pipe \(A\) has only one open end; pipe \(B\) is four times as long and has two open ends. Of the lowest 10 harmonic numbers \(n_{B}\) of pipe \(B\), what are the (a) smallest, (b) second smallest, and (c) third smallest values at which a harmonic frequency of \(B\) matches one of the harmonic frequencies of \(A\) ?
101 A pipe 0.60 m long and closed at one end is filled with an unknown gas. The third lowest harmonic frequency for the pipe is 750 Hz . (a) What is the speed of sound in the unknown gas? (b) What is the fundamental frequency for this pipe when it is filled with the unknown gas?
102 A sound wave travels out uniformly in all directions from a point source. (a) Justify the following expression for the displacement \(s\) of the transmitting medium at any distance \(r\) from the source:
\[
s=\frac{b}{r} \sin k(r-v t)
\]
where \(b\) is a constant. Consider the speed, direction of propagation, periodicity, and intensity of the wave. (b) What is the dimension of the constant \(b\) ?
103 A police car is chasing a speeding Porsche 911. Assume that the Porsche's maximum speed is \(80.0 \mathrm{~m} / \mathrm{s}\) and the police car's is 54.0 \(\mathrm{m} / \mathrm{s}\). At the moment both cars reach their maximum speed, what frequency will the Porsche driver hear if the frequency of the police car's siren is 440 Hz ? Take the speed of sound in air to be \(340 \mathrm{~m} / \mathrm{s}\).
104 Suppose a spherical loudspeaker emits sound isotropically at 10 W into a room with completely absorbent walls, floor, and ceiling (an anechoic chamber). (a) What is the intensity of the sound at distance \(d=3.0 \mathrm{~m}\) from the center of the source? (b) What is the ratio of the wave amplitude at \(d=4.0 \mathrm{~m}\) to that at \(d=3.0 \mathrm{~m}\) ?
105 In Fig. 17-35, \(S_{1}\) and \(S_{2}\) are two isotropic point sources of sound. They emit waves in phase at wavelength 0.50 m ; they are separated by \(D=1.60 \mathrm{~m}\). If we move a sound detector along a large circle centered at the midpoint between the sources, at how many points do waves arrive at the detector (a) exactly in phase and (b) exactly out of phase?
106 Figure \(17-50\) shows a transmitter and receiver of waves contained in a single instrument. It is used to measure the speed \(u\) of a target object (idealized as a flat plate) that is moving directly toward the unit, by analyzing the waves reflected from the target. What is \(u\) if the emitted frequency is 18.0 kHz and the detected frequency (of the returning waves) is 22.2 kHz ?


Target
Figure 17-50 Problem 106.
107 Kundt's method for measuring the speed of sound. In Fig. \(17-51\), a \(\operatorname{rod} R\) is clamped at its center; a disk \(D\) at its end projects into a glass tube that has cork filings spread over its interior. A


Figure 17-51 Problem 107.
plunger \(P\) is provided at the other end of the tube, and the tube is filled with a gas. The rod is made to oscillate longitudinally at frequency \(f\) to produce sound waves inside the gas, and the location of the plunger is adjusted until a standing sound wave pattern is set up inside the tube. Once the standing wave is set up, the motion of the gas molecules causes the cork filings to collect in a pattern of ridges at the displacement nodes. If \(f=4.46 \times 10^{3} \mathrm{~Hz}\) and the separation between ridges is 9.20 cm , what is the speed of sound in the gas?
108 A source S and a detector D of radio waves are a distance \(d\) apart on level ground (Fig. 17-52). Radio waves of wavelength \(\lambda\) reach D either along a straight path or by reflecting (bouncing) from a certain layer in the atmosphere. When the layer is at height \(H\), the two waves reaching D are exactly in phase. If the layer gradually rises, the phase difference between the two waves gradually shifts, until they are exactly out of phase when the layer is at height \(H+h\). Express \(\lambda\) in terms of \(d, h\), and \(H\).


109 In Fig. 17-53, a point source \(S\) of sound waves lies near a reflecting wall \(A B\). A sound detector \(D\) intercepts sound ray \(R_{1}\) traveling directly from \(S\). It also intercepts sound ray \(R_{2}\) that reflects from the wall such that the angle of incidence \(\theta_{i}\) is equal to the angle of reflection \(\theta_{r}\). Assume that the reflection of sound by the wall causes a phase shift of \(0.500 \lambda\). If the distances are \(d_{1}=\) \(2.50 \mathrm{~m}, d_{2}=20.0 \mathrm{~m}\), and \(d_{3}=12.5 \mathrm{~m}\), what are the (a) lowest and (b) second lowest frequency at which \(R_{1}\) and \(R_{2}\) are in phase at \(D\) ?


Figure 17-53 Problem 109.
110 A person on a railroad car blows a trumpet note at 440 Hz . The car is moving toward a wall at \(20.0 \mathrm{~m} / \mathrm{s}\). Find the sound frequency (a) at the wall and (b) reflected back to the trumpeter.

111 A listener at rest (with respect to the air and the ground) hears a signal of frequency \(f_{1}\) from a source moving toward him with a velocity of \(15 \mathrm{~m} / \mathrm{s}\), due east. If the listener then moves toward the approaching source with a velocity of \(25 \mathrm{~m} / \mathrm{s}\), due west, he hears a frequency \(f_{2}\) that differs from \(f_{1}\) by 37 Hz . What is the frequency of the source? (Take the speed of sound in air to be \(340 \mathrm{~m} / \mathrm{s}\).)

\section*{C H A P T \(\quad \mathbf{H} \quad \mathbf{R} \quad 1 \quad 8\)}

\section*{Temperature, Heat, and the First Law of Thermodynamics}

\section*{18-1 temperature}

\section*{Learning Objectives}

After reading this module, you should be able to
18.01 Identify the lowest temperature as 0 on the Kelvin scale (absolute zero).
18.02 Explain the zeroth law of thermodynamics.
18.03 Explain the conditions for the triple-point temperature.
18.04 Explain the conditions for measuring a temperature with a constant-volume gas thermometer.
18.05 For a constant-volume gas thermometer, relate the pressure and temperature of the gas in some given state to the pressure and temperature at the triple point.

\section*{Key Ideas}
- Temperature is an SI base quantity related to our sense of hot and cold. It is measured with a thermometer, which contains a working substance with a measurable property, such as length or pressure, that changes in a regular way as the substance becomes hotter or colder.
- When a thermometer and some other object are placed in contact with each other, they eventually reach thermal equilibrium. The reading of the thermometer is then taken to be the temperature of the other object. The process provides consistent and useful temperature measurements because of the zeroth law of thermodynamics: If bodies \(A\) and \(B\) are each in thermal equilibrium with a third body \(C\) (the thermometer), then \(A\) and \(B\) are in thermal equilibrium with each other.
- In the SI system, temperature is measured on the Kelvin scale, which is based on the triple point of water (273.16 K). Other temperatures are then defined by use of a constantvolume gas thermometer, in which a sample of gas is maintained at constant volume so its pressure is proportional to its temperature. We define the temperature \(T\) as measured with a gas thermometer to be
\[
T=(273.16 \mathrm{~K})\left(\lim _{\operatorname{gas} \rightarrow 0} \frac{p}{p_{3}}\right) .
\]

Here \(T\) is in kelvins, and \(p_{3}\) and \(p\) are the pressures of the gas at 273.16 K and the measured temperature, respectively.

\section*{What Is Physics?}

One of the principal branches of physics and engineering is thermodynamics, which is the study and application of the thermal energy (often called the internal energy) of systems. One of the central concepts of thermodynamics is temperature. Since childhood, you have been developing a working knowledge of thermal energy and temperature. For example, you know to be cautious with hot foods and hot stoves and to store perishable foods in cool or cold compartments. You also know how to control the temperature inside home and car, and how to protect yourself from wind chill and heat stroke.

Examples of how thermodynamics figures into everyday engineering and science are countless. Automobile engineers are concerned with the heating of a car engine, such as during a NASCAR race. Food engineers are concerned both with the proper heating of foods, such as pizzas being microwaved, and with the proper cooling of foods, such as TV dinners being quickly frozen at a processing plant. Geologists are concerned with the transfer of thermal energy in an El Niño event and in the gradual warming of ice expanses in the Arctic and Antarctic.

Agricultural engineers are concerned with the weather conditions that determine whether the agriculture of a country thrives or vanishes. Medical engineers are concerned with how a patient's temperature might distinguish between a benign viral infection and a cancerous growth.

The starting point in our discussion of thermodynamics is the concept of temperature and how it is measured.

\section*{Temperature}

Temperature is one of the seven SI base quantities. Physicists measure temperature on the Kelvin scale, which is marked in units called kelvins. Although the temperature of a body apparently has no upper limit, it does have a lower limit; this limiting low temperature is taken as the zero of the Kelvin temperature scale. Room temperature is about 290 kelvins, or 290 K as we write it, above this absolute zero. Figure 18-1 shows a wide range of temperatures.

When the universe began 13.7 billion years ago, its temperature was about \(10^{39} \mathrm{~K}\). As the universe expanded it cooled, and it has now reached an average temperature of about 3 K . We on Earth are a little warmer than that because we happen to live near a star. Without our Sun, we too would be at 3 K (or, rather, we could not exist).

\section*{The Zeroth Law of Thermodynamics}

The properties of many bodies change as we alter their temperature, perhaps by moving them from a refrigerator to a warm oven. To give a few examples: As their temperature increases, the volume of a liquid increases, a metal rod grows a little longer, and the electrical resistance of a wire increases, as does the pressure exerted by a confined gas. We can use any one of these properties as the basis of an instrument that will help us pin down the concept of temperature.

Figure 18-2 shows such an instrument. Any resourceful engineer could design and construct it, using any one of the properties listed above. The instrument is fitted with a digital readout display and has the following properties: If you heat it (say, with a Bunsen burner), the displayed number starts to increase; if you then put it into a refrigerator, the displayed number starts to decrease. The instrument is not calibrated in any way, and the numbers have (as yet) no physical meaning. The device is a thermoscope but not (as yet) a thermometer.

Suppose that, as in Fig. 18-3a, we put the thermoscope (which we shall call body \(T\) ) into intimate contact with another body (body \(A\) ). The entire system is confined within a thick-walled insulating box. The numbers displayed by the thermoscope roll by until, eventually, they come to rest (let us say the reading is "137.04") and no further change takes place. In fact, we suppose that every measurable property of body \(T\) and of body \(A\) has assumed a stable, unchanging value. Then we say that the two bodies are in thermal equilibrium with each other. Even though the displayed readings for body \(T\) have not been calibrated, we conclude that bodies \(T\) and \(A\) must be at the same (unknown) temperature.

Suppose that we next put body \(T\) into intimate contact with body \(B\) (Fig. 18-3b) and find that the two bodies come to thermal equilibrium at the same reading of the thermoscope. Then bodies \(T\) and \(B\) must be at the same (still unknown) temperature. If we now put bodies \(A\) and \(B\) into intimate contact (Fig. 18-3c), are they immediately in thermal equilibrium with each other? Experimentally, we find that they are.

The experimental fact shown in Fig. 18-3 is summed up in the zeroth law of thermodynamics:

If bodies \(A\) and \(B\) are each in thermal equilibrium with a third body \(T\), then \(A\) and \(B\) are in thermal equilibrium with each other.

In less formal language, the message of the zeroth law is: "Every body has a property called temperature. When two bodies are in thermal equilibrium, their temperatures are equal. And vice versa." We can now make our thermoscope


Figure 18-1 Some temperatures on the Kelvin scale. Temperature \(T=0\) corresponds to \(10^{-\infty}\) and cannot be plotted on this logarithmic scale.


Figure 18-2 A thermoscope. The numbers increase when the device is heated and decrease when it is cooled. The thermally sensitive element could be-among many possibilities - a coil of wire whose electrical resistance is measured and displayed.

Figure 18-3 (a) Body \(T\) (a thermoscope) and body \(A\) are in thermal equilibrium. (Body \(S\) is a thermally insulating screen.) (b) Body \(T\) and body \(B\) are also in thermal equilibrium, at the same reading of the thermoscope. (c) If (a) and (b) are true, the zeroth law of thermodynamics states that body \(A\) and body \(B\) are also in thermal equilibrium.

(the third body \(T\) ) into a thermometer, confident that its readings will have physical meaning. All we have to do is calibrate it.

We use the zeroth law constantly in the laboratory. If we want to know whether the liquids in two beakers are at the same temperature, we measure the temperature of each with a thermometer. We do not need to bring the two liquids into intimate contact and observe whether they are or are not in thermal equilibrium.

The zeroth law, which has been called a logical afterthought, came to light only in the 1930s, long after the first and second laws of thermodynamics had been discovered and numbered. Because the concept of temperature is fundamental to those two laws, the law that establishes temperature as a valid concept should have the lowest number - hence the zero.

\section*{Measuring Temperature}

Here we first define and measure temperatures on the Kelvin scale. Then we calibrate a thermoscope so as to make it a thermometer.

\section*{The Triple Point of Water}

To set up a temperature scale, we pick some reproducible thermal phenomenon and, quite arbitrarily, assign a certain Kelvin temperature to its environment; that is, we select a standard fixed point and give it a standard fixed-point temperature. We could, for example, select the freezing point or the boiling point of water but, for technical reasons, we select instead the triple point of water.

Liquid water, solid ice, and water vapor (gaseous water) can coexist, in thermal equilibrium, at only one set of values of pressure and temperature. Figure 18-4 shows a triple-point cell, in which this so-called triple point of water can be achieved in the laboratory. By international agreement, the triple point of water has been assigned a value of 273.16 K as the standard fixed-point temperature for the calibration of thermometers; that is,
\[
\begin{equation*}
\left.T_{3}=273.16 \mathrm{~K} \quad \text { (triple-point temperature }\right) \tag{18-1}
\end{equation*}
\]
in which the subscript 3 means "triple point." This agreement also sets the size of the kelvin as \(1 / 273.16\) of the difference between the triple-point temperature of water and absolute zero.

Note that we do not use a degree mark in reporting Kelvin temperatures. It is 300 K (not \(300^{\circ} \mathrm{K}\) ), and it is read " 300 kelvins" (not " 300 degrees Kelvin"). The usual SI prefixes apply. Thus, 0.0035 K is 3.5 mK . No distinction in nomenclature is made between Kelvin temperatures and temperature differences, so we can write, "the boiling point of sulfur is 717.8 K " and "the temperature of this water bath was raised by 8.5 K ."

\section*{The Constant-Volume Gas Thermometer}

The standard thermometer, against which all other thermometers are calibrated, is based on the pressure of a gas in a fixed volume. Figure \(18-5\) shows such a constant-volume gas thermometer; it consists of a gas-filled bulb connected by a tube to a mercury manometer. By raising and lowering reservoir \(R\), the mercury

Figure 18-6 Temperatures measured by a con-stant-volume gas thermometer, with its bulb immersed in boiling water. For temperature calculations using Eq. 18-5, pressure \(p_{3}\) was measured at the triple point of water. Three different gases in the thermometer bulb gave generally different results at different gas pressures, but as the amount of gas was decreased (decreasing \(p_{3}\) ), all three curves converged to 373.125 K .

level in the left arm of the U-tube can always be brought to the zero of the scale to keep the gas volume constant (variations in the gas volume can affect temperature measurements).

The temperature of any body in thermal contact with the bulb (such as the liquid surrounding the bulb in Fig. 18-5) is then defined to be
\[
\begin{equation*}
T=C p, \tag{18-2}
\end{equation*}
\]
in which \(p\) is the pressure exerted by the gas and \(C\) is a constant. From Eq. 14-10, the pressure \(p\) is
\[
\begin{equation*}
p=p_{0}-\rho g h \tag{18-3}
\end{equation*}
\]
in which \(p_{0}\) is the atmospheric pressure, \(\rho\) is the density of the mercury in the manometer, and \(h\) is the measured difference between the mercury levels in the two arms of the tube.* (The minus sign is used in Eq. 18-3 because pressure \(p\) is measured above the level at which the pressure is \(p_{0}\).)

If we next put the bulb in a triple-point cell (Fig. 18-4), the temperature now being measured is
\[
\begin{equation*}
T_{3}=C p_{3} \tag{18-4}
\end{equation*}
\]
in which \(p_{3}\) is the gas pressure now. Eliminating \(C\) between Eqs. 18-2 and 18-4 gives us the temperature as
\[
\begin{equation*}
T=T_{3}\left(\frac{p}{p_{3}}\right)=(273.16 \mathrm{~K})\left(\frac{p}{p_{3}}\right) \quad \text { (provisional). } \tag{18-5}
\end{equation*}
\]

We still have a problem with this thermometer. If we use it to measure, say, the boiling point of water, we find that different gases in the bulb give slightly different results. However, as we use smaller and smaller amounts of gas to fill the bulb, the readings converge nicely to a single temperature, no matter what gas we use. Figure 18-6 shows this convergence for three gases.

Thus the recipe for measuring a temperature with a gas thermometer is
\[
\begin{equation*}
T=(273.16 \mathrm{~K})\left(\lim _{\operatorname{gas} \rightarrow 0} \frac{p}{p_{3}}\right) . \tag{18-6}
\end{equation*}
\]

The recipe instructs us to measure an unknown temperature \(T\) as follows: Fill the thermometer bulb with an arbitrary amount of any gas (for example, nitrogen) and measure \(p_{3}\) (using a triple-point cell) and \(p\), the gas pressure at the temperature being measured. (Keep the gas volume the same.) Calculate the ratio \(p / p_{3}\). Then repeat both measurements with a smaller amount of gas in the bulb, and again calculate this ratio. Continue this way, using smaller and smaller amounts of gas, until you can extrapolate to the ratio \(p / p_{3}\) that you would find if there were approximately no gas in the bulb. Calculate the temperature \(T\) by substituting that extrapolated ratio into Eq. 18-6. (The temperature is called the ideal gas temperature.)

\footnotetext{
*For pressure units, we shall use units introduced in Module 14-1. The SI unit for pressure is the newton per square meter, which is called the pascal \((\mathrm{Pa})\). The pascal is related to other common pressure units by
\[
1 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~Pa}=760 \text { torr }=14.7 \mathrm{lb} / \mathrm{in} .^{2} .
\]
}

\section*{18-2 the celsius and fahrenheit scales}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
18.06 Convert a temperature between any two (linear) temperature scales, including the Celsius, Fahrenheit, and Kelvin scales.
18.07 Identify that a change of one degree is the same on the Celsius and Kelvin scales.

\section*{Key Idea}
- The Celsius temperature scale is defined by
\[
T_{\mathrm{C}}=T-273.15^{\circ},
\]
with \(T\) in kelvins. The Fahrenheit temperature scale is defined by
\[
T_{\mathrm{F}}=\frac{9}{5} T_{\mathrm{C}}+32^{\circ} .
\]


Figure 18-7 The Kelvin, Celsius, and Fahrenheit temperature scales compared.

\section*{The Celsius and Fahrenheit Scales}

So far, we have discussed only the Kelvin scale, used in basic scientific work. In nearly all countries of the world, the Celsius scale (formerly called the centigrade scale) is the scale of choice for popular and commercial use and much scientific use. Celsius temperatures are measured in degrees, and the Celsius degree has the same size as the kelvin. However, the zero of the Celsius scale is shifted to a more convenient value than absolute zero. If \(T_{\mathrm{C}}\) represents a Celsius temperature and \(T\) a Kelvin temperature, then
\[
\begin{equation*}
T_{\mathrm{C}}=T-273.15^{\circ} . \tag{18-7}
\end{equation*}
\]

In expressing temperatures on the Celsius scale, the degree symbol is commonly used. Thus, we write \(20.00^{\circ} \mathrm{C}\) for a Celsius reading but 293.15 K for a Kelvin reading.

The Fahrenheit scale, used in the United States, employs a smaller degree than the Celsius scale and a different zero of temperature. You can easily verify both these differences by examining an ordinary room thermometer on which both scales are marked. The relation between the Celsius and Fahrenheit scales is
\[
\begin{equation*}
T_{\mathrm{F}}=\frac{9}{5} T_{\mathrm{C}}+32^{\circ}, \tag{18-8}
\end{equation*}
\]
where \(T_{\mathrm{F}}\) is Fahrenheit temperature. Converting between these two scales can be done easily by remembering a few corresponding points, such as the freezing and boiling points of water (Table 18-1). Figure 18-7 compares the Kelvin, Celsius, and Fahrenheit scales.

Table 18-1 Some Corresponding Temperatures
\begin{tabular}{lcc}
\hline \multicolumn{1}{c}{ Temperature } & \({ }^{\circ} \mathrm{C}\) & \({ }^{\circ} \mathrm{F}\) \\
\hline Boiling point of water \(^{a}\) & 100 & 212 \\
Normal body temperature & 37.0 & 98.6 \\
Accepted comfort level & 20 & 68 \\
Freezing point of water \({ }^{a}\) & 0 & 32 \\
Zero of Fahrenheit scale & \(\approx-18\) & 0 \\
Scales coincide & -40 & -40 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{a}\) Strictly, the boiling point of water on the Celsius scale is \(99.975^{\circ} \mathrm{C}\), and the freezing point is \(0.00^{\circ} \mathrm{C}\). Thus, there is slightly less than \(100 \mathrm{C}^{\circ}\) between those two points.
}

We use the letters C and F to distinguish measurements and degrees on the two scales. Thus,
\[
0^{\circ} \mathrm{C}=32^{\circ} \mathrm{F}
\]
means that \(0^{\circ}\) on the Celsius scale measures the same temperature as \(32^{\circ}\) on the Fahrenheit scale, whereas
\[
5 \mathrm{C}^{\circ}=9 \mathrm{~F}^{\circ}
\]
means that a temperature difference of 5 Celsius degrees (note the degree symbol appears after C ) is equivalent to a temperature difference of 9 Fahrenheit degrees.

\section*{Checkpoint 1}

The figure here shows three linear temperature scales with the freezing and boiling points of water indicated. (a) Rank the degrees on these scales by size, greatest first. (b) Rank the following temperatures, highest first:
 \(50^{\circ} \mathrm{X}, 50^{\circ} \mathrm{W}\), and \(50^{\circ} \mathrm{Y}\).

\section*{Sample Problem 18.01 Conversion between two temperature scales}

Suppose you come across old scientific notes that describe a temperature scale called Z on which the boiling point of water is \(65.0^{\circ} \mathrm{Z}\) and the freezing point is \(-14.0^{\circ} \mathrm{Z}\). To what temperature on the Fahrenheit scale would a temperature of \(T=-98.0^{\circ} \mathrm{Z}\) correspond? Assume that the Z scale is linear; that is, the size of a \(Z\) degree is the same everywhere on the Z scale.

\section*{KEY IDEA}

A conversion factor between two (linear) temperature scales can be calculated by using two known (benchmark) temperatures, such as the boiling and freezing points of water. The number of degrees between the known temperatures on one scale is equivalent to the number of degrees between them on the other scale.

Calculations: We begin by relating the given temperature \(T\) to either known temperature on the Z scale. Since \(T=\) \(-98.0^{\circ} \mathrm{Z}\) is closer to the freezing point \(\left(-14.0^{\circ} \mathrm{Z}\right)\) than to the boiling point \(\left(65.0^{\circ} \mathrm{Z}\right)\), we use the freezing point. Then we note that the \(T\) we seek is below this point by \(-14.0^{\circ} \mathrm{Z}-\) \(\left(-98.0^{\circ} \mathrm{Z}\right)=84.0 \mathrm{Z}^{\circ}\) (Fig. 18-8). (Read this difference as "84.0 Z degrees.")

Next, we set up a conversion factor between the \(\mathbf{Z}\) and Fahrenheit scales to convert this difference. To do so, we use both known temperatures on the Z scale and the


Figure 18-8 An unknown temperature scale compared with the Fahrenheit temperature scale.
corresponding temperatures on the Fahrenheit scale. On the Z scale, the difference between the boiling and freezing points is \(65.0^{\circ} \mathrm{Z}-\left(-14.0^{\circ} \mathrm{Z}\right)=79.0 \mathrm{Z}^{\circ}\). On the Fahrenheit scale, it is \(212^{\circ} \mathrm{F}-32.0^{\circ} \mathrm{F}=180 \mathrm{~F}^{\circ}\). Thus, a temperature difference of \(79.0 \mathrm{Z}^{\circ}\) is equivalent to a temperature difference of \(180 \mathrm{~F}^{\circ}\) (Fig. 18-8), and we can use the ratio ( \(\left.180 \mathrm{~F}^{\circ}\right) /\left(79.0 \mathrm{Z}^{\circ}\right)\) as our conversion factor.

Now, since \(T\) is below the freezing point by \(84.0 \mathrm{Z}^{\circ}\), it must also be below the freezing point by
\[
\left(84.0 \mathrm{Z}^{\circ}\right) \frac{180 \mathrm{~F}^{\circ}}{79.0 \mathrm{Z}^{\circ}}=191 \mathrm{~F}^{\circ}
\]

Because the freezing point is at \(32.0^{\circ} \mathrm{F}\), this means that
\[
T=32.0^{\circ} \mathrm{F}-191 \mathrm{~F}^{\circ}=-159^{\circ} \mathrm{F} . \quad \text { (Answer) }
\]

Additional examples, video, and practice available at WileyPLUS

\section*{18-3 THERMAL EXPANSION}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
18.08 For one-dimensional thermal expansion, apply the relationship between the temperature change \(\Delta T\), the length change \(\Delta L\), the initial length \(L\), and the coefficient of linear expansion \(\alpha\).
18.09 For two-dimensional thermal expansion, use one-
dimensional thermal expansion to find the change in area. 18.10 For three-dimensional thermal expansion, apply the relationship between the temperature change \(\Delta T\), the volume change \(\Delta V\), the initial volume \(V\), and the coefficient of volume expansion \(\beta\).

\section*{Key Ideas}
- All objects change size with changes in temperature. For a temperature change \(\Delta T\), a change \(\Delta L\) in any linear dimension \(L\) is given by
\[
\Delta L=L \alpha \Delta T
\]
in which \(\alpha\) is the coefficient of linear expansion.

The change \(\Delta V\) in the volume \(V\) of a solid or liquid is
\[
\Delta V=V \beta \Delta T
\]

Here \(\beta=3 \alpha\) is the material's coefficient of volume expansion.


Hugh Thomas/BWP Media/Getty Images, Inc.
Figure 18-9 When a Concorde flew faster than the speed of sound, thermal expansion due to the rubbing by passing air increased the aircraft's length by about 12.5 cm . (The temperature increased to about \(128^{\circ} \mathrm{C}\) at the aircraft nose and about \(90^{\circ} \mathrm{C}\) at the tail, and cabin windows were noticeably warm to the touch.)

Figure 18-10 (a) A bimetal strip, consisting of a strip of brass and a strip of steel welded together, at temperature \(T_{0}\). (b) The strip bends as shown at temperatures above this reference temperature. Below the reference temperature the strip bends the other way. Many thermostats operate on this principle, making and breaking an electrical contact as the temperature rises and falls.

\section*{Thermal Expansion}

You can often loosen a tight metal jar lid by holding it under a stream of hot water. Both the metal of the lid and the glass of the jar expand as the hot water adds energy to their atoms. (With the added energy, the atoms can move a bit farther from one another than usual, against the spring-like interatomic forces that hold every solid together.) However, because the atoms in the metal move farther apart than those in the glass, the lid expands more than the jar and thus is loosened.

Such thermal expansion of materials with an increase in temperature must be anticipated in many common situations. When a bridge is subject to large seasonal changes in temperature, for example, sections of the bridge are separated by expansion slots so that the sections have room to expand on hot days without the bridge buckling. When a dental cavity is filled, the filling material must have the same thermal expansion properties as the surrounding tooth; otherwise, consuming cold ice cream and then hot coffee would be very painful. When the Concorde aircraft (Fig. 18-9) was built, the design had to allow for the thermal expansion of the fuselage during supersonic flight because of frictional heating by the passing air.

The thermal expansion properties of some materials can be put to common use. Thermometers and thermostats may be based on the differences in expansion between the components of a bimetal strip (Fig. 18-10). Also, the familiar liquid-inglass thermometers are based on the fact that liquids such as mercury and alcohol expand to a different (greater) extent than their glass containers.

\section*{Linear Expansion}

If the temperature of a metal rod of length \(L\) is raised by an amount \(\Delta T\), its length is found to increase by an amount
\[
\begin{equation*}
\Delta L=L \alpha \Delta T \tag{18-9}
\end{equation*}
\]

(a)

Different amounts of expansion or contraction can produce bending.

\(T>T_{0}\)
in which \(\alpha\) is a constant called the coefficient of linear expansion. The coefficient \(\alpha\) has the unit "per degree" or "per kelvin" and depends on the material. Although \(\alpha\) varies somewhat with temperature, for most practical purposes it can be taken as constant for a particular material. Table 18-2 shows some coefficients of linear expansion. Note that the unit \(\mathrm{C}^{\circ}\) there could be replaced with the unit K.

The thermal expansion of a solid is like photographic enlargement except it is in three dimensions. Figure \(18-11 b\) shows the (exaggerated) thermal expansion of a steel ruler. Equation 18-9 applies to every linear dimension of the ruler, including its edge, thickness, diagonals, and the diameters of the circle etched on it and the circular hole cut in it. If the disk cut from that hole originally fits snugly in the hole, it will continue to fit snugly if it undergoes the same temperature increase as the ruler.

\section*{Volume Expansion}

If all dimensions of a solid expand with temperature, the volume of that solid must also expand. For liquids, volume expansion is the only meaningful expansion parameter. If the temperature of a solid or liquid whose volume is \(V\) is increased by an amount \(\Delta T\), the increase in volume is found to be
\[
\begin{equation*}
\Delta V=V \beta \Delta T \tag{18-10}
\end{equation*}
\]
where \(\beta\) is the coefficient of volume expansion of the solid or liquid. The coefficients of volume expansion and linear expansion for a solid are related by
\[
\begin{equation*}
\beta=3 \alpha \tag{18-11}
\end{equation*}
\]

The most common liquid, water, does not behave like other liquids. Above about \(4^{\circ} \mathrm{C}\), water expands as the temperature rises, as we would expect. Between 0 and about \(4^{\circ} \mathrm{C}\), however, water contracts with increasing temperature. Thus, at about \(4^{\circ} \mathrm{C}\), the density of water passes through a maximum. At all other temperatures, the density of water is less than this maximum value.

This behavior of water is the reason lakes freeze from the top down rather than from the bottom up. As water on the surface is cooled from, say, \(10^{\circ} \mathrm{C}\) toward the freezing point, it becomes denser ("heavier") than lower water and sinks to the bottom. Below \(4^{\circ} \mathrm{C}\), however, further cooling makes the water then on the surface less dense ("lighter") than the lower water, so it stays on the surface until it freezes. Thus the surface freezes while the lower water is still liquid. If lakes froze from the bottom up, the ice so formed would tend not to melt completely during the summer, because it would be insulated by the water above. After a few years, many bodies of open water in the temperate zones of Earth would be frozen solid all year round-and aquatic life could not exist.

Table 18-2 Some Coefficients of Linear Expansion \({ }^{a}\)
\begin{tabular}{lc}
\hline Substance & \(\alpha\left(10^{-6} / \mathrm{C}^{\circ}\right)\) \\
\hline Ice \(\left(\right.\) at \(\left.0^{\circ} \mathrm{C}\right)\) & 51 \\
Lead & 29 \\
Aluminum & 23 \\
Brass & 19 \\
Copper & 17 \\
Concrete & 12 \\
Steel & 11 \\
Glass (ordinary) & 9 \\
Glass (Pyrex) & 3.2 \\
Diamond & 1.2 \\
Invar \(^{b}\) & 0.7 \\
Fused quartz & 0.5 \\
\hline
\end{tabular}
\({ }^{a}\) Room temperature values except for the listing for ice.
\({ }^{b}\) This alloy was designed to have a low coefficient of expansion. The word is a shortened form of "invariable."

Figure 18-11 The same steel ruler at two different temperatures. When it expands, the scale, the numbers, the thickness, and the diameters of the circle and circular hole are all increased by the same factor. (The expansion has been exaggerated for clarity.)

(b)

Checkpoint 2
The figure here shows four rectangular metal plates, with sides of \(L, 2 L\), or \(3 L\).They are all made of the same material, and their temperature is to be increased by the same amount. Rank the plates according to the expected increase in (a) their vertical heights and (b) their areas, greatest first.
(1)

(2)

(4)

\section*{Sample Problem 18.02 Thermal expansion of a volume}

On a hot day in Las Vegas, an oil trucker loaded 37000 L of diesel fuel. He encountered cold weather on the way to Payson, Utah, where the temperature was 23.0 K lower than in Las Vegas, and where he delivered his entire load. How many liters did he deliver? The coefficient of volume expansion for diesel fuel is \(9.50 \times 10^{-4} / \mathrm{C}^{\circ}\), and the coefficient of linear expansion for his steel truck tank is \(11 \times 10^{-6} / \mathrm{C}^{\circ}\).

\section*{KEY IDEA}

The volume of the diesel fuel depends directly on the temperature. Thus, because the temperature decreased, the
volume of the fuel did also, as given by Eq. 18-10 ( \(\Delta V=\) \(V \beta \Delta T)\).

Calculations: We find
\[
\Delta V=(37000 \mathrm{~L})\left(9.50 \times 10^{-4} / \mathrm{C}^{\circ}\right)(-23.0 \mathrm{~K})=-808 \mathrm{~L} .
\]

Thus, the amount delivered was
\[
\begin{aligned}
V_{\mathrm{del}} & =V+\Delta V=37000 \mathrm{~L}-808 \mathrm{~L} \\
& =36190 \mathrm{~L}
\end{aligned}
\]
(Answer)
Note that the thermal expansion of the steel tank has nothing to do with the problem. Question: Who paid for the "missing" diesel fuel?

\section*{18-4 ABSORPTION OF HEAT}

\section*{Learning Objectives}

After reading this module, you should be able to ...
18.11 Identify that thermal energy is associated with the random motions of the microscopic bodies in an object.
18.12 Identify that heat \(Q\) is the amount of transferred energy (either to or from an object's thermal energy) due to a temperature difference between the object and its environment.
18.13 Convert energy units between various measurement systems.
18.14 Convert between mechanical or electrical energy and thermal energy.
18.15 For a temperature change \(\Delta T\) of a substance, relate the change to the heat transfer \(Q\) and the substance's heat capacity \(C\).
18.16 For a temperature change \(\Delta T\) of a substance, relate the
change to the heat transfer \(Q\) and the substance's specific heat \(c\) and mass \(m\).
18.17 Identify the three phases of matter.
18.18 For a phase change of a substance, relate the heat transfer \(Q\), the heat of transformation \(L\), and the amount of mass \(m\) transformed.
18.19 Identify that if a heat transfer \(Q\) takes a substance across a phase-change temperature, the transfer must be calculated in steps: (a) a temperature change to reach the phase-change temperature, (b) the phase change, and then (c) any temperature change that moves the substance away from the phase-change temperature.

\section*{Key Ideas}
- Heat \(Q\) is energy that is transferred between a system and its environment because of a temperature difference between them. It can be measured in joules (J), calories (cal), kilocalories (Cal or kcal), or British thermal units (Btu), with
\[
1 \mathrm{cal}=3.968 \times 10^{-3} \mathrm{Btu}=4.1868 \mathrm{~J} .
\]
- If heat \(Q\) is absorbed by an object, the object's temperature change \(T_{f}-T_{i}\) is related to \(Q\) by
\[
Q=C\left(T_{f}-T_{i}\right)
\]
in which \(C\) is the heat capacity of the object. If the object has mass \(m\), then
\[
Q=c m\left(T_{f}-T_{i}\right),
\]
where \(c\) is the specific heat of the material making up the object.
- The molar specific heat of a material is the heat capacity per mole, which means per \(6.02 \times 10^{23}\) elementary units of the material.
- Heat absorbed by a material may change the material's physical state -for example, from solid to liquid or from liquid to gas. The amount of energy required per unit mass to change the state (but not the temperature) of a particular material is its heat of transformation \(L\). Thus,
\[
Q=L m
\]
- The heat of vaporization \(L_{V}\) is the amount of energy per unit mass that must be added to vaporize a liquid or that must be removed to condense a gas.
- The heat of fusion \(L_{F}\) is the amount of energy per unit mass that must be added to melt a solid or that must be removed to freeze a liquid.

\section*{Temperature and Heat}

If you take a can of cola from the refrigerator and leave it on the kitchen table, its temperature will rise-rapidly at first but then more slowly-until the temperature of the cola equals that of the room (the two are then in thermal equilibrium). In the same way, the temperature of a cup of hot coffee, left sitting on the table, will fall until it also reaches room temperature.

In generalizing this situation, we describe the cola or the coffee as a system (with temperature \(T_{S}\) ) and the relevant parts of the kitchen as the environment (with temperature \(T_{E}\) ) of that system. Our observation is that if \(T_{S}\) is not equal to \(T_{E}\), then \(T_{S}\) will change ( \(T_{E}\) can also change some) until the two temperatures are equal and thus thermal equilibrium is reached.

Such a change in temperature is due to a change in the thermal energy of the system because of a transfer of energy between the system and the system's environment. (Recall that thermal energy is an internal energy that consists of the kinetic and potential energies associated with the random motions of the atoms, molecules, and other microscopic bodies within an object.) The transferred energy is called heat and is symbolized \(Q\). Heat is positive when energy is transferred to a system's thermal energy from its environment (we say that heat is absorbed by the system). Heat is negative when energy is transferred from a system's thermal energy to its environment (we say that heat is released or lost by the system).

This transfer of energy is shown in Fig. 18-12. In the situation of Fig. 18-12a, in which \(T_{S}>T_{E}\), energy is transferred from the system to the environment, so \(Q\) is negative. In Fig. 18-12b, in which \(T_{S}=T_{E}\), there is no such transfer, \(Q\) is zero, and heat is neither released nor absorbed. In Fig. 18-12c, in which \(T_{S}<T_{E}\), the transfer is to the system from the environment; so \(Q\) is positive.


Figure 18-12 If the temperature of a system exceeds that of its environment as in (a), heat \(Q\) is lost by the system to the environment until thermal equilibrium (b) is established. (c) If the temperature of the system is below that of the environment, heat is absorbed by the system until thermal equilibrium is established.

We are led then to this definition of heat:

Heat is the energy transferred between a system and its environment because of a temperature difference that exists between them.

Language. Recall that energy can also be transferred between a system and its environment as work \(W\) via a force acting on a system. Heat and work, unlike temperature, pressure, and volume, are not intrinsic properties of a system. They have meaning only as they describe the transfer of energy into or out of a system. Similarly, the phrase "a \(\$ 600\) transfer" has meaning if it describes the transfer to or from an account, not what is in the account, because the account holds money, not a transfer.

Units. Before scientists realized that heat is transferred energy, heat was measured in terms of its ability to raise the temperature of water. Thus, the calorie (cal) was defined as the amount of heat that would raise the temperature of 1 g of water from \(14.5^{\circ} \mathrm{C}\) to \(15.5^{\circ} \mathrm{C}\). In the British system, the corresponding unit of heat was the British thermal unit (Btu), defined as the amount of heat that would raise the temperature of 1 lb of water from \(63^{\circ} \mathrm{F}\) to \(64^{\circ} \mathrm{F}\).

In 1948, the scientific community decided that since heat (like work) is transferred energy, the SI unit for heat should be the one we use for energynamely, the joule. The calorie is now defined to be 4.1868 J (exactly), with no reference to the heating of water. (The "calorie" used in nutrition, sometimes called the Calorie ( Cal ), is really a kilocalorie.) The relations among the various heat units are
\[
\begin{equation*}
1 \mathrm{cal}=3.968 \times 10^{-3} \mathrm{Btu}=4.1868 \mathrm{~J} . \tag{18-12}
\end{equation*}
\]

\section*{The Absorption of Heat by Solids and Liquids}

\section*{Heat Capacity}

The heat capacity \(C\) of an object is the proportionality constant between the heat \(Q\) that the object absorbs or loses and the resulting temperature change \(\Delta T\) of the object; that is,
\[
\begin{equation*}
Q=C \Delta T=C\left(T_{f}-T_{i}\right), \tag{18-13}
\end{equation*}
\]
in which \(T_{i}\) and \(T_{f}\) are the initial and final temperatures of the object. Heat capacity \(C\) has the unit of energy per degree or energy per kelvin. The heat capacity \(C\) of, say, a marble slab used in a bun warmer might be \(179 \mathrm{cal} / \mathrm{C}^{\circ}\), which we can also write as \(179 \mathrm{cal} / \mathrm{K}\) or as \(749 \mathrm{~J} / \mathrm{K}\).

The word "capacity" in this context is really misleading in that it suggests analogy with the capacity of a bucket to hold water. That analogy is false, and you should not think of the object as "containing" heat or being limited in its ability to absorb heat. Heat transfer can proceed without limit as long as the necessary temperature difference is maintained. The object may, of course, melt or vaporize during the process.

\section*{Specific Heat}

Two objects made of the same material—say, marble - will have heat capacities proportional to their masses. It is therefore convenient to define a "heat capacity per unit mass" or specific heat \(c\) that refers not to an object but to a unit mass of the material of which the object is made. Equation 18-13 then becomes
\[
\begin{equation*}
Q=c m \Delta T=c m\left(T_{f}-T_{i}\right) \tag{18-14}
\end{equation*}
\]

Through experiment we would find that although the heat capacity of a particular marble slab might be \(179 \mathrm{cal} / \mathrm{C}^{\circ}\) ( or \(749 \mathrm{~J} / \mathrm{K}\) ), the specific heat of marble itself (in that slab or in any other marble object) is \(0.21 \mathrm{cal} / \mathrm{g} \cdot \mathrm{C}^{\circ}(\) or \(880 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K})\).

From the way the calorie and the British thermal unit were initially defined, the specific heat of water is
\[
\begin{equation*}
c=1 \mathrm{cal} / \mathrm{g} \cdot \mathrm{C}^{\circ}=1 \mathrm{Btu} / \mathrm{lb} \cdot \mathrm{~F}^{\circ}=4186.8 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K} . \tag{18-15}
\end{equation*}
\]

Table 18-3 shows the specific heats of some substances at room temperature. Note that the value for water is relatively high. The specific heat of any substance actually depends somewhat on temperature, but the values in Table 18-3 apply reasonably well in a range of temperatures near room temperature.

\section*{Checkpoint 3}

A certain amount of heat \(Q\) will warm 1 g of material \(A\) by \(3 \mathrm{C}^{\circ}\) and 1 g of material \(B\) by \(4 \mathrm{C}^{\circ}\). Which material has the greater specific heat?

\section*{Molar Specific Heat}

In many instances the most convenient unit for specifying the amount of a substance is the mole (mol), where
\[
1 \mathrm{~mol}=6.02 \times 10^{23} \text { elementary units }
\]
of any substance. Thus 1 mol of aluminum means \(6.02 \times 10^{23}\) atoms (the atom is the elementary unit), and 1 mol of aluminum oxide means \(6.02 \times 10^{23}\) molecules (the molecule is the elementary unit of the compound).

When quantities are expressed in moles, specific heats must also involve moles (rather than a mass unit); they are then called molar specific heats. Table 18-3 shows the values for some elemental solids (each consisting of a single element) at room temperature.

\section*{An Important Point}

In determining and then using the specific heat of any substance, we need to know the conditions under which energy is transferred as heat. For solids and liquids, we usually assume that the sample is under constant pressure (usually atmospheric) during the transfer. It is also conceivable that the sample is held at constant volume while the heat is absorbed. This means that thermal expansion of the sample is prevented by applying external pressure. For solids and liquids, this is very hard to arrange experimentally, but the effect can be calculated, and it turns out that the specific heats under constant pressure and constant volume for any solid or liquid differ usually by no more than a few percent. Gases, as you will see, have quite different values for their specific heats under constant-pressure conditions and under constant-volume conditions.

\section*{Heats of Transformation}

When energy is absorbed as heat by a solid or liquid, the temperature of the sample does not necessarily rise. Instead, the sample may change from one phase, or state, to another. Matter can exist in three common states: In the solid state, the molecules of a sample are locked into a fairly rigid structure by their mutual attraction. In the liquid state, the molecules have more energy and move about more. They may form brief clusters, but the sample does not have a rigid structure and can flow or settle into a container. In the gas, or vapor, state, the molecules have even more energy, are free of one another, and can fill up the full volume of a container.

Melting. To melt a solid means to change it from the solid state to the liquid state. The process requires energy because the molecules of the solid must be freed from their rigid structure. Melting an ice cube to form liquid water is a common example. To freeze a liquid to form a solid is the reverse of melting and requires that energy be removed from the liquid, so that the molecules can settle into a rigid structure.

Table 18-3 Some Specific Heats and Molar Specific Heats at Room Temperature
\(\left.\begin{array}{lllll}\hline & & & \begin{array}{c}\text { Molar } \\ \text { Specific }\end{array} \\ \text { Heat }\end{array}\right]\)

Table 18-4 Some Heats of Transformation
\begin{tabular}{lccccc}
\hline & \multicolumn{2}{c}{ Melting } & & \multicolumn{2}{c}{ Boiling } \\
\cline { 2 - 3 } Substance & Melting Point (K) & Heat of Fusion \(L_{F}(\mathrm{~kJ} / \mathrm{kg})\) & & Boiling Point \((\mathrm{K})\) & Heat of Vaporization \(L_{V}(\mathrm{~kJ} / \mathrm{kg})\) \\
\hline Hydrogen & 14.0 & 58.0 & 13.9 & & 20.3 \\
Oxygen & 54.8 & 11.4 & 90.2 & 455 \\
Mercury & 234 & 333 & 630 & 213 \\
Water & 273 & 23.2 & & 373 & 296 \\
Lead & 601 & 105 & 2017 & 2256 \\
Silver & 1235 & 207 & 2323 & 858 \\
Copper & 1356 & & & & 2838 \\
\hline
\end{tabular}

Vaporizing. To vaporize a liquid means to change it from the liquid state to the vapor (gas) state. This process, like melting, requires energy because the molecules must be freed from their clusters. Boiling liquid water to transfer it to water vapor (or steam - a gas of individual water molecules) is a common example. Condensing a gas to form a liquid is the reverse of vaporizing; it requires that energy be removed from the gas, so that the molecules can cluster instead of flying away from one another.

The amount of energy per unit mass that must be transferred as heat when a sample completely undergoes a phase change is called the heat of transformation \(L\). Thus, when a sample of mass \(m\) completely undergoes a phase change, the total energy transferred is
\[
\begin{equation*}
Q=L m \tag{18-16}
\end{equation*}
\]

When the phase change is from liquid to gas (then the sample must absorb heat) or from gas to liquid (then the sample must release heat), the heat of transformation is called the heat of vaporization \(L_{V}\). For water at its normal boiling or condensation temperature,
\[
\begin{equation*}
L_{V}=539 \mathrm{cal} / \mathrm{g}=40.7 \mathrm{~kJ} / \mathrm{mol}=2256 \mathrm{~kJ} / \mathrm{kg} . \tag{18-17}
\end{equation*}
\]

When the phase change is from solid to liquid (then the sample must absorb heat) or from liquid to solid (then the sample must release heat), the heat of transformation is called the heat of fusion \(L_{F}\). For water at its normal freezing or melting temperature,
\[
\begin{equation*}
L_{F}=79.5 \mathrm{cal} / \mathrm{g}=6.01 \mathrm{~kJ} / \mathrm{mol}=333 \mathrm{~kJ} / \mathrm{kg} . \tag{18-18}
\end{equation*}
\]

Table 18-4 shows the heats of transformation for some substances.

\section*{Sample Problem 18.03 Hot slug in water, coming to equilibrium}

A copper slug whose mass \(m_{c}\) is 75 g is heated in a laboratory oven to a temperature \(T\) of \(312^{\circ} \mathrm{C}\). The slug is then dropped into a glass beaker containing a mass \(m_{w}=220 \mathrm{~g}\) of water. The heat capacity \(C_{b}\) of the beaker is \(45 \mathrm{cal} / \mathrm{K}\). The initial temperature \(T_{i}\) of the water and the beaker is \(12^{\circ} \mathrm{C}\). Assuming that the slug, beaker, and water are an isolated system and the water does not vaporize, find the final temperature \(T_{f}\) of the system at thermal equilibrium.

\section*{KEY IDEAS}
(1) Because the system is isolated, the system's total energy cannot change and only internal transfers of thermal energy
can occur. (2) Because nothing in the system undergoes a phase change, the thermal energy transfers can only change the temperatures.

Calculations: To relate the transfers to the temperature changes, we can use Eqs. 18-13 and 18-14 to write
\[
\begin{align*}
\text { for the water: } & Q_{w}=c_{w} m_{w}\left(T_{f}-T_{i}\right) ;  \tag{18-19}\\
\text { for the beaker: } & Q_{b}=C_{b}\left(T_{f}-T_{i}\right) ;  \tag{18-20}\\
\text { for the copper: } & Q_{c}=c_{c} m_{c}\left(T_{f}-T\right) \tag{18-21}
\end{align*}
\]

Because the total energy of the system cannot change, the sum of these three energy transfers is zero:
\[
\begin{equation*}
Q_{w}+Q_{b}+Q_{c}=0 \tag{18-22}
\end{equation*}
\]

Substituting Eqs. 18-19 through 18-21 into Eq. 18-22 yields
\(c_{w} m_{w}\left(T_{f}-T_{i}\right)+C_{b}\left(T_{f}-T_{i}\right)+c_{c} m_{c}\left(T_{f}-T\right)=0\).
Temperatures are contained in Eq. 18-23 only as differences. Thus, because the differences on the Celsius and Kelvin scales are identical, we can use either of those scales in this equation. Solving it for \(T_{f}\), we obtain
\[
T_{f}=\frac{c_{c} m_{c} T+C_{b} T_{i}+c_{w} m_{w} T_{i}}{c_{w} m_{w}+C_{b}+c_{c} m_{c}}
\]

Using Celsius temperatures and taking values for \(c_{c}\) and \(c_{w}\) from Table 18-3, we find the numerator to be
\[
\begin{aligned}
(0.0923 \mathrm{cal} / \mathrm{g} \cdot \mathrm{~K}) & (75 \mathrm{~g})\left(312^{\circ} \mathrm{C}\right)+(45 \mathrm{cal} / \mathrm{K})\left(12^{\circ} \mathrm{C}\right) \\
& +(1.00 \mathrm{cal} / \mathrm{g} \cdot \mathrm{~K})(220 \mathrm{~g})\left(12^{\circ} \mathrm{C}\right)=5339.8 \mathrm{cal}
\end{aligned}
\]
and the denominator to be
\((1.00 \mathrm{cal} / \mathrm{g} \cdot \mathrm{K})(220 \mathrm{~g})+45 \mathrm{cal} / \mathrm{K}\)
\[
+(0.0923 \mathrm{cal} / \mathrm{g} \cdot \mathrm{~K})(75 \mathrm{~g})=271.9 \mathrm{cal} / \mathrm{C}^{\circ}
\]

We then have
\[
T_{f}=\frac{5339.8 \mathrm{cal}}{271.9 \mathrm{cal} / \mathrm{C}^{\circ}}=19.6^{\circ} \mathrm{C} \approx 20^{\circ} \mathrm{C}
\]
(Answer)
From the given data you can show that
\[
Q_{w} \approx 1670 \mathrm{cal}, \quad Q_{b} \approx 342 \mathrm{cal}, \quad Q_{c} \approx-2020 \mathrm{cal}
\]

Apart from rounding errors, the algebraic sum of these three heat transfers is indeed zero, as required by the conservation of energy (Eq. 18-22).

\section*{Sample Problem 18.04 Heat to change temperature and state}
(a) How much heat must be absorbed by ice of mass \(m=\) 720 g at \(-10^{\circ} \mathrm{C}\) to take it to the liquid state at \(15^{\circ} \mathrm{C}\) ?

\section*{KEY IDEAS}

The heating process is accomplished in three steps: (1) The ice cannot melt at a temperature below the freezing point - so initially, any energy transferred to the ice as heat can only increase the temperature of the ice, until \(0^{\circ} \mathrm{C}\) is reached. (2) The temperature then cannot increase until all the ice melts - so any energy transferred to the ice as heat now can only change ice to liquid water, until all the ice melts. (3) Now the energy transferred to the liquid water as heat can only increase the temperature of the liquid water.

Warming the ice: The heat \(Q_{1}\) needed to take the ice from the initial \(T_{i}=-10^{\circ} \mathrm{C}\) to the final \(T_{f}=0^{\circ} \mathrm{C}\) (so that the ice can then melt) is given by Eq. 18-14 \((Q=c m \Delta T)\). Using the specific heat of ice \(c_{\text {ice }}\) in Table 18-3 gives us
\[
\begin{aligned}
Q_{1} & =c_{\text {ice }} m\left(T_{f}-T_{i}\right) \\
& =(2220 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(0.720 \mathrm{~kg})\left[0^{\circ} \mathrm{C}-\left(-10^{\circ} \mathrm{C}\right)\right] \\
& =15984 \mathrm{~J} \approx 15.98 \mathrm{~kJ} .
\end{aligned}
\]

Melting the ice: The heat \(Q_{2}\) needed to melt all the ice is given by Eq. 18-16 \((Q=L m)\). Here \(L\) is the heat of fusion \(L_{F}\), with the value given in Eq. 18-18 and Table 18-4. We find
\[
Q_{2}=L_{F} m=(333 \mathrm{~kJ} / \mathrm{kg})(0.720 \mathrm{~kg}) \approx 239.8 \mathrm{~kJ}
\]

Warming the liquid: The heat \(Q_{3}\) needed to increase the temperature of the water from the initial value \(T_{i}=0^{\circ} \mathrm{C}\) to the final value \(T_{f}=15^{\circ} \mathrm{C}\) is given by Eq. 18-14 (with the specific heat of liquid water \(c_{\text {liq }}\) ):
\[
\begin{aligned}
Q_{3} & =c_{\mathrm{liq}} m\left(T_{f}-T_{i}\right) \\
& =(4186.8 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(0.720 \mathrm{~kg})\left(15^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}\right) \\
& =45217 \mathrm{~J} \approx 45.22 \mathrm{~kJ} .
\end{aligned}
\]

Total: The total required heat \(Q_{\text {tot }}\) is the sum of the amounts required in the three steps:
\[
\begin{aligned}
Q_{\mathrm{tot}} & =Q_{1}+Q_{2}+Q_{3} \\
& =15.98 \mathrm{~kJ}+239.8 \mathrm{~kJ}+45.22 \mathrm{~kJ} \\
& \approx 300 \mathrm{~kJ}
\end{aligned}
\]
(Answer)
Note that most of the energy goes into melting the ice rather than raising the temperature.
(b) If we supply the ice with a total energy of only 210 kJ (as heat), what are the final state and temperature of the water?

\section*{KEY IDEA}

From step 1, we know that 15.98 kJ is needed to raise the temperature of the ice to the melting point. The remaining heat \(Q_{\text {rem }}\) is then \(210 \mathrm{~kJ}-15.98 \mathrm{~kJ}\), or about 194 kJ . From step 2, we can see that this amount of heat is insufficient to melt all the ice. Because the melting of the ice is incomplete, we must end up with a mixture of ice and liquid; the temperature of the mixture must be the freezing point, \(0^{\circ} \mathrm{C}\).

Calculations: We can find the mass \(m\) of ice that is melted by the available energy \(Q_{\text {rem }}\) by using Eq. 18-16 with \(L_{F}\) :
\[
m=\frac{Q_{\mathrm{rem}}}{L_{F}}=\frac{194 \mathrm{~kJ}}{333 \mathrm{~kJ} / \mathrm{kg}}=0.583 \mathrm{~kg} \approx 580 \mathrm{~g}
\]

Thus, the mass of the ice that remains is \(720 \mathrm{~g}-580 \mathrm{~g}\), or 140 g , and we have

580 g water and 140 g ice, at \(0^{\circ} \mathrm{C}\). (Answer)

\section*{18-5 THE FIRSt LAW OF THERMODYNAMICS}

\section*{Learning Objectives}

After reading this module, you should be able to ...
18.20 If an enclosed gas expands or contracts, calculate the work \(W\) done by the gas by integrating the gas pressure with respect to the volume of the enclosure.
18.21 Identify the algebraic sign of work \(W\) associated with expansion and contraction of a gas.
18.22 Given a \(p-V\) graph of pressure versus volume for a process, identify the starting point (the initial state) and the final point (the final state) and calculate the work by using graphical integration.
18.23 On a \(p-V\) graph of pressure versus volume for a gas, identify the algebraic sign of the work associated with a right-going process and a left-going process.
18.24 Apply the first law of thermodynamics to relate the change in the internal energy \(\Delta E_{\text {int }}\) of a gas, the energy \(Q\) transferred as heat to or from the gas, and the work \(W\) done on or by the gas.
18.25 Identify the algebraic sign of a heat transfer \(Q\) that is associated with a transfer to a gas and a transfer from the gas.
18.26 Identify that the internal energy \(\Delta E_{\text {int }}\) of a gas tends to increase if the heat transfer is to the gas, and it tends to decrease if the gas does work on its environment.
18.27 Identify that in an adiabatic process with a gas, there is no heat transfer \(Q\) with the environment.
18.28 Identify that in a constant-volume process with a gas, there is no work \(W\) done by the gas.
18.29 Identify that in a cyclical process with a gas, there is no net change in the internal energy \(\Delta E_{\text {int }}\).
18.30 Identify that in a free expansion with a gas, the heat transfer \(Q\), work done \(W\), and change in internal energy \(\Delta E_{\text {int }}\) are each zero.

\section*{Key Ideas}
- A gas may exchange energy with its surroundings through work. The amount of work \(W\) done by a gas as it expands or contracts from an initial volume \(V_{i}\) to a final volume \(V_{f}\) is given by
\[
W=\int d W=\int_{V_{i}}^{V_{f}} p d V
\]

The integration is necessary because the pressure \(p\) may vary during the volume change.
- The principle of conservation of energy for a thermodynamic process is expressed in the first law of thermodynamics, which may assume either of the forms
\[
\begin{aligned}
& \Delta E_{\text {int }}=E_{\text {int }, f}-E_{\text {int }, i}=Q-W \quad \text { (first law) } \\
& \text { or } \quad d E_{\text {int }}=d Q-d W \quad \text { (first law). }
\end{aligned}
\]
\(E_{\text {int }}\) represents the internal energy of the material, which depends only on the material's state (temperature,
pressure, and volume). \(Q\) represents the energy exchanged as heat between the system and its surroundings; \(Q\) is positive if the system absorbs heat and negative if the system loses heat. \(W\) is the work done by the system; \(W\) is positive if the system expands against an external force from the surroundings and negative if the system contracts because of an external force.
- \(Q\) and \(W\) are path dependent; \(\Delta E_{\text {int }}\) is path independent.
- The first law of thermodynamics finds application in several special cases:
\begin{tabular}{rl} 
adiabatic processes: & \(Q=0, \quad \Delta E_{\text {int }}=-W\) \\
constant-volume processes: & \(W=0, \quad \Delta E_{\text {int }}=Q\) \\
cyclical processes: & \(\Delta E_{\text {int }}=0, \quad Q=W\) \\
free expansions: & \(Q=W=\Delta E_{\text {int }}=0\)
\end{tabular}
cyclical processes:
free expansions:
\[
Q=W=\Delta E_{\mathrm{int}}=0
\]

\section*{A Closer Look at Heat and Work}

Here we look in some detail at how energy can be transferred as heat and work between a system and its environment. Let us take as our system a gas confined to a cylinder with a movable piston, as in Fig. 18-13. The upward force on the piston due to the pressure of the confined gas is equal to the weight of lead shot loaded onto the top of the piston. The walls of the cylinder are made of insulating material that does not allow any transfer of energy as heat. The bottom of the cylinder rests on a reservoir for thermal energy, a thermal reservoir (perhaps a hot plate) whose temperature \(T\) you can control by turning a knob.

The system (the gas) starts from an initial state \(i\), described by a pressure \(p_{i}\), a volume \(V_{i}\), and a temperature \(T_{i}\). You want to change the system to a final state \(f\), described by a pressure \(p_{f}\), a volume \(V_{f}\), and a temperature \(T_{f}\). The procedure by which you change the system from its initial state to its final state is called a thermodynamic process. During such a process, energy may be trans-
ferred into the system from the thermal reservoir (positive heat) or vice versa (negative heat). Also, work can be done by the system to raise the loaded piston (positive work) or lower it (negative work). We assume that all such changes occur slowly, with the result that the system is always in (approximate) thermal equilibrium (every part is always in thermal equilibrium).

Suppose that you remove a few lead shot from the piston of Fig. 18-13, allowing the gas to push the piston and remaining shot upward through a differential displacement \(d \vec{s}\) with an upward force \(\vec{F}\). Since the displacement is tiny, we can assume that \(\vec{F}\) is constant during the displacement. Then \(\vec{F}\) has a magnitude that is equal to \(p A\), where \(p\) is the pressure of the gas and \(A\) is the face area of the piston. The differential work \(d W\) done by the gas during the displacement is
\[
\begin{align*}
d W & =\vec{F} \cdot d \vec{s}=(p A)(d s)=p(A d s) \\
& =p d V \tag{18-24}
\end{align*}
\]
in which \(d V\) is the differential change in the volume of the gas due to the movement of the piston. When you have removed enough shot to allow the gas to change its volume from \(V_{i}\) to \(V_{f}\), the total work done by the gas is
\[
\begin{equation*}
W=\int d W=\int_{V_{i}}^{V_{f}} p d V \tag{18-25}
\end{equation*}
\]

During the volume change, the pressure and temperature may also change. To evaluate Eq. 18-25 directly, we would need to know how pressure varies with volume for the actual process by which the system changes from state \(i\) to state \(f\).

One Path. There are actually many ways to take the gas from state \(i\) to state \(f\). One way is shown in Fig. 18-14a, which is a plot of the pressure of the gas versus its volume and which is called a \(p-V\) diagram. In Fig. 18-14a, the curve indicates that the


We control the heat transfer by adjusting the temperature.

Figure 18-13 A gas is confined to a cylinder with a movable piston. Heat \(Q\) can be added to or withdrawn from the gas by regulating the temperature \(T\) of the adjustable thermal reservoir. Work \(W\) can be done by the gas by raising or lowering the piston.

Figure 18-14 (a) The shaded area represents the work \(W\) done by a system as it goes from an initial state \(i\) to a final state \(f\). Work \(W\) is positive because the system's volume increases. (b) \(W\) is still positive, but now greater. (c) \(W\) is still positive, but now smaller. (d) W can be even smaller (path \(i c d f\) ) or larger (path ighf). (e) Here the system goes from state \(f\) to state \(i\) as the gas is compressed to less volume by an external force. The work \(W\) done by the system is now negative. \((f)\) The net work \(W_{\text {net }}\) done by the system during a complete cycle is represented by the shaded area.


We can control how much work it does.


It still goes from \(i\) to \(f\), but now it does more
b)


Moving from \(f\) to \(i\), it does negative work.
(e)

It still goes from \(i\) to \(f\), but now it does less work.
(c)


Cycling clockwise yields a positive net work.

pressure decreases as the volume increases. The integral in Eq. 18-25 (and thus the work \(W\) done by the gas) is represented by the shaded area under the curve between points \(i\) and \(f\). Regardless of what exactly we do to take the gas along the curve, that work is positive, due to the fact that the gas increases its volume by forcing the piston upward.

Another Path. Another way to get from state \(i\) to state \(f\) is shown in Fig. 18-14b. There the change takes place in two steps - the first from state \(i\) to state \(a\), and the second from state \(a\) to state \(f\).

Step \(i a\) of this process is carried out at constant pressure, which means that you leave undisturbed the lead shot that ride on top of the piston in Fig. 18-13. You cause the volume to increase (from \(V_{i}\) to \(V_{f}\) ) by slowly turning up the temperature control knob, raising the temperature of the gas to some higher value \(T_{a}\). (Increasing the temperature increases the force from the gas on the piston, moving it upward.) During this step, positive work is done by the expanding gas (to lift the loaded piston) and heat is absorbed by the system from the thermal reservoir (in response to the arbitrarily small temperature differences that you create as you turn up the temperature). This heat is positive because it is added to the system.

Step af of the process of Fig. 18-14b is carried out at constant volume, so you must wedge the piston, preventing it from moving. Then as you use the control knob to decrease the temperature, you find that the pressure drops from \(p_{a}\) to its final value \(p_{f}\). During this step, heat is lost by the system to the thermal reservoir.

For the overall process iaf, the work \(W\), which is positive and is carried out only during step \(i a\), is represented by the shaded area under the curve. Energy is transferred as heat during both steps \(i a\) and \(a f\), with a net energy transfer \(Q\).

Reversed Steps. Figure \(18-14 c\) shows a process in which the previous two steps are carried out in reverse order. The work \(W\) in this case is smaller than for Fig. 18-14b, as is the net heat absorbed. Figure 18-14d suggests that you can make the work done by the gas as small as you want (by following a path like icdf) or as large as you want (by following a path like ighf).

To sum up: A system can be taken from a given initial state to a given final state by an infinite number of processes. Heat may or may not be involved, and in general, the work \(W\) and the heat \(Q\) will have different values for different processes. We say that heat and work are path-dependent quantities.

Negative Work. Figure 18-14e shows an example in which negative work is done by a system as some external force compresses the system, reducing its volume. The absolute value of the work done is still equal to the area beneath the curve, but because the gas is compressed, the work done by the gas is negative.

Cycle. Figure 18-14f shows a thermodynamic cycle in which the system is taken from some initial state \(i\) to some other state \(f\) and then back to \(i\). The net work done by the system during the cycle is the sum of the positive work done during the expansion and the negative work done during the compression. In Fig. 18-14f, the net work is positive because the area under the expansion curve \((i\) to \(f\) ) is greater than the area under the compression curve ( \(f\) to \(i\) ).

\section*{\(\sqrt{ }\) Checkpoint 4}

The \(p-V\) diagram here shows six curved paths (connected by vertical paths) that can be followed by a gas. Which two of the curved paths should be part of a closed cycle (those curved paths plus connecting vertical paths) if the net work done by the gas during the cycle is to be at its maximum positive value?


\section*{The First Law of Thermodynamics}

You have just seen that when a system changes from a given initial state to a given final state, both the work \(W\) and the heat \(Q\) depend on the nature of the process. Experimentally, however, we find a surprising thing. The quantity \(Q-W\) is the same for all processes. It depends only on the initial and final states and does not depend at all on how the system gets from one to the other. All other combinations of \(Q\) and \(W\), including \(Q\) alone, \(W\) alone, \(Q+W\), and \(Q-2 W\), are path dependent; only the quantity \(Q-W\) is not.

The quantity \(Q-W\) must represent a change in some intrinsic property of the system. We call this property the internal energy \(E_{\text {int }}\) and we write
\[
\begin{equation*}
\Delta E_{\mathrm{int}}=E_{\mathrm{int}, f}-E_{\mathrm{int}, i}=Q-W \quad \text { (first law). } \tag{18-26}
\end{equation*}
\]

Equation 18-26 is the first law of thermodynamics. If the thermodynamic system undergoes only a differential change, we can write the first law as*
\[
\begin{equation*}
d E_{\text {int }}=d Q-d W \quad \text { (first law) } \tag{18-27}
\end{equation*}
\]

The internal energy \(E_{\text {int }}\) of a system tends to increase if energy is added as heat \(Q\) and tends to decrease if energy is lost as work \(W\) done by the system.

In Chapter 8, we discussed the principle of energy conservation as it applies to isolated systems - that is, to systems in which no energy enters or leaves the system. The first law of thermodynamics is an extension of that principle to systems that are not isolated. In such cases, energy may be transferred into or out of the system as either work \(W\) or heat \(Q\). In our statement of the first law of thermodynamics above, we assume that there are no changes in the kinetic energy or the potential energy of the system as a whole; that is, \(\Delta K=\Delta U=0\).

Rules. Before this chapter, the term work and the symbol \(W\) always meant the work done on a system. However, starting with Eq. 18-24 and continuing through the next two chapters about thermodynamics, we focus on the work done by a system, such as the gas in Fig. 18-13.

The work done on a system is always the negative of the work done by the system, so if we rewrite Eq. 18-26 in terms of the work \(W_{\text {on }}\) done on the system, we have \(\Delta E_{\text {int }}=Q+W_{\text {on }}\). This tells us the following: The internal energy of a system tends to increase if heat is absorbed by the system or if positive work is done on the system. Conversely, the internal energy tends to decrease if heat is lost by the system or if negative work is done on the system.

\section*{Checkpoint 5}

The figure here shows four paths on a \(p-V\) diagram along which a gas can be taken from state \(i\) to state \(f\). Rank the paths according to (a) the change \(\Delta E_{\text {int }}\) in the internal energy of the gas, (b) the work \(W\) done by the gas, and (c) the magnitude of the energy transferred as heat \(Q\) between the gas and its environment, greatest first.


\footnotetext{
*Here \(d Q\) and \(d W\), unlike \(d E_{\text {int }}\), are not true differentials; that is, there are no such functions as \(Q(p, V)\) and \(W(p, V)\) that depend only on the state of the system. The quantities \(d Q\) and \(d W\) are called inexact differentials and are usually represented by the symbols \(d Q\) and \(d W\). For our purposes, we can treat them simply as infinitesimally small energy transfers.
}

We slowly remove lead shot, allowing an expansion without any heat transfer.


Figure 18-15 An adiabatic expansion can be carried out by slowly removing lead shot from the top of the piston. Adding lead shot reverses the process at any stage.


Figure 18-16 The initial stage of a freeexpansion process. After the stopcock is opened, the gas fills both chambers and eventually reaches an equilibrium state.

\section*{Some Special Cases of the First Law of Thermodynamics}

Here are four thermodynamic processes as summarized in Table 18-5.
1. Adiabatic processes. An adiabatic process is one that occurs so rapidly or occurs in a system that is so well insulated that no transfer of energy as heat occurs between the system and its environment. Putting \(Q=0\) in the first law (Eq. 18-26) yields
\[
\begin{equation*}
\Delta E_{\mathrm{int}}=-W \quad \text { (adiabatic process). } \tag{18-28}
\end{equation*}
\]

This tells us that if work is done by the system (that is, if \(W\) is positive), the internal energy of the system decreases by the amount of work. Conversely, if work is done on the system (that is, if \(W\) is negative), the internal energy of the system increases by that amount.

Figure 18-15 shows an idealized adiabatic process. Heat cannot enter or leave the system because of the insulation. Thus, the only way energy can be transferred between the system and its environment is by work. If we remove shot from the piston and allow the gas to expand, the work done by the system (the gas) is positive and the internal energy of the gas decreases. If, instead, we add shot and compress the gas, the work done by the system is negative and the internal energy of the gas increases.
2. Constant-volume processes. If the volume of a system (such as a gas) is held constant, that system can do no work. Putting \(W=0\) in the first law (Eq. 18-26) yields
\[
\begin{equation*}
\Delta E_{\mathrm{int}}=Q \quad \text { (constant-volume process). } \tag{18-29}
\end{equation*}
\]

Thus, if heat is absorbed by a system (that is, if \(Q\) is positive), the internal energy of the system increases. Conversely, if heat is lost during the process (that is, if \(Q\) is negative), the internal energy of the system must decrease.
3. Cyclical processes. There are processes in which, after certain interchanges of heat and work, the system is restored to its initial state. In that case, no intrinsic property of the system - including its internal energy - can possibly change. Putting \(\Delta E_{\text {int }}=0\) in the first law (Eq. 18-26) yields
\[
\begin{equation*}
Q=W \quad \text { (cyclical process). } \tag{18-30}
\end{equation*}
\]

Thus, the net work done during the process must exactly equal the net amount of energy transferred as heat; the store of internal energy of the system remains unchanged. Cyclical processes form a closed loop on a \(p-V\) plot, as shown in Fig. 18-14f. We discuss such processes in detail in Chapter 20.
4. Free expansions. These are adiabatic processes in which no transfer of heat occurs between the system and its environment and no work is done on or by the system. Thus, \(Q=W=0\), and the first law requires that
\[
\begin{equation*}
\Delta E_{\text {int }}=0 \quad \text { (free expansion) } \tag{18-31}
\end{equation*}
\]

Figure 18-16 shows how such an expansion can be carried out. A gas, which is in thermal equilibrium within itself, is initially confined by a closed stopcock to one half of an insulated double chamber; the other half is evacuated. The stopcock is opened, and the gas expands freely to fill both halves of the chamber. No heat is

\section*{Table 18-5 The First Law of Thermodynamics: Four Special Cases}
\begin{tabular}{lcc}
\hline & \multicolumn{2}{c}{ The Law: \(\Delta E_{\text {int }}=Q-W(\) Eq. 18-26 \()\)} \\
\hline Process & Restriction & Consequence \\
\hline Adiabatic & \(Q=0\) & \(\Delta E_{\text {int }}=-W\) \\
Constant volume & \(W=0\) & \(\Delta E_{\text {int }}=Q\) \\
Closed cycle & \(\Delta E_{\text {int }}=0\) & \(Q=W\) \\
Free expansion & \(Q\) & \(=W=0\)
\end{tabular}
transferred to or from the gas because of the insulation. No work is done by the gas because it rushes into a vacuum and thus does not meet any pressure.

A free expansion differs from all other processes we have considered because it cannot be done slowly and in a controlled way. As a result, at any given instant during the sudden expansion, the gas is not in thermal equilibrium and its pressure is not uniform. Thus, although we can plot the initial and final states on a \(p-V\) diagram, we cannot plot the expansion itself.

\section*{Checkpoint 6}

For one complete cycle as shown in the \(p-V\) diagram here, are (a) \(\Delta E_{\text {int }}\) for the gas and (b) the net energy transferred as heat \(Q\) positive, negative, or zero?


\section*{Sample Problem 18.05 First law of thermodynamics: work, heat, internal energy change}

Let 1.00 kg of liquid water at \(100^{\circ} \mathrm{C}\) be converted to steam at \(100^{\circ} \mathrm{C}\) by boiling at standard atmospheric pressure (which is 1.00 atm or \(1.01 \times 10^{5} \mathrm{~Pa}\) ) in the arrangement of Fig. 18-17. The volume of that water changes from an initial value of \(1.00 \times 10^{-3} \mathrm{~m}^{3}\) as a liquid to \(1.671 \mathrm{~m}^{3}\) as steam.
(a) How much work is done by the system during this process?

\section*{KEY IDEAS}
(1) The system must do positive work because the volume increases. (2) We calculate the work \(W\) done by integrating the pressure with respect to the volume (Eq. 18-25).
Calculation: Because here the pressure is constant at \(1.01 \times\) \(10^{5} \mathrm{~Pa}\), we can take \(p\) outside the integral. Thus,
\[
\begin{aligned}
W & =\int_{V_{i}}^{V_{f}} p d V=p \int_{V_{i}}^{V_{f}} d V=p\left(V_{f}-V_{i}\right) \\
& =\left(1.01 \times 10^{5} \mathrm{~Pa}\right)\left(1.671 \mathrm{~m}^{3}-1.00 \times 10^{-3} \mathrm{~m}^{3}\right) \\
& =1.69 \times 10^{5} \mathrm{~J}=169 \mathrm{~kJ} .
\end{aligned}
\]
(b) How much energy is transferred as heat during the process?

\section*{KEY IDEA}

Because the heat causes only a phase change and not a change in temperature, it is given fully by Eq. 18-16 \((Q=L m)\).

Calculation: Because the change is from liquid to gaseous phase, \(L\) is the heat of vaporization \(L_{V}\), with the value given in Eq. 18-17 and Table 18-4. We find
\[
\begin{aligned}
Q & =L_{V} m=(2256 \mathrm{~kJ} / \mathrm{kg})(1.00 \mathrm{~kg}) \\
& =2256 \mathrm{~kJ} \approx 2260 \mathrm{~kJ} .
\end{aligned}
\]
(Answer)
(c) What is the change in the system's internal energy during the process?

\section*{KEY IDEA}

The change in the system's internal energy is related to the heat (here, this is energy transferred into the system) and the work (here, this is energy transferred out of the system) by the first law of thermodynamics (Eq. 18-26).

Calculation: We write the first law as
\[
\begin{aligned}
\Delta E_{\mathrm{int}} & =Q-W=2256 \mathrm{~kJ}-169 \mathrm{~kJ} \\
& \approx 2090 \mathrm{~kJ}=2.09 \mathrm{MJ}
\end{aligned}
\]
(Answer)
This quantity is positive, indicating that the internal energy of the system has increased during the boiling process. The added energy goes into separating the \(\mathrm{H}_{2} \mathrm{O}\) molecules, which strongly attract one another in the liquid state. We see that, when water is boiled, about \(7.5 \%\) ( \(=169 \mathrm{~kJ} / 2260 \mathrm{~kJ}\) ) of the heat goes into the work of pushing back the atmosphere. The rest of the heat goes into the internal energy of the system.

Figure 18-17 Water boiling at constant pressure. Energy is transferred from the thermal reservoir as heat until the liquid water has changed completely into steam. Work is done by the expanding gas as it lifts the loaded piston.


\section*{18-6 heat transfer mechanisms}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
18.31 For thermal conduction through a layer, apply the relationship between the energy-transfer rate \(P_{\text {cond }}\) and the layer's area \(A\), thermal conductivity \(k\), thickness \(L\), and temperature difference \(\Delta T\) (between its two sides).
18.32 For a composite slab (two or more layers) that has reached the steady state in which temperatures are no longer changing, identify that (by the conservation of energy) the rates of thermal conduction \(P_{\text {cond }}\) through the layers must be equal.
18.33 For thermal conduction through a layer, apply the relationship between thermal resistance \(R\), thickness \(L\), and thermal conductivity \(k\).
18.34 Identify that thermal energy can be transferred by
convection, in which a warmer fluid (gas or liquid) tends to rise in a cooler fluid.
18.35 In the emission of thermal radiation by an object, apply the relationship between the energy-transfer rate \(P_{\text {rad }}\) and the object's surface area \(A\), emissivity \(\varepsilon\), and surface temperature \(T\) (in kelvins).
18.36 In the absorption of thermal radiation by an object, apply the relationship between the energy-transfer rate \(P_{\text {abs }}\) and the object's surface area \(A\) and emissivity \(\varepsilon\), and the environmental temperature \(T\) (in kelvins).
18.37 Calculate the net energy-transfer rate \(P_{\text {net }}\) of an object emitting radiation to its environment and absorbing radiation from that environment.

\section*{Key Ideas}
- The rate \(P_{\text {cond }}\) at which energy is conducted through a slab for which one face is maintained at the higher temperature \(T_{H}\) and the other face is maintained at the lower temperature \(T_{C}\) is
\[
P_{\mathrm{cond}}=\frac{Q}{t}=k A \frac{T_{H}-T_{C}}{L}
\]

Here each face of the slab has area \(A\), the length of the slab (the distance between the faces) is \(L\), and \(k\) is the thermal conductivity of the material.
- Convection occurs when temperature differences cause an energy transfer by motion within a fluid.

Radiation is an energy transfer via the emission of electromagnetic energy. The rate \(P_{\text {rad }}\) at which an object emits energy via thermal radiation is
\[
P_{\mathrm{rad}}=\sigma \varepsilon A T^{4}
\]
where \(\sigma\left(=5.6704 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}\right)\) is the Stefan Boltzmann constant, \(\varepsilon\) is the emissivity of the object's surface, \(A\) is its surface area, and \(T\) is its surface temperature (in kelvins). The rate \(P_{\text {abs }}\) at which an object absorbs energy via thermal radiation from its environment, which is at the uniform temperature \(T_{\text {env }}\) (in kelvins), is
\[
P_{\mathrm{abs}}=\sigma \varepsilon A T_{\mathrm{env}}^{4}
\]


Figure 18-18 Thermal conduction. Energy is transferred as heat from a reservoir at temperature \(T_{H}\) to a cooler reservoir at temperature \(T_{C}\) through a conducting slab of thickness \(L\) and thermal conductivity \(k\).

\section*{Heat Transfer Mechanisms}

We have discussed the transfer of energy as heat between a system and its environment, but we have not yet described how that transfer takes place. There are three transfer mechanisms: conduction, convection, and radiation. Let's next examine these mechanisms in turn.

\section*{Conduction}

If you leave the end of a metal poker in a fire for enough time, its handle will get hot. Energy is transferred from the fire to the handle by (thermal) conduction along the length of the poker. The vibration amplitudes of the atoms and electrons of the metal at the fire end of the poker become relatively large because of the high temperature of their environment. These increased vibrational amplitudes, and thus the associated energy, are passed along the poker, from atom to atom, during collisions between adjacent atoms. In this way, a region of rising temperature extends itself along the poker to the handle.

Consider a slab of face area \(A\) and thickness \(L\), whose faces are maintained at temperatures \(T_{H}\) and \(T_{C}\) by a hot reservoir and a cold reservoir, as in Fig. 18-18. Let \(Q\) be the energy that is transferred as heat through the slab, from its hot face to its cold face, in time \(t\). Experiment shows that the conduction rate \(P_{\text {cond }}\) (the
amount of energy transferred per unit time) is
\[
\begin{equation*}
P_{\mathrm{cond}}=\frac{Q}{t}=k A \frac{T_{H}-T_{C}}{L} \tag{18-32}
\end{equation*}
\]
in which \(k\), called the thermal conductivity, is a constant that depends on the material of which the slab is made. A material that readily transfers energy by conduction is a good thermal conductor and has a high value of \(k\). Table 18-6 gives the thermal conductivities of some common metals, gases, and building materials.

\section*{Thermal Resistance to Conduction ( \(R\)-Value)}

If you are interested in insulating your house or in keeping cola cans cold on a picnic, you are more concerned with poor heat conductors than with good ones. For this reason, the concept of thermal resistance \(R\) has been introduced into engineering practice. The \(R\)-value of a slab of thickness \(L\) is defined as
\[
\begin{equation*}
R=\frac{L}{k} . \tag{18-33}
\end{equation*}
\]

The lower the thermal conductivity of the material of which a slab is made, the higher the \(R\)-value of the slab; so something that has a high \(R\)-value is a poor thermal conductor and thus a good thermal insulator.

Note that \(R\) is a property attributed to a slab of a specified thickness, not to a material. The commonly used unit for \(R\) (which, in the United States at least, is almost never stated) is the square foot-Fahrenheit degree-hour per British thermal unit \(\left(\mathrm{ft}^{2} \cdot \mathrm{~F}^{\circ} \cdot \mathrm{h} / \mathrm{Btu}\right)\). (Now you know why the unit is rarely stated.)

\section*{Conduction Through a Composite Slab}

Figure 18-19 shows a composite slab, consisting of two materials having different thicknesses \(L_{1}\) and \(L_{2}\) and different thermal conductivities \(k_{1}\) and \(k_{2}\). The temperatures of the outer surfaces of the slab are \(T_{H}\) and \(T_{C}\). Each face of the slab has area \(A\). Let us derive an expression for the conduction rate through the slab under the assumption that the transfer is a steady-state process; that is, the temperatures everywhere in the slab and the rate of energy transfer do not change with time.

In the steady state, the conduction rates through the two materials must be equal. This is the same as saying that the energy transferred through one material in a certain time must be equal to that transferred through the other material in the same time. If this were not true, temperatures in the slab would be changing and we would not have a steady-state situation. Letting \(T_{X}\) be the temperature of the interface between the two materials, we can now use Eq. 18-32 to write
\[
\begin{equation*}
P_{\text {cond }}=\frac{k_{2} A\left(T_{H}-T_{X}\right)}{L_{2}}=\frac{k_{1} A\left(T_{X}-T_{C}\right)}{L_{1}} . \tag{18-34}
\end{equation*}
\]

Solving Eq. 18-34 for \(T_{X}\) yields, after a little algebra,
\[
\begin{equation*}
T_{X}=\frac{k_{1} L_{2} T_{C}+k_{2} L_{1} T_{H}}{k_{1} L_{2}+k_{2} L_{1}} \tag{18-35}
\end{equation*}
\]

Substituting this expression for \(T_{X}\) into either equality of Eq. 18-34 yields
\[
\begin{equation*}
P_{\mathrm{cond}}=\frac{A\left(T_{H}-T_{C}\right)}{L_{1} / k_{1}+L_{2} / k_{2}} \tag{18-36}
\end{equation*}
\]

We can extend Eq. 18-36 to apply to any number \(n\) of materials making up a slab:
\[
\begin{equation*}
P_{\mathrm{cond}}=\frac{A\left(T_{H}-T_{C}\right)}{\sum(L / k)} \tag{18-37}
\end{equation*}
\]

The summation sign in the denominator tells us to add the values of \(L / k\) for all the materials.

Table 18-6 Some Thermal Conductivities
\begin{tabular}{lc}
\hline \multicolumn{1}{c}{ Substance } & \(k(\mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\) \\
\hline Metals & \\
Stainless steel & 14 \\
Lead & 35 \\
Iron & 67 \\
Brass & 109 \\
Aluminum & 235 \\
Copper & 401 \\
Silver & 428 \\
Gases & \\
Air (dry) & 0.026 \\
Helium & 0.15 \\
Hydrogen & 0.18 \\
Building Materials & \\
Polyurethane foam & 0.024 \\
Rock wool & 0.043 \\
Fiberglass & 0.048 \\
White pine & 0.11 \\
Window glass & 1.0 \\
\hline
\end{tabular}


Figure 18-19 Heat is transferred at a steady rate through a composite slab made up of two different materials with different thicknesses and different thermal conductivities. The steady-state temperature at the interface of the two materials is \(T_{X}\).


Edward Kinsman/Photo Researchers, Inc.
Figure 18-20 A false-color thermogram reveals the rate at which energy is radiated by a cat. The rate is color-coded, with white and red indicating the greatest radiation rate. The nose is cool.

\section*{\(\sqrt{ }\) Checkpoint 7}

The figure shows the face and interface temperatures of a composite slab consisting of four materials, of identical thicknesses,
 through which the heat transfer is steady. Rank the materials according to their thermal conductivities, greatest first.

\section*{Convection}

When you look at the flame of a candle or a match, you are watching thermal energy being transported upward by convection. Such energy transfer occurs when a fluid, such as air or water, comes in contact with an object whose temperature is higher than that of the fluid. The temperature of the part of the fluid that is in contact with the hot object increases, and (in most cases) that fluid expands and thus becomes less dense. Because this expanded fluid is now lighter than the surrounding cooler fluid, buoyant forces cause it to rise. Some of the surrounding cooler fluid then flows so as to take the place of the rising warmer fluid, and the process can then continue.

Convection is part of many natural processes. Atmospheric convection plays a fundamental role in determining global climate patterns and daily weather variations. Glider pilots and birds alike seek rising thermals (convection currents of warm air) that keep them aloft. Huge energy transfers take place within the oceans by the same process. Finally, energy is transported to the surface of the Sun from the nuclear furnace at its core by enormous cells of convection, in which hot gas rises to the surface along the cell core and cooler gas around the core descends below the surface.

\section*{Radiation}

The third method by which an object and its environment can exchange energy as heat is via electromagnetic waves (visible light is one kind of electromagnetic wave). Energy transferred in this way is often called thermal radiation to distinguish it from electromagnetic signals (as in, say, television broadcasts) and from nuclear radiation (energy and particles emitted by nuclei). (To "radiate" generally means to emit.) When you stand in front of a big fire, you are warmed by absorbing thermal radiation from the fire; that is, your thermal energy increases as the fire's thermal energy decreases. No medium is required for heat transfer via radiation - the radiation can travel through vacuum from, say, the Sun to you.

The rate \(P_{\text {rad }}\) at which an object emits energy via electromagnetic radiation depends on the object's surface area \(A\) and the temperature \(T\) of that area in kelvins and is given by
\[
\begin{equation*}
P_{\mathrm{rad}}=\sigma \varepsilon A T^{4} \tag{18-38}
\end{equation*}
\]

Here \(\sigma=5.6704 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}\) is called the Stefan-Boltzmann constant after Josef Stefan (who discovered Eq. 18-38 experimentally in 1879) and Ludwig Boltzmann (who derived it theoretically soon after). The symbol \(\varepsilon\) represents the emissivity of the object's surface, which has a value between 0 and 1 , depending on the composition of the surface. A surface with the maximum emissivity of 1.0 is said to be a blackbody radiator, but such a surface is an ideal limit and does not occur in nature. Note again that the temperature in Eq. 18-38 must be in kelvins so that a temperature of absolute zero corresponds to no radiation. Note also that every object whose temperature is above 0 K -including you-emits thermal radiation. (See Fig. 18-20.)

The rate \(P_{\text {abs }}\) at which an object absorbs energy via thermal radiation from its environment, which we take to be at uniform temperature \(T_{\text {env }}\) (in kelvins), is
\[
\begin{equation*}
P_{\mathrm{abs}}=\sigma \varepsilon A T_{\mathrm{env}}^{4} . \tag{18-39}
\end{equation*}
\]

The emissivity \(\varepsilon\) in Eq. 18-39 is the same as that in Eq. 18-38. An idealized blackbody radiator, with \(\varepsilon=1\), will absorb all the radiated energy it intercepts (rather than sending a portion back away from itself through reflection or scattering).

Because an object both emits and absorbs thermal radiation, its net rate \(P_{\text {net }}\) of energy exchange due to thermal radiation is
\[
\begin{equation*}
P_{\mathrm{net}}=P_{\mathrm{abs}}-P_{\mathrm{rad}}=\sigma \varepsilon A\left(T_{\mathrm{env}}^{4}-T^{4}\right) \tag{18-40}
\end{equation*}
\]
\(P_{\text {net }}\) is positive if net energy is being absorbed via radiation and negative if it is being lost via radiation.

Thermal radiation is involved in the numerous medical cases of a dead rattlesnake striking a hand reaching toward it. Pits between each eye and nostril of a rattlesnake (Fig. 18-21) serve as sensors of thermal radiation. When, say, a mouse moves close to a rattlesnake's head, the thermal radiation from the mouse triggers these sensors, causing a reflex action in which the snake strikes the mouse with its fangs and injects its venom. The thermal radiation from a reaching hand can cause the same reflex action even if the snake has been dead for as long as 30 min because the snake's nervous system continues to function. As one snake expert advised, if you must remove a recently killed rattlesnake, use a long stick rather than your hand.


Figure 18-21 A rattlesnake's face has thermal radiation detectors, allowing the snake to strike at an animal even in complete darkness.

\section*{Sample Problem 18.06 Thermal conduction through a layered wall}

Figure 18-22 shows the cross section of a wall made of white pine of thickness \(L_{a}\) and brick of thickness \(L_{d}\) ( \(=2.0 L_{a}\) ), sandwiching two layers of unknown material with identical thicknesses and thermal conductivities. The thermal conductivity of the pine is \(k_{a}\) and that of the brick is \(k_{d}\left(=5.0 k_{a}\right)\). The face area \(A\) of the wall is unknown. Thermal conduction through the wall has reached the steady state; the only known interface temperatures are \(T_{1}=25^{\circ} \mathrm{C}, T_{2}=20^{\circ} \mathrm{C}\), and \(T_{5}=-10^{\circ} \mathrm{C}\). What is interface temperature \(T_{4}\) ?


Figure 18-22 Steady-state heat transfer through a wall.

\section*{KEY IDEAS}
(1) Temperature \(T_{4}\) helps determine the rate \(P_{d}\) at which energy is conducted through the brick, as given by Eq. 18-32. However, we lack enough data to solve Eq. 18-32 for \(T_{4}\). (2) Because the conduction is steady, the conduction rate \(P_{d}\) through the brick must equal the conduction rate \(P_{a}\) through the pine. That gets us going.

Calculations: From Eq. 18-32 and Fig. 18-22, we can write
\[
P_{a}=k_{a} A \frac{T_{1}-T_{2}}{L_{a}} \quad \text { and } \quad P_{d}=k_{d} A \frac{T_{4}-T_{5}}{L_{d}}
\]

Setting \(P_{a}=P_{d}\) and solving for \(T_{4}\) yield
\[
T_{4}=\frac{k_{a} L_{d}}{k_{d} L_{a}}\left(T_{1}-T_{2}\right)+T_{5} .
\]

Letting \(L_{d}=2.0 L_{a}\) and \(k_{d}=5.0 k_{a}\), and inserting the known temperatures, we find
\[
\begin{aligned}
T_{4} & =\frac{k_{a}\left(2.0 L_{a}\right)}{\left(5.0 k_{a}\right) L_{a}}\left(25^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right)+\left(-10^{\circ} \mathrm{C}\right) \\
& =-8.0^{\circ} \mathrm{C}
\end{aligned}
\]
(Answer)

\section*{Sample Problem 18.07 Thermal radiation by a skunk cabbage can melt surrounding snow}

Unlike most other plants, a skunk cabbage can regulate its internal temperature (set at \(T=22^{\circ} \mathrm{C}\) ) by altering the rate at which it produces energy. If it becomes covered with snow, it can increase that production so that its thermal radiation melts the snow in order to re-expose the plant to sunlight. Let's model a skunk cabbage with a cylinder of height \(h=5.0 \mathrm{~cm}\) and radius \(R=1.5 \mathrm{~cm}\) and assume it is surrounded by a snow wall at temperature \(T_{\text {env }}=-3.0^{\circ} \mathrm{C}\) (Fig. 18-23). If the emissivity \(\varepsilon\) is 0.80 , what is the net rate of energy exchange via thermal radiation between the plant's curved side and the snow?


Figure 18-23 Model of skunk cabbage that has melted snow to uncover itself.

\section*{KEY IDEAS}
(1) In a steady-state situation, a surface with area \(A\), emissivity \(\varepsilon\), and temperature \(T\) loses energy to thermal radiation at the rate given by Eq. 18-38 ( \(\left.P_{\mathrm{rad}}=\sigma \varepsilon A T^{4}\right)\). (2) Simultaneously, it gains energy by thermal radiation from its environment at temperature \(T_{\text {env }}\) at the rate given by Eq. 18-39 ( \(P_{\text {env }}=\) \(\left.\sigma \varepsilon A T_{\text {env }}^{4}\right)\).
Calculations: To find the net rate of energy exchange, we subtract Eq. 18-38 from Eq. 18-39 to write
\[
\begin{align*}
P_{\mathrm{net}} & =P_{\mathrm{abs}}-P_{\mathrm{rad}} \\
& =\sigma \varepsilon A\left(T_{\mathrm{env}}^{4}-T^{4}\right) . \tag{18-41}
\end{align*}
\]

We need the area of the curved surface of the cylinder, which is \(A=h(2 \pi R)\). We also need the temperatures in kelvins: \(T_{\text {env }}=273 \mathrm{~K}-3 \mathrm{~K}=270 \mathrm{~K}\) and \(T=273 \mathrm{~K}+\) \(22 \mathrm{~K}=295 \mathrm{~K}\). Substituting in Eq. 18-41 for \(A\) and then substituting known values in SI units (which are not displayed here), we find
\[
\begin{aligned}
P_{\text {net }} & =\left(5.67 \times 10^{-8}\right)(0.80)(0.050)(2 \pi)(0.015)\left(270^{4}-295^{4}\right) \\
& =-0.48 \mathrm{~W} .
\end{aligned} \text { (Answer) }
\]

Thus, the plant has a net loss of energy via thermal radiation of 0.48 W . The plant's energy production rate is comparable to that of a hummingbird in flight.

PLUS Additional examples, video, and practice available at WileyPLUS

\section*{9eview \& Summary}

Temperature; Thermometers Temperature is an SI base quantity related to our sense of hot and cold. It is measured with a thermometer, which contains a working substance with a measurable property, such as length or pressure, that changes in a regular way as the substance becomes hotter or colder.

Zeroth Law of Thermodynamics When a thermometer and some other object are placed in contact with each other, they eventually reach thermal equilibrium. The reading of the thermometer is then taken to be the temperature of the other object. The process provides consistent and useful temperature measurements because of the zeroth law of thermodynamics: If bodies \(A\) and \(B\) are each in thermal equilibrium with a third body \(C\) (the thermometer), then \(A\) and \(B\) are in thermal equilibrium with each other.

The Kelvin Temperature Scale In the SI system, temperature is measured on the Kelvin scale, which is based on the triple point of water ( 273.16 K ). Other temperatures are then defined by
use of a constant-volume gas thermometer, in which a sample of gas is maintained at constant volume so its pressure is proportional to its temperature. We define the temperature \(T\) as measured with a gas thermometer to be
\[
\begin{equation*}
T=(273.16 \mathrm{~K})\left(\lim _{\mathrm{gas} \rightarrow 0} \frac{p}{p_{3}}\right) . \tag{18-6}
\end{equation*}
\]

Here \(T\) is in kelvins, and \(p_{3}\) and \(p\) are the pressures of the gas at 273.16 K and the measured temperature, respectively.

Celsius and Fahrenheit Scales The Celsius temperature scale is defined by
\[
\begin{equation*}
T_{\mathrm{C}}=T-273.15^{\circ}, \tag{18-7}
\end{equation*}
\]
with \(T\) in kelvins. The Fahrenheit temperature scale is defined by
\[
\begin{equation*}
T_{\mathrm{F}}=\frac{9}{5} T_{\mathrm{C}}+32^{\circ} . \tag{18-8}
\end{equation*}
\]

Thermal Expansion All objects change size with changes in temperature. For a temperature change \(\Delta T\), a change \(\Delta L\) in any linear dimension \(L\) is given by
\[
\begin{equation*}
\Delta L=L \alpha \Delta T \tag{18-9}
\end{equation*}
\]
in which \(\alpha\) is the coefficient of linear expansion. The change \(\Delta V\) in the volume \(V\) of a solid or liquid is
\[
\begin{equation*}
\Delta V=V \beta \Delta T \tag{18-10}
\end{equation*}
\]

Here \(\beta=3 \alpha\) is the material's coefficient of volume expansion.
Heat Heat \(Q\) is energy that is transferred between a system and its environment because of a temperature difference between them. It can be measured in joules (J), calories (cal), kilocalories (Cal or kcal), or British thermal units (Btu), with
\[
\begin{equation*}
1 \mathrm{cal}=3.968 \times 10^{-3} \mathrm{Btu}=4.1868 \mathrm{~J} \tag{18-12}
\end{equation*}
\]

Heat Capacity and Specific Heat If heat \(Q\) is absorbed by an object, the object's temperature change \(T_{f}-T_{i}\) is related to \(Q\) by
\[
\begin{equation*}
Q=C\left(T_{f}-T_{i}\right) \tag{18-13}
\end{equation*}
\]
in which \(C\) is the heat capacity of the object. If the object has mass \(m\), then
\[
\begin{equation*}
Q=c m\left(T_{f}-T_{i}\right) \tag{18-14}
\end{equation*}
\]
where \(c\) is the specific heat of the material making up the object. The molar specific heat of a material is the heat capacity per mole, which means per \(6.02 \times 10^{23}\) elementary units of the material.

Heat of Transformation Matter can exist in three common states: solid, liquid, and vapor. Heat absorbed by a material may change the material's physical state-for example, from solid to liquid or from liquid to gas. The amount of energy required per unit mass to change the state (but not the temperature) of a particular material is its heat of transformation \(L\). Thus,
\[
\begin{equation*}
Q=L m \tag{18-16}
\end{equation*}
\]

The heat of vaporization \(L_{V}\) is the amount of energy per unit mass that must be added to vaporize a liquid or that must be removed to condense a gas. The heat of fusion \(L_{F}\) is the amount of energy per unit mass that must be added to melt a solid or that must be removed to freeze a liquid.

Work Associated with Volume Change A gas may exchange energy with its surroundings through work. The amount of work \(W\) done by a gas as it expands or contracts from an initial volume \(V_{i}\) to a final volume \(V_{f}\) is given by
\[
\begin{equation*}
W=\int d W=\int_{V_{i}}^{V_{f}} p d V \tag{18-25}
\end{equation*}
\]

The integration is necessary because the pressure \(p\) may vary during the volume change.

First Law of Thermodynamics The principle of conservation of energy for a thermodynamic process is expressed in the first law of thermodynamics, which may assume either of the forms
\[
\begin{gather*}
\Delta E_{\mathrm{int}}=E_{\mathrm{int}, f}-E_{\mathrm{int}, i}=Q-W \quad \text { (first law) }  \tag{18-26}\\
d E_{\mathrm{int}}=d Q-d W \quad \text { (first law) } \tag{18-27}
\end{gather*}
\]
\(E_{\text {int }}\) represents the internal energy of the material, which depends only on the material's state (temperature, pressure, and volume). \(Q\) represents the energy exchanged as heat between the system and its surroundings; \(Q\) is positive if the system absorbs heat and negative if the system loses heat. \(W\) is the work done by the system; \(W\) is positive if the system expands against an external force from the surroundings and negative if the system contracts because of an external force. \(Q\) and \(W\) are path dependent; \(\Delta E_{\text {int }}\) is path independent.

Applications of the First Law The first law of thermodynamics finds application in several special cases:
\[
\begin{aligned}
\text { adiabatic processes: } & Q=0, \quad \Delta E_{\mathrm{int}}=-W \\
\text { constant-volume processes: } & W=0, \quad \Delta E_{\mathrm{int}}=Q \\
\text { cyclical processes: } & \Delta E_{\mathrm{int}}=0, \quad Q=W \\
\text { free expansions: } & Q=W=\Delta E_{\mathrm{int}}=0
\end{aligned}
\]

Conduction, Convection, and Radiation The rate \(P_{\text {cond }}\) at which energy is conducted through a slab for which one face is maintained at the higher temperature \(T_{H}\) and the other face is maintained at the lower temperature \(T_{C}\) is
\[
\begin{equation*}
P_{\mathrm{cond}}=\frac{Q}{t}=k A \frac{T_{H}-T_{C}}{L} \tag{18-32}
\end{equation*}
\]

Here each face of the slab has area \(A\), the length of the slab (the distance between the faces) is \(L\), and \(k\) is the thermal conductivity of the material.

Convection occurs when temperature differences cause an energy transfer by motion within a fluid.

Radiation is an energy transfer via the emission of electromagnetic energy. The rate \(P_{\mathrm{rad}}\) at which an object emits energy via thermal radiation is
\[
\begin{equation*}
P_{\mathrm{rad}}=\sigma \varepsilon A T^{4} \tag{18-38}
\end{equation*}
\]
where \(\sigma\left(=5.6704 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}\right)\) is the Stefan-Boltzmann constant, \(\varepsilon\) is the emissivity of the object's surface, \(A\) is its surface area, and \(T\) is its surface temperature (in kelvins). The rate \(P_{\text {abs }}\) at which an object absorbs energy via thermal radiation from its environment, which is at the uniform temperature \(T_{\text {env }}\) (in kelvins), is
\[
\begin{equation*}
P_{\mathrm{abs}}=\sigma \varepsilon A T_{\mathrm{env}}^{4} \tag{18-39}
\end{equation*}
\]

\section*{Questions}

1 The initial length \(L\), change in temperature \(\Delta T\), and change in length \(\Delta L\) of four rods are given in the following table. Rank the rods according to their coefficients of thermal expansion, greatest first.
\begin{tabular}{cccc}
\hline Rod & \(L(\mathrm{~m})\) & \(\Delta T\left(\mathrm{C}^{\circ}\right)\) & \(\Delta L(\mathrm{~m})\) \\
\hline\(a\) & 2 & 10 & \(4 \times 10^{-4}\) \\
\(b\) & 1 & 20 & \(4 \times 10^{-4}\) \\
\(c\) & 2 & 10 & \(8 \times 10^{-4}\) \\
\(d\) & 4 & 5 & \(4 \times 10^{-4}\) \\
\hline
\end{tabular}

2 Figure 18-24 shows three linear temperature scales, with the freezing and boiling points of water indicated. Rank the three scales according to the size of one degree on them, greatest first.
3 Materials \(A, B\), and \(C\) are solids


Figure 18-24 Question 2. that are at their melting temperatures. Material \(A\) requires 200 J to melt 4 kg , material \(B\) requires 300 J to melt 5 kg , and material \(C\) requires 300 J to melt 6 kg . Rank the materials according to their heats of fusion, greatest first.
4 A sample \(A\) of liquid water and a sample \(B\) of ice, of identical mass, are placed in a thermally insulated container and allowed to come to thermal equilibrium. Figure \(18-25 a\) is a sketch of the temperature \(T\) of the samples versus time \(t\). (a) Is the equilibrium temperature above, below, or at the freezing point of water? (b) In reaching equilibrium, does the liquid partly freeze, fully freeze, or undergo no freezing? (c) Does the ice partly melt, fully melt, or undergo no melting?
5 Question 4 continued: Graphs \(b\) through \(f\) of Fig. 18-25 are additional sketches of \(T\) versus \(t\), of which one or more are impossible to produce. (a) Which is impossible and why? (b) In the possible ones, is the equilibrium temperature above, below, or at the freezing point of water? (c) As the possible situations reach equilibrium, does the liquid partly freeze, fully freeze, or undergo no freezing? Does the ice partly melt, fully melt, or undergo no melting?
(a)

(b)


(d)

(e)



Figure 18-25 Questions 4 and 5.

6 Figure 18-26 shows three different arrangements of materials 1,2 , and 3 to form a wall. The thermal conductivities are \(k_{1}>\) \(k_{2}>k_{3}\). The left side of the wall is \(20 \mathrm{C}^{\circ}\) higher than

(a)

(b)

(c)

Figure 18-26 Question 6. the right side. Rank the arrangements according to (a) the (steady state) rate of energy conduction through the wall and (b) the temperature difference across material 1 , greatest first.
7 Figure 18-27 shows two closed cycles on \(p-V\) diagrams for a gas. The three parts of cycle 1 are of the same length and shape as those of cycle 2. For each cycle, should the cycle be traversed clockwise or coun-


Figure 18-27 Questions 7 and 8. terclockwise if (a) the net work \(W\) done by the gas is to be positive and (b) the net energy transferred by the gas as heat \(Q\) is to be positive?
8 For which cycle in Fig. 18-27, traversed clockwise, is (a) \(W\) greater and (b) \(Q\) greater?
9 Three different materials of identical mass are placed one at a time in a special freezer that can extract energy from a material at a certain constant rate. During the cooling process, each material begins in the liquid state and ends in the solid state; Fig. 18-28 shows the tem-


Figure 18-28 Question 9. perature \(T\) versus time \(t\). (a) For material 1 , is the specific heat for the liquid state greater than or less than that for the solid state? Rank the materials according to (b) freezingpoint temperature, (c) specific heat in the liquid state, (d) specific heat in the solid state, and (e) heat of fusion, all greatest first.
10 A solid cube of edge length \(r\), a solid sphere of radius \(r\), and a solid hemisphere of radius \(r\), all made of the same material, are maintained at temperature 300 K in an environment at temperature 350 K . Rank the objects according to the net rate at which thermal radiation is exchanged with the environment, greatest first.
11 A hot object is dropped into a thermally insulated container of water, and the object and water are then allowed to come to thermal equilibrium. The experiment is repeated twice, with different hot objects. All three objects have the same mass and initial temperature, and the mass and initial temperature of the water are the same in the three experiments. For each of the experiments, Fig. 18-29 gives graphs of the temperatures \(T\) of the object and the water versus time \(t\). Rank the graphs according to the specific heats of the objects, greatest first.
(a)

(b)

(c)

Figure 18-29 Question 11.

\section*{Sproblems}
```

Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign
SSM Worked-out solution available in Student Solutions Manual WWW Worked-out solution is at

- - Number of dots indicates level of problem difficulty ILW Interactive solution is at
Ad}\mathrm{ Aditional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

```
    http://www.wiley.com/college/halliday

\section*{Module 18-1 Temperature}
-1 Suppose the temperature of a gas is 373.15 K when it is at the boiling point of water. What then is the limiting value of the ratio of the pressure of the gas at that boiling point to its pressure at the triple point of water? (Assume the volume of the gas is the same at both temperatures.)
-2 Two constant-volume gas thermometers are assembled, one with nitrogen and the other with hydrogen. Both contain enough gas so that \(p_{3}=80 \mathrm{kPa}\). (a) What is the difference between the pressures in the two thermometers if both bulbs are in boiling water? (Hint: See Fig. 18-6.) (b) Which gas is at higher pressure?
-3 A gas thermometer is constructed of two gas-containing bulbs, each in a water bath, as shown in Fig. 18-30. The pressure difference between the two bulbs is measured by a mercury manometer as shown. Appropriate reservoirs, not shown in


Figure 18-30 Problem 3. the diagram, maintain constant gas volume in the two bulbs. There is no difference in pressure when both baths are at the triple point of water. The pressure difference is 120 torr when one bath is at the triple point and the other is at the boiling point of water. It is 90.0 torr when one bath is at the triple point and the other is at an unknown temperature to be measured. What is the unknown temperature?

Module 18-2 The Celsius and Fahrenheit Scales
-4 (a) In 1964, the temperature in the Siberian village of Oymyakon reached \(-71^{\circ} \mathrm{C}\). What temperature is this on the Fahrenheit scale? (b) The highest officially recorded temperature in the continental United States was \(134^{\circ} \mathrm{F}\) in Death Valley, California. What is this temperature on the Celsius scale?
-5 At what temperature is the Fahrenheit scale reading equal to (a) twice that of the Celsius scale and (b) half that of the Celsius scale?
-•6 On a linear \(X\) temperature scale, water freezes at \(-125.0^{\circ} \mathrm{X}\) and boils at \(375.0^{\circ} \mathrm{X}\). On a linear Y temperature scale, water freezes at \(-70.00^{\circ} \mathrm{Y}\) and boils at \(-30.00^{\circ} \mathrm{Y}\). A temperature of \(50.00^{\circ} \mathrm{Y}\) corresponds to what temperature on the X scale?
-•7 ILW Suppose that on a linear temperature scale X , water boils at \(-53.5^{\circ} \mathrm{X}\) and freezes at \(-170^{\circ} \mathrm{X}\). What is a temperature of 340 K on the X scale? (Approximate water's boiling point as 373 K .)

\section*{Module 18-3 Thermal Expansion}
\(\bullet 8\) At \(20^{\circ} \mathrm{C}\), a brass cube has edge length 30 cm . What is the increase in the surface area when it is heated from \(20^{\circ} \mathrm{C}\) to \(75^{\circ} \mathrm{C}\) ?
\(\cdot 9\) ILW A circular hole in an aluminum plate is 2.725 cm in diameter at \(0.000^{\circ} \mathrm{C}\). What is its diameter when the temperature of the plate is raised to \(100.0^{\circ} \mathrm{C}\) ?
-10 An aluminum flagpole is 33 m high. By how much does its length increase as the temperature increases by \(15 \mathrm{C}^{\circ}\) ?
-11 What is the volume of a lead ball at \(30.00^{\circ} \mathrm{C}\) if the ball's volume at \(60.00^{\circ} \mathrm{C}\) is \(50.00 \mathrm{~cm}^{3}\) ?
-12 An aluminum-alloy rod has a length of 10.000 cm at \(20.000^{\circ} \mathrm{C}\) and a length of 10.015 cm at the boiling point of water. (a) What is the length of the rod at the freezing point of water? (b) What is the temperature if the length of the rod is 10.009 cm ?
-13 SSM Find the change in volume of an aluminum sphere with an initial radius of 10 cm when the sphere is heated from \(0.0^{\circ} \mathrm{C}\) to \(100^{\circ} \mathrm{C}\).
-•14 When the temperature of a copper coin is raised by \(100 \mathrm{C}^{\circ}\), its diameter increases by \(0.18 \%\). To two significant figures, give the percent increase in (a) the area of a face, (b) the thickness, (c) the volume, and (d) the mass of the coin. (e) Calculate the coefficient of linear expansion of the coin.
- 15 ILW A steel rod is 3.000 cm in diameter at \(25.00^{\circ} \mathrm{C}\). A brass ring has an interior diameter of 2.992 cm at \(25.00^{\circ} \mathrm{C}\). At what common temperature will the ring just slide onto the rod?
- 16 When the temperature of a metal cylinder is raised from \(0.0^{\circ} \mathrm{C}\) to \(100^{\circ} \mathrm{C}\), its length increases by \(0.23 \%\). (a) Find the percent change in density. (b) What is the metal? Use Table 18-2.
- 17 SSIM WWW An aluminum cup of \(100 \mathrm{~cm}^{3}\) capacity is completely filled with glycerin at \(22^{\circ} \mathrm{C}\). How much glycerin, if any, will spill out of the cup if the temperature of both the cup and the glycerin is increased to \(28^{\circ} \mathrm{C}\) ? (The coefficient of volume expansion of glycerin is \(5.1 \times 10^{-4} / \mathrm{C}^{\circ}\).)
\(\bullet 18\) At \(20^{\circ} \mathrm{C}\), a rod is exactly 20.05 cm long on a steel ruler. Both are placed in an oven at \(270^{\circ} \mathrm{C}\), where the rod now measures 20.11 cm on the same ruler. What is the coefficient of linear expansion for the material of which the rod is made?
-19 ©๐ A vertical glass tube of length \(L=1.280000 \mathrm{~m}\) is half filled with a liquid at \(20.000000^{\circ} \mathrm{C}\). How much will the height of the liquid column change when the tube and liquid are heated to \(30.000000^{\circ} \mathrm{C}\) ? Use coefficients \(\alpha_{\text {glass }}=1.000000 \times 10^{-5} / \mathrm{K}\) and \(\beta_{\text {liquid }}=4.000000 \times 10^{-5} / \mathrm{K}\).
\(\bullet 20\) © In a certain experiment, a small radioactive source must move at selected, extremely slow speeds. This motion is accomplished by fastening the source to one end of an aluminum rod and


Figure 18-31 Problem 20. heating the central section of the rod in a controlled way. If the effective heated section of the rod in Fig. 18-31 has length \(d=2.00 \mathrm{~cm}\), at what constant rate must the temperature of the rod be changed if the source is to move at a constant speed of \(100 \mathrm{~nm} / \mathrm{s}\) ?
\(\bullet 021\) SSM ILW As a result of a temperature rise of \(32 \mathrm{C}^{\circ}\), a bar with a crack at its center buckles upward (Fig. 18-32). The fixed distance \(L_{0}\) is 3.77 m and the coefficient of linear expansion of the bar is \(25 \times 10^{-6} / \mathrm{C}^{\circ}\). Find the rise \(x\) of the center.


Figure 18-32 Problem 21.

\section*{Module 18-4 Absorption of Heat}
-22 One way to keep the contents of a garage from becoming too cold on a night when a severe subfreezing temperature is forecast is to put a tub of water in the garage. If the mass of the water is 125 kg and its initial temperature is \(20^{\circ} \mathrm{C}\), (a) how much energy must the water transfer to its surroundings in order to freeze completely and (b) what is the lowest possible temperature of the water and its surroundings until that happens?
-23 SSM A small electric immersion heater is used to heat 100 g of water for a cup of instant coffee. The heater is labeled "200 watts" (it converts electrical energy to thermal energy at this rate). Calculate the time required to bring all this water from \(23.0^{\circ} \mathrm{C}\) to \(100^{\circ} \mathrm{C}\), ignoring any heat losses.
-24 A certain substance has a mass per mole of \(50.0 \mathrm{~g} / \mathrm{mol}\). When 314 J is added as heat to a 30.0 g sample, the sample's temperature rises from \(25.0^{\circ} \mathrm{C}\) to \(45.0^{\circ} \mathrm{C}\). What are the (a) specific heat and (b) molar specific heat of this substance? (c) How many moles are in the sample?
-25 A certain diet doctor encourages people to diet by drinking ice water. His theory is that the body must burn off enough fat to raise the temperature of the water from \(0.00^{\circ} \mathrm{C}\) to the body temperature of \(37.0^{\circ} \mathrm{C}\). How many liters of ice water would have to be consumed to burn off 454 g (about 1 lb ) of fat, assuming that burning this much fat requires 3500 Cal be transferred to the ice water? Why is it not advisable to follow this diet? (One liter \(=10^{3} \mathrm{~cm}^{3}\). The density of water is \(1.00 \mathrm{~g} / \mathrm{cm}^{3}\).)
-26 What mass of butter, which has a usable energy content of \(6.0 \mathrm{Cal} / \mathrm{g}(=6000 \mathrm{cal} / \mathrm{g})\), would be equivalent to the change in gravitational potential energy of a 73.0 kg man who ascends from sea level to the top of Mt . Everest, at elevation 8.84 km ? Assume that the average \(g\) for the ascent is \(9.80 \mathrm{~m} / \mathrm{s}^{2}\).
-27 SSM Calculate the minimum amount of energy, in joules, required to completely melt 130 g of silver initially at \(15.0^{\circ} \mathrm{C}\).
-28 How much water remains unfrozen after 50.2 kJ is transferred as heat from 260 g of liquid water initially at its freezing point?
-229 In a solar water heater, energy from the Sun is gathered by water that circulates through tubes in a rooftop collector. The solar radiation enters the collector through a transparent cover and warms the water in the tubes; this water is pumped into a holding tank. Assume that the efficiency of the overall system is \(20 \%\) (that is, \(80 \%\) of the incident solar energy is lost from the system). What collector area is necessary to raise the temperature of 200 L of water in the tank from \(20^{\circ} \mathrm{C}\) to \(40^{\circ} \mathrm{C}\) in 1.0 h when the intensity of incident sunlight is \(700 \mathrm{~W} / \mathrm{m}^{2}\) ?
-•30 A 0.400 kg sample is placed in a cooling apparatus that removes energy as heat at a constant rate. Figure 18-33 gives the temperature \(T\) of the sample versus time \(t\); the horizontal scale is set by \(t_{s}=80.0 \mathrm{~min}\). The sample freezes during the energy removal. The specific heat of the sample in its initial liquid phase is \(3000 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\). What are (a) the sample's heat of fusion and (b) its specific heat in the frozen phase?


Figure 18-33 Problem 30.
-.31 ILW What mass of steam at \(100^{\circ} \mathrm{C}\) must be mixed with 150 g of ice at its melting point, in a thermally insulated container, to produce liquid water at \(50^{\circ} \mathrm{C}\) ?
-•32 The specific heat of a substance varies with temperature according to the function \(c=0.20+0.14 T+0.023 T^{2}\), with \(T\) in \({ }^{\circ} \mathrm{C}\) and \(c\) in \(\mathrm{cal} / \mathrm{g} \cdot \mathrm{K}\). Find the energy required to raise the temperature of 2.0 g of this substance from \(5.0^{\circ} \mathrm{C}\) to \(15^{\circ} \mathrm{C}\).
-•33 Nonmetric version: (a) How long does a \(2.0 \times 10^{5} \mathrm{Btu} / \mathrm{h}\) water heater take to raise the temperature of 40 gal of water from \(70^{\circ} \mathrm{F}\) to \(100^{\circ} \mathrm{F}\) ? Metric version: (b) How long does a 59 kW water heater take to raise the temperature of 150 L of water from \(21^{\circ} \mathrm{C}\) to \(38^{\circ} \mathrm{C}\) ?
\(\bullet 34\) ©o Samples \(A\) and \(B\) are at different initial temperatures when they are placed in a thermally insulated container and allowed to come to thermal equilibrium. Figure 18-34a gives their temperatures \(T\) versus time \(t\). Sample \(A\) has a mass of 5.0 kg ; sample \(B\) has a mass of 1.5 kg . Figure \(18-34 b\) is a general plot for the material of sample \(B\). It shows the temperature change \(\Delta T\) that the material undergoes when energy is transferred to it as heat \(Q\). The change \(\Delta T\) is plotted versus the energy \(Q\) per unit mass of the material, and the scale of the vertical axis is set by \(\Delta T_{s}=4.0 \mathrm{C}^{\circ}\). What is the specific heat of sample \(A\) ?


Figure 18-34 Problem 34.
- 35 An insulated Thermos contains \(130 \mathrm{~cm}^{3}\) of hot coffee at \(80.0^{\circ} \mathrm{C}\). You put in a 12.0 g ice cube at its melting point to cool the coffee. By how many degrees has your coffee cooled once the ice has melted and equilibrium is reached? Treat the coffee as though it were pure water and neglect energy exchanges with the environment.
-•36 A 150 g copper bowl contains 220 g of water, both at \(20.0^{\circ} \mathrm{C}\). A very hot 300 g copper cylinder is dropped into the water, causing the water to boil, with 5.00 g being converted to steam. The final temperature of the system is \(100^{\circ} \mathrm{C}\). Neglect energy transfers with the environment. (a) How much energy (in calories) is transferred to the water as heat? (b) How much to the bowl? (c) What is the original temperature of the cylinder?
-•37 A person makes a quantity of iced tea by mixing 500 g of hot tea (essentially water) with an equal mass of ice at its melting point. Assume the mixture has negligible energy exchanges with its environment. If the tea's initial temperature is \(T_{i}=90^{\circ} \mathrm{C}\), when thermal equilibrium is reached what are (a) the mixture's temperature \(T_{f}\) and (b) the remaining mass \(m_{f}\) of ice? If \(T_{i}=70^{\circ} \mathrm{C}\), when thermal equilibrium is reached what are (c) \(T_{f}\) and (d) \(m_{f}\) ?
-•38 A 0.530 kg sample of liquid water and a sample of ice are placed in a thermally insulated container. The container also contains a device that transfers energy as heat from the liquid water to the ice at a constant rate \(P\), until thermal equilibrium is
reached. The temperatures \(T\) of the liquid water and the ice are given in Fig. 18-35 as functions of time \(t\); the horizontal scale is set by \(t_{s}=80.0 \mathrm{~min}\). (a) What is rate \(P\) ? (b) What is the initial mass of the ice in the container? (c) When thermal equilibrium is reached, what is the mass of the ice produced in this process?


Figure 18-35 Problem 38.
-•39 ©0 Ethyl alcohol has a boiling point of \(78.0^{\circ} \mathrm{C}\), a freezing point of \(-114^{\circ} \mathrm{C}\), a heat of vaporization of \(879 \mathrm{~kJ} / \mathrm{kg}\), a heat of fusion of \(109 \mathrm{~kJ} / \mathrm{kg}\), and a specific heat of \(2.43 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}\). How much energy must be removed from 0.510 kg of ethyl alcohol that is initially a gas at \(78.0^{\circ} \mathrm{C}\) so that it becomes a solid at \(-114^{\circ} \mathrm{C}\) ?
\(\bullet 40\) (so Calculate the specific heat of a metal from the following data. A container made of the metal has a mass of 3.6 kg and contains 14 kg of water. A 1.8 kg piece of the metal initially at a temperature of \(180^{\circ} \mathrm{C}\) is dropped into the water. The container and water initially have a temperature of \(16.0^{\circ} \mathrm{C}\), and the final temperature of the entire (insulated) system is \(18.0^{\circ} \mathrm{C}\).
\(\bullet \bullet 41\) SSIM WWW (a) Two 50 g ice cubes are dropped into 200 g of water in a thermally insulated container. If the water is initially at \(25^{\circ} \mathrm{C}\), and the ice comes directly from a freezer at \(-15^{\circ} \mathrm{C}\), what is the final temperature at thermal equilibrium? (b) What is the final temperature if only one ice cube is used?
\(\bullet \bullet 42\) A 20.0 g copper ring at \(0.000^{\circ} \mathrm{C}\) has an inner diameter of \(D=2.54000 \mathrm{~cm}\). An aluminum sphere at \(100.0^{\circ} \mathrm{C}\) has a diameter of \(d=2.54508 \mathrm{~cm}\). The sphere is put on top of the ring (Fig. 18-36), and the two are allowed to come to thermal equilibrium, with no heat lost to the surroundings. The sphere just passes through the ring at the equilibrium temperature. What is the mass of the sphere?

\section*{Module 18-5 The First Law of Thermodynamics}
-43 In Fig. 18-37, a gas sample expands from \(V_{0}\) to \(4.0 V_{0}\) while its pressure decreases from \(p_{0}\) to \(p_{0} / 4.0\). If \(V_{0}=1.0 \mathrm{~m}^{3}\) and \(p_{0}=40\) Pa , how much work is done by the gas if its pressure changes with volume via (a) path \(A\), (b) path \(B\), and (c) path \(C\) ?
-44 ©0 A thermodynamic system is taken from state \(A\) to state \(B\) to


Figure 18-36 Problem 42.


Figure 18-37 Problem 43.
state \(C\), and then back to \(A\), as shown in the \(p-V\) diagram of Fig. 18\(38 a\). The vertical scale is set by \(p_{s}=40 \mathrm{~Pa}\), and the horizontal scale is set by \(V_{s}=4.0 \mathrm{~m}^{3}\). (a) \(-(\mathrm{g})\) Complete the table in Fig. \(18-38 b\) by inserting a plus sign, a minus sign, or a zero in each indicated cell. (h) What is the net work done by the system as it moves once through the cycle \(A B C A\) ?


Figure 18-38 Problem 44.
-45 SSM ILW A gas within a closed chamber undergoes the cycle shown in the \(p\) - \(V\) diagram of Fig. 18-39. The horizontal scale is set by \(V_{s}=4.0 \mathrm{~m}^{3}\). Calculate the net energy added to the system as heat during one complete cycle.
-46 Suppose 200 J of work is done on a system and 70.0 cal is extracted from the system as heat. In the sense of the first law of thermodynamics, what are


Figure 18-39 Problem 45. the values (including algebraic signs) of (a) \(W\), (b) \(Q\), and (c) \(\Delta E_{\text {int }}\) ? -•47 SSM WWw When a system is taken from state \(i\) to state \(f\) along path iaf in Fig. \(18-40, Q=50 \mathrm{cal}\) and \(W=20 \mathrm{cal}\). Along path ibf, \(Q=36 \mathrm{cal}\). (a) What is \(W\) along path ibf? (b) If \(W=-13 \mathrm{cal}\) for the return path \(f i\), what is \(Q\) for this path? (c) If \(E_{\text {int }, i}=10 \mathrm{cal}\), what is \(E_{\mathrm{int}, f}\) ? If \(E_{\mathrm{int}, b}=22 \mathrm{cal}\), what is \(Q\) for (d) path ib and (e) path \(b f\) ?

\(\bullet 48\) ©o As a gas is held within a closed chamber, it passes through the cycle shown in Fig. 18-41. Determine the energy transferred by the system as heat during constant-pressure process \(C A\) if the energy added as heat \(Q_{A B}\) during constant-volume process \(A B\) is 20.0 J , no energy is transferred as heat during adiabatic process \(B C\), and the net work done during the cycle is 15.0 J .


Figure 18-41 Problem 48.
-.49 Figure 18-42 represents a closed cycle for a gas (the figure is not drawn to scale). The change in the internal energy of the gas as it moves from \(a\) to \(c\) along the path \(a b c\) is -200 J . As it moves from \(c\) to \(d, 180 \mathrm{~J}\) must be transferred to it as heat. An additional transfer of 80 J to it as heat is needed as it moves from \(d\) to \(a\). How much work is done on the gas as it moves from \(c\) to \(d\) ? \(\bullet 50\) (co A lab sample of gas is taken through cycle \(a b c a\) shown in the \(p-V\) diagram of Fig. 18-43. The net work done is +1.2 J . Along path \(a b\), the change in the internal energy is +3.0 J and the magnitude of the work done is 5.0 J . Along path \(c a\), the energy transferred to the gas as heat is +2.5 J. How much energy is transferred as heat along (a) path \(a b\) and (b) path \(b c\) ?


Figure 18-42 Problem 49.


Figure 18-43 Problem 50.

\section*{Module 18-6 Heat Transfer Mechanisms}
-51 A sphere of radius 0.500 m , temperature \(27.0^{\circ} \mathrm{C}\), and emissivity 0.850 is located in an environment of temperature \(77.0^{\circ} \mathrm{C}\). At what rate does the sphere (a) emit and (b) absorb thermal radiation? (c) What is the sphere's net rate of energy exchange?
-52 The ceiling of a single-family dwelling in a cold climate should have an \(R\)-value of 30 . To give such insulation, how thick would a layer of (a) polyurethane foam and (b) silver have to be?
-53 SSm Consider the slab shown in Fig. 18-18. Suppose that \(L=25.0 \mathrm{~cm}, A=90.0 \mathrm{~cm}^{2}\), and the material is copper. If \(T_{H}=\) \(125^{\circ} \mathrm{C}, T_{C}=10.0^{\circ} \mathrm{C}\), and a steady state is reached, find the conduction rate through the slab.
-54 If you were to walk briefly in space without a spacesuit while far from the Sun (as an astronaut does in the movie 2001, A Space Odyssey), you would feel the cold of space - while you radiated energy, you would absorb almost none from your environment. (a) At what rate would you lose energy? (b) How much energy would you lose in 30 s ? Assume that your emissivity is 0.90 , and estimate other data needed in the calculations.
-55 ILW A cylindrical copper rod of length 1.2 m and cross-sectional area \(4.8 \mathrm{~cm}^{2}\) is insulated along its side. The ends are held at a temperature difference of \(100 \mathrm{C}^{\circ}\) by having one end in a water-ice mixture and the other in a mixture of boiling water and steam. At what rate (a) is energy conducted by the rod and (b) does the ice melt?
\(\bullet 56\) The giant hornet Vespa mandarinia japonica preys on Japanese bees. However, if one of the hornets attempts to invade

Figure 18-44
Problem 56.

a beehive, several hundred of the bees quickly form a compact ball around the hornet to stop it. They don't sting, bite, crush, or suffocate it. Rather they overheat it by quickly raising their body temperatures from the normal \(35^{\circ} \mathrm{C}\) to \(47^{\circ} \mathrm{C}\) or \(48^{\circ} \mathrm{C}\), which is lethal to the hornet but not to the bees (Fig. 18-44). Assume the following: 500 bees form a ball of radius \(R=2.0 \mathrm{~cm}\) for a time \(t=\) 20 min , the primary loss of energy by the ball is by thermal radiation, the ball's surface has emissivity \(\varepsilon=0.80\), and the ball has a uniform temperature. On average, how much additional energy must each bee produce during the 20 min to maintain \(47^{\circ} \mathrm{C}\) ?
\(\bullet 57\) (a) What is the rate of energy loss in watts per square meter through a glass window 3.0 mm thick if the outside temperature is \(-20^{\circ} \mathrm{F}\) and the inside temperature is \(+72^{\circ} \mathrm{F}\) ? (b) A storm window having the same thickness of glass is installed parallel to the first window, with an air gap of 7.5 cm between the two windows. What now is the rate of energy loss if conduction is the only important energy-loss mechanism?
-•58 A solid cylinder of radius \(r_{1}=2.5 \mathrm{~cm}\), length \(h_{1}=5.0 \mathrm{~cm}\), emissivity 0.85 , and temperature \(30^{\circ} \mathrm{C}\) is suspended in an environment of temperature \(50^{\circ} \mathrm{C}\). (a) What is the cylinder's net thermal radiation transfer rate \(P_{1}\) ? (b) If the cylinder is stretched until its radius is \(r_{2}=0.50 \mathrm{~cm}\), its net thermal radiation transfer rate becomes \(P_{2}\). What is the ratio \(P_{2} / P_{1}\) ?
-•59 In Fig. 18-45a, two identical rectangular rods of metal are welded end to end, with a temperature of \(T_{1}=0^{\circ} \mathrm{C}\) on the left side and a temperature of \(T_{2}=100^{\circ} \mathrm{C}\) on the right side. In \(2.0 \mathrm{~min}, 10 \mathrm{~J}\) is conducted at a constant rate from the right side to the left side. How much time would be required to conduct 10 J if the rods were welded side to side as in Fig. 18-45b?
\(\bullet 60\) © © Figure \(18-46\) shows the cross section of a wall made of three layers. The layer thicknesses are \(L_{1}, L_{2}=\) \(0.700 L_{1}\), and \(L_{3}=0.350 L_{1}\). The thermal conductivities are \(k_{1}, k_{2}=\) \(0.900 k_{1}\), and \(k_{3}=0.800 k_{1}\). The temperatures at the left side and right side of the wall are \(T_{H}=30.0^{\circ} \mathrm{C}\) and \(T_{C}=\) \(-15.0^{\circ} \mathrm{C}\), respectively. Thermal conduction is steady. (a) What is the temperature difference \(\Delta T_{2}\) across layer 2 (between the left and right sides of the layer)? If \(k_{2}\) were, instead, equal to \(1.1 k_{1}\), (b) would the rate at which energy is conducted through the wall be greater than, less than, or the same as previously, and (c) what would be the value of \(\Delta T_{2}\) ?
-•61 SSM A 5.0 cm slab has formed on an outdoor tank of water (Fig. \(18-47)\). The air is at \(-10^{\circ} \mathrm{C}\). Find the rate of ice formation (centimeters per hour). The ice has thermal conductivity \(0.0040 \mathrm{cal} / \mathrm{s} \cdot \mathrm{cm} \cdot \mathrm{C}^{\circ}\) and

(b)

Figure 18-45 Problem 59.


Figure 18-46 Problem 60.


Figure 18-47 Problem 61. density \(0.92 \mathrm{~g} / \mathrm{cm}^{3}\). Assume there is no energy transfer through the walls or bottom.
-62 Leidenfrost effect. A water drop will last about 1 s on a hot skillet with a temperature between \(100^{\circ} \mathrm{C}\) and about \(200^{\circ} \mathrm{C}\). However, if the skillet is much hotter, the drop can last several min-


Figure 18-48 Problem 62. utes, an effect named after an early investigator. The longer lifetime is due to the support of a thin layer of air and water vapor that separates the drop from the metal (by distance \(L\) in Fig. 18-48). Let \(L=\) 0.100 mm , and assume that the drop is flat with height \(h=1.50 \mathrm{~mm}\) and bottom face area \(A=4.00 \times 10^{-6} \mathrm{~m}^{2}\). Also assume that the skillet has a constant temperature \(T_{s}=300^{\circ} \mathrm{C}\) and the drop has a temperature of \(100^{\circ} \mathrm{C}\). Water has density \(\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}\), and the supporting layer has thermal conductivity \(k=0.026 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\). (a) At what rate is energy conducted from the skillet to the drop through the drop's bottom surface? (b) If conduction is the primary way energy moves from the skillet to the drop, how long will the drop last? -•63 ©0 Figure 18-49 shows (in cross section) a wall consisting of four layers, with thermal conductivities \(k_{1}=0.060 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, k_{3}=\) \(0.040 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\), and \(k_{4}=0.12 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\left(k_{2}\right.\) is not known \()\). The layer thicknesses are \(L_{1}=1.5 \mathrm{~cm}, L_{3}=2.8 \mathrm{~cm}\), and \(L_{4}=3.5 \mathrm{~cm}\left(L_{2}\right.\) is not known). The known temperatures are \(T_{1}=30^{\circ} \mathrm{C}, T_{12}=25^{\circ} \mathrm{C}\), and \(T_{4}=-10^{\circ} \mathrm{C}\). Energy transfer through the wall is steady. What is interface temperature \(T_{34}\) ?


Figure 18-49 Problem 63.
-•64 Penguin huddling. To withstand the harsh weather of the Antarctic, emperor penguins huddle in groups (Fig. 18-50). Assume that a penguin is a circular cylinder with a top surface area \(a=0.34 \mathrm{~m}^{2}\) and height \(h=1.1 \mathrm{~m}\). Let \(P_{r}\) be the rate at which an individual penguin radiates energy to the environment (through the top and the sides); thus \(N P_{r}\) is the rate at which \(N\) identical, wellseparated penguins radiate. If the penguins huddle closely to form


Alain Torterotot/Peter Arnold/Photolibrary
Figure 18-50 Problem 64.
a huddled cylinder with top surface area \(N a\) and height \(h\), the cylinder radiates at the rate \(P_{h}\). If \(N=1000\), (a) what is the value of the fraction \(P_{h} / N P_{r}\) and (b) by what percentage does huddling reduce the total radiation loss?
\(\bullet 65\) Ice has formed on a shallow pond, and a steady state has been reached, with the air above the ice at \(-5.0^{\circ} \mathrm{C}\) and the bottom of the pond at \(4.0^{\circ} \mathrm{C}\). If the total depth of ice + water is 1.4 m , how thick is the ice? (Assume that the thermal conductivities of ice and water are 0.40 and \(0.12 \mathrm{cal} / \mathrm{m} \cdot \mathrm{C}^{\circ} \cdot \mathrm{s}\), respectively.)
-0066 Evaporative cooling of beverages. A cold beverage can be kept cold even on a warm day if it is slipped into a porous ceramic container that has been soaked in water. Assume that energy lost to evaporation matches the net energy gained via the radiation exchange through the top and side surfaces. The container and beverage have temperature \(T=15^{\circ} \mathrm{C}\), the environment has temperature \(T_{\text {env }}=32^{\circ} \mathrm{C}\), and the container is a cylinder with radius \(r=2.2 \mathrm{~cm}\) and height 10 cm . Approximate the emissivity as \(\varepsilon=1\), and neglect other energy exchanges. At what rate \(d m / d t\) is the container losing water mass?

\section*{Additional Problems}

67 In the extrusion of cold chocolate from a tube, work is done on the chocolate by the pressure applied by a ram forcing the chocolate through the tube. The work per unit mass of extruded chocolate is equal to \(p / \rho\), where \(p\) is the difference between the applied pressure and the pressure where the chocolate emerges from the tube, and \(\rho\) is the density of the chocolate. Rather than increasing the temperature of the chocolate, this work melts cocoa fats in the chocolate. These fats have a heat of fusion of \(150 \mathrm{~kJ} / \mathrm{kg}\). Assume that all of the work goes into that melting and that these fats make up \(30 \%\) of the chocolate's mass. What percentage of the fats melt during the extrusion if \(p=5.5 \mathrm{MPa}\) and \(\rho=1200 \mathrm{~kg} / \mathrm{m}^{3}\) ?
68 Icebergs in the North Atlantic present hazards to shipping, causing the lengths of shipping routes to be increased by about \(30 \%\) during the iceberg season. Attempts to destroy icebergs include planting explosives, bombing, torpedoing, shelling, ramming, and coating with black soot. Suppose that direct melting of the iceberg, by placing heat sources in the ice, is tried. How much energy as heat is required to melt \(10 \%\) of an iceberg that has a mass of 200000 metric tons? (Use 1 metric ton \(=1000 \mathrm{~kg}\).)
69 Figure 18-51 displays a closed cycle for a gas. The change in internal energy along path \(c a\) is -160 J . The energy transferred to the gas as heat is 200 J along path \(a b\), and 40 J along path \(b c\). How much work is done by the gas along (a) path \(a b c\) and (b) path \(a b\) ?
70 In a certain solar house, energy from the Sun is stored in barrels filled with water. In a particular winter stretch of five cloudy days, \(1.00 \times 10^{6} \mathrm{kcal}\) is needed to maintain the inside of the house at \(22.0^{\circ} \mathrm{C}\). Assuming that the water in the barrels is at \(50.0^{\circ} \mathrm{C}\) and that the water has a density of \(1.00 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\), what volume of water is required?
71 A 0.300 kg sample is placed in a cooling apparatus that removes energy as heat at a constant rate of 2.81 W . Figure 18-52 gives the temperature \(T\) of the sam-


Figure 18-51 Problem 69.


Figure 18-52 Problem 71.
ple versus time \(t\). The temperature scale is set by \(T_{s}=30^{\circ} \mathrm{C}\) and the time scale is set by \(t_{s}=20 \mathrm{~min}\). What is the specific heat of the sample?
72 The average rate at which energy is conducted outward through the ground surface in North America is \(54.0 \mathrm{~mW} / \mathrm{m}^{2}\), and the average thermal conductivity of the near-surface rocks is 2.50 \(\mathrm{W} / \mathrm{m} \cdot \mathrm{K}\). Assuming a surface temperature of \(10.0^{\circ} \mathrm{C}\), find the temperature at a depth of 35.0 km (near the base of the crust). Ignore the heat generated by the presence of radioactive elements.
73 What is the volume increase of an aluminum cube 5.00 cm on an edge when heated from \(10.0^{\circ} \mathrm{C}\) to \(60.0^{\circ} \mathrm{C}\) ?
74 In a series of experiments, block \(B\) is to be placed in a thermally insulated container with block \(A\), which has the same mass as block \(B\). In each experiment, block \(B\) is initially at a certain temperature \(T_{B}\), but temperature \(T_{A}\) of block \(A\) is changed from experiment to experiment. Let \(T_{f}\) represent the final temperature of the two blocks when they reach thermal equilibrium in any of the experi-


Figure 18-53 Problem 74. ments. Figure \(18-53\) gives temperature \(T_{f}\) versus the initial temperature \(T_{A}\) for a range of possible values of \(T_{A}\), from \(T_{A 1}=0 \mathrm{~K}\) to \(T_{A 2}=500 \mathrm{~K}\). The vertical axis scale is set by \(T_{f s}=400 \mathrm{~K}\). What are (a) temperature \(T_{B}\) and (b) the ratio \(c_{B} / c_{A}\) of the specific heats of the blocks?
75 Figure 18-54 displays a closed cycle for a gas. From \(c\) to \(b, 40 \mathrm{~J}\) is transferred from the gas as heat. From \(b\) to \(a, 130 \mathrm{~J}\) is transferred from the gas as heat, and the magnitude of the work done by the gas is 80 J . From \(a\) to \(c, 400 \mathrm{~J}\) is transferred to the gas as heat. What is the work done by the gas from \(a\) to


Figure 18-54 Problem 75. \(c\) ? (Hint: You need to supply the plus and minus signs for the given data.)
76 Three equal-length straight rods, of aluminum, Invar, and steel, all at \(20.0^{\circ} \mathrm{C}\), form an equilateral triangle with hinge pins at the vertices. At what temperature will the angle opposite the Invar rod be \(59.95^{\circ}\) ? See Appendix E for needed trigonometric formulas and Table 18-2 for needed data.
77 SSM The temperature of a 0.700 kg cube of ice is decreased to \(-150^{\circ} \mathrm{C}\). Then energy is gradually transferred to the cube as heat while it is otherwise thermally isolated from its environment. The total transfer is 0.6993 MJ. Assume the value of \(c_{\text {ice }}\) given in Table 18-3 is valid for temperatures from \(-150^{\circ} \mathrm{C}\) to \(0^{\circ} \mathrm{C}\). What is the final temperature of the water?
78 Icicles. Liquid water coats an active (growing) icicle and extends up a short, narrow tube along the central axis (Fig. 18-55). Because the water-ice interface must have a temperature of \(0^{\circ} \mathrm{C}\), the water in the tube cannot lose energy through the


Figure 18-55 Problem 78.
sides of the icicle or down through the tip because there is no temperature change in those directions. It can lose energy and freeze only by sending energy up (through distance \(L\) ) to the top of the icicle, where the temperature \(T_{r}\) can be below \(0^{\circ} \mathrm{C}\). Take \(L=0.12 \mathrm{~m}\) and \(T_{r}=-5^{\circ} \mathrm{C}\). Assume that the central tube and the upward conduction path both have cross-sectional area \(A\). In terms of \(A\), what rate is (a) energy conducted upward and (b) mass converted from liquid to ice at the top of the central tube? (c) At what rate does the top of the tube move downward because of water freezing there? The thermal conductivity of ice is \(0.400 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\), and the density of liquid water is \(1000 \mathrm{~kg} / \mathrm{m}^{3}\).
79 SSM A sample of gas expands from an initial pressure and volume of 10 Pa and \(1.0 \mathrm{~m}^{3}\) to a final volume of \(2.0 \mathrm{~m}^{3}\). During the expansion, the pressure and volume are related by the equation \(p=a V^{2}\), where \(a=10 \mathrm{~N} / \mathrm{m}^{8}\). Determine the work done by the gas during this expansion.

80 Figure 18-56a shows a cylinder containing gas and closed by a movable piston. The cylinder is kept submerged in an ice-water mixture. The piston is quickly pushed down from position 1 to position 2 and then held at position 2 until the gas is again at the temperature of the ice-water mixture; it then is slowly raised back to position 1. Figure \(18-56 b\) is a \(p-V\) diagram for the process. If 100 g of ice is melted during the cycle, how much work has been done on the gas?


Figure 18-56 Problem 80.
81 SSM A sample of gas undergoes a transition from an initial state \(a\) to a final state \(b\) by three different paths (processes), as shown in the \(p\) \(V\) diagram in Fig. 18-57, where \(V_{b}=\) \(5.00 V_{i}\). The energy transferred to the gas as heat in process 1 is \(10 p_{i} V_{i}\). In terms of \(p_{i} V_{i}\), what are (a) the energy transferred to the gas as heat in process 2 and (b) the change in internal energy that the gas undergoes in process 3 ?


Figure 18-57 Problem 81.

82 A copper rod, an aluminum rod, and a brass rod, each of 6.00 m length and 1.00 cm diameter, are placed end to end with the aluminum rod between the other two. The free end of the copper rod is maintained at water's boiling point, and the free end of the brass rod is maintained at water's freezing point. What is the steady-state temperature of (a) the copper-aluminum junction and (b) the aluminum-brass junction?
83 ssm The temperature of a Pyrex disk is changed from \(10.0^{\circ} \mathrm{C}\) to \(60.0^{\circ} \mathrm{C}\). Its initial radius is 8.00 cm ; its initial thickness is 0.500 cm . Take these data as being exact. What is the change in the volume of the disk? (See Table 18-2.)

84 (a) Calculate the rate at which body heat is conducted through the clothing of a skier in a steady-state process, given the following data: the body surface area is \(1.8 \mathrm{~m}^{2}\), and the clothing is 1.0 cm thick; the skin surface temperature is \(33^{\circ} \mathrm{C}\) and the outer surface of the clothing is at \(1.0^{\circ} \mathrm{C}\); the thermal conductivity of the clothing is \(0.040 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\). (b) If, after a fall, the skier's clothes became soaked with water of thermal conductivity \(0.60 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\), by how much is the rate of conduction multiplied?
85 SSM A 2.50 kg lump of aluminum is heated to \(92.0^{\circ} \mathrm{C}\) and then dropped into 8.00 kg of water at \(5.00^{\circ} \mathrm{C}\). Assuming that the lump-water system is thermally isolated, what is the system's equilibrium temperature?
86 A glass window pane is exactly 20 cm by 30 cm at \(10^{\circ} \mathrm{C}\). By how much has its area increased when its temperature is \(40^{\circ} \mathrm{C}\), assuming that it can expand freely?
87 A recruit can join the semi-secret " 300 F " club at the Amundsen-Scott South Pole Station only when the outside temperature is below \(-70^{\circ} \mathrm{C}\). On such a day, the recruit first basks in a hot sauna and then runs outside wearing only shoes. (This is, of course, extremely dangerous, but the rite is effectively a protest against the constant danger of the cold.)

Assume that upon stepping out of the sauna, the recruit's skin temperature is \(102^{\circ} \mathrm{F}\) and the walls, ceiling, and floor of the sauna room have a temperature of \(30^{\circ} \mathrm{C}\). Estimate the recruit's surface area, and take the skin emissivity to be 0.80 . (a) What is the approximate net rate \(P_{\text {net }}\) at which the recruit loses energy via thermal radiation exchanges with the room? Next, assume that when outdoors, half the recruit's surface area exchanges thermal radiation with the sky at a temperature of \(-25^{\circ} \mathrm{C}\) and the other half exchanges thermal radiation with the snow and ground at a temperature of \(-80^{\circ} \mathrm{C}\). What is the approximate net rate at which the recruit loses energy via thermal radiation exchanges with (b) the sky and (c) the snow and ground?
88 A steel rod at \(25.0^{\circ} \mathrm{C}\) is bolted at both ends and then cooled. At what temperature will it rupture? Use Table 12-1.
89 An athlete needs to lose weight and decides to do it by "pumping iron." (a) How many times must an 80.0 kg weight be lifted a distance of 1.00 m in order to burn off 1.00 lb of fat, assuming that that much fat is equivalent to 3500 Cal ? (b) If the weight is lifted once every 2.00 s, how long does the task take?
90 Soon after Earth was formed, heat released by the decay of radioactive elements raised the average internal temperature from 300 to 3000 K , at about which value it remains today. Assuming an average coefficient of volume expansion of \(3.0 \times 10^{-5} \mathrm{~K}^{-1}\), by how much has the radius of Earth increased since the planet was formed?
91 It is possible to melt ice by rubbing one block of it against another. How much work, in joules, would you have to do to get 1.00 g of ice to melt?

92 A rectangular plate of glass initially has the dimensions 0.200 m by 0.300 m . The coefficient of linear expansion for the glass is \(9.00 \times 10^{-6} / \mathrm{K}\). What is the change in the plate's area if its temperature is increased by 20.0 K ?
93 Suppose that you intercept \(5.0 \times 10^{-3}\) of the energy radiated by a hot sphere that has a radius of 0.020 m , an emissivity of 0.80 , and a surface temperature of 500 K . How much energy do you intercept in 2.0 min ?
94 A thermometer of mass 0.0550 kg and of specific heat \(0.837 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}\) reads \(15.0^{\circ} \mathrm{C}\). It is then completely immersed in
0.300 kg of water, and it comes to the same final temperature as the water. If the thermometer then reads \(44.4^{\circ} \mathrm{C}\), what was the temperature of the water before insertion of the thermometer?
95 A sample of gas expands from \(V_{1}=1.0 \mathrm{~m}^{3}\) and \(p_{1}=40 \mathrm{~Pa}\) to \(V_{2}=\) \(4.0 \mathrm{~m}^{3}\) and \(p_{2}=10 \mathrm{~Pa}\) along path \(B\) in the \(p-V\) diagram in Fig. 18-58. It is then compressed back to \(V_{1}\) along either path \(A\) or path \(C\). Compute the net work done by the gas for the complete cycle along (a) path \(B A\) and (b) path \(B C\).

96 Figure 18-59 shows a composite bar of length \(L=L_{1}+L_{2}\) and con-


Figure 18-58 Problem 95. sisting of two materials. One material has length \(L_{1}\) and coefficient of linear expansion \(\alpha_{1}\); the other has length \(L_{2}\) and coefficient of linear expan\(\operatorname{sion} \alpha_{2}\). (a) What is the coeffi-


Figure 18-59 Problem 96. cient of linear expansion \(\alpha\) for the composite bar? For a particular composite bar, \(L\) is 52.4 cm , material 1 is steel, and material 2 is brass. If \(\alpha=1.3 \times 10^{-5} / \mathrm{C}^{\circ}\), what are the lengths (b) \(L_{1}\) and (c) \(L_{2}\) ?
97 On finding your stove out of order, you decide to boil the water for a cup of tea by shaking it in a thermos flask. Suppose that you use tap water at \(19^{\circ} \mathrm{C}\), the water falls 32 cm each shake, and you make 27 shakes each minute. Neglecting any loss of thermal energy by the flask, how long (in minutes) must you shake the flask until the water reaches \(100^{\circ} \mathrm{C}\) ?
98 The \(p\)-V diagram in Fig. 18-60 shows two paths along which a sample of gas can be taken from state \(a\) to state \(b\), where \(V_{b}=3.0 V_{1}\). Path 1 requires that energy equal to \(5.0 p_{1} V_{1}\) be transferred to the gas as heat. Path 2 requires that energy equal to \(5.5 p_{1} V_{1}\) be transferred to the gas as heat. What is the ratio \(p_{2} / p_{1}\) ?
99 A cube of edge length \(6.0 \times 10^{-6} \mathrm{~m}\),


Figure 18-60 Problem 98. emissivity 0.75 , and temperature \(-100^{\circ} \mathrm{C}\) floats in an environment at \(-150^{\circ} \mathrm{C}\). What is the cube's net thermal radiation transfer rate?
100 A flow calorimeter is a device used to measure the specific heat of a liquid. Energy is added as heat at a known rate to a stream of the liquid as it passes through the calorimeter at a known rate. Measurement of the resulting temperature difference between the inflow and the outflow points of the liquid stream enables us to compute the specific heat of the liquid. Suppose a liquid of density \(0.85 \mathrm{~g} / \mathrm{cm}^{3}\) flows through a calorimeter at the rate of 8.0 \(\mathrm{cm}^{3} / \mathrm{s}\). When energy is added at the rate of 250 W by means of an electric heating coil, a temperature difference of \(15 \mathrm{C}^{\circ}\) is established in steady-state conditions between the inflow and the outflow points. What is the specific heat of the liquid?
101 An object of mass 6.00 kg falls through a height of 50.0 m and, by means of a mechanical linkage, rotates a paddle wheel that stirs 0.600 kg of water. Assume that the initial gravitational potential energy of the object is fully transferred to thermal energy of the water, which is initially at \(15.0^{\circ} \mathrm{C}\). What is the temperature rise of the water?

102 The Pyrex glass mirror in a telescope has a diameter of 170 in . The temperature ranges from \(-16^{\circ} \mathrm{C}\) to \(32^{\circ} \mathrm{C}\) on the location of the telescope. What is the maximum change in the diameter of the mirror, assuming that the glass can freely expand and contract?
103 The area \(A\) of a rectangular plate is \(a b=1.4 \mathrm{~m}^{2}\). Its coefficient of linear expansion is \(\alpha=32 \times 10^{-6} / \mathrm{C}^{\circ}\). After a temperature rise \(\Delta T=89^{\circ} \mathrm{C}\), side \(a\) is longer by \(\Delta a\) and side \(b\) is longer by \(\Delta b\) (Fig. 18-61). Neglecting the small quantity \((\Delta a \Delta b) / a b\), find \(\Delta A\).

104 Consider the liquid in a barometer whose coefficient of volume expansion is \(6.6 \times 10^{-4} / \mathrm{C}^{\circ}\). Find the relative change in the liquid's height if the temperature changes by \(12 \mathrm{C}^{\circ}\) while the pressure remains constant. Neglect the expansion of the glass tube.
105 A pendulum clock with a pendulum made of brass is designed to keep accurate time at \(23^{\circ} \mathrm{C}\). Assume it is a simple pendulum consisting of a bob at one end of a brass rod of negligible mass that is pivoted about the other end. If the clock operates at \(0.0^{\circ} \mathrm{C}\), (a) does it run too fast or too slow, and (b) what is the magnitude of its error in seconds per hour?
106 A room is lighted by four 100 W incandescent lightbulbs. (The power of 100 W is the rate at which a bulb converts electrical energy to heat and the energy of visible light.) Assuming that \(73 \%\) of the energy is converted to heat, how much heat does the room receive in 6.9 h ?

107 An energetic athlete can use up all the energy from a diet of \(4000 \mathrm{Cal} / \mathrm{day}\). If he were to use up this energy at a steady rate, what is the ratio of the rate of energy use compared to that of a 100 W bulb? (The power of 100 W is the rate at which the bulb converts electrical energy to heat and the energy of visible light.)
108 A 1700 kg Buick moving at \(83 \mathrm{~km} / \mathrm{h}\) brakes to a stop, at uniform deceleration and without skidding, over a distance of 93 m . At what average rate is mechanical energy transferred to thermal energy in the brake system?

\section*{anarten ! \\ The Kinetic Theory of Gases}

\section*{19-1 avogadro's number}

\section*{Learning Objectives}

After reading this module, you should be able to ...
19.01 Identify Avogadro's number \(N_{\mathrm{A}}\).
19.02 Apply the relationship between the number of moles \(n\), the number of molecules \(N\), and Avogadro's number \(N_{\mathrm{A}}\).
19.03 Apply the relationships between the mass \(m\) of a sample, the molar mass \(M\) of the molecules in the sample, the number of moles \(n\) in the sample, and Avogadro's number \(N_{\mathrm{A}}\).

\section*{Key Ideas}
- The kinetic theory of gases relates the macroscopic properties of gases (for example, pressure and temperature) to the microscopic properties of gas molecules (for example, speed and kinetic energy).
- One mole of a substance contains \(N_{\mathrm{A}}\) (Avogadro's number) elementary units (usually atoms or molecules), where \(N_{\mathrm{A}}\) is found experimentally to be
\[
N_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1} \quad \text { (Avogadro's number) }
\]

One molar mass \(M\) of any substance is the mass of one mole of the substance.
- A mole is related to the mass \(m\) of the individual molecules of the substance by
\[
M=m N_{\mathrm{A}} .
\]
- The number of moles \(n\) contained in a sample of mass \(M_{\text {sam }}\), consisting of \(N\) molecules, is related to the molar mass \(M\) of the molecules and to Avogadro's number \(N_{\mathrm{A}}\) as given by
\[
n=\frac{N}{N_{\mathrm{A}}}=\frac{M_{\mathrm{sam}}}{M}=\frac{M_{\mathrm{sam}}}{m N_{\mathrm{A}}} .
\]

\section*{What Is Physics?}

One of the main subjects in thermodynamics is the physics of gases. A gas consists of atoms (either individually or bound together as molecules) that fill their container's volume and exert pressure on the container's walls. We can usually assign a temperature to such a contained gas. These three variables associated with a gas-volume, pressure, and temperature-are all a consequence of the motion of the atoms. The volume is a result of the freedom the atoms have to spread throughout the container, the pressure is a result of the collisions of the atoms with the container's walls, and the temperature has to do with the kinetic energy of the atoms. The kinetic theory of gases, the focus of this chapter, relates the motion of the atoms to the volume, pressure, and temperature of the gas.

Applications of the kinetic theory of gases are countless. Automobile engineers are concerned with the combustion of vaporized fuel (a gas) in the automobile engines. Food engineers are concerned with the production rate of the fermentation gas that causes bread to rise as it bakes. Beverage engineers are concerned with how gas can produce the head in a glass of beer or shoot a cork from a champagne bottle. Medical engineers and physiologists are concerned with calculating how long a scuba diver must pause during ascent to eliminate nitrogen gas from the bloodstream (to avoid the bends). Environmental scientists are concerned with how heat exchanges between the oceans and the atmosphere can affect weather conditions.

The first step in our discussion of the kinetic theory of gases deals with measuring the amount of a gas present in a sample, for which we use Avogadro's number.

\section*{Avogadro's Number}

When our thinking is slanted toward atoms and molecules, it makes sense to measure the sizes of our samples in moles. If we do so, we can be certain that we are comparing samples that contain the same number of atoms or molecules. The mole is one of the seven SI base units and is defined as follows:
\[
\text { One mole is the number of atoms in a } 12 \mathrm{~g} \text { sample of carbon- } 12 .
\]

The obvious question now is: "How many atoms or molecules are there in a mole?" The answer is determined experimentally and, as you saw in Chapter 18, is
\[
\begin{equation*}
N_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1} \quad(\text { Avogadro's number }), \tag{19-1}
\end{equation*}
\]
where \(\mathrm{mol}^{-1}\) represents the inverse mole or "per mole," and mol is the abbreviation for mole. The number \(N_{\mathrm{A}}\) is called Avogadro's number after Italian scientist Amedeo Avogadro (1776-1856), who suggested that all gases occupying the same volume under the same conditions of temperature and pressure contain the same number of atoms or molecules.

The number of moles \(n\) contained in a sample of any substance is equal to the ratio of the number of molecules \(N\) in the sample to the number of molecules \(N_{\text {A }}\) in 1 mol :
\[
\begin{equation*}
n=\frac{N}{N_{\mathrm{A}}} \tag{19-2}
\end{equation*}
\]
(Caution: The three symbols in this equation can easily be confused with one another, so you should sort them with their meanings now, before you end in " N -confusion.") We can find the number of moles \(n\) in a sample from the mass \(M_{\text {sam }}\) of the sample and either the molar mass \(M\) (the mass of 1 mol ) or the molecular mass \(m\) (the mass of one molecule):
\[
\begin{equation*}
n=\frac{M_{\mathrm{sam}}}{M}=\frac{M_{\mathrm{sam}}}{m N_{\mathrm{A}}} . \tag{19-3}
\end{equation*}
\]

In Eq. 19-3, we used the fact that the mass \(M\) of 1 mol is the product of the mass \(m\) of one molecule and the number of molecules \(N_{\mathrm{A}}\) in 1 mol :
\[
\begin{equation*}
M=m N_{\mathrm{A}} \tag{19-4}
\end{equation*}
\]

\section*{19-2 ideal gases}

\section*{Learning Objectives}

After reading this module, you should be able to ...
19.04 Identify why an ideal gas is said to be ideal.
19.05 Apply either of the two forms of the ideal gas law, written in terms of the number of moles \(n\) or the number of molecules \(N\).
19.06 Relate the ideal gas constant \(R\) and the Boltzmann constant \(k\).
19.07 Identify that the temperature in the ideal gas law must be in kelvins.
19.08 Sketch \(p\) - \(V\) diagrams for a constant-temperature expansion of a gas and a constant-temperature contraction.
19.09 Identify the term isotherm.
19.10 Calculate the work done by a gas, including the algebraic sign, for an expansion and a contraction along an isotherm.
19.11 For an isothermal process, identify that the change in internal energy \(\Delta E\) is zero and that the energy \(Q\) transferred as heat is equal to the work \(W\) done.
19.12 On a \(p\) - \(V\) diagram, sketch a constant-volume process and identify the amount of work done in terms of area on the diagram.
19.13 On a \(p\) - \(V\) diagram, sketch a constant-pressure process and determine the work done in terms of area on the diagram.

\section*{Key Ideas}
- An ideal gas is one for which the pressure \(p\), volume \(V\), and temperature \(T\) are related by
\[
p V=n R T \quad \text { (ideal gas law). }
\]

Here \(n\) is the number of moles of the gas present and \(R\) is a constant ( \(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}\) ) called the gas constant.
- The ideal gas law can also be written as
\[
p V=N k T
\]
where the Boltzmann constant \(k\) is
\[
k=\frac{R}{N_{\mathrm{A}}}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}
\]
- The work done by an ideal gas during an isothermal (constant-temperature) change from volume \(V_{i}\) to volume \(V_{f}\) is
\[
W=n R T \ln \frac{V_{f}}{V_{i}} \quad \text { (ideal gas, isothermal process). }
\]

\section*{Ideal Gases}

Our goal in this chapter is to explain the macroscopic properties of a gas-such as its pressure and its temperature - in terms of the behavior of the molecules that make it up. However, there is an immediate problem: which gas? Should it be hydrogen, oxygen, or methane, or perhaps uranium hexafluoride? They are all different. Experimenters have found, though, that if we confine 1 mol samples of various gases in boxes of identical volume and hold the gases at the same temperature, then their measured pressures are almost the same, and at lower densities the differences tend to disappear. Further experiments show that, at low enough densities, all real gases tend to obey the relation
\[
\begin{equation*}
p V=n R T \quad \text { (ideal gas law), } \tag{19-5}
\end{equation*}
\]
in which \(p\) is the absolute (not gauge) pressure, \(n\) is the number of moles of gas present, and \(T\) is the temperature in kelvins. The symbol \(R\) is a constant called the gas constant that has the same value for all gases - namely,
\[
\begin{equation*}
R=8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K} \tag{19-6}
\end{equation*}
\]

Equation 19-5 is called the ideal gas law. Provided the gas density is low, this law holds for any single gas or for any mixture of different gases. (For a mixture, \(n\) is the total number of moles in the mixture.)

We can rewrite Eq. 19-5 in an alternative form, in terms of a constant called the Boltzmann constant \(k\), which is defined as
\[
\begin{equation*}
k=\frac{R}{N_{\mathrm{A}}}=\frac{8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}}{6.02 \times 10^{23} \mathrm{~mol}^{-1}}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \tag{19-7}
\end{equation*}
\]

This allows us to write \(R=k N_{\mathrm{A}}\). Then, with Eq. 19-2 \(\left(n=N / N_{\mathrm{A}}\right)\), we see that
\[
\begin{equation*}
n R=N k \tag{19-8}
\end{equation*}
\]

Substituting this into Eq. 19-5 gives a second expression for the ideal gas law:
\[
\begin{equation*}
p V=N k T \quad \text { (ideal gas law). } \tag{19-9}
\end{equation*}
\]
(Caution: Note the difference between the two expressions for the ideal gas law-Eq. 19-5 involves the number of moles \(n\), and Eq. 19-9 involves the number of molecules \(N\).)

You may well ask,"What is an ideal gas, and what is so 'ideal' about it?" The answer lies in the simplicity of the law (Eqs. 19-5 and 19-9) that governs its macroscopic properties. Using this law-as you will see - we can deduce many properties of the ideal gas in a simple way. Although there is no such thing in nature as a truly ideal gas, all real gases approach the ideal state at low enough densities-that is, under conditions in which their molecules are far enough apart that they do not interact with one another. Thus, the ideal gas concept allows us to gain useful insights into the limiting behavior of real gases.


Figure 19-1 (a) Before and (b) after images of a large steel tank crushed by atmospheric pressure after internal steam cooled and condensed.

The expansion is along an isotherm (the gas has constant temperature).


Figure 19-2 Three isotherms on a \(p-V\) diagram. The path shown along the middle isotherm represents an isothermal expansion of a gas from an initial state \(i\) to a final state \(f\). The path from \(f\) to \(i\) along the isotherm would represent the reverse process-that is, an isothermal compression.

Figure 19-1 gives a dramatic example of the ideal gas law. A stainless-steel tank with a volume of \(18 \mathrm{~m}^{3}\) was filled with steam at a temperature of \(110^{\circ} \mathrm{C}\) through a valve at one end. The steam supply was then turned off and the valve closed, so that the steam was trapped inside the tank (Fig. 19-1a). Water from a fire hose was then poured onto the tank to rapidly cool it. Within less than a minute, the enormously sturdy tank was crushed (Fig. 19-1b), as if some giant invisible creature from a grade B science fiction movie had stepped on it during a rampage.

Actually, it was the atmosphere that crushed the tank. As the tank was cooled by the water steam, the steam cooled and much of it condensed, which means that the number \(N\) of gas molecules and the temperature \(T\) of the gas inside the tank both decreased. Thus, the right side of Eq. 19-9 decreased, and because volume \(V\) was constant, the gas pressure \(p\) on the left side also decreased. The gas pressure decreased so much that the external atmospheric pressure was able to crush the tank's steel wall. Figure \(19-1\) was staged, but this type of crushing sometimes occurs in industrial accidents (photos and videos can be found on the web).

\section*{Work Done by an Ideal Gas at Constant Temperature}

Suppose we put an ideal gas in a piston-cylinder arrangement like those in Chapter 18. Suppose also that we allow the gas to expand from an initial volume \(V_{i}\) to a final volume \(V_{f}\) while we keep the temperature \(T\) of the gas constant. Such a process, at constant temperature, is called an isothermal expansion (and the reverse is called an isothermal compression).

On a \(p\) - \(V\) diagram, an isotherm is a curve that connects points that have the same temperature. Thus, it is a graph of pressure versus volume for a gas whose temperature \(T\) is held constant. For \(n\) moles of an ideal gas, it is a graph of the equation
\[
\begin{equation*}
p=n R T \frac{1}{V}=(\text { a constant }) \frac{1}{V} \tag{19-10}
\end{equation*}
\]

Figure 19-2 shows three isotherms, each corresponding to a different (constant) value of \(T\). (Note that the values of \(T\) for the isotherms increase upward to the right.) Superimposed on the middle isotherm is the path followed by a gas during an isothermal expansion from state \(i\) to state \(f\) at a constant temperature of 310 K .

To find the work done by an ideal gas during an isothermal expansion, we start with Eq. 18-25,
\[
\begin{equation*}
W=\int_{V_{i}}^{V_{f}} p d V \tag{19-11}
\end{equation*}
\]

This is a general expression for the work done during any change in volume of any gas. For an ideal gas, we can use Eq. 19-5 \((p V=n R T)\) to substitute for \(p\), obtaining
\[
\begin{equation*}
W=\int_{V_{i}}^{V_{f}} \frac{n R T}{V} d V \tag{19-12}
\end{equation*}
\]

Because we are considering an isothermal expansion, \(T\) is constant, so we can move it in front of the integral sign to write
\[
\begin{equation*}
W=n R T \int_{V_{i}}^{V_{f}} \frac{d V}{V}=n R T[\ln V]_{V_{i}}^{V_{f}} \tag{19-13}
\end{equation*}
\]

By evaluating the expression in brackets at the limits and then using the relationship \(\ln a-\ln b=\ln (a / b)\), we find that
\[
\begin{equation*}
W=n R T \ln \frac{V_{f}}{V_{i}} \quad \text { (ideal gas, isothermal process). } \tag{19-14}
\end{equation*}
\]

Recall that the symbol \(\ln\) specifies a natural logarithm, which has base \(e\).

For an expansion, \(V_{f}\) is greater than \(V_{i}\), so the ratio \(V_{f} / V_{i}\) in Eq. 19-14 is greater than unity. The natural logarithm of a quantity greater than unity is positive, and so the work \(W\) done by an ideal gas during an isothermal expansion is positive, as we expect. For a compression, \(V_{f}\) is less than \(V_{i}\), so the ratio of volumes in Eq. 19-14 is less than unity. The natural logarithm in that equation-hence the work \(W\)-is negative, again as we expect.

\section*{Work Done at Constant Volume and at Constant Pressure}

Equation 19-14 does not give the work \(W\) done by an ideal gas during every thermodynamic process. Instead, it gives the work only for a process in which the temperature is held constant. If the temperature varies, then the symbol \(T\) in Eq. 19-12 cannot be moved in front of the integral symbol as in Eq. 19-13, and thus we do not end up with Eq. 19-14.

However, we can always go back to Eq. 19-11 to find the work \(W\) done by an ideal gas (or any other gas) during any process, such as a constant-volume process and a constant-pressure process. If the volume of the gas is constant, then Eq. 19-11 yields
\[
\begin{equation*}
W=0 \quad \text { (constant-volume process). } \tag{19-15}
\end{equation*}
\]

If, instead, the volume changes while the pressure \(p\) of the gas is held constant, then Eq. 19-11 becomes
\[
\begin{equation*}
W=p\left(V_{f}-V_{i}\right)=p \Delta V \quad \text { (constant-pressure process). } \tag{19-16}
\end{equation*}
\]

\section*{Checkpoint 1}

An ideal gas has an initial pressure of 3 pressure units and an initial volume of 4 volume units. The table gives the final pressure and volume of the gas (in those same units) in five processes. Which processes start and end on the
\begin{tabular}{l|rrrrr}
\multicolumn{1}{c}{} & \multicolumn{1}{c}{} & \(b\) & \(c\) & \(d\) & \(e\) \\
\cline { 2 - 6 } & 12 & 6 & 5 & 4 & 1 \\
\(V\) & 1 & 2 & 7 & 3 & 12
\end{tabular} same isotherm?

\section*{Sample Problem 19.01 Ideal gas and changes of temperature, volume, and pressure}

A cylinder contains 12 L of oxygen at \(20^{\circ} \mathrm{C}\) and 15 atm . The temperature is raised to \(35^{\circ} \mathrm{C}\), and the volume is reduced to 8.5 L . What is the final pressure of the gas in atmospheres? Assume that the gas is ideal.

\section*{KEY IDEA}

Because the gas is ideal, we can use the ideal gas law to relate its parameters, both in the initial state \(i\) and in the final state \(f\).
Calculations: From Eq. 19-5 we can write
\[
p_{i} V_{i}=n R T_{i} \quad \text { and } \quad p_{f} V_{f}=n R T_{f}
\]

Dividing the second equation by the first equation and solving for \(p_{f}\) yields
\[
\begin{equation*}
p_{f}=\frac{p_{i} T_{f} V_{i}}{T_{i} V_{f}} \tag{19-17}
\end{equation*}
\]

Note here that if we converted the given initial and final volumes from liters to the proper units of cubic meters, the multiplying conversion factors would cancel out of Eq. 19-17. The same would be true for conversion factors that convert the pressures from atmospheres to the proper pascals. However, to convert the given temperatures to kelvins requires the addition of an amount that would not cancel and thus must be included. Hence, we must write
and
\[
T_{i}=(273+20) \mathrm{K}=293 \mathrm{~K}
\]
\[
T_{f}=(273+35) \mathrm{K}=308 \mathrm{~K}
\]

Inserting the given data into Eq. 19-17 then yields
\[
p_{f}=\frac{(15 \mathrm{~atm})(308 \mathrm{~K})(12 \mathrm{~L})}{(293 \mathrm{~K})(8.5 \mathrm{~L})}=22 \mathrm{~atm}
\]
(Answer)

\section*{Sample Problem 19.02 Work by an ideal gas}

One mole of oxygen (assume it to be an ideal gas) expands at a constant temperature \(T\) of 310 K from an initial volume \(V_{i}\) of 12 L to a final volume \(V_{f}\) of 19 L . How much work is done by the gas during the expansion?

\section*{KEY IDEA}

Generally we find the work by integrating the gas pressure with respect to the gas volume, using Eq. 19-11. However, because the gas here is ideal and the expansion is isothermal, that integration leads to Eq. 19-14.

Calculation: Therefore, we can write
\[
\begin{aligned}
W & =n R T \ln \frac{V_{f}}{V_{i}} \\
& =(1 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(310 \mathrm{~K}) \ln \frac{19 \mathrm{~L}}{12 \mathrm{~L}} \\
& =1180 \mathrm{~J} .
\end{aligned}
\]
(Answer)
The expansion is graphed in the \(p-V\) diagram of Fig. 19-3. The work done by the gas during the expansion is represented by the area beneath the curve if.

You can show that if the expansion is now reversed, with the gas undergoing an isothermal compression from 19 L to 12 L , the work done by the gas will be -1180 J . Thus, an external force would have to do 1180 J of work on the gas to compress it.

Figure 19-3 The shaded area represents the work done by 1 mol of oxygen in expanding from \(V_{i}\) to \(V_{f}\) at a temperature \(T\) of 310 K .


\section*{19-3 pressure, temperature, and rms speed}

\section*{Learning Objectives}

After reading this module, you should be able to ...
19.14 Identify that the pressure on the interior walls of a gas container is due to the molecular collisions with the walls.
19.15 Relate the pressure on a container wall to the momentum of the gas molecules and the time intervals between their collisions with the wall.
19.16 For the molecules of an ideal gas, relate the root-
mean-square speed \(v_{\text {rms }}\) and the average speed \(v_{\text {avg }}\). 19.17 Relate the pressure of an ideal gas to the rms speed \(v_{\text {rms }}\) of the molecules.
19.18 For an ideal gas, apply the relationship between the gas temperature \(T\) and the rms speed \(v_{\mathrm{rms}}\) and molar mass \(M\) of the molecules.

\section*{Key Ideas}
- In terms of the speed of the gas molecules, the pressure exerted by \(n\) moles of an ideal gas is
\[
p=\frac{n M v_{\mathrm{rms}}^{2}}{3 V},
\]
where \(v_{\text {rms }}=\sqrt{\left(v^{2}\right)_{\text {avg }}}\) is the root-mean-square speed of the
molecules, \(M\) is the molar mass, and \(V\) is the volume.
- The rms speed can be written in terms of the temperature as
\[
v_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M}}
\]

\section*{Pressure, Temperature, and RMS Speed}

Here is our first kinetic theory problem. Let \(n\) moles of an ideal gas be confined in a cubical box of volume \(V\), as in Fig. 19-4. The walls of the box are held at temperature \(T\). What is the connection between the pressure \(p\) exerted by the gas on the walls and the speeds of the molecules?

The molecules of gas in the box are moving in all directions and with various speeds, bumping into one another and bouncing from the walls of the box like balls in a racquetball court. We ignore (for the time being) collisions of the molecules with one another and consider only elastic collisions with the walls.

Figure \(19-4\) shows a typical gas molecule, of mass \(m\) and velocity \(\vec{v}\), that is about to collide with the shaded wall. Because we assume that any collision of a molecule with a wall is elastic, when this molecule collides with the shaded wall, the only component of its velocity that is changed is the \(x\) component, and that component is reversed. This means that the only change in the particle's momentum is along the \(x\) axis, and that change is
\[
\Delta p_{x}=\left(-m v_{x}\right)-\left(m v_{x}\right)=-2 m v_{x}
\]

Hence, the momentum \(\Delta p_{x}\) delivered to the wall by the molecule during the collision is \(+2 m v_{x}\). (Because in this book the symbol \(p\) represents both momentum and pressure, we must be careful to note that here \(p\) represents momentum and is a vector quantity.)

The molecule of Fig. 19-4 will hit the shaded wall repeatedly. The time \(\Delta t\) between collisions is the time the molecule takes to travel to the opposite wall and back again (a distance \(2 L\) ) at speed \(v_{x}\).Thus, \(\Delta t\) is equal to \(2 L / v_{x}\). (Note that this result holds even if the molecule bounces off any of the other walls along the way, because those walls are parallel to \(x\) and so cannot change \(v_{x}\).) Therefore, the average rate at which momentum is delivered to the shaded wall by this single molecule is
\[
\frac{\Delta p_{x}}{\Delta t}=\frac{2 m v_{x}}{2 L / v_{x}}=\frac{m v_{x}^{2}}{L}
\]

From Newton's second law \((\vec{F}=d \vec{p} / d t)\), the rate at which momentum is delivered to the wall is the force acting on that wall. To find the total force, we must add up the contributions of all the molecules that strike the wall, allowing for the possibility that they all have different speeds. Dividing the magnitude of the total force \(F_{x}\) by the area of the wall \(\left(=L^{2}\right)\) then gives the pressure \(p\) on that wall, where now and in the rest of this discussion, \(p\) represents pressure. Thus, using the expression for \(\Delta p_{x} / \Delta t\), we can write this pressure as
\[
\begin{align*}
p & =\frac{F_{x}}{L^{2}}=\frac{m v_{x 1}^{2} / L+m v_{x 2}^{2} / L+\cdots+m v_{x N}^{2} / L}{L^{2}} \\
& =\left(\frac{m}{L^{3}}\right)\left(v_{x 1}^{2}+v_{x 2}^{2}+\cdots+v_{x N}^{2}\right), \tag{19-18}
\end{align*}
\]
where \(N\) is the number of molecules in the box.
Since \(N=n N_{\mathrm{A}}\), there are \(n N_{\mathrm{A}}\) terms in the second set of parentheses of Eq. 19-18. We can replace that quantity by \(n N_{\mathrm{A}}\left(v_{x}^{2}\right)_{\text {avg }}\), where \(\left(v_{x}^{2}\right)_{\text {avg }}\) is the average value of the square of the \(x\) components of all the molecular speeds. Equation 19-18 then becomes
\[
p=\frac{n m N_{\mathrm{A}}}{L^{3}}\left(v_{x}^{2}\right)_{\text {avg }} .
\]

However, \(m N_{\mathrm{A}}\) is the molar mass \(M\) of the gas (that is, the mass of 1 mol of the gas). Also, \(L^{3}\) is the volume of the box, so
\[
\begin{equation*}
p=\frac{n M\left(v_{x}^{2}\right)_{\mathrm{avg}}}{V} \tag{19-19}
\end{equation*}
\]

For any molecule, \(v^{2}=v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\). Because there are many molecules and because they are all moving in random directions, the average values of the squares of their velocity components are equal, so that \(v_{x}^{2}=\frac{1}{3} v^{2}\). Thus, Eq. 19-19 becomes
\[
\begin{equation*}
p=\frac{n M\left(v^{2}\right)_{\mathrm{avg}}}{3 V} \tag{19-20}
\end{equation*}
\]


Figure 19-4 A cubical box of edge length \(L\), containing \(n\) moles of an ideal gas. A molecule of mass \(m\) and velocity \(\vec{v}\) is about to collide with the shaded wall of area \(L^{2}\). A normal to that wall is shown.

Table 19-1 Some RMS Speeds at Room
Temperature \((T=300 \mathrm{~K})^{a}\)
\begin{tabular}{lll}
\hline & \begin{tabular}{l} 
Molar \\
Mass \\
\(\left(10^{-3}\right.\) \\
\(\mathrm{kg} / \mathrm{mol})\)
\end{tabular} & \begin{tabular}{l}
\(v_{\text {rms }}\) \\
\((\mathrm{m} / \mathrm{s})\)
\end{tabular} \\
\hline Gas & 2.02 & 1920 \\
\hline Hydrogen \(\left(\mathrm{H}_{2}\right)\) & 4.0 & 1370 \\
\begin{tabular}{l} 
Helium \((\mathrm{He})\) \\
\begin{tabular}{l} 
Water vapor \\
\(\left(\mathrm{H}_{2} \mathrm{O}\right)\)
\end{tabular} \\
\begin{tabular}{l} 
Nitrogen \(\left(\mathrm{N}_{2}\right)\)
\end{tabular} \\
\begin{tabular}{l} 
Oxygen \(\left(\mathrm{O}_{2}\right)\) \\
Carbon dioxide \\
\(\left(\mathrm{CO}_{2}\right)\)
\end{tabular} \\
\begin{tabular}{l} 
Sulfur dioxide \\
\(\left(\mathrm{SO}_{2}\right)\)
\end{tabular} \\
\hline
\end{tabular} & 28.0 & 645 \\
\hline
\end{tabular}
\({ }^{a}\) For convenience, we often set room temperature equal to 300 K even though (at \(27^{\circ} \mathrm{C}\) or \(81^{\circ} \mathrm{F}\) ) that represents a fairly warm room.

The square root of \(\left(v^{2}\right)_{\text {avg }}\) is a kind of average speed, called the root-meansquare speed of the molecules and symbolized by \(v_{\text {rms }}\). Its name describes it rather well: You square each speed, you find the mean (that is, the average) of all these squared speeds, and then you take the square root of that mean. With \(\sqrt{\left(v^{2}\right)_{\text {avg }}}=v_{\text {rms }}\), we can then write Eq. 19-20 as
\[
\begin{equation*}
p=\frac{n M v_{\mathrm{rms}}^{2}}{3 V} . \tag{19-21}
\end{equation*}
\]

This tells us how the pressure of the gas (a purely macroscopic quantity) depends on the speed of the molecules (a purely microscopic quantity).

We can turn Eq. 19-21 around and use it to calculate \(v_{\text {rms }}\). Combining Eq. 19-21 with the ideal gas law ( \(p V=n R T\) ) leads to
\[
\begin{equation*}
v_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M}} \tag{19-22}
\end{equation*}
\]

Table 19-1 shows some rms speeds calculated from Eq. 19-22. The speeds are surprisingly high. For hydrogen molecules at room temperature ( 300 K ), the rms speed is \(1920 \mathrm{~m} / \mathrm{s}\), or \(4300 \mathrm{mi} / \mathrm{h}\) —faster than a speeding bullet! On the surface of the Sun, where the temperature is \(2 \times 10^{6} \mathrm{~K}\), the rms speed of hydrogen molecules would be 82 times greater than at room temperature were it not for the fact that at such high speeds, the molecules cannot survive collisions among themselves. Remember too that the rms speed is only a kind of average speed; many molecules move much faster than this, and some much slower.

The speed of sound in a gas is closely related to the rms speed of the molecules of that gas. In a sound wave, the disturbance is passed on from molecule to molecule by means of collisions. The wave cannot move any faster than the "average" speed of the molecules. In fact, the speed of sound must be somewhat less than this "average" molecular speed because not all molecules are moving in exactly the same direction as the wave. As examples, at room temperature, the rms speeds of hydrogen and nitrogen molecules are \(1920 \mathrm{~m} / \mathrm{s}\) and \(517 \mathrm{~m} / \mathrm{s}\), respectively. The speeds of sound in these two gases at this temperature are \(1350 \mathrm{~m} / \mathrm{s}\) and \(350 \mathrm{~m} / \mathrm{s}\), respectively.

A question often arises: If molecules move so fast, why does it take as long as a minute or so before you can smell perfume when someone opens a bottle across a room? The answer is that, as we shall discuss in Module 19-5, each perfume molecule may have a high speed but it moves away from the bottle only very slowly because its repeated collisions with other molecules prevent it from moving directly across the room to you.

\section*{Sample Problem 19.03 Average and rms values}

Here are five numbers: 5, 11, 32, 67, and 89 .
(a) What is the average value \(n_{\text {avg }}\) of these numbers?

Calculation: We find this from
\[
n_{\text {avg }}=\frac{5+11+32+67+89}{5}=40.8
\]
(Answer)
(b) What is the rms value \(n_{\text {rms }}\) of these numbers?

Calculation: We find this from
\[
\begin{aligned}
n_{\mathrm{rms}} & =\sqrt{\frac{5^{2}+11^{2}+32^{2}+67^{2}+89^{2}}{5}} \\
& =52.1 .
\end{aligned}
\]
(Answer)
The rms value is greater than the average value because the larger numbers - being squared - are relatively more important in forming the rms value.

\section*{19-4 translational kinetic energy}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
19.19 For an ideal gas, relate the average kinetic energy of the molecules to their rms speed.
19.20 Apply the relationship between the average kinetic energy and the temperature of the gas.
19.21 Identify that a measurement of a gas temperature is effectively a measurement of the average kinetic energy of the gas molecules.

\section*{Key Ideas}
- The average translational kinetic energy per molecule in an ideal gas is
\[
K_{\mathrm{avg}}=\frac{1}{2} m v_{\text {rms }}^{2} .
\]
- The average translational kinetic energy is related to the temperature of the gas:
\[
K_{\mathrm{avg}}=\frac{3}{2} k T
\]

\section*{Translational Kinetic Energy}

We again consider a single molecule of an ideal gas as it moves around in the box of Fig. 19-4, but we now assume that its speed changes when it collides with other molecules. Its translational kinetic energy at any instant is \(\frac{1}{2} m v^{2}\). Its average translational kinetic energy over the time that we watch it is
\[
\begin{equation*}
K_{\mathrm{avg}}=\left(\frac{1}{2} m v^{2}\right)_{\mathrm{avg}}=\frac{1}{2} m\left(v^{2}\right)_{\mathrm{avg}}=\frac{1}{2} m v_{\mathrm{rms}}^{2}, \tag{19-23}
\end{equation*}
\]
in which we make the assumption that the average speed of the molecule during our observation is the same as the average speed of all the molecules at any given time. (Provided the total energy of the gas is not changing and provided we observe our molecule for long enough, this assumption is appropriate.) Substituting for \(v_{\text {rms }}\) from Eq. 19-22 leads to
\[
K_{\mathrm{avg}}=\left(\frac{1}{2} m\right) \frac{3 R T}{M}
\]

However, \(M / m\), the molar mass divided by the mass of a molecule, is simply Avogadro's number.Thus,
\[
K_{\mathrm{avg}}=\frac{3 R T}{2 N_{\mathrm{A}}}
\]

Using Eq. 19-7 \(\left(k=R / N_{\mathrm{A}}\right)\), we can then write
\[
\begin{equation*}
K_{\mathrm{avg}}=\frac{3}{2} k T . \tag{19-24}
\end{equation*}
\]

This equation tells us something unexpected:

At a given temperature \(T\), all ideal gas molecules-no matter what their mass-have the same average translational kinetic energy-namely, \(\frac{3}{2} k T\). When we measure the temperature of a gas, we are also measuring the average translational kinetic energy of its molecules.

\section*{Checkpoint 2}

A gas mixture consists of molecules of types 1,2, and 3, with molecular masses \(m_{1}>\) \(m_{2}>m_{3}\). Rank the three types according to (a) average kinetic energy and (b) rms speed, greatest first.

\section*{19-5 mean free path}

\section*{Learning Objectives}

After reading this module, you should be able to ...
19.22 Identify what is meant by mean free path.
19.23 Apply the relationship between the mean free path, the
diameter of the molecules, and the number of molecules per unit volume.

\section*{Key Idea}
- The mean free path \(\lambda\) of a gas molecule is its average path length between collisions and is given by
\[
\lambda=\frac{1}{\sqrt{2} \pi d^{2} N / V}
\]
where \(N / V\) is the number of molecules per unit volume and \(d\) is the molecular diameter.


Figure 19-5 A molecule traveling through a gas, colliding with other gas molecules in its path. Although the other molecules are shown as stationary, they are also moving in a similar fashion.

Figure 19-6 (a) A collision occurs when the centers of two molecules come within a distance \(d\) of each other, \(d\) being the molecular diameter. (b) An equivalent but more convenient representation is to think of the moving molecule as having a radius \(d\) and all other molecules as being points. The condition for a collision is unchanged.

\section*{Mean Free Path}

We continue to examine the motion of molecules in an ideal gas. Figure 19-5 shows the path of a typical molecule as it moves through the gas, changing both speed and direction abruptly as it collides elastically with other molecules. Between collisions, the molecule moves in a straight line at constant speed. Although the figure shows the other molecules as stationary, they are (of course) also moving.

One useful parameter to describe this random motion is the mean free path \(\lambda\) of the molecules. As its name implies, \(\lambda\) is the average distance traversed by a molecule between collisions. We expect \(\lambda\) to vary inversely with \(N / V\), the number of molecules per unit volume (or density of molecules). The larger \(N / V\) is, the more collisions there should be and the smaller the mean free path. We also expect \(\lambda\) to vary inversely with the size of the molecules - with their diameter \(d\), say. (If the molecules were points, as we have assumed them to be, they would never collide and the mean free path would be infinite.) Thus, the larger the molecules are, the smaller the mean free path. We can even predict that \(\lambda\) should vary (inversely) as the square of the molecular diameter because the cross section of a molecule - not its diameter - determines its effective target area.

The expression for the mean free path does, in fact, turn out to be
\[
\begin{equation*}
\lambda=\frac{1}{\sqrt{2} \pi d^{2} N / V} \quad \text { (mean free path). } \tag{19-25}
\end{equation*}
\]

To justify Eq. 19-25, we focus attention on a single molecule and assume - as Fig. 19-5 suggests - that our molecule is traveling with a constant speed \(v\) and that all the other molecules are at rest. Later, we shall relax this assumption.

We assume further that the molecules are spheres of diameter \(d\). A collision will then take place if the centers of two molecules come within a distance \(d\) of each other, as in Fig. 19-6a. Another, more helpful way to look at the situation is

(a)

(b)


Figure 19-7 In time \(\Delta t\) the moving molecule effectively sweeps out a cylinder of length \(v \Delta t\) and radius \(d\).
to consider our single molecule to have a radius of \(d\) and all the other molecules to be points, as in Fig. 19-6b. This does not change our criterion for a collision.

As our single molecule zigzags through the gas, it sweeps out a short cylinder of cross-sectional area \(\pi d^{2}\) between successive collisions. If we watch this molecule for a time interval \(\Delta t\), it moves a distance \(v \Delta t\), where \(v\) is its assumed speed. Thus, if we align all the short cylinders swept out in interval \(\Delta t\), we form a composite cylinder (Fig. 19-7) of length \(v \Delta t\) and volume \(\left(\pi d^{2}\right)(v \Delta t)\). The number of collisions that occur in time \(\Delta t\) is then equal to the number of (point) molecules that lie within this cylinder.

Since \(N / V\) is the number of molecules per unit volume, the number of molecules in the cylinder is \(N / V\) times the volume of the cylinder, or \((N / V)\left(\pi d^{2} v \Delta t\right)\). This is also the number of collisions in time \(\Delta t\). The mean free path is the length of the path (and of the cylinder) divided by this number:
\[
\begin{align*}
\lambda & =\frac{\text { length of path during } \Delta t}{\text { number of collisions in } \Delta t} \approx \frac{v \Delta t}{\pi d^{2} v \Delta t N / V} \\
& =\frac{1}{\pi d^{2} N / V} \tag{19-26}
\end{align*}
\]

This equation is only approximate because it is based on the assumption that all the molecules except one are at rest. In fact, all the molecules are moving; when this is taken properly into account, Eq. 19-25 results. Note that it differs from the (approximate) Eq. 19-26 only by a factor of \(1 / \sqrt{2}\).

The approximation in Eq. 19-26 involves the two \(v\) symbols we canceled. The \(v\) in the numerator is \(v_{\text {avg }}\), the mean speed of the molecules relative to the container. The \(v\) in the denominator is \(v_{\text {rel }}\), the mean speed of our single molecule relative to the other molecules, which are moving. It is this latter average speed that determines the number of collisions. A detailed calculation, taking into account the actual speed distribution of the molecules, gives \(v_{\text {rel }}=\sqrt{2} v_{\text {avg }}\) and thus the factor \(\sqrt{2}\).

The mean free path of air molecules at sea level is about \(0.1 \mu \mathrm{~m}\). At an altitude of 100 km , the density of air has dropped to such an extent that the mean free path rises to about 16 cm . At 300 km , the mean free path is about 20 km . A problem faced by those who would study the physics and chemistry of the upper atmosphere in the laboratory is the unavailability of containers large enough to hold gas samples (of Freon, carbon dioxide, and ozone) that simulate upper atmospheric conditions.

\section*{Checkpoint 3}

One mole of gas \(A\), with molecular diameter \(2 d_{0}\) and average molecular speed \(v_{0}\), is placed inside a certain container. One mole of gas \(B\), with molecular diameter \(d_{0}\) and average molecular speed \(2 v_{0}\) (the molecules of \(B\) are smaller but faster), is placed in an identical container. Which gas has the greater average collision rate within its container?

\section*{Sample Problem 19.04 Mean free path, average speed, collision frequency}
(a) What is the mean free path \(\lambda\) for oxygen molecules at temperature \(T=300 \mathrm{~K}\) and pressure \(p=1.0 \mathrm{~atm}\) ? Assume that the molecular diameter is \(d=290 \mathrm{pm}\) and the gas is ideal.

\section*{KEY IDEA}

Each oxygen molecule moves among other moving oxygen molecules in a zigzag path due to the resulting collisions. Thus, we use Eq. 19-25 for the mean free path.

Calculation: We first need the number of molecules per unit volume, \(N / V\). Because we assume the gas is ideal, we can use the ideal gas law of Eq. 19-9 ( \(p V=N k T\) ) to write \(N / V=\) \(p / k T\). Substituting this into Eq. 19-25, we find
\[
\begin{align*}
\lambda & =\frac{1}{\sqrt{2} \pi d^{2} N / V}=\frac{k T}{\sqrt{2} \pi d^{2} p} \\
& =\frac{\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(300 \mathrm{~K})}{\sqrt{2} \pi\left(2.9 \times 10^{-10} \mathrm{~m}\right)^{2}\left(1.01 \times 10^{5} \mathrm{~Pa}\right)} \\
& =1.1 \times 10^{-7} \mathrm{~m} . \tag{Answer}
\end{align*}
\]

This is about 380 molecular diameters.
(b) Assume the average speed of the oxygen molecules is \(v=450 \mathrm{~m} / \mathrm{s}\). What is the average time \(t\) between successive
collisions for any given molecule? At what rate does the molecule collide; that is, what is the frequency \(f\) of its collisions?

\section*{KEY IDEAS}
(1) Between collisions, the molecule travels, on average, the mean free path \(\lambda\) at speed \(v\). (2) The average rate or frequency at which the collisions occur is the inverse of the time \(t\) between collisions.

Calculations: From the first key idea, the average time between collisions is
\[
\begin{aligned}
t & =\frac{\text { distance }}{\text { speed }}=\frac{\lambda}{v}=\frac{1.1 \times 10^{-7} \mathrm{~m}}{450 \mathrm{~m} / \mathrm{s}} \\
& =2.44 \times 10^{-10} \mathrm{~s} \approx 0.24 \mathrm{~ns}
\end{aligned}
\]
(Answer)
This tells us that, on average, any given oxygen molecule has less than a nanosecond between collisions.

From the second key idea, the collision frequency is
\[
f=\frac{1}{t}=\frac{1}{2.44 \times 10^{-10} \mathrm{~s}}=4.1 \times 10^{9} \mathrm{~s}^{-1}
\]
(Answer)
This tells us that, on average, any given oxygen molecule makes about 4 billion collisions per second.

\section*{19-6 the distribution of molecular speeds}

\section*{Learning Objectives}

After reading this module, you should be able to ...
19.24 Explain how Maxwell's speed distribution law is used to find the fraction of molecules with speeds in a certain speed range.
19.25 Sketch a graph of Maxwell's speed distribution, showing the probability distribution versus speed and indicating the relative positions of the average speed \(v_{\text {avg }}\), the most probable speed \(v_{P}\), and the rms speed \(v_{\text {rms }}\).
19.26 Explain how Maxwell's speed distribution is used to find the average speed, the rms speed, and the most probable speed.
19.27 For a given temperature \(T\) and molar mass \(M\), calculate the average speed \(v_{\text {avg }}\), the most probable speed \(v_{P}\), and the rms speed \(v_{\text {rms }}\).

\section*{Key Ideas}
- The Maxwell speed distribution \(P(v)\) is a function such that \(P(v) d v\) gives the fraction of molecules with speeds in the interval \(d v\) at speed \(v\) :
\[
P(v)=4 \pi\left(\frac{M}{2 \pi R T}\right)^{3 / 2} v^{2} e^{-M v^{2} / 2 R T}
\]
- Three measures of the distribution of speeds among the molecules of a gas are
\[
\begin{aligned}
v_{\text {avg }} & =\sqrt{\frac{8 R T}{\pi M}} \quad \text { (average speed), } \\
v_{P} & =\sqrt{\frac{2 R T}{M}} \quad \text { (most probable speed) }, \\
v_{\text {rms }} & =\sqrt{\frac{3 R T}{M}} \quad \text { (rms speed). }
\end{aligned}
\]
and

\section*{The Distribution of Molecular Speeds}

The root-mean-square speed \(v_{\text {rms }}\) gives us a general idea of molecular speeds in a gas at a given temperature. We often want to know more. For example, what fraction of the molecules have speeds greater than the rms value? What fraction have speeds greater than twice the rms value? To answer such questions, we need to know how the possible values of speed are distributed among the molecules. Figure \(19-8 a\) shows this distribution for oxygen molecules at room temperature ( \(T=300 \mathrm{~K}\) ); Fig. 19-8b compares it with the distribution at \(T=80 \mathrm{~K}\).

In 1852, Scottish physicist James Clerk Maxwell first solved the problem of finding the speed distribution of gas molecules. His result, known as Maxwell's speed distribution law, is
\[
\begin{equation*}
P(v)=4 \pi\left(\frac{M}{2 \pi R T}\right)^{3 / 2} v^{2} e^{-M v^{2} / 2 R T} \tag{19-27}
\end{equation*}
\]

Here \(M\) is the molar mass of the gas, \(R\) is the gas constant, \(T\) is the gas temperature, and \(v\) is the molecular speed. It is this equation that is plotted in Fig. 19-8a, \(b\). The quantity \(P(v)\) in Eq. 19-27 and Fig. 19-8 is a probability distribution function: For any speed \(v\), the product \(P(v) d v\) (a dimensionless quantity) is the fraction of molecules with speeds in the interval \(d v\) centered on speed \(v\).

As Fig. 19-8a shows, this fraction is equal to the area of a strip with height \(P(v)\) and width \(d v\). The total area under the distribution curve corresponds to the fraction of the molecules whose speeds lie between zero and infinity. All molecules fall into this category, so the value of this total area is unity; that is,
\[
\begin{equation*}
\int_{0}^{\infty} P(v) d v=1 \tag{19-28}
\end{equation*}
\]

The fraction (frac) of molecules with speeds in an interval of, say, \(v_{1}\) to \(v_{2}\) is then
\[
\begin{equation*}
\mathrm{frac}=\int_{v_{1}}^{v_{2}} P(v) d v \tag{19-29}
\end{equation*}
\]

\section*{Average, RMS, and Most Probable Speeds}

In principle, we can find the average speed \(v_{\text {avg }}\) of the molecules in a gas with the following procedure: We weight each value of \(v\) in the distribution; that is, we multiply it


Figure 19-8 (a) The Maxwell speed distribution for oxygen molecules at \(T=300 \mathrm{~K}\). The three characteristic speeds are marked. (b) The curves for 300 K and 80 K . Note that the molecules move more slowly at the lower temperature. Because these are probability distributions, the area under each curve has a numerical value of unity.

by the fraction \(P(v) d v\) of molecules with speeds in a differential interval \(d v\) centered on \(v\). Then we add up all these values of \(v P(v) d v\). The result is \(v_{\text {avg }}\). In practice, we do all this by evaluating
\[
\begin{equation*}
v_{\mathrm{avg}}=\int_{0}^{\infty} v P(v) d v \tag{19-30}
\end{equation*}
\]

Substituting for \(P(v)\) from Eq. 19-27 and using generic integral 20 from the list of integrals in Appendix E, we find
\[
\begin{equation*}
v_{\mathrm{avg}}=\sqrt{\frac{8 R T}{\pi M}} \quad \text { (average speed). } \tag{19-31}
\end{equation*}
\]

Similarly, we can find the average of the square of the speeds \(\left(v^{2}\right)_{\text {avg }}\) with
\[
\begin{equation*}
\left(v^{2}\right)_{\text {avg }}=\int_{0}^{\infty} v^{2} P(v) d v \tag{19-32}
\end{equation*}
\]

Substituting for \(P(v)\) from Eq. 19-27 and using generic integral 16 from the list of integrals in Appendix E, we find
\[
\begin{equation*}
\left(v^{2}\right)_{\text {avg }}=\frac{3 R T}{M} . \tag{19-33}
\end{equation*}
\]

The square root of \(\left(v^{2}\right)_{\text {avg }}\) is the root-mean-square speed \(v_{\text {rms }}\). Thus,
\[
\begin{equation*}
v_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M}} \quad(\mathrm{rms} \text { speed }), \tag{19-34}
\end{equation*}
\]
which agrees with Eq. 19-22.
The most probable speed \(v_{P}\) is the speed at which \(P(v)\) is maximum (see Fig. 19-8a). To calculate \(v_{P}\), we set \(d P / d v=0\) (the slope of the curve in Fig. 19-8a is zero at the maximum of the curve) and then solve for \(v\). Doing so, we find
\[
\begin{equation*}
v_{P}=\sqrt{\frac{2 R T}{M}} \quad \text { (most probable speed). } \tag{19-35}
\end{equation*}
\]

A molecule is more likely to have speed \(v_{P}\) than any other speed, but some molecules will have speeds that are many times \(v_{p}\). These molecules lie in the high-speed tail of a distribution curve like that in Fig. 19-8a. Such higher speed molecules make possible both rain and sunshine (without which we could not exist):

Rain The speed distribution of water molecules in, say, a pond at summertime temperatures can be represented by a curve similar to that of Fig. 19-8a. Most of the molecules lack the energy to escape from the surface. However, a few of the molecules in the high-speed tail of the curve can do so. It is these water molecules that evaporate, making clouds and rain possible.

As the fast water molecules leave the surface, carrying energy with them, the temperature of the remaining water is maintained by heat transfer from the surroundings. Other fast molecules - produced in particularly favorable collisionsquickly take the place of those that have left, and the speed distribution is maintained.

Sunshine Let the distribution function of Eq. 19-27 now refer to protons in the core of the Sun. The Sun's energy is supplied by a nuclear fusion process that starts with the merging of two protons. However, protons repel each other because of their electrical charges, and protons of average speed do not have enough kinetic energy to overcome the repulsion and get close enough to merge. Very fast protons with speeds in the high-speed tail of the distribution curve can do so, however, and for that reason the Sun can shine.

\section*{Sample Problem 19.05 Speed distribution in a gas}

In oxygen (molar mass \(M=0.0320 \mathrm{~kg} / \mathrm{mol}\) ) at room temperature ( 300 K ), what fraction of the molecules have speeds in the interval 599 to \(601 \mathrm{~m} / \mathrm{s}\) ?

\section*{KEY IDEAS}
1. The speeds of the molecules are distributed over a wide range of values, with the distribution \(P(v)\) of Eq.19-27.
2. The fraction of molecules with speeds in a differential interval \(d v\) is \(P(v) d v\).
3. For a larger interval, the fraction is found by integrating \(P(v)\) over the interval.
4. However, the interval \(\Delta v=2 \mathrm{~m} / \mathrm{s}\) here is small compared to the speed \(v=600 \mathrm{~m} / \mathrm{s}\) on which it is centered.

Calculations: Because \(\Delta v\) is small, we can avoid the integration by approximating the fraction as
\[
\mathrm{frac}=P(v) \Delta v=4 \pi\left(\frac{M}{2 \pi R T}\right)^{3 / 2} v^{2} e^{-M v^{2} / 2 R T} \Delta v
\]

The total area under the plot of \(P(v)\) in Fig. 19-8a is the total fraction of molecules (unity), and the area of the thin gold strip (not to scale) is the fraction we seek. Let's evaluate frac in parts:
\[
\begin{equation*}
\mathrm{frac}=(4 \pi)(A)\left(v^{2}\right)\left(e^{B}\right)(\Delta v), \tag{19-36}
\end{equation*}
\]
where
\[
\begin{aligned}
A=\left(\frac{M}{2 \pi R T}\right)^{3 / 2} & =\left(\frac{0.0320 \mathrm{~kg} / \mathrm{mol}}{(2 \pi)(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(300 \mathrm{~K})}\right)^{3 / 2} \\
& =2.92 \times 10^{-9} \mathrm{~s}^{3} / \mathrm{m}^{3}
\end{aligned}
\]
and \(B=-\frac{M v^{2}}{2 R T}=-\frac{(0.0320 \mathrm{~kg} / \mathrm{mol})(600 \mathrm{~m} / \mathrm{s})^{2}}{(2)(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K})(300 \mathrm{~K})}\)
\[
=-2.31
\]

Substituting \(A\) and \(B\) into Eq. 19-36 yields
\[
\begin{aligned}
\mathrm{frac} & =(4 \pi)(A)\left(v^{2}\right)\left(e^{B}\right)(\Delta v) \\
& =(4 \pi)\left(2.92 \times 10^{-9} \mathrm{~s}^{3} / \mathrm{m}^{3}\right)(600 \mathrm{~m} / \mathrm{s})^{2}\left(e^{-2.31}\right)(2 \mathrm{~m} / \mathrm{s}) \\
& =2.62 \times 10^{-3}=0.262 \% .
\end{aligned}
\]

\section*{Sample Problem 19.06 Average speed, rms speed, most probable speed}

The molar mass \(M\) of oxygen is \(0.0320 \mathrm{~kg} / \mathrm{mol}\).
(a) What is the average speed \(v_{\text {avg }}\) of oxygen gas molecules at \(T=300 \mathrm{~K}\) ?

\section*{KEY IDEA}

To find the average speed, we must weight speed \(v\) with the distribution function \(P(v)\) of Eq. 19-27 and then integrate the resulting expression over the range of possible speeds (from zero to the limit of an infinite speed).
Calculation: We end up with Eq. 19-31, which gives us
\[
\begin{aligned}
v_{\text {avg }} & =\sqrt{\frac{8 R T}{\pi M}} \\
& =\sqrt{\frac{8(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(300 \mathrm{~K})}{\pi(0.0320 \mathrm{~kg} / \mathrm{mol})}} \\
& =445 \mathrm{~m} / \mathrm{s} .
\end{aligned}
\]
(Answer)
This result is plotted in Fig. 19-8a.
(b) What is the root-mean-square speed \(v_{\text {rms }}\) at 300 K ?

\section*{KEY IDEA}

To find \(v_{\text {rms }}\), we must first find \(\left(v^{2}\right)_{\text {avg }}\) by weighting \(v^{2}\) with the distribution function \(P(v)\) of Eq. 19-27 and then integrating the expression over the range of possible speeds. Then we must take the square root of the result.

Calculation: We end up with Eq. 19-34, which gives us
\[
\begin{aligned}
v_{\mathrm{rms}} & =\sqrt{\frac{3 R T}{M}} \\
& =\sqrt{\frac{3(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(300 \mathrm{~K})}{0.0320 \mathrm{~kg} / \mathrm{mol}}} \\
& =483 \mathrm{~m} / \mathrm{s} .
\end{aligned}
\]
(Answer)
This result, plotted in Fig. 19-8a, is greater than \(v_{\text {avg }}\) because the greater speed values influence the calculation more when we integrate the \(v^{2}\) values than when we integrate the \(v\) values.
(c) What is the most probable speed \(v_{P}\) at 300 K ?

\section*{KEY IDEA}

Speed \(v_{P}\) corresponds to the maximum of the distribution function \(P(v)\), which we obtain by setting the derivative \(d P / d v=0\) and solving the result for \(v\).
Calculation: We end up with Eq. 19-35, which gives us
\[
\begin{aligned}
v_{P} & =\sqrt{\frac{2 R T}{M}} \\
& =\sqrt{\frac{2(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(300 \mathrm{~K})}{0.0320 \mathrm{~kg} / \mathrm{mol}}} \\
& =395 \mathrm{~m} / \mathrm{s} .
\end{aligned}
\]
(Answer)
This result is also plotted in Fig. 19-8a.

\section*{19-7 the molar specific heats of an ideal gas}

\section*{Learning Objectives}

After reading this module, you should be able to ...
19.28 Identify that the internal energy of an ideal monatomic gas is the sum of the translational kinetic energies of its atoms.
19.29 Apply the relationship between the internal energy \(E_{\text {int }}\) of a monatomic ideal gas, the number of moles \(n\), and the gas temperature \(T\).
19.30 Distinguish between monatomic, diatomic, and polyatomic ideal gases.
19.31 For monatomic, diatomic, and polyatomic ideal gases, evaluate the molar specific heats for a constant-volume process and a constant-pressure process.
19.32 Calculate a molar specific heat at constant pressure \(C_{p}\) by adding \(R\) to the molar specific heat at constant volume \(C_{V}\), and explain why (physically) \(C_{p}\) is greater.
19.33 Identify that the energy transferred to an ideal gas as heat in a constant-volume process goes entirely into the internal energy (the random translational motion) but that
in a constant-pressure process energy also goes into the work done to expand the gas.
19.34 Identify that for a given change in temperature, the change in the internal energy of an ideal gas is the same for any process and is most easily calculated by assuming a constant-volume process.
19.35 For an ideal gas, apply the relationship between heat \(Q\), number of moles \(n\), and temperature change \(\Delta T\), using the appropriate molar specific heat.
19.36 Between two isotherms on a \(p\) - \(V\) diagram, sketch a constant-volume process and a constant-pressure process, and for each identify the work done in terms of area on the graph.
19.37 Calculate the work done by an ideal gas for a constantpressure process.
19.38 Identify that work is zero for constant volume.

\section*{Key Ideas}
- The molar specific heat \(C_{V}\) of a gas at constant volume is defined as
\[
C_{V}=\frac{Q}{n \Delta T}=\frac{\Delta E_{\mathrm{int}}}{n \Delta T}
\]
in which \(Q\) is the energy transferred as heat to or from a sample of \(n\) moles of the gas, \(\Delta T\) is the resulting temperature change of the gas, and \(\Delta E_{\text {int }}\) is the resulting change in the internal energy of the gas.
- For an ideal monatomic gas,
\[
C_{V}=\frac{3}{2} R=12.5 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}
\]
- The molar specific heat \(C_{p}\) of a gas at constant pressure is
defined to be
\[
C_{p}=\frac{Q}{n \Delta T}
\]
in which \(Q, n\), and \(\Delta T\) are defined as above. \(C_{p}\) is also given by
\[
C_{p}=C_{V}+R .
\]

For \(n\) moles of an ideal gas,
\[
E_{\text {int }}=n C_{V} T \quad \text { (ideal gas). }
\]

If \(n\) moles of a confined ideal gas undergo a temperature change \(\Delta T\) due to any process, the change in the internal energy of the gas is
\[
\Delta E_{\text {int }}=n C_{V} \Delta T \quad \text { (ideal gas, any process). }
\]

\section*{The Molar Specific Heats of an Ideal Gas}

In this module, we want to derive from molecular considerations an expression for the internal energy \(E_{\text {int }}\) of an ideal gas. In other words, we want an expression for the energy associated with the random motions of the atoms or molecules in the gas. We shall then use that expression to derive the molar specific heats of an ideal gas.

\section*{Internal Energy \(E_{\text {int }}\)}

Let us first assume that our ideal gas is a monatomic gas (individual atoms rather than molecules), such as helium, neon, or argon. Let us also assume that the internal energy \(E_{\text {int }}\) is the sum of the translational kinetic energies of the atoms. (Quantum theory disallows rotational kinetic energy for individual atoms.)

The average translational kinetic energy of a single atom depends only on the gas temperature and is given by Eq. 19-24 as \(K_{\text {avg }}=\frac{3}{2} k T\). A sample of \(n\) moles of such a gas contains \(n N_{\mathrm{A}}\) atoms. The internal energy \(E_{\text {int }}\) of the sample is then
\[
\begin{equation*}
E_{\text {int }}=\left(n N_{\mathrm{A}}\right) K_{\text {avg }}=\left(n N_{\mathrm{A}}\right)\left(\frac{3}{2} k T\right) . \tag{19-37}
\end{equation*}
\]

Using Eq. 19-7 \(\left(k=R / N_{\mathrm{A}}\right)\), we can rewrite this as
\[
\begin{equation*}
E_{\mathrm{int}}=\frac{3}{2} n R T \quad \text { (monatomic ideal gas). } \tag{19-38}
\end{equation*}
\]

The internal energy \(E_{\text {int }}\) of an ideal gas is a function of the gas temperature only; it does not depend on any other variable.

With Eq. 19-38 in hand, we are now able to derive an expression for the molar specific heat of an ideal gas. Actually, we shall derive two expressions. One is for the case in which the volume of the gas remains constant as energy is transferred to or from it as heat. The other is for the case in which the pressure of the gas remains constant as energy is transferred to or from it as heat. The symbols for these two molar specific heats are \(C_{V}\) and \(C_{p}\), respectively. (By convention, the capital letter \(C\) is used in both cases, even though \(C_{V}\) and \(C_{p}\) represent types of specific heat and not heat capacities.)

\section*{Molar Specific Heat at Constant Volume}

Figure \(19-9 a\) shows \(n\) moles of an ideal gas at pressure \(p\) and temperature \(T\), confined to a cylinder of fixed volume \(V\). This initial state \(i\) of the gas is marked on the \(p-V\) diagram of Fig. 19-9b. Suppose now that you add a small amount of energy to the gas as heat \(Q\) by slowly turning up the temperature of the thermal reservoir. The gas temperature rises a small amount to \(T+\) \(\Delta T\), and its pressure rises to \(p+\Delta p\), bringing the gas to final state \(f\). In such experiments, we would find that the heat \(Q\) is related to the temperature change \(\Delta T\) by
\[
\begin{equation*}
Q=n C_{V} \Delta T \quad \text { (constant volume) } \tag{19-39}
\end{equation*}
\]
where \(C_{V}\) is a constant called the molar specific heat at constant volume. Substituting this expression for \(Q\) into the first law of thermodynamics as given by Eq. 18-26 ( \(\left.\Delta E_{\mathrm{int}}=Q-W\right)\) yields
\[
\begin{equation*}
\Delta E_{\mathrm{int}}=n C_{V} \Delta T-W \tag{19-40}
\end{equation*}
\]

With the volume held constant, the gas cannot expand and thus cannot do any work. Therefore, \(W=0\), and Eq. 19-40 gives us
\[
\begin{equation*}
C_{V}=\frac{\Delta E_{\mathrm{int}}}{n \Delta T} \tag{19-41}
\end{equation*}
\]

From Eq. 19-38, the change in internal energy must be
\[
\begin{equation*}
\Delta E_{\mathrm{int}}=\frac{3}{2} n R \Delta T \tag{19-42}
\end{equation*}
\]

Substituting this result into Eq. 19-41 yields
\[
\begin{equation*}
C_{V}=\frac{3}{2} R=12.5 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K} \quad \text { (monatomic gas). } \tag{19-43}
\end{equation*}
\]

As Table 19-2 shows, this prediction of the kinetic theory (for ideal gases) agrees very well with experiment for real monatomic gases, the case that we have assumed. The (predicted and) experimental values of \(C_{V}\) for diatomic gases (which have molecules with two atoms) and polyatomic gases (which have molecules with more than two atoms) are greater than those for monatomic gases for reasons that will be suggested in Module 19-8. Here we make the preliminary assumption that the \(C_{V}\) values for diatomic and polyatomic gases are greater than for monatomic gases because the more complex molecules can rotate and thus have rotational kinetic energy. So, when \(Q\) is transferred to a diatomic or polyatomic gas, only part of it goes into the translational kinetic energy, increasing the


Figure 19-9 (a) The temperature of an ideal gas is raised from \(T\) to \(T+\Delta T\) in a constantvolume process. Heat is added, but no work is done. (b) The process on a \(p\) - \(V\) diagram.

Table 19-2 Molar Specific Heats at Constant Volume
\begin{tabular}{|c|c|c|c|}
\hline Molecule & Exampl & \multicolumn{2}{|r|}{\[
\begin{gathered}
C_{V} \\
(\mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})
\end{gathered}
\]} \\
\hline \multirow[t]{3}{*}{Monatomic} & & \multicolumn{2}{|r|}{\({ }_{2}^{3} R=12.5\)} \\
\hline & \multirow[t]{2}{*}{Real} & He & 12.5 \\
\hline & & Ar & 12.6 \\
\hline \multirow[t]{3}{*}{Diatomic} & Ideal & \multicolumn{2}{|r|}{\(\frac{5}{2} R=20.8\)} \\
\hline & \multirow[t]{2}{*}{Real} & \(\mathrm{N}_{2}\) & 20.7 \\
\hline & & \[
\mathrm{O}_{2}
\] & 20.8 \\
\hline \multirow{3}{*}{Polyatomic} & Ideal & \multicolumn{2}{|r|}{\(3 R=24.9\)} \\
\hline & \multirow[t]{2}{*}{Real} & \(\mathrm{NH}_{4}\) & 29.0 \\
\hline & & \(\mathrm{CO}_{2}\) & 29.7 \\
\hline
\end{tabular}


Figure 19-10 Three paths representing three different processes that take an ideal gas from an initial state \(i\) at temperature \(T\) to some final state \(f\) at temperature \(T+\Delta T\). The change \(\Delta E_{\text {int }}\) in the internal energy of the gas is the same for these three processes and for any others that result in the same change of temperature.
(a)


The temperature


Figure 19-11 (a) The temperature of an ideal gas is raised from \(T\) to \(T+\Delta T\) in a constant pressure process. Heat is added and work is done in lifting the loaded piston. (b) The process on a \(p-V\) diagram. The work \(p \Delta V\) is given by the shaded area.
temperature. (For now we neglect the possibility of also putting energy into oscillations of the molecules.)

We can now generalize Eq. 19-38 for the internal energy of any ideal gas by substituting \(C_{V}\) for \(\frac{3}{2} R\); we get
\[
\begin{equation*}
E_{\text {int }}=n C_{V} T \quad \text { (any ideal gas). } \tag{19-44}
\end{equation*}
\]

This equation applies not only to an ideal monatomic gas but also to diatomic and polyatomic ideal gases, provided the appropriate value of \(C_{V}\) is used. Just as with Eq. 19-38, we see that the internal energy of a gas depends on the temperature of the gas but not on its pressure or density.

When a confined ideal gas undergoes temperature change \(\Delta T\), then from either Eq. 19-41 or Eq. 19-44 the resulting change in its internal energy is
\[
\begin{equation*}
\Delta E_{\text {int }}=n C_{V} \Delta T \quad \text { (ideal gas, any process). } \tag{19-45}
\end{equation*}
\]

This equation tells us:

A change in the internal energy \(E_{\text {int }}\) of a confined ideal gas depends on only the change in the temperature, not on what type of process produces the change.

As examples, consider the three paths between the two isotherms in the \(p-V\) diagram of Fig. 19-10. Path 1 represents a constant-volume process. Path 2 represents a constant-pressure process (we examine it next). Path 3 represents a process in which no heat is exchanged with the system's environment (we discuss this in Module 19-9). Although the values of heat \(Q\) and work \(W\) associated with these three paths differ, as do \(p_{f}\) and \(V_{f}\), the values of \(\Delta E_{\text {int }}\) associated with the three paths are identical and are all given by Eq. 19-45, because they all involve the same temperature change \(\Delta T\). Therefore, no matter what path is actually taken between \(T\) and \(T+\Delta T\), we can always use path 1 and Eq. 19-45 to compute \(\Delta E_{\text {int }}\) easily.

\section*{Molar Specific Heat at Constant Pressure}

We now assume that the temperature of our ideal gas is increased by the same small amount \(\Delta T\) as previously but now the necessary energy (heat \(Q\) ) is added with the gas under constant pressure. An experiment for doing this is shown in Fig. 19-11a; the \(p\) - \(V\) diagram for the process is plotted in Fig. 19-11b. From such experiments we find that the heat \(Q\) is related to the temperature change \(\Delta T\) by
\[
\begin{equation*}
Q=n C_{p} \Delta T \quad \text { (constant pressure) } \tag{19-46}
\end{equation*}
\]
where \(C_{p}\) is a constant called the molar specific heat at constant pressure. This \(C_{p}\) is greater than the molar specific heat at constant volume \(C_{V}\), because energy must now be supplied not only to raise the temperature of the gas but also for the gas to do work - that is, to lift the weighted piston of Fig. 19-11a.

To relate molar specific heats \(C_{p}\) and \(C_{V}\), we start with the first law of thermodynamics (Eq. 18-26):
\[
\begin{equation*}
\Delta E_{\mathrm{int}}=Q-W \tag{19-47}
\end{equation*}
\]

We next replace each term in Eq. 19-47. For \(\Delta E_{\text {int }}\), we substitute from Eq. 19-45. For \(Q\), we substitute from Eq. 19-46. To replace \(W\), we first note that since the pressure remains constant, Eq. 19-16 tells us that \(W=p \Delta V\). Then we note that, using the ideal gas equation \((p V=n R T)\), we can write
\[
\begin{equation*}
W=p \Delta V=n R \Delta T . \tag{19-48}
\end{equation*}
\]

Making these substitutions in Eq. 19-47 and then dividing through by \(n \Delta T\), we find
\[
C_{V}=C_{p}-R
\]

Figure 19-12 The relative values of \(Q\) for a monatomic gas (left side) and a diatomic gas undergoing a constant-volume process (labeled "con \(V\) ") and a constant-pressure process (labeled "con \(p\) "). The transfer of the energy into work \(W\) and internal energy \(\left(\Delta E_{\text {int }}\right)\) is noted.

and then
\[
\begin{equation*}
C_{p}=C_{V}+R . \tag{19-49}
\end{equation*}
\]

This prediction of kinetic theory agrees well with experiment, not only for monatomic gases but also for gases in general, as long as their density is low enough so that we may treat them as ideal.

The left side of Fig. 19-12 shows the relative values of \(Q\) for a monatomic gas undergoing either a constant-volume process \(\left(Q=\frac{3}{2} n R \Delta T\right)\) or a constantpressure process \(\left(Q=\frac{5}{2} n R \Delta T\right)\). Note that for the latter, the value of \(Q\) is higher by the amount \(W\), the work done by the gas in the expansion. Note also that for the constant-volume process, the energy added as \(Q\) goes entirely into the change in internal energy \(\Delta E_{\text {int }}\) and for the constant-pressure process, the energy added as \(Q\) goes into both \(\Delta E_{\text {int }}\) and the work \(W\).

\section*{Checkpoint 4}

The figure here shows five paths traversed by a gas on a \(p-V\) diagram. Rank the paths according to the change in internal energy of the gas, greatest first.


\section*{Sample Problem 19.07 Monatomic gas, heat, internal energy, and work}

A bubble of 5.00 mol of helium is submerged at a certain depth in liquid water when the water (and thus the helium) undergoes a temperature increase \(\Delta T\) of \(20.0 \mathrm{C}^{\circ}\) at constant pressure. As a result, the bubble expands. The helium is monatomic and ideal.
(a) How much energy is added to the helium as heat during the increase and expansion?

\section*{KEY IDEA}

Heat \(Q\) is related to the temperature change \(\Delta T\) by a molar specific heat of the gas.

Calculations: Because the pressure \(p\) is held constant during the addition of energy, we use the molar specific heat at
constant pressure \(C_{p}\) and Eq. 19-46,
\[
\begin{equation*}
Q=n C_{p} \Delta T, \tag{19-50}
\end{equation*}
\]
to find \(Q\). To evaluate \(C_{p}\) we go to Eq. 19-49, which tells us that for any ideal gas, \(C_{p}=C_{V}+R\). Then from Eq. 19-43, we know that for any monatomic gas (like the helium here), \(C_{V}=\frac{3}{2} R\). Thus, Eq. 19-50 gives us
\[
\begin{aligned}
Q & =n\left(C_{V}+R\right) \Delta T=n\left(\frac{3}{2} R+R\right) \Delta T=n\left(\frac{5}{2} R\right) \Delta T \\
& =(5.00 \mathrm{~mol})(2.5)(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})\left(20.0 \mathrm{C}^{\circ}\right) \\
& =2077.5 \mathrm{~J} \approx 2080 \mathrm{~J} . \quad \text { (Answer) }
\end{aligned}
\]
(b) What is the change \(\Delta E_{\text {int }}\) in the internal energy of the helium during the temperature increase?

\section*{KEY IDEA}

Because the bubble expands, this is not a constant-volume process. However, the helium is nonetheless confined (to the bubble). Thus, the change \(\Delta E_{\text {int }}\) is the same as would occur in a constant-volume process with the same temperature change \(\Delta T\).

Calculation: We can now easily find the constant-volume change \(\Delta E_{\text {int }}\) with Eq. 19-45:
\[
\begin{aligned}
\Delta E_{\text {int }} & =n C_{V} \Delta T=n\left(\frac{3}{2} R\right) \Delta T \\
& =(5.00 \mathrm{~mol})(1.5)(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})\left(20.0 \mathrm{C}^{\circ}\right) \\
& =1246.5 \mathrm{~J} \approx 1250 \mathrm{~J} .
\end{aligned}
\]
(Answer)
(c) How much work \(W\) is done by the helium as it expands against the pressure of the surrounding water during the temperature increase?

\section*{KEY IDEAS}

The work done by any gas expanding against the pressure from its environment is given by Eq. 19-11, which tells us to in-
tegrate \(p d V\). When the pressure is constant (as here), we can simplify that to \(W=p \Delta V\). When the gas is ideal (as here), we can use the ideal gas law (Eq. 19-5) to write \(p \Delta V=n R \Delta T\).
Calculation: We end up with
\[
\begin{aligned}
W & =n R \Delta T \\
& =(5.00 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})\left(20.0 \mathrm{C}^{\circ}\right) \\
& =831 \mathrm{~J} .
\end{aligned}
\]
(Answer)
Another way: Because we happen to know \(Q\) and \(\Delta E_{\text {int }}\), we can work this problem another way: We can account for the energy changes of the gas with the first law of thermodynamics, writing
\[
\begin{aligned}
W & =Q-\Delta E_{\text {int }}=2077.5 \mathrm{~J}-1246.5 \mathrm{~J} \\
& =831 \mathrm{~J} .
\end{aligned}
\]
(Answer)
The transfers: Let's follow the energy. Of the 2077.5 J transferred to the helium as heat \(Q, 831 \mathrm{~J}\) goes into the work \(W\) required for the expansion and 1246.5 J goes into the internal energy \(E_{\text {int }}\), which, for a monatomic gas, is entirely the kinetic energy of the atoms in their translational motion. These several results are suggested on the left side of Fig. 19-12.

\section*{19-8 degrees of freedom and molar specific heats}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
19.39 Identify that a degree of freedom is associated with each way a gas can store energy (translation, rotation, and oscillation).
19.40 Identify that an energy of \(\frac{1}{2} k T\) per molecule is associated with each degree of freedom.
19.41 Identify that a monatomic gas can have an internal energy consisting of only translational motion.
19.42 Identify that at low temperatures a diatomic gas has energy in only translational motion, at higher temperatures it also has energy in molecular rotation, and at even higher temperatures it can also have energy in molecular oscillations. 19.43 Calculate the molar specific heat for monatomic and diatomic ideal gases in a constant-volume process and a constant-pressure process.

\section*{Key Ideas}
- We find \(C_{V}\) by using the equipartition of energy theorem, which states that every degree of freedom of a molecule (that is, every independent way it can store energy) has associated with it-on average-an energy \(\frac{1}{2} k T\) per molecule ( \(=\frac{1}{2} R T\) per mole).
- If \(f\) is the number of degrees of freedom, then
\(E_{\text {int }}=(f / 2) n R T\) and
\[
C_{V}=\left(\frac{f}{2}\right) R=4.16 f \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}
\]

For monatomic gases \(f=3\) (three translational degrees); for diatomic gases \(f=5\) (three translational and two rotational degrees).

\section*{Degrees of Freedom and Molar Specific Heats}

As Table 19-2 shows, the prediction that \(C_{V}=\frac{3}{2} R\) agrees with experiment for monatomic gases but fails for diatomic and polyatomic gases. Let us try to explain the discrepancy by considering the possibility that molecules with more than one atom can store internal energy in forms other than translational kinetic energy.

Figure 19-13 shows common models of helium (a monatomic molecule, containing a single atom), oxygen (a diatomic molecule, containing two atoms), and

Table 19-3 Degrees of Freedom for Various Molecules
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Molecule} & \multirow[b]{2}{*}{Example} & \multicolumn{3}{|c|}{Degrees of Freedom} & \multicolumn{2}{|l|}{Predicted Molar Specific Heats} \\
\hline & & Translational & Rotational & Total (f) & \(C_{V}\) (Eq. 19-51) & \(C_{p}=C_{V}+R\) \\
\hline Monatomic & He & 3 & 0 & 3 & \(\frac{3}{2} R\) & \(\frac{5}{2} R\) \\
\hline Diatomic & \(\mathrm{O}_{2}\) & 3 & 2 & 5 & \({ }_{2}{ }^{5} R\) & \({ }_{2}^{7} R\) \\
\hline Polyatomic & \(\mathrm{CH}_{4}\) & 3 & 3 & 6 & \(3 R\) & \(4 R\) \\
\hline
\end{tabular}
methane (a polyatomic molecule). From such models, we would assume that all three types of molecules can have translational motions (say, moving left-right and up-down) and rotational motions (spinning about an axis like a top). In addition, we would assume that the diatomic and polyatomic molecules can have oscillatory motions, with the atoms oscillating slightly toward and away from one another, as if attached to opposite ends of a spring.

To keep account of the various ways in which energy can be stored in a gas, James Clerk Maxwell introduced the theorem of the equipartition of energy:

Every kind of molecule has a certain number \(f\) of degrees of freedom, which are independent ways in which the molecule can store energy. Each such degree of freedom has associated with it-on average - an energy of \(\frac{1}{2} k T\) per molecule (or \(\frac{1}{2} R T\) per mole).

Let us apply the theorem to the translational and rotational motions of the molecules in Fig. 19-13. (We discuss oscillatory motion below.) For the translational motion, superimpose an \(x y z\) coordinate system on any gas. The molecules will, in general, have velocity components along all three axes. Thus, gas molecules of all types have three degrees of translational freedom (three ways to move in translation) and, on average, an associated energy of \(3\left(\frac{1}{2} k T\right)\) per molecule.

For the rotational motion, imagine the origin of our \(x y z\) coordinate system at the center of each molecule in Fig. 19-13. In a gas, each molecule should be able to rotate with an angular velocity component along each of the three axes, so each gas should have three degrees of rotational freedom and, on average, an additional energy of \(3\left(\frac{1}{2} k T\right)\) per molecule. However, experiment shows this is true only for the polyatomic molecules. According to quantum theory, the physics dealing with the allowed motions and energies of molecules and atoms, a monatomic gas molecule does not rotate and so has no rotational energy (a single atom cannot rotate like a top). A diatomic molecule can rotate like a top only about axes perpendicular to the line connecting the atoms (the axes are shown in Fig. 19-13b) and not about that line itself. Therefore, a diatomic molecule can have only two degrees of rotational freedom and a rotational energy of only \(2\left(\frac{1}{2} k T\right)\) per molecule.

To extend our analysis of molar specific heats ( \(C_{p}\) and \(C\) in Module 19-7) to ideal diatomic and polyatomic gases, it is necessary to retrace the derivations of that analysis in detail. First, we replace Eq. \(19-38\left(E_{\text {int }}=\frac{3}{2} n R T\right)\) with \(E_{\text {int }}=(f / 2) n R T\), where \(f\) is the number of degrees of freedom listed in Table 19-3. Doing so leads to the prediction
\[
\begin{equation*}
C_{V}=\left(\frac{f}{2}\right) R=4.16 f \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K} \tag{19-51}
\end{equation*}
\]
which agrees - as it must - with Eq. 19-43 for monatomic gases \((f=3)\). As Table 19-2 shows, this prediction also agrees with experiment for diatomic gases \((f=5)\), but it is too low for polyatomic gases ( \(f=6\) for molecules comparable to \(\mathrm{CH}_{4}\) ).


Figure 19-13 Models of molecules as used in kinetic theory: (a) helium, a typical monatomic molecule; (b) oxygen, a typical diatomic molecule; and (c) methane, a typical polyatomic molecule. The spheres represent atoms, and the lines between them represent bonds. Two rotation axes are shown for the oxygen molecule.

\section*{Sample Problem 19.08 Diatomic gas, heat, temperature, internal energy}

We transfer 1000 J as heat \(Q\) to a diatomic gas, allowing the gas to expand with the pressure held constant. The gas molecules
each rotate around an internal axis but do not oscillate. How much of the 1000 J goes into the increase of the gas's internal
energy? Of that amount, how much goes into \(\Delta K_{\text {tran }}\) (the kinetic energy of the translational motion of the molecules) and \(\Delta K_{\text {rot }}\) (the kinetic energy of their rotational motion)?

\section*{KEY IDEAS}
1. The transfer of energy as heat \(Q\) to a gas under constant pressure is related to the resulting temperature increase \(\Delta T\) via Eq. 19-46 \(\left(Q=n C_{p} \Delta T\right)\).
2. Because the gas is diatomic with molecules undergoing rotation but not oscillation, the molar specific heat is, from Fig. 19-12 and Table 19-3, \(C_{p}=\frac{7}{2} R\).
3. The increase \(\Delta E_{\text {int }}\) in the internal energy is the same as would occur with a constant-volume process resulting in the same \(\Delta T\). Thus, from Eq. 19-45, \(\Delta E_{\text {int }}=n C_{V} \Delta T\). From Fig. 19-12 and Table 19-3, we see that \(C_{V}=\frac{5}{2} R\).
4. For the same \(n\) and \(\Delta T, \Delta E_{\text {int }}\) is greater for a diatomic gas than for a monatomic gas because additional energy is required for rotation.
Increase in \(E_{\text {int: }}\) Let's first get the temperature change \(\Delta T\) due to the transfer of energy as heat. From Eq. 19-46, substituting \({ }_{2}^{7} R\) for \(C_{p}\), we have
\[
\begin{equation*}
\Delta T=\frac{Q}{\frac{7}{2} n R} \tag{19-52}
\end{equation*}
\]

We next find \(\Delta E_{\text {int }}\) from Eq. 19-45, substituting the molar specific heat \(C_{V}\left(=\frac{5}{2} R\right)\) for a constant-volume process and using the same \(\Delta T\). Because we are dealing with a diatomic gas, let's call this change \(\Delta E_{\text {int,dia }}\). Equation 19-45 gives us
\[
\begin{aligned}
\Delta E_{\text {int,dia }} & =n C_{V} \Delta T=n \frac{5}{2} R\left(\frac{Q}{\frac{7}{2} n R}\right)=\frac{5}{7} Q \\
& =0.71428 Q=714.3 \mathrm{~J} .
\end{aligned}
\]
(Answer)
In words, about \(71 \%\) of the energy transferred to the gas goes into the internal energy. The rest goes into the work required to increase the volume of the gas, as the gas pushes the walls of its container outward.
Increases in K: If we were to increase the temperature of a monatomic gas (with the same value of \(n\) ) by the amount given in Eq. 19-52, the internal energy would change by a smaller amount, call it \(\Delta E_{\text {int, mon }}\), because rotational motion is not involved. To calculate that smaller amount, we still use Eq. 19-45 but now we substitute the value of \(C_{V}\) for a monatomic gas-namely, \(C_{V}=\frac{3}{2} R\). So,
\[
\Delta E_{\text {int,mon }}=n_{2}^{\frac{3}{2}} R \Delta T
\]

Substituting for \(\Delta T\) from Eq. 19-52 leads us to
\[
\begin{aligned}
\Delta E_{\text {int,mon }} & =n_{2}^{\frac{3}{2}} R\left(\frac{Q}{n_{2}^{7} R}\right)=\frac{3}{7} Q \\
& =0.42857 Q=428.6 \mathrm{~J}
\end{aligned}
\]

For the monatomic gas, all this energy would go into the kinetic energy of the translational motion of the atoms. The important point here is that for a diatomic gas with the same values of \(n\) and \(\Delta T\), the same amount of energy goes into the kinetic energy of the translational motion of the molecules. The rest of \(\Delta E_{\text {int, dia }}\) (that is, the additional 285.7 J ) goes into the rotational motion of the molecules. Thus, for the diatomic gas,
\[
\Delta K_{\text {trans }}=428.6 \mathrm{~J} \quad \text { and } \quad \Delta K_{\text {rot }}=285.7 \mathrm{~J} . \quad \text { (Answer) }
\]


Figure 19-14 \(C_{V} / R\) versus temperature for (diatomic) hydrogen gas. Because rotational and oscillatory motions begin at certain energies, only translation is possible at very low temperatures. As the temperature increases, rotational motion can begin. At still higher temperatures, oscillatory motion can begin.

\section*{A Hint of Quantum Theory}

We can improve the agreement of kinetic theory with experiment by including the oscillations of the atoms in a gas of diatomic or polyatomic molecules. For example, the two atoms in the \(\mathrm{O}_{2}\) molecule of Fig. 19-13 \(b\) can oscillate toward and away from each other, with the interconnecting bond acting like a spring. However, experiment shows that such oscillations occur only at relatively high temperatures of the gas - the motion is "turned on" only when the gas molecules have relatively large energies. Rotational motion is also subject to such "turning on," but at a lower temperature.

Figure 19-14 is of help in seeing this turning on of rotational motion and oscillatory motion. The ratio \(C_{V} / R\) for diatomic hydrogen gas \(\left(\mathrm{H}_{2}\right)\) is plotted there against temperature, with the temperature scale logarithmic to cover several orders of magnitude. Below about 80 K , we find that \(C_{V} / R=1.5\). This result implies that only the three translational degrees of freedom of hydrogen are involved in the specific heat.

As the temperature increases, the value of \(C_{V} / R\) gradually increases to 2.5 , implying that two additional degrees of freedom have become involved. Quantum theory shows that these two degrees of freedom are associated with the rotational motion of the hydrogen molecules and that this motion requires a certain minimum amount of energy. At very low temperatures (below 80 K ), the molecules do not have enough energy to rotate. As the temperature increases from 80 K , first a few molecules and then more and more of them obtain enough energy to rotate, and the value of \(C_{V} / R\) increases, until all of the molecules are rotating and \(C_{V} / R=2.5\).

Similarly, quantum theory shows that oscillatory motion of the molecules requires a certain (higher) minimum amount of energy. This minimum amount is not met until the molecules reach a temperature of about 1000 K , as shown in Fig. 19-14. As the temperature increases beyond 1000 K , more and more molecules have enough energy to oscillate and the value of \(C_{V} / R\) increases, until all of the molecules are oscillating and \(C_{V} / R=3.5\). (In Fig. 19-14, the plotted curve stops at 3200 K because there the atoms of a hydrogen molecule oscillate so much that they overwhelm their bond, and the molecule then dissociates into two separate atoms.)

The turning on of the rotation and vibration of the diatomic and polyatomic molecules is due to the fact that the energies of these motions are quantized, that is, restricted to certain values. There is a lowest allowed value for each type of motion. Unless the thermal agitation of the surrounding molecules provides those lowest amounts, a molecule simply cannot rotate or vibrate.

\section*{19-9 the adiabatic expansion of an ideal gas}

\section*{Learning Objectives}

After reading this module, you should be able to ...
19.44 On a \(p\) - \(V\) diagram, sketch an adiabatic expansion (or contraction) and identify that there is no heat exchange \(Q\) with the environment.
19.45 Identify that in an adiabatic expansion, the gas does work on the environment, decreasing the gas's internal energy, and that in an adiabatic contraction, work is done on the gas, increasing the internal energy.
19.46 In an adiabatic expansion or contraction, relate the initial pressure and volume to the final pressure and volume.
19.47 In an adiabatic expansion or contraction, relate the initial temperature and volume to the final temperature and volume.
19.48 Calculate the work done in an adiabatic process by integrating the pressure with respect to volume.
19.49 Identify that a free expansion of a gas into a vacuum is adiabatic but no work is done and thus, by the first law of thermodynamics, the internal energy and temperature of the gas do not change.

\section*{Key Ideas}
- When an ideal gas undergoes a slow adiabatic volume change (a change for which \(Q=0\) ),
\[
p V^{\gamma}=\text { a constant } \quad \text { (adiabatic process) }
\]
in which \(\gamma\left(=C_{p} / C_{V}\right)\) is the ratio of molar specific heats for the gas.
- For a free expansion, \(p V=\) a constant.

\section*{The Adiabatic Expansion of an Ideal Gas}

We saw in Module 17-2 that sound waves are propagated through air and other gases as a series of compressions and expansions; these variations in the transmission medium take place so rapidly that there is no time for energy to be transferred from one part of the medium to another as heat. As we saw in Module \(18-5\), a process for which \(Q=0\) is an adiabatic process. We can ensure that \(Q=0\) either by carrying out the process very quickly (as in sound waves) or by doing it (at any rate) in a well-insulated container.

Figure 19-15a shows our usual insulated cylinder, now containing an ideal gas and resting on an insulating stand. By removing mass from the piston, we can allow the gas to expand adiabatically. As the volume increases, both the pressure and the temperature drop. We shall prove next that the relation between the pressure and the volume during such an adiabatic process is
\[
\begin{equation*}
p V^{\gamma}=\text { a constant } \quad \text { (adiabatic process), } \tag{19-53}
\end{equation*}
\]
in which \(\gamma=C_{p} / C_{V}\), the ratio of the molar specific heats for the gas. On a \(p-V\) diagram such as that in Fig. 19-15b, the process occurs along a line (called an adiabat) that has the equation \(p=(\) a constant \() / V^{\gamma}\). Since the gas goes from an initial state \(i\) to a final state \(f\), we can rewrite Eq. 19-53 as
\[
\begin{equation*}
p_{i} V_{i}^{\gamma}=p_{f} V_{f}^{\gamma} \quad \text { (adiabatic process). } \tag{19-54}
\end{equation*}
\]

To write an equation for an adiabatic process in terms of \(T\) and \(V\), we use the ideal gas equation ( \(p V=n R T\) ) to eliminate \(p\) from Eq. 19-53, finding
\[
\left(\frac{n R T}{V}\right) V^{\gamma}=\text { a constant. }
\]

Because \(n\) and \(R\) are constants, we can rewrite this in the alternative form
\[
\begin{equation*}
T V^{\gamma-1}=\text { a constant } \quad \text { (adiabatic process) }, \tag{19-55}
\end{equation*}
\]
in which the constant is different from that in Eq. 19-53. When the gas goes from an initial state \(i\) to a final state \(f\), we can rewrite Eq. 19-55 as
\[
\begin{equation*}
T_{i} V_{i}^{\gamma-1}=T_{f} V_{f}^{\gamma-1} \quad \text { (adiabatic process) } . \tag{19-56}
\end{equation*}
\]

Understanding adiabatic processes allows you to understand why popping the cork on a cold bottle of champagne or the tab on a cold can of soda causes a slight fog to form at the opening of the container. At the top of any unopened carbonated drink sits a gas of carbon dioxide and water vapor. Because the pressure of that gas is much greater than atmospheric pressure, the gas expands out into the atmosphere when the container is opened. Thus, the gas volume increases, but that means the gas must do work pushing against the atmosphere. Because the expansion is rapid, it is adiabatic, and the only source of energy for the work is the internal energy of the gas. Because the internal energy decreases,


Figure 19-15 (a) The volume of an ideal gas is increased by removing mass from the piston. The process is adiabatic \((Q=0)\). (b) The process proceeds from \(i\) to \(f\) along an adiabat on a \(p-V\) diagram.
the temperature of the gas also decreases and so does the number of water molecules that can remain as a vapor. So, lots of the water molecules condense into tiny drops of fog.

\section*{Proof of Eq. 19-53}

Suppose that you remove some shot from the piston of Fig. 19-15a, allowing the ideal gas to push the piston and the remaining shot upward and thus to increase the volume by a differential amount \(d V\). Since the volume change is tiny, we may assume that the pressure \(p\) of the gas on the piston is constant during the change. This assumption allows us to say that the work \(d W\) done by the gas during the volume increase is equal to \(p d V\). From Eq. 18-27, the first law of thermodynamics can then be written as
\[
\begin{equation*}
d E_{\mathrm{int}}=Q-p d V \tag{19-57}
\end{equation*}
\]

Since the gas is thermally insulated (and thus the expansion is adiabatic), we substitute 0 for \(Q\). Then we use Eq. \(19-45\) to substitute \(n C_{V} d T\) for \(d E_{\text {int }}\). With these substitutions, and after some rearranging, we have
\[
\begin{equation*}
n d T=-\left(\frac{p}{C_{V}}\right) d V \tag{19-58}
\end{equation*}
\]

Now from the ideal gas law ( \(p V=n R T\) ) we have
\[
\begin{equation*}
p d V+V d p=n R d T \tag{19-59}
\end{equation*}
\]

Replacing \(R\) with its equal, \(C_{p}-C_{V}\), in Eq. 19-59 yields
\[
\begin{equation*}
n d T=\frac{p d V+V d p}{C_{p}-C_{V}} \tag{19-60}
\end{equation*}
\]

Equating Eqs. 19-58 and 19-60 and rearranging then give
\[
\frac{d p}{p}+\left(\frac{C_{p}}{C_{V}}\right) \frac{d V}{V}=0
\]

Replacing the ratio of the molar specific heats with \(\gamma\) and integrating (see integral 5 in Appendix E) yield
\[
\ln p+\gamma \ln V=\text { a constant. }
\]

Rewriting the left side as \(\ln p V^{\gamma}\) and then taking the antilog of both sides, we find
\[
\begin{equation*}
p V^{\gamma}=\mathrm{a} \text { constant. } \tag{19-61}
\end{equation*}
\]

\section*{Free Expansions}

Recall from Module 18-5 that a free expansion of a gas is an adiabatic process with no work or change in internal energy. Thus, a free expansion differs from the adiabatic process described by Eqs. 19-53 through 19-61, in which work is done and the internal energy changes. Those equations then do not apply to a free expansion, even though such an expansion is adiabatic.

Also recall that in a free expansion, a gas is in equilibrium only at its initial and final points; thus, we can plot only those points, but not the expansion itself, on a \(p-V\) diagram. In addition, because \(\Delta E_{\text {int }}=0\), the temperature of the final state must be that of the initial state. Thus, the initial and final points on a \(p-V\) diagram must be on the same isotherm, and instead of Eq. 19-56 we have
\[
\begin{equation*}
T_{i}=T_{f} \quad \text { (free expansion). } \tag{19-62}
\end{equation*}
\]

If we next assume that the gas is ideal (so that \(p V=n R T\) ), then because there is no change in temperature, there can be no change in the product \(p V\). Thus, instead of Eq. 19-53 a free expansion involves the relation
\[
\begin{equation*}
p_{i} V_{i}=p_{f} V_{f} \quad \text { (free expansion) } \tag{19-63}
\end{equation*}
\]

\section*{Sample Problem 19.09 Work done by a gas in an adiabatic expansion}

Initially an ideal diatomic gas has pressure \(p_{i}=2.00 \times 10^{5} \mathrm{~Pa}\) and volume \(V_{i}=4.00 \times 10^{-6} \mathrm{~m}^{3}\). How much work \(W\) does it do, and what is the change \(\Delta E_{\text {int }}\) in its internal energy if it expands adiabatically to volume \(V_{f}=8.00 \times 10^{-6} \mathrm{~m}^{3}\) ? Throughout the process, the molecules have rotation but not oscillation.

\section*{KEY IDEA}
(1) In an adiabatic expansion, no heat is exchanged between the gas and its environment, and the energy for the work done by the gas comes from the internal energy. (2) The final pressure and volume are related to the initial pressure and volume by Eq. 19-54 ( \(p_{i} V_{i}^{\gamma}=p_{f} V_{f}^{\gamma}\) ). (3) The work done by a gas in any process can be calculated by integrating the pressure with respect to the volume (the work is due to the gas pushing the walls of its container outward).

Calculations: We want to calculate the work by filling out this integration,
\[
\begin{equation*}
W=\int_{V_{i}}^{V_{f}} p d V \tag{19-64}
\end{equation*}
\]
but we first need an expression for the pressure as a function of volume (so that we integrate the expression with respect to volume). So, let's rewrite Eq. 19-54 with indefinite symbols (dropping the subscripts \(f\) ) as
\[
\begin{equation*}
p=\frac{1}{V^{\gamma}} p_{i} V_{i}^{\gamma}=V^{-\gamma} p_{i} V_{i}^{\gamma} . \tag{19-65}
\end{equation*}
\]

The initial quantities are given constants but the pressure \(p\) is a function of the variable volume \(V\). Substituting this
expression into Eq. 19-64 and integrating lead us to
\[
\begin{align*}
W & =\int_{V_{i}}^{V_{f}} p d V=\int_{V_{i}}^{V_{f}} V^{-\gamma} p_{i} V_{i}^{\gamma} d V \\
& =p_{i} V_{i}^{\gamma} \int_{V_{i}}^{V_{f}} V^{-\gamma} d V=\frac{1}{-\gamma+1} p_{i} V_{i}^{\gamma}\left[V^{-\gamma+1}\right]_{V_{i}}^{V_{f}} \\
& =\frac{1}{-\gamma+1} p_{i} V_{i}^{\gamma}\left[V_{f}^{-\gamma+1}-V_{i}^{-\gamma+1}\right] . \tag{19-66}
\end{align*}
\]

Before we substitute in given data, we must determine the ratio \(\gamma\) of molar specific heats for a gas of diatomic molecules with rotation but no oscillation. From Table 19-3 we find
\[
\begin{equation*}
\gamma=\frac{C_{p}}{C_{V}}=\frac{\frac{7}{2} R}{\frac{5}{2} R}=1.4 \tag{19-67}
\end{equation*}
\]

We can now write the work done by the gas as the following (with volume in cubic meters and pressure in pascals):
\[
\begin{aligned}
W= & \frac{1}{-1.4+1}\left(2.00 \times 10^{5}\right)\left(4.00 \times 10^{-6}\right)^{1.4} \\
& \times\left[\left(8.00 \times 10^{-6}\right)^{-1.4+1}-\left(4.00 \times 10^{-6}\right)^{-1.4+1}\right] \\
= & 0.48 \mathrm{~J} . \quad(\text { Answer })
\end{aligned}
\]

The first law of thermodynamics (Eq. 18-26) tells us that \(\Delta E_{\text {int }}=Q-W\). Because \(Q=0\) in the adiabatic expansion, we see that
\[
\Delta E_{\mathrm{int}}=-0.48 \mathrm{~J} .
\]
(Answer)
With this decrease in internal energy, the gas temperature must also decrease because of the expansion.

\section*{Sample Problem 19.10 Adiabatic expansion, free expansion}

Initially, 1 mol of oxygen (assumed to be an ideal gas) has temperature 310 K and volume 12 L . We will allow it to expand to volume 19 L .
(a) What would be the final temperature if the gas expands adiabatically? Oxygen \(\left(\mathrm{O}_{2}\right)\) is diatomic and here has rotation but not oscillation.

\section*{KEY IDEAS}
1. When a gas expands against the pressure of its environment, it must do work.
2. When the process is adiabatic (no energy is transferred as heat), then the energy required for the work can come only from the internal energy of the gas.
3. Because the internal energy decreases, the temperature \(T\) must also decrease.

Calculations: We can relate the initial and final temperatures and volumes with Eq. 19-56:
\[
\begin{equation*}
T_{i} V_{i}^{\gamma-1}=T_{f} V_{f}^{\gamma-1} \tag{19-68}
\end{equation*}
\]

Because the molecules are diatomic and have rotation but not oscillation, we can take the molar specific heats from

Table 19-3. Thus,
\[
\gamma=\frac{C_{p}}{C_{V}}=\frac{\frac{7}{2} R}{\frac{5}{2} R}=1.40
\]

Solving Eq. 19-68 for \(T_{f}\) and inserting known data then yield
\[
\begin{aligned}
T_{f} & =\frac{T_{i} V_{i}^{\gamma-1}}{V_{f}^{\gamma-1}}=\frac{(310 \mathrm{~K})(12 \mathrm{~L})^{1.40-1}}{(19 \mathrm{~L})^{1.40-1}} \\
& =(310 \mathrm{~K})\left(\frac{12}{19}\right)^{0.40}=258 \mathrm{~K} .
\end{aligned}
\]
(Answer)
(b) What would be the final temperature and pressure if, instead, the gas expands freely to the new volume, from an initial pressure of 2.0 Pa ?

\section*{KEY IDEA}

The temperature does not change in a free expansion because there is nothing to change the kinetic energy of the molecules.

Calculation: Thus, the temperature is
\[
T_{f}=T_{i}=310 \mathrm{~K}
\]
(Answer)
We find the new pressure using Eq. 19-63, which gives us
\[
p_{f}=p_{i} \frac{V_{i}}{V_{f}}=(2.0 \mathrm{~Pa}) \frac{12 \mathrm{~L}}{19 \mathrm{~L}}=1.3 \mathrm{~Pa}
\]
(Answer)

\section*{Problem-Solving Tactics A Graphical Summary of Four Gas Processes}

In this chapter we have discussed four special processes that an ideal gas can undergo. An example of each (for a monatomic ideal gas) is shown in Fig. 19-16, and some associated characteristics are given in Table 19-4, including two process names (isobaric and isochoric) that we have not used but that you might see in other courses.

Checkpoint 5
Rank paths 1,2, and 3 in Fig. 19-16 according to the energy transfer to the gas as heat, greatest first.


Figure 19-16 A \(p\) - \(V\) diagram representing four special processes for an ideal monatomic gas.

Table 19-4 Four Special Processes
\begin{tabular}{clll}
\hline & & \multicolumn{1}{c}{ Some Special Results } \\
\cline { 3 - 3 } Path in Fig. 19-16 & Constant Quantity & Process Type & \(\left(\Delta E_{\text {int }}=Q-W\right.\) and \(\Delta E_{\text {int }}=n C_{V} \Delta T\) for all paths \()\) \\
\hline 1 & \(p\) & Isobaric & \(Q=n C_{p} \Delta T ; W=p \Delta V\) \\
2 & \(T\) & Isothermal & \(Q=W=n R T \ln \left(V_{f} / V_{i}\right) ; \Delta E_{\text {int }}=0\) \\
3 & \(p V^{\gamma}, T V^{\gamma-1}\) & Adiabatic & \(Q=0 ; W=-\Delta E_{\text {int }}\) \\
4 & \(V\) & Isochoric & \(Q=\Delta E_{\text {int }}=n C_{V} \Delta T ; W=0\)
\end{tabular}

\section*{PLUS}

Additional examples, video, and practice available at WileyPLUS

\section*{Beview \& Summary}

Kinetic Theory of Gases The kinetic theory of gases relates the macroscopic properties of gases (for example, pressure and temperature) to the microscopic properties of gas molecules (for example, speed and kinetic energy).

Avogadro's Number One mole of a substance contains \(N_{\mathrm{A}}\) (Avogadro's number) elementary units (usually atoms or molecules), where \(N_{\mathrm{A}}\) is found experimentally to be
\[
\begin{equation*}
N_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1} \quad \text { (Avogadro's number). } \tag{19-1}
\end{equation*}
\]

One molar mass \(M\) of any substance is the mass of one mole of the substance. It is related to the mass \(m\) of the individual molecules of the substance by
\[
\begin{equation*}
M=m N_{\mathrm{A}} . \tag{19-4}
\end{equation*}
\]

The number of moles \(n\) contained in a sample of mass \(M_{\text {sam }}\), consisting of \(N\) molecules, is given by
\[
\begin{equation*}
n=\frac{N}{N_{\mathrm{A}}}=\frac{M_{\mathrm{sam}}}{M}=\frac{M_{\mathrm{sam}}}{m N_{\mathrm{A}}} . \tag{19-2,19-3}
\end{equation*}
\]

Ideal Gas An ideal gas is one for which the pressure \(p\), volume \(V\), and temperature \(T\) are related by
\[
\begin{equation*}
p V=n R T \quad \text { (ideal gas law) } \tag{19-5}
\end{equation*}
\]

Here \(n\) is the number of moles of the gas present and \(R\) is a constant ( \(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}\) ) called the gas constant. The ideal gas law can also be written as
\[
\begin{equation*}
p V=N k T \tag{19-9}
\end{equation*}
\]
where the Boltzmann constant \(k\) is
\[
\begin{equation*}
k=\frac{R}{N_{\mathrm{A}}}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \tag{19-7}
\end{equation*}
\]

Work in an Isothermal Volume Change The work done by an ideal gas during an isothermal (constant-temperature) change from volume \(V_{i}\) to volume \(V_{f}\) is
\[
\begin{equation*}
W=n R T \ln \frac{V_{f}}{V_{i}} \quad \text { (ideal gas, isothermal process). } \tag{19-14}
\end{equation*}
\]

Pressure, Temperature, and Molecular Speed The pressure exerted by \(n\) moles of an ideal gas, in terms of the speed of its molecules, is
\[
\begin{equation*}
p=\frac{n M v_{\mathrm{rms}}^{2}}{3 V} \tag{19-21}
\end{equation*}
\]
where \(v_{\text {rms }}=\sqrt{\left(v^{2}\right)_{\text {avg }}}\) is the root-mean-square speed of the molecules of the gas. With Eq. 19-5 this gives
\[
\begin{equation*}
v_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M}} \tag{19-22}
\end{equation*}
\]

Temperature and Kinetic Energy The average translational kinetic energy \(K_{\text {avg }}\) per molecule of an ideal gas is
\[
\begin{equation*}
K_{\mathrm{avg}}=\frac{3}{2} k T \tag{19-24}
\end{equation*}
\]

Mean Free Path The mean free path \(\lambda\) of a gas molecule is its average path length between collisions and is given by
\[
\begin{equation*}
\lambda=\frac{1}{\sqrt{2} \pi d^{2} N / V} \tag{19-25}
\end{equation*}
\]
where \(N / V\) is the number of molecules per unit volume and \(d\) is the molecular diameter.

Maxwell Speed Distribution The Maxwell speed distribution \(P(v)\) is a function such that \(P(v) d v\) gives the fraction of molecules with speeds in the interval \(d v\) at speed \(v\) :
\[
\begin{equation*}
P(v)=4 \pi\left(\frac{M}{2 \pi R T}\right)^{3 / 2} v^{2} e^{-M v^{2} / 2 R T} \tag{19-27}
\end{equation*}
\]

Three measures of the distribution of speeds among the molecules of
a gas are
\[
\begin{align*}
v_{\mathrm{avg}} & =\sqrt{\frac{8 R T}{\pi M}} \quad(\text { average speed })  \tag{19-31}\\
v_{P} & =\sqrt{\frac{2 R T}{M}} \quad(\text { most probable speed }) \tag{19-35}
\end{align*}
\]
and the rms speed defined above in Eq. 19-22.
Molar Specific Heats The molar specific heat \(C_{V}\) of a gas at constant volume is defined as
\[
\begin{equation*}
C_{V}=\frac{Q}{n \Delta T}=\frac{\Delta E_{\mathrm{int}}}{n \Delta T} \tag{19-39,19-41}
\end{equation*}
\]
in which \(Q\) is the energy transferred as heat to or from a sample of \(n\) moles of the gas, \(\Delta T\) is the resulting temperature change of the gas, and \(\Delta E_{\text {int }}\) is the resulting change in the internal energy of the gas. For an ideal monatomic gas,
\[
\begin{equation*}
C_{V}=\frac{3}{2} R=12.5 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K} \tag{19-43}
\end{equation*}
\]

The molar specific heat \(C_{p}\) of a gas at constant pressure is defined to be
\[
\begin{equation*}
C_{p}=\frac{Q}{n \Delta T} \tag{19-46}
\end{equation*}
\]
in which \(Q, n\), and \(\Delta T\) are defined as above. \(C_{p}\) is also given by
\[
\begin{equation*}
C_{p}=C_{V}+R \tag{19-49}
\end{equation*}
\]

For \(n\) moles of an ideal gas,
\[
\begin{equation*}
E_{\text {int }}=n C_{V} T \quad \text { (ideal gas) } \tag{19-44}
\end{equation*}
\]

If \(n\) moles of a confined ideal gas undergo a temperature change \(\Delta T\) due to any process, the change in the internal energy of the gas is
\[
\begin{equation*}
\Delta E_{\mathrm{int}}=n C_{V} \Delta T \quad \text { (ideal gas, any process) } \tag{19-45}
\end{equation*}
\]

Degrees of Freedom and \(\boldsymbol{C}_{\boldsymbol{V}}\) The equipartition of energy theorem states that every degree of freedom of a molecule has an energy \(\frac{1}{2} k T\) per molecule \(\left(=\frac{1}{2} R T\right.\) per mole \()\). If \(f\) is the number of degrees of freedom, then \(E_{\text {int }}=(f / 2) n R T\) and
\[
\begin{equation*}
C_{V}=\left(\frac{f}{2}\right) R=4.16 f \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K} \tag{19-51}
\end{equation*}
\]

For monatomic gases \(f=3\) (three translational degrees); for diatomic gases \(f=5\) (three translational and two rotational degrees).

Adiabatic Process When an ideal gas undergoes an adiabatic volume change (a change for which \(Q=0\) ),
\[
\begin{equation*}
p V^{\gamma}=\text { a constant } \quad \text { (adiabatic process) } \tag{19-53}
\end{equation*}
\]
in which \(\gamma\left(=C_{p} / C_{V}\right)\) is the ratio of molar specific heats for the gas. For a free expansion, however, \(p V=\) a constant.

\section*{Questions}

1 For four situations for an ideal gas, the table gives the energy transferred to or from the gas as heat \(Q\) and either the work \(W\) done by the gas or the
\begin{tabular}{l|cccc} 
& \(a\) & \(b\) & \(c\) & \(d\) \\
\(Q\) & \begin{tabular}{rrr}
-50 & +35 & -15 \\
\hline & +20 \\
\(W\) & -50 & +35
\end{tabular} \\
\(W_{\text {on }}\) & \multicolumn{4}{c}{\(-40+40\)}
\end{tabular} work \(W_{\text {on }}\) done on the gas, all in joules. Rank the four situations in terms of the temperature change of the gas, most positive first.

2 In the \(p-V\) diagram of Fig. 19-17, the gas does 5 J of work when taken along isotherm \(a b\) and 4 J when taken along adiabat \(b c\). What is the change

Figure 19-17 Question 2.

in the internal energy of the gas when it is taken along the straight path from \(a\) to \(c\) ?
3 For a temperature increase of \(\Delta T_{1}\), a certain amount of an ideal gas requires 30 J when heated at constant volume and 50 J when heated at constant pressure. How much work is done by the gas in the second situation?

4 The dot in Fig. 19-18a represents the initial state of a gas, and the vertical line through the dot divides the \(p\) - \(V\) diagram into regions 1 and 2. For the following processes, determine whether the work \(W\) done by the gas is positive, negative, or zero: (a) the gas moves up along the vertical line, (b) it moves down along the vertical line, (c) it moves to anywhere in region 1, and (d) it moves to anywhere in region 2.


Figure 19-18 Questions 4, 6, and 8 .
5 A certain amount of energy is to be transferred as heat to 1 mol of a monatomic gas (a) at constant pressure and (b) at constant volume, and to 1 mol of a diatomic gas (c) at constant pressure and (d) at constant volume. Figure \(19-19\) shows four paths from an initial point to four


Figure 19-19 Question 5.
final points on a \(p-V\) diagram for the two gases. Which path goes with which process? (e) Are the molecules of the diatomic gas rotating?
6 The dot in Fig. 19-18b represents the initial state of a gas, and the isotherm through the dot divides the \(p-V\) diagram into regions 1 and 2 . For the following processes, determine whether the change \(\Delta E_{\text {int }}\) in the internal energy of the gas is positive, negative, or zero: (a) the gas moves up along the isotherm, (b) it moves down along the isotherm, (c) it moves to anywhere in region 1, and (d) it moves to anywhere in region 2.
7 (a) Rank the four paths of Fig. 19-16 according to the work done by the gas, greatest first. (b) Rank paths 1, 2, and 3 according to the change in the internal energy of the gas, most positive first and most negative last.
8 The dot in Fig. 19-18c represents the initial state of a gas, and the adiabat through the dot divides the \(p\) - \(V\) diagram into regions 1 and 2. For the following processes, determine whether the corresponding heat \(Q\) is positive, negative, or zero: (a) the gas moves up along the adiabat, (b) it moves down along the adiabat, (c) it moves to anywhere in region 1, and (d) it moves to anywhere in region 2.
9 An ideal diatomic gas, with molecular rotation but without any molecular oscillation, loses a certain amount of energy as heat \(Q\). Is the resulting decrease in the internal energy of the gas greater if the loss occurs in a constant-volume process or in a constant-pressure process?
10 Does the temperature of an ideal gas increase, decrease, or stay the same during (a) an isothermal expansion, (b) an expansion at constant pressure, (c) an adiabatic expansion, and (d) an increase in pressure at constant volume?

\section*{Problems}
```

Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign
SSM Worked-out solution available in Student Solutions Manual WWW Worked-out solution is at
-- Number of dots indicates level of problem difficulty ILW Interactive solution is at
http://www.wiley.com/college/halliday
Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

```

\section*{Module 19-1 Avogadro's Number}
\(\bullet 1\) Find the mass in kilograms of \(7.50 \times 10^{24}\) atoms of arsenic, which has a molar mass of \(74.9 \mathrm{~g} / \mathrm{mol}\).
-2 Gold has a molar mass of \(197 \mathrm{~g} / \mathrm{mol}\). (a) How many moles of gold are in a 2.50 g sample of pure gold? (b) How many atoms are in the sample?

\section*{Module 19-2 Ideal Gases}
-3 SSM Oxygen gas having a volume of \(1000 \mathrm{~cm}^{3}\) at \(40.0^{\circ} \mathrm{C}\) and \(1.01 \times 10^{5} \mathrm{~Pa}\) expands until its volume is \(1500 \mathrm{~cm}^{3}\) and its pressure is \(1.06 \times 10^{5} \mathrm{~Pa}\). Find (a) the number of moles of oxygen present and (b) the final temperature of the sample.
-4 A quantity of ideal gas at \(10.0^{\circ} \mathrm{C}\) and 100 kPa occupies a volume of \(2.50 \mathrm{~m}^{3}\). (a) How many moles of the gas are present? (b) If the pressure is now raised to 300 kPa and the temperature is raised to \(30.0^{\circ} \mathrm{C}\), how much volume does the gas occupy? Assume no leaks.
-5 The best laboratory vacuum has a pressure of about \(1.00 \times\) \(10^{-18} \mathrm{~atm}\), or \(1.01 \times 10^{-13} \mathrm{~Pa}\). How many gas molecules are there per cubic centimeter in such a vacuum at 293 K ?
-6 Water bottle in a hot car. In the American Southwest, the temperature in a closed car parked in sunlight during the summer can be high enough to burn flesh. Suppose a bottle of water at a refrigerator temperature of \(5.00^{\circ} \mathrm{C}\) is opened, then closed, and then left in a closed car with an internal temperature of \(75.0^{\circ} \mathrm{C}\). Neglecting the thermal expansion of the water and the bottle, find the pressure in the air pocket trapped in the bottle. (The pressure can be enough to push the bottle cap past the threads that are intended to keep the bottle closed.)
-7 Suppose 1.80 mol of an ideal gas is taken from a volume of \(3.00 \mathrm{~m}^{3}\) to a volume of \(1.50 \mathrm{~m}^{3}\) via an isothermal compression at \(30^{\circ} \mathrm{C}\). (a) How much energy is transferred as heat during the compression, and (b) is the transfer to or from the gas?
-8 Compute (a) the number of moles and (b) the number of molecules in \(1.00 \mathrm{~cm}^{3}\) of an ideal gas at a pressure of 100 Pa and a temperature of 220 K .
-9 An automobile tire has a volume of \(1.64 \times 10^{-2} \mathrm{~m}^{3}\) and contains air at a gauge pressure (pressure above atmospheric pressure) of 165 kPa when the temperature is \(0.00^{\circ} \mathrm{C}\). What is the gauge
pressure of the air in the tires when its temperature rises to \(27.0^{\circ} \mathrm{C}\) and its volume increases to \(1.67 \times 10^{-2} \mathrm{~m}^{3}\) ? Assume atmospheric pressure is \(1.01 \times 10^{5} \mathrm{~Pa}\).
-10 A container encloses 2 mol of an ideal gas that has molar mass \(M_{1}\) and 0.5 mol of a second ideal gas that has molar mass \(M_{2}=3 M_{1}\). What fraction of the total pressure on the container wall is attributable to the second gas? (The kinetic theory explanation of pressure leads to the experimentally discovered law of partial pressures for a mixture of gases that do not react chemically: The total pressure exerted by the mixture is equal to the sum of the pressures that the several gases would exert separately if each were to occupy the vessel alone. The molecule-vessel collisions of one type would not be altered by the presence of another type.)
- 11 SSM ILW www Air that initially occupies \(0.140 \mathrm{~m}^{3}\) at a gauge pressure of 103.0 kPa is expanded isothermally to a pressure of 101.3 kPa and then cooled at constant pressure until it reaches its initial volume. Compute the work done by the air. (Gauge pressure is the difference between the actual pressure and atmospheric pressure.)
-12 © Submarine rescue. When the U.S. submarine Squalus became disabled at a depth of 80 m , a cylindrical chamber was lowered from a ship to rescue the crew. The chamber had a radius of 1.00 m and a height of 4.00 m , was open at the bottom, and held two rescuers. It slid along a guide cable that a diver had attached to a hatch on the submarine. Once the chamber reached the hatch and clamped to the hull, the crew could escape into the chamber. During the descent, air was released from tanks to prevent water from flooding the chamber. Assume that the interior air pressure matched the water pressure at depth \(h\) as given by \(p_{0}+\rho g h\), where \(p_{0}=1.000 \mathrm{~atm}\) is the surface pressure and \(\rho=1024 \mathrm{~kg} / \mathrm{m}^{3}\) is the density of seawater. Assume a surface temperature of \(20.0^{\circ} \mathrm{C}\) and a submerged water temperature of \(-30.0^{\circ} \mathrm{C}\). (a) What is the air volume in the chamber at the surface? (b) If air had not been released from the tanks, what would have been the air volume in the chamber at depth \(h=80.0 \mathrm{~m}\) ? (c) How many moles of air were needed to be released to maintain the original air volume in the chamber?
\(\bullet 13\) (so A sample of an ideal gas is taken through the cyclic process abca shown in Fig. 19-20. The scale of the vertical axis is set by \(p_{b}=7.5 \mathrm{kPa}\) and \(p_{a c}=2.5 \mathrm{kPa}\). At point \(a, T=200 \mathrm{~K}\). (a) How many moles of gas are in the sample? What are (b) the temperature of the gas at point \(b\), (c) the temperature of the gas at point \(c\), and (d) the net energy added to the gas as heat


Figure 19-20 Problem 13. during the cycle?
-•14 In the temperature range 310 K to 330 K , the pressure \(p\) of a certain nonideal gas is related to volume \(V\) and temperature \(T\) by
\[
p=(24.9 \mathrm{~J} / \mathrm{K}) \frac{T}{V}-\left(0.00662 \mathrm{~J} / \mathrm{K}^{2}\right) \frac{T^{2}}{V} .
\]

How much work is done by the gas if its temperature is raised from 315 K to 325 K while the pressure is held constant?
-•15 Suppose 0.825 mol of an ideal gas undergoes an isothermal expansion as energy is added to it as heat \(Q\). If Fig. 19-21 shows the final volume \(V_{f}\) versus \(Q\), what is the gas temperature? The scale of
the vertical axis is set by \(V_{f s}=0.30 \mathrm{~m}^{3}\), and the scale of the horizontal axis is set by \(Q_{s}=1200 \mathrm{~J}\).


Figure 19-21 Problem 15.
-0016 An air bubble of volume \(20 \mathrm{~cm}^{3}\) is at the bottom of a lake 40 m deep, where the temperature is \(4.0^{\circ} \mathrm{C}\). The bubble rises to the surface, which is at a temperature of \(20^{\circ} \mathrm{C}\). Take the temperature of the bubble's air to be the same as that of the surrounding water. Just as the bubble reaches the surface, what is its volume?
\(\because 0017\) ©0 Container A in Fig. 19-22 holds an ideal gas at a pressure of \(5.0 \times 10^{5} \mathrm{~Pa}\) and a temperature of 300 K . It is connected by a thin tube (and a closed valve) to container B, with four times the volume of A . Container B holds the same ideal gas at a pressure of \(1.0 \times 10^{5} \mathrm{~Pa}\) and


Figure 19-22 Problem 17. a temperature of 400 K . The valve is opened to allow the pressures to equalize, but the temperature of each container is maintained. What then is the pressure?

\section*{Module 19-3 Pressure, Temperature, and RMS Speed}
-18 The temperature and pressure in the Sun's atmosphere are \(2.00 \times 10^{6} \mathrm{~K}\) and 0.0300 Pa . Calculate the rms speed of free electrons (mass \(9.11 \times 10^{-31} \mathrm{~kg}\) ) there, assuming they are an ideal gas.
-19 (a) Compute the rms speed of a nitrogen molecule at \(20.0^{\circ} \mathrm{C}\). The molar mass of nitrogen molecules \(\left(\mathrm{N}_{2}\right)\) is given in Table 19-1. At what temperatures will the rms speed be (b) half that value and (c) twice that value?
-20 Calculate the rms speed of helium atoms at 1000 K. See Appendix F for the molar mass of helium atoms.
\(\cdot 21\) SSM The lowest possible temperature in outer space is 2.7 K . What is the rms speed of hydrogen molecules at this temperature? (The molar mass is given in Table 19-1.)
-22 Find the rms speed of argon atoms at 313 K. See Appendix F for the molar mass of argon atoms.
\(\bullet 23\) A beam of hydrogen molecules \(\left(\mathrm{H}_{2}\right)\) is directed toward a wall, at an angle of \(55^{\circ}\) with the normal to the wall. Each molecule in the beam has a speed of \(1.0 \mathrm{~km} / \mathrm{s}\) and a mass of \(3.3 \times 10^{-24} \mathrm{~g}\). The beam strikes the wall over an area of \(2.0 \mathrm{~cm}^{2}\), at the rate of \(10^{23}\) molecules per second. What is the beam's pressure on the wall?
\(\bullet 24\) At 273 K and \(1.00 \times 10^{-2} \mathrm{~atm}\), the density of a gas is \(1.24 \times\) \(10^{-5} \mathrm{~g} / \mathrm{cm}^{3}\). (a) Find \(v_{\mathrm{rms}}\) for the gas molecules. (b) Find the molar mass of the gas and (c) identify the gas. See Table 19-1.

\section*{Module 19-4 Translational Kinetic Energy}
-25 Determine the average value of the translational kinetic energy of the molecules of an ideal gas at temperatures (a) \(0.00^{\circ} \mathrm{C}\)
and (b) \(100^{\circ} \mathrm{C}\). What is the translational kinetic energy per mole of an ideal gas at (c) \(0.00^{\circ} \mathrm{C}\) and (d) \(100^{\circ} \mathrm{C}\) ?
-26 What is the average translational kinetic energy of nitrogen molecules at 1600 K ?
\(\bullet 27\) Water standing in the open at \(32.0^{\circ} \mathrm{C}\) evaporates because of the escape of some of the surface molecules. The heat of vaporization ( \(539 \mathrm{cal} / \mathrm{g}\) ) is approximately equal to \(\varepsilon n\), where \(\varepsilon\) is the average energy of the escaping molecules and \(n\) is the number of molecules per gram. (a) Find \(\varepsilon\). (b) What is the ratio of \(\varepsilon\) to the average kinetic energy of \(\mathrm{H}_{2} \mathrm{O}\) molecules, assuming the latter is related to temperature in the same way as it is for gases?

\section*{Module 19-5 Mean Free Path}
-28 At what frequency would the wavelength of sound in air be equal to the mean free path of oxygen molecules at 1.0 atm pressure and \(0.00^{\circ} \mathrm{C}\) ? The molecular diameter is \(3.0 \times 10^{-8} \mathrm{~cm}\).
-29 SSm The atmospheric density at an altitude of 2500 km is about 1 molecule \(/ \mathrm{cm}^{3}\). (a) Assuming the molecular diameter of \(2.0 \times 10^{-8} \mathrm{~cm}\), find the mean free path predicted by Eq. 19-25. (b) Explain whether the predicted value is meaningful.
-30 The mean free path of nitrogen molecules at \(0.0^{\circ} \mathrm{C}\) and 1.0 atm is \(0.80 \times 10^{-5} \mathrm{~cm}\). At this temperature and pressure there are \(2.7 \times 10^{19}\) molecules \(/ \mathrm{cm}^{3}\). What is the molecular diameter?
-031 In a certain particle accelerator, protons travel around a circular path of diameter 23.0 m in an evacuated chamber, whose residual gas is at 295 K and \(1.00 \times 10^{-6}\) torr pressure. (a) Calculate the number of gas molecules per cubic centimeter at this pressure. (b) What is the mean free path of the gas molecules if the molecular diameter is \(2.00 \times 10^{-8} \mathrm{~cm}\) ?
-32 At \(20^{\circ} \mathrm{C}\) and 750 torr pressure, the mean free paths for argon gas ( Ar ) and nitrogen gas \(\left(\mathrm{N}_{2}\right)\) are \(\lambda_{\mathrm{Ar}}=9.9 \times 10^{-6} \mathrm{~cm}\) and \(\lambda_{\mathrm{N}_{2}}=\) \(27.5 \times 10^{-6} \mathrm{~cm}\). (a) Find the ratio of the diameter of an Ar atom to that of an \(\mathrm{N}_{2}\) molecule. What is the mean free path of argon at (b) \(20^{\circ} \mathrm{C}\) and 150 torr, and (c) \(-40^{\circ} \mathrm{C}\) and 750 torr?

\section*{Module 19-6 The Distribution of Molecular Speeds}
-33 SSM The speeds of 10 molecules are \(2.0,3.0,4.0, \ldots, 11 \mathrm{~km} / \mathrm{s}\). What are their (a) average speed and (b) rms speed?
-34 The speeds of 22 particles are as follows ( \(N_{i}\) represents the number of particles that have speed \(v_{i}\) ):
\begin{tabular}{lccccc}
\hline\(N_{i}\) & 2 & 4 & 6 & 8 & 2 \\
\(v_{i}(\mathrm{~cm} / \mathrm{s})\) & 1.0 & 2.0 & 3.0 & 4.0 & 5.0 \\
\hline
\end{tabular}

What are (a) \(v_{\text {avg }}\), (b) \(v_{\text {rms }}\), and (c) \(v_{P}\) ?
-35 Ten particles are moving with the following speeds: four at \(200 \mathrm{~m} / \mathrm{s}\), two at \(500 \mathrm{~m} / \mathrm{s}\), and four at \(600 \mathrm{~m} / \mathrm{s}\). Calculate their (a) average and (b) rms speeds. (c) Is \(v_{\text {rms }}>v_{\text {avg }}\) ?
\(\bullet 36\) The most probable speed of the molecules in a gas at temperature \(T_{2}\) is equal to the rms speed of the molecules at temperature \(T_{1}\). Find \(T_{2} / T_{1}\).
-•37 SSM www Figure 19-23 shows a hypothetical speed distribution for a sample of \(N\) gas particles (note that \(P(v)=0\) for speed \(v>2 v_{0}\) ). What are the values of (a) \(a v_{0}\), (b) \(v_{\text {avg }} / v_{0}\), and (c) \(v_{\mathrm{rms}} / v_{0}\) ? (d) What fraction of the particles has a speed between \(1.5 v_{0}\) and \(2.0 v_{0}\) ?


Figure 19-23 Problem 37.
-038 Figure 19-24 gives the probability distribution for nitrogen gas. The scale of the horizontal axis is set by \(v_{s}=1200 \mathrm{~m} / \mathrm{s}\). What are the (a) gas temperature and (b) rms speed of the molecules?


Figure 19-24 Problem 38.
-•39 At what temperature does the rms speed of (a) \(\mathrm{H}_{2}\) (molecular hydrogen) and (b) \(\mathrm{O}_{2}\) (molecular oxygen) equal the escape speed from Earth (Table 13-2)? At what temperature does the rms speed of (c) \(\mathrm{H}_{2}\) and (d) \(\mathrm{O}_{2}\) equal the escape speed from the Moon (where the gravitational acceleration at the surface has magnitude 0.16 g )? Considering the answers to parts (a) and (b), should there be much (e) hydrogen and (f) oxygen high in Earth's upper atmosphere, where the temperature is about 1000 K ?
\(\bullet 40\) Two containers are at the same temperature. The first contains gas with pressure \(p_{1}\), molecular mass \(m_{1}\), and rms speed \(v_{\text {rms }}\). The second contains gas with pressure \(2.0 p_{1}\), molecular mass \(m_{2}\), and average speed \(v_{\text {avg } 2}=2.0 v_{\text {rms1 }}\). Find the mass ratio \(m_{1} / m_{2}\).
\(\bullet 41\) A hydrogen molecule (diameter \(1.0 \times 10^{-8} \mathrm{~cm}\) ), traveling at the rms speed, escapes from a 4000 K furnace into a chamber containing cold argon atoms (diameter \(3.0 \times 10^{-8} \mathrm{~cm}\) ) at a density of \(4.0 \times 10^{19} \mathrm{atoms} / \mathrm{cm}^{3}\). (a) What is the speed of the hydrogen molecule? (b) If it collides with an argon atom, what is the closest their centers can be, considering each as spherical? (c) What is the initial number of collisions per second experienced by the hydrogen molecule? (Hint:Assume that the argon atoms are stationary. Then the mean free path of the hydrogen molecule is given by Eq. 19-26 and not Eq. 19-25.)

\section*{Module 19-7 The Molar Specific Heats of an Ideal Gas}
-42 What is the internal energy of 1.0 mol of an ideal monatomic gas at 273 K ?
-०43 ©0 The temperature of 3.00 mol of an ideal diatomic gas is increased by \(40.0 \mathrm{C}^{\circ}\) without the pressure of the gas changing. The molecules in the gas rotate but do not oscillate. (a) How much energy is transferred to the gas as heat? (b) What is the change in the internal energy of the gas? (c) How much work is done by the gas? (d) By how much does the rotational kinetic energy of the gas increase?
-044 (6) One mole of an ideal diatomic gas goes from \(a\) to \(c\) along the diagonal path in Fig. 19-25. The scale of the vertical axis is set by \(p_{a b}=\) 5.0 kPa and \(p_{c}=2.0 \mathrm{kPa}\), and the scale of the horizontal axis is set by \(V_{b c}=\) \(4.0 \mathrm{~m}^{3}\) and \(V_{a}=2.0 \mathrm{~m}^{3}\). During the transition, (a) what is the change in internal energy of the gas, and (b) how


Figure 19-25 Problem 44.
much energy is added to the gas as heat? (c) How much heat is required if the gas goes from \(a\) to \(c\) along the indirect path \(a b c\) ?
\(\bullet 45\) ILW The mass of a gas molecule can be computed from its specific heat at constant volume \(c_{V}\). (Note that this is not \(C_{V}\).) Take \(c_{V}=0.075 \mathrm{cal} / \mathrm{g} \cdot \mathrm{C}^{\circ}\) for argon and calculate (a) the mass of an argon atom and (b) the molar mass of argon.
-•46 Under constant pressure, the temperature of 2.00 mol of an ideal monatomic gas is raised 15.0 K . What are (a) the work \(W\) done by the gas, (b) the energy transferred as heat \(Q\), (c) the change \(\Delta E_{\text {int }}\) in the internal energy of the gas, and (d) the change \(\Delta K\) in the average kinetic energy per atom?
-०47 The temperature of 2.00 mol of an ideal monatomic gas is raised 15.0 K at constant volume. What are (a) the work \(W\) done by the gas, (b) the energy transferred as heat \(Q\), (c) the change \(\Delta E_{\text {int }}\) in the internal energy of the gas, and (d) the change \(\Delta K\) in the average kinetic energy per atom?
-048 60 When 20.9 J was added as heat to a particular ideal gas, the volume of the gas changed from \(50.0 \mathrm{~cm}^{3}\) to \(100 \mathrm{~cm}^{3}\) while the pressure remained at 1.00 atm . (a) By how much did the internal energy of the gas change? If the quantity of gas present was \(2.00 \times\) \(10^{-3} \mathrm{~mol}\), find (b) \(C_{p}\) and (c) \(C_{V}\).
-•49 SSM A container holds a mixture of three nonreacting gases: 2.40 mol of gas 1 with \(C_{V 1}=12.0 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}, 1.50 \mathrm{~mol}\) of gas 2 with \(C_{V 2}=12.8 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}\), and 3.20 mol of gas 3 with \(C_{V 3}=20.0 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}\). What is \(C_{V}\) of the mixture?

Module 19-8 Degrees of Freedom and Molar Specific Heats -50 We give 70 J as heat to a diatomic gas, which then expands at constant pressure. The gas molecules rotate but do not oscillate. By how much does the internal energy of the gas increase?
- 51 ILW When 1.0 mol of oxygen \(\left(\mathrm{O}_{2}\right)\) gas is heated at constant pressure starting at \(0^{\circ} \mathrm{C}\), how much energy must be added to the gas as heat to double its volume? (The molecules rotate but do not oscillate.)
-55 ©0 Suppose 12.0 g of oxygen \(\left(\mathrm{O}_{2}\right)\) gas is heated at constant atmospheric pressure from \(25.0^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\). (a) How many moles of oxygen are present? (See Table 19-1 for the molar mass.) (b) How much energy is transferred to the oxygen as heat? (The molecules rotate but do not oscillate.) (c) What fraction of the heat is used to raise the internal energy of the oxygen?
\(\bullet 53\) SSM Www Suppose 4.00 mol of an ideal diatomic gas, with molecular rotation but not oscillation, experienced a temperature increase of 60.0 K under constant-pressure conditions. What are (a) the energy transferred as heat \(Q\),(b) the change \(\Delta E_{\text {int }}\) in internal energy of the gas, (c) the work \(W\) done by the gas, and (d) the change \(\Delta K\) in the total translational kinetic energy of the gas?

\section*{Module 19-9 The Adiabatic Expansion of an Ideal Gas}
- 54 We know that for an adiabatic process \(p V^{\gamma}=\) a constant. Evaluate "a constant" for an adiabatic process involving exactly 2.0 mol of an ideal gas passing through the state having exactly \(p=1.0 \mathrm{~atm}\) and \(T=300 \mathrm{~K}\). Assume a diatomic gas whose molecules rotate but do not oscillate.
-55 A certain gas occupies a volume of 4.3 L at a pressure of 1.2 atm and a temperature of 310 K . It is compressed adiabatically to a volume of 0.76 L . Determine (a) the final pressure and (b) the final temperature, assuming the gas to be an ideal gas for which \(\gamma=1\).4.
- 56 Suppose 1.00 L of a gas with \(\gamma=1.30\), initially at 273 K and 1.00 atm , is suddenly compressed adiabatically to half its initial volume. Find its final (a) pressure and (b) temperature. (c) If the gas is then cooled to 273 K at constant pressure, what is its final volume?
\(\because 57\) The volume of an ideal gas is adiabatically reduced from 200 L to 74.3 L . The initial pressure and temperature are 1.00 atm and 300 K . The final pressure is 4.00 atm . (a) Is the gas monatomic, diatomic, or polyatomic? (b) What is the final temperature? (c) How many moles are in the gas?
-058 Opening champagne. In a bottle of champagne, the pocket of gas (primarily carbon dioxide) between the liquid and the cork is at pressure of \(p_{i}=5.00 \mathrm{~atm}\). When the cork is pulled from the bottle, the gas undergoes an adiabatic expansion until its pressure matches the ambient air pressure of 1.00 atm . Assume that the ratio of the molar specific heats is \(\gamma=\frac{4}{3}\). If the gas has initial temperature \(T_{i}=5.00^{\circ} \mathrm{C}\), what is its temperature at the end of the adiabatic expansion?
\(\because 59\) © Figure 19-26 shows two paths that may be taken by a gas from an initial point \(i\) to a final point \(f\). Path 1 consists of an isothermal expansion (work is 50 J in magnitude), an adiabatic expansion (work is 40 J in magnitude), an isothermal compression (work is 30 J in magnitude), and then an adiabatic compression (work is 25 J in magnitude). What is the change in the internal energy of the gas if the gas goes from point \(i\) to point \(f\) along path 2 ?


Figure 19-26 Problem 59.
-060 Ad Adiabatic wind. The normal airflow over the Rocky Mountains is west to east. The air loses much of its moisture content and is chilled as it climbs the western side of the mountains. When it descends on the eastern side, the increase in pressure toward lower altitudes causes the temperature to increase. The flow, then called a chinook wind, can rapidly raise the air temperature at the base of the mountains. Assume that the air pressure \(p\) depends on altitude \(y\) according to \(p=p_{0} \exp (-a y)\), where \(p_{0}=\) 1.00 atm and \(a=1.16 \times 10^{-4} \mathrm{~m}^{-1}\). Also assume that the ratio of the molar specific heats is \(\gamma=\frac{4}{3}\). A parcel of air with an initial temperature of \(-5.00^{\circ} \mathrm{C}\) descends adiabatically from \(y_{1}=4267 \mathrm{~m}\) to \(y=1567 \mathrm{~m}\). What is its temperature at the end of the descent?
\(\bullet 61\) © A gas is to be expanded from initial state \(i\) to final state \(f\) along either path 1 or path 2 on a \(p-V\) diagram. Path 1 consists of three steps: an isothermal expansion (work is 40 J in magnitude), an adiabatic expansion (work is 20 J in magnitude), and another isothermal expansion (work is 30 J in magnitude). Path 2 consists of two steps: a pressure reduction at constant volume and an expansion at constant pressure. What is the change in the internal energy of the gas along path 2 ?
~0062 (60 An ideal diatomic gas, with rotation but no oscillation, undergoes an adiabatic compression. Its initial pressure and volume are
1.20 atm and \(0.200 \mathrm{~m}^{3}\). Its final pressure is 2.40 atm . How much work is done by the gas?
©0063 Figure 19-27 shows a cycle undergone by 1.00 mol of an ideal monatomic gas. The temperatures are \(T_{1}=300 \mathrm{~K}, T_{2}=600 \mathrm{~K}\), and \(T_{3}=455\) K . For \(1 \rightarrow 2\), what are (a) heat \(Q\), (b) the change in internal energy \(\Delta E_{\text {int }}\), and (c) the work done \(W\) ? For \(2 \rightarrow 3\), what are (d) \(Q\), (e) \(\Delta E_{\text {int }}\), and (f) \(W\) ?


Figure 19-27 Problem 63. For \(3 \rightarrow 1\), what are \((\mathrm{g}) Q\), (h) \(\Delta E_{\text {int }}\), and (i) \(W\) ? For the full cycle, what are (j) \(Q\), (k) \(\Delta E_{\text {int }}\), and (l) \(W\) ? The initial pressure at point 1 is \(1.00 \mathrm{~atm}\left(=1.013 \times 10^{5} \mathrm{~Pa}\right)\). What are the \((\mathrm{m})\) volume and ( n ) pressure at point 2 and the ( o ) volume and ( p ) pressure at point 3 ?

\section*{Additional Problems}

64 Calculate the work done by an external agent during an isothermal compression of 1.00 mol of oxygen from a volume of 22.4 L at \(0^{\circ} \mathrm{C}\) and 1.00 atm to a volume of 16.8 L .

65 An ideal gas undergoes an adiabatic compression from \(p=1.0 \mathrm{~atm}, V=1.0 \times 10^{6} \mathrm{~L}, T=0.0^{\circ} \mathrm{C}\) to \(p=1.0 \times 10^{5} \mathrm{~atm}\), \(V=1.0 \times 10^{3} \mathrm{~L}\). (a) Is the gas monatomic, diatomic, or polyatomic? (b) What is its final temperature? (c) How many moles of gas are present? What is the total translational kinetic energy per mole (d) before and (e) after the compression? (f) What is the ratio of the squares of the rms speeds before and after the compression?
66 An ideal gas consists of 1.50 mol of diatomic molecules that rotate but do not oscillate. The molecular diameter is 250 pm . The gas is expanded at a constant pressure of \(1.50 \times 10^{5} \mathrm{~Pa}\), with a transfer of 200 J as heat. What is the change in the mean free path of the molecules?
67 An ideal monatomic gas initially has a temperature of 330 K and a pressure of 6.00 atm . It is to expand from volume \(500 \mathrm{~cm}^{3}\) to volume \(1500 \mathrm{~cm}^{3}\). If the expansion is isothermal, what are (a) the final pressure and (b) the work done by the gas? If, instead, the expansion is adiabatic, what are (c) the final pressure and (d) the work done by the gas?

68 In an interstellar gas cloud at 50.0 K , the pressure is \(1.00 \times 10^{-8} \mathrm{~Pa}\). Assuming that the molecular diameters of the gases in the cloud are all 20.0 nm , what is their mean free path?
69 ssm The envelope and basket of a hot-air balloon have a combined weight of 2.45 kN , and the envelope has a capacity (volume) of \(2.18 \times 10^{3} \mathrm{~m}^{3}\). When it is fully inflated, what should be the temperature of the enclosed air to give the balloon a lifting capacity (force) of 2.67 kN (in addition to the balloon's weight)? Assume that the surrounding air, at \(20.0^{\circ} \mathrm{C}\), has a weight per unit volume of \(11.9 \mathrm{~N} / \mathrm{m}^{3}\) and a molecular mass of \(0.028 \mathrm{~kg} / \mathrm{mol}\), and is at a pressure of 1.0 atm .
70 An ideal gas, at initial temperature \(T_{1}\) and initial volume \(2.0 \mathrm{~m}^{3}\), is expanded adiabatically to a volume of \(4.0 \mathrm{~m}^{3}\), then expanded isothermally to a volume of \(10 \mathrm{~m}^{3}\), and then compressed adiabatically back to \(T_{1}\). What is its final volume?
71 SSM The temperature of 2.00 mol of an ideal monatomic gas is raised 15.0 K in an adiabatic process. What are (a) the work \(W\) done by the gas, (b) the energy transferred as heat \(Q\), (c) the change \(\Delta E_{\text {int }}\) in internal energy of the gas, and (d) the change \(\Delta K\) in the average kinetic energy per atom?

72 At what temperature do atoms of helium gas have the same rms speed as molecules of hydrogen gas at \(20.0^{\circ} \mathrm{C}\) ? (The molar masses are given in Table 19-1.)
73 SSM At what frequency do molecules (diameter 290 pm ) collide in (an ideal) oxygen gas \(\left(\mathrm{O}_{2}\right)\) at temperature 400 K and pressure 2.00 atm ?

74 (a) What is the number of molecules per cubic meter in air at \(20^{\circ} \mathrm{C}\) and at a pressure of \(1.0 \mathrm{~atm}\left(=1.01 \times 10^{5} \mathrm{~Pa}\right) ?\) (b) What is the mass of \(1.0 \mathrm{~m}^{3}\) of this air? Assume that \(75 \%\) of the molecules are nitrogen \(\left(\mathrm{N}_{2}\right)\) and \(25 \%\) are oxygen \(\left(\mathrm{O}_{2}\right)\).
75 The temperature of 3.00 mol of a gas with \(C_{V}=6.00 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K}\) is to be raised 50.0 K . If the process is at constant volume, what are (a) the energy transferred as heat \(Q\), (b) the work \(W\) done by the gas, (c) the change \(\Delta E_{\text {int }}\) in internal energy of the gas, and (d) the change \(\Delta K\) in the total translational kinetic energy? If the process is at constant pressure, what are (e) \(Q\), (f) \(W\), (g) \(\Delta E_{\text {int }}\), and (h) \(\Delta K\) ? If the process is adiabatic, what are (i) \(Q,(\mathrm{j}) W\), (k) \(\Delta E_{\text {int }}\), and (l) \(\Delta K\) ?

76 During a compression at a constant pressure of 250 Pa , the volume of an ideal gas decreases from \(0.80 \mathrm{~m}^{3}\) to \(0.20 \mathrm{~m}^{3}\). The initial temperature is 360 K , and the gas loses 210 J as heat. What are (a) the change in the internal energy of the gas and (b) the final temperature of the gas?
77 ssm Figure 19-28 shows a hypothetical speed distribution for particles of a certain gas: \(P(v)=C v^{2}\) for \(0<v \leq v_{0}\) and \(P(v)=0\) for \(v>\) \(v_{0}\). Find (a) an expression for \(C\) in terms of \(v_{0}\), (b) the average speed of the particles, and (c) their rms speed.


Figure 19-28 Problem 77.

78 (a) An ideal gas initially at pressure \(p_{0}\) undergoes a free expansion until its volume is 3.00 times its initial volume. What then is the ratio of its pressure to \(p_{0}\) ? (b) The gas is next slowly and adiabatically compressed back to its original volume. The pressure after compression is \((3.00)^{1 / 3} p_{0}\). Is the gas monatomic, diatomic, or polyatomic? (c) What is the ratio of the average kinetic energy per molecule in this final state to that in the initial state?
79 SSM An ideal gas undergoes isothermal compression from an initial volume of \(4.00 \mathrm{~m}^{3}\) to a final volume of \(3.00 \mathrm{~m}^{3}\). There is 3.50 mol of the gas, and its temperature is \(10.0^{\circ} \mathrm{C}\). (a) How much work is done by the gas? (b) How much energy is transferred as heat between the gas and its environment?
80 Oxygen \(\left(\mathrm{O}_{2}\right)\) gas at 273 K and 1.0 atm is confined to a cubical container 10 cm on a side. Calculate \(\Delta U_{g} / K_{\text {avg }}\), where \(\Delta U_{g}\) is the change in the gravitational potential energy of an oxygen molecule falling the height of the box and \(K_{\text {avg }}\) is the molecule's average translational kinetic energy.
81 An ideal gas is taken through a complete cycle in three steps: adiabatic expansion with work equal to 125 J , isothermal contraction at 325 K , and increase in pressure at constant volume. (a) Draw a \(p-V\) diagram for the three steps. (b) How much energy is transferred as heat in step 3, and (c) is it transferred to or from the gas?
82 (a) What is the volume occupied by 1.00 mol of an ideal gas at standard conditions - that is, \(1.00 \mathrm{~atm}\left(=1.01 \times 10^{5} \mathrm{~Pa}\right)\) and 273 K? (b) Show that the number of molecules per cubic centimeter (the Loschmidt number) at standard conditions is \(2.69 \times 10^{9}\).

83 sSm A sample of ideal gas expands from an initial pressure
and volume of 32 atm and 1.0 L to a final volume of 4.0 L . The initial temperature is 300 K . If the gas is monatomic and the expansion isothermal, what are the (a) final pressure \(p_{f}\), (b) final temperature \(T_{f}\), and (c) work \(W\) done by the gas? If the gas is monatomic and the expansion adiabatic, what are (d) \(p_{f}\), (e) \(T_{f}\), and (f) \(W\) ? If the gas is diatomic and the expansion adiabatic, what are (g) \(p_{f}\), (h) \(T_{f}\), and (i) \(W\) ?

84 An ideal gas with 3.00 mol is initially in state 1 with pressure \(p_{1}=20.0 \mathrm{~atm}\) and volume \(V_{1}=1500 \mathrm{~cm}^{3}\). First it is taken to state 2 with pressure \(p_{2}=1.50 p_{1}\) and volume \(V_{2}=2.00 V_{1}\). Then it is taken to state 3 with pressure \(p_{3}=2.00 p_{1}\) and volume \(V_{3}=0.500 V_{1}\). What is the temperature of the gas in (a) state 1 and (b) state 2? (c) What is the net change in internal energy from state 1 to state 3?

85 A steel tank contains 300 g of ammonia gas \(\left(\mathrm{NH}_{3}\right)\) at a pressure of \(1.35 \times 10^{6} \mathrm{~Pa}\) and a temperature of \(77^{\circ} \mathrm{C}\). (a) What is the volume of the tank in liters? (b) Later the temperature is \(22^{\circ} \mathrm{C}\) and the pressure is \(8.7 \times 10^{5} \mathrm{~Pa}\). How many grams of gas have leaked out of the tank?

86 In an industrial process the volume of 25.0 mol of a monatomic ideal gas is reduced at a uniform rate from \(0.616 \mathrm{~m}^{3}\) to \(0.308 \mathrm{~m}^{3}\) in 2.00 h while its temperature is increased at a uniform rate from \(27.0^{\circ} \mathrm{C}\) to \(450^{\circ} \mathrm{C}\). Throughout the process, the gas passes through thermodynamic equilibrium states. What are (a) the cumulative work done on the gas, (b) the cumulative energy absorbed by the gas as heat, and (c) the molar specific heat for the process? (Hint: To evaluate the integral for the work, you might use
\[
\int \frac{a+b x}{A+B x} d x=\frac{b x}{B}+\frac{a B-b A}{B^{2}} \ln (A+B x),
\]
an indefinite integral.) Suppose the process is replaced with a twostep process that reaches the same final state. In step 1, the gas volume is reduced at constant temperature, and in step 2 the temperature is increased at constant volume. For this process, what are (d) the cumulative work done on the gas, (e) the cumulative energy absorbed by the gas as heat, and (f) the molar specific heat for the process?
87 Figure 19-29 shows a cycle consisting of five paths: \(A B\) is isothermal at \(300 \mathrm{~K}, B C\) is adiabatic with work \(=5.0 \mathrm{~J}, C D\) is at a constant pressure of \(5 \mathrm{~atm}, D E\) is isothermal, and \(E A\) is adiabatic with a change in internal energy of 8.0 J . What is the change in internal energy of the gas along path \(C D\) ?


Figure 19-29 Problem 87.
88 An ideal gas initially at 300 K is compressed at a constant pressure of \(25 \mathrm{~N} / \mathrm{m}^{2}\) from a volume of \(3.0 \mathrm{~m}^{3}\) to a volume of \(1.8 \mathrm{~m}^{3}\). In the process, 75 J is lost by the gas as heat. What are (a) the change in internal energy of the gas and (b) the final temperature of the gas?
89 A pipe of length \(L=25.0 \mathrm{~m}\) that is open at one end contains air at atmospheric pressure. It is thrust vertically into a freshwater lake
until the water rises halfway up in the pipe (Fig. 19-30). What is the depth \(h\) of the lower end of the pipe? Assume that the temperature is the same everywhere and does not change.

90 In a motorcycle engine, a piston is forced down toward


Figure 19-30 Problem 89. the crankshaft when the fuel in the top of the piston's cylinder undergoes combustion. The mixture of gaseous combustion products then expands adiabatically as the piston descends. Find the average power in (a) watts and (b) horsepower that is involved in this expansion when the engine is running at 4000 rpm , assuming that the gauge pressure immediately after combustion is 15 atm , the initial volume is \(50 \mathrm{~cm}^{3}\), and the volume of the mixture at the bottom of the stroke is \(250 \mathrm{~cm}^{3}\). Assume that the gases are diatomic and that the time involved in the expansion is one-half that of the total cycle.

91 For adiabatic processes in an ideal gas, show that (a) the bulk modulus is given by
\[
B=-V \frac{d p}{d V}=\gamma p,
\]
where \(\gamma=C_{p} / C_{V}\). (See Eq. 17-2.) (b) Then show that the speed of sound in the gas is
\[
v_{s}=\sqrt{\frac{\gamma p}{\rho}}=\sqrt{\frac{\gamma R T}{M}}
\]
where \(\rho\) is the density, \(T\) is the temperature, and \(M\) is the molar mass. (See Eq. 17-3.)
92 Air at \(0.000^{\circ} \mathrm{C}\) and 1.00 atm pressure has a density of \(1.29 \times 10^{-3}\) \(\mathrm{g} / \mathrm{cm}^{3}\), and the speed of sound is \(331 \mathrm{~m} / \mathrm{s}\) at that temperature. Compute the ratio \(\gamma\) of the molar specific heats of air. (Hint: See Problem 91.)
93 The speed of sound in different gases at a certain temperature \(T\) depends on the molar mass of the gases. Show that
\[
\frac{v_{1}}{v_{2}}=\sqrt{\frac{M_{2}}{M_{1}}},
\]
where \(v_{1}\) is the speed of sound in a gas of molar mass \(M_{1}\) and \(v_{2}\) is the speed of sound in a gas of molar mass \(M_{2}\). (Hint: See Problem 91.)
94 From the knowledge that \(C_{V}\), the molar specific heat at constant volume, for a gas in a container is 5.0 R , calculate the ratio of the speed of sound in that gas to the rms speed of the molecules, for gas temperature T. (Hint: See Problem 91.)
95 The molar mass of iodine is \(127 \mathrm{~g} / \mathrm{mol}\). When sound at frequency 1000 Hz is introduced to a tube of iodine gas at 400 K , an internal acoustic standing wave is set up with nodes separated by 9.57 cm . What is \(\gamma\) for the gas? (Hint: See Problem 91.)

96 For air near \(0^{\circ} \mathrm{C}\), by how much does the speed of sound increase for each increase in air temperature by \(1 \mathrm{C}^{\circ}\) ? (Hint: See Problem 91.)
97 Two containers are at the same temperature. The gas in the first container is at pressure \(p_{1}\) and has molecules with mass \(m_{1}\) and root-mean-square speed \(v_{\text {rms1 }}\). The gas in the second is at pressure \(2 p_{1}\) and has molecules with mass \(m_{2}\) and average speed \(v_{\text {avg } 2}=2 v_{\text {rms } 1}\). Find the ratio \(m_{1} / m_{2}\) of the masses of their molecules.

\title{
cmarrar zo Entropy and the Second Law of Thermodynamics
}

\section*{20-1 entropy}

\section*{Learning Objectives}

After reading this module, you should be able to ...
20.01 Identify the second law of thermodynamics: If a process occurs in a closed system, the entropy of the system increases for irreversible processes and remains constant for reversible processes; it never decreases.
20.02 Identify that entropy is a state function (the value for a particular state of the system does not depend on how that state is reached).
20.03 Calculate the change in entropy for a process by integrating the inverse of the temperature (in kelvins) with respect to the heat \(Q\) transferred during the process.
20.04 For a phase change with a constant temperature process, apply the relationship between the entropy change \(\Delta S\), the total transferred heat \(Q\), and the temperature \(T\) (in kelvins).
20.05 For a temperature change \(\Delta T\) that is small relative to the temperature \(T\), apply the relationship between the entropy change \(\Delta S\), the transferred heat \(Q\), and the average temperature \(T_{\text {avg }}\) (in kelvins).
20.06 For an ideal gas, apply the relationship between the entropy change \(\Delta S\) and the initial and final values of the pressure and volume.
20.07 Identify that if a process is an irreversible one, the integration for the entropy change must be done for a reversible process that takes the system between the same initial and final states as the irreversible process.
20.08 For stretched rubber, relate the elastic force to the rate at which the rubber's entropy changes with the change in the stretching distance.

\section*{Key Ideas}
- An irreversible process is one that cannot be reversed by means of small changes in the environment. The direction in which an irreversible process proceeds is set by the change in entropy \(\Delta S\) of the system undergoing the process. Entropy \(S\) is a state property (or state function) of the system; that is, it depends only on the state of the system and not on the way in which the system reached that state. The entropy postulate states (in part): If an irreversible process occurs in a closed system, the entropy of the system always increases.
- The entropy change \(\Delta S\) for an irreversible process that takes a system from an initial state \(i\) to a final state \(f\) is exactly equal to the entropy change \(\Delta S\) for any reversible process that takes the system between those same two states. We can compute the latter (but not the former) with
\[
\Delta S=S_{f}-S_{i}=\int_{i}^{f} \frac{d Q}{T}
\]

Here \(Q\) is the energy transferred as heat to or from the system during the process, and \(T\) is the temperature of the system in kelvins during the process.
- For a reversible isothermal process, the expression for an entropy change reduces to
\[
\Delta S=S_{f}-S_{i}=\frac{Q}{T} .
\]
- When the temperature change \(\Delta T\) of a system is small relative to the temperature (in kelvins) before and after the process, the entropy change can be approximated as
\[
\Delta S=S_{f}-S_{i} \approx \frac{Q}{T_{\mathrm{avg}}}
\]
where \(T_{\text {avg }}\) is the system's average temperature during the process.
- When an ideal gas changes reversibly from an initial state with temperature \(T_{i}\) and volume \(V_{i}\) to a final state with temperature \(T_{f}\) and volume \(V_{f}\), the change \(\Delta S\) in the entropy of the gas is
\[
\Delta S=S_{f}-S_{i}=n R \ln \frac{V_{f}}{V_{i}}+n C_{V} \ln \frac{T_{f}}{T_{i}}
\]
- The second law of thermodynamics, which is an extension of the entropy postulate, states: If a process occurs in a closed system, the entropy of the system increases for irreversible processes and remains constant for reversible processes. It never decreases. In equation form,
\[
\Delta S \geq 0
\]

\section*{What Is Physics?}

Time has direction, the direction in which we age. We are accustomed to many one-way processes - that is, processes that can occur only in a certain sequence (the right way) and never in the reverse sequence (the wrong way). An egg is dropped onto a floor, a pizza is baked, a car is driven into a lamppost, large waves erode a sandy beach - these one-way processes are irreversible, meaning that they cannot be reversed by means of only small changes in their environment.

One goal of physics is to understand why time has direction and why oneway processes are irreversible. Although this physics might seem disconnected from the practical issues of everyday life, it is in fact at the heart of any engine, such as a car engine, because it determines how well an engine can run.

The key to understanding why one-way processes cannot be reversed involves a quantity known as entropy.

\section*{Irreversible Processes and Entropy}

The one-way character of irreversible processes is so pervasive that we take it for granted. If these processes were to occur spontaneously (on their own) in the wrong way, we would be astonished. Yet none of these wrong-way events would violate the law of conservation of energy.

For example, if you were to wrap your hands around a cup of hot coffee, you would be astonished if your hands got cooler and the cup got warmer. That is obviously the wrong way for the energy transfer, but the total energy of the closed system (hands + cup of coffee) would be the same as the total energy if the process had run in the right way. For another example, if you popped a helium balloon, you would be astonished if, later, all the helium molecules were to gather together in the original shape of the balloon. That is obviously the wrong way for molecules to spread, but the total energy of the closed system (molecules + room) would be the same as for the right way.

Thus, changes in energy within a closed system do not set the direction of irreversible processes. Rather, that direction is set by another property that we shall discuss in this chapter - the change in entropy \(\Delta S\) of the system. The change in entropy of a system is defined later in this module, but we can here state its central property, often called the entropy postulate:

If an irreversible process occurs in a closed system, the entropy \(S\) of the system always increases; it never decreases.

Entropy differs from energy in that entropy does not obey a conservation law. The energy of a closed system is conserved; it always remains constant. For irreversible processes, the entropy of a closed system always increases. Because of this property, the change in entropy is sometimes called "the arrow of time." For example, we associate the explosion of a popcorn kernel with the forward direction of time and with an increase in entropy. The backward direction of time (a videotape run backwards) would correspond to the exploded popcorn reforming the original kernel. Because this backward process would result in an entropy decrease, it never happens.

There are two equivalent ways to define the change in entropy of a system: (1) in terms of the system's temperature and the energy the system gains or loses as heat, and (2) by counting the ways in which the atoms or molecules that make up the system can be arranged. We use the first approach in this module and the second in Module 20-4.

\section*{Change in Entropy}

Let's approach this definition of change in entropy by looking again at a process that we described in Modules 18-5 and 19-9: the free expansion of an ideal gas. Figure 20-1a shows the gas in its initial equilibrium state \(i\), confined by a closed stopcock to the left half of a thermally insulated container. If we open the stopcock, the gas rushes to fill the entire container, eventually reaching the final equilibrium state \(f\) shown in Fig. 20-1b. This is an irreversible process; all the molecules of the gas will never return to the left half of the container.

The \(p-V\) plot of the process, in Fig. 20-2, shows the pressure and volume of the gas in its initial state \(i\) and final state \(f\). Pressure and volume are state properties, properties that depend only on the state of the gas and not on how it reached that state. Other state properties are temperature and energy. We now assume that the gas has still another state property-its entropy. Furthermore, we define the change in entropy \(S_{f}-S_{i}\) of a system during a process that takes the system from an initial state \(i\) to a final state \(f\) as
\[
\begin{equation*}
\Delta S=S_{f}-S_{i}=\int_{i}^{f} \frac{d Q}{T} \quad \text { (change in entropy defined). } \tag{20-1}
\end{equation*}
\]

Here \(Q\) is the energy transferred as heat to or from the system during the process, and \(T\) is the temperature of the system in kelvins. Thus, an entropy change depends not only on the energy transferred as heat but also on the temperature at which the transfer takes place. Because \(T\) is always positive, the sign of \(\Delta S\) is the same as that of \(Q\). We see from Eq. 20-1 that the SI unit for entropy and entropy change is the joule per kelvin.

There is a problem, however, in applying Eq. 20-1 to the free expansion of Fig. 20-1. As the gas rushes to fill the entire container, the pressure, temperature, and volume of the gas fluctuate unpredictably. In other words, they do not have a sequence of well-defined equilibrium values during the intermediate stages of the change from initial state \(i\) to final state \(f\). Thus, we cannot trace a pressure-volume path for the free expansion on the \(p-V\) plot of Fig. 20-2, and we cannot find a relation between \(Q\) and \(T\) that allows us to integrate as Eq. 20-1 requires.

However, if entropy is truly a state property, the difference in entropy between states \(i\) and \(f\) must depend only on those states and not at all on the way the system went from one state to the other. Suppose, then, that we replace the irreversible free expansion of Fig. 20-1 with a reversible process that connects states \(i\) and \(f\). With a reversible process we can trace a pressure-volume path on a \(p-V\) plot, and we can find a relation between \(Q\) and \(T\) that allows us to use Eq. 20-1 to obtain the entropy change.

We saw in Module 19-9 that the temperature of an ideal gas does not change during a free expansion: \(T_{i}=T_{f}=T\). Thus, points \(i\) and \(f\) in Fig. 20-2 must be on the same isotherm. A convenient replacement process is then a reversible isothermal expansion from state \(i\) to state \(f\), which actually proceeds along that isotherm. Furthermore, because \(T\) is constant throughout a reversible isothermal expansion, the integral of Eq. 20-1 is greatly simplified.

Figure 20-3 shows how to produce such a reversible isothermal expansion. We confine the gas to an insulated cylinder that rests on a thermal reservoir maintained at the temperature \(T\). We begin by placing just enough lead shot on the movable piston so that the pressure and volume of the gas are those of the initial state \(i\) of Fig. 20-1a. We then remove shot slowly (piece by piece) until the pressure and volume of the gas are those of the final state \(f\) of Fig. 20-1b. The temperature of the gas does not change because the gas remains in thermal contact with the reservoir throughout the process.

The reversible isothermal expansion of Fig. 20-3 is physically quite different from the irreversible free expansion of Fig. 20-1. However, both processes have the same initial state and the same final state and thus must have the same change in


Figure 20-1 The free expansion of an ideal gas. (a) The gas is confined to the left half of an insulated container by a closed stopcock. (b) When the stopcock is opened, the gas rushes to fill the entire container. This process is irreversible; that is, it does not occur in reverse, with the gas spontaneously collecting itself in the left half of the container.


Figure 20-2 A \(p\) - \(V\) diagram showing the initial state \(i\) and the final state \(f\) of the free expansion of Fig. 20-1. The intermediate states of the gas cannot be shown because they are not equilibrium states.


Figure 20-3 The isothermal expansion of an ideal gas, done in a reversible way. The gas has the same initial state \(i\) and same final state \(f\) as in the irreversible process of Figs. 20-1 and 20-2.


Figure 20-4 A \(p-V\) diagram for the reversible isothermal expansion of Fig. 20-3. The intermediate states, which are now equilibrium states, are shown.
entropy. Because we removed the lead shot slowly, the intermediate states of the gas are equilibrium states, so we can plot them on a \(p-V\) diagram (Fig. 20-4).

To apply Eq. 20-1 to the isothermal expansion, we take the constant temperature \(T\) outside the integral, obtaining
\[
\Delta S=S_{f}-S_{i}=\frac{1}{T} \int_{i}^{f} d Q .
\]

Because \(\int d Q=Q\), where \(Q\) is the total energy transferred as heat during the process, we have
\[
\begin{equation*}
\Delta S=S_{f}-S_{i}=\frac{Q}{T} \quad \text { (change in entropy, isothermal process). } \tag{20-2}
\end{equation*}
\]

To keep the temperature \(T\) of the gas constant during the isothermal expansion of Fig. 20-3, heat \(Q\) must have been energy transferred from the reservoir to the gas. Thus, \(Q\) is positive and the entropy of the gas increases during the isothermal process and during the free expansion of Fig. 20-1.

To summarize:

To find the entropy change for an irreversible process, replace that process with any reversible process that connects the same initial and final states. Calculate the entropy change for this reversible process with Eq. 20-1.

When the temperature change \(\Delta T\) of a system is small relative to the temperature (in kelvins) before and after the process, the entropy change can be approximated as
\[
\begin{equation*}
\Delta S=S_{f}-S_{i} \approx \frac{Q}{T_{\text {avg }}}, \tag{20-3}
\end{equation*}
\]
where \(T_{\text {avg }}\) is the average temperature of the system in kelvins during the process.

\section*{\(\checkmark\) Checkpoint 1}

Water is heated on a stove. Rank the entropy changes of the water as its temperature rises (a) from \(20^{\circ} \mathrm{C}\) to \(30^{\circ} \mathrm{C}\), (b) from \(30^{\circ} \mathrm{C}\) to \(35^{\circ} \mathrm{C}\), and (c) from \(80^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\), greatest first.

\section*{Entropy as a State Function}

We have assumed that entropy, like pressure, energy, and temperature, is a property of the state of a system and is independent of how that state is reached. That entropy is indeed a state function (as state properties are usually called) can be deduced only by experiment. However, we can prove it is a state function for the special and important case in which an ideal gas is taken through a reversible process.

To make the process reversible, it is done slowly in a series of small steps, with the gas in an equilibrium state at the end of each step. For each small step, the energy transferred as heat to or from the gas is \(d Q\), the work done by the gas is \(d W\), and the change in internal energy is \(d E_{\text {int }}\). These are related by the first law of thermodynamics in differential form (Eq. 18-27):
\[
d E_{\mathrm{int}}=d Q-d W
\]

Because the steps are reversible, with the gas in equilibrium states, we can use Eq. 18-24 to replace \(d W\) with \(p d V\) and Eq. 19-45 to replace \(d E_{\text {int }}\) with \(n C_{V} d T\). Solving for \(d Q\) then leads to
\[
d Q=p d V+n C_{V} d T
\]

Using the ideal gas law, we replace \(p\) in this equation with \(n R T / V\). Then we divide each term in the resulting equation by \(T\), obtaining
\[
\frac{d Q}{T}=n R \frac{d V}{V}+n C_{V} \frac{d T}{T} .
\]

Now let us integrate each term of this equation between an arbitrary initial state \(i\) and an arbitrary final state \(f\) to get
\[
\int_{i}^{f} \frac{d Q}{T}=\int_{i}^{f} n R \frac{d V}{V}+\int_{i}^{f} n C_{V} \frac{d T}{T} .
\]

The quantity on the left is the entropy change \(\Delta S\left(=S_{f}-S_{i}\right)\) defined by Eq. 20-1. Substituting this and integrating the quantities on the right yield
\[
\begin{equation*}
\Delta S=S_{f}-S_{i}=n R \ln \frac{V_{f}}{V_{i}}+n C_{V} \ln \frac{T_{f}}{T_{i}} \tag{20-4}
\end{equation*}
\]

Note that we did not have to specify a particular reversible process when we integrated. Therefore, the integration must hold for all reversible processes that take the gas from state \(i\) to state \(f\). Thus, the change in entropy \(\Delta S\) between the initial and final states of an ideal gas depends only on properties of the initial state \(\left(V_{i}\right.\) and \(\left.T_{i}\right)\) and properties of the final state ( \(V_{f}\) and \(\left.T_{f}\right) ; \Delta S\) does not depend on how the gas changes between the two states.

\section*{Checkpoint 2}

An ideal gas has temperature \(T_{1}\) at the initial state \(i\) shown in the \(p-V\) diagram here. The gas has a higher temperature \(T_{2}\) at final states \(a\) and \(b\), which it can reach along the paths shown. Is the entropy change along the path to state \(a\) larger than, smaller than, or the same as that along the path to state \(b\) ?


\section*{Sample Problem 20.01 Entropy change of two blocks coming to thermal equilibrium}

Figure \(20-5 a\) shows two identical copper blocks of mass \(m=1.5 \mathrm{~kg}\) : block \(L\) at temperature \(T_{i L}=60^{\circ} \mathrm{C}\) and block \(R\) at temperature \(T_{i R}=20^{\circ} \mathrm{C}\). The blocks are in a thermally insulated box and are separated by an insulating shutter. When we lift the shutter, the blocks eventually come to the equilibrium temperature \(T_{f}=40^{\circ} \mathrm{C}\) (Fig. 20-5b). What is the net entropy change of the two-block system during this irreversible process? The specific heat of copper is \(386 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\).

\section*{KEY IDEA}

To calculate the entropy change, we must find a reversible process that takes the system from the initial state of Fig. 20-5a to the final state of Fig. 20-5b. We can calculate the net entropy change \(\Delta S_{\text {rev }}\) of the reversible process using Eq. 20-1, and then the entropy change for the irreversible process is equal to \(\Delta S_{\text {rev }}\).

Calculations: For the reversible process, we need a thermal reservoir whose temperature can be changed slowly (say, by turning a knob). We then take the blocks through the following two steps, illustrated in Fig. 20-6.
Step 1: With the reservoir's temperature set at \(60^{\circ} \mathrm{C}\), put block \(L\) on the reservoir. (Since block and reservoir are at the same temperature, they are already in thermal equilib-


Figure 20-5 (a) In the initial state, two copper blocks \(L\) and \(R\), identical except for their temperatures, are in an insulating box and are separated by an insulating shutter. (b) When the shutter is removed, the blocks exchange energy as heat and come to a final state, both with the same temperature \(T_{f}\).


Figure 20-6 The blocks of Fig. 20-5 can proceed from their initial state to their final state in a reversible way if we use a reservoir with a controllable temperature (a) to extract heat reversibly from block \(L\) and \((b)\) to add heat reversibly to block \(R\).
rium.) Then slowly lower the temperature of the reservoir and the block to \(40^{\circ} \mathrm{C}\). As the block's temperature changes by each increment \(d T\) during this process, energy \(d Q\) is transferred as heat from the block to the reservoir. Using Eq. 18-14, we can write this transferred energy as \(d Q=\) \(m c d T\), where \(c\) is the specific heat of copper. According to Eq. 20-1, the entropy change \(\Delta S_{L}\) of block \(L\) during the full temperature change from initial temperature \(T_{i L}\left(=60^{\circ} \mathrm{C}=\right.\) \(333 \mathrm{~K})\) to final temperature \(T_{f}\left(=40^{\circ} \mathrm{C}=313 \mathrm{~K}\right)\) is
\[
\begin{aligned}
\Delta S_{L} & =\int_{i}^{f} \frac{d Q}{T}=\int_{T_{i L}}^{T_{f}} \frac{m c d T}{T}=m c \int_{T_{i L}}^{T_{f}} \frac{d T}{T} \\
& =m c \ln \frac{T_{f}}{T_{i L}} .
\end{aligned}
\]

Inserting the given data yields
\[
\begin{aligned}
\Delta S_{L} & =(1.5 \mathrm{~kg})(386 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}) \ln \frac{313 \mathrm{~K}}{333 \mathrm{~K}} \\
& =-35.86 \mathrm{~J} / \mathrm{K}
\end{aligned}
\]

Step 2: With the reservoir's temperature now set at \(20^{\circ} \mathrm{C}\),
put block \(R\) on the reservoir. Then slowly raise the temperature of the reservoir and the block to \(40^{\circ} \mathrm{C}\). With the same reasoning used to find \(\Delta S_{L}\), you can show that the entropy change \(\Delta S_{R}\) of block \(R\) during this process is
\[
\begin{aligned}
\Delta S_{R} & =(1.5 \mathrm{~kg})(386 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}) \ln \frac{313 \mathrm{~K}}{293 \mathrm{~K}} \\
& =+38.23 \mathrm{~J} / \mathrm{K}
\end{aligned}
\]

The net entropy change \(\Delta S_{\text {rev }}\) of the two-block system undergoing this two-step reversible process is then
\[
\begin{aligned}
\Delta S_{\mathrm{rev}} & =\Delta S_{L}+\Delta S_{R} \\
& =-35.86 \mathrm{~J} / \mathrm{K}+38.23 \mathrm{~J} / \mathrm{K}=2.4 \mathrm{~J} / \mathrm{K}
\end{aligned}
\]

Thus, the net entropy change \(\Delta S_{\text {irrev }}\) for the two-block system undergoing the actual irreversible process is
\[
\Delta S_{\mathrm{irrev}}=\Delta S_{\mathrm{rev}}=2.4 \mathrm{~J} / \mathrm{K}
\]
(Answer)
This result is positive, in accordance with the entropy postulate.

\section*{Sample Problem 20.02 Entropy change of a free expansion of a gas}

Suppose 1.0 mol of nitrogen gas is confined to the left side of the container of Fig. 20-1a. You open the stopcock, and the volume of the gas doubles. What is the entropy change of the gas for this irreversible process? Treat the gas as ideal.

\section*{KEY IDEAS}
(1) We can determine the entropy change for the irreversible process by calculating it for a reversible process that provides the same change in volume. (2) The temperature of the gas does not change in the free expansion. Thus, the reversible process should be an isothermal expansionnamely, the one of Figs. 20-3 and 20-4.

Calculations: From Table 19-4, the energy \(Q\) added as heat to the gas as it expands isothermally at temperature \(T\) from an initial volume \(V_{i}\) to a final volume \(V_{f}\) is
\[
Q=n R T \ln \frac{V_{f}}{V_{i}},
\]
in which \(n\) is the number of moles of gas present. From Eq. 20-2 the entropy change for this reversible process in which the temperature is held constant is
\[
\Delta S_{\mathrm{rev}}=\frac{Q}{T}=\frac{n R T \ln \left(V_{f} / V_{i}\right)}{T}=n R \ln \frac{V_{f}}{V_{i}} .
\]

Substituting \(n=1.00 \mathrm{~mol}\) and \(V_{f} / V_{i}=2\), we find
\[
\begin{aligned}
\Delta S_{\mathrm{rev}} & =n R \ln \frac{V_{f}}{V_{i}}=(1.00 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(\ln 2) \\
& =+5.76 \mathrm{~J} / \mathrm{K}
\end{aligned}
\]

Thus, the entropy change for the free expansion (and for all other processes that connect the initial and final states shown in Fig. 20-2) is
\[
\Delta S_{\mathrm{irrev}}=\Delta S_{\mathrm{rev}}=+5.76 \mathrm{~J} / \mathrm{K}
\]
(Answer)
Because \(\Delta S\) is positive, the entropy increases, in accordance with the entropy postulate.

\section*{The Second Law of Thermodynamics}

Here is a puzzle. In the process of going from (a) to (b) in Fig. 20-3, the entropy change of the gas (our system) is positive. However, because the process is reversible, we can also go from (b) to (a) by, say, gradually adding lead shot to the piston, to restore the initial gas volume. To maintain a constant temperature, we need to remove energy as heat, but that means \(Q\) is negative and thus the entropy change is also. Doesn't this entropy decrease violate the entropy postulate: en-
tropy always increases? No, because the postulate holds only for irreversible processes in closed systems. Here, the process is not irreverible and the system is not closed (because of the energy transferred to and from the reservoir as heat).

However, if we include the reservoir, along with the gas, as part of the system, then we do have a closed system. Let's check the change in entropy of the enlarged system gas + reservoir for the process that takes it from (b) to (a) in Fig. 20-3. During this reversible process, energy is transferred as heat from the gas to the reservoir - that is, from one part of the enlarged system to another. Let \(|Q|\) represent the absolute value (or magnitude) of this heat. With Eq. 20-2, we can then calculate separately the entropy changes for the gas (which loses \(|Q|\) ) and the reservoir (which gains \(|Q|\) ). We get
and
\[
\begin{aligned}
\Delta S_{\mathrm{gas}} & =-\frac{|Q|}{T} \\
\Delta S_{\mathrm{res}} & =+\frac{|Q|}{T}
\end{aligned}
\]

The entropy change of the closed system is the sum of these two quantities: 0 .
With this result, we can modify the entropy postulate to include both reversible and irreversible processes:

If a process occurs in a closed system, the entropy of the system increases for irreversible processes and remains constant for reversible processes. It never decreases.

Although entropy may decrease in part of a closed system, there will always be an equal or larger entropy increase in another part of the system, so that the entropy of the system as a whole never decreases. This fact is one form of the second law of thermodynamics and can be written as
\[
\begin{equation*}
\Delta S \geq 0 \quad \text { (second law of thermodynamics) } \tag{20-5}
\end{equation*}
\]
where the greater-than sign applies to irreversible processes and the equals sign to reversible processes. Equation 20-5 applies only to closed systems.

In the real world almost all processes are irreversible to some extent because of friction, turbulence, and other factors, so the entropy of real closed systems undergoing real processes always increases. Processes in which the system's entropy remains constant are always idealizations.

\section*{Force Due to Entropy}

To understand why rubber resists being stretched, let's write the first law of thermodynamics
\[
d E=d Q-d W
\]
for a rubber band undergoing a small increase in length \(d x\) as we stretch it between our hands. The force from the rubber band has magnitude \(F\), is directed inward, and does work \(d W=-F d x\) during length increase \(d x\). From Eq. 20-2 ( \(\Delta S=Q / T\) ), small changes in \(Q\) and \(S\) at constant temperature are related by \(d S=d Q / T\), or \(d Q=T d S\). So, now we can rewrite the first law as
\[
\begin{equation*}
d E=T d S+F d x \tag{20-6}
\end{equation*}
\]

To good approximation, the change \(d E\) in the internal energy of rubber is 0 if the total stretch of the rubber band is not very much. Substituting 0 for \(d E\) in Eq. 20-6 leads us to an expression for the force from the rubber band:
\[
\begin{equation*}
F=-T \frac{d S}{d x} \tag{20-7}
\end{equation*}
\]
(a)

(b)


Figure 20-7 A section of a rubber band (a) unstretched and \((b)\) stretched, and a polymer within it (a) coiled and (b) uncoiled.

This tells us that \(F\) is proportional to the rate \(d S / d x\) at which the rubber band's entropy changes during a small change \(d x\) in the rubber band's length. Thus, you can feel the effect of entropy on your hands as you stretch a rubber band.

To make sense of the relation between force and entropy, let's consider a simple model of the rubber material. Rubber consists of cross-linked polymer chains (long molecules with cross links) that resemble three-dimensional zig-zags (Fig. 20-7). When the rubber band is at its rest length, the polymers are coiled up in a spaghetti-like arrangement. Because of the large disorder of the molecules, this rest state has a high value of entropy. When we stretch a rubber band, we uncoil many of those polymers, aligning them in the direction of stretch. Because the alignment decreases the disorder, the entropy of the stretched rubber band is less. That is, the change \(d S / d x\) in Eq. 20-7 is a negative quantity because the entropy decreases with stretching. Thus, the force on our hands from the rubber band is due to the tendency of the polymers to return to their former disordered state and higher value of entropy.

\section*{20-2 entropy in the real world: engines}

\section*{Learning Objectives}

After reading this module, you should be able to ...
20.09 Identify that a heat engine is a device that extracts energy from its environment in the form of heat and does useful work and that in an ideal heat engine, all processes are reversible, with no wasteful energy transfers.
20.10 Sketch a \(p\) - \(V\) diagram for the cycle of a Carnot engine, indicating the direction of cycling, the nature of the processes involved, the work done during each process (including algebraic sign), the net work done in the cycle, and the heat transferred during each process (including algebraic sign).
20.11 Sketch a Carnot cycle on a temperature-entropy diagram, indicating the heat transfers.
20.12 Determine the net entropy change around a Carnot cycle.
20.13 Calculate the efficiency \(\varepsilon_{C}\) of a Carnot engine in terms of the heat transfers and also in terms of the temperatures of the reservoirs.
20.14 Identify that there are no perfect engines in which the energy transferred as heat \(Q\) from a high temperature reservoir goes entirely into the work \(W\) done by the engine.
20.15 Sketch a \(p-V\) diagram for the cycle of a Stirling engine, indicating the direction of cycling, the nature of the processes involved, the work done during each process (including algebraic sign), the net work done in the cycle, and the heat transfers during each process.

\section*{Key Ideas}
- An engine is a device that, operating in a cycle, extracts energy as heat \(\left|Q_{\mathrm{H}}\right|\) from a high-temperature reservoir and does a certain amount of work \(|W|\). The efficiency \(\varepsilon\) of any engine is defined as
\[
\varepsilon=\frac{\text { energy we get }}{\text { energy we pay for }}=\frac{|W|}{\left|Q_{\mathrm{H}}\right|}
\]
- In an ideal engine, all processes are reversible and no wasteful energy transfers occur due to, say, friction and turbulence.
- A Carnot engine is an ideal engine that follows the cycle of Fig. 20-9. Its efficiency is
\[
\varepsilon_{C}=1-\frac{\left|Q_{\mathrm{L}}\right|}{\left|Q_{\mathrm{H}}\right|}=1-\frac{T_{\mathrm{L}}}{T_{\mathrm{H}}},
\]
in which \(T_{\mathrm{H}}\) and \(T_{\mathrm{L}}\) are the temperatures of the high- and lowtemperature reservoirs, respectively. Real engines always have an efficiency lower than that of a Carnot engine. Ideal engines that are not Carnot engines also have efficiencies lower than that of a Carnot engine.
- A perfect engine is an imaginary engine in which energy extracted as heat from the high-temperature reservoir is converted completely to work. Such an engine would violate the second law of thermodynamics, which can be restated as follows: No series of processes is possible whose sole result is the absorption of energy as heat from a thermal reservoir and the complete conversion of this energy to work.

\section*{Entropy in the Real World: Engines}

A heat engine, or more simply, an engine, is a device that extracts energy from its environment in the form of heat and does useful work. At the heart of every engine is a working substance. In a steam engine, the working substance is water,
in both its vapor and its liquid form. In an automobile engine the working substance is a gasoline-air mixture. If an engine is to do work on a sustained basis, the working substance must operate in a cycle; that is, the working substance must pass through a closed series of thermodynamic processes, called strokes, returning again and again to each state in its cycle. Let us see what the laws of thermodynamics can tell us about the operation of engines.

\section*{A Carnot Engine}

We have seen that we can learn much about real gases by analyzing an ideal gas, which obeys the simple law \(p V=n R T\). Although an ideal gas does not exist, any real gas approaches ideal behavior if its density is low enough. Similarly, we can study real engines by analyzing the behavior of an ideal engine.

In an ideal engine, all processes are reversible and no wasteful energy transfers occur due to, say, friction and turbulence.

We shall focus on a particular ideal engine called a Carnot engine after the French scientist and engineer N. L. Sadi Carnot (pronounced "car-no"), who first proposed the engine's concept in 1824. This ideal engine turns out to be the best (in principle) at using energy as heat to do useful work. Surprisingly, Carnot was able to analyze the performance of this engine before the first law of thermodynamics and the concept of entropy had been discovered.

Figure 20-8 shows schematically the operation of a Carnot engine. During each cycle of the engine, the working substance absorbs energy \(\left|Q_{\mathrm{H}}\right|\) as heat from a thermal reservoir at constant temperature \(T_{\mathrm{H}}\) and discharges energy \(\left|Q_{\mathrm{L}}\right|\) as heat to a second thermal reservoir at a constant lower temperature \(T_{\mathrm{L}}\).

Figure 20-9 shows a \(p-V\) plot of the Carnot cycle-the cycle followed by the working substance. As indicated by the arrows, the cycle is traversed in the clockwise direction. Imagine the working substance to be a gas, confined to an insulating cylinder with a weighted, movable piston. The cylinder may be placed at will on either of the two thermal reservoirs, as in Fig. 20-6, or on an insulating slab. Figure \(20-9 a\) shows that, if we place the cylinder in contact with the hightemperature reservoir at temperature \(T_{\mathrm{H}}\), heat \(\left|Q_{\mathrm{H}}\right|\) is transferred to the working substance from this reservoir as the gas undergoes an isothermal expansion from volume \(V_{a}\) to volume \(V_{b}\). Similarly, with the working substance in contact with the low-temperature reservoir at temperature \(T_{\mathrm{L}}\), heat \(\left|Q_{\mathrm{L}}\right|\) is transferred from


Figure 20-8 The elements of a Carnot engine. The two black arrowheads on the central loop suggest the working substance operating in a cycle, as if on a \(p-V\) plot. Energy \(\left|Q_{\mathrm{H}}\right|\) is transferred as heat from the high-temperature reservoir at temperature \(T_{\mathrm{H}}\) to the working substance. Energy \(\left|Q_{\mathrm{L}}\right|\) is transferred as heat from the working substance to the low-temperature reservoir at temperature \(T_{\mathrm{L}}\). Work \(W\) is done by the engine (actually by the working substance) on something in the environment.

Figure 20-9 A pressure-volume plot of the cycle followed by the working substance of the Carnot engine in Fig. 20-8. The cycle consists of two isothermal ( \(a b\) and \(c d)\) and two adiabatic processes ( \(b c\) and \(d a\) ). The shaded area enclosed by the cycle is equal to the work \(W\) per cycle done by the Carnot engine.

Stages of a Carnot engine

(a)

(b)


Figure 20-10 The Carnot cycle of Fig. 20-9 plotted on a temperature-entropy diagram. During processes \(a b\) and \(c d\) the temperature remains constant. During processes \(b c\) and \(d a\) the entropy remains constant.
the working substance to the low-temperature reservoir as the gas undergoes an isothermal compression from volume \(V_{c}\) to volume \(V_{d}\) (Fig. 20-9b).

In the engine of Fig. 20-8, we assume that heat transfers to or from the working substance can take place only during the isothermal processes \(a b\) and \(c d\) of Fig. 20-9. Therefore, processes \(b c\) and \(d a\) in that figure, which connect the two isotherms at temperatures \(T_{\mathrm{H}}\) and \(T_{\mathrm{L}}\), must be (reversible) adiabatic processes; that is, they must be processes in which no energy is transferred as heat. To ensure this, during processes \(b c\) and \(d a\) the cylinder is placed on an insulating slab as the volume of the working substance is changed.

During the processes \(a b\) and \(b c\) of Fig. 20-9a, the working substance is expanding and thus doing positive work as it raises the weighted piston. This work is represented in Fig. 20-9a by the area under curve \(a b c\). During the processes \(c d\) and \(d a\) (Fig. 20-9b), the working substance is being compressed, which means that it is doing negative work on its environment or, equivalently, that its environment is doing work on it as the loaded piston descends. This work is represented by the area under curve cda. The net work per cycle, which is represented by \(W\) in both Figs. 20-8 and 20-9, is the difference between these two areas and is a positive quantity equal to the area enclosed by cycle \(a b c d a\) in Fig. 20-9. This work \(W\) is performed on some outside object, such as a load to be lifted.

Equation 20-1 \(\left(\Delta S=\int d Q / T\right)\) tells us that any energy transfer as heat must involve a change in entropy. To see this for a Carnot engine, we can plot the Carnot cycle on a temperature-entropy (T-S) diagram as in Fig. 20-10. The lettered points \(a, b, c\), and \(d\) there correspond to the lettered points in the \(p-V\) diagram in Fig. 20-9. The two horizontal lines in Fig. 20-10 correspond to the two isothermal processes of the cycle. Process \(a b\) is the isothermal expansion of the cycle. As the working substance (reversibly) absorbs energy \(\left|Q_{\mathrm{H}}\right|\) as heat at constant temperature \(T_{\mathrm{H}}\) during the expansion, its entropy increases. Similarly, during the isothermal compression \(c d\), the working substance (reversibly) loses energy \(\left|Q_{\mathrm{L}}\right|\) as heat at constant temperature \(T_{\mathrm{L}}\), and its entropy decreases.

The two vertical lines in Fig. 20-10 correspond to the two adiabatic processes of the Carnot cycle. Because no energy is transferred as heat during the two processes, the entropy of the working substance is constant during them.

The Work To calculate the net work done by a Carnot engine during a cycle, let us apply Eq. 18-26, the first law of thermodynamics ( \(\Delta E_{\text {int }}=Q-W\) ), to the working substance. That substance must return again and again to any arbitrarily selected state in the cycle. Thus, if \(X\) represents any state property of the working substance, such as pressure, temperature, volume, internal energy, or entropy, we must have \(\Delta X=0\) for every cycle. It follows that \(\Delta E_{\text {int }}=0\) for a complete cycle of the working substance. Recalling that \(Q\) in Eq. 18-26 is the net heat transfer per cycle and \(W\) is the net work, we can write the first law of thermodynamics for the Carnot cycle as
\[
\begin{equation*}
W=\left|Q_{\mathrm{H}}\right|-\left|Q_{\mathrm{L}}\right| \tag{20-8}
\end{equation*}
\]

Entropy Changes In a Carnot engine, there are two (and only two) reversible energy transfers as heat, and thus two changes in the entropy of the working substance - one at temperature \(T_{\mathrm{H}}\) and one at \(T_{\mathrm{L}}\). The net entropy change per cycle is then
\[
\begin{equation*}
\Delta S=\Delta S_{\mathrm{H}}+\Delta S_{\mathrm{L}}=\frac{\left|Q_{\mathrm{H}}\right|}{T_{\mathrm{H}}}-\frac{\left|Q_{\mathrm{L}}\right|}{T_{\mathrm{L}}} \tag{20-9}
\end{equation*}
\]

Here \(\Delta S_{\mathrm{H}}\) is positive because energy \(\left|Q_{\mathrm{H}}\right|\) is \(a d d e d\) to the working substance as heat (an increase in entropy) and \(\Delta S_{\mathrm{L}}\) is negative because energy \(\left|Q_{\mathrm{L}}\right|\) is removed from the working substance as heat (a decrease in entropy). Because entropy is a state function, we must have \(\Delta S=0\) for a complete cycle. Putting \(\Delta S=0\) in Eq. 20-9 requires that
\[
\begin{equation*}
\frac{\left|Q_{\mathrm{H}}\right|}{T_{\mathrm{H}}}=\frac{\left|Q_{\mathrm{L}}\right|}{T_{\mathrm{L}}} . \tag{20-10}
\end{equation*}
\]

Note that, because \(T_{\mathrm{H}}>T_{\mathrm{L}}\), we must have \(\left|Q_{\mathrm{H}}\right|>\left|Q_{\mathrm{L}}\right|\); that is, more energy is
extracted as heat from the high-temperature reservoir than is delivered to the low-temperature reservoir.

We shall now derive an expression for the efficiency of a Carnot engine.

\section*{Efficiency of a Carnot Engine}

The purpose of any engine is to transform as much of the extracted energy \(Q_{\mathrm{H}}\) into work as possible. We measure its success in doing so by its thermal efficiency \(\varepsilon\), defined as the work the engine does per cycle ("energy we get") divided by the energy it absorbs as heat per cycle ("energy we pay for"):
\[
\begin{equation*}
\varepsilon=\frac{\text { energy we get }}{\text { energy we pay for }}=\frac{|W|}{\left|Q_{\mathrm{H}}\right|} \quad \text { (efficiency, any engine). } \tag{20-11}
\end{equation*}
\]

For a Carnot engine we can substitute for \(W\) from Eq. 20-8 to write Eq. 20-11 as
\[
\begin{equation*}
\varepsilon_{C}=\frac{\left|Q_{\mathrm{H}}\right|-\left|Q_{\mathrm{L}}\right|}{Q_{\mathrm{H}}}=1-\frac{\left|Q_{\mathrm{L}}\right|}{\left|Q_{\mathrm{H}}\right|} . \tag{20-12}
\end{equation*}
\]

Using Eq. 20-10 we can write this as
\[
\begin{equation*}
\varepsilon_{C}=1-\frac{T_{\mathrm{L}}}{T_{\mathrm{H}}} \quad \text { (efficiency, Carnot engine), } \tag{20-13}
\end{equation*}
\]
where the temperatures \(T_{\mathrm{L}}\) and \(T_{\mathrm{H}}\) are in kelvins. Because \(T_{\mathrm{L}}<T_{\mathrm{H}}\), the Carnot engine necessarily has a thermal efficiency less than unity - that is, less than \(100 \%\). This is indicated in Fig. 20-8, which shows that only part of the energy extracted as heat from the high-temperature reservoir is available to do work, and the rest is delivered to the low-temperature reservoir. We shall show in Module 20-3 that no real engine can have a thermal efficiency greater than that calculated from Eq. 20-13.

Inventors continually try to improve engine efficiency by reducing the energy \(\left|Q_{\mathrm{L}}\right|\) that is "thrown away" during each cycle. The inventor's dream is to produce the perfect engine, diagrammed in Fig. 20-11, in which \(\left|Q_{\mathrm{L}}\right|\) is reduced to zero and \(\left|Q_{H}\right|\) is converted completely into work. Such an engine on an ocean liner, for example, could extract energy as heat from the water and use it to drive the propellers, with no fuel cost. An automobile fitted with such an engine could extract energy as heat from the surrounding air and use it to drive the car, again with no fuel cost. Alas, a perfect engine is only a dream: Inspection of Eq. 20-13 shows that we can achieve \(100 \%\) engine efficiency (that is, \(\varepsilon=1\) ) only if \(T_{\mathrm{L}}=0\) or \(T_{\mathrm{H}} \rightarrow \infty\), impossible requirements. Instead, experience gives the following alternative version of the second law of thermodynamics, which says in short, there are no perfect engines:

No series of processes is possible whose sole result is the transfer of energy as heat from a thermal reservoir and the complete conversion of this energy to work.

To summarize: The thermal efficiency given by Eq. 20-13 applies only to Carnot engines. Real engines, in which the processes that form the engine cycle are not reversible, have lower efficiencies. If your car were powered by a Carnot engine, it would have an efficiency of about \(55 \%\) according to Eq. 20-13; its actual efficiency is probably about \(25 \%\). A nuclear power plant (Fig. 20-12), taken in its entirety, is an engine. It extracts energy as heat from a reactor core, does work by means of a turbine, and discharges energy as heat to a nearby river. If the power plant operated as a Carnot engine, its efficiency would be about \(40 \%\); its actual efficiency is about \(30 \%\). In designing engines of any type, there is simply no way to beat the efficiency limitation imposed by Eq. 20-13.


Figure 20-11 The elements of a perfect engine - that is, one that converts heat \(Q_{\mathrm{H}}\) from a high-temperature reservoir directly to work \(W\) with \(100 \%\) efficiency.

© Richard Ustinich
Figure 20-12 The North Anna nuclear power plant near Charlottesville, Virginia, which generates electric energy at the rate of 900 MW . At the same time, by design, it discards energy into the nearby river at the rate of 2100 MW . This plant and all others like it throw away more energy than they deliver in useful form. They are real counterparts of the ideal engine of Fig. 20-8.


Figure 20-13 A \(p-V\) plot for the working substance of an ideal Stirling engine, with the working substance assumed for convenience to be an ideal gas.

\section*{Stirling Engine}

Equation 20-13 applies not to all ideal engines but only to those that can be represented as in Fig. 20-9—that is, to Carnot engines. For example, Fig. 20-13 shows the operating cycle of an ideal Stirling engine. Comparison with the Carnot cycle of Fig. 20-9 shows that each engine has isothermal heat transfers at temperatures \(T_{\mathrm{H}}\) and \(T_{\mathrm{L}}\). However, the two isotherms of the Stirling engine cycle are connected, not by adiabatic processes as for the Carnot engine but by constant-volume processes. To increase the temperature of a gas at constant volume reversibly from \(T_{\mathrm{L}}\) to \(T_{\mathrm{H}}\) (process \(d a\) of Fig. 20-13) requires a transfer of energy as heat to the working substance from a thermal reservoir whose temperature can be varied smoothly between those limits. Also, a reverse transfer is required in process \(b c\). Thus, reversible heat transfers (and corresponding entropy changes) occur in all four of the processes that form the cycle of a Stirling engine, not just two processes as in a Carnot engine. Thus, the derivation that led to Eq. 20-13 does not apply to an ideal Stirling engine. More important, the efficiency of an ideal Stirling engine is lower than that of a Carnot engine operating between the same two temperatures. Real Stirling engines have even lower efficiencies.

The Stirling engine was developed in 1816 by Robert Stirling. This engine, long neglected, is now being developed for use in automobiles and spacecraft. A Stirling engine delivering \(5000 \mathrm{hp}(3.7 \mathrm{MW})\) has been built. Because they are quiet, Stirling engines are used on some military submarines.

\section*{Checkpoint 3}

Three Carnot engines operate between reservoir temperatures of (a) 400 and 500 K , (b) 600 and 800 K , and (c) 400 and 600 K . Rank the engines according to their thermal efficiencies, greatest first.

\section*{Sample Problem 20.03 Carnot engine, efficiency, power, entropy changes}

Imagine a Carnot engine that operates between the temperatures \(T_{\mathrm{H}}=850 \mathrm{~K}\) and \(T_{\mathrm{L}}=300 \mathrm{~K}\). The engine performs 1200 J of work each cycle, which takes 0.25 s .
(a) What is the efficiency of this engine?

\section*{KEY IDEA}

The efficiency \(\varepsilon\) of a Carnot engine depends only on the ratio \(T_{\mathrm{L}} / T_{\mathrm{H}}\) of the temperatures (in kelvins) of the thermal reservoirs to which it is connected.
Calculation: Thus, from Eq. 20-13, we have
\[
\varepsilon=1-\frac{T_{\mathrm{L}}}{T_{\mathrm{H}}}=1-\frac{300 \mathrm{~K}}{850 \mathrm{~K}}=0.647 \approx 65 \%
\]
(Answer)
(b) What is the average power of this engine?

\section*{KEY IDEA}

The average power \(P\) of an engine is the ratio of the work \(W\) it does per cycle to the time \(t\) that each cycle takes.
Calculation: For this Carnot engine, we find
\[
P=\frac{W}{t}=\frac{1200 \mathrm{~J}}{0.25 \mathrm{~s}}=4800 \mathrm{~W}=4.8 \mathrm{~kW} . \quad \text { (Answer) }
\]
(c) How much energy \(\left|Q_{H}\right|\) is extracted as heat from the high-temperature reservoir every cycle?

\section*{KEY IDEA}

The efficiency \(\varepsilon\) is the ratio of the work \(W\) that is done per cycle to the energy \(\left|Q_{\mathrm{H}}\right|\) that is extracted as heat from the high-temperature reservoir per cycle \(\left(\varepsilon=W / \| Q_{\mathrm{H}} \mid\right)\).
Calculation: Here we have
\[
\left|Q_{\mathrm{H}}\right|=\frac{W}{\varepsilon}=\frac{1200 \mathrm{~J}}{0.647}=1855 \mathrm{~J}
\]
(Answer)
(d) How much energy \(\mid Q_{\mathrm{L}}\) is delivered as heat to the lowtemperature reservoir every cycle?

\section*{KEY IDEA}

For a Carnot engine, the work \(W\) done per cycle is equal to the difference in the energy transfers as heat: \(\left|Q_{\mathrm{H}}\right|-\left|Q_{\mathrm{L}}\right|\), as in Eq. 20-8.
Calculation: Thus, we have
\[
\begin{aligned}
\left|Q_{\mathrm{L}}\right| & =\left|Q_{\mathrm{H}}\right|-W \\
& =1855 \mathrm{~J}-1200 \mathrm{~J}=655 \mathrm{~J} .
\end{aligned}
\]
(Answer)
(e) By how much does the entropy of the working substance change as a result of the energy transferred to it from the high-temperature reservoir? From it to the low-temperature reservoir?

\section*{KEY IDEA}

The entropy change \(\Delta S\) during a transfer of energy as heat \(Q\) at constant temperature \(T\) is given by Eq. 20-2 \((\Delta S=Q / T)\).
Calculations: Thus, for the positive transfer of energy \(Q_{\mathrm{H}}\) from the high-temperature reservoir at \(T_{\mathrm{H}}\), the change in the
entropy of the working substance is
\[
\Delta S_{\mathrm{H}}=\frac{Q_{\mathrm{H}}}{T_{\mathrm{H}}}=\frac{1855 \mathrm{~J}}{850 \mathrm{~K}}=+2.18 \mathrm{~J} / \mathrm{K} . \quad \text { (Answer) }
\]

Similarly, for the negative transfer of energy \(Q_{\mathrm{L}}\) to the low-temperature reservoir at \(T_{\mathrm{L}}\), we have
\[
\Delta S_{\mathrm{L}}=\frac{Q_{\mathrm{L}}}{T_{\mathrm{L}}}=\frac{-655 \mathrm{~J}}{300 \mathrm{~K}}=-2.18 \mathrm{~J} / \mathrm{K}
\]
(Answer)
Note that the net entropy change of the working substance for one cycle is zero, as we discussed in deriving Eq. 20-10.

\section*{Sample Problem 20.04 Impossibly efficient engine}

An inventor claims to have constructed an engine that has an efficiency of \(75 \%\) when operated between the boiling and freezing points of water. Is this possible?

\section*{KEY IDEA}

The efficiency of a real engine must be less than the efficiency of a Carnot engine operating between the same two temperatures.

Calculation: From Eq. 20-13, we find that the efficiency of a Carnot engine operating between the boiling and freezing points of water is
\[
\varepsilon=1-\frac{T_{\mathrm{L}}}{T_{\mathrm{H}}}=1-\frac{(0+273) \mathrm{K}}{(100+273) \mathrm{K}}=0.268 \approx 27 \%
\]

Thus, for the given temperatures, the claimed efficiency of \(75 \%\) for a real engine (with its irreversible processes and wasteful energy transfers) is impossible.

Additional examples, video, and practice available at WileyPLUS

\section*{20-3 refrigerators and real engines}

\section*{Learning Objectives}

After reading this module, you should be able to ...
20.16 Identify that a refrigerator is a device that uses work to transfer energy from a low-temperature reservoir to a high-temperature reservoir, and that an ideal refrigerator is one that does this with reversible processes and no wasteful losses.
20.17 Sketch a \(p-V\) diagram for the cycle of a Carnot refrigerator, indicating the direction of cycling, the nature of the processes involved, the work done during each process (including algebraic sign), the net work done in the cycle,

\section*{Key Ideas}
- A refrigerator is a device that, operating in a cycle, has work \(W\) done on it as it extracts energy \(\left|Q_{\mathrm{L}}\right|\) as heat from a low-temperature reservoir. The coefficient of performance \(K\) of a refrigerator is defined as
\[
K=\frac{\text { what we want }}{\text { what we pay for }}=\frac{\left|Q_{\mathrm{L}}\right|}{|W|}
\]

A Carnot refrigerator is a Carnot engine operating in reverse. Its coefficient of performance is
\[
K_{C}=\frac{\left|Q_{\mathrm{L}}\right|}{\left|Q_{\mathrm{H}}\right|-\left|Q_{\mathrm{L}}\right|}=\frac{T_{\mathrm{L}}}{T_{\mathrm{H}}-T_{\mathrm{L}}} .
\]
and the heat transferred during each process (including algebraic sign).
20.18 Apply the relationship between the coefficient of performance \(K\) and the heat exchanges with the reservoirs and the temperatures of the reservoirs.
20.19 Identify that there is no ideal refrigerator in which all of the energy extracted from the low-temperature reservoir is transferred to the high-temperature reservoir.
20.20 Identify that the efficiency of a real engine is less than that of the ideal Carnot engine.
- A perfect refrigerator is an entirely imaginary refrigerator in which energy extracted as heat from the low-temperature reservoir is somehow converted completely to heat discharged to the high-temperature reservoir without any need for work.
- A perfect refrigerator would violate the second law of thermodynamics, which can be restated as follows: No series of processes is possible whose sole result is the transfer of energy as heat from a reservoir at a given temperature to a reservoir at a higher temperature (without work being involved).


Figure 20-14 The elements of a refrigerator. The two black arrowheads on the central loop suggest the working substance operating in a cycle, as if on a \(p-V\) plot. Energy is transferred as heat \(Q_{\mathrm{L}}\) to the working substance from the low-temperature reservoir. Energy is transferred as heat \(Q_{\mathrm{H}}\) to the high-temperature reservoir from the working substance. Work \(W\) is done on the refrigerator (on the working substance) by something in the environment.

Perfect refrigerator: total transfer of heat from cold to hot without any work


Figure 20-15 The elements of a perfect refrigerator - that is, one that transfers energy from a low-temperature reservoir to a high-temperature reservoir without any input of work.

\section*{Entropy in the Real World: Refrigerators}

A refrigerator is a device that uses work in order to transfer energy from a lowtemperature reservoir to a high-temperature reservoir as the device continuously repeats a set series of thermodynamic processes. In a household refrigerator, for example, work is done by an electrical compressor to transfer energy from the food storage compartment (a low-temperature reservoir) to the room (a hightemperature reservoir).

Air conditioners and heat pumps are also refrigerators. For an air conditioner, the low-temperature reservoir is the room that is to be cooled and the high-temperature reservoir is the warmer outdoors. A heat pump is an air conditioner that can be operated in reverse to heat a room; the room is the high-temperature reservoir, and heat is transferred to it from the cooler outdoors.

Let us consider an ideal refrigerator:

In an ideal refrigerator, all processes are reversible and no wasteful energy transfers occur as a result of, say, friction and turbulence.

Figure 20-14 shows the basic elements of an ideal refrigerator. Note that its operation is the reverse of how the Carnot engine of Fig. 20-8 operates. In other words, all the energy transfers, as either heat or work, are reversed from those of a Carnot engine. We can call such an ideal refrigerator a Carnot refrigerator.

The designer of a refrigerator would like to extract as much energy \(\left|Q_{L}\right|\) as possible from the low-temperature reservoir (what we want) for the least amount of work \(|W|\) (what we pay for). A measure of the efficiency of a refrigerator, then, is
\[
K=\frac{\text { what we want }}{\text { what we pay for }}=\frac{\left|Q_{\mathrm{L}}\right|}{|W|} \quad \begin{gather*}
\text { (coefficient of performance, }  \tag{20-14}\\
\text { any refrigerator) }
\end{gather*}
\]
where \(K\) is called the coefficient of performance. For a Carnot refrigerator, the first law of thermodynamics gives \(|W|=\left|Q_{\mathrm{H}}\right|-\left|Q_{\mathrm{L}}\right|\), where \(\left|Q_{\mathrm{H}}\right|\) is the magnitude of the energy transferred as heat to the high-temperature reservoir. Equation 20-14 then becomes
\[
\begin{equation*}
K_{C}=\frac{\left|Q_{\mathrm{L}}\right|}{\left|Q_{\mathrm{H}}\right|-\left|Q_{\mathrm{L}}\right|} . \tag{20-15}
\end{equation*}
\]

Because a Carnot refrigerator is a Carnot engine operating in reverse, we can combine Eq. 20-10 with Eq. 20-15; after some algebra we find
\[
K_{C}=\frac{T_{\mathrm{L}}}{T_{\mathrm{H}}-T_{\mathrm{L}}} \quad \begin{gather*}
\text { (coefficient of performance },  \tag{20-16}\\
\text { Carnot refrigerator) }
\end{gather*}
\]

For typical room air conditioners, \(K \approx 2.5\). For household refrigerators, \(K \approx 5\). Perversely, the value of \(K\) is higher the closer the temperatures of the two reservoirs are to each other. That is why heat pumps are more effective in temperate climates than in very cold climates.

It would be nice to own a refrigerator that did not require some input of work - that is, one that would run without being plugged in. Figure 20-15 represents another "inventor's dream," a perfect refrigerator that transfers energy as heat \(Q\) from a cold reservoir to a warm reservoir without the need for work. Because the unit operates in cycles, the entropy of the working substance does not change during a complete cycle. The entropies of the two reservoirs, however, do change: The entropy change for the cold reservoir is \(-|Q| / T_{\mathrm{L}}\), and that for the warm reservoir is \(+|Q| / T_{\mathrm{H}}\). Thus, the net entropy change for the entire system is
\[
\Delta S=-\frac{|Q|}{T_{\mathrm{L}}}+\frac{|Q|}{T_{\mathrm{H}}} .
\]

Because \(T_{\mathrm{H}}>T_{\mathrm{L}}\), the right side of this equation is negative and thus the net change in entropy per cycle for the closed system refrigerator + reservoirs is also negative. Because such a decrease in entropy violates the second law of thermodynamics (Eq. 20-5), a perfect refrigerator does not exist. (If you want your refrigerator to operate, you must plug it in.)

Here, then, is another way to state the second law of thermodynamics:

No series of processes is possible whose sole result is the transfer of energy as heat from a reservoir at a given temperature to a reservoir at a higher temperature.

In short, there are no perfect refrigerators.

\section*{Checkpoint 4}

You wish to increase the coefficient of performance of an ideal refrigerator. You can do so by (a) running the cold chamber at a slightly higher temperature, (b) running the cold chamber at a slightly lower temperature, (c) moving the unit to a slightly warmer room, or (d) moving it to a slightly cooler room. The magnitudes of the temperature changes are to be the same in all four cases. List the changes according to the resulting coefficients of performance, greatest first.

\section*{The Efficiencies of Real Engines}

Let \(\varepsilon_{C}\) be the efficiency of a Carnot engine operating between two given temperatures. Here we prove that no real engine operating between those temperatures can have an efficiency greater than \(\varepsilon_{C}\). If it could, the engine would violate the second law of thermodynamics.

Let us assume that an inventor, working in her garage, has constructed an engine \(X\), which she claims has an efficiency \(\varepsilon_{X}\) that is greater than \(\varepsilon_{C}\) :
\[
\begin{equation*}
\varepsilon_{X}>\varepsilon_{C} \quad(\text { a claim }) \tag{20-17}
\end{equation*}
\]

Let us couple engine \(X\) to a Carnot refrigerator, as in Fig. 20-16a. We adjust the strokes of the Carnot refrigerator so that the work it requires per cycle is just equal to that provided by engine \(X\). Thus, no (external) work is performed on or by the combination engine + refrigerator of Fig. 20-16a, which we take as our system.

If Eq. 20-17 is true, from the definition of efficiency (Eq. 20-11), we must have
\[
\frac{|W|}{\left|Q_{\mathrm{H}}^{\prime}\right|}>\frac{|W|}{\left|Q_{\mathrm{H}}\right|},
\]
where the prime refers to engine \(X\) and the right side of the inequality is the efficiency of the Carnot refrigerator when it operates as an engine. This inequality requires that
\[
\begin{equation*}
\left|Q_{\mathrm{H}}\right|>\left|Q_{\mathrm{H}}^{\prime}\right| . \tag{20-18}
\end{equation*}
\]

Figure 20-16 (a) Engine \(X\) drives a Carnot refrigerator. (b) If, as claimed, engine \(X\) is more efficient than a Carnot engine, then the combination shown in \((a)\) is equivalent to the perfect refrigerator shown here. This violates the second law of thermodynamics, so we conclude that engine \(X\) cannot be more efficient than a Carnot engine.

(b)

Because the work done by engine \(X\) is equal to the work done on the Carnot refrigerator, we have, from the first law of thermodynamics as given by Eq. 20-8,
\[
\left|Q_{\mathrm{H}}\right|-\left|Q_{\mathrm{L}}\right|=\left|Q_{\mathrm{H}}^{\prime}\right|-\left|Q_{\mathrm{L}}^{\prime}\right|,
\]
which we can write as
\[
\begin{equation*}
\left|Q_{\mathrm{H}}\right|-\left|Q_{\mathrm{H}}^{\prime}\right|=\left|Q_{\mathrm{L}}\right|-\left|Q_{\mathrm{L}}^{\prime}\right|=Q . \tag{20-19}
\end{equation*}
\]

Because of Eq. 20-18, the quantity \(Q\) in Eq. 20-19 must be positive.
Comparison of Eq. 20-19 with Fig. 20-16 shows that the net effect of engine \(X\) and the Carnot refrigerator working in combination is to transfer energy \(Q\) as heat from a low-temperature reservoir to a high-temperature reservoir without the requirement of work. Thus, the combination acts like the perfect refrigerator of Fig. 20-15, whose existence is a violation of the second law of thermodynamics.

Something must be wrong with one or more of our assumptions, and it can only be Eq. 20-17. We conclude that no real engine can have an efficiency greater than that of a Carnot engine when both engines work between the same two temperatures. At most, the real engine can have an efficiency equal to that of a Carnot engine. In that case, the real engine is a Carnot engine.

\section*{20-4 a statistical view of entropy}

\section*{Learning Objectives}

After reading this module, you should be able to ...
20.21 Explain what is meant by the configurations of a system of molecules.
20.22 Calculate the multiplicity of a given configuration.
20.23 Identify that all microstates are equally probable but
the configurations with more microstates are more probable than the other configurations.
20.24 Apply Boltzmann's entropy equation to calculate the entropy associated with a multiplicity.

\section*{Key Ideas}
- The entropy of a system can be defined in terms of the possible distributions of its molecules. For identical molecules, each possible distribution of molecules is called a microstate of the system. All equivalent microstates are grouped into a configuration of the system. The number of microstates in a configuration is the multiplicity \(W\) of the configuration.
- For a system of \(N\) molecules that may be distributed between the two halves of a box, the multiplicity is given by
\[
W=\frac{N!}{n_{1}!n_{2}!}
\]
in which \(n_{1}\) is the number of molecules in one half of the box and \(n_{2}\) is the number in the other half. A basic assumption of statistical mechanics is that all the microstates are equally probable.

Thus, configurations with a large multiplicity occur most often. When \(N\) is very large (say, \(N=10^{22}\) molecules or more), the molecules are nearly always in the configuration in which \(n_{1}=n_{2}\).
- The multiplicity \(W\) of a configuration of a system and the entropy \(S\) of the system in that configuration are related by Boltzmann's entropy equation:
\[
S=k \ln W
\]
where \(k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\) is the Boltzmann constant.
When \(N\) is very large (the usual case), we can approximate \(\ln N\) ! with Stirling's approximation:
\[
\ln N!\approx N(\ln N)-N
\]

\section*{A Statistical View of Entropy}

In Chapter 19 we saw that the macroscopic properties of gases can be explained in terms of their microscopic, or molecular, behavior. Such explanations are part of a study called statistical mechanics. Here we shall focus our attention on a single problem, one involving the distribution of gas molecules between the two halves of an insulated box. This problem is reasonably simple to analyze, and it allows us to use statistical mechanics to calculate the entropy change for the free expansion of an ideal gas. You will see that statistical mechanics leads to the same entropy change as we would find using thermodynamics.

Figure 20-17 shows a box that contains six identical (and thus indistinguishable) molecules of a gas. At any instant, a given molecule will be in either the left or the right half of the box; because the two halves have equal volumes, the molecule has the same likelihood, or probability, of being in either half.

Table 20-1 shows the seven possible configurations of the six molecules, each configuration labeled with a Roman numeral. For example, in configuration I, all six molecules are in the left half of the box \(\left(n_{1}=6\right)\) and none are in the right half ( \(n_{2}=0\) ). We see that, in general, a given configuration can be achieved in a number of different ways. We call these different arrangements of the molecules microstates. Let us see how to calculate the number of microstates that correspond to a given configuration.

Suppose we have \(N\) molecules, distributed with \(n_{1}\) molecules in one half of the box and \(n_{2}\) in the other. (Thus \(n_{1}+n_{2}=N\).) Let us imagine that we distribute the molecules "by hand," one at a time. If \(N=6\), we can select the first molecule in six independent ways; that is, we can pick any one of the six molecules. We can pick the second molecule in five ways, by picking any one of the remaining five molecules; and so on. The total number of ways in which we can select all six molecules is the product of these independent ways, or \(6 \times 5 \times 4 \times 3 \times 2 \times 1=720\). In mathematical shorthand we write this product as \(6!=720\), where 6 ! is pronounced "six factorial." Your hand calculator can probably calculate factorials. For later use you will need to know that \(0!=1\). (Check this on your calculator.)

However, because the molecules are indistinguishable, these 720 arrangements are not all different. In the case that \(n_{1}=4\) and \(n_{2}=2\) (which is configuration III in Table 20-1), for example, the order in which you put four molecules in one half of the box does not matter, because after you have put all four in, there is no way that you can tell the order in which you did so. The number of ways in which you can order the four molecules is \(4!=24\). Similarly, the number of ways in which you can order two molecules for the other half of the box is simply \(2!=2\). To get the number of different arrangements that lead to the \((4,2)\) split of configuration III, we must divide 720 by 24 and also by 2 . We call the resulting quantity, which is the number of microstates that correspond to a given configuration, the multiplicity \(W\) of that configuration. Thus, for configuration III,
\[
W_{\mathrm{III}}=\frac{6!}{4!2!}=\frac{720}{24 \times 2}=15 .
\]

Thus, Table 20-1 tells us there are 15 independent microstates that correspond to configuration III. Note that, as the table also tells us, the total number of microstates for six molecules distributed over the seven configurations is 64 .

Extrapolating from six molecules to the general case of \(N\) molecules, we have
\[
\begin{equation*}
W=\frac{N!}{n_{1}!n_{2}!} \quad \text { (multiplicity of configuration). } \tag{20-20}
\end{equation*}
\]

Table 20-1 Six Molecules in a Box
\begin{tabular}{cccccc}
\multicolumn{2}{c}{ Configuration }
\end{tabular} \begin{tabular}{ccccc} 
Multiplicity \(W\) \\
Label & \(n_{1}\) & \(n_{2}\) & \begin{tabular}{c} 
Calculation \\
of \(W\) \\
(number of microstates)
\end{tabular} & \begin{tabular}{c} 
Entropy \\
\((\) Eq. 20-20)
\end{tabular} \\
\hline I & 6 & 0 & 1 & \(6!/(6!0!)=1\) \\
(Eq. 20-21)
\end{tabular}


Figure 20-17 An insulated box contains six gas molecules. Each molecule has the same probability of being in the left half of the box as in the right half. The arrangement in (a) corresponds to configuration III in Table 20-1, and that in (b) corresponds to configuration IV.


Figure 20-18 For a large number of molecules in a box, a plot of the number of microstates that require various percentages of the molecules to be in the left half of the box. Nearly all the microstates correspond to an approximately equal sharing of the molecules between the two halves of the box; those microstates form the central configuration peak on the plot. For \(N \approx 10^{22}\), the central configuration peak is much too narrow to be drawn on this plot.

You should verify the multiplicities for all the configurations in Table 20-1. The basic assumption of statistical mechanics is that


All microstates are equally probable.
In other words, if we were to take a great many snapshots of the six molecules as they jostle around in the box of Fig. 20-17 and then count the number of times each microstate occurred, we would find that all 64 microstates would occur equally often. Thus the system will spend, on average, the same amount of time in each of the 64 microstates.

Because all microstates are equally probable but different configurations have different numbers of microstates, the configurations are not all equally probable. In Table 20-1 configuration IV, with 20 microstates, is the most probable configuration, with a probability of \(20 / 64=0.313\). This result means that the system is in configuration IV \(31.3 \%\) of the time. Configurations I and VII, in which all the molecules are in one half of the box, are the least probable, each with a probability of \(1 / 64=0.016\) or \(1.6 \%\). It is not surprising that the most probable configuration is the one in which the molecules are evenly divided between the two halves of the box, because that is what we expect at thermal equilibrium. However, it is surprising that there is any probability, however small, of finding all six molecules clustered in half of the box, with the other half empty.

For large values of \(N\) there are extremely large numbers of microstates, but nearly all the microstates belong to the configuration in which the molecules are divided equally between the two halves of the box, as Fig. 20-18 indicates. Even though the measured temperature and pressure of the gas remain constant, the gas is churning away endlessly as its molecules "visit" all probable microstates with equal probability. However, because so few microstates lie outside the very narrow central configuration peak of Fig. 20-18, we might as well assume that the gas molecules are always divided equally between the two halves of the box. As we shall see, this is the configuration with the greatest entropy.

\section*{Sample Problem 20.05 Microstates and multiplicity}

Suppose that there are 100 indistinguishable molecules in the box of Fig. 20-17. How many microstates are associated with the configuration \(n_{1}=50\) and \(n_{2}=50\), and with the configuration \(n_{1}=100\) and \(n_{2}=0\) ? Interpret the results in terms of the relative probabilities of the two configurations.

\section*{KEY IDEA}

The multiplicity \(W\) of a configuration of indistinguishable molecules in a closed box is the number of independent microstates with that configuration, as given by Eq. 20-20.

Calculations: Thus, for the \(\left(n_{1}, n_{2}\right)\) configuration \((50,50)\),
\[
\begin{aligned}
W & =\frac{N!}{n_{1}!n_{2}!}=\frac{100!}{50!50!} \\
& =\frac{9.33 \times 10^{157}}{\left(3.04 \times 10^{64}\right)\left(3.04 \times 10^{64}\right)} \\
& =1.01 \times 10^{29} .
\end{aligned}
\]
(Answer)

Similarly, for the configuration \((100,0)\), we have
\[
W=\frac{N!}{n_{1}!n_{2}!}=\frac{100!}{100!0!}=\frac{1}{0!}=\frac{1}{1}=1
\]
(Answer)

The meaning: Thus, a \(50-50\) distribution is more likely than a 100-0 distribution by the enormous factor of about \(1 \times 10^{29}\). If you could count, at one per nanosecond, the number of microstates that correspond to the \(50-50\) distribution, it would take you about \(3 \times 10^{12}\) years, which is about 200 times longer than the age of the universe. Keep in mind that the 100 molecules used in this sample problem is a very small number. Imagine what these calculated probabilities would be like for a mole of molecules, say about \(N=10^{24}\). Thus, you need never worry about suddenly finding all the air molecules clustering in one corner of your room, with you gasping for air in another corner. So, you can breathe easy because of the physics of entropy.

\section*{Probability and Entropy}

In 1877, Austrian physicist Ludwig Boltzmann (the Boltzmann of Boltzmann's constant \(k\) ) derived a relationship between the entropy \(S\) of a configuration of a gas and the multiplicity \(W\) of that configuration. That relationship is
\[
\begin{equation*}
S=k \ln W \quad \text { (Boltzmann's entropy equation). } \tag{20-21}
\end{equation*}
\]

This famous formula is engraved on Boltzmann's tombstone.
It is natural that \(S\) and \(W\) should be related by a logarithmic function. The total entropy of two systems is the sum of their separate entropies. The probability of occurrence of two independent systems is the product of their separate probabilities. Because \(\ln a b=\ln a+\ln b\), the logarithm seems the logical way to connect these quantities.

Table 20-1 displays the entropies of the configurations of the six-molecule system of Fig. 20-17, computed using Eq. 20-21. Configuration IV, which has the greatest multiplicity, also has the greatest entropy.

When you use Eq. 20-20 to calculate \(W\), your calculator may signal "OVERFLOW" if you try to find the factorial of a number greater than a few hundred. Instead, you can use Stirling's approximation for \(\ln N!\) :
\[
\begin{equation*}
\ln N!\approx N(\ln N)-N \quad(\text { Stirling's approximation }) \tag{20-22}
\end{equation*}
\]

The Stirling of this approximation was an English mathematician and not the Robert Stirling of engine fame.

\section*{Checkpoint 5}

A box contains 1 mol of a gas. Consider two configurations: (a) each half of the box contains half the molecules and (b) each third of the box contains one-third of the molecules. Which configuration has more microstates?

\section*{Sample Problem 20.06 Entropy change of free expansion using microstates}

In Sample Problem 20.01, we showed that when \(n\) moles of an ideal gas doubles its volume in a free expansion, the entropy increase from the initial state \(i\) to the final state \(f\) is \(S_{f}-S_{i}=n R \ln 2\). Derive this increase in entropy by using statistical mechanics.

\section*{KEY IDEA}

We can relate the entropy \(S\) of any given configuration of the molecules in the gas to the multiplicity \(W\) of microstates for that configuration, using Eq. 20-21 ( \(S=k \ln W\) ).
Calculations: We are interested in two configurations: the final configuration \(f\) (with the molecules occupying the full volume of their container in Fig. 20-1b) and the initial configuration \(i\) (with the molecules occupying the left half of the container). Because the molecules are in a closed container, we can calculate the multiplicity \(W\) of their microstates with Eq. 20-20. Here we have \(N\) molecules in the \(n\) moles of the gas. Initially, with the molecules all in the left
half of the container, their \(\left(n_{1}, n_{2}\right)\) configuration is \((N, 0)\). Then, Eq. 20-20 gives their multiplicity as
\[
W_{i}=\frac{N!}{N!0!}=1
\]

Finally, with the molecules spread through the full volume, their \(\left(n_{1}, n_{2}\right)\) configuration is ( \(N / 2, N / 2\) ). Then, Eq. 20-20 gives their multiplicity as
\[
W_{f}=\frac{N!}{(N / 2)!(N / 2)!}
\]

From Eq. 20-21, the initial and final entropies are
\[
S_{i}=k \ln W_{i}=k \ln 1=0
\]
and
\[
\begin{equation*}
S_{f}=k \ln W_{f}=k \ln (N!)-2 k \ln [(N / 2)!] \tag{20-23}
\end{equation*}
\]

In writing Eq. 20-23, we have used the relation
\[
\ln \frac{a}{b^{2}}=\ln a-2 \ln b
\]

Now, applying Eq. 20-22 to evaluate Eq. 20-23, we find that
\[
\begin{align*}
S_{f} & =k \ln (N!)-2 k \ln [(N / 2)!] \\
& =k[N(\ln N)-N]-2 k[(N / 2) \ln (N / 2)-(N / 2)] \\
& =k[N(\ln N)-N-N \ln (N / 2)+N] \\
& =k[N(\ln N)-N(\ln N-\ln 2)]=N k \ln 2 . \tag{20-24}
\end{align*}
\]

From Eq. 19-8 we can substitute \(n R\) for \(N k\), where \(R\) is the universal gas constant. Equation 20-24 then becomes
\[
S_{f}=n R \ln 2 .
\]

The change in entropy from the initial state to the final is
thus
\[
\begin{aligned}
S_{f}-S_{i} & =n R \ln 2-0 \\
& =n R \ln 2,
\end{aligned}
\]
(Answer)
which is what we set out to show. In the first sample problem of this chapter we calculated this entropy increase for a free expansion with thermodynamics by finding an equivalent reversible process and calculating the entropy change for that process in terms of temperature and heat transfer. In this sample problem, we calculate the same increase in entropy with statistical mechanics using the fact that the system consists of molecules. In short, the two, very different approaches give the same answer.

PLUS Additional examples, video, and practice available at WileyPLUS

\section*{Beview \& Summary}

One-Way Processes An irreversible process is one that cannot be reversed by means of small changes in the environment. The direction in which an irreversible process proceeds is set by the change in entropy \(\Delta S\) of the system undergoing the process. Entropy \(S\) is a state property (or state function) of the system; that is, it depends only on the state of the system and not on the way in which the system reached that state. The entropy postulate states (in part): If an irreversible process occurs in a closed system, the entropy of the system always increases.

Calculating Entropy Change The entropy change \(\Delta S\) for an irreversible process that takes a system from an initial state \(i\) to a final state \(f\) is exactly equal to the entropy change \(\Delta S\) for any reversible process that takes the system between those same two states. We can compute the latter (but not the former) with
\[
\begin{equation*}
\Delta S=S_{f}-S_{i}=\int_{i}^{f} \frac{d Q}{T} . \tag{20-1}
\end{equation*}
\]

Here \(Q\) is the energy transferred as heat to or from the system during the process, and \(T\) is the temperature of the system in kelvins during the process.

For a reversible isothermal process,Eq. 20-1 reduces to
\[
\begin{equation*}
\Delta S=S_{f}-S_{i}=\frac{Q}{T} \tag{20-2}
\end{equation*}
\]

When the temperature change \(\Delta T\) of a system is small relative to the temperature (in kelvins) before and after the process, the entropy change can be approximated as
\[
\begin{equation*}
\Delta S=S_{f}-S_{i} \approx \frac{Q}{T_{\text {avg }}}, \tag{20-3}
\end{equation*}
\]
where \(T_{\text {avg }}\) is the system's average temperature during the process.
When an ideal gas changes reversibly from an initial state with temperature \(T_{i}\) and volume \(V_{i}\) to a final state with temperature \(T_{f}\) and volume \(V_{f}\), the change \(\Delta S\) in the entropy of the gas is
\[
\begin{equation*}
\Delta S=S_{f}-S_{i}=n R \ln \frac{V_{f}}{V_{i}}+n C_{V} \ln \frac{T_{f}}{T_{i}} . \tag{20-4}
\end{equation*}
\]

The Second Law of Thermodynamics This law, which is an extension of the entropy postulate, states: If a process occurs in a closed system, the entropy of the system increases for irreversible processes and remains constant for reversible processes. It never decreases. In equation form,
\[
\begin{equation*}
\Delta S \geq 0 \tag{20-5}
\end{equation*}
\]

Engines An engine is a device that, operating in a cycle, extracts energy as heat \(\left|Q_{\mathrm{H}}\right|\) from a high-temperature reservoir and does a certain amount of work \(|W|\). The efficiency \(\varepsilon\) of any engine is defined as
\[
\begin{equation*}
\varepsilon=\frac{\text { energy we get }}{\text { energy we pay for }}=\frac{|W|}{\left|Q_{\mathrm{H}}\right|} . \tag{20-11}
\end{equation*}
\]

In an ideal engine, all processes are reversible and no wasteful energy transfers occur due to, say, friction and turbulence. A Carnot engine is an ideal engine that follows the cycle of Fig. 20-9. Its efficiency is
\[
\begin{equation*}
\varepsilon_{C}=1-\frac{\left|Q_{\mathrm{L}}\right|}{\left|Q_{\mathrm{H}}\right|}=1-\frac{T_{\mathrm{L}}}{T_{\mathrm{H}}}, \tag{20-12,20-13}
\end{equation*}
\]
in which \(T_{\mathrm{H}}\) and \(T_{\mathrm{L}}\) are the temperatures of the high- and lowtemperature reservoirs, respectively. Real engines always have an efficiency lower than that given by Eq. 20-13. Ideal engines that are not Carnot engines also have lower efficiencies.

A perfect engine is an imaginary engine in which energy extracted as heat from the high-temperature reservoir is converted completely to work. Such an engine would violate the second law of thermodynamics, which can be restated as follows: No series of processes is possible whose sole result is the absorption of energy as heat from a thermal reservoir and the complete conversion of this energy to work.

Refrigerators A refrigerator is a device that, operating in a cycle, has work \(W\) done on it as it extracts energy \(\left|Q_{\mathrm{L}}\right|\) as heat from a low-temperature reservoir. The coefficient of performance \(K\) of a refrigerator is defined as
\[
\begin{equation*}
K=\frac{\text { what we want }}{\text { what we pay for }}=\frac{\left|Q_{\mathrm{L}}\right|}{|W|} . \tag{20-14}
\end{equation*}
\]

A Carnot refrigerator is a Carnot engine operating in reverse.

For a Carnot refrigerator, Eq. 20-14 becomes
\[
\begin{equation*}
K_{C}=\frac{\left|Q_{\mathrm{L}}\right|}{\left|Q_{\mathrm{H}}\right|-\left|Q_{\mathrm{L}}\right|}=\frac{T_{\mathrm{L}}}{T_{\mathrm{H}}-T_{\mathrm{L}}} . \tag{20-15,20-16}
\end{equation*}
\]

A perfect refrigerator is an imaginary refrigerator in which energy extracted as heat from the low-temperature reservoir is converted completely to heat discharged to the high-temperature reservoir, without any need for work. Such a refrigerator would violate the second law of thermodynamics, which can be restated as follows: No series of processes is possible whose sole result is the transfer of energy as heat from a reservoir at a given temperature to a reservoir at a higher temperature.

Entropy from a Statistical View The entropy of a system can be defined in terms of the possible distributions of its molecules. For identical molecules, each possible distribution of molecules is called a microstate of the system. All equivalent microstates are grouped into
a configuration of the system. The number of microstates in a configuration is the multiplicity \(W\) of the configuration.

For a system of \(N\) molecules that may be distributed between the two halves of a box, the multiplicity is given by
\[
\begin{equation*}
W=\frac{N!}{n_{1}!n_{2}!}, \tag{20-20}
\end{equation*}
\]
in which \(n_{1}\) is the number of molecules in one half of the box and \(n_{2}\) is the number in the other half. A basic assumption of statistical mechanics is that all the microstates are equally probable. Thus, configurations with a large multiplicity occur most often.

The multiplicity \(W\) of a configuration of a system and the entropy \(S\) of the system in that configuration are related by Boltzmann's entropy equation:
\[
\begin{equation*}
S=k \ln W, \tag{20-21}
\end{equation*}
\]
where \(k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\) is the Boltzmann constant.

\section*{Questions}

1 Point \(i\) in Fig. 20-19 represents the initial state of an ideal gas at temperature \(T\). Taking algebraic signs into account, rank the entropy changes that the gas undergoes as it moves, successively and reversibly, from point \(i\) to points \(a, b, c\), and \(d\), greatest first.
2 In four experiments, blocks \(A\)


Volume
Figure 20-19 Question 1. and \(B\), starting at different initial temperatures, were brought together in an insulating box and allowed to reach a common final temperature. The entropy changes for the blocks in the four experiments had the following values (in joules per kelvin), but not necessarily in the order given. Determine which values for \(A\) go with which values for \(B\).
\begin{tabular}{lrrrr}
\hline Block & \multicolumn{4}{c}{ Values } \\
\hline\(A\) & 8 & 5 & 3 & 9 \\
\(B\) & -3 & -8 & -5 & -2 \\
\hline
\end{tabular}

3 A gas, confined to an insulated cylinder, is compressed adiabatically to half its volume. Does the entropy of the gas increase, decrease, or remain unchanged during this process?
4 An ideal monatomic gas at initial temperature \(T_{0}\) (in kelvins) expands from initial volume \(V_{0}\) to volume \(2 V_{0}\) by each of the five processes indicated in the \(T-V\) diagram of Fig. 20-20. In which process is the expan-

Figure 20-20
Question 4.

sion (a) isothermal, (b) isobaric (constant pressure), and (c) adiabatic? Explain your answers. (d) In which processes does the entropy of the gas decrease?
5 In four experiments, \(2.5 p\) mol of hydrogen gas undergoes reversible isothermal expansions, starting from the same volume but at different temperatures. The corresponding \(p\) - \(V\) plots are shown in Fig. 20-21. Rank the situations according to the change in the entropy


Figure 20-21 Question 5. of the gas, greatest first.
6 A box contains 100 atoms in a configuration that has 50 atoms in each half of the box. Suppose that you could count the different microstates associated with this configuration at the rate of 100 billion states per second, using a supercomputer. Without written calculation, guess how much computing time you would need: a day, a year, or much more than a year.
7 Does the entropy per cycle increase, decrease, or remain the same for (a) a Carnot engine, (b) a real engine, and (c) a perfect engine (which is, of course, impossible to build)?
8 Three Carnot engines operate between temperature limits of (a) 400 and 500 K , (b) 500 and 600 K , and (c) 400 and 600 K . Each engine extracts the same amount of energy per cycle from the high-temperature reservoir. Rank the magnitudes of the work done by the engines per cycle, greatest first.
9 An inventor claims to have invented four engines, each of which operates between constant-temperature reservoirs at 400 and 300 K . Data on each engine, per cycle of operation, are: engine A, \(Q_{\mathrm{H}}=200\) \(\mathrm{J}, Q_{\mathrm{L}}=-175 \mathrm{~J}\), and \(W=40 \mathrm{~J}\); engine \(\mathrm{B}, Q_{\mathrm{H}}=500 \mathrm{~J}, Q_{\mathrm{L}}=-200 \mathrm{~J}\), and \(W=400 \mathrm{~J}\); engine C, \(Q_{\mathrm{H}}=600 \mathrm{~J}, Q_{\mathrm{L}}=-200 \mathrm{~J}\), and \(W=400 \mathrm{~J}\); engine \(\mathrm{D}, Q_{\mathrm{H}}=100 \mathrm{~J}, Q_{\mathrm{L}}=-90 \mathrm{~J}\), and \(W=10 \mathrm{~J}\). Of the first and second laws of thermodynamics, which (if either) does each engine violate?
10 Does the entropy per cycle increase, decrease, or remain the same for (a) a Carnot refrigerator, (b) a real refrigerator, and (c) a perfect refrigerator (which is, of course, impossible to build)?

\section*{8roblems}


\section*{Module 20-1 Entropy}
-1 SSM Suppose 4.00 mol of an ideal gas undergoes a reversible isothermal expansion from volume \(V_{1}\) to volume \(V_{2}=2.00 V_{1}\) at temperature \(T=400 \mathrm{~K}\). Find (a) the work done by the gas and (b) the entropy change of the gas. (c) If the expansion is reversible and adiabatic instead of isothermal, what is the entropy change of the gas?
-2 An ideal gas undergoes a reversible isothermal expansion at \(77.0^{\circ} \mathrm{C}\), increasing its volume from 1.30 L to 3.40 L . The entropy change of the gas is \(22.0 \mathrm{~J} / \mathrm{K}\). How many moles of gas are present?
-3 ILW A 2.50 mol sample of an ideal gas expands reversibly and isothermally at 360 K until its volume is doubled. What is the increase in entropy of the gas?
-4 How much energy must be transferred as heat for a reversible isothermal expansion of an ideal gas at \(132^{\circ} \mathrm{C}\) if the entropy of the gas increases by \(46.0 \mathrm{~J} / \mathrm{K}\) ?
\(\cdot 5\) ILw Find (a) the energy absorbed as heat and (b) the change in entropy of a 2.00 kg block of copper whose temperature is increased reversibly from \(25.0^{\circ} \mathrm{C}\) to \(100^{\circ} \mathrm{C}\). The specific heat of copper is \(386 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\).
\(\bullet 6\) (a) What is the entropy change of a 12.0 g ice cube that melts completely in a bucket of water whose temperature is just above the freezing point of water? (b) What is the entropy change of a 5.00 g spoonful of water that evaporates completely on a hot plate whose temperature is slightly above the boiling point of water?
\(\bullet 7\) ILW A 50.0 g block of copper whose temperature is 400 K is placed in an insulating box with a 100 g block of lead whose temperature is 200 K . (a) What is the equilibrium temperature of the twoblock system? (b) What is the change in the internal energy of the system between the initial state and the equilibrium state? (c) What is the change in the entropy of the system? (See Table 18-3.)
-ロ8 At very low temperatures, the molar specific heat \(C_{V}\) of many solids is approximately \(C_{V}=A T^{3}\), where \(A\) depends on the particular substance. For aluminum, \(A=3.15 \times 10^{-5} \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}^{4}\). Find the entropy change for 4.00 mol of aluminum when its temperature is raised from 5.00 K to 10.0 K .
\(\because 9\) A 10 g ice cube at \(-10^{\circ} \mathrm{C}\) is placed in a lake whose temperature is \(15^{\circ} \mathrm{C}\). Calculate the change in entropy of the cube-lake system as the ice cube comes to thermal equilibrium with the lake. The specific heat of ice is \(2220 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\). (Hint: Will the ice cube affect the lake temperature?)
-•10 A 364 g block is put in contact with a thermal reservoir. The block is initially at a lower temperature than the reservoir. Assume that the consequent transfer of energy as heat from the reservoir to the block is reversible. Figure 20-22


Figure 20-22 Problem 10
gives the change in entropy \(\Delta S\) of the block until thermal equilibrium is reached. The scale of the horizontal axis is set by \(T_{a}=280 \mathrm{~K}\) and \(T_{b}=380 \mathrm{~K}\). What is the specific heat of the block?
\(\bullet 11\) SSM Www In an experiment, 200 g of aluminum (with a specific heat of \(900 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\) ) at \(100^{\circ} \mathrm{C}\) is mixed with 50.0 g of water at \(20.0^{\circ} \mathrm{C}\), with the mixture thermally isolated. (a) What is the equilibrium temperature? What are the entropy changes of (b) the aluminum, (c) the water, and (d) the aluminum-water system?
-•12 A gas sample undergoes a reversible isothermal expansion. Figure 20-23 gives the change \(\Delta S\) in entropy of the gas versus the final volume \(V_{f}\) of the gas. The scale of the vertical axis is set by \(\Delta S_{s}=64 \mathrm{~J} / \mathrm{K}\). How many moles are in the sample?


Figure 20-23 Problem 12.
\(\because 13\) In the irreversible process of Fig. 20-5, let the initial temperatures of the identical blocks \(L\) and \(R\) be 305.5 and 294.5 K , respectively, and let 215 J be the energy that must be transferred between the blocks in order to reach equilibrium. For the reversible processes of Fig. 20-6, what is \(\Delta S\) for (a) block \(L\), (b) its reservoir, (c) block \(R\), (d) its reservoir, (e) the two-block system, and (f) the system of the two blocks and the two reservoirs?
\(\bullet 14\) (a) For 1.0 mol of a monatomic ideal gas taken through the cycle in Fig. 20-24, where \(V_{1}=\) \(4.00 V_{0}\), what is \(W / p_{0} V_{0}\) as the gas goes from state \(a\) to state \(c\) along path \(a b c\) ? What is \(\Delta E_{\text {int }} / p_{0} V_{0}\) in going (b) from \(b\) to \(c\) and (c) through one full cycle? What is \(\Delta S\) in going (d) from \(b\) to \(c\) and (e) through one full cycle?


Figure 20-24 Problem 14.
-.15 A mixture of 1773 g of water and 227 g of ice is in an initial equilibrium state at \(0.000^{\circ} \mathrm{C}\). The mixture is then, in a reversible process, brought to a second equilibrium state where the water-ice ratio, by mass, is \(1.00: 1.00\) at \(0.000^{\circ} \mathrm{C}\). (a) Calculate the entropy change of the system during this process. (The heat of fusion for water is \(333 \mathrm{~kJ} / \mathrm{kg}\).) (b) The system is then returned to the initial equilibrium state in an irreversible process (say, by using a Bunsen burner). Calculate the entropy change of the system during this process. (c) Are your answers consistent with the second law of thermodynamics?
-16 © An 8.0 g ice cube at \(-10^{\circ} \mathrm{C}\) is put into a Thermos flask containing \(100 \mathrm{~cm}^{3}\) of water at \(20^{\circ} \mathrm{C}\). By how much has the entropy of the cube-water system changed when equilibrium is reached? The specific heat of ice is \(2220 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\).
\(\bullet 17\) In Fig. 20-25, where \(V_{23}=\) \(3.00 V_{1}, n\) moles of a diatomic ideal gas are taken through the cycle with the molecules rotating but not oscillating. What are (a) \(p_{2} / p_{1}\), (b) \(p_{3} / p_{1}\), and (c) \(T_{3} / T_{1}\) ? For path \(1 \rightarrow 2\), what are (d) \(W / n R T_{1}\), (e) \(Q / n R T_{1}\), (f) \(\Delta E_{\text {int }} / n R T_{1}\), and (g) \(\Delta S / n R\) ? For path \(2 \rightarrow 3\), what are (h) \(W / n R T_{1}\), (i) \(Q / n R T_{1}\), (j) \(\Delta E_{\text {int }} / n R T_{1}, \quad\) (k) \(\Delta \operatorname{Sin} R\) ? For path \(3 \rightarrow 1\), what are (1) \(W / n R T_{1}\), (m) \(Q / n R T_{1}\), (n) \(\Delta E_{\text {int }} / n R T_{1}\), and (o) \(\Delta S / n R\) ?
-•18 (60 A 2.0 mol sample of an ideal monatomic gas undergoes the reversible process shown in Fig. 20-26. The scale of the vertical axis is set by \(T_{s}=400.0 \mathrm{~K}\) and the scale of the horizontal axis is set by \(S_{s}=20.0 \mathrm{~J} / \mathrm{K}\). (a) How much energy is absorbed as heat by the gas? (b) What is the change in the internal energy of the gas? (c) How much work is done by the gas?


Figure 20-25 Problem 17.


Figure 20-26 Problem 18.
 tial pressure \(p_{1}\) and volume \(V_{1}\) through two steps: (1) an isothermal expansion to volume \(2.00 V_{1}\) and (2) a pressure increase to \(2.00 p_{1}\) at constant volume. What is \(Q / p_{1} V_{1}\) for (a) step 1 and (b) step 2? What is \(W / p_{1} V_{1}\) for (c) step 1 and (d) step 2? For the full process, what are (e) \(\Delta E_{\text {int }} / p_{1} V_{1}\) and (f) \(\Delta S\) ? The gas is returned to its initial state and again taken to the same final state but now through these two steps: (1) an isothermal compression to pressure \(2.00 p_{1}\) and (2) a volume increase to \(2.00 V_{1}\) at constant pressure. What is \(Q / p_{1} V_{1}\) for \((\mathrm{g})\) step 1 and (h) step 2? What is \(W / p_{1} V_{1}\) for (i) step 1 and (j) step 2? For the full process, what are (k) \(\Delta E_{\text {int }} / p_{1} V_{1}\) and (l) \(\Delta S\) ?
~o020 Expand 1.00 mol of an monatomic gas initially at 5.00 kPa and 600 K from initial volume \(V_{i}=1.00 \mathrm{~m}^{3}\) to final volume \(V_{f}=\) \(2.00 \mathrm{~m}^{3}\). At any instant during the expansion, the pressure \(p\) and volume \(V\) of the gas are related by \(p=5.00 \exp \left[\left(V_{i}-V\right) / a\right]\), with \(p\) in kilopascals, \(V_{i}\) and \(V\) in cubic meters, and \(a=1.00 \mathrm{~m}^{3}\). What are the final (a) pressure and (b) temperature of the gas? (c) How much work is done by the gas during the expansion? (d) What is \(\Delta S\) for the expansion? (Hint: Use two simple reversible processes to find \(\Delta S\).)
0021 Energy can be removed from water as heat at and even below the normal freezing point \(\left(0.0^{\circ} \mathrm{C}\right.\) at atmospheric pressure) without causing the water to freeze; the water is then said to be supercooled. Suppose a 1.00 g water drop is supercooled until its temperature is that of the surrounding air, which is at \(-5.00^{\circ} \mathrm{C}\). The drop then suddenly and irreversibly freezes, transferring energy to the air as heat. What is the entropy change for the drop? (Hint: Use a three-step reversible process as if the water were taken through the normal freezing point.) The specific heat of ice is \(2220 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\).
-•022 ©o An insulated Thermos contains 130 g of water at \(80.0^{\circ} \mathrm{C}\). You put in a 12.0 g ice cube at \(0^{\circ} \mathrm{C}\) to form a system of
ice + original water. (a) What is the equilibrium temperature of the system? What are the entropy changes of the water that was originally the ice cube (b) as it melts and (c) as it warms to the equilibrium temperature? (d) What is the entropy change of the original water as it cools to the equilibrium temperature? (e) What is the net entropy change of the ice + original water system as it reaches the equilibrium temperature?

\section*{Module 20-2 Entropy in the Real World: Engines}
-23 A Carnot engine whose low-temperature reservoir is at \(17^{\circ} \mathrm{C}\) has an efficiency of \(40 \%\). By how much should the temperature of the high-temperature reservoir be increased to increase the efficiency to \(50 \%\) ?
-24 A Carnot engine absorbs 52 kJ as heat and exhausts 36 kJ as heat in each cycle. Calculate (a) the engine's efficiency and (b) the work done per cycle in kilojoules.
-25 A Carnot engine has an efficiency of \(22.0 \%\). It operates between constant-temperature reservoirs differing in temperature by \(75.0 \mathrm{C}^{\circ}\). What is the temperature of the (a) lower-temperature and (b) higher-temperature reservoir?
-26 In a hypothetical nuclear fusion reactor, the fuel is deuterium gas at a temperature of \(7 \times 10^{8} \mathrm{~K}\). If this gas could be used to operate a Carnot engine with \(T_{\mathrm{L}}=100^{\circ} \mathrm{C}\), what would be the engine's efficiency? Take both temperatures to be exact and report your answer to seven significant figures.
\(\bullet 27\) SSM Www A Carnot engine operates between \(235^{\circ} \mathrm{C}\) and \(115^{\circ} \mathrm{C}\), absorbing \(6.30 \times 10^{4} \mathrm{~J}\) per cycle at the higher temperature. (a) What is the efficiency of the engine? (b) How much work per cycle is this engine capable of performing?
\(\bullet 28\) In the first stage of a two-stage Carnot engine, energy is absorbed as heat \(Q_{1}\) at temperature \(T_{1}\), work \(W_{1}\) is done, and energy is expelled as heat \(Q_{2}\) at a lower temperature \(T_{2}\). The second stage absorbs that energy as heat \(Q_{2}\), does work \(W_{2}\), and expels energy as heat \(Q_{3}\) at a still lower temperature \(T_{3}\). Prove that the efficiency of the engine is \(\left(T_{1}-T_{3}\right) / T_{1}\).
-029 ©0 Figure 20-27 shows a reversible cycle through which 1.00 mol of a monatomic ideal gas is taken. Assume that \(p=2 p_{0}, V=2 V_{0}, p_{0}=\) \(1.01 \times 10^{5} \mathrm{~Pa}\), and \(V_{0}=0.0225 \mathrm{~m}^{3}\). Calculate (a) the work done during the cycle, (b) the energy added as heat during stroke \(a b c\), and (c) the efficiency of the cycle. (d) What is the efficiency of a Carnot engine operating between the highest and low-


Figure 20-27 Problem 29. est temperatures that occur in the cycle? (e) Is this greater than or less than the efficiency calculated in (c)?
-•30 A 500 W Carnot engine operates between constanttemperature reservoirs at \(100^{\circ} \mathrm{C}\) and \(60.0^{\circ} \mathrm{C}\). What is the rate at which energy is (a) taken in by the engine as heat and (b) exhausted by the engine as heat?
थ31 The efficiency of a particular car engine is \(25 \%\) when the engine does 8.2 kJ of work per cycle. Assume the process is reversible. What are (a) the energy the engine gains per cycle as heat \(Q_{\text {gain }}\) from the fuel combustion and (b) the energy the engine loses per cycle as heat \(Q_{\text {lost }}\) ? If a tune-up increases the efficiency to \(31 \%\), what are (c) \(Q_{\text {gain }}\) and (d) \(Q_{\text {lost }}\) at the same work value?
-•32 © A Carnot engine is set up to produce a certain work \(W\) per cycle. In each cycle, energy in the form of heat \(Q_{\mathrm{H}}\) is transferred to the working substance of the engine from the higher-temperature thermal reservoir, which is at an adjustable temperature \(T_{\mathrm{H}}\). The lower-temperature thermal reservoir is maintained at temperature \(T_{\mathrm{L}}=250 \mathrm{~K}\). Figure 20-28 gives \(Q_{\mathrm{H}}\) for a range of \(T_{\mathrm{H}}\). The scale of the vertical axis is set by \(Q_{\mathrm{Hs}}=6.0 \mathrm{~kJ}\). If \(T_{\mathrm{H}}\) is set at 550 K , what is \(Q_{\mathrm{H}}\) ?

-•33 Ssm ILW Figure 20-29 shows a reversible cycle through which 1.00 mol of a monatomic ideal gas is taken. Volume \(V_{c}=8.00 V_{b}\). Process \(b c\) is an adiabatic expansion, with \(p_{b}\) \(=10.0 \mathrm{~atm}\) and \(V_{b}=1.00 \times 10^{-3} \mathrm{~m}^{3}\). For the cycle, find (a) the energy added to the gas as heat, (b) the energy leaving the gas as heat, (c) the net work done by the gas, and (d) the efficiency of the cycle.
\(\bullet 34\) © 60 An ideal gas ( 1.0 mol ) is the working substance in an engine that operates on the cycle shown in Fig. 20-30. Processes \(B C\) and \(D A\) are reversible and adiabatic. (a) Is the gas monatomic, diatomic, or polyatomic? (b) What is the engine efficiency?


Figure 20-30 Problem 34.
\({ }^{00035}\) The cycle in Fig. 20-31 represents the operation of a gasoline internal combustion engine. Volume \(V_{3}=4.00 V_{1}\). Assume the gaso-line-air intake mixture is an ideal gas with \(\gamma=1.30\). What are the ratios (a) \(T_{2} / T_{1}\), (b) \(T_{3} / T_{1}\), (c) \(T_{4} / T_{1}\), (d) \(p_{3} / p_{1}\), and (e) \(p_{4} / p_{1}\) ? (f) What is the engine efficiency?

\section*{Module 20-3 Refrigerators and Real Engines}
-36 How much work must be done by a Carnot refrigerator to transfer 1.0


Figure 20-31 Problem 35.

J as heat (a) from a reservoir at \(7.0^{\circ} \mathrm{C}\) to one at \(27^{\circ} \mathrm{C}\), (b) from a reservoir at \(-73^{\circ} \mathrm{C}\) to one at \(27^{\circ} \mathrm{C}\), (c) from a reservoir at \(-173^{\circ} \mathrm{C}\) to one at \(27^{\circ} \mathrm{C}\), and (d) from a reservoir at \(-223^{\circ} \mathrm{C}\) to one at \(27^{\circ} \mathrm{C}\) ?
\(\cdot 37\) SSM A heat pump is used to heat a building. The external temperature is less than the internal temperature. The pump's coefficient of performance is 3.8 , and the heat pump delivers 7.54 MJ as heat to the building each hour. If the heat pump is a Carnot engine working in reverse, at what rate must work be done to run it?
-38 The electric motor of a heat pump transfers energy as heat from the outdoors, which is at \(-5.0^{\circ} \mathrm{C}\), to a room that is at \(17^{\circ} \mathrm{C}\). If the heat pump were a Carnot heat pump (a Carnot engine working in reverse), how much energy would be transferred as heat to the room for each joule of electric energy consumed?
-39 SSm A Carnot air conditioner takes energy from the thermal energy of a room at \(70^{\circ} \mathrm{F}\) and transfers it as heat to the outdoors, which is at \(96^{\circ} \mathrm{F}\). For each joule of electric energy required to operate the air conditioner, how many joules are removed from the room?
\(\bullet 40\) To make ice, a freezer that is a reverse Carnot engine extracts 42 kJ as heat at \(-15^{\circ} \mathrm{C}\) during each cycle, with coefficient of performance 5.7. The room temperature is \(30.3^{\circ} \mathrm{C}\). How much (a) energy per cycle is delivered as heat to the room and (b) work per cycle is required to run the freezer?
\(\bullet 41\) ILW An air conditioner operating between \(93^{\circ} \mathrm{F}\) and \(70^{\circ} \mathrm{F}\) is rated at \(4000 \mathrm{Btu} / \mathrm{h}\) cooling capacity. Its coefficient of performance is \(27 \%\) of that of a Carnot refrigerator operating between the same two temperatures. What horsepower is required of the air conditioner motor?
-042 The motor in a refrigerator has a power of 200 W . If the freezing compartment is at 270 K and the outside air is at 300 K , and assuming the efficiency of a Carnot refrigerator, what is the maximum amount of energy that can be extracted as heat from the freezing compartment in 10.0 min ?
-043 © Figure 20-32 represents a Carnot engine that works between temperatures \(T_{1}=400 \mathrm{~K}\) and \(T_{2}=150 \mathrm{~K}\) and drives a Carnot refrigerator that works between temperatures \(T_{3}=325 \mathrm{~K}\) and \(T_{4}=\) 225 K . What is the ratio \(Q_{3} / Q_{1}\) ?
\(\bullet 44\) (a) During each cycle, a Carnot engine absorbs 750 J as heat from a high-temperature reser-


Figure 20-32 Problem 43. voir at 360 K , with the low-temperature reservoir at 280 K . How much work is done per cycle? (b) The engine is then made to work in reverse to function as a Carnot refrigerator between those same two reservoirs. During each cycle, how much work is required to remove 1200 J as heat from the low-temperature reservoir?

\section*{Module 20-4 A Statistical View of Entropy}
-45 Construct a table like Table 20-1 for eight molecules.
-046 A box contains \(N\) identical gas molecules equally divided between its two halves. For \(N=50\), what are (a) the multiplicity \(W\) of the central configuration, (b) the total number of microstates, and (c) the percentage of the time the system spends in the central configuration? For \(N=100\), what are (d) \(W\) of the central configura-
tion, (e) the total number of microstates, and (f) the percentage of the time the system spends in the central configuration? For \(N=200\), what are (g) \(W\) of the central configuration, (h) the total number of microstates, and (i) the percentage of the time the system spends in the central configuration? (j) Does the time spent in the central configuration increase or decrease with an increase in \(N\) ?
\(\bullet 0047\) SSm www A box contains \(N\) gas molecules. Consider the box to be divided into three equal parts. (a) By extension of Eq. 20-20, write a formula for the multiplicity of any given configuration. (b) Consider two configurations: configuration \(A\) with equal numbers of molecules in all three thirds of the box, and configuration \(B\) with equal numbers of molecules in each half of the box divided into two equal parts rather than three. What is the ratio \(W_{A} / W_{B}\) of the multiplicity of configuration \(A\) to that of configuration \(B\) ? (c) Evaluate \(W_{A} / W_{B}\) for \(N=100\). (Because 100 is not evenly divisible by 3 , put 34 molecules into one of the three box parts of configuration \(A\) and 33 in each of the other two parts.)

\section*{Additional Problems}

48 Four particles are in the insulated box of Fig. 20-17. What are (a) the least multiplicity, (b) the greatest multiplicity, (c) the least entropy, and (d) the greatest entropy of the four-particle system?
49 A cylindrical copper rod of length 1.50 m and radius 2.00 cm is insulated to prevent heat loss through its curved surface. One end is attached to a thermal reservoir fixed at \(300^{\circ} \mathrm{C}\); the other is attached to a thermal reservoir fixed at \(30.0^{\circ} \mathrm{C}\). What is the rate at which entropy increases for the rod-reservoirs system?
50 Suppose 0.550 mol of an ideal gas is isothermally and reversibly expanded in the four situations given below. What is the change in the entropy of the gas for each situation?
\begin{tabular}{lcccc}
\hline Situation & (a) & (b) & (c) & (d) \\
\hline Temperature \((\mathrm{K})\) & 250 & 350 & 400 & 450 \\
Initial volume \(\left(\mathrm{cm}^{3}\right)\) & 0.200 & 0.200 & 0.300 & 0.300 \\
Final volume \(\left(\mathrm{cm}^{3}\right)\) & 0.800 & 0.800 & 1.20 & 1.20 \\
\hline
\end{tabular}

51 SSM As a sample of nitrogen gas \(\left(\mathrm{N}_{2}\right)\) undergoes a temperature increase at constant volume, the distribution of molecular speeds increases. That is, the probability distribution function \(P(v)\) for the molecules spreads to higher speed values, as suggested in Fig. 19-8b. One way to report the spread in \(P(v)\) is to measure the difference \(\Delta v\) between the most probable speed \(v_{P}\) and the rms speed \(v_{\text {rms }}\). When \(P(v)\) spreads to higher speeds, \(\Delta v\) increases. Assume that the gas is ideal and the \(\mathrm{N}_{2}\) molecules rotate but do not oscillate. For 1.5 mol , an initial temperature of 250 K , and a final temperature of 500 K , what are (a) the initial difference \(\Delta v_{i}\), (b) the final difference \(\Delta v_{f}\), and (c) the entropy change \(\Delta S\) for the gas?
52 Suppose 1.0 mol of a monatomic ideal gas initially at 10 L and 300 K is heated at constant volume to 600 K , allowed to expand isothermally to its initial pressure, and finally compressed at constant pressure to its original volume, pressure, and temperature. During the cycle, what are (a) the net energy entering the system (the gas) as heat and (b) the net work done by the gas? (c) What is the efficiency of the cycle?
53 ©0 Suppose that a deep shaft were drilled in Earth's crust near one of the poles, where the surface temperature is \(-40^{\circ} \mathrm{C}\), to a depth where the temperature is \(800^{\circ} \mathrm{C}\). (a) What is the theoretical limit to the efficiency of an engine operating between these
temperatures? (b) If all the energy released as heat into the lowtemperature reservoir were used to melt ice that was initially at \(-40^{\circ} \mathrm{C}\), at what rate could liquid water at \(0^{\circ} \mathrm{C}\) be produced by a 100 MW power plant (treat it as an engine)? The specific heat of ice is \(2220 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\); water's heat of fusion is \(333 \mathrm{~kJ} / \mathrm{kg}\). (Note that the engine can operate only between \(0^{\circ} \mathrm{C}\) and \(800^{\circ} \mathrm{C}\) in this case. Energy exhausted at \(-40^{\circ} \mathrm{C}\) cannot warm anything above \(-40^{\circ} \mathrm{C}\).)
54 What is the entropy change for 3.20 mol of an ideal monatomic gas undergoing a reversible increase in temperature from 380 K to 425 K at constant volume?
55 A 600 g lump of copper at \(80.0^{\circ} \mathrm{C}\) is placed in 70.0 g of water at \(10.0^{\circ} \mathrm{C}\) in an insulated container. (See Table 18-3 for specific heats.) (a) What is the equilibrium temperature of the copperwater system? What entropy changes do (b) the copper, (c) the water, and (d) the copper-water system undergo in reaching the equilibrium temperature?

56 Figure \(20-33\) gives the force magnitude \(F\) versus stretch distance \(x\) for a rubber band, with the scale of the \(F\) axis set by \(F_{s}=1.50 \mathrm{~N}\) and the scale of the \(x\) axis set by \(x_{s}=3.50 \mathrm{~cm}\). The temperature is \(2.00^{\circ} \mathrm{C}\). When the rubber band is stretched by \(x=1.70 \mathrm{~cm}\), at what rate does the entropy of the rubber band change during a small additional stretch?
57 The temperature of 1.00 mol of a


Figure 20-33
Problem 56. monatomic ideal gas is raised reversibly from 300 K to 400 K , with its volume kept constant. What is the entropy change of the gas?
58 Repeat Problem 57, with the pressure now kept constant.
59 SSM A 0.600 kg sample of water is initially ice at temperature \(-20^{\circ} \mathrm{C}\). What is the sample's entropy change if its temperature is increased to \(40^{\circ} \mathrm{C}\) ?

60 A three-step cycle is undergone by 3.4 mol of an ideal diatomic gas: (1) the temperature of the gas is increased from 200 K to 500 K at constant volume; (2) the gas is then isothermally expanded to its original pressure; (3) the gas is then contracted at constant pressure back to its original volume. Throughout the cycle, the molecules rotate but do not oscillate. What is the efficiency of the cycle?
61 An inventor has built an engine \(X\) and claims that its efficiency \(\varepsilon_{\mathrm{X}}\) is greater than the efficiency \(\varepsilon\) of an ideal engine operating between the same two temperatures. Suppose you couple engine X to an ideal refrigerator (Fig. 20-34a) and adjust the cycle


Figure 20-34 Problem 61.
of engine X so that the work per cycle it provides equals the work per cycle required by the ideal refrigerator. Treat this combination as a single unit and show that if the inventor's claim were true (if \(\varepsilon_{\mathrm{X}}>\varepsilon\) ), the combined unit would act as a perfect refrigerator (Fig. 20-34b), transferring energy as heat from the low-temperature reservoir to the high-temperature reservoir without the need for work.

62 Suppose 2.00 mol of a diatomic gas is taken reversibly around the cycle shown in the \(T\) \(S\) diagram of Fig. 20-35, where \(S_{1}=6.00 \mathrm{~J} / \mathrm{K}\) and \(S_{2}=8.00 \mathrm{~J} / \mathrm{K}\). The molecules do not rotate or oscillate. What is the energy transferred as heat \(Q\) for (a) path \(1 \rightarrow 2\), (b) path \(2 \rightarrow 3\), and (c) the full cycle? (d) What is the work \(W\) for the isothermal process? The volume \(V_{1}\) in state 1 is \(0.200 \mathrm{~m}^{3}\). What is the volume in


Figure 20-35 Problem 62. (e) state 2 and (f) state 3?

What is the change \(\Delta E_{\text {int }}\) for (g) path \(1 \rightarrow 2\), (h) path \(2 \rightarrow 3\), and (i) the full cycle? (Hint: (h) can be done with one or two lines of calculation using Module 19-7 or with a page of calculation using Module 19-9.) (j) What is the work \(W\) for the adiabatic process?

63 A three-step cycle is undergone reversibly by 4.00 mol of an ideal gas: (1) an adiabatic expansion that gives the gas 2.00 times its initial volume, (2) a constant-volume process, (3) an isothermal compression back to the initial state of the gas. We do not know whether the gas is monatomic or diatomic; if it is diatomic, we do not know whether the molecules are rotating or oscillating. What are the entropy changes for (a) the cycle,(b) process 1,(c) process 3, and (d) process 2?

64 (a) A Carnot engine operates between a hot reservoir at 320 K and a cold one at 260 K . If the engine absorbs 500 J as heat per cycle at the hot reservoir, how much work per cycle does it deliver? (b) If the engine working in reverse functions as a refrigerator between the same two reservoirs, how much work per cycle must be supplied to remove 1000 J as heat from the cold reservoir?

65 A 2.00 mol diatomic gas initially at 300 K undergoes this cycle: It is (1) heated at constant volume to 800 K , (2) then allowed to expand isothermally to its initial pressure, (3) then compressed at constant pressure to its initial state. Assuming the gas molecules neither rotate nor oscillate, find (a) the net energy transferred as heat to the gas, (b) the net work done by the gas, and (c) the efficiency of the cycle.
66 An ideal refrigerator does 150 J of work to remove 560 J as heat from its cold compartment. (a) What is the refrigerator's coefficient of performance? (b) How much heat per cycle is exhausted to the kitchen?

67 Suppose that 260 J is conducted from a constant-temperature reservoir at 400 K to one at (a) 100 K , (b) 200 K , (c) 300 K , and (d) 360 K . What is the net change in entropy \(\Delta S_{\text {net }}\) of the reservoirs in each case? (e) As the temperature difference of the two reservoirs decreases, does \(\Delta S_{\text {net }}\) increase, decrease, or remain the same?
68 An apparatus that liquefies helium is in a room maintained at 300 K . If the helium in the apparatus is at 4.0 K , what is the minimum ratio \(Q_{\text {to }} / Q_{\text {from }}\), where \(Q_{\text {to }}\) is the energy delivered as heat to the room and \(Q_{\text {from }}\) is the energy removed as heat from the helium?

69 A brass rod is in thermal contact with a constant-temperature reservoir at \(130^{\circ} \mathrm{C}\) at one end and a constant-temperature reservoir at \(24.0^{\circ} \mathrm{C}\) at the other end. (a) Compute the total change in entropy of the rod-reservoirs system when 5030 J of energy is conducted through the rod, from one reservoir to the other. (b) Does the entropy of the rod change?

70 A 45.0 g block of tungsten at \(30.0^{\circ} \mathrm{C}\) and a 25.0 g block of silver at \(-120^{\circ} \mathrm{C}\) are placed together in an insulated container. (See Table 18-3 for specific heats.) (a) What is the equilibrium temperature? What entropy changes do (b) the tungsten, (c) the silver, and (d) the tungsten-silver system undergo in reaching the equilibrium temperature?

71 A box contains \(N\) molecules. Consider two configurations: configuration \(A\) with an equal division of the molecules between the two halves of the box, and configuration \(B\) with \(60.0 \%\) of the molecules in the left half of the box and \(40.0 \%\) in the right half. For \(N=50\), what are (a) the multiplicity \(W_{A}\) of configuration \(A\),(b) the multiplicity \(W_{B}\) of configuration \(B\), and (c) the ratio \(f_{B / A}\) of the time the system spends in configuration \(B\) to the time it spends in configuration \(A\) ? For \(N=100\), what are (d) \(W_{A}\), (e) \(W_{B}\), and (f) \(f_{B / A}\) ? For \(N=200\), what are (g) \(W_{A}\), (h) \(W_{B}\), and (i) \(f_{B / A}\) ? (j) With increasing \(N\), does \(f\) increase, decrease, or remain the same?
72 Calculate the efficiency of a fossil-fuel power plant that consumes 380 metric tons of coal each hour to produce useful work at the rate of 750 MW . The heat of combustion of coal (the heat due to burning it) is \(28 \mathrm{MJ} / \mathrm{kg}\).

73 SSM A Carnot refrigerator extracts 35.0 kJ as heat during each cycle, operating with a coefficient of performance of 4.60. What are (a) the energy per cycle transferred as heat to the room and (b) the work done per cycle?
74 A Carnot engine whose high-temperature reservoir is at 400 K has an efficiency of \(30.0 \%\). By how much should the temperature of the low-temperature reservoir be changed to increase the efficiency to \(40.0 \%\) ?
75 Ssm System \(A\) of three particles and system \(B\) of five particles are in insulated boxes like that in Fig. 20-17. What is the least multiplicity \(W\) of (a) system \(A\) and (b) system \(B\) ? What is the greatest multiplicity \(W\) of (c) \(A\) and (d) \(B\) ? What is the greatest entropy of (e) \(A\) and (f) \(B\) ?

76 Figure 20-36 shows a Carnot cycle on a \(T-S\) diagram, with a scale set by \(S_{s}=0.60 \mathrm{~J} / \mathrm{K}\). For a full cycle, find (a) the net heat transfer and (b) the net work done by the system. 77 Find the relation between the efficiency of a reversible ideal heat engine and the coefficient of performance of the reversible


Entropy (J/K)
Figure 20-36 Problem 76. refrigerator obtained by running the engine backwards.

78 A Carnot engine has a power of 500 W . It operates between heat reservoirs at \(100^{\circ} \mathrm{C}\) and \(60.0^{\circ} \mathrm{C}\). Calculate (a) the rate of heat input and (b) the rate of exhaust heat output.
79 In a real refrigerator, the low-temperature coils are at \(-13^{\circ} \mathrm{C}\), and the compressed gas in the condenser is at \(26^{\circ} \mathrm{C}\). What is the theoretical coefficient of performance?

\section*{Coulomb's Law}

\section*{21-1 coulomb's law}

\section*{Learning Objectives}

After reading this module, you should be able to
21.01 Distinguish between being electrically neutral, negatively charged, and positively charged and identify excess charge.
21.02 Distinguish between conductors, nonconductors (insulators), semiconductors, and superconductors.
21.03 Describe the electrical properties of the particles inside an atom.
21.04 Identify conduction electrons and explain their role in making a conducting object negatively or positively charged.
21.05 Identify what is meant by "electrically isolated" and by "grounding."
21.06 Explain how a charged object can set up induced charge in a second object.
21.07 Identify that charges with the same electrical sign repel each other and those with opposite electrical signs attract each other.
21.08 For either of the particles in a pair of charged particles, draw a free-body diagram, showing the electrostatic force (Coulomb force) on it and anchoring the tail of the force vector on that particle.
21.09 For either of the particles in a pair of charged particles, apply Coulomb's law to relate the magnitude of the electrostatic force, the charge magnitudes of the particles, and the separation between the particles.
21.10 Identify that Coulomb's law applies only to (point-like) particles and objects that can be treated as particles.
21.11 If more than one force acts on a particle, find the net force by adding all the forces as vectors, not scalars.
21.12 Identify that a shell of uniform charge attracts or repels a charged particle that is outside the shell as if all the shell's charge were concentrated as a particle at the shell's center.
21.13 Identify that if a charged particle is located inside a shell of uniform charge, there is no net electrostatic force on the particle from the shell.
21.14 Identify that if excess charge is put on a spherical conductor, it spreads out uniformly over the external surface area.
21.15 Identify that if two identical spherical conductors touch or are connected by conducting wire, any excess charge will be shared equally.
21.16 Identify that a nonconducting object can have any given distribution of charge, including charge at interior points.
21.17 Identify current as the rate at which charge moves through a point.
21.18 For current through a point, apply the relationship between the current, a time interval, and the amount of charge that moves through the point in that time interval.

\section*{Key Ideas}
- The strength of a particle's electrical interaction with objects around it depends on its electric charge (usually represented as \(q\) ), which can be either positive or negative.
Particles with the same sign of charge repel each other, and particles with opposite signs of charge attract each other.
- An object with equal amounts of the two kinds of charge is electrically neutral, whereas one with an imbalance is electrically charged and has an excess charge.
- Conductors are materials in which a significant number of electrons are free to move. The charged particles in nonconductors (insulators) are not free to move.
- Electric current \(i\) is the rate \(d q / d t\) at which charge passes a point:
\[
i=\frac{d q}{d t}
\]

Coulomb's law describes the electrostatic force (or electric
force) between two charged particles. If the particles have charges \(q_{1}\) and \(q_{2}\), are separated by distance \(r\), and are at rest (or moving only slowly) relative to each other, then the magnitude of the force acting on each due to the other is given by
\[
F=\frac{1}{4 \pi \varepsilon_{0}} \frac{\left|q_{1}\right|\left|q_{2}\right|}{r^{2}} \quad \text { (Coulomb's law), }
\]
where \(\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{m}^{2}\) is the permittivity constant. The ratio \(1 / 4 \pi \varepsilon_{0}\) is often replaced with the electrostatic constant (or Coulomb constant) \(k=8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\).
- The electrostatic force vector acting on a charged particle due to a second charged particle is either directly toward the second particle (opposite signs of charge) or directly away from it (same sign of charge).
- If multiple electrostatic forces act on a particle, the net force is the vector sum (not scalar sum) of the individual forces.
- Shell theorem 1: A charged particle outside a shell with charge uniformly distributed on its surface is attracted or repelled as if the shell's charge were concentrated as a particle at its center.

Shell theorem 2: A charged particle inside a shell with
charge uniformly distributed on its surface has no net force acting on it due to the shell.
- Charge on a conducting spherical shell spreads uniformly over the (external) surface.

(a)

(b)

Figure 21-1 (a) The two glass rods were each rubbed with a silk cloth and one was suspended by thread. When they are close to each other, they repel each other. (b) The plastic rod was rubbed with fur. When brought close to the glass rod, the rods attract each other.

\section*{What Is Physics?}

You are surrounded by devices that depend on the physics of electromagnetism, which is the combination of electric and magnetic phenomena. This physics is at the root of computers, television, radio, telecommunications, household lighting, and even the ability of food wrap to cling to a container. This physics is also the basis of the natural world. Not only does it hold together all the atoms and molecules in the world, it also produces lightning, auroras, and rainbows.

The physics of electromagnetism was first studied by the early Greek philosophers, who discovered that if a piece of amber is rubbed and then brought near bits of straw, the straw will jump to the amber. We now know that the attraction between amber and straw is due to an electric force. The Greek philosophers also discovered that if a certain type of stone (a naturally occurring magnet) is brought near bits of iron, the iron will jump to the stone. We now know that the attraction between magnet and iron is due to a magnetic force.

From these modest origins with the Greek philosophers, the sciences of electricity and magnetism developed separately for centuries-until 1820, in fact, when Hans Christian Oersted found a connection between them: an electric current in a wire can deflect a magnetic compass needle. Interestingly enough, Oersted made this discovery, a big surprise, while preparing a lecture demonstration for his physics students.

The new science of electromagnetism was developed further by workers in many countries. One of the best was Michael Faraday, a truly gifted experimenter with a talent for physical intuition and visualization. That talent is attested to by the fact that his collected laboratory notebooks do not contain a single equation. In the mid-nineteenth century, James Clerk Maxwell put Faraday's ideas into mathematical form, introduced many new ideas of his own, and put electromagnetism on a sound theoretical basis.

Our discussion of electromagnetism is spread through the next 16 chapters. We begin with electrical phenomena, and our first step is to discuss the nature of electric charge and electric force.

\section*{Electric Charge}

Here are two demonstrations that seem to be magic, but our job here is to make sense of them. After rubbing a glass rod with a silk cloth (on a day when the humidity is low), we hang the rod by means of a thread tied around its center (Fig. 21-la). Then we rub a second glass rod with the silk cloth and bring it near the hanging rod. The hanging rod magically moves away. We can see that a force repels it from the second rod, but how? There is no contact with that rod, no breeze to push on it, and no sound wave to disturb it.

In the second demonstration we replace the second rod with a plastic rod that has been rubbed with fur. This time, the hanging rod moves toward the nearby rod (Fig. 21-1b). Like the repulsion, this attraction occurs without any contact or obvious communication between the rods.

In the next chapter we shall discuss how the hanging rod knows of the presence of the other rods, but in this chapter let's focus on just the forces that are involved. In the first demonstration, the force on the hanging rod was repulsive, and
in the second, attractive. After a great many investigations, scientists figured out that the forces in these types of demonstrations are due to the electric charge that we set up on the rods when they are in contact with silk or fur. Electric charge is an intrinsic property of the fundamental particles that make up objects such as the rods, silk, and fur. That is, charge is a property that comes automatically with those particles wherever they exist.

Two Types. There are two types of electric charge, named by the American scientist and statesman Benjamin Franklin as positive charge and negative charge. He could have called them anything (such as cherry and walnut), but using algebraic signs as names comes in handy when we add up charges to find the net charge. In most everyday objects, such as a mug, there are about equal numbers of negatively charged particles and positively charged particles, and so the net charge is zero, the charge is said to be balanced, and the object is said to be electrically neutral (or just neutral for short).

Excess Charge. Normally you are approximately neutral. However, if you live in regions where the humidity is low, you know that the charge on your body can become slightly unbalanced when you walk across certain carpets. Either you gain negative charge from the carpet (at the points of contact between your shoes with the carpet) and become negatively charged, or you lose negative charge and become positively charged. Either way, the extra charge is said to be an excess charge. You probably don't notice it until you reach for a door handle or another person. Then, if your excess charge is enough, a spark leaps between you and the other object, eliminating your excess charge. Such sparking can be annoying and even somewhat painful. Such charging and discharging does not happen in humid conditions because the water in the air neutralizes your excess charge about as fast as you acquire it.

Two of the grand mysteries in physics are (1) why does the universe have particles with electric charge (what is it, really?) and (2) why does electric charge come in two types (and not, say, one type or three types). We just do not know. Nevertheless, with lots of experiments similar to our two demonstrations scientists discovered that

Particles with the same sign of electrical charge repel each other, and particles with opposite signs attract each other.

In a moment we shall put this rule into quantitative form as Coulomb's law of electrostatic force (or electric force) between charged particles. The term electrostatic is used to emphasize that, relative to each other, the charges are either stationary or moving only very slowly.

Demos. Now let's get back to the demonstrations to understand the motions of the rod as being something other than just magic. When we rub the glass rod with a silk cloth, a small amount of negative charge moves from the rod to the silk (a transfer like that between you and a carpet), leaving the rod with a small amount of excess positive charge. (Which way the negative charge moves is not obvious and requires a lot of experimentation.) We rub the silk over the rod to increase the number of contact points and thus the amount, still tiny, of transferred charge. We hang the rod from the thread so as to electrically isolate it from its surroundings (so that the surroundings cannot neutralize the rod by giving it enough negative charge to rebalance its charge). When we rub the second rod with the silk cloth, it too becomes positively charged. So when we bring it near the first rod, the two rods repel each other (Fig. 21-2a).

Next, when we rub the plastic rod with fur, it gains excess negative charge from the fur. (Again, the transfer direction is learned through many experiments.) When we bring the plastic rod (with negative charge) near the hanging glass rod (with positive charge), the rods are attracted to each other (Fig. 21-2b). All this is subtle. You cannot see the charge or its transfer, only the results.


Figure 21-2 (a) Two charged rods of the same sign repel each other. (b) Two charged rods of opposite signs attract each other. Plus signs indicate a positive net charge, and minus signs indicate a negative net charge.


Figure 21-3 A neutral copper rod is electrically isolated from its surroundings by being suspended on a nonconducting thread. Either end of the copper rod will be attracted by a charged rod. Here, conduction electrons in the copper rod are repelled to the far end of that rod by the negative charge on the plastic rod. Then that negative charge attracts the remaining positive charge on the near end of the copper rod, rotating the copper rod to bring that near end closer to the plastic rod.

\section*{Conductors and Insulators}

We can classify materials generally according to the ability of charge to move through them. Conductors are materials through which charge can move rather freely; examples include metals (such as copper in common lamp wire), the human body, and tap water. Nonconductors-also called insulators-are materials through which charge cannot move freely; examples include rubber (such as the insulation on common lamp wire), plastic, glass, and chemically pure water. Semiconductors are materials that are intermediate between conductors and insulators; examples include silicon and germanium in computer chips. Superconductors are materials that are perfect conductors, allowing charge to move without any hindrance. In these chapters we discuss only conductors and insulators.

Conducting Path. Here is an example of how conduction can eliminate excess charge on an object. If you rub a copper rod with wool, charge is transferred from the wool to the rod. However, if you are holding the rod while also touching a faucet, you cannot charge the rod in spite of the transfer. The reason is that you, the rod, and the faucet are all conductors connected, via the plumbing, to Earth's surface, which is a huge conductor. Because the excess charges put on the rod by the wool repel one another, they move away from one another by moving first through the rod, then through you, and then through the faucet and plumbing to reach Earth's surface, where they can spread out. The process leaves the rod electrically neutral.

In thus setting up a pathway of conductors between an object and Earth's surface, we are said to ground the object, and in neutralizing the object (by eliminating an unbalanced positive or negative charge), we are said to discharge the object. If instead of holding the copper rod in your hand, you hold it by an insulating handle, you eliminate the conducting path to Earth, and the rod can then be charged by rubbing (the charge remains on the rod), as long as you do not touch it directly with your hand.

Charged Particles. The properties of conductors and insulators are due to the structure and electrical nature of atoms. Atoms consist of positively charged protons, negatively charged electrons, and electrically neutral neutrons. The protons and neutrons are packed tightly together in a central nucleus.

The charge of a single electron and that of a single proton have the same magnitude but are opposite in sign. Hence, an electrically neutral atom contains equal numbers of electrons and protons. Electrons are held near the nucleus because they have the electrical sign opposite that of the protons in the nucleus and thus are attracted to the nucleus. Were this not true, there would be no atoms and thus no you.

When atoms of a conductor like copper come together to form the solid, some of their outermost (and so most loosely held) electrons become free to wander about within the solid, leaving behind positively charged atoms (positive ions). We call the mobile electrons conduction electrons. There are few (if any) free electrons in a nonconductor.

Induced Charge. The experiment of Fig. 21-3 demonstrates the mobility of charge in a conductor. A negatively charged plastic rod will attract either end of an isolated neutral copper rod. What happens is that many of the conduction electrons in the closer end of the copper rod are repelled by the negative charge on the plastic rod. Some of the conduction electrons move to the far end of the copper rod, leaving the near end depleted in electrons and thus with an unbalanced positive charge. This positive charge is attracted to the negative charge in the plastic rod. Although the copper rod is still neutral, it is said to have an induced charge, which means that some of its positive and negative charges have been separated due to the presence of a nearby charge.

Similarly, if a positively charged glass rod is brought near one end of a neutral copper rod, induced charge is again set up in the neutral copper rod but now the near end gains conduction electrons, becomes negatively charged, and is attracted to the glass rod, while the far end is positively charged.

Note that only conduction electrons, with their negative charges, can move; positive ions are fixed in place. Thus, an object becomes positively charged only through the removal of negative charges.

\section*{Blue Flashes from a Wintergreen LifeSaver}

Indirect evidence for the attraction of charges with opposite signs can be seen with a wintergreen LifeSaver (the candy shaped in the form of a marine lifesaver). If you adapt your eyes to darkness for about 15 minutes and then have a friend chomp on a piece of the candy in the darkness, you will see a faint blue flash from your friend's mouth with each chomp. Whenever a chomp breaks a sugar crystal into pieces, each piece will probably end up with a different number of electrons. Suppose a crystal breaks into pieces \(A\) and \(B\), with \(A\) ending up with more electrons on its surface than \(B\) (Fig. 21-4). This means that \(B\) has positive ions (atoms that lost electrons to \(A\) ) on its surface. Because the electrons on \(A\) are strongly attracted to the positive ions on \(B\), some of those electrons jump across the gap between the pieces.

As \(A\) and \(B\) move away from each other, air (primarily nitrogen, \(\mathrm{N}_{2}\) ) flows into the gap, and many of the jumping electrons collide with nitrogen molecules in the air, causing the molecules to emit ultraviolet light. You cannot see this type of light. However, the wintergreen molecules on the surfaces of the candy pieces absorb the ultraviolet light and then emit blue light, which you can see - it is the blue light coming from your friend's mouth.

\section*{Checkpoint 1}

The figure shows five pairs of plates: \(A, B\), and \(D\) are charged plastic plates and \(C\) is an electrically neutral copper plate. The electrostatic forces between the pairs of plates are shown for three of the pairs. For the remaining two pairs, do the plates repel or attract each other?

\section*{Coulomb's Law}

Now we come to the equation for Coulomb's law, but first a caution. This equation works for only charged particles (and a few other things that can be treated as particles). For extended objects, with charge located in many different places, we need more powerful techniques. So, here we consider just charged particles and not, say, two charged cats.

If two charged particles are brought near each other, they each exert an electrostatic force on the other. The direction of the force vectors depends on the signs of the charges. If the particles have the same sign of charge, they repel each other. That means that the force vector on each is directly away from the other particle (Figs. 21-5a and \(b\) ). If we release the particles, they accelerate away from each other. If, instead, the particles have opposite signs of charge, they attract each other. That means that the force vector on each is directly toward the other particle (Fig. 21-5c). If we release the particles, they accelerate toward each other.

The equation for the electrostatic forces acting on the particles is called Coulomb's law after Charles-Augustin de Coulomb, whose experiments in 1785 led him to it. Let's write the equation in vector form and in terms of the particles shown in Fig. 21-6, where particle 1 has charge \(q_{1}\) and particle 2 has charge \(q_{2}\). (These symbols can represent either positive or negative charge.) Let's also focus on particle 1 and write the force acting on it in terms of a unit vector \(\hat{r}\) that points along a radial


Figure 21-4 Two pieces of a wintergreen LifeSaver candy as they fall away from each other. Electrons jumping from the negative surface of piece \(A\) to the positive surface of piece \(B\) collide with nitrogen \(\left(\mathrm{N}_{2}\right)\) molecules in the air.


Figure 21-5 Two charged particles repel each other if they have the same sign of charge, either \((a)\) both positive or \((b)\) both negative. (c) They attract each other if they have opposite signs of charge.


Figure 21-6 The electrostatic force on particle 1 can be described in terms of a unit vector \(\hat{\mathrm{r}}\) along an axis through the two particles, radially away from particle 2.
axis extending through the two particles, radially away from particle 2. (As with other unit vectors, \(\hat{r}\) has a magnitude of exactly 1 and no unit; its purpose is to point, like a direction arrow on a street sign.) With these decisions, we write the electrostatic force as
\[
\begin{equation*}
\vec{F}=k \frac{q_{1} q_{2}}{r^{2}} \hat{\mathrm{r}} \quad \text { (Coulomb's law), } \tag{21-1}
\end{equation*}
\]
where \(r\) is the separation between the particles and \(k\) is a positive constant called the electrostatic constant or the Coulomb constant. (We'll discuss \(k\) below.)

Let's first check the direction of the force on particle 1 as given by Eq. 21-1. If \(q_{1}\) and \(q_{2}\) have the same sign, then the product \(q_{1} q_{2}\) gives us a positive result. So, Eq. 21-1 tells us that the force on particle 1 is in the direction of \(\hat{r}\). That checks, because particle 1 is being repelled from particle 2 . Next, if \(q_{1}\) and \(q_{2}\) have opposite signs, the product \(q_{1} q_{2}\) gives us a negative result. So, now Eq. 21-1 tells us that the force on particle 1 is in the direction opposite \(\hat{r}\). That checks because particle 1 is being attracted toward particle 2.

An Aside. Here is something that is very curious. The form of Eq. 21-1 is the same as that of Newton's equation (Eq. 13-3) for the gravitational force between two particles with masses \(m_{1}\) and \(m_{2}\) and separation \(r\) :
\[
\begin{equation*}
\vec{F}=G \frac{m_{1} m_{2}}{r^{2}} \hat{\mathrm{r}} \quad \text { (Newton's law) } \tag{21-2}
\end{equation*}
\]
where \(G\) is the gravitational constant. Although the two types of forces are wildly different, both equations describe inverse square laws (the \(1 / r^{2}\) dependences) that involve a product of a property of the interacting particles-the charge in one case and the mass in the other. However, the laws differ in that gravitational forces are always attractive but electrostatic forces may be either attractive or repulsive, depending on the signs of the charges. This difference arises from the fact that there is only one type of mass but two types of charge.

Unit. The SI unit of charge is the coulomb. For practical reasons having to do with the accuracy of measurements, the coulomb unit is derived from the SI unit ampere for electric current \(i\). We shall discuss current in detail in Chapter 26, but here let's just note that current \(i\) is the rate \(d q / d t\) at which charge moves past a point or through a region:
\[
\begin{equation*}
i=\frac{d q}{d t} \quad(\text { electric current }) \tag{21-3}
\end{equation*}
\]

Rearranging Eq. 21-3 and replacing the symbols with their units (coulombs C, amperes A, and seconds s) we see that
\[
1 \mathrm{C}=(1 \mathrm{~A})(1 \mathrm{~s})
\]

Force Magnitude. For historical reasons (and because doing so simplifies many other formulas), the electrostatic constant \(k\) in Eq. 21-1 is often written as \(1 / 4 \pi \varepsilon_{0}\). Then the magnitude of the electrostatic force in Coulomb's law becomes
\[
\begin{equation*}
F=\frac{1}{4 \pi \varepsilon_{0}} \frac{\left|q_{1}\right|\left|q_{2}\right|}{r^{2}} \quad \text { (Coulomb's law). } \tag{21-4}
\end{equation*}
\]

The constants in Eqs. 21-1 and 21-4 have the value
\[
\begin{equation*}
k=\frac{1}{4 \pi \varepsilon_{0}}=8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2} \tag{21-5}
\end{equation*}
\]

The quantity \(\varepsilon_{0}\), called the permittivity constant, sometimes appears separately in equations and is
\[
\begin{equation*}
\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2} . \tag{21-6}
\end{equation*}
\]

Working a Problem. Note that the charge magnitudes appear in Eq. 21-4, which gives us the force magnitude. So, in working problems in this chapter, we use Eq. 21-4 to find the magnitude of a force on a chosen particle due to a second
particle and we separately determine the direction of the force by considering the charge signs of the two particles.

Multiple Forces. As with all forces in this book, the electrostatic force obeys the principle of superposition. Suppose we have \(n\) charged particles near a chosen particle called particle 1 ; then the net force on particle 1 is given by the vector sum
\[
\begin{equation*}
\vec{F}_{1, \text { net }}=\vec{F}_{12}+\vec{F}_{13}+\vec{F}_{14}+\vec{F}_{15}+\cdots+\vec{F}_{1 n} \tag{21-7}
\end{equation*}
\]
in which, for example, \(\vec{F}_{14}\) is the force on particle 1 due to the presence of particle 4.
This equation is the key to many of the homework problems, so let's state it in words. If you want to know the net force acting on a chosen charged particle that is surrounded by other charged particles, first clearly identify that chosen particle and then find the force on it due to each of the other particles. Draw those force vectors in a free-body diagram of the chosen particle, with the tails anchored on the particle. (That may sound trivial, but failing to do so easily leads to errors.) Then add all those forces as vectors according to the rules of Chapter 3, not as scalars. (You cannot just willy-nilly add up their magnitudes.) The result is the net force (or resultant force) acting on the particle.

Although the vector nature of the forces makes the homework problems harder than if we simply had scalars, be thankful that Eq. 21-7 works. If two force vectors did not simply add but for some reason amplified each other, the world would be very difficult to understand and manage.

Shell Theories. Analogous to the shell theories for the gravitational force (Module 13-1), we have two shell theories for the electrostatic force:

Shell theory 1. A charged particle outside a shell with charge uniformly distributed on its surface is attracted or repelled as if the shell's charge were concentrated as a particle at its center.

Shell theory 2. A charged particle inside a shell with charge uniformly distributed on its surface has no net force acting on it due to the shell.
(In the first theory, we assume that the charge on the shell is much greater than the particle's charge. Thus the presence of the particle has negligible effect on the distribution of charge on the shell.)

\section*{Spherical Conductors}

If excess charge is placed on a spherical shell that is made of conducting material, the excess charge spreads uniformly over the (external) surface. For example, if we place excess electrons on a spherical metal shell, those electrons repel one another and tend to move apart, spreading over the available surface until they are uniformly distributed. That arrangement maximizes the distances between all pairs of the excess electrons. According to the first shell theorem, the shell then will attract or repel an external charge as if all the excess charge on the shell were concentrated at its center.

If we remove negative charge from a spherical metal shell, the resulting positive charge of the shell is also spread uniformly over the surface of the shell. For example, if we remove \(n\) electrons, there are then \(n\) sites of positive charge (sites missing an electron) that are spread uniformly over the shell. According to the first shell theorem, the shell will again attract or repel an external charge as if all the shell's excess charge were concentrated at its center.

\section*{Checkpoint 2}

(symbol e) on an axis. On the central proton, what is the direction of (a) the force due to the electron, (b) the force due to the other proton, and (c) the net force?

\section*{Sample Problem 21.01 Finding the net force due to two other particles}

This sample problem actually contains three examples, to build from basic stuff to harder stuff. In each we have the same charged particle 1. First there is a single force acting on it (easy stuff). Then there are two forces, but they are just in opposite directions (not too bad). Then there are again two forces but they are in very different directions (ah, now we have to get serious about the fact that they are vectors). The key to all three examples is to draw the forces correctly before you reach for a calculator, otherwise you may be calculating nonsense on the calculator. (Figure 21-7 is available in WileyPLUS as an animation with voiceover.)
(a) Figure 21-7a shows two positively charged particles fixed in place on an \(x\) axis. The charges are \(q_{1}=1.60 \times 10^{-19} \mathrm{C}\) and \(q_{2}=3.20 \times 10^{-19} \mathrm{C}\), and the particle separation is \(R=0.0200 \mathrm{~m}\). \(\xrightarrow{W}\) hat are the magnitude and direction of the electrostatic force \(\vec{F}_{12}\) on particle 1 from particle 2?

\section*{KEY IDEAS}

Because both particles are positively charged, particle 1 is repelled by particle 2, with a force magnitude given by Eq. 21-4. Thus, the direction of force \(\vec{F}_{12}\) on particle 1 is away from particle 2, in the negative direction of the \(x\) axis, as indicated in the free-body diagram of Fig. 21-7b.
Two particles: Using Eq. 21-4 with separation \(R\) substituted for \(r\), we can write the magnitude \(F_{12}\) of this force as
\[
\begin{aligned}
F_{12}= & \frac{1}{4 \pi \varepsilon_{0}} \frac{\left|q_{1}\right|\left|q_{2}\right|}{R^{2}} \\
= & \left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right) \\
& \times \frac{\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(3.20 \times 10^{-19} \mathrm{C}\right)}{(0.0200 \mathrm{~m})^{2}} \\
= & 1.15 \times 10^{-24} \mathrm{~N} .
\end{aligned}
\]

Thus, force \(\vec{F}_{12}\) has the following magnitude and direction (relative to the positive direction of the \(x\) axis):
\[
1.15 \times 10^{-24} \mathrm{~N} \text { and } 180^{\circ}
\]
(Answer)
We can also write \(\vec{F}_{12}\) in unit-vector notation as
\[
\vec{F}_{12}=-\left(1.15 \times 10^{-24} \mathrm{~N}\right) \hat{\mathrm{i}}
\]
(Answer)
(b) Figure 21-7c is identical to Fig. 21-7a except that particle 3 now lies on the \(x\) axis between particles 1 and 2. Particle 3 has charge \(q_{3}=-3.20 \times 10^{-19} \mathrm{C}\) and is at a distance \(\frac{3}{4} R\) from particle 1 . What is the net electrostatic force \(\vec{F}_{1, \text { net }}\) on particle 1 due to particles 2 and 3 ?

\section*{KEY IDEA}

The presence of particle 3 does not alter the electrostatic force on particle 1 from particle 2 . Thus, force \(\vec{F}_{12}\) still acts on particle 1. Similarly, the force \(\vec{F}_{13}\) that acts on particle 1 due to particle 3 is not affected by the presence of particle 2 . Because particles 1


Figure 21-7 (a) Two charged particles of charges \(q_{1}\) and \(q_{2}\) are fixed in place on an \(x\) axis. (b) The free-body diagram for particle 1,showing the electrostatic force on it from particle 2. (c) Particle 3 included. (d) Free-body diagram for particle 1.(e) Particle 4 included. ( \(f\) ) Free-body diagram for particle 1.
and 3 have charge of opposite signs, particle 1 is attracted to particle 3. Thus, force \(\vec{F}_{13}\) is directed toward particle 3, as indicated in the free-body diagram of Fig. 21-7d.

Three particles: To find the magnitude of \(\vec{F}_{13}\), we can rewrite Eq. 21-4 as
\[
\begin{aligned}
F_{13}= & \frac{1}{4 \pi \varepsilon_{0}} \frac{\left|q_{1}\right|\left|q_{3}\right|}{\left(\frac{3}{4} R\right)^{2}} \\
= & \left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right) \\
& \times \frac{\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(3.20 \times 10^{-19} \mathrm{C}\right)}{\left(\frac{3}{4}\right)^{2}(0.0200 \mathrm{~m})^{2}} \\
= & 2.05 \times 10^{-24} \mathrm{~N} .
\end{aligned}
\]

We can also write \(\vec{F}_{13}\) in unit-vector notation:
\[
\vec{F}_{13}=\left(2.05 \times 10^{-24} \mathrm{~N}\right) \hat{\mathrm{i}}
\]

The net force \(\vec{F}_{1, \text { net }}\) on particle 1 is the vector sum of \(\vec{F}_{12}\) \(\underset{\vec{F}}{\overrightarrow{1}} \vec{F}_{13}\); that is, from Eq. 21-7, we can write the net force \(\vec{F}_{1, \text { net }}\) on particle 1 in unit-vector notation as
\[
\begin{aligned}
\vec{F}_{1, \text { net }} & =\vec{F}_{12}+\vec{F}_{13} \\
& =-\left(1.15 \times 10^{-24} \mathrm{~N}\right) \hat{\mathrm{i}}+\left(2.05 \times 10^{-24} \mathrm{~N}\right) \hat{\mathrm{i}} \\
& =\left(9.00 \times 10^{-25} \mathrm{~N}\right) .
\end{aligned}
\]
(Answer)
Thus, \(\vec{F}_{1, \text { net }}\) has the following magnitude and direction (relative to the positive direction of the \(x\) axis):
\[
9.00 \times 10^{-25} \mathrm{~N} \quad \text { and } \quad 0^{\circ} .
\]
(Answer)
(c) Figure 21-7e is identical to Fig. 21-7a except that particle 4 is now included. It has charge \(q_{4}=-3.20 \times 10^{-19} \mathrm{C}\), is at a distance \(\frac{3}{4} R\) from particle 1 , and lies on a line that makes an angle \(\theta=60^{\circ}\) with the \(x\) axis. What is the net electrostatic force \(\vec{F}_{1, \text { net }}\) on particle 1 due to particles 2 and 4 ?

\section*{KEY IDEA}

The net force \(\vec{F}_{1, \text { net }}\) is the vector sum of \(\vec{F}_{12}\) and a new force \(\vec{F}_{14}\) acting on particle 1 due to particle 4 . Because particles 1 and 4 have charge of opposite signs, particle 1 is attracted to particle 4 . Thus, force \(\vec{F}_{14}\) on particle 1 is directed toward particle 4 , at angle \(\theta=60^{\circ}\), as indicated in the free-body diagram of Fig. 21-7f.

Four particles: We can rewrite Eq. 21-4 as
\[
\begin{aligned}
F_{14}= & \frac{1}{4 \pi \varepsilon_{0}} \frac{\left|q_{1}\right|\left|q_{4}\right|}{\left(\frac{3}{4} R\right)^{2}} \\
= & \left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right) \\
& \times \frac{\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(3.20 \times 10^{-19} \mathrm{C}\right)}{\left(\frac{3}{4}\right)^{2}(0.0200 \mathrm{~m})^{2}} \\
= & 2.05 \times 10^{-24} \mathrm{~N} .
\end{aligned}
\]

Then from Eq. 21-7, we can write the net force \(\vec{F}_{1, \text { net }}\) on particle 1 as
\[
\vec{F}_{1, \text { net }}=\vec{F}_{12}+\vec{F}_{14} .
\]

Because the forces \(\vec{F}_{12}\) and \(\vec{F}_{14}\) are not directed along the same axis, we cannot sum simply by combining their magnitudes. Instead, we must add them as vectors, using one of the following methods.
Method 1. Summing directly on a vector-capable calculator. For \(\vec{F}_{12}\), we enter the magnitude \(1.15 \times 10^{-24}\) and the angle \(180^{\circ}\). For \(\vec{F}_{14}\), we enter the magnitude \(2.05 \times 10^{-24}\) and the angle \(60^{\circ}\). Then we add the vectors.

Method 2. Summing in unit-vector notation. First we rewrite \(\vec{F}_{14}\) as
\[
\vec{F}_{14}=\left(F_{14} \cos \theta\right) \hat{\mathrm{i}}+\left(F_{14} \sin \theta\right) \hat{\mathrm{j}}
\]

Substituting \(2.05 \times 10^{-24} \mathrm{~N}\) for \(F_{14}\) and \(60^{\circ}\) for \(\theta\), this becomes
\[
\vec{F}_{14}=\left(1.025 \times 10^{-24} \mathrm{~N}\right) \hat{\mathrm{i}}+\left(1.775 \times 10^{-24} \mathrm{~N}\right) \hat{\mathrm{j}} .
\]

Then we sum:
\[
\begin{aligned}
\vec{F}_{1, \text { net }}= & \vec{F}_{12}+\vec{F}_{14} \\
= & -\left(1.15 \times 10^{-24} \mathrm{~N}\right) \hat{\mathrm{i}} \\
& +\left(1.025 \times 10^{-24} \mathrm{~N}\right) \hat{\mathrm{i}}+\left(1.775 \times 10^{-24} \mathrm{~N}\right) \hat{\mathrm{j}} \\
\approx & \left(-1.25 \times 10^{-25} \mathrm{~N}\right) \hat{\mathrm{i}}+\left(1.78 \times 10^{-24} \mathrm{~N}\right) \hat{\mathrm{j}} .
\end{aligned}
\]
(Answer)
Method 3. Summing components axis by axis. The sum of the \(x\) components gives us
\[
\begin{aligned}
F_{1, \text { net }, x} & =F_{12, x}+F_{14, x}=F_{12}+F_{14} \cos 60^{\circ} \\
& =-1.15 \times 10^{-24} \mathrm{~N}+\left(2.05 \times 10^{-24} \mathrm{~N}\right)\left(\cos 60^{\circ}\right) \\
& =-1.25 \times 10^{-25} \mathrm{~N} .
\end{aligned}
\]

The sum of the \(y\) components gives us
\[
\begin{aligned}
F_{1, \text { net }, y} & =F_{12, y}+F_{14, y}=0+F_{14} \sin 60^{\circ} \\
& =\left(2.05 \times 10^{-24} \mathrm{~N}\right)\left(\sin 60^{\circ}\right) \\
& =1.78 \times 10^{-24} \mathrm{~N} .
\end{aligned}
\]

The net force \(\vec{F}_{1, \text { net }}\) has the magnitude
\[
F_{1, \text { net }}=\sqrt{F_{1, \text { net }, x}^{2}+F_{1, \text { net }, y}^{2}}=1.78 \times 10^{-24} \mathrm{~N} . \quad \text { (Answer) }
\]

To find the direction of \(\vec{F}_{1, \text { net }}\), we take
\[
\theta=\tan ^{-1} \frac{F_{1, \text { net }, y}}{F_{1, \text { net }, x}}=-86.0^{\circ}
\]

However, this is an unreasonable result because \(\vec{F}_{1 \text {, net }}\) must have a direction between the directions of \(\vec{F}_{12}\) and \(\vec{F}_{14}\). To correct \(\theta\), we add \(180^{\circ}\), obtaining
\[
-86.0^{\circ}+180^{\circ}=94.0^{\circ}
\]
(Answer)

Additional examples, video, and practice available at WileyPLUS

\section*{Checkpoint 3}

The figure here shows three arrangements of an electron e and two protons p . (a) Rank the arrangements according to the magnitude of the net electrostatic force on the electron due to the protons, largest first. (b) In situation \(c\), is the angle between the net force on the electron and the line labeled \(d\) less than or more than \(45^{\circ}\) ?


\section*{Sample Problem 21.02 Equilibrium of two forces on a particle}

Figure \(21-8 a\) shows two particles fixed in place: a particle of charge \(q_{1}=+8 q\) at the origin and a particle of charge \(q_{2}=-2 q\) at \(x=L\). At what point (other than infinitely far away) can a proton be placed so that it is in equilibrium (the net force on it is zero)? Is that equilibrium stable or unstable? (That is, if the proton is displaced, do the forces drive it back to the point of equilibrium or drive it farther away?)

\section*{KEY IDEA}

If \(\vec{F}_{1}\) is the force on the proton due to charge \(q_{1}\) and \(\vec{F}_{2}\) is the force on the proton due to charge \(q_{2}\), then the point we seek is where \(\vec{F}_{1}+\vec{F}_{2}=0\). Thus,
\[
\begin{equation*}
\vec{F}_{1}=-\vec{F}_{2} . \tag{21-8}
\end{equation*}
\]

This tells us that at the point we seek, the forces acting on the proton due to the other two particles must be of equal magnitudes,
\[
\begin{equation*}
F_{1}=F_{2}, \tag{21-9}
\end{equation*}
\]
and that the forces must have opposite directions.
Reasoning: Because a proton has a positive charge, the proton and the particle of charge \(q_{1}\) are of the same sign, and force \(\vec{F}_{1}\) on the proton must point away from \(q_{1}\). Also, the proton and the particle of charge \(q_{2}\) are of opposite signs, so force \(\vec{F}_{2}\) on the proton must point toward \(q_{2}\). "Away from \(q_{1}\) " and "toward \(q_{2}\) " can be in opposite directions only if the proton is located on the \(x\) axis.

If the proton is on the \(x\) axis at any point between \(q_{1}\) and \(q_{2}\), such as point \(P\) in Fig. 21-8b, then \(\vec{F}_{1}\) and \(\vec{F}_{2}\) are in the same direction and not in opposite directions as required. If the proton is at any point on the \(x\) axis to the left of \(q_{1}\), such as point \(S\) in Fig. 21-8c, then \(\vec{F}_{1}\) and \(\vec{F}_{2}\) are in opposite directions. However, Eq. 21-4 tells us that \(\vec{F}_{1}\) and \(\vec{F}_{2}\) cannot have equal magnitudes there: \(F_{1}\) must be greater than \(F_{2}\), because \(F_{1}\) is produced by a closer charge (with lesser \(r\) ) of greater magnitude ( \(8 q\) versus \(2 q\) ).

Finally, if the proton is at any point on the \(x\) axis to the right of \(q_{2}\), such as point \(R\) in Fig. 21-8d, then \(\vec{F}_{1}\) and \(\vec{F}_{2}\) are again in opposite directions. However, because now the charge of greater magnitude \(\left(q_{1}\right)\) is farther away from the proton than the charge of lesser magnitude, there is a point at which \(F_{1}\) is equal to \(F_{2}\). Let \(x\) be the coordinate of this point, and let \(q_{\mathrm{p}}\) be the charge of the proton.


Figure 21-8 (a) Two particles of charges \(q_{1}\) and \(q_{2}\) are fixed in place on an \(x\) axis, with separation \(L .(b)-(d)\) Three possible locations \(P, S\), and \(R\) for a proton. At each location, \(\vec{F}_{1}\) is the force on the proton from particle 1 and \(\vec{F}_{2}\) is the force on the proton from particle 2.
Calculations: With Eq. 21-4, we can now rewrite Eq. 21-9:
\[
\begin{equation*}
\frac{1}{4 \pi \varepsilon_{0}} \frac{8 q q_{\mathrm{p}}}{x^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q q_{\mathrm{p}}}{(x-L)^{2}} \tag{21-10}
\end{equation*}
\]
(Note that only the charge magnitudes appear in Eq. 21-10. We already decided about the directions of the forces in drawing Fig. 21-8d and do not want to include any positive or negative signs here.) Rearranging Eq. 21-10 gives us
\[
\left(\frac{x-L}{x}\right)^{2}=\frac{1}{4}
\]

After taking the square roots of both sides, we find
\[
\frac{x-L}{x}=\frac{1}{2}
\]
and
\[
x=2 L
\]
(Answer)
The equilibrium at \(x=2 L\) is unstable; that is, if the proton is displaced leftward from point \(R\), then \(F_{1}\) and \(F_{2}\) both increase but \(F_{2}\) increases more (because \(q_{2}\) is closer than \(q_{1}\) ), and a net force will drive the proton farther leftward. If the proton is displaced rightward, both \(F_{1}\) and \(F_{2}\) decrease but \(F_{2}\) decreases more, and a net force will then drive the proton farther rightward. In a stable equilibrium, if the proton is displaced slightly, it returns to the equilibrium position.

\section*{Sample Problem 21.03 Charge sharing by two identical conducting spheres}

In Fig. 21-9a, two identical, electrically isolated conducting spheres \(A\) and \(B\) are separated by a (center-to-center) distance \(a\) that is large compared to the spheres. Sphere \(A\) has a positive charge of \(+Q\), and sphere \(B\) is electrically neutral. Initially, there is no electrostatic force between the spheres. (The large separation means there is no induced charge.)
(a) Suppose the spheres are connected for a moment by a conducting wire. The wire is thin enough so that any net charge on it is negligible. What is the electrostatic force between the spheres after the wire is removed?

\section*{KEY IDEAS}
(1) Because the spheres are identical, connecting them means that they end up with identical charges (same sign and same amount). (2) The initial sum of the charges (including the signs of the charges) must equal the final sum of the charges.
Reasoning: When the spheres are wired together, the (negative) conduction electrons on \(B\), which repel one another, have a way to move away from one another (along the wire to positively charged \(A\), which attracts them-Fig. 21-9b). As \(B\) loses negative charge, it becomes positively charged, and as A gains negative charge, it becomes less positively charged. The transfer of charge stops when the charge on \(B\) has increased to \(+Q / 2\) and the charge on \(A\) has decreased to \(+Q / 2\), which occurs when \(-Q / 2\) has shifted from \(B\) to \(A\).

After the wire has been removed (Fig. 21-9c), we can assume that the charge on either sphere does not disturb the uniformity of the charge distribution on the other sphere, because the spheres are small relative to their separation. Thus, we can apply the first shell theorem to each sphere. By Eq. 21-4 with \(q_{1}=q_{2}=Q / 2\) and \(r=a\),


Figure 21-9 Two small conducting spheres \(A\) and \(B\).(a) To start, sphere \(A\) is charged positively. (b) Negative charge is transferred from \(B\) to \(A\) through a connecting wire. (c) Both spheres are then charged positively. (d) Negative charge is transferred through a grounding wire to sphere \(A\). (e) Sphere \(A\) is then neutral.
\[
F=\frac{1}{4 \pi \varepsilon_{0}} \frac{(Q / 2)(Q / 2)}{a^{2}}=\frac{1}{16 \pi \varepsilon_{0}}\left(\frac{Q}{a}\right)^{2} .
\]
(Answer)
The spheres, now positively charged, repel each other.
(b) Next, suppose sphere \(A\) is grounded momentarily, and then the ground connection is removed. What now is the electrostatic force between the spheres?
Reasoning: When we provide a conducting path between a charged object and the ground (which is a huge conductor), we neutralize the object. Were sphere \(A\) negatively charged, the mutual repulsion between the excess electrons would cause them to move from the sphere to the ground. However, because sphere \(A\) is positively charged, electrons with a total charge of \(-Q / 2\) move from the ground up onto the sphere (Fig. 21-9d), leaving the sphere with a charge of 0 (Fig. 21-9e). Thus, the electrostatic force is again zero.

PLUS Additional examples, video, and practice available at WileyPLUS

\section*{21-2 charge is quantized}

\section*{Learning Objectives}

After reading this module, you should be able to ...
21.19 Identify the elementary charge.
21.20 Identify that the charge of a particle or object must be a positive or negative integer times the elementary charge.

\section*{Key Ideas}
- Electric charge is quantized (restricted to certain values).
- The charge of a particle can be written as ne, where \(n\) is a positive or negative integer and \(e\) is the elementary charge,
which is the magnitude of the charge of the electron and proton ( \(\approx 1.602 \times 10^{-19} \mathrm{C}\) ).

\section*{Charge Is Quantized}

In Benjamin Franklin's day, electric charge was thought to be a continuous fluid-an idea that was useful for many purposes. However, we now know that

Table 21-1 The Charges of Three Particles
\begin{tabular}{lcc}
\hline Particle & Symbol & Charge \\
\hline Electron & e or \(\mathrm{e}^{-}\) & \(-e\) \\
Proton & p & \(+e\) \\
Neutron & n & 0
\end{tabular}
fluids themselves, such as air and water, are not continuous but are made up of atoms and molecules; matter is discrete. Experiment shows that "electrical fluid" is also not continuous but is made up of multiples of a certain elementary charge. Any positive or negative charge \(q\) that can be detected can be written as
\[
\begin{equation*}
q=n e, \quad n= \pm 1, \pm 2, \pm 3, \ldots \tag{21-11}
\end{equation*}
\]
in which \(e\), the elementary charge, has the approximate value
\[
\begin{equation*}
e=1.602 \times 10^{-19} \mathrm{C} \tag{21-12}
\end{equation*}
\]

The elementary charge \(e\) is one of the important constants of nature. The electron and proton both have a charge of magnitude \(e\) (Table 21-1). (Quarks, the constituent particles of protons and neutrons, have charges of \(\pm e / 3\) or \(\pm 2 e / 3\), but they apparently cannot be detected individually. For this and for historical reasons, we do not take their charges to be the elementary charge.)

You often see phrases - such as "the charge on a sphere," "the amount of charge transferred," and "the charge carried by the electron"-that suggest that charge is a substance. (Indeed, such statements have already appeared in this chapter.) You should, however, keep in mind what is intended: Particles are the substance and charge happens to be one of their properties, just as mass is.

When a physical quantity such as charge can have only discrete values rather than any value, we say that the quantity is quantized. It is possible, for example, to find a particle that has no charge at all or a charge of \(+10 e\) or \(-6 e\), but not a particle with a charge of, say, 3.57e.

The quantum of charge is small. In an ordinary 100 W lightbulb, for example, about \(10^{19}\) elementary charges enter the bulb every second and just as many leave. However, the graininess of electricity does not show up in such large-scale phenomena (the bulb does not flicker with each electron).

\section*{Checkpoint 4}

Initially, sphere \(A\) has a charge of \(-50 e\) and sphere \(B\) has a charge of \(+20 e\). The spheres are made of conducting material and are identical in size. If the spheres then touch, what is the resulting charge on sphere \(A\) ?

\section*{Sample Problem 21.04 Mutual electric repulsion in a nucleus}

The nucleus in an iron atom has a radius of about \(4.0 \times\) \(10^{-15} \mathrm{~m}\) and contains 26 protons.
(a) What is the magnitude of the repulsive electrostatic force between two of the protons that are separated by \(4.0 \times 10^{-15} \mathrm{~m}\) ?

\section*{KEY IDEA}

The protons can be treated as charged particles, so the magnitude of the electrostatic force on one from the other is given by Coulomb's law.
Calculation: Table 21-1 tells us that the charge of a proton is \(+e\).Thus, Eq. 21-4 gives us
\[
\begin{aligned}
F & =\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{r^{2}} \\
& =\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(1.602 \times 10^{-19} \mathrm{C}\right)^{2}}{\left(4.0 \times 10^{-15} \mathrm{~m}\right)^{2}} \\
& =14 \mathrm{~N} .
\end{aligned}
\]

No explosion: This is a small force to be acting on a macroscopic object like a cantaloupe, but an enormous force to be acting on a proton. Such forces should explode the nucleus of any element but hydrogen (which has only one proton in its nucleus). However, they don't, not even in nuclei with a great many protons. Therefore, there must be some enormous attractive force to counter this enormous repulsive electrostatic force.
(b) What is the magnitude of the gravitational force between those same two protons?

\section*{KEY IDEA}

Because the protons are particles, the magnitude of the gravitational force on one from the other is given by Newton's equation for the gravitational force (Eq. 21-2).

Calculation: With \(m_{\mathrm{p}}\left(=1.67 \times 10^{-27} \mathrm{~kg}\right)\) representing the
mass of a proton, Eq. 21-2 gives us
\[
\begin{aligned}
F & =G \frac{m_{\mathrm{p}}^{2}}{r^{2}} \\
& =\frac{\left(6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}\right)\left(1.67 \times 10^{-27} \mathrm{~kg}\right)^{2}}{\left(4.0 \times 10^{-15} \mathrm{~m}\right)^{2}} \\
& =1.2 \times 10^{-35} \mathrm{~N}
\end{aligned}
\]
(Answer)
Weak versus strong: This result tells us that the (attractive) gravitational force is far too weak to counter the repulsive electrostatic forces between protons in a nucleus. Instead, the protons are bound together by an enormous force called
(aptly) the strong nuclear force - a force that acts between protons (and neutrons) when they are close together, as in a nucleus.

Although the gravitational force is many times weaker than the electrostatic force, it is more important in largescale situations because it is always attractive. This means that it can collect many small bodies into huge bodies with huge masses, such as planets and stars, that then exert large gravitational forces. The electrostatic force, on the other hand, is repulsive for charges of the same sign, so it is unable to collect either positive charge or negative charge into large concentrations that would then exert large electrostatic forces.

PLUS Additional examples, video, and practice available at WileyPLUS

\section*{21-3 charge is conserved}

\section*{Learning Objectives}

After reading this module, you should be able to ...
21.21 Identify that in any isolated physical process, the net charge cannot change (the net charge is always conserved).

\section*{Key Ideas}
- The net electric charge of any isolated system is always conserved.
- If two charged particles undergo an annihilation process,
21.22 Identify an annihilation process of particles and a pair production of particles.
21.23 Identify mass number and atomic number in terms of the number of protons, neutrons, and electrons.
they have opposite signs of charge.
- If two charged particles appear as a result of a pair production process, they have opposite signs of charge.

\section*{Charge Is Conserved}

If you rub a glass rod with silk, a positive charge appears on the rod. Measurement shows that a negative charge of equal magnitude appears on the silk. This suggests that rubbing does not create charge but only transfers it from one body to another, upsetting the electrical neutrality of each body during the process. This hypothesis of conservation of charge, first put forward by Benjamin Franklin, has stood up under close examination, both for large-scale charged bodies and for atoms, nuclei, and elementary particles. No exceptions have ever been found. Thus, we add electric charge to our list of quantities - including energy and both linear momentum and angular momentum - that obey a conservation law.

Important examples of the conservation of charge occur in the radioactive decay of nuclei, in which a nucleus transforms into (becomes) a different type of nucleus. For example, a uranium-238 nucleus ( \({ }^{238} \mathrm{U}\) ) transforms into a thorium234 nucleus \(\left({ }^{234} \mathrm{Th}\right)\) by emitting an alpha particle. Because that particle has the same makeup as a helium- 4 nucleus, it has the symbol \({ }^{4} \mathrm{He}\). The number used in the name of a nucleus and as a superscript in the symbol for the nucleus is called the mass number and is the total number of the protons and neutrons in the nucleus. For example, the total number in \({ }^{238} \mathrm{U}\) is 238 . The number of protons in a nucleus is the atomic number \(Z\), which is listed for all the elements in Appendix F . From that list we find that in the decay
\[
\begin{equation*}
{ }^{238} \mathrm{U} \rightarrow{ }^{234} \mathrm{Th}+{ }^{4} \mathrm{He}, \tag{21-13}
\end{equation*}
\]


Figure 21-10 A photograph of trails of bubbles left in a bubble chamber by an electron and a positron. The pair of particles was produced by a gamma ray that entered the chamber directly from the bottom. Being electrically neutral, the gamma ray did not generate a telltale trail of bubbles along its path, as the electron and positron did.
the parent nucleus \({ }^{238} \mathrm{U}\) contains 92 protons (a charge of \(+92 e\) ), the daughter nucleus \({ }^{234} \mathrm{Th}\) contains 90 protons (a charge of \(+90 e\) ), and the emitted alpha particle \({ }^{4} \mathrm{He}\) contains 2 protons (a charge of \(+2 e\) ). We see that the total charge is \(+92 e\) before and after the decay; thus, charge is conserved. (The total number of protons and neutrons is also conserved: 238 before the decay and \(234+4=238\) after the decay.)

Another example of charge conservation occurs when an electron \(\mathrm{e}^{-}\)(charge \(-e\) ) and its antiparticle, the positron \(\mathrm{e}^{+}\)(charge \(+e\) ), undergo an annihilation process, transforming into two gamma rays (high-energy light):
\[
\begin{equation*}
\mathrm{e}^{-}+\mathrm{e}^{+} \rightarrow \gamma+\gamma \quad \text { (annihilation) } \tag{21-14}
\end{equation*}
\]

In applying the conservation-of-charge principle, we must add the charges algebraically, with due regard for their signs. In the annihilation process of Eq. 21-14 then, the net charge of the system is zero both before and after the event. Charge is conserved.

In pair production, the converse of annihilation, charge is also conserved. In this process a gamma ray transforms into an electron and a positron:
\[
\begin{equation*}
\gamma \rightarrow \mathrm{e}^{-}+\mathrm{e}^{+} \quad(\text { pair production }) \tag{21-15}
\end{equation*}
\]

Figure 21-10 shows such a pair-production event that occurred in a bubble chamber. (This is a device in which a liquid is suddenly made hotter than its boiling point. If a charged particle passes through it, tiny vapor bubbles form along the particle's trail.) A gamma ray entered the chamber from the bottom and at one point transformed into an electron and a positron. Because those new particles were charged and moving, each left a trail of bubbles. (The trails were curved because a magnetic field had been set up in the chamber.) The gamma ray, being electrically neutral, left no trail. Still, you can tell exactly where it underwent pair production - at the tip of the curved V , which is where the trails of the electron and positron begin.

\section*{Beview \& Summary}

Electric Charge The strength of a particle's electrical interaction with objects around it depends on its electric charge (usually represented as \(q\) ), which can be either positive or negative. Particles with the same sign of charge repel each other, and particles with opposite signs of charge attract each other. An object with equal amounts of the two kinds of charge is electrically neutral, whereas one with an imbalance is electrically charged and has an excess charge.

Conductors are materials in which a significant number of electrons are free to move. The charged particles in nonconductors (insulators) are not free to move.

Electric current \(i\) is the rate \(d q / d t\) at which charge passes a point:
\[
\begin{equation*}
i=\frac{d q}{d t} \quad \text { (electric current). } \tag{21-3}
\end{equation*}
\]

Coulomb's Law Coulomb's law describes the electrostatic force (or electric force) between two charged particles. If the particles have charges \(q_{1}\) and \(q_{2}\), are separated by distance \(r\), and are at rest (or moving only slowly) relative to each other, then the magnitude of the force acting on each due to the other is given by
\[
\begin{equation*}
F=\frac{1}{4 \pi \varepsilon_{0}} \frac{\left|q_{1}\right|\left|q_{2}\right|}{r^{2}} \quad \text { (Coulomb's law), } \tag{21-4}
\end{equation*}
\]
where \(\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{m}^{2}\) is the permittivity constant. The ratio \(1 / 4 \pi \varepsilon_{0}\) is often replaced with the electrostatic constant (or Coulomb constant) \(k=8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\).

The electrostatic force vector acting on a charged particle due to a second charged particle is either directly toward the second particle (opposite signs of charge) or directly away from it (same sign of charge). As with other types of forces, if multiple electrostatic forces act on a particle, the net force is the vector sum (not scalar sum) of the individual forces.

The two shell theories for electrostatics are
Shell theorem 1: A charged particle outside a shell with charge uniformly distributed on its surface is attracted or repelled as if the shell's charge were concentrated as a particle at its center.
Shell theorem 2: A charged particle inside a shell with charge uniformly distributed on its surface has no net force acting on it due to the shell.

Charge on a conducting spherical shell spreads uniformly over the (external) surface.

The Elementary Charge Electric charge is quantized (restricted to certain values). The charge of a particle can be written as \(n e\), where \(n\) is a positive or negative integer and \(e\) is the elementary charge, which is the magnitude of the charge of the electron and proton ( \(\approx 1.602 \times 10^{-19} \mathrm{C}\) ).

Conservation of Charge The net electric charge of any isolated system is always conserved.

\section*{Questions}

1 Figure 21-11 shows four situations in which five charged particles are evenly spaced along an axis. The charge values are indicated except for the central particle, which has the same charge in all four situations. Rank the situations according to the magnitude of the net electrostatic force on the central particle, greatest first.
2 Figure 21-12 shows three pairs of identical spheres that are to be touched together and then separated. The initial charges on them are indicated. Rank the pairs according to (a) the magnitude of the charge transferred during touching and (b) the charge left on the positively charged sphere, greatest first.

(3)
(1)

(2)


Figure 21-12 Question 2.
3 Figure 21-13 shows four situations in which charged particles are fixed in place on an axis. In which situations is there a point to the left of the particles where an electron will be in equilibrium?


(2)


Figure 21-11 Question 1.
cles on the \(x\) axis are equidistant from the \(y\) axis. First, consider the middle particle in situation 1 ; the middle particle experiences an electrostatic force from each of the other two particles.
(a) Are the magnitudes \(F\) of those forces the same or different?
(b) Is the magnitude of the net force on the middle particle equal to, greater than, or less than \(2 F\) ? (c) Do the \(x\) components of the two forces add or cancel? (d) Do their \(y\) components add or cancel? (e) Is the direction of the net force on the middle particle that of the canceling components or the adding components? (f) What is the direction of that net force? Now consider the remaining situations: What is the direction of the net force on the middle particle in (g) situation 2, (h) situation 3, and (i) situation 4? (In each situation, consider the symmetry of the charge distribution and determine the canceling components and the adding components.)
10 In Fig. 21-19, a central particle of charge \(-2 q\) is surrounded by a square array of charged particles, separated by either distance \(d\) or \(d / 2\) along the perimeter of the square. What are the magnitude and direction of the net electrostatic force on the central particle due to the other particles? (Hint: Consideration of symmetry can greatly reduce the amount of work required here.)
11 Figure 21-20 shows


Figure 21-19 Question 10. three identical conducting bubbles \(A, B\), and \(C\) floating in a con-


Figure 21-20 Question 11.
ducting container that is grounded by a wire. The bubbles initially have the same charge. Bubble \(A\) bumps into the container's ceiling and then into bubble \(B\). Then bubble \(B\) bumps into bubble \(C\), which then drifts to the container's floor. When bubble \(C\) reaches the floor, a charge of \(-3 e\) is transferred upward through the wire, from the ground to the container, as indicated. (a) What was the initial charge of each bubble? When (b) bubble \(A\) and (c) bubble \(B\) reach the floor, what is the charge transfer through the wire? (d) During this whole process, what is the total charge transfer through the wire?
12 Figure 21-21 shows four situations in which a central proton is partially surrounded by protons or electrons fixed in place along a half-circle. The angles \(\theta\) are identical; the angles \(\phi\) are also. (a) In each situation, what is the direction of the net force on the central proton due to the other particles? (b) Rank the four situations according to the magnitude of that net force on the central proton, greatest first.


Figure 21-21 Question 12.

\section*{4problems}


\section*{Module 21-1 Coulomb's Law}
-1 SSM ILW Of the charge \(Q\) initially on a tiny sphere, a portion \(q\) is to be transferred to a second, nearby sphere. Both spheres
can be treated as particles and are fixed with a certain separation. For what value of \(q / Q\) will the electrostatic force between the two spheres be maximized?
-2 Identical isolated conducting spheres 1 and 2 have equal charges and are separated by a distance that is large compared with their diameters (Fig. 21-22a). The electrostatic force acting on sphere 2 due to sphere 1 is \(\vec{F}\). Suppose now that a third identical sphere 3 , having an insulating handle and initially neutral, is touched first to sphere 1 (Fig. 21-22b), then to sphere 2 (Fig. 21-22c), and finally removed (Fig. 21-22d). The electrostatic force that now acts on sphere 2 has magnitude \(F^{\prime}\). What is the ratio \(F^{\prime} \mid F\) ?


Figure 21-22 Problem 2.
-3 SSM What must be the distance between point charge \(q_{1}=\) \(26.0 \mu \mathrm{C}\) and point charge \(q_{2}=-47.0 \mu \mathrm{C}\) for the electrostatic force between them to have a magnitude of 5.70 N ?
-4 In the return stroke of a typical lightning bolt, a current of \(2.5 \times 10^{4} \mathrm{~A}\) exists for \(20 \mu \mathrm{~s}\). How much charge is transferred in this event?
-5 A particle of charge \(+3.00 \times 10^{-6} \mathrm{C}\) is 12.0 cm distant from a second particle of charge \(-1.50 \times 10^{-6} \mathrm{C}\). Calculate the magnitude of the electrostatic force between the particles.
\({ }^{\bullet 6}\) ILw Two equally charged particles are held \(3.2 \times 10^{-3} \mathrm{~m}\) apart and then released from rest. The initial acceleration of the first particle is observed to be \(7.0 \mathrm{~m} / \mathrm{s}^{2}\) and that of the second to be \(9.0 \mathrm{~m} / \mathrm{s}^{2}\). If the mass of the first particle is \(6.3 \times 10^{-7} \mathrm{~kg}\), what are (a) the mass of the second particle and (b) the magnitude of the charge of each particle?
\(\bullet 07\) In Fig. 21-23, three charged particles lie on an \(x\) axis. Particles 1 and 2 are fixed in place. Particle 3 is free to move, but the net elec-


Figure 21-23 Problems 7 and 40. trostatic force on it from particles 1 and 2 happens to be zero. If \(L_{23}=L_{12}\), what is the ratio \(q_{1} / q_{2}\) ?
©8 In Fig. 21-24, three identical conducting spheres initially have the following charges: sphere \(A, 4 Q\); sphere \(B,-6 Q\); and sphere \(C, 0\). Spheres \(A\) and \(B\) are fixed in place, with a center-to-center separation that is much larger than the spheres. Two experiments are conducted. In experiment 1 , sphere \(C\) is touched to sphere \(A\) and then (separately) to sphere \(B\), and then it is removed. In experiment 2 , starting with the same initial states, the procedure is reversed: Sphere \(C\) is touched to sphere \(B\) and then (separately) to sphere \(A\), and then it is removed. What is the ratio of the electro-


Figure 21-24
Problems 8 and 65 .
static force between \(A\) and \(B\) at the end of experiment 2 to that at the end of experiment 1 ?
\(\bullet 9\) SSm www Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of 0.108 N when their center-to-center separation is 50.0 cm . The spheres are then connected by a thin conducting wire. When the wire is removed, the spheres repel each other with an electrostatic force of 0.0360 N . Of the initial charges on the spheres, with a positive net charge, what was (a) the negative charge on one of them and (b) the positive charge on the other?
-•10 ©0 In Fig. 21-25, four particles form a square. The charges are \(q_{1}=q_{4}=Q \quad\) and \(\quad q_{2}=q_{3}=q\). (a) What is \(Q / q\) if the net electrostatic force on particles 1 and 4 is zero? (b) Is there any value of \(q\) that makes the net electrostatic force on each of the four particles zero? Explain.
-011 ILW In Fig. 21-25, the particles have charges \(q_{1}=-q_{2}=100 \mathrm{nC}\) and \(q_{3}=-q_{4}=200 \mathrm{nC}\), and distance \(a=\) 5.0 cm . What are the (a) \(x\) and (b) \(y\) components of the net electrostatic force on particle 3 ?


Figure 21-25
Problems 10, 11, and 70.
-•12 Two particles are fixed on an \(x\) axis. Particle 1 of charge \(40 \mu \mathrm{C}\) is located at \(x=-2.0 \mathrm{~cm}\); particle 2 of charge \(Q\) is located at \(x=3.0 \mathrm{~cm}\). Particle 3 of charge magnitude 20 \(\mu \mathrm{C}\) is released from rest on the \(y\) axis at \(y=2.0 \mathrm{~cm}\). What is the value of \(Q\) if the initial acceleration of particle 3 is in the positive direction of (a) the \(x\) axis and (b) the \(y\) axis?
-०13 ©0 In Fig. 21-26, particle 1 of charge \(+1.0 \mu \mathrm{C}\) and particle 2 of charge \(-3.0 \mu \mathrm{C}\) are held at separation \(L=\) 10.0 cm on an \(x\) axis. If particle 3 of unknown charge \(q_{3}\) is to be located such that the net electrostatic force on it


Figure 21-26 Problems 13, \(19,30,58\), and 67. from particles 1 and 2 is zero, what must be the (a) \(x\) and (b) \(y\) coordinates of particle 3 ?
\(\bullet 14\) Three particles are fixed on an \(x\) axis. Particle 1 of charge \(q_{1}\) is at \(x=-a\), and particle 2 of charge \(q_{2}\) is at \(x=+a\). If their net electrostatic force on particle 3 of charge \(+Q\) is to be zero, what must be the ratio \(q_{1} / q_{2}\) when particle 3 is at (a) \(x=+0.500 a\) and (b) \(x=+1.50 a\) ? \(\because 15\) (60 The charges and coordinates of two charged particles held fixed in an \(x y\) plane are \(q_{1}=+3.0 \mu \mathrm{C}, x_{1}=3.5 \mathrm{~cm}, y_{1}=0.50 \mathrm{~cm}\), and \(q_{2}=-4.0 \mu \mathrm{C}, x_{2}=-2.0 \mathrm{~cm}, y_{2}=1.5 \mathrm{~cm}\). Find the (a) magnitude and (b) direction of the electrostatic force on particle 2 due to particle 1. At what (c) \(x\) and (d) \(y\) coordinates should a third particle of charge \(q_{3}=+4.0 \mu \mathrm{C}\) be placed such that the net electrostatic force on particle 2 due to particles 1 and 3 is zero?
\(\bullet 16\) © In Fig. 21-27a, particle 1 (of charge \(q_{1}\) ) and particle 2 (of charge \(q_{2}\) ) are fixed in place on an \(x\) axis, 8.00 cm apart. Particle 3 (of


(b)

Figure 21-27 Problem 16.
charge \(\left.q_{3}=+8.00 \times 10^{-19} \mathrm{C}\right)\) is to be placed on the line between particles 1 and 2 so that they produce a net electrostatic force \(\vec{F}_{3, \text { net }}\) on it. Figure 21-27b gives the \(x\) component of that force versus the coordinate \(x\) at which particle 3 is placed. The scale of the \(x\) axis is set by \(x_{s}=\) 8.0 cm . What are (a) the sign of charge \(q_{1}\) and (b) the ratio \(q_{2} / q_{1}\) ?
\(\bullet 17\) In Fig. 21-28a, particles 1 and 2 have charge \(20.0 \mu \mathrm{C}\) each and are held at separation distance \(d=1.50\) m . (a) What is the magnitude of the electrostatic force on particle 1 due to particle 2? In Fig. 21-28b, particle 3 of charge \(20.0 \mu \mathrm{C}\) is positioned so as to complete an equilateral triangle. (b) What is the magnitude of the net electrostatic force on particle 1 due to particles 2 and 3 ?
-•18 In Fig. 21-29a, three positively charged particles are fixed on an \(x\) axis. Particles \(B\) and \(C\) are so close to each other that they can be considered to be at the same distance from particle \(A\). The net force on particle \(A\) due to particles \(B\) and \(C\) is \(2.014 \times 10^{-23} \mathrm{~N}\) in the negative direction of the \(x\) axis. In Fig. 21\(29 b\), particle \(B\) has been moved to the opposite side of \(A\) but is still at the same distance from it. The net force on \(A\) is now \(2.877 \times\) \(10^{-24} \mathrm{~N}\) in the negative direction of the \(x\) axis. What is the ratio \(q_{C} / q_{B}\) ?
\(\bullet 19\) SSM www In Fig. 21-26, particle 1 of charge \(+q\) and particle 2 of charge \(+4.00 q\) are held at separation \(L=9.00 \mathrm{~cm}\) on an \(x\) axis. If particle 3 of charge \(q_{3}\) is to be located such that the three particles remain in place when released, what must be the (a) \(x\) and (b) \(y\) coordinates of particle 3 , and (c) the ratio \(q_{3} / q\) ?
-0020 ©0 Figure 21-30a shows an arrangement of three charged particles separated by distance \(d\). Particles \(A\) and \(C\) are fixed on the \(x\) axis, but particle \(B\) can be moved along a circle centered on particle \(A\). During the movement, a radial line between \(A\) and \(B\) makes an angle \(\theta\) relative to the positive direction of the \(x\) axis (Fig. 21-30b). The curves in Fig. 21-30c give, for two situations, the magnitude \(F_{\text {net }}\) of the net electrostatic force on particle \(A\) due to the other particles. That net force is given as a function of angle \(\theta\) and as a multiple of a basic amount \(F_{0}\). For example on curve 1 , at \(\theta=180^{\circ}\), we see that \(F_{\text {net }}=2 F_{0}\). (a) For the situation corresponding to curve 1, what is the ratio of the charge of particle \(C\) to that of particle \(B\) (including sign)? (b) For the situation corresponding to curve 2, what is that ratio?


Figure 21-30 Problem 20.
\(\cdots 21\) A nonconducting spherical shell, with an inner radius of 4.0 cm and an outer radius of 6.0 cm , has charge spread nonuniformly through its volume between its inner and outer surfaces. The volume charge density \(\rho\) is the charge per unit volume, with the unit coulomb per cubic meter. For this shell \(\rho=b / r\), where \(r\) is the distance in meters from the center of the shell and \(b=3.0 \mu \mathrm{C} / \mathrm{m}^{2}\). What is the net charge in the shell?
\(\because 22\) ©o Figure \(21-31\) shows an arrangement of four charged particles, with angle \(\theta=30.0^{\circ}\) and distance \(d=2.00 \mathrm{~cm}\). Particle 2 has charge \(q_{2}=+8.00 \times 10^{-19} \mathrm{C}\); particles 3 and 4 have charges \(q_{3}=q_{4}\) \(=-1.60 \times 10^{-19} \mathrm{C}\). (a) What is distance \(D\) between the origin and particle 2 if the net electrostatic


Figure 21-31 Problem 22. force on particle 1 due to the other particles is zero? (b) If particles 3 and 4 were moved closer to the \(x\) axis but maintained their symmetry about that axis, would the required value of \(D\) be greater than, less than, or the same as in part (a)?
-0023 ©0 In Fig. 21-32, particles 1 and 2 of charge \(q_{1}=q_{2}=+3.20 \times 10^{-19} \mathrm{C}\) are on a \(y\) axis at distance \(d=17.0 \mathrm{~cm}\) from the origin. Particle 3 of charge \(q_{3}=+6.40 \times 10^{-19} \mathrm{C}\) is moved gradually along the \(x\) axis from \(x=0\) to \(x=\) +5.0 m . At what values of \(x\) will the magnitude of the electrostatic force on the third particle from the other two


Figure 21-32 Problem 23. particles be (a) minimum and (b) maximum? What are the (c) minimum and (d) maximum magnitudes?

\section*{Module 21-2 Charge Is Quantized}
-24 Two tiny, spherical water drops, with identical charges of \(-1.00 \times 10^{-16} \mathrm{C}\), have a center-to-center separation of 1.00 cm . (a) What is the magnitude of the electrostatic force acting between them? (b) How many excess electrons are on each drop, giving it its charge imbalance?
-25 ILW How many electrons would have to be removed from a coin to leave it with a charge of \(+1.0 \times 10^{-7} \mathrm{C}\) ?
-26 What is the magnitude of the electrostatic force between a singly charged sodium ion \(\left(\mathrm{Na}^{+}\right.\), of charge \(\left.+e\right)\) and an adjacent singly charged chlorine ion \(\left(\mathrm{Cl}^{-}\right.\), of charge \(\left.-e\right)\) in a salt crystal if their separation is \(2.82 \times 10^{-10} \mathrm{~m}\) ?
-27 SSM The magnitude of the electrostatic force between two identical ions that are separated by a distance of \(5.0 \times 10^{-10} \mathrm{~m}\) is \(3.7 \times 10^{-9}\) N. (a) What is the charge of each ion? (b) How many electrons are "missing" from each ion (thus giving the ion its charge imbalance)?
-28 A current of 0.300 A through your chest can send your heart into fibrillation, ruining the normal rhythm of heartbeat and disrupting the flow of blood (and thus oxygen) to your brain. If that current persists for 2.00 min , how many conduction electrons pass through your chest?
\(\bullet 29\) ©o In Fig. 21-33, particles 2 and 4 , of charge \(-e\), are fixed in place on a \(y\) axis, at \(y_{2}=-10.0 \mathrm{~cm}\)


Figure 21-33 Problem 29.
and \(y_{4}=5.00 \mathrm{~cm}\). Particles 1 and 3 , of charge \(-e\), can be moved along the \(x\) axis. Particle 5, of charge \(+e\), is fixed at the origin. Initially particle 1 is at \(x_{1}=-10.0 \mathrm{~cm}\) and particle 3 is at \(x_{3}=10.0\) cm . (a) To what \(x\) value must particle 1 be moved to rotate the direction of the net electric force \(\vec{F}_{\text {net }}\) on particle 5 by \(30^{\circ}\) counterclockwise? (b) With particle 1 fixed at its new position, to what \(x\) value must you move particle 3 to rotate \(\vec{F}_{\text {net }}\) back to its original direction?
-•30 In Fig. 21-26, particles 1 and 2 are fixed in place on an \(x\) axis, at a separation of \(L=8.00 \mathrm{~cm}\). Their charges are \(q_{1}=+e\) and \(q_{2}=-27 e\). Particle 3 with charge \(q_{3}=+4 e\) is to be placed on the line between particles 1 and 2 ,so that they produce a net electrostatic force \(\vec{F}_{3, \text { net }}\) on it. (a) At what coordinate should particle 3 be placed to minimize the magnitude of that force? (b) What is that minimum magnitude?
-031 ILW Earth's atmosphere is constantly bombarded by cosmic ray protons that originate somewhere in space. If the protons all passed through the atmosphere, each square meter of Earth's surface would intercept protons at the average rate of 1500 protons per second. What would be the electric current intercepted by the total surface area of the planet?
-32 ©0 Figure 21-34a shows charged particles 1 and 2 that are fixed in place on an \(x\) axis. Particle 1 has a charge with a magnitude of \(\left|q_{1}\right|=8.00 e\). Particle 3 of charge \(q_{3}=+8.00 e\) is initially on the \(x\) axis near particle 2 . Then particle 3 is gradually moved in the positive direction of the \(x\) axis. As a result, the magnitude of the net electrostatic force \(\vec{F}_{2 \text {,net }}\) on particle 2 due to particles 1 and 3 changes. Figure 21-34b gives the \(x\) component of that net force as a function of the position \(x\) of particle 3. The scale of the \(x\) axis is set by \(x_{s}=0.80 \mathrm{~m}\). The plot has an asymptote of \(F_{2, \text { net }}=1.5 \times 10^{-25} \mathrm{~N}\) as \(x \rightarrow \infty\). As a multiple of \(e\) and including the sign, what is the charge \(q_{2}\) of particle 2?


Figure 21-34 Problem 32.
थ.33 Calculate the number of coulombs of positive charge in 250 \(\mathrm{cm}^{3}\) of (neutral) water. (Hint: A hydrogen atom contains one proton; an oxygen atom contains eight protons.)
-0034
Figure 21-35 shows electrons 1 and 2 on an \(x\) axis and charged ions 3 and 4 of identical charge \(-q\) and at identical angles \(\theta\). Electron 2 is free to move; the other three particles are fixed in place at horizontal distances \(R\) from electron 2 and are intended to hold electron 2 in


Figure 21-35 Problem 34. place. For physically possible values of \(q \leq 5 e\), what are the (a) smallest, (b) second smallest, and (c) third smallest values of \(\theta\) for which electron 2 is held in place?

00035 SSM In crystals of the salt cesium chloride, cesium ions \(\mathrm{Cs}^{+}\)form the eight corners of a cube and a chlorine ion \(\mathrm{Cl}^{-}\)is at the cube's center (Fig. 21-36). The edge length of the cube is 0.40 nm . The \(\mathrm{Cs}^{+}\)ions are each deficient by one electron (and thus each has a charge of \(+e\) ), and the \(\mathrm{Cl}^{-}\)ion has one excess electron (and thus has a charge of \(-e\) ). (a) What is the magnitude of the net electrostatic force exerted on the \(\mathrm{Cl}^{-}\)ion by the eight \(\mathrm{Cs}^{+}\)ions at the corners of the cube? (b) If one of the \(\mathrm{Cs}^{+}\)ions is missing, the crystal is said to have a defect; what is the magnitude of the net electrostatic force exerted on the \(\mathrm{Cl}^{-}\)ion by the seven remaining \(\mathrm{Cs}^{+}\)ions?


Figure 21-36 Problem 35.

\section*{Module 21-3 Charge Is Conserved}
-36 Electrons and positrons are produced by the nuclear transformations of protons and neutrons known as beta decay. (a) If a proton transforms into a neutron, is an electron or a positron produced? (b) If a neutron transforms into a proton, is an electron or a positron produced? -37 SSM Identify X in the following nuclear reactions: (a) \({ }^{1} \mathrm{H}+\) \({ }^{9} \mathrm{Be} \rightarrow \mathrm{X}+\mathrm{n}\); (b) \({ }^{12} \mathrm{C}+{ }^{1} \mathrm{H} \rightarrow \mathrm{X}\); (c) \({ }^{15} \mathrm{~N}+{ }^{1} \mathrm{H} \rightarrow{ }^{4} \mathrm{He}+\mathrm{X}\). Appendix F will help.

\section*{Additional Problems}

38 © Figure 21-37 shows four identical conducting spheres that are actually well separated from one another. Sphere \(W\) (with an initial charge of zero) is touched to sphere \(A\) and then they are separated. Next, sphere \(W\) is


Figure 21-37 Problem 38. touched to sphere \(B\) (with an initial charge of \(-32 e\) ) and then they are separated. Finally, sphere \(W\) is touched to sphere \(C\) (with an initial charge of \(+48 e\) ), and then they are separated. The final charge on sphere \(W\) is \(+18 e\). What was the initial charge on sphere \(A\) ?

39 ssm In Fig. 21-38, particle 1 of charge \(+4 e\) is above a floor by distance \(d_{1}=2.00 \mathrm{~mm}\) and particle 2 of charge \(+6 e\) is on the floor, at distance \(d_{2}=6.00 \mathrm{~mm}\) horizontally from particle 1 . What is the \(x\) component of the electrostatic force on par-


Figure 21-38 Problem 39. ticle 2 due to particle 1 ?
40 In Fig. 21-23, particles 1 and 2 are fixed in place, but particle 3 is free to move. If the net electrostatic force on particle 3 due to particles 1 and 2 is zero and \(L_{23}=2.00 L_{12}\), what is the ratio \(q_{1} / q_{2}\) ?
41 (a) What equal positive charges would have to be placed on Earth and on the Moon to neutralize their gravitational attraction? (b) Why don't you need to know the lunar distance to solve this problem? (c) How many kilograms of hydrogen ions (that is, protons) would be needed to provide the positive charge calculated in (a)?

42 In Fig. 21-39, two tiny conducting balls of identical mass \(m\) and identical charge \(q\) hang from nonconducting threads of length \(L\). Assume that \(\theta\) is so small that \(\tan \theta\) can be replaced by its approximate equal, \(\sin \theta\). (a) Show that
\[
x=\left(\frac{q^{2} L}{2 \pi \varepsilon_{0} m g}\right)^{1 / 3}
\]
gives the equilibrium separation \(x\) of the balls. (b) If \(L=120 \mathrm{~cm}, m=10 \mathrm{~g}\), and \(x=5.0 \mathrm{~cm}\), what is \(|q|\) ?

43 (a) Explain what happens to the balls of Problem 42 if one of them is discharged (loses its charge \(q\) to, say,


Figure 21-39
Problems 42 and 43. the ground). (b) Find the new equilibrium separation \(x\), using the given values of \(L\) and \(m\) and the computed value of \(|q|\).
44 SSM How far apart must two protons be if the magnitude of the electrostatic force acting on either one due to the other is equal to the magnitude of the gravitational force on a proton at Earth's surface?
45 How many megacoulombs of positive charge are in 1.00 mol of neutral molecular-hydrogen gas \(\left(\mathrm{H}_{2}\right)\) ?

46 In Fig. 21-40, four particles are fixed along an \(x\) axis, separated by distances \(d=2.00 \mathrm{~cm}\). The charges are \(q_{1}=+2 e, q_{2}=-e, q_{3}=+e\),


Figure 21-40 Problem 46. and \(\quad q_{4}=+4 e\), with \(e=1.60 \times\) \(10^{-19} \mathrm{C}\). In unit-vector notation, what is the net electrostatic force on (a) particle 1 and (b) particle 2 due to the other particles?

47 ©0 Point charges of \(+6.0 \mu \mathrm{C}\) and \(-4.0 \mu \mathrm{C}\) are placed on an \(x\) axis, at \(x=8.0 \mathrm{~m}\) and \(x=16 \mathrm{~m}\), respectively. What charge must be placed at \(x=24 \mathrm{~m}\) so that any charge placed at the origin would experience no electrostatic force?
48 In Fig. 21-41, three identical conducting spheres form an equilateral triangle of side length \(d=20.0 \mathrm{~cm}\). The sphere radii are much smaller than \(d\), and the sphere charges are \(q_{A}=-2.00\) \(\mathrm{nC}, q_{B}=-4.00 \mathrm{nC}\), and \(q_{C}=+8.00 \mathrm{nC}\). (a) What is the magnitude of the electrostatic force between spheres \(A\) and \(C\) ? The following steps are then taken: \(A\)


Figure 21-41
Problem 48. and \(B\) are connected by a thin wire and then disconnected; \(B\) is grounded by the wire, and the wire is then removed; \(B\) and \(C\) are connected by the wire and then disconnected. What now are the magnitudes of the electrostatic force (b) between spheres \(A\) and \(C\) and (c) between spheres \(B\) and \(C\) ?

49 A neutron consists of one "up" quark of charge \(+2 e / 3\) and two "down" quarks each having charge \(-e / 3\). If we assume that the down quarks are \(2.6 \times 10^{-15} \mathrm{~m}\) apart inside the neutron, what is the magnitude of the electrostatic force between them?

50 Figure 21-42 shows a long, nonconducting, massless rod of length \(L\), pivoted at its center and balanced with a block of weight \(W\) at a distance \(x\) from the left end. At the left and right ends of the rod are attached small conducting spheres with positive charges \(q\) and \(2 q\), respectively. A distance \(h\) directly beneath each of these spheres is a fixed sphere with positive charge \(Q\). (a) Find the distance \(x\) when the rod is horizontal and balanced. (b)

What value should \(h\) have so that the rod exerts no vertical force on the bearing when the rod is horizontal and balanced?


Figure 21-42 Problem 50.
51 A charged nonconducting rod, with a length of 2.00 m and a cross-sectional area of \(4.00 \mathrm{~cm}^{2}\), lies along the positive side of an \(x\) axis with one end at the origin. The volume charge density \(\rho\) is charge per unit volume in coulombs per cubic meter. How many excess electrons are on the rod if \(\rho\) is (a) uniform, with a value of \(-4.00 \mu \mathrm{C} / \mathrm{m}^{3}\), and (b) nonuniform, with a value given by \(\rho=b x^{2}\), where \(b=-2.00 \mu \mathrm{C} / \mathrm{m}^{5}\) ?
52 A particle of charge \(Q\) is fixed at the origin of an \(x y\) coordinate system. At \(t=0\) a particle \((m=0.800 \mathrm{~g}, q=4.00 \mu \mathrm{C})\) is located on the \(x\) axis at \(x=20.0 \mathrm{~cm}\), moving with a speed of \(50.0 \mathrm{~m} / \mathrm{s}\) in the positive \(y\) direction. For what value of \(Q\) will the moving particle execute circular motion? (Neglect the gravitational force on the particle.)
53 What would be the magnitude of the electrostatic force between two 1.00 C point charges separated by a distance of (a) 1.00 m and (b) 1.00 km if such point charges existed (they do not) and this configuration could be set up?
54 A charge of \(6.0 \mu \mathrm{C}\) is to be split into two parts that are then separated by 3.0 mm . What is the maximum possible magnitude of the electrostatic force between those two parts?
55 Of the charge \(Q\) on a tiny sphere, a fraction \(\alpha\) is to be transferred to a second, nearby sphere. The spheres can be treated as particles. (a) What value of \(\alpha\) maximizes the magnitude \(F\) of the electrostatic force between the two spheres? What are the (b) smaller and (c) larger values of \(\alpha\) that put \(F\) at half the maximum magnitude?

56 If a cat repeatedly rubs against your cotton slacks on a dry day, the charge transfer between the cat hair and the cotton can leave you with an excess charge of \(-2.00 \mu \mathrm{C}\). (a) How many electrons are transferred between you and the cat?

You will gradually discharge via the floor, but if instead of waiting, you immediately reach toward a faucet, a painful spark can suddenly appear as your fingers near the faucet. (b) In that spark, do electrons flow from you to the faucet or vice versa? (c) Just before the spark appears, do you induce positive or negative charge in the faucet? (d) If, instead, the cat reaches a paw toward the faucet, which way do electrons flow in the resulting spark? (e) If you stroke a cat with a bare hand on a dry day, you should take care not to bring your fingers near the cat's nose or you will hurt it with a spark. Considering that cat hair is an insulator, explain how the spark can appear.

57 We know that the negative charge on the electron and the positive charge on the proton are equal. Suppose, however, that these magnitudes differ from each other by \(0.00010 \%\). With what force would two copper coins, placed 1.0 m apart, repel each other? Assume that each coin contains \(3 \times 10^{22}\) copper atoms. (Hint: A neutral copper atom contains 29 protons and 29 electrons.) What do you conclude?

58 In Fig. 21-26, particle 1 of charge \(-80.0 \mu \mathrm{C}\) and particle 2 of charge \(+40.0 \mu \mathrm{C}\) are held at separation \(L=20.0 \mathrm{~cm}\) on an \(x\) axis. In unit-vector notation, what is the net electrostatic force on particle 3 , of charge \(q_{3}=20.0 \mu \mathrm{C}\), if particle 3 is placed at (a) \(x=40.0\) cm and (b) \(x=80.0 \mathrm{~cm}\) ? What should be the (c) \(x\) and (d) \(y\) coordinates of particle 3 if the net electrostatic force on it due to particles 1 and 2 is zero?

59 What is the total charge in coulombs of 75.0 kg of electrons?
60 ©o In Fig. 21-43, six charged particles surround particle 7 at radial distances of either \(d=1.0 \mathrm{~cm}\) or \(2 d\), as drawn. The charges are \(q_{1}=+2 e, q_{2}=+4 e, q_{3}=+e, q_{4}=+4 e, q_{5}=+2 e, q_{6}=+8 e, q_{7}=+6 e\), with \(e=1.60 \times 10^{-19} \mathrm{C}\). What is the magnitude of the net electrostatic force on particle 7 ?


Figure 21-43 Problem 60.
61 Three charged particles form a triangle: particle 1 with charge \(Q_{1}=80.0 \mathrm{nC}\) is at \(x y\) coordinates \((0,3.00 \mathrm{~mm})\), particle 2 with charge \(Q_{2}\) is at \((0,-3.00 \mathrm{~mm})\), and particle 3 with charge \(q=18.0\) nC is at \((4.00 \mathrm{~mm}, 0)\). In unit-vector notation, what is the electrostatic force on particle 3 due to the other two particles if \(Q_{2}\) is equal to (a) 80.0 nC and (b) -80.0 nC ?
62 SSM In Fig. 21-44, what are the (a) magnitude and (b) direction of the net electrostatic force on particle 4 due to the other three particles? All four particles are fixed in the \(x y\) plane, and \(q_{1}=\) \(-3.20 \times 10^{-19} \mathrm{C}, q_{2}=+3.20 \times 10^{-19} \mathrm{C}, q_{3}=+6.40 \times 10^{-19} \mathrm{C}, q_{4}=\) \(+3.20 \times 10^{-19} \mathrm{C}, \theta_{1}=35.0^{\circ}, d_{1}=3.00 \mathrm{~cm}\), and \(d_{2}=d_{3}=2.00 \mathrm{~cm}\).


\section*{Figure 21-44 Problem 62.}

63 Two point charges of 30 nC and -40 nC are held fixed on an \(x\) axis, at the origin and at \(x=72 \mathrm{~cm}\), respectively. A particle with a charge of \(42 \mu \mathrm{C}\) is released from rest at \(x=28 \mathrm{~cm}\). If the initial acceleration of the particle has a magnitude of \(100 \mathrm{~km} / \mathrm{s}^{2}\), what is the particle's mass?
64 Two small, positively charged spheres have a combined charge of \(5.0 \times 10^{-5} \mathrm{C}\). If each sphere is repelled from the other by an electrostatic force of 1.0 N when the spheres are 2.0 m apart, what is the charge on the sphere with the smaller charge?

65 The initial charges on the three identical metal spheres in Fig. 21-24 are the following: sphere \(A, Q\); sphere \(B,-Q / 4\); and sphere \(C, Q / 2\), where \(Q=2.00 \times 10^{-14} \mathrm{C}\). Spheres \(A\) and \(B\) are fixed in place, with a center-to-center separation of \(d=1.20 \mathrm{~m}\), which is much larger than the spheres. Sphere \(C\) is touched first to sphere \(A\) and then to sphere \(B\) and is then removed. What then is the magnitude of the electrostatic force between spheres \(A\) and \(B\) ?
66 An electron is in a vacuum near Earth's surface and located at \(y=0\) on a vertical \(y\) axis. At what value of \(y\) should a second electron be placed such that its electrostatic force on the first electron balances the gravitational force on the first electron?
67 SSM In Fig. 21-26, particle 1 of charge \(-5.00 q\) and particle 2 of charge \(+2.00 q\) are held at separation \(L\) on an \(x\) axis. If particle 3 of unknown charge \(q_{3}\) is to be located such that the net electrostatic force on it from particles 1 and 2 is zero, what must be the (a) \(x\) and (b) y coordinates of particle 3?

68 Two engineering students, John with a mass of 90 kg and Mary with a mass of 45 kg , are 30 m apart. Suppose each has a \(0.01 \% \mathrm{im}-\) balance in the amount of positive and negative charge, one student being positive and the other negative. Find the order of magnitude of the electrostatic force of attraction between them by replacing each student with a sphere of water having the same mass as the student.
69 In the radioactive decay of Eq. 21-13, a \({ }^{238} \mathrm{U}\) nucleus transforms to \({ }^{234} \mathrm{Th}\) and an ejected \({ }^{4} \mathrm{He}\). (These are nuclei, not atoms, and thus electrons are not involved.) When the separation between \({ }^{234} \mathrm{Th}\) and \({ }^{4} \mathrm{He}\) is \(9.0 \times 10^{-15} \mathrm{~m}\), what are the magnitudes of (a) the electrostatic force between them and (b) the acceleration of the \({ }^{4} \mathrm{He}\) particle?
70 In Fig. 21-25, four particles form a square. The charges are \(q_{1}=+Q, q_{2}=q_{3}=q\), and \(q_{4}=-2.00 Q\). What is \(q / Q\) if the net electrostatic force on particle 1 is zero?
71 In a spherical metal shell of radius \(R\), an electron is shot from the center directly toward a tiny hole in the shell, through which it escapes. The shell is negatively charged with a surface charge density (charge per unit area) of \(6.90 \times 10^{-13} \mathrm{C} / \mathrm{m}^{2}\). What is the magnitude of the electron's acceleration when it reaches radial distances (a) \(r=0.500 R\) and (b) \(2.00 R\) ?
72 An electron is projected with an initial speed \(v_{i}=3.2 \times 10^{5} \mathrm{~m} / \mathrm{s}\) directly toward a very distant proton that is at rest. Because the proton mass is large relative to the electron mass, assume that the proton remains at rest. By calculating the work done on the electron by the electrostatic force, determine the distance between the two particles when the electron instantaneously has speed \(2 v_{i}\).
73 In an early model of the hydrogen atom (the Bohr model), the electron orbits the proton in uniformly circular motion. The radius of the circle is restricted (quantized) to certain values given by
\[
r=n^{2} a_{0}, \quad \text { for } n=1,2,3, \ldots
\]
where \(a_{0}=52.92 \mathrm{pm}\). What is the speed of the electron if it orbits in (a) the smallest allowed orbit and (b) the second smallest orbit? (c) If the electron moves to larger orbits, does its speed increase, decrease, or stay the same?
74 A 100 W lamp has a steady current of 0.83 A in its filament. How long is required for 1 mol of electrons to pass through the lamp?
75 The charges of an electron and a positron are \(-e\) and \(+e\). The mass of each is \(9.11 \times 10^{-31} \mathrm{~kg}\). What is the ratio of the electrical force to the gravitational force between an electron and a positron?

\section*{22-1 the electric field}

\section*{Learning Objectives}

After reading this module, you should be able to .
22.01 Identify that at every point in the space surrounding a charged particle, the particle sets up an electric field \(\vec{E}\), which is a vector quantity and thus has both magnitude and direction.
22.02 Identify how an electric field \(\vec{E}\) can be used to explain how a charged particle can exert an electrostatic force \(\vec{F}\)
on a second charged particle even though there is no contact between the particles.
22.03 Explain how a small positive test charge is used (in principle) to measure the electric field at any given point.
22.04 Explain electric field lines, including where they originate and terminate and what their spacing represents.

\section*{Key Ideas}
- A charged particle sets up an electric field (a vector quantity) in the surrounding space. If a second charged particle is located in that space, an electrostatic force acts on it due to the magnitude and direction of the field at its location.
- The electric field \(\vec{E}\) at any point is defined in terms of the electrostatic force \(\vec{F}\) that would be exerted on a positive test charge \(q_{0}\) placed there:
\[
\vec{E}=\frac{\vec{F}}{q_{0}}
\]
- Electric field lines help us visualize the direction and magnitude of electric fields. The electric field vector at any point is tangent to the field line through that point. The density of field lines in that region is proportional to the magnitude of the electric field there. Thus, closer field lines represent a stronger field.
- Electric field lines originate on positive charges and terminate on negative charges. So, a field line extending from a positive charge must end on a negative charge.
\begin{tabular}{lr}
\(\oplus\) & \(\oplus\) \\
\(q_{1}\) & \(q_{2}\)
\end{tabular}

Figure 22-1 How does charged particle 2 push on charged particle 1 when they have no contact?

\section*{What Is Physics?}

Figure 22-1 shows two positively charged particles. From the preceding chapter we know that an electrostatic force acts on particle 1 due to the presence of particle 2. We also know the force direction and, given some data, we can calculate the force magnitude. However, here is a leftover nagging question. How does particle 1 "know" of the presence of particle 2? That is, since the particles do not touch, how can particle 2 push on particle 1 -how can there be such an action at a distance?

One purpose of physics is to record observations about our world, such as the magnitude and direction of the push on particle 1 . Another purpose is to provide an explanation of what is recorded. Our purpose in this chapter is to provide such an explanation to this nagging question about electric force at a distance.

The explanation that we shall examine here is this: Particle 2 sets up an electric field at all points in the surrounding space, even if the space is a vacuum. If we place particle 1 at any point in that space, particle 1 knows of the presence of particle 2 because it is affected by the electric field particle 2 has already set up at that point. Thus, particle 2 pushes on particle 1 not by touching it as you would push on a coffee mug by making contact. Instead, particle 2 pushes by means of the electric field it has set up.

Our goals in this chapter are to (1) define electric field, (2) discuss how to calculate it for various arrangements of charged particles and objects, and (3) discuss how an electric field can affect a charged particle (as in making it move).

\section*{The Electric Field}

A lot of different fields are used in science and engineering. For example, a temperature field for an auditorium is the distribution of temperatures we would find by measuring the temperature at many points within the auditorium. Similarly, we could define a pressure field in a swimming pool. Such fields are examples of scalar fields because temperature and pressure are scalar quantities, having only magnitudes and not directions.

In contrast, an electric field is a vector field because it is responsible for conveying the information for a force, which involves both magnitude and direction. This field consists of a distribution of electric field vectors \(\vec{E}\), one for each point in the space around a charged object. In principle, we can define \(\vec{E}\) at some point near the charged object, such as point \(P\) in Fig. 22-2a, with this procedure: At \(P\), we place a particle with a small positive charge \(q_{0}\), called a test charge because we use it to test the field. (We want the charge to be small so that it does not disturb the object's charge distribution.) We then measure the electrostatic force \(\vec{F}\) that acts on the test charge. The electric field at that point is then
\[
\begin{equation*}
\vec{E}=\frac{\vec{F}}{q_{0}} \quad(\text { electric field }) \tag{22-1}
\end{equation*}
\]

Because the test charge is positive, the two vectors in Eq. 22-1 are in the same direction, so the direction of \(\vec{E}\) is the direction we measure for \(\vec{F}\). The magnitude of \(\vec{E}\) at point \(P\) is \(F / q_{0}\). As shown in Fig. 22-2b, we always represent an electric field with an arrow with its tail anchored on the point where the measurement is made. (This may sound trivial, but drawing the vectors any other way usually results in errors. Also, another common error is to mix up the terms force and field because they both start with the letter f. Electric force is a push or pull. Electric field is an abstract property set up by a charged object.) From Eq. 22-1, we see that the SI unit for the electric field is the newton per coulomb (N/C).

We can shift the test charge around to various other points, to measure the electric fields there, so that we can figure out the distribution of the electric field set up by the charged object. That field exists independent of the test charge. It is something that a charged object sets up in the surrounding space (even vacuum), independent of whether we happen to come along to measure it.

For the next several modules, we determine the field around charged particles and various charged objects. First, however, let's examine a way of visualizing electric fields.

\section*{Electric Field Lines}

Look at the space in the room around you. Can you visualize a field of vectors throughout that space-vectors with different magnitudes and directions? As impossible as that seems, Michael Faraday, who introduced the idea of electric fields in the 19th century, found a way. He envisioned lines, now called electric field lines, in the space around any given charged particle or object.

Figure 22-3 gives an example in which a sphere is uniformly covered with negative charge. If we place a positive test charge at any point near the sphere (Fig. 22-3a), we find that an electrostatic force pulls on it toward the center of the sphere. Thus at every point around the sphere, an electric field vector points radially inward toward the sphere. We can represent this electric field with


Figure 22-2 (a) A positive test charge \(q_{0}\) placed at point \(P\) near a charged object. An electrostatic force \(\vec{F}\) acts on the test charge. (b) The electric field \(\vec{E}\) at point \(P\) produced by the charged object.


Figure 22-3 (a) The electrostatic force \(\vec{F}\) acting on a positive test charge near a sphere of uniform negative charge. (b) The electric field vector \(\vec{E}\) at the location of the test charge, and the electric field lines in the space near the sphere. The field lines extend toward the negatively charged sphere. (They originate on distant positive charges.)


Figure 22-5 Field lines for two particles with equal positive charge. Doesn't the pattern itself suggest that the particles repel each other?

(a)

(b)

(c)

Figure 22-4 (a) The force on a positive test charge near a very large, nonconducting sheet with uniform positive charge on one side. (b) The electric field vector \(\vec{E}\) at the test charge's location, and the nearby electric field lines, extending away from the sheet. (c) Side view.
electric field lines as in Fig. 22-3b. At any point, such as the one shown, the direction of the field line through the point matches the direction of the electric vector at that point.

The rules for drawing electric fields lines are these: (1) At any point, the electric field vector must be tangent to the electric field line through that point and in the same direction. (This is easy to see in Fig. 22-3 where the lines are straight, but we'll see some curved lines soon.) (2) In a plane perpendicular to the field lines, the relative density of the lines represents the relative magnitude of the field there, with greater density for greater magnitude.

If the sphere in Fig. 22-3 were uniformly covered with positive charge, the electric field vectors at all points around it would be radially outward and thus so would the electric field lines. So, we have the following rule:

\section*{4 \\ Electric field lines extend away from positive charge (where they originate) and toward negative charge (where they terminate).}

In Fig. 22-3b, they originate on distant positive charges that are not shown.
For another example, Fig. 22-4a shows part of an infinitely large, nonconducting sheet (or plane) with a uniform distribution of positive charge on one side. If we place a positive test charge at any point near the sheet (on either side), we find that the electrostatic force on the particle is outward and perpendicular to the sheet. The perpendicular orientation is reasonable because any force component that is, say, upward is balanced out by an equal component that is downward. That leaves only outward, and thus the electric field vectors and the electric field lines must also be outward and perpendicular to the sheet, as shown in Figs. 22-4b and \(c\).

Because the charge on the sheet is uniform, the field vectors and the field lines are also. Such a field is a uniform electric field, meaning that the electric field has the same magnitude and direction at every point within the field. (This is a lot easier to work with than a nonuniform field, where there is variation from point to point.) Of course, there is no such thing as an infinitely large sheet. That is just a way of saying that we are measuring the field at points close to the sheet relative to the size of the sheet and that we are not near an edge.

Figure 22-5 shows the field lines for two particles with equal positive charges. Now the field lines are curved, but the rules still hold: (1) the electric field vector at any given point must be tangent to the field line at that point and in the same direction, as shown for one vector, and (2) a closer spacing means a larger field magnitude. To imagine the full three-dimensional pattern of field lines around the particles, mentally rotate the pattern in Fig. 22-5 around the axis of symmetry, which is a vertical line through both particles.

\section*{22-2 the electric field due to a charged particle}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
22.05 In a sketch, draw a charged particle, indicate its sign, pick a nearby point, and then draw the electric field vector \(\vec{E}\) at that point, with its tail anchored on the point.
22.06 For a given point in the electric field of a charged particle, identify the direction of the field vector \(\vec{E}\) when the particle is positively charged and when it is negatively charged.
22.07 For a given point in the electric field of a charged particle, apply the relationship between the field
magnitude \(E\), the charge magnitude \(|q|\), and the distance \(r\) between the point and the particle.
22.08 Identify that the equation given here for the magnitude of an electric field applies only to a particle, not an extended object.
22.09 If more than one electric field is set up at a point, draw each electric field vector and then find the net electric field by adding the individual electric fields as vectors (not as scalars).

\section*{Key Ideas}
- The magnitude of the electric field \(\vec{E}\) set up by a particle with charge \(q\) at distance \(r\) from the particle is
\[
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{|q|}{r^{2}} .
\]
- The electric field vectors set up by a positively charged particle all point directly away from the particle. Those set up
by a negatively charged particle all point directly toward the particle.
- If more than one charged particle sets up an electric field at a point, the net electric field is the vector sum of the individual electric fields-electric fields obey the superposition principle.

\section*{The Electric Field Due to a Point Charge}

To find the electric field due to a charged particle (often called a point charge), we place a positive test charge at any point near the particle, at distance \(r\). From Coulomb's law (Eq. 21-4), the force on the test charge due to the particle with charge \(q\) is
\[
\vec{F}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q q_{0}}{r^{2}} \hat{\mathrm{r}} .
\]

As previously, the direction of \(\vec{F}\) is directly away from the particle if \(q\) is positive (because \(q_{0}\) is positive) and directly toward it if \(q\) is negative. From Eq. 22-1, we can now write the electric field set up by the particle (at the location of the test charge) as
\[
\begin{equation*}
\vec{E}=\frac{\vec{F}}{q_{0}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}} \hat{\mathrm{r}} \quad \text { (charged particle). } \tag{22-2}
\end{equation*}
\]

Let's think through the directions again. The direction of \(\vec{E}\) matches that of the force on the positive test charge: directly away from the point charge if \(q\) is positive and directly toward it if \(q\) is negative.

So, if given another charged particle, we can immediately determine the directions of the electric field vectors near it by just looking at the sign of the charge \(q\). We can find the magnitude at any given distance \(r\) by converting Eq. 22-2 to a magnitude form:
\[
\begin{equation*}
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{|q|}{r^{2}} \quad \text { (charged particle). } \tag{22-3}
\end{equation*}
\]

We write \(|q|\) to avoid the danger of getting a negative \(E\) when \(q\) is negative, and then thinking the negative sign has something to do with direction. Equation 22-3 gives magnitude \(E\) only. We must think about the direction separately.

Figure 22-6 gives a number of electric field vectors at points around a positively charged particle, but be careful. Each vector represents the vector


Figure 22-6 The electric field vectors at various points around a positive point charge.
quantity at the point where the tail of the arrow is anchored. The vector is not something that stretches from a "here" to a "there" as with a displacement vector.

In general, if several electric fields are set up at a given point by several charged particles, we can find the net field by placing a positive test particle at the point and then writing out the force acting on it due to each particle, such as \(\vec{F}_{01}\) due to particle 1 . Forces obey the principle of superposition, so we just add the forces as vectors:
\[
\vec{F}_{0}=\vec{F}_{01}+\vec{F}_{02}+\cdots+\vec{F}_{0 n} .
\]

To change over to electric field, we repeatedly use Eq. 22-1 for each of the individual forces:
\[
\begin{align*}
\vec{E} & =\frac{\vec{F}_{0}}{q_{0}}=\frac{\vec{F}_{01}}{q_{0}}+\frac{\vec{F}_{02}}{q_{0}}+\cdots+\frac{\vec{F}_{0 n}}{q_{0}} \\
& =\vec{E}_{1}+\vec{E}_{2}+\cdots+\vec{E}_{n} . \tag{22-4}
\end{align*}
\]

This tells us that electric fields also obey the principle of superposition. If you want the net electric field at a given point due to several particles, find the electric field due to each particle (such as \(\vec{E}_{1}\) due to particle 1) and then sum the fields as vectors. (As with electrostatic forces, you cannot just willy-nilly add up the magnitudes.) This addition of fields is the subject of many of the homework problems.

\section*{Checkpoint 1}

The figure here shows a proton p and an electron e on an \(x\) axis. What is the direction of the electric field due to the electron at (a) point \(S\) and (b) point \(R\) ? What is the direction of the net electric field at (c) point \(R\) and (d) point \(S\) ?


\section*{Sample Problem 22.01 Net electric field due to three charged particles}

Figure 22-7a shows three particles with charges \(q_{1}=+2 Q\), \(q_{2}=-2 Q\), and \(q_{3}=-4 Q\), each a distance \(d\) from the origin. What net electric field \(\vec{E}\) is produced at the origin?

\section*{KEY IDEA}

Charges \(q_{1}, q_{2}\), and \(q_{3}\) produce electric field vectors \(\vec{E}_{1}, \vec{E}_{2}\), and \(\vec{E}_{3}\), respectively, at the origin, and the net electric field is the vector sum \(\vec{E}=\vec{E}_{1}+\vec{E}_{2}+\vec{E}_{3}\). To find this sum, we first must find the magnitudes and orientations of the three field vectors.

Magnitudes and directions: To find the magnitude of \(\vec{E}_{1}\), which is due to \(q_{1}\), we use Eq. 22-3, substituting \(d\) for \(r\) and \(2 Q\) for \(q\) and obtaining
\[
E_{1}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 Q}{d^{2}} .
\]

Similarly, we find the magnitudes of \(\vec{E}_{2}\) and \(\vec{E}_{3}\) to be
\[
E_{2}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 Q}{d^{2}} \quad \text { and } \quad E_{3}=\frac{1}{4 \pi \varepsilon_{0}} \frac{4 Q}{d^{2}} .
\]


Figure 22-7 (a) Three particles with charges \(q_{1}, q_{2}\), and \(q_{3}\) are at the same distance \(d\) from the origin. (b) The electric field vectors \(\vec{E}_{1}\), \(\vec{E}_{2}\), and \(\vec{E}_{3}\), at the origin due to the three particles. (c) The electric field vector \(\vec{E}_{3}\) and the vector sum \(\vec{E}_{1}+\vec{E}_{2}\) at the origin.

We next must find the orientations of the three electric field vectors at the origin. Because \(q_{1}\) is a positive charge, the field vector it produces points directly away from it, and because \(q_{2}\) and \(q_{3}\) are both negative, the field vectors they produce point directly toward each of them. Thus, the three electric fields produced at the origin by the three charged particles are oriented as in Fig. 22-7b. (Caution: Note that we have placed the tails of the vectors at the point where the fields are to be evaluated; doing so decreases the chance of error. Error becomes very probable if the tails of the field vectors are placed on the particles creating the fields.)

Adding the fields: We can now add the fields vectorially just as we added force vectors in Chapter 21. However, here we can use symmetry to simplify the procedure. From Fig. 22-7b, we see that electric fields \(\vec{E}_{1}\) and \(\vec{E}_{2}\) have the same direction. Hence, their vector sum has that direction and has the magnitude
\[
\begin{aligned}
E_{1}+E_{2} & =\frac{1}{4 \pi \varepsilon_{0}} \frac{2 Q}{d^{2}}+\frac{1}{4 \pi \varepsilon_{0}} \frac{2 Q}{d^{2}} \\
& =\frac{1}{4 \pi \varepsilon_{0}} \frac{4 Q}{d^{2}}
\end{aligned}
\]
which happens to equal the magnitude of field \(\vec{E}_{3}\).
We must now combine two vectors, \(\vec{E}_{3}\) and the vector sum \(\vec{E}_{1}+\vec{E}_{2}\), that have the same magnitude and that are oriented symmetrically about the \(x\) axis, as shown in Fig. 22-7c. From the symmetry of Fig. 22-7c, we realize that the equal \(y\) components of our two vectors cancel (one is upward and the other is downward) and the equal \(x\) components add (both are rightward). Thus, the net electric field \(\vec{E}\) at the origin is in the positive direction of the \(x\) axis and has the magnitude
\[
\begin{aligned}
E & =2 E_{3 x}=2 E_{3} \cos 30^{\circ} \\
& =(2) \frac{1}{4 \pi \varepsilon_{0}} \frac{4 Q}{d^{2}}(0.866)=\frac{6.93 Q}{4 \pi \varepsilon_{0} d^{2}} .
\end{aligned}
\]
(Answer)

PLUS Additional examples, video, and practice available at WileyPLUS

\section*{22-3 the electric fielo due to a dipole}

\section*{Learning Objectives}

After reading this module, you should be able to ...
22.10 Draw an electric dipole, identifying the charges (sizes and signs), dipole axis, and direction of the electric dipole moment.
22.11 Identify the direction of the electric field at any given point along the dipole axis, including between the charges.
22.12 Outline how the equation for the electric field due to an electric dipole is derived from the equations for the electric field due to the individual charged particles that form the dipole.
22.13 For a single charged particle and an electric dipole, compare the rate at which the electric field magnitude
decreases with increase in distance. That is, identify which drops off faster.
22.14 For an electric dipole, apply the relationship between the magnitude \(p\) of the dipole moment, the separation \(d\) between the charges, and the magnitude \(q\) of either of the charges.
22.15 For any distant point along a dipole axis, apply the relationship between the electric field magnitude \(E\), the distance \(z\) from the center of the dipole, and either the dipole moment magnitude \(p\) or the product of charge magnitude \(q\) and charge separation \(d\).

\section*{Key Ideas}
- An electric dipole consists of two particles with charges of equal magnitude \(q\) but opposite signs, separated by a small distance \(d\).
- The electric dipole moment \(\vec{p}\) has magnitude \(q d\) and points from the negative charge to the positive charge.
- The magnitude of the electric field set up by an electric dipole at a distant point on the dipole axis (which runs through both particles) can be written in terms of either the product \(q d\) or the magnitude \(p\) of the dipole moment:
\[
E=\frac{1}{2 \pi \varepsilon_{0}} \frac{q d}{z^{3}}=\frac{1}{2 \pi \varepsilon_{0}} \frac{p}{z^{3}},
\]
where \(z\) is the distance between the point and the center of the dipole.
- Because of the \(1 / z^{3}\) dependence, the field magnitude of an electric dipole decreases more rapidly with distance than the field magnitude of either of the individual charges forming the dipole, which depends on \(1 / r^{2}\).


Figure 22-8 The pattern of electric field lines around an electric dipole, with an electric field vector \(\vec{E}\) shown at one point (tangent to the field line through that point).

(a)

Up here the \(+q\) field dominates.


Down here the \(-q\) field dominates.
(b)

Figure 22-9 (a) An electric dipole. The electric field vectors \(\vec{E}_{(+)}\)and \(\vec{E}_{(-)}\)at point \(P\) on the dipole axis result from the dipole's two charges. Point \(P\) is at distances \(r_{(+)}\)and \(r_{(-)}\) from the individual charges that make up the dipole. (b) The dipole moment \(\vec{p}\) of the dipole points from the negative charge to the positive charge.

\section*{The Electric Field Due to an Electric Dipole}

Figure 22-8 shows the pattern of electric field lines for two particles that have the same charge magnitude \(q\) but opposite signs, a very common and important arrangement known as an electric dipole. The particles are separated by distance \(d\) and lie along the dipole axis, an axis of symmetry around which you can imagine rotating the pattern in Fig. 22-8. Let's label that axis as a \(z\) axis. Here we restrict our interest to the magnitude and direction of the electric field \(\vec{E}\) at an arbitrary point \(P\) along the dipole axis, at distance \(z\) from the dipole's midpoint.

Figure 22-9a shows the electric fields set up at \(P\) by each particle. The nearer particle with charge \(+q\) sets up field \(E_{(+)}\)in the positive direction of the \(z\) axis (directly away from the particle). The farther particle with charge \(-q\) sets up a smaller field \(E_{(-)}\)in the negative direction (directly toward the particle). We want the net field at \(P\), as given by Eq. 22-4. However, because the field vectors are along the same axis, let's simply indicate the vector directions with plus and minus signs, as we commonly do with forces along a single axis. Then we can write the magnitude of the net field at \(P\) as
\[
\begin{align*}
E & =E_{(+)}-E_{(-)} \\
& =\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r_{(+)}^{2}}-\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r_{(-)}^{2}} \\
& =\frac{q}{4 \pi \varepsilon_{0}\left(z-\frac{1}{2} d\right)^{2}}-\frac{q}{4 \pi \varepsilon_{0}\left(z+\frac{1}{2} d\right)^{2}} . \tag{22-5}
\end{align*}
\]

After a little algebra, we can rewrite this equation as
\[
\begin{equation*}
E=\frac{q}{4 \pi \varepsilon_{0} z^{2}}\left(\frac{1}{\left(1-\frac{d}{2 z}\right)^{2}}-\frac{1}{\left(1+\frac{d}{2 z}\right)^{2}}\right) \tag{22-6}
\end{equation*}
\]

After forming a common denominator and multiplying its terms, we come to
\[
\begin{equation*}
E=\frac{q}{4 \pi \varepsilon_{0} z^{2}} \frac{2 d / z}{\left(1-\left(\frac{d}{2 z}\right)^{2}\right)^{2}}=\frac{q}{2 \pi \varepsilon_{0} z^{3}} \frac{d}{\left(1-\left(\frac{d}{2 z}\right)^{2}\right)^{2}} . \tag{22-7}
\end{equation*}
\]

We are usually interested in the electrical effect of a dipole only at distances that are large compared with the dimensions of the dipole - that is, at distances such that \(z \gg d\). At such large distances, we have \(d / 2 z \ll 1\) in Eq. 22-7.Thus, in our approximation, we can neglect the \(d / 2 z\) term in the denominator, which leaves us with
\[
\begin{equation*}
E=\frac{1}{2 \pi \varepsilon_{0}} \frac{q d}{z^{3}} . \tag{22-8}
\end{equation*}
\]

The product \(q d\), which involves the two intrinsic properties \(q\) and \(d\) of the dipole, is the magnitude \(p\) of a vector quantity known as the electric dipole moment \(\vec{p}\) of the dipole. (The unit of \(\vec{p}\) is the coulomb-meter.) Thus, we can write Eq. 22-8 as
\[
\begin{equation*}
E=\frac{1}{2 \pi \varepsilon_{0}} \frac{p}{z^{3}} \quad \text { (electric dipole). } \tag{22-9}
\end{equation*}
\]

The direction of \(\vec{p}\) is taken to be from the negative to the positive end of the dipole, as indicated in Fig. 22-9b. We can use the direction of \(\vec{p}\) to specify the orientation of a dipole.

Equation 22-9 shows that, if we measure the electric field of a dipole only at distant points, we can never find \(q\) and \(d\) separately; instead, we can find only their product. The field at distant points would be unchanged if, for example, \(q\)
were doubled and \(d\) simultaneously halved. Although Eq. \(22-9\) holds only for distant points along the dipole axis, it turns out that \(E\) for a dipole varies as \(1 / r^{3}\) for all distant points, regardless of whether they lie on the dipole axis; here \(r\) is the distance between the point in question and the dipole center.

Inspection of Fig. 22-9 and of the field lines in Fig. 22-8 shows that the direction of \(\vec{E}\) for distant points on the dipole axis is always the direction of the dipole moment vector \(\vec{p}\). This is true whether point \(P\) in Fig. 22-9a is on the upper or the lower part of the dipole axis.

Inspection of Eq. 22-9 shows that if you double the distance of a point from a dipole, the electric field at the point drops by a factor of 8. If you double the distance from a single point charge, however (see Eq. 22-3), the electric field drops only by a factor of 4 . Thus the electric field of a dipole decreases more rapidly with distance than does the electric field of a single charge. The physical reason for this rapid decrease in electric field for a dipole is that from distant points a dipole looks like two particles that almost - but not quite-coincide. Thus, because they have charges of equal magnitude but opposite signs, their electric fields at distant points almost - but not quite - cancel each other.

\section*{Sample Problem 22.02 Electric dipole and atmospheric sprites}

Sprites (Fig. 22-10a) are huge flashes that occur far above a large thunderstorm. They were seen for decades by pilots flying at night, but they were so brief and dim that most pilots figured they were just illusions. Then in the 1990s sprites were captured on video. They are still not well understood but are believed to be produced when especially powerful lightning occurs between the ground and storm clouds, particularly when the lightning transfers a huge amount of negative charge \(-q\) from the ground to the base of the clouds (Fig. 22-10b).

Just after such a transfer, the ground has a complicated distribution of positive charge. However, we can model the electric field due to the charges in the clouds and the ground by assuming a vertical electric dipole that has charge \(-q\) at cloud height \(h\) and charge \(+q\) at below-ground depth \(h\) (Fig. 22-10c). If \(q=200 \mathrm{C}\) and \(h=6.0 \mathrm{~km}\), what is the magnitude of the dipole's electric field at altitude \(z_{1}=30 \mathrm{~km}\) somewhat above the clouds and altitude \(z_{2}=60 \mathrm{~km}\) somewhat above the stratosphere?

4

\section*{KEY IDEA}

We can approximate the magnitude \(E\) of an electric dipole's electric field on the dipole axis with Eq. 22-8.
Calculations: We write that equation as
\[
E=\frac{1}{2 \pi \varepsilon_{0}} \frac{q(2 h)}{z^{3}},
\]
where \(2 h\) is the separation between \(-q\) and \(+q\) in Fig. 22-10c. For the electric field at altitude \(z_{1}=30 \mathrm{~km}\), we find
\[
\begin{aligned}
E & =\frac{1}{2 \pi \varepsilon_{0}} \frac{(200 \mathrm{C})(2)\left(6.0 \times 10^{3} \mathrm{~m}\right)}{\left(30 \times 10^{3} \mathrm{~m}\right)^{3}} \\
& =1.6 \times 10^{3} \mathrm{~N} / \mathrm{C}
\end{aligned}
\]
(Answer)
Similarly, for altitude \(z_{2}=60 \mathrm{~km}\), we find
\[
E=2.0 \times 10^{2} \mathrm{~N} / \mathrm{C}
\]
(Answer)
As we discuss in Module 22-6, when the magnitude of

an electric field exceeds a certain critical value \(E_{c}\), the field can pull electrons out of atoms (ionize the atoms), and then the freed electrons can run into other atoms, causing those atoms to emit light. The value of \(E_{c}\) depends on the density of the air in which the electric field exists. At altitude \(z_{2}=60 \mathrm{~km}\) the density of the air is so low that
\(E=2.0 \times 10^{2} \mathrm{~N} / \mathrm{C}\) exceeds \(E_{c}\), and thus light is emitted by the atoms in the air. That light forms sprites. Lower down, just above the clouds at \(z_{1}=30 \mathrm{~km}\), the density of the air is much higher, \(E=1.6 \times 10^{3} \mathrm{~N} / \mathrm{C}\) does not exceed \(E_{c}\), and no light is emitted. Hence, sprites occur only far above storm clouds.

\section*{22-4 The electric field due to a line of charge}

\section*{Learning Objectives}

After reading this module, you should be able to ...
22.16 For a uniform distribution of charge, find the linear charge density \(\lambda\) for charge along a line, the surface charge density \(\sigma\) for charge on a surface, and the volume charge density \(\rho\) for charge in a volume.
22.17 For charge that is distributed uniformly along a line, find the net electric field at a given point near the line by
splitting the distribution up into charge elements \(d q\) and then summing (by integration) the electric field vectors \(d \vec{E}\) set up at the point by each element.
22.18 Explain how symmetry can be used to simplify the calculation of the electric field at a point near a line of uniformly distributed charge.

\section*{Key Ideas}
- The equation for the electric field set up by a particle does not apply to an extended object with charge (said to have a continuous charge distribution).
- To find the electric field of an extended object at a point, we first consider the electric field set up by a charge element \(d q\) in the object, where the element is small enough for us to apply
the equation for a particle. Then we sum, via integration, components of the electric fields \(d \vec{E}\) from all the charge elements.
- Because the individual electric fields \(d \vec{E}\) have different magnitudes and point in different directions, we first see if symmetry allows us to cancel out any of the components of the fields, to simplify the integration.

\section*{The Electric Field Due to a Line of Charge}

So far we have dealt with only charged particles, a single particle or a simple collection of them. We now turn to a much more challenging situation in which a thin (approximately one-dimensional) object such as a rod or ring is charged with a huge number of particles, more than we could ever even count. In the next module, we consider two-dimensional objects, such as a disk with charge spread over a surface. In the next chapter we tackle three-dimensional objects, such as a sphere with charge spread through a volume.

Heads Up. Many students consider this module to be the most difficult in the book for a variety of reasons. There are lots of steps to take, a lot of vector features to keep track of, and after all that, we set up and then solve an integral. The worst part, however, is that the procedure can be different for different arrangements of the charge. Here, as we focus on a particular arrangement (a charged ring), be aware of the general approach, so that you can tackle other arrangements in the homework (such as rods and partial circles).

Figure 22-11 shows a thin ring of radius \(R\) with a uniform distribution of positive charge along its circumference. It is made of plastic, which means that the charge is fixed in place. The ring is surrounded by a pattern of electric field lines, but here we restrict our interest to an arbitrary point \(P\) on the central axis (the axis through the ring's center and perpendicular to the plane of the ring), at dislance \(z\) from the center point.

The charge of an extended object is often conveyed in terms of a charge density rather than the total charge. For a line of charge, we use the linear charge
density \(\lambda\) (the charge per unit length), with the SI unit of coulomb per meter. Table 22-1 shows the other charge densities that we shall be using for charged surfaces and volumes.

First Big Problem. So far, we have an equation for the electric field of a particle. (We can combine the field of several particles as we did for the electric dipole to generate a special equation, but we are still basically using Eq. 22-3). Now take a look at the ring in Fig. 22-11. That clearly is not a particle and so Eq. 22-3 does not apply. So what do we do?

The answer is to mentally divide the ring into differential elements of charge that are so small that we can treat them as though they are particles. Then we can apply Eq. 22-3.

Second Big Problem. We now know to apply Eq. 22-3 to each charge element \(d q\) (the front \(d\) emphasizes that the charge is very small) and can write an expression for its contribution of electric field \(d \vec{E}\) (the front \(d\) emphasizes that the contribution is very small). However, each such contributed field vector at \(P\) is in its own direction. How can we add them to get the net field at \(P\) ?

The answer is to split the vectors into components and then separately sum one set of components and then the other set. However, first we check to see if one set simply all cancels out. (Canceling out components saves lots of work.)

Third Big Problem. There is a huge number of \(d q\) elements in the ring and thus a huge number of \(d \vec{E}\) components to add up, even if we can cancel out one set of components. How can we add up more components than we could even count? The answer is to add them by means of integration.

Do It. Let's do all this (but again, be aware of the general procedure, not just the fine details). We arbitrarily pick the charge element shown in Fig. 22-11. Let \(d s\) be the arc length of that (or any other) \(d q\) element. Then in terms of the linear density \(\lambda\) (the charge per unit length), we have
\[
\begin{equation*}
d q=\lambda d s \tag{22-10}
\end{equation*}
\]

An Element's Field. This charge element sets up the differential electric field \(d \vec{E}\) at \(P\), at distance \(r\) from the element, as shown in Fig. 22-11. (Yes, we are introducing a new symbol that is not given in the problem statement, but soon we shall replace it with "legal symbols.") Next we rewrite the field equation for a particle (Eq. 22-3) in terms of our new symbols \(d E\) and \(d q\), but then we replace \(d q\) using Eq. 22-10. The field magnitude due to the charge element is
\[
\begin{equation*}
d E=\frac{1}{4 \pi \varepsilon_{0}} \frac{d q}{r^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\lambda d s}{r^{2}} \tag{22-11}
\end{equation*}
\]

Notice that the illegal symbol \(r\) is the hypotenuse of the right triangle displayed in Fig. 22-11. Thus, we can replace \(r\) by rewriting Eq. 22-11 as
\[
\begin{equation*}
d E=\frac{1}{4 \pi \varepsilon_{0}} \frac{\lambda d s}{\left(z^{2}+R^{2}\right)} \tag{22-12}
\end{equation*}
\]

Because every charge element has the same charge and the same distance from point \(P\), Eq. 22-12 gives the field magnitude contributed by each of them. Figure 22-11 also tells us that each contributed \(d \vec{E}\) leans at angle \(\theta\) to the central axis (the \(z\) axis) and thus has components perpendicular and parallel to that axis.

Canceling Components. Now comes the neat part, where we eliminate one set of those components. In Fig. 22-11, consider the charge element on the opposite side of the ring. It too contributes the field magnitude \(d E\) but the field vector leans at angle \(\theta\) in the opposite direction from the vector from our first charge

Table 22-1 Some Measures of Electric
Charge
\begin{tabular}{lcc}
\hline Name & Symbol & SI Unit \\
\hline \begin{tabular}{l} 
Charge
\end{tabular} & \(q\) & C \\
\begin{tabular}{l} 
Linear charge \\
density
\end{tabular} & \(\lambda\) & \(\mathrm{C} / \mathrm{m}\) \\
\begin{tabular}{c} 
Surface charge \\
density
\end{tabular} & \(\sigma\) & \(\mathrm{C} / \mathrm{m}^{2}\) \\
\begin{tabular}{l} 
Volume charge \\
density
\end{tabular} & \(\rho\) & \(\mathrm{C} / \mathrm{m}^{3}\) \\
\hline
\end{tabular}


Figure 22-11 A ring of uniform positive charge. A differential element of charge occupies a length \(d s\) (greatly exaggerated for clarity). This element sets up an electric field \(d \vec{E}\) at point \(P\).


Figure 22-12 The electric fields set up at \(P\) by a charge element and its symmetric partner (on the opposite side of the ring). The components perpendicular to the \(z\) axis cancel; the parallel components add.
element, as indicated in the side view of Fig. 22-12. Thus the two perpendicular components cancel. All around the ring, this cancelation occurs for every charge element and its symmetric partner on the opposite side of the ring. So we can neglect all the perpendicular components.

Adding Components. We have another big win here. All the remaining components are in the positive direction of the \(z\) axis, so we can just add them up as scalars. Thus we can already tell the direction of the net electric field at \(P\) : directly away from the ring. From Fig. 22-12, we see that the parallel components each have magnitude \(d E \cos \theta\), but \(\theta\) is another illegal symbol. We can replace \(\cos \theta\) with legal symbols by again using the right triangle in Fig. 22-11 to write
\[
\begin{equation*}
\cos \theta=\frac{z}{r}=\frac{z}{\left(z^{2}+R^{2}\right)^{1 / 2}} . \tag{22-13}
\end{equation*}
\]

Multiplying Eq. 22-12 by Eq. 22-13 gives us the parallel field component from each charge element:
\[
\begin{equation*}
d E \cos \theta=\frac{1}{4 \pi \varepsilon_{0}} \frac{z \lambda}{\left(z^{2}+R^{2}\right)^{3 / 2}} d s \tag{22-14}
\end{equation*}
\]

Integrating. Because we must sum a huge number of these components, each small, we set up an integral that moves along the ring, from element to element, from a starting point (call it \(s=0\) ) through the full circumference \((s=2 \pi R\) ). Only the quantity \(s\) varies as we go through the elements; the other symbols in Eq. 22-14 remain the same, so we move them outside the integral. We find
\[
\begin{align*}
E & =\int d E \cos \theta=\frac{z \lambda}{4 \pi \varepsilon_{0}\left(z^{2}+R^{2}\right)^{3 / 2}} \int_{0}^{2 \pi R} d s \\
& =\frac{z \lambda(2 \pi R)}{4 \pi \varepsilon_{0}\left(z^{2}+R^{2}\right)^{3 / 2}} . \tag{22-15}
\end{align*}
\]

This is a fine answer, but we can also switch to the total charge by using \(\lambda=q /(2 \pi R)\) :
\[
\begin{equation*}
E=\frac{q z}{4 \pi \varepsilon_{0}\left(z^{2}+R^{2}\right)^{3 / 2}} \quad \text { (charged ring). } \tag{22-16}
\end{equation*}
\]

If the charge on the ring is negative, instead of positive as we have assumed, the magnitude of the field at \(P\) is still given by Eq. 22-16. However, the electric field vector then points toward the ring instead of away from it.

Let us check Eq. 22-16 for a point on the central axis that is so far away that \(z \gtrdot R\). For such a point, the expression \(z^{2}+R^{2}\) in Eq. 22-16 can be approximated as \(z^{2}\), and Eq. 22-16 becomes
\[
\begin{equation*}
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{z^{2}} \quad \text { (charged ring at large distance). } \tag{22-17}
\end{equation*}
\]

This is a reasonable result because from a large distance, the ring "looks like" a point charge. If we replace \(z\) with \(r\) in Eq. 22-17, we indeed do have the magnitude of the electric field due to a point charge, as given by Eq. 22-3.

Let us next check Eq. 22-16 for a point at the center of the ring - that is, for \(z=0\). At that point, Eq. 22-16 tells us that \(E=0\). This is a reasonable result because if we were to place a test charge at the center of the ring, there would be no net electrostatic force acting on it; the force due to any element of the ring would be canceled by the force due to the element on the opposite side of the ring. By Eq. 22-1, if the force at the center of the ring were zero, the electric field there would also have to be zero.

\section*{Sample Problem 22.03 Electric field of a charged circular rod}

Figure \(22-13 a\) shows a plastic rod with a uniform charge \(-Q\). It is bent in a \(120^{\circ}\) circular arc of radius \(r\) and symmetrically paced across an \(x\) axis with the origin at the center of curvature \(P\) of the rod. In terms of \(Q\) and \(r\), what is the electric field \(\vec{E}\) due to the rod at point \(P\) ?

\section*{KEY IDEA}

Because the rod has a continuous charge distribution, we must find an expression for the electric fields due to differential elements of the rod and then sum those fields via calculus.
An element: Consider a differential element having arc length \(d s\) and located at an angle \(\theta\) above the \(x\) axis (Figs. \(22-13 b\) and \(c\) ). If we let \(\lambda\) represent the linear charge density of the rod, our element \(d s\) has a differential charge of magnitude
\[
\begin{equation*}
d q=\lambda d s \tag{22-18}
\end{equation*}
\]

The element's field: Our element produces a differential electric field \(d \vec{E}\) at point \(P\), which is a distance \(r\) from the element. Treating the element as a point charge, we can
rewrite Eq. 22-3 to express the magnitude of \(d \vec{E}\) as
\[
\begin{equation*}
d E=\frac{1}{4 \pi \varepsilon_{0}} \frac{d q}{r^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\lambda d s}{r^{2}} . \tag{22-19}
\end{equation*}
\]

The direction of \(d \vec{E}\) is toward \(d s\) because charge \(d q\) is negative.
Symmetric partner: Our element has a symmetrically located (mirror image) element \(d s^{\prime}\) in the bottom half of the rod. The electric field \(d \vec{E}^{\prime}\) set up at \(P\) by \(d s^{\prime}\) also has the magnitude given by Eq. 22-19, but the field vector points toward \(d s^{\prime}\) as shown in Fig. 22-13d. If we resolve the electric field vectors of \(d s\) and \(d s^{\prime}\) into \(x\) and \(y\) components as shown in Figs. 22-13e and \(f\), we see that their \(y\) components cancel (because they have equal magnitudes and are in opposite directions). We also see that their \(x\) components have equal magnitudes and are in the same direction.

Summing: Thus, to find the electric field set up by the rod, we need sum (via integration) only the \(x\) components of the differential electric fields set up by all the differential elements of the rod. From Fig. 22-13f and Eq. 22-19, we can write

(a)

Figure 22-13 Available in WileyPLUS as an animation with voiceover. (a) A plastic rod of charge \(-Q\) is a circular section of radius \(r\) and central angle \(120^{\circ}\); point \(P\) is the center of curvature of the rod. (b) \(-(c)\) A differential element in the top half of the rod, at an angle \(\theta\) to the \(x\) axis and of arc length \(d s\), sets up a differential electric field \(d \vec{E}\) at \(P\). (d) An element \(d s^{\prime}\), symmetric to \(d s\) about the \(x\) axis, sets up a field \(d \vec{E}^{\prime}\) at \(P\) with the same magnitude. \((e)-(f)\) The field components. (g) Arc length \(d s\) makes an angle \(d \theta\) about point \(P\).

But we can treat this element as a particle.

(b)

Here is the field the element creates.

(c)

These \(y\) components just cancel, so neglect them.

(e)

These \(x\) components add.
Our job is to add all such components.

(d)

Here is the field created by the symmetric element, same size and angle.

We use this to relate the element's arc length to the angle that it subtends.

(f)
(g)
the component \(d E_{x}\) set up by \(d s\) as
\[
\begin{equation*}
d E_{x}=d E \cos \theta=\frac{1}{4 \pi \varepsilon_{0}} \frac{\lambda}{r^{2}} \cos \theta d s \tag{22-20}
\end{equation*}
\]

Equation 22-20 has two variables, \(\theta\) and \(s\). Before we can integrate it, we must eliminate one variable. We do so by replacing \(d s\), using the relation
\[
d s=r d \theta
\]
in which \(d \theta\) is the angle at \(P\) that includes arc length \(d s\) (Fig. 22-13g). With this replacement, we can integrate Eq. 22-20 over the angle made by the rod at \(P\), from \(\theta=-60^{\circ}\) to \(\theta=60^{\circ}\); that will give us the field magnitude at \(P\) :
\[
\begin{align*}
E & =\int d E_{x}=\int_{-60^{\circ}}^{60^{\circ}} \frac{1}{4 \pi \varepsilon_{0}} \frac{\lambda}{r^{2}} \cos \theta r d \theta \\
& =\frac{\lambda}{4 \pi \varepsilon_{0} r} \int_{-60^{\circ}}^{60^{\circ}} \cos \theta d \theta=\frac{\lambda}{4 \pi \varepsilon_{0} r}[\sin \theta]_{-60^{\circ}}^{60^{\circ}} \\
& =\frac{\lambda}{4 \pi \varepsilon_{0} r}\left[\sin 60^{\circ}-\sin \left(-60^{\circ}\right)\right] \\
& =\frac{1.73 \lambda}{4 \pi \varepsilon_{0} r} . \tag{22-21}
\end{align*}
\]
(If we had reversed the limits on the integration, we would have gotten the same result but with a minus sign. Since the integration gives only the magnitude of \(\vec{E}\), we would then have discarded the minus sign.)
Charge density: To evaluate \(\lambda\), we note that the full rod subtends an angle of \(120^{\circ}\) and so is one-third of a full circle. Its arc length is then \(2 \pi r / 3\), and its linear charge density must be
\[
\lambda=\frac{\text { charge }}{\text { length }}=\frac{Q}{2 \pi r / 3}=\frac{0.477 Q}{r} .
\]

Substituting this into Eq. 22-21 and simplifying give us
\[
\begin{aligned}
E & =\frac{(1.73)(0.477 Q)}{4 \pi \varepsilon_{0} r^{2}} \\
& =\frac{0.83 Q}{4 \pi \varepsilon_{0} r^{2}} .
\end{aligned}
\]
(Answer)
The direction of \(\vec{E}\) is toward the rod, along the axis of symmetry of the charge distribution. We can write \(\vec{E}\) in unit-vector notation as
\[
\vec{E}=\frac{0.83 Q}{4 \pi \varepsilon_{0} r^{2}} \hat{\mathrm{i}} .
\]

\section*{Problem-Solving Tactics A Field Guide for Lines of Charge}

Here is a generic guide for finding the electric field \(\vec{E}\) produced at a point \(P\) by a line of uniform charge, either circular or straight. The general strategy is to pick out an element \(d q\) of the charge, find \(d \vec{E}\) due to that element, and integrate \(d \vec{E}\) over the entire line of charge.
Step 1. If the line of charge is circular, let \(d s\) be the arc length of an element of the distribution. If the line is straight, run an \(x\) axis along it and let \(d x\) be the length of an element. Mark the element on a sketch.

Step 2. Relate the charge \(d q\) of the element to the length of the element with either \(d q=\lambda d s\) or \(d q=\lambda d x\). Consider \(d q\) and \(\lambda\) to be positive, even if the charge is actually negative. (The sign of the charge is used in the next step.)
Step 3. Express the field \(d \vec{E}\) produced at \(P\) by \(d q\) with Eq. 22-3, replacing \(q\) in that equation with either \(\lambda d s\) or \(\lambda d x\). If the charge on the line is positive, then at \(P\) draw a vector \(d \vec{E}\) that points directly away from \(d q\). If the charge is negative, draw the vector pointing directly toward \(d q\).
Step 4. Always look for any symmetry in the situation. If \(P\) is on an axis of symmetry of the charge distribution, resolve the field \(d \vec{E}\) produced by \(d q\) into components that are perpendicular and parallel to the axis of symmetry. Then consider a second element \(d q^{\prime}\) that is located symmetrically to \(d q\) about the line of symmetry. At \(P\) draw the vector \(d \vec{E}^{\prime}\) that this symmetrical element pro-
duces and resolve it into components. One of the components produced by \(d q\) is a canceling component; it is canceled by the corresponding component produced by \(d q^{\prime}\) and needs no further attention. The other component produced by \(d q\) is an adding component; it adds to the corresponding component produced by \(d q^{\prime}\). Add the adding components of all the elements via integration.

Step 5. Here are four general types of uniform charge distributions, with strategies for the integral of step 4.

Ring, with point \(P\) on (central) axis of symmetry, as in Fig. 22-11. In the expression for \(d E\), replace \(r^{2}\) with \(z^{2}+R^{2}\), as in Eq. 22-12. Express the adding component of \(d \vec{E}\) in terms of \(\theta\). That introduces \(\cos \theta\), but \(\theta\) is identical for all elements and thus is not a variable. Replace \(\cos \theta\) as in Eq. 22-13. Integrate over \(s\), around the circumference of the ring.

Circular arc, with point \(P\) at the center of curvature, as in Fig. 22-13. Express the adding component of \(d \vec{E}\) in terms of \(\theta\). That introduces either \(\sin \theta\) or \(\cos \theta\). Reduce the resulting two variables \(s\) and \(\theta\) to one, \(\theta\), by replacing \(d s\) with \(r d \theta\). Integrate over \(\theta\) from one end of the arc to the other end.

Straight line, with point \(P\) on an extension of the line, as in Fig. 22-14a. In the expression for \(d E\), replace \(r\) with \(x\). Integrate over \(x\), from end to end of the line of charge.

Straight line, with point \(P\) at perpendicular distance \(y\) from the line of charge, as in Fig. 22-14b. In the expression for \(d E\), replace \(r\) with an expression involving \(x\) and \(y\). If \(P\) is on the perpendicular bisector of the line of charge, find an expression for the adding component of \(d \vec{E}\). That will introduce either \(\sin \theta\) or \(\cos \theta\). Reduce the resulting two variables \(x\) and \(\theta\) to one, \(x\), by replacing the trigonometric function with an expression (its definition) involving \(x\) and \(y\). Integrate over \(x\) from end to end of the line of charge. If \(P\) is not on a line of symmetry, as in Fig. 22-14c, set up an integral to sum the components \(d E_{x}\), and integrate over \(x\) to find \(E_{x}\). Also set up an integral to sum the components \(d E_{y}\), and integrate over \(x\) again to find \(E_{y}\). Use the components \(E_{x}\) and \(E_{y}\) in the usual way to find the magnitude \(E\) and the orientation of \(\vec{E}\).
Step 6. One arrangement of the integration limits gives a positive result. The reverse gives the same result with a mi-
nus sign; discard the minus sign. If the result is to be stated in terms of the total charge \(Q\) of the distribution, replace \(\lambda\) with \(Q / L\), in which \(L\) is the length of the distribution.


Figure 22-14 (a) Point \(P\) is on an extension of the line of charge. (b) \(P\) is on a line of symmetry of the line of charge, at perpendicular distance \(y\) from that line. (c) Same as (b) except that \(P\) is not on a line of symmetry.

PLUS Additional examples, video, and practice available at WileyPLUS

\section*{Checkpoint 2}

The figure here shows three nonconducting rods, one circular and two straight. Each has a uniform charge of magnitude \(Q\) along its top half and another along its bottom half. For each rod, what is the direction of the net electric field at point \(P\) ?


\section*{22-5 the electric field due to a charged disk}

\section*{Learning Objectives}

After reading this module, you should be able to ...
22.19 Sketch a disk with uniform charge and indicate the direction of the electric field at a point on the central axis if the charge is positive and if it is negative.
22.20 Explain how the equation for the electric field on the central axis of a uniformly charged ring can be used to find
the equation for the electric field on the central axis of a uniformly charged disk.
22.21 For a point on the central axis of a uniformly charged disk, apply the relationship between the surface charge density \(\sigma\), the disk radius \(R\), and the distance \(z\) to that point.

\section*{Key Idea}
- On the central axis through a uniformly charged disk,
\[
E=\frac{\sigma}{2 \varepsilon_{0}}\left(1-\frac{z}{\sqrt{z^{2}+R^{2}}}\right)
\]
gives the electric field magnitude. Here \(z\) is the distance along the axis from the center of the disk, \(R\) is the radius of the disk, and \(\sigma\) is the surface charge density.

\section*{The Electric Field Due to a Charged Disk}

Now we switch from a line of charge to a surface of charge by examining the electric field of a circular plastic disk, with a radius \(R\) and a uniform surface charge density \(\sigma\) (charge per unit area, Table 22-1) on its top surface. The disk sets up a


Figure 22-15 A disk of radius \(R\) and uniform positive charge. The ring shown has radius \(r\) and radial width \(d r\). It sets up a differential electric field \(d \vec{E}\) at point \(P\) on its central axis.
pattern of electric field lines around it, but here we restrict our attention to the electric field at an arbitrary point \(P\) on the central axis, at distance \(z\) from the center of the disk, as indicated in Fig. 22-15.

We could proceed as in the preceding module but set up a two-dimensional integral to include all of the field contributions from the two-dimensional distribution of charge on the top surface. However, we can save a lot of work with a neat shortcut using our earlier work with the field on the central axis of a thin ring.

We superimpose a ring on the disk as shown in Fig. 22-15, at an arbitrary radius \(r \leq R\). The ring is so thin that we can treat the charge on it as a charge element \(d q\). To find its small contribution \(d E\) to the electric field at point \(P\), we rewrite Eq. 22-16 in terms of the ring's charge \(d q\) and radius \(r\) :
\[
\begin{equation*}
d E=\frac{d q z}{4 \pi \varepsilon_{0}\left(z^{2}+r^{2}\right)^{3 / 2}} \tag{22-22}
\end{equation*}
\]

The ring's field points in the positive direction of the \(z\) axis.
To find the total field at \(P\), we are going to integrate Eq. 22-22 from the center of the disk at \(r=0\) out to the rim at \(r=R\) so that we sum all the \(d E\) contributions (by sweeping our arbitrary ring over the entire disk surface). However, that means we want to integrate with respect to a variable radius \(r\) of the ring.

We get \(d r\) into the expression by substituting for \(d q\) in Eq. 22-22. Because the ring is so thin, call its thickness \(d r\). Then its surface area \(d A\) is the product of its circumference \(2 \pi r\) and thickness \(d r\). So, in terms of the surface charge density \(\sigma\), we have
\[
\begin{equation*}
d q=\sigma d A=\sigma(2 \pi r d r) \tag{22-23}
\end{equation*}
\]

After substituting this into Eq. 22-22 and simplifying slightly, we can sum all the \(d E\) contributions with
\[
\begin{equation*}
E=\int d E=\frac{\sigma z}{4 \varepsilon_{0}} \int_{0}^{R}\left(z^{2}+r^{2}\right)^{-3 / 2}(2 r) d r \tag{22-24}
\end{equation*}
\]
where we have pulled the constants (including \(z\) ) out of the integral. To solve this integral, we cast it in the form \(\int X^{m} d X\) by setting \(X=\left(z^{2}+r^{2}\right), m=-\frac{3}{2}\), and \(d X=(2 r) d r\). For the recast integral we have
\[
\int X^{m} d X=\frac{X^{m+1}}{m+1}
\]
and so Eq. 22-24 becomes
\[
\begin{equation*}
E=\frac{\sigma z}{4 \varepsilon_{0}}\left[\frac{\left(z^{2}+r^{2}\right)^{-1 / 2}}{-\frac{1}{2}}\right]_{0}^{R} \tag{22-25}
\end{equation*}
\]

Taking the limits in Eq. 22-25 and rearranging, we find
\[
\begin{equation*}
E=\frac{\sigma}{2 \varepsilon_{0}}\left(1-\frac{z}{\sqrt{z^{2}+R^{2}}}\right) \quad \text { (charged disk) } \tag{22-26}
\end{equation*}
\]
as the magnitude of the electric field produced by a flat, circular, charged disk at points on its central axis. (In carrying out the integration, we assumed that \(z \geq 0\).)

If we let \(R \rightarrow \infty\) while keeping \(z\) finite, the second term in the parentheses in Eq. 22-26 approaches zero, and this equation reduces to
\[
\begin{equation*}
E=\frac{\sigma}{2 \varepsilon_{0}} \quad \text { (infinite sheet). } \tag{22-27}
\end{equation*}
\]

This is the electric field produced by an infinite sheet of uniform charge located on one side of a nonconductor such as plastic. The electric field lines for such a situation are shown in Fig. 22-4.

We also get Eq. 22-27 if we let \(z \rightarrow 0\) in Eq. 22-26 while keeping \(R\) finite. This shows that at points very close to the disk, the electric field set up by the disk is the same as if the disk were infinite in extent.

\section*{22-6 a point charge in an electric field}

\section*{Learning Objectives}

After reading this module, you should be able to .
22.22 For a charged particle placed in an external electric field (a field due to other charged objects), apply the relationship between the electric field \(\vec{E}\) at that point, the particle's charge \(q\), and the electrostatic force \(\vec{F}\) that acts on the particle, and identify the relative directions of the force
and the field when the particle is positively charged and negatively charged.
22.23 Explain Millikan's procedure of measuring the elementary charge.
22.24 Explain the general mechanism of ink-jet printing.

\section*{Key Ideas}
- If a particle with charge \(q\) is placed in an external electric field \(\vec{E}\), an electrostatic force \(\vec{F}\) acts on the particle:
\[
\vec{F}=q \vec{E}
\]
- If charge \(q\) is positive, the force vector is in the same direction as the field vector. If charge \(q\) is negative, the force vector is in the opposite direction (the minus sign in the equation reverses the force vector from the field vector).

\section*{A Point Charge in an Electric Field}

In the preceding four modules we worked at the first of our two tasks: given a charge distribution, to find the electric field it produces in the surrounding space. Here we begin the second task: to determine what happens to a charged particle when it is in an electric field set up by other stationary or slowly moving charges.

What happens is that an electrostatic force acts on the particle, as given by
\[
\begin{equation*}
\vec{F}=q \vec{E} \tag{22-28}
\end{equation*}
\]
in which \(q\) is the charge of the particle (including its sign) and \(\vec{E}\) is the electric field that other charges have produced at the location of the particle. (The field is not the field set up by the particle itself; to distinguish the two fields, the field acting on the particle in Eq. 22-28 is often called the external field. A charged particle or object is not affected by its own electric field.) Equation 22-28 tells us

The electrostatic force \(\vec{F}\) acting on a charged particle located in an external electric field \(\vec{E}\) has the direction of \(\vec{E}\) if the charge \(q\) of the particle is positive and has the opposite direction if \(q\) is negative.

\section*{Measuring the Elementary Charge}

Equation 22-28 played a role in the measurement of the elementary charge \(e\) by American physicist Robert A. Millikan in 1910-1913. Figure 22-16 is a representation of his apparatus. When tiny oil drops are sprayed into chamber A, some of them become charged, either positively or negatively, in the process. Consider a drop that drifts downward through the small hole in plate \(\mathrm{P}_{1}\) and into chamber C . Let us assume that this drop has a negative charge \(q\).

If switch S in Fig. 22-16 is open as shown, battery B has no electrical effect on chamber \(C\). If the switch is closed (the connection between chamber C and the positive terminal of the battery is then complete), the battery causes an excess positive charge on conducting plate \(\mathrm{P}_{1}\) and an excess negative charge on conducting plate \(\mathrm{P}_{2}\). The charged plates set up a downward-directed electric field \(\vec{E}\) in chamber C. According to Eq. 22-28, this field exerts an electrostatic force on any charged drop that happens to be in the chamber and affects its motion. In particular, our negatively charged drop will tend to drift upward.

By timing the motion of oil drops with the switch opened and with it closed and thus determining the effect of the charge \(q\), Millikan discovered that the


Figure 22-16 The Millikan oil-drop apparatus for measuring the elementary charge \(e\). When a charged oil drop drifted into chamber C through the hole in plate \(\mathrm{P}_{1}\), its motion could be controlled by closing and opening switch S and thereby setting up or eliminating an electric field in chamber C . The microscope was used to view the drop, to permit timing of its motion.


Adam Hart-Davis/Photo Researchers, Inc.
Figure 22-18 The metal wires are so charged that the electric fields they produce in the surrounding space cause the air there to undergo electrical breakdown.


Figure 22-17 Ink-jet printer. Drops shot from generator \(G\) receive a charge in charging unit \(C\). An input signal from a computer controls the charge and thus the effect of field \(\vec{E}\) on where the drop lands on the paper.
values of \(q\) were always given by
\[
\begin{equation*}
q=n e, \quad \text { for } n=0, \pm 1, \pm 2, \pm 3, \ldots, \tag{22-29}
\end{equation*}
\]
in which \(e\) turned out to be the fundamental constant we call the elementary charge, \(1.60 \times 10^{-19} \mathrm{C}\). Millikan's experiment is convincing proof that charge is quantized, and he earned the 1923 Nobel Prize in physics in part for this work. Modern measurements of the elementary charge rely on a variety of interlocking experiments, all more precise than the pioneering experiment of Millikan.

\section*{Ink-Jet Printing}

The need for high-quality, high-speed printing has caused a search for an alternative to impact printing, such as occurs in a standard typewriter. Building up letters by squirting tiny drops of ink at the paper is one such alternative.

Figure 22-17 shows a negatively charged drop moving between two conducting deflecting plates, between which a uniform, downward-directed electric field \(\vec{E}\) has been set up. The drop is deflected upward according to Eq. 22-28 and then strikes the paper at a position that is determined by the magnitudes of \(\vec{E}\) and the charge \(q\) of the drop.

In practice, \(E\) is held constant and the position of the drop is determined by the charge \(q\) delivered to the drop in the charging unit, through which the drop must pass before entering the deflecting system. The charging unit, in turn, is activated by electronic signals that encode the material to be printed.

\section*{Electrical Breakdown and Sparking}

If the magnitude of an electric field in air exceeds a certain critical value \(E_{c}\), the air undergoes electrical breakdown, a process whereby the field removes electrons from the atoms in the air. The air then begins to conduct electric current because the freed electrons are propelled into motion by the field. As they move, they collide with any atoms in their path, causing those atoms to emit light. We can see the paths, commonly called sparks, taken by the freed electrons because of that emitted light. Figure 22-18 shows sparks above charged metal wires where the electric fields due to the wires cause electrical breakdown of the air.

\section*{Checkpoint 3}
(a) In the figure, what is the direction of the electrostatic force on the electron due to the external electric field shown? (b) In which direction will the electron accelerate if it is moving parallel to the \(y\) axis before it encounters the external field? (c) If, instead, the electron is initially moving rightward, will its speed increase, decrease, or remain constant?


\section*{Sample Problem 22.04 Motion of a charged particle in an electric field}

Figure 22-19 shows the deflecting plates of an ink-jet printer, with superimposed coordinate axes. An ink drop with a mass \(m\) of \(1.3 \times 10^{-10}\) kg and a negative charge of magnitude \(Q=1.5 \times 10^{-13}\) \(C\) enters the region between the plates, initially moving along the \(x\) axis with speed \(v_{x}=18 \mathrm{~m} / \mathrm{s}\). The length \(L\) of each plate is 1.6 cm . The plates are charged and thus produce an electric field at all points between them. Assume that field \(\vec{E}\) is downward directed, is uniform, and has a magnitude of \(1.4 \times 10^{6} \mathrm{~N} / \mathrm{C}\). What is the vertical deflection of the drop at the far edge of the plates? (The gravitational force on the drop is small relative to the electrostatic force acting on the drop and can be neglected.)

\section*{KEY IDEA}

The drop is negatively charged and the electric field is directed downward. From Eq. 22-28, a constant electrostatic force of


Figure 22-19 An ink drop of mass \(m\) and charge magnitude \(Q\) is deflected in the electric field of an ink-jet printer.
magnitude \(Q E\) acts upward on the charged drop. Thus, as the drop travels parallel to the \(x\) axis at constant speed \(v_{x}\), it accelerates upward with some constant acceleration \(a_{y}\).

Calculations: Applying Newton's second law \((F=m a)\) for components along the \(y\) axis, we find that
\[
\begin{equation*}
a_{y}=\frac{F}{m}=\frac{Q E}{m} . \tag{22-30}
\end{equation*}
\]

Let \(t\) represent the time required for the drop to pass through the region between the plates. During \(t\) the vertical and horizontal displacements of the drop are
\[
\begin{equation*}
y=\frac{1}{2} a_{y} t^{2} \quad \text { and } \quad L=v_{x} t \tag{22-31}
\end{equation*}
\]
respectively. Eliminating \(t\) between these two equations and substituting Eq. 22-30 for \(a_{y}\), we find
\[
\begin{aligned}
y & =\frac{Q E L^{2}}{2 m v_{x}^{2}} \\
& =\frac{\left(1.5 \times 10^{-13} \mathrm{C}\right)\left(1.4 \times 10^{6} \mathrm{~N} / \mathrm{C}\right)\left(1.6 \times 10^{-2} \mathrm{~m}\right)^{2}}{(2)\left(1.3 \times 10^{-10} \mathrm{~kg}\right)(18 \mathrm{~m} / \mathrm{s})^{2}} \\
& =6.4 \times 10^{-4} \mathrm{~m} \\
& =0.64 \mathrm{~mm} .
\end{aligned}
\]
(Answer)
PLUS Additional examples, video, and practice available at WileyPLUS

\section*{22-7 a dipole in an electric field}

\section*{Learning Objectives}

After reading this module, you should be able to ...
22.25 On a sketch of an electric dipole in an external electric field, indicate the direction of the field, the direction of the dipole moment, the direction of the electrostatic forces on the two ends of the dipole, and the direction in which those forces tend to rotate the dipole, and identify the value of the net force on the dipole.
22.26 Calculate the torque on an electric dipole in an external electric field by evaluating a cross product of the dipole moment vector and the electric field vector, in magnitudeangle notation and unit-vector notation.
22.27 For an electric dipole in an external electric field, relate the potential energy of the dipole to the work done by a torque as the dipole rotates in the electric field.
22.28 For an electric dipole in an external electric field, calculate the potential energy by taking a dot product of the dipole moment vector and the electric field vector, in magnitudeangle notation and unit-vector notation.
22.29 For an electric dipole in an external electric field, identify the angles for the minimum and maximum potential energies and the angles for the minimum and maximum torque magnitudes.

\section*{Key Ideas}
- The torque on an electric dipole of dipole moment \(\vec{p}\) when placed in an external electric field \(\vec{E}\) is given by a cross product:
\[
\vec{\tau}=\vec{p} \times \vec{E}
\]
- A potential energy \(U\) is associated with the orientation of the dipole moment in the field, as given by a dot product:
\[
U=-\vec{p} \cdot \vec{E}
\]
- If the dipole orientation changes, the work done by the electric field is
\[
W=-\Delta U .
\]

If the change in orientation is due to an external agent, the work done by the agent is \(W_{a}=-W\).


Figure 22-20 A molecule of \(\mathrm{H}_{2} \mathrm{O}\), showing the three nuclei (represented by dots) and the regions in which the electrons can be located. The electric dipole moment \(\vec{p}\) points from the (negative) oxygen side to the (positive) hydrogen side of the molecule.

\section*{A Dipole in an Electric Field}

We have defined the electric dipole moment \(\vec{p}\) of an electric dipole to be a vector that points from the negative to the positive end of the dipole. As you will see, the behavior of a dipole in a uniform external electric field \(\vec{E}\) can be described completely in terms of the two vectors \(\vec{E}\) and \(\vec{p}\), with no need of any details about the dipole's structure.

A molecule of water \(\left(\mathrm{H}_{2} \mathrm{O}\right)\) is an electric dipole; Fig. 22-20 shows why. There the black dots represent the oxygen nucleus (having eight protons) and the two hydrogen nuclei (having one proton each). The colored enclosed areas represent the regions in which electrons can be located around the nuclei.

In a water molecule, the two hydrogen atoms and the oxygen atom do not lie on a straight line but form an angle of about \(105^{\circ}\), as shown in Fig. 22-20. As a result, the molecule has a definite "oxygen side" and "hydrogen side." Moreover, the 10 electrons of the molecule tend to remain closer to the oxygen nucleus than to the hydrogen nuclei. This makes the oxygen side of the molecule slightly more negative than the hydrogen side and creates an electric dipole moment \(\vec{p}\) that points along the symmetry axis of the molecule as shown. If the water molecule is placed in an external electric field, it behaves as would be expected of the more abstract electric dipole of Fig. 22-9.

To examine this behavior, we now consider such an abstract dipole in a uniform external electric field \(\vec{E}\), as shown in Fig. 22-21a. We assume that the dipole is a rigid structure that consists of two centers of opposite charge, each of magnitude \(q\), separated by a distance \(d\). The dipole moment \(\vec{p}\) makes an angle \(\theta\) with field \(\vec{E}\).

Electrostatic forces act on the charged ends of the dipole. Because the electric field is uniform, those forces act in opposite directions (as shown in Fig. 22-21a) and with the same magnitude \(F=q E\). Thus, because the field is uniform, the net force on the dipole from the field is zero and the center of mass of the dipole does not move. However, the forces on the charged ends do produce a net torque \(\vec{\tau}\) on the dipole about its center of mass. The center of mass lies on the line connecting the charged ends, at some distance \(x\) from one end and thus a distance \(d-x\) from the other end. From Eq. 10-39 ( \(\tau=r F \sin \phi\) ), we can write the magnitude of the net torque \(\vec{\tau}\) as
\[
\begin{equation*}
\tau=F x \sin \theta+F(d-x) \sin \theta=F d \sin \theta \tag{22-32}
\end{equation*}
\]

We can also write the magnitude of \(\vec{\tau}\) in terms of the magnitudes of the electric field \(E\) and the dipole moment \(p=q d\). To do so, we substitute \(q E\) for \(F\) and \(p / q\) for \(d\) in Eq. 22-32, finding that the magnitude of \(\vec{\tau}\) is
\[
\begin{equation*}
\tau=p E \sin \theta . \tag{22-33}
\end{equation*}
\]

We can generalize this equation to vector form as
\[
\begin{equation*}
\vec{\tau}=\vec{p} \times \vec{E} \quad \text { (torque on a dipole). } \tag{22-34}
\end{equation*}
\]

Vectors \(\vec{p}\) and \(\vec{E}\) are shown in Fig. 22-21b. The torque acting on a dipole tends to rotate \(\vec{p}\) (hence the dipole) into the direction of field \(\vec{E}\), thereby reducing \(\theta\). In Fig. 22-21, such rotation is clockwise. As we discussed in Chapter 10, we can represent a torque that gives rise to a clockwise rotation by including a minus sign with the magnitude of the torque. With that notation, the torque of Fig. 22-21 is
\[
\begin{equation*}
\tau=-p E \sin \theta . \tag{22-35}
\end{equation*}
\]

\section*{Potential Energy of an Electric Dipole}

Potential energy can be associated with the orientation of an electric dipole in an electric field. The dipole has its least potential energy when it is in its equilibrium orientation, which is when its moment \(\vec{p}\) is lined up with the field \(\vec{E}\) (then \(\vec{\tau}=\vec{p} \times \vec{E}=0\) ). It has greater potential energy in all other orientations. Thus the dipole is like a pendulum, which has its least gravitational potential
energy in its equilibrium orientation - at its lowest point. To rotate the dipole or the pendulum to any other orientation requires work by some external agent.

In any situation involving potential energy, we are free to define the zero-potential-energy configuration in an arbitrary way because only differences in potential energy have physical meaning. The expression for the potential energy of an electric dipole in an external electric field is simplest if we choose the potential energy to be zero when the angle \(\theta\) in Fig. 22-21 is \(90^{\circ}\). We then can find the potential energy \(U\) of the dipole at any other value of \(\theta\) with Eq. 8-1 \((\Delta U=-W)\) by calculating the work \(W\) done by the field on the dipole when the dipole is rotated to that value of \(\theta\) from \(90^{\circ}\). With the aid of Eq. 10-53 \(\left(W=\int \tau d \theta\right)\) and Eq. 22-35, we find that the potential energy \(U\) at any angle \(\theta\) is
\[
\begin{equation*}
U=-W=-\int_{90^{\circ}}^{\theta} \tau d \theta=\int_{90^{\circ}}^{\theta} p E \sin \theta d \theta \tag{22-36}
\end{equation*}
\]

Evaluating the integral leads to
\[
\begin{equation*}
U=-p E \cos \theta \tag{22-37}
\end{equation*}
\]

We can generalize this equation to vector form as
\[
\begin{equation*}
U=-\vec{p} \cdot \vec{E} \quad \text { (potential energy of a dipole). } \tag{22-38}
\end{equation*}
\]

Equations 22-37 and 22-38 show us that the potential energy of the dipole is least \((U=-p E)\) when \(\theta=0(\vec{p}\) and \(\vec{E}\) are in the same direction); the potential energy is greatest \((U=p E)\) when \(\theta=180^{\circ}(\vec{p}\) and \(\vec{E}\) are in opposite directions).

When a dipole rotates from an initial orientation \(\theta_{i}\) to another orientation \(\theta_{f}\), the work \(W\) done on the dipole by the electric field is
\[
\begin{equation*}
W=-\Delta U=-\left(U_{f}-U_{i}\right) \tag{22-39}
\end{equation*}
\]
where \(U_{f}\) and \(U_{i}\) are calculated with Eq. 22-38. If the change in orientation is caused by an applied torque (commonly said to be due to an external agent), then the work \(W_{a}\) done on the dipole by the applied torque is the negative of the work done on the dipole by the field; that is,
\[
\begin{equation*}
W_{a}=-W=\left(U_{f}-U_{i}\right) . \tag{22-40}
\end{equation*}
\]

\section*{Microwave Cooking}

Food can be warmed and cooked in a microwave oven if the food contains water because water molecules are electric dipoles. When you turn on the oven, the microwave source sets up a rapidly oscillating electric field \(\vec{E}\) within the oven and thus also within the food. From Eq. 22 -34, we see that any electric field \(\vec{E}\) produces a torque on an electric dipole moment \(\vec{p}\) to align \(\vec{p}\) with \(\vec{E}\). Because the oven's \(\vec{E}\) oscillates, the water molecules continuously flip-flop in a frustrated attempt to align with \(\vec{E}\).

Energy is transferred from the electric field to the thermal energy of the water (and thus of the food) where three water molecules happened to have bonded together to form a group. The flip-flop breaks some of the bonds. When the molecules reform the bonds, energy is transferred to the random motion of the group and then to the surrounding molecules. Soon, the thermal energy of the water is enough to cook the food.

\section*{Checkpoint 4}

The figure shows four orientations of an electric dipole in an external electric field. Rank the orientations according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the dipole, greatest first.

(a)

The dipole is being torqued into alignment.

(b)

Figure 22-21 (a) An electric dipole in a uniform external electric field \(\vec{E}\). Two centers of equal but opposite charge are separated by distance \(d\). The line between them represents their rigid connection. (b) Field \(\vec{E}\) causes a torque \(\vec{\tau}\) on the dipole. The direction of \(\vec{\tau}\) is into the page, as represented by the symbol \(\otimes\).

\section*{Sample Problem 22.05 Torque and energy of an electric dipole in an electric field}

A neutral water molecule \(\left(\mathrm{H}_{2} \mathrm{O}\right)\) in its vapor state has an electric dipole moment of magnitude \(6.2 \times 10^{-30} \mathrm{C} \cdot \mathrm{m}\).
(a) How far apart are the molecule's centers of positive and negative charge?

\section*{KEY IDEA}

A molecule's dipole moment depends on the magnitude \(q\) of the molecule's positive or negative charge and the charge separation \(d\).

Calculations: There are 10 electrons and 10 protons in a neutral water molecule; so the magnitude of its dipole moment is
\[
p=q d=(10 e)(d)
\]
in which \(d\) is the separation we are seeking and \(e\) is the elementary charge. Thus,
\[
\begin{aligned}
d & =\frac{p}{10 e}=\frac{6.2 \times 10^{-30} \mathrm{C} \cdot \mathrm{~m}}{(10)\left(1.60 \times 10^{-19} \mathrm{C}\right)} \\
& =3.9 \times 10^{-12} \mathrm{~m}=3.9 \mathrm{pm}
\end{aligned}
\]
(Answer)
This distance is not only small, but it is also actually smaller than the radius of a hydrogen atom.
(b) If the molecule is placed in an electric field of \(1.5 \times\) \(10^{4} \mathrm{~N} / \mathrm{C}\), what maximum torque can the field exert on it? (Such a field can easily be set up in the laboratory.)

\section*{KEY IDEA}

The torque on a dipole is maximum when the angle \(\theta\) between \(\vec{p}\) and \(\vec{E}\) is \(90^{\circ}\).

Calculation: Substituting \(\theta=90^{\circ}\) in Eq. 22-33 yields
\[
\begin{aligned}
\tau & =p E \sin \theta \\
& =\left(6.2 \times 10^{-30} \mathrm{C} \cdot \mathrm{~m}\right)\left(1.5 \times 10^{4} \mathrm{~N} / \mathrm{C}\right)\left(\sin 90^{\circ}\right) \\
& =9.3 \times 10^{-26} \mathrm{~N} \cdot \mathrm{~m} .
\end{aligned}
\]
(Answer)
(c) How much work must an external agent do to rotate this molecule by \(180^{\circ}\) in this field, starting from its fully aligned position, for which \(\theta=0\) ?

\section*{KEY IDEA}

The work done by an external agent (by means of a torque applied to the molecule) is equal to the change in the molecule's potential energy due to the change in orientation.

Calculation: From Eq. 22-40, we find
\[
\begin{aligned}
W_{a} & =U_{180^{\circ}}-U_{0} \\
& =\left(-p E \cos 180^{\circ}\right)-(-p E \cos 0) \\
& =2 p E=(2)\left(6.2 \times 10^{-30} \mathrm{C} \cdot \mathrm{~m}\right)\left(1.5 \times 10^{4} \mathrm{~N} / \mathrm{C}\right) \\
& =1.9 \times 10^{-25} \mathrm{~J} .
\end{aligned}
\]
(Answer)

\section*{Beview \& Summary}

Electric Field To explain the electrostatic force between two charges, we assume that each charge sets up an electric field in the space around it. The force acting on each charge is then due to the electric field set up at its location by the other charge.
Definition of Electric Field The electric field \(\vec{E}\) at any point is defined in terms of the electrostatic force \(\vec{F}\) that would be exerted on a positive test charge \(q_{0}\) placed there:
\[
\begin{equation*}
\vec{E}=\frac{\vec{F}}{q_{0}} . \tag{22-1}
\end{equation*}
\]

Electric Field Lines Electric field lines provide a means for visualizing the direction and magnitude of electric fields. The electric field vector at any point is tangent to a field line through that point. The density of field lines in any region is proportional to the magnitude of the electric field in that region. Field lines originate on positive charges and terminate on negative charges.
Field Due to a Point Charge The magnitude of the electric field \(\vec{E}\) set up by a point charge \(q\) at a distance \(r\) from the charge is
\[
\begin{equation*}
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{|q|}{r^{2}} . \tag{22-3}
\end{equation*}
\]

The direction of \(\vec{E}\) is away from the point charge if the charge is positive and toward it if the charge is negative.

Field Due to an Electric Dipole An electric dipole consists of two particles with charges of equal magnitude \(q\) but opposite sign, separated by a small distance \(d\). Their electric dipole moment \(\vec{p}\) has magnitude \(q d\) and points from the negative charge to the positive charge. The magnitude of the electric field set up by the dipole at a distant point on the dipole axis (which runs through both charges) is
\[
\begin{equation*}
E=\frac{1}{2 \pi \varepsilon_{0}} \frac{p}{z^{3}}, \tag{22-9}
\end{equation*}
\]
where \(z\) is the distance between the point and the center of the dipole.

Field Due to a Continuous Charge Distribution The electric field due to a continuous charge distribution is found by treating charge elements as point charges and then summing, via integration, the electric field vectors produced by all the charge elements to find the net vector.

Field Due to a Charged Disk The electric field magnitude at a point on the central axis through a uniformly charged disk is given by
\[
\begin{equation*}
E=\frac{\sigma}{2 \varepsilon_{0}}\left(1-\frac{z}{\sqrt{z^{2}+R^{2}}}\right) \tag{22-26}
\end{equation*}
\]
where \(z\) is the distance along the axis from the center of the disk, \(R\) is the radius of the disk, and \(\sigma\) is the surface charge density.

Force on a Point Charge in an Electric Field When a point charge \(q\) is placed in an external electric field \(\vec{E}\), the electrostatic force \(\vec{F}\) that acts on the point charge is
\[
\begin{equation*}
\vec{F}=q \vec{E} \tag{22-28}
\end{equation*}
\]

\section*{Questions}

1 Figure 22-22 shows three arrangements of electric field lines. In each arrangement, a proton is released from rest at point \(A\) and is then accelerated through point \(B\) by the electric field. Points \(A\) and \(B\) have equal separations in the three arrangements. Rank the arrangements according to the linear momentum of the proton at point \(B\), greatest first.


Figure 22-22 Question 1.

2 Figure 22-23 shows two square arrays of charged particles. The squares, which are centered on point \(P\), are misaligned. The particles are separated by either \(d\) or \(d / 2\) along the perimeters of the squares. What are the magnitude and direction of the net electric field at \(P\) ?
3 In Fig. 22-24, two particles of charge \(-q\) are arranged symmetrically about the \(y\) axis; each produces an electric field at point \(P\) on that axis. (a) Are the magnitudes of the fields at \(P\) equal? (b) Is each electric field directed toward or away from the charge producing it? (c) Is the magnitude of the net electric field at \(P\) equal to the sum of the magnitudes \(E\) of the two field vectors (is it equal to \(2 E\) )? (d) Do the \(x\) components of those two field vectors add or cancel? (e) Do their \(y\) components add or cancel? (f) Is the direction of the net field at \(P\) that of the canceling components or the adding components? (g) What is the direction of the net field?


Figure 22-24 Question 3.

Force \(\vec{F}\) has the same direction as \(\vec{E}\) if \(q\) is positive and the opposite direction if \(q\) is negative.
Dipole in an Electric Field When an electric dipole of dipole moment \(\vec{p}\) is placed in an electric field \(\vec{E}\), the field exerts a torque \(\vec{\tau}\) on the dipole:
\[
\begin{equation*}
\vec{\tau}=\vec{p} \times \vec{E} \tag{22-34}
\end{equation*}
\]

The dipole has a potential energy \(U\) associated with its orientation in the field:
\[
\begin{equation*}
U=-\vec{p} \cdot \vec{E} \tag{22-38}
\end{equation*}
\]

This potential energy is defined to be zero when \(\vec{p}\) is perpendicular to \(\vec{E}\); it is least \((U=-p E)\) when \(\vec{p}\) is aligned with \(\vec{E}\) and greatest \((U=p E)\) when \(\vec{p}\) is directed opposite \(\vec{E}\).

4 Figure 22-25 shows four situations in which four charged particles are evenly spaced to the left and right of a central point. The charge values are indicated. Rank the situations accord ing to the magnitude of the net electric field at the central point, greatest first.
5 Figure 22-26 shows two charged particles fixed in place on an axis. (a) Where


Figure 22-25 Question 4. on the axis (other than at an infinite distance) is there a point at which their net electric field is zero: between the charges, to their left, or to their right? (b) Is there a point of zero net electric field anywhere off the axis (other than at an infinite distance)?
6 In Fig. 22-27, two identical circular nonconducting rings are centered on the same line with their planes perpendicular to the line. Each ring has charge that is uniformly distrib-


Figure 22-27 Question 6. uted along its circumference. The rings each produce electric fields at points along the line. For three situations, the charges on rings \(A\) and \(B\) are, respectively, (1) \(q_{0}\) and \(q_{0}\), (2) \(-q_{0}\) and \(-q_{0}\), and (3) \(-q_{0}\) and \(q_{0}\). Rank the situations according to the magnitude of the net electric field at (a) point \(P_{1}\) midway between the rings, (b) point \(P_{2}\) at the center of ring \(B\), and (c) point \(P_{3}\) to the right of ring \(B\), greatest first.

7 The potential energies associated with four orientations of an electric dipole in an electric field are (1) \(-5 U_{0}\), (2) \(-7 U_{0}\), (3) \(3 U_{0}\), and (4) \(5 U_{0}\), where \(U_{0}\) is positive. Rank the orientations according to (a) the angle between the electric dipole moment \(\vec{p}\) and the electric field \(\vec{E}\) and (b) the magnitude of the torque on the electric dipole, greatest first.
8 (a) In Checkpoint 4, if the dipole rotates from orientation 1 to orientation 2, is the work done on the dipole by the field positive, negative, or zero? (b) If, instead, the dipole rotates from orientation 1 to orientation 4, is the work done by the field more than, less than, or the same as in (a)?

9 Figure 22-28 shows two disks and a flat ring, each with the same uniform charge \(Q\). Rank the objects according to the magnitude of the electric field they create at points \(P\) (which are at the same vertical heights), greatest first.


Figure 22-28 Question 9.
10 In Fig. 22-29, an electron e travels through a small hole in plate \(A\) and then toward plate \(B\). A uniform electric field in the region between the plates then slows the electron without deflecting it. (a) What is the direction of the field? (b) Four other particles similarly travel through small holes in either plate \(A\) or plate \(B\) and then into the region between


Figure 22-29 Question 10. the plates. Three have charges \(+q_{1}\), \(+q_{2}\), and \(-q_{3}\). The fourth (labeled n ) is a neutron, which is electrically neutral. Does the speed of each of those four other particles increase, decrease, or remain the same in the region between the plates?
11 In Fig. 22-30a, a circular plastic rod with uniform charge \(+Q\) produces an electric field of magnitude \(E\) at the center of


Figure 22-30 Question 11.
curvature (at the origin). In Figs. 22-30b, \(c\), and \(d\), more circular rods, each with identical uniform charges \(+Q\), are added until the circle is complete. A fifth arrangement (which would be labeled \(e\) ) is like that in \(d\) except the rod in the fourth quadrant has charge \(-Q\). Rank the five arrangements according to the magnitude of the electric field at the center of curvature, greatest first.
12 When three electric dipoles are near each other, they each experience the electric field of the other two, and the three-dipole system has a certain potential energy. Figure 22-31 shows two arrangements in which three electric dipoles are side by side. Each dipole has the same magnitude of electric dipole moment, and the spacings between adjacent dipoles are identical. In which arrangement is the potential energy of the three-dipole system greater?


Figure 22-31 Question 12.

13 Figure 22-32 shows three rods, each with the same charge \(Q\) spread uniformly along its length. Rods \(a\) (of length \(L\) ) and \(b\) (of length \(L / 2\) ) are straight, and points \(P\) are aligned with their midpoints. Rod \(c\) (of length \(L / 2\) ) forms a complete circle about point \(P\). Rank the rods according to the magnitude of the electric field they create at points \(P\), greatest first.


Figure 22-32 Question 13.

14 Figure 22-33 shows five protons that are launched in a uniform electric field \(\vec{E}\); the magnitude and direction of the launch velocities are indicated. Rank the protons according to the magnitude of their accelerations due to the field, greatest first.


Figure 22-33 Question 14.

\section*{8roblems}


\section*{Module 22-1 The Electric Field}
\(\bullet 1\) Sketch qualitatively the electric field lines both between and outside two concentric conducting spherical shells when a uniform
positive charge \(q_{1}\) is on the inner shell and a uniform negative charge \(-q_{2}\) is on the outer. Consider the cases \(q_{1}>q_{2}, q_{1}=q_{2}\), and \(q_{1}<q_{2}\).
-2 In Fig. 22-34 the electric field lines on the left have twice the separation of those on the right. (a) If the magnitude of the field at \(A\) is \(40 \mathrm{~N} / \mathrm{C}\), what is the magnitude of the force on a proton at \(A\) ?(b) What is the magnitude of the field at \(B\) ?

\section*{Module 22-2 The Electric Field Due to a Charged Particle}
-3 SSIM The nucleus of a plutonium-239 atom contains 94 protons. Assume that the nucleus is a sphere with radius 6.64 fm and with the charge of the protons uniformly spread through the sphere. At the surface of the nucleus, what are the (a) magnitude and (b) direction (radially inward or outward) of the electric field produced by the protons?
-4 Two charged particles are attached to an \(x\) axis: Particle 1 of charge \(-2.00 \times 10^{-7} \mathrm{C}\) is at position \(x=6.00 \mathrm{~cm}\) and particle 2 of charge \(+2.00 \times 10^{-7} \mathrm{C}\) is at position \(x=21.0 \mathrm{~cm}\). Midway between the particles, what is their net electric field in unit-vector notation?
-5 SSM A charged particle produces an electric field with a magnitude of \(2.0 \mathrm{~N} / \mathrm{C}\) at a point that is 50 cm away from the particle. What is the magnitude of the particle's charge?
-6 What is the magnitude of a point charge that would create an electric field of \(1.00 \mathrm{~N} / \mathrm{C}\) at points 1.00 m away?
-•7 SSM ILW www In Fig. 22-35, the four particles form a square of edge length \(a=5.00 \mathrm{~cm}\) and have charges \(q_{1}=+10.0 \mathrm{nC}, \quad q_{2}=-20.0 \mathrm{nC}, \quad q_{3}=\) +20.0 nC , and \(q_{4}=-10.0 \mathrm{nC}\). In unitvector notation, what net electric field do the particles produce at the square's center?
-8 © 8 In Fig. 22-36, the four particles are fixed in place and have charges \(q_{1}=q_{2}=+5 e, \quad q_{3}=+3 e, \quad\) and \(\quad q_{4}=\) \(-12 e\). Distance \(d=5.0 \mu \mathrm{~m}\). What is the magnitude of the net electric field at point \(P\) due to the particles?
\(\bullet 9\) ©o Figure 22-37 shows two charged particles on an \(x\) axis: \(-q=\) \(-3.20 \times 10^{-19} \mathrm{C}\) at \(x=-3.00 \mathrm{~m}\) and \(q=3.20 \times 10^{-19} \mathrm{C}\) at \(x=+3.00 \mathrm{~m}\). What are the (a) magnitude and


Figure 22-35 Problem 7.


Figure 22-36 Problem 8. (b) direction (relative to the positive direction of the \(x\) axis) of the net electric field produced at point \(P\) at \(y=4.00 \mathrm{~m}\) ?


Figure 22-37 Problem 9.
-•10 ©o Figure 22-38a shows two charged particles fixed in place on an \(x\) axis with separation \(L\). The ratio \(q_{1} / q_{2}\) of their charge magnitudes is 4.00 . Figure \(22-38 b\) shows the \(x\) component \(E_{\text {net }, x}\) of their net electric field along the \(x\) axis just to the right of particle 2. The \(x\) axis scale is set by \(x_{s}=30.0 \mathrm{~cm}\). (a) At what value of \(x>0\) is \(E_{\text {net }, x}\) maximum? (b) If particle 2 has charge \(-q_{2}=-3 e\), what is the value of that maximum?


Figure 22-38 Problem 10.
\(\bullet 11\) SSM Two charged particles are fixed to an \(x\) axis: Particle 1 of charge \(q_{1}=2.1 \times 10^{-8} \mathrm{C}\) is at position \(x=20 \mathrm{~cm}\) and particle 2 of charge \(q_{2}=-4.00 q_{1}\) is at position \(x=70 \mathrm{~cm}\). At what coordinate on the axis (other than at infinity) is the net electric field produced by the two particles equal to zero?
-112 ©o Figure 22-39 shows an uneven arrangement of electrons (e) and protons ( p ) on a circular arc of radius \(r=2.00 \mathrm{~cm}\), with angles \(\theta_{1}=30.0^{\circ}, \theta_{2}=50.0^{\circ}, \theta_{3}=30.0^{\circ}\), and \(\theta_{4}=20.0^{\circ}\). What are the (a) magnitude and (b) direction (relative to the positive direction of the \(x\) axis) of the net electric field produced at the center of the arc?
-13 ©0 Figure 22-40 shows a proton (p) on the central axis through a disk with a uniform charge density due to excess electrons. The disk is seen from an edge-on view. Three of those electrons are shown: electron \(\mathrm{e}_{c}\) at the disk center and electrons \(\mathrm{e}_{s}\) at opposite sides of the disk, at radius \(R\) from


Figure 22-39 Problem 12.


Figure 22-40 Problem 13. the center. The proton is initially at distance \(z=R=2.00 \mathrm{~cm}\) from the disk. At that location, what are the magnitudes of (a) the electric field \(\vec{E}_{c}\) due to electron \(\mathrm{e}_{c}\) and (b) the net electric field \(\vec{E}_{s, \text { net }}\) due to electrons \(\mathrm{e}_{s}\) ? The proton is then moved to \(z=R / 10.0\). What then are the magnitudes of (c) \(\vec{E}_{c}\) and (d) \(\vec{E}_{s, n e t}\) at the proton's location? (e) From (a) and (c) \({ }_{\text {we }}\) see that as the proton gets nearer to the disk, the magnitude of \(\vec{E}_{c}\) increases, as expected. Why does the magnitude of \(\vec{E}_{s, \text { net }}\) from the two side electrons decrease, as we see from (b) and (d)?
-•14 In Fig. 22-41, particle 1 of charge \(q_{1}=-5.00 q\) and particle 2 of charge \(q_{2}\) \(=+2.00 q\) are fixed to an \(x\) axis. (a) As a


Figure 22-41 Problem 14. multiple of distance \(L\), at what coordinate on the axis is the net electric field of the particles zero? (b) Sketch the net electric field lines between and around the particles.
-15 In Fig. 22-42, the three particles are fixed in place and have charges \(q_{1}=q_{2}=\) \(+e\) and \(q_{3}=+2 e\). Distance \(a=6.00 \mu \mathrm{~m}\). What are the (a) magnitude and (b) direction of the net electric field at point \(P\) due to the particles?
-0016 Figure 22-43 shows a plastic ring of radius \(R=50.0 \mathrm{~cm}\). Two small charged beads are on the ring: Bead 1 of charge \(+2.00 \mu \mathrm{C}\) is fixed in place at the left side; bead 2 of charge \(+6.00 \mu \mathrm{C}\) can be moved along the ring. The two beads produce a net electric field of magnitude \(E\) at the center of the ring. At what (a) positive and (b) negative value of angle \(\theta\) should bead 2 be positioned such that \(E=\) \(2.00 \times 10^{5} \mathrm{~N} / \mathrm{C}\) ?
\(\because 0017\) Two charged beads are on the plastic ring in Fig. 22-44a. Bead 2 , which is not shown, is fixed in


Figure 22-43 Problem 16. place on the ring, which has radius \(R=60.0 \mathrm{~cm}\). Bead 1 , which is not fixed in place, is initially on the \(x\) axis at angle \(\theta=0^{\circ}\). It is then moved to the opposite side, at angle \(\theta=180^{\circ}\), through the first and second quadrants of the xy coordinate system. Figure \(22-44 b\) gives the \(x\) component of the net electric field produced at the origin by the two beads as a function of \(\theta\), and Fig. 22-44c gives the \(y\) component of that net electric field. The vertical axis scales are set by \(E_{x s}=5.0 \times 10^{4} \mathrm{~N} / \mathrm{C}\) and \(E_{y s}=\) \(-9.0 \times 10^{4} \mathrm{~N} / \mathrm{C}\). (a) At what angle \(\theta\) is bead 2 located? What are the charges of (b) bead 1 and (c) bead 2 ?
(a)

(b)

(c)


Figure 22-44 Problem 17.

\section*{Module 22-3 The Electric Field Due to a Dipole}
-18 The electric field of an electric dipole along the dipole axis is approximated by Eqs. 22-8 and 22-9. If a binomial expansion is made of Eq. 22-7, what is the next term in the expression for the dipole's electric field along the dipole axis? That is, what is \(E_{\text {next }}\) in the expression
\[
E=\frac{1}{2 \pi \varepsilon_{0}} \frac{q d}{z^{3}}+E_{\text {next }} ?
\]
\(\because 19\) Figure 22-45 shows an electric dipole. What are the (a) magnitude and (b) direction (relative to the positive direction of the \(x\) axis) of the dipole's electric field at point \(P\), located at distance \(r \geqslant d\) ?


Figure 22-45 Problem 19.
-20 Equations 22-8 and 22-9 are approximations of the magnitude of the electric field of an electric dipole, at points along the dipole axis. Consider a point \(P\) on that axis at distance \(z=5.00 d\) from the dipole center ( \(d\) is the separation distance between the particles of the dipole). Let \(E_{\text {appr }}\) be the magnitude of the field at point \(P\) as approximated by Eqs. 22-8 and 22-9. Let \(E_{\text {act }}\) be the actual magnitude. What is the ratio \(E_{\text {appr }} / E_{\text {act }}\) ?
\(\because 021\) SSM Electric quadrupole. Figure 22-46 shows a generic electric quadrupole. It consists of two dipoles with dipole moments that are equal in magnitude but opposite in direction. Show that the value of \(E\) on the axis of the quadrupole for a point \(P\) a distance \(z\) from its center (assume \(z \gg\) d) is given by


Figure 22-46 Problem 21.
\[
E=\frac{3 Q}{4 \pi \varepsilon_{0} z^{4}},
\]
in which \(Q\left(=2 q d^{2}\right)\) is known as the quadrupole moment of the charge distribution.

\section*{Module 22-4 The Electric Field Due to a Line of Charge}
-22 Density, density, density. (a) A charge \(-300 e\) is uniformly distributed along a circular arc of radius 4.00 cm , which subtends an angle of \(40^{\circ}\). What is the linear charge density along the arc? (b) A charge \(-300 e\) is uniformly distributed over one face of a circular disk of radius 2.00 cm . What is the surface charge density over that face? (c) A charge \(-300 e\) is uniformly distributed over the surface of a sphere of radius 2.00 cm . What is the surface charge density over that surface? (d) A charge \(-300 e\) is uniformly spread through the volume of a sphere of radius 2.00 cm . What is the volume charge density in that sphere?
-23 Figure 22-47 shows two parallel nonconducting rings with their central axes along a common line. Ring 1 has uniform charge \(q_{1}\) and radius \(R\); ring 2 has uniform charge \(q_{2}\) and the same radius \(R\). The rings are separated by distance \(d=3.00 R\). The net electric field at point \(P\) on the common line, at distance \(R\) from ring


Figure 22-47 Problem 23. 1 , is zero. What is the ratio \(q_{1} / q_{2}\) ?
-24 A thin nonconducting rod with a uniform distribution of positive charge \(Q\) is bent into a complete circle of radius \(R\)
(Fig. 22-48). The central perpendicular axis through the ring is a \(z\) axis, with the origin at the center of the ring. What is the magnitude of the electric field due to the rod at (a) \(z=\) 0 and (b) \(z=\infty\) ? (c) In terms of \(R\), at what positive value of \(z\) is that magnitude maximum? (d) If \(R=2.00 \mathrm{~cm}\) and \(Q=4.00 \mu \mathrm{C}\), what is the maximum magnitude?
-25 Figure 22-49 shows three circular arcs centered on the origin of a coordinate system. On each arc, the uniformly distributed charge is given in terms of \(Q=2.00 \mu \mathrm{C}\). The radii are given in terms of \(R=10.0 \mathrm{~cm}\). What are the (a) magnitude and (b) direction (relative to the positive \(x\) direction) of the net electric field at the origin due to the arcs?
-26 ©0 ILW In Fig. 22-50, a thin glass rod forms a semicircle of radius \(r=5.00 \mathrm{~cm}\). Charge is uniformly distributed along the rod, with \(+q=4.50 \mathrm{pC}\) in the upper half and \(-q\) \(=-4.50 \mathrm{pC}\) in the lower half. What are the (a) magnitude and (b) direction (relative to the positive direction of the \(x\) axis) of the electric field \(\vec{E}\) at \(P\), the center of the semicircle?
-27 60 In Fig. 22-51, two curved plastic rods, one of charge \(+q\) and the other of charge \(-q\), form a circle of radius \(R=\) 8.50 cm in an \(x y\) plane. The \(x\) axis passes through both of the connecting points, and the charge is distributed uniformly on both rods. If \(q=15.0 \mathrm{pC}\), what are the (a) magnitude and (b) direction (relative to the positive direction of the \(x\) axis) of the electric field \(\vec{E}\) produced at \(P\), the center of the circle?
\(\bullet 28\) Charge is uniformly distributed around a ring of radius \(R=2.40 \mathrm{~cm}\), and the resulting electric field magnitude \(E\) is measured along the ring's central axis (perpendicular to the plane of the ring). At what distance from the ring's center is \(E\) maximum?
-029 © Figure 22-52a shows a nonconducting rod with a uniformly distributed charge \(+Q\). The rod forms a half-circle with radius \(R\) and produces an electric field of magnitude \(E_{\text {arc }}\) at its center of curvature \(P\). If the arc is collapsed to a point at distance \(R\) from \(P\) (Fig. 22-52b), by what factor is the magnitude of the electric field at \(P\) multiplied?


Figure 22-52 Problem 29.
-030 ©0 Figure 22-53 shows two concentric rings, of radii \(R\) and \(R^{\prime}=3.00 R\), that lie on the same plane. Point \(P\) lies on the central \(z\) axis, at distance \(D=2.00 R\) from the center of the rings. The smaller ring has uniformly distributed charge \(+Q\). In terms of \(Q\), what is the uniformly distributed charge on the larger ring if the net electric field at \(P\) is zero?
~31 ssm ILw www In Fig. 22-54, a nonconducting rod of length \(L=\) 8.15 cm has a charge \(-q=-4.23 \mathrm{fC}\) uniformly distributed along its length.
(a) What is the linear charge density of the rod? What are the (b) magnitude and (c) direction (relative to the positive direction of the \(x\) axis) of the electric field produced at point \(P\), at distance \(a=12.0 \mathrm{~cm}\) from the rod? What is the electric field magnitude produced at distance \(a=50 \mathrm{~m}\) by (d) the rod and (e) a particle of charge \(-q=-4.23 \mathrm{fC}\) that we use to replace the rod? (At that distance, the rod "looks" like a particle.)
-0ッ32 ©0 In Fig. 22-55, positive charge \(q=7.81 \mathrm{pC}\) is spread uniformly along a thin nonconducting \(\operatorname{rod}\) of length \(L=14.5 \mathrm{~cm}\). What are the (a) magnitude and (b) direction (relative to the positive direction of the \(x\) axis) of the electric field produced at point \(P\), at distance \(R=\) 6.00 cm from the rod along its perpendicular bisector?
00033 © In Fig. 22-56, a "semiinfinite" nonconducting rod (that is, infinite in one direction only) has uniform linear charge density \(\lambda\). Show that the electric field \(\vec{E}_{p}\) at point \(P\) makes an angle of \(45^{\circ}\) with the rod and that this result is independent of the distance \(R\). (Hint: Separately find the component of \(\vec{E}_{p}\) parallel to the rod and the component perpendicular to the rod.)

\section*{Module 22-5 The Electric Field Due to a Charged Disk}
-34 A disk of radius 2.5 cm has a surface charge density of \(5.3 \mu \mathrm{C} / \mathrm{m}^{2}\) on its upper face. What is the magnitude of the electric field produced by the disk at a point on its central axis at distance \(z=\) 12 cm from the disk?
-35 SSM www At what distance along the central perpendicular axis of a uniformly charged plastic disk of radius 0.600 m is the magnitude of the electric field equal to one-half the magnitude of the field at the center of the surface of the disk?
-036 A circular plastic disk with radius \(R=2.00 \mathrm{~cm}\) has a uniformly distributed charge \(Q=+\left(2.00 \times 10^{6}\right) e\) on one face. A circular ring of width \(30 \mu \mathrm{~m}\) is centered on that face, with the center of that width at radius \(r=0.50 \mathrm{~cm}\). In coulombs, what charge is contained within the width of the ring?
-®37 Suppose you design an apparatus in which a uniformly charged disk of radius \(R\) is to produce an electric field. The field magnitude is most important along the central perpendicular axis of the disk, at a point \(P\) at distance 2.00 R from the disk (Fig. 22-57a). Cost analysis suggests that you switch to a ring of the same outer radius \(R\) but with inner radius \(R / 2.00\) (Fig. 22-57b). Assume that the ring will have the same surface charge density as the original disk. If you switch to the ring, by what percentage will you decrease the electric field magnitude at \(P\) ? -38 Figure 22-58a shows a circular disk that is uniformly charged. The central \(z\) axis is perpendicular to the disk face, with the origin at the disk. Figure \(22-58 b\) gives the magnitude of the electric field along that axis in terms of the maximum magnitude \(E_{m}\) at the disk surface. The \(z\) axis scale is set by \(z_{s}=8.0 \mathrm{~cm}\). What is the radius of the disk?


Figure 22-58 Problem 38.

\section*{Module 22-6 A Point Charge in an Electric Field}
-39 In Millikan's experiment, an oil drop of radius \(1.64 \mu \mathrm{~m}\) and density \(0.851 \mathrm{~g} / \mathrm{cm}^{3}\) is suspended in chamber C (Fig. 22-16) when a downward electric field of \(1.92 \times 10^{5} \mathrm{~N} / \mathrm{C}\) is applied. Find the charge on the drop, in terms of \(e\).
-40 © © An electron with a speed of \(5.00 \times 10^{8} \mathrm{~cm} / \mathrm{s}\) enters an electric field of magnitude \(1.00 \times 10^{3} \mathrm{~N} / \mathrm{C}\), traveling along a field line in the direction that retards its motion. (a) How far will the electron travel in the field before stopping momentarily, and (b) how much time will have elapsed? (c) If the region containing the electric field is 8.00 mm long (too short for the electron to stop within it), what fraction of the electron's initial kinetic energy will be lost in that region?
-41 SSM A charged cloud system produces an electric field in the air near Earth's surface. A particle of charge \(-2.0 \times 10^{-9} \mathrm{C}\) is acted on by a downward electrostatic force of \(3.0 \times 10^{-6} \mathrm{~N}\) when placed in this field. (a) What is the magnitude of the electric field? What are the (b) magnitude and (c) direction of the electrostatic force \(\vec{F}_{e l}\) on the proton placed in this field? (d) What is the magnitude of the gravitational force \(\vec{F}_{g}\) on the proton? (e) What is the ratio \(F_{e l} / F_{g}\) in this case?
-42 Humid air breaks down (its molecules become ionized) in an electric field of \(3.0 \times 10^{6} \mathrm{~N} / \mathrm{C}\). In that field, what is the magnitude of the electrostatic force on (a) an electron and (b) an ion with a single electron missing?
\(\cdot 43\) SSM An electron is released from rest in a uniform electric field of magnitude \(2.00 \times 10^{4} \mathrm{~N} / \mathrm{C}\). Calculate the acceleration of the electron. (Ignore gravitation.)

(a)
(b)

Figure 22-57 Problem 37.
-44 An alpha particle (the nucleus of a helium atom) has a mass of \(6.64 \times 10^{-27} \mathrm{~kg}\) and a charge of \(+2 e\). What are the (a) magnitude and (b) direction of the electric field that will balance the gravitational force on the particle?
-45 ILW An electron on the axis of an electric dipole is 25 nm from the center of the dipole. What is the magnitude of the electrostatic force on the electron if the dipole moment is \(3.6 \times 10^{-29} \mathrm{C} \cdot \mathrm{m}\) ? Assume that 25 nm is much larger than the separation of the charged particles that form the dipole.
-46 An electron is accelerated eastward at \(1.80 \times 10^{9} \mathrm{~m} / \mathrm{s}^{2}\) by an electric field. Determine the field (a) magnitude and (b) direction.
-47 SSM Beams of high-speed protons can be produced in "guns" using electric fields to accelerate the protons. (a) What acceleration would a proton experience if the gun's electric field were \(2.00 \times 10^{4} \mathrm{~N} / \mathrm{C}\) ? (b) What speed would the proton attain if the field accelerated the proton through a distance of 1.00 cm ?
\(\bullet 48\) In Fig. 22-59, an electron (e) is to be released from rest on the central axis of a uniformly charged disk of radius \(R\). The surface charge density on the disk is \(+4.00 \mu \mathrm{C} / \mathrm{m}^{2}\). What is the magnitude of the electron's initial acceleration if it is


Figure 22-59 Problem 48. released at a distance (a) \(R\), (b) \(R / 100\), and (c) \(R / 1000\) from the center of the disk? (d) Why does the acceleration magnitude increase only slightly as the release point is moved closer to the disk?
-049 A 10.0 g block with a charge of \(+8.00 \times 10^{-5} \mathrm{C}\) is placed in an electric field \(\vec{E}=(3000 \hat{\mathrm{i}}-600 \hat{\mathrm{j}}) \mathrm{N} / \mathrm{C}\). What are the (a) magnitude and (b) direction (relative to the positive direction of the \(x\) axis) of the electrostatic force on the block? If the block is released from rest at the origin at time \(t=0\), what are its (c) \(x\) and (d) \(y\) coordinates at \(t=3.00 \mathrm{~s}\) ?
\(\because 50\) At some instant the velocity components of an electron moving between two charged parallel plates are \(v_{x}=1.5 \times 10^{5} \mathrm{~m} / \mathrm{s}\) and \(v_{y}=3.0 \times 10^{3} \mathrm{~m} / \mathrm{s}\). Suppose the electric field between the plates is uniform and given by \(\vec{E}=(120 \mathrm{~N} / \mathrm{C}) \hat{\mathrm{j}}\). In unit-vector notation, what are (a) the electron's acceleration in that field and (b) the electron's velocity when its \(x\) coordinate has changed by 2.0 cm ?
\(\because 51\) Assume that a honeybee is a sphere of diameter 1.000 cm with a charge of +45.0 pC uniformly spread over its surface. Assume also that a spherical pollen grain of diameter \(40.0 \mu \mathrm{~m}\) is electrically held on the surface of the bee because the bee's charge induces a charge of -1.00 pC on the near side of the grain and a charge of +1.00 pC on the far side. (a) What is the magnitude of the net electrostatic force on the grain due to the bee? Next, assume that the bee brings the grain to a distance of 1.000 mm from the tip of a flower's stigma and that the tip is a particle of charge -45.0 pC . (b) What is the magnitude of the net electrostatic force on the grain due to the stigma? (c) Does the grain remain on the bee or does it move to the stigma?
-052 An electron enters a region of uniform electric field with an initial velocity of \(40 \mathrm{~km} / \mathrm{s}\) in the same direction as the electric field, which has magnitude \(E=50 \mathrm{~N} / \mathrm{C}\). (a) What is the speed of the electron 1.5 ns after entering this region? (b) How far does the electron travel during the 1.5 ns interval?
-053 © Two large parallel copper plates are 5.0 cm apart and have a uniform electric field between them as depicted in Fig. 22-60. An electron is released from the negative plate at the same time that a proton is released from the positive plate. Neglect the force of the particles on each other and find their distance from the positive plate when they pass each other. (Does it surprise you that you need not know the electric field to solve this problem?)
\(\because 54\) © In Fig. 22-61, an electron is shot at an initial speed of \(v_{0}=2.00 \times 10^{6} \mathrm{~m} / \mathrm{s}\), at angle \(\theta_{0}=\) \(40.0^{\circ}\) from an \(x\) axis. It moves through a uniform electric field \(\vec{E}=(5.00 \mathrm{~N} / \mathrm{C}) \hat{\mathrm{j}}\). A screen for detecting electrons is positioned parallel to the \(y\) axis, at distance \(x=3.00 \mathrm{~m}\). In unit-vector notation, what is the velocity of the electron when it hits the screen?
-055 ILW A uniform electric field exists in a region between two oppositely charged plates. An electron is released from rest at the surface of the negatively charged plate and strikes the surface of the opposite plate, 2.0 cm away, in a time \(1.5 \times 10^{-8} \mathrm{~s}\). (a) What is the speed of the electron as it strikes the second plate? (b) What is the magnitude of the electric field \(\vec{E}\) ?

\section*{Module 22-7 A Dipole in an Electric Field}
-56 An electric dipole consists of charges \(+2 e\) and \(-2 e\) separated by 0.78 nm . It is in an electric field of strength \(3.4 \times 10^{6} \mathrm{~N} / \mathrm{C}\). Calculate the magnitude of the torque on the dipole when the dipole moment is (a) parallel to, (b) perpendicular to, and (c) antiparallel to the electric field.
\(\bullet 57\) SSM An electric dipole consisting of charges of magnitude 1.50 nC separated by \(6.20 \mu \mathrm{~m}\) is in an electric field of strength 1100 \(\mathrm{N} / \mathrm{C}\). What are (a) the magnitude of the electric dipole moment and (b) the difference between the potential energies for dipole orientations parallel and antiparallel to \(\vec{E}\) ?
\(\because 58\) A certain electric dipole is placed in a uniform electric field \(\vec{E}\) of magnitude \(20 \mathrm{~N} / \mathrm{C}\). Figure 22-62 gives the potential energy \(U\) of the dipole versus the angle \(\theta\) between \(\vec{E}\) and the dipole moment \(\vec{p}\). The vertical axis scale is set by \(U_{s}=100 \times 10^{-28} \mathrm{~J}\). What is the magnitude of \(\vec{p}\) ?
-059 How much work is required to turn an electric dipole \(180^{\circ}\) in a uniform electric field of magnitude \(E=46.0 \mathrm{~N} / \mathrm{C}\) if the dipole moment has a magnitude of \(p=3.02 \times\) \(10^{-25} \mathrm{C} \cdot \mathrm{m}\) and the initial angle is \(64^{\circ}\) ?
\(\because 60\) A certain electric dipole is placed in a uniform electric field \(\vec{E}\) of magnitude 40 N/C. Figure 22-63 gives the magnitude \(\tau\) of the torque on the dipole versus the angle \(\theta\) between field \(\vec{E}\) and the dipole moment \(\vec{p}\). The vertical axis scale is set by \(\tau_{s}=100 \times 10^{-28} \mathrm{~N} \cdot \mathrm{~m}\). What is the magnitude of \(\vec{p}\) ?


Figure 22-61 Problem 54.


Figure 22-62 Problem 58.


Figure 22-63 Problem 60.

Figure 22-60 Problem 53.


61 Find an expression for the oscillation frequency of an electric dipole of dipole moment \(\vec{p}\) and rotational inertia \(I\) for small amplitudes of oscillation about its equilibrium position in a uniform electric field of magnitude \(E\).

\section*{Additional Problems}

62 (a) What is the magnitude of an electron's acceleration in a uniform electric field of magnitude \(1.40 \times 10^{6} \mathrm{~N} / \mathrm{C}\) ? (b) How long would the electron take, starting from rest, to attain one-tenth the speed of light? (c) How far would it travel in that time?
63 A spherical water drop \(1.20 \mu \mathrm{~m}\) in diameter is suspended in calm air due to a downward-directed atmospheric electric field of magnitude \(E=462\) N/C. (a) What is the magnitude of the gravitational force on the drop? (b) How many excess electrons does it have?

64 Three particles, each with positive charge \(Q\), form an equilateral triangle, with each side of length \(d\). What is the magnitude of the electric field produced by the particles at the midpoint of any side?
65 In Fig. 22-64a, a particle of charge \(+Q\) produces an electric field of magnitude \(E_{\text {part }}\) at point \(P\), at distance \(R\) from the particle. In Fig. 22-64b, that same amount of charge is spread uniformly along a circular arc that has radius \(R\) and subtends an angle \(\theta\). The charge on the arc produces an electric field of magnitude \(E_{\text {arc }}\) at its center of curvature \(P\). For what value of \(\theta\) does \(E_{\text {arc }}=\) \(0.500 E_{\text {part }}\) ? (Hint: You will probably resort to a graphi-

(a)

Figure 22-64 Problem 65. cal solution.)
66 A proton and an electron form two corners of an equilateral triangle of side length \(2.0 \times 10^{-6} \mathrm{~m}\). What is the magnitude of the net electric field these two particles produce at the third corner?
67 A charge (uniform linear density \(=9.0 \mathrm{nC} / \mathrm{m}\) ) lies on a string that is stretched along an \(x\) axis from \(x=0\) to \(x=3.0 \mathrm{~m}\). Determine the magnitude of the electric field at \(x=4.0 \mathrm{~m}\) on the \(x\) axis.
68 In Fig. 22-65, eight particles form a square in which distance \(d=2.0 \mathrm{~cm}\). The charges are \(q_{1}=+3 e\), \(q_{2}=+e, q_{3}=-5 e, q_{4}=-2 e, q_{5}=+3 e\), \(q_{6}=+e, q_{7}=-5 e\), and \(q_{8}=+e\). In unitvector notation, what is the net electric field at the square's center?
69 Two particles, each with a charge of magnitude 12 nC , are at two of the vertices of an equilateral triangle with edge length 2.0 m . What is the magnitude of the electric field at the third vertex if (a) both charges are positive and (b) one charge is positive and the other is negative?


Figure 22-65
Problem 68.

70 The following table gives the charge seen by Millikan at different times on a single drop in his experiment. From the data, calculate the elementary charge \(e\).
\begin{tabular}{lll}
\(6.563 \times 10^{-19} \mathrm{C}\) & \(13.13 \times 10^{-19} \mathrm{C}\) & \(19.71 \times 10^{-19} \mathrm{C}\) \\
\(8.204 \times 10^{-19} \mathrm{C}\) & \(16.48 \times 10^{-19} \mathrm{C}\) & \(22.89 \times 10^{-19} \mathrm{C}\) \\
\(11.50 \times 10^{-19} \mathrm{C}\) & \(18.08 \times 10^{-19} \mathrm{C}\) & \(26.13 \times 10^{-19} \mathrm{C}\)
\end{tabular}

71 A charge of 20 nC is uniformly distributed along a straight rod of length 4.0 m that is bent into a circular arc with a radius of 2.0 m . What is the magnitude of the electric field at the center of curvature of the arc?

72 An electron is constrained to the central axis of the ring of charge of radius \(R\) in Fig. 22-11, with \(z \ll R\). Show that the electrostatic force on the electron can cause it to oscillate through the ring center with an angular frequency
\[
\omega=\sqrt{\frac{e q}{4 \pi \varepsilon_{0} m R^{3}}},
\]
where \(q\) is the ring's charge and \(m\) is the electron's mass.
73 SSM The electric field in an \(x y\) plane produced by a positively charged particle is \(7.2(4.0 \hat{\mathrm{i}}+3.0 \hat{\mathrm{j}}) \mathrm{N} / \mathrm{C}\) at the point \((3.0,3.0) \mathrm{cm}\) and \(100 \hat{\mathrm{i}} \mathrm{N} / \mathrm{C}\) at the point \((2.0,0) \mathrm{cm}\). What are the (a) \(x\) and (b) \(y\) coordinates of the particle? (c) What is the charge of the particle?
74 (a) What total (excess) charge \(q\) must the disk in Fig. 22-15 have for the electric field on the surface of the disk at its center to have magnitude \(3.0 \times 10^{6} \mathrm{~N} / \mathrm{C}\), the \(E\) value at which air breaks down electrically, producing sparks? Take the disk radius as 2.5 cm . (b) Suppose each surface atom has an effective cross-sectional area of \(0.015 \mathrm{~nm}^{2}\). How many atoms are needed to make up the disk surface? (c) The charge calculated in (a) results from some of the surface atoms having one excess electron. What fraction of
these atoms must be so charged?
75 In Fig. 22-66, particle 1 (of charge \(+1.00 \mu \mathrm{C}\) ), particle 2 (of charge \(+1.00 \mu \mathrm{C}\) ), and particle 3 (of charge \(Q\) ) form an equilateral triangle of edge length \(a\). For what value of \(Q\) (both sign and magnitude) does the net electric field produced by the particles at the center of the triangle vanish?
76 In Fig. 22-67, an electric dipole swings from an initial orientation \(i\left(\theta_{i}=20.0^{\circ}\right)\) to a final orientation \(f\left(\theta_{f}=20.0^{\circ}\right)\) in a uniform external electric field \(\vec{E}\). The electric dipole moment is \(1.60 \times 10^{-27} \mathrm{C} \cdot \mathrm{m}\); the field magnitude is \(3.00 \times 10^{6} \mathrm{~N} / \mathrm{C}\). What is the change in the dipole's potential energy?

77 A particle of charge \(-q_{1}\) is at the origin of an \(x\) axis. (a) At what location on the axis should a particle of charge \(-4 q_{1}\) be placed so that the net electric field is zero at \(x=2.0 \mathrm{~mm}\) on the


Figure 22-66 Problems 75 and 86 .


Figure 22-67
Problem 76. axis? (b) If, instead, a particle of charge \(+4 q_{1}\) is placed at that location, what is the direction (relative to the positive direction of the \(x\) axis) of the net electric field at \(x=2.0 \mathrm{~mm}\) ?
78 Two particles, each of positive charge \(q\), are fixed in place on a \(y\) axis, one at \(y=d\) and the other at \(y=-d\). (a) Write an expression that gives the magnitude \(E\) of the net electric field at points on the \(x\) axis given by \(x=\alpha d\). (b) Graph \(E\) versus \(\alpha\) for the range \(0<\) \(\alpha<4\). From the graph, determine the values of \(\alpha\) that give (c) the maximum value of \(E\) and (d) half the maximum value of \(E\).
79 A clock face has negative point charges \(-q,-2 q,-3 q, \ldots\), \(-12 q\) fixed at the positions of the corresponding numerals. The clock hands do not perturb the net field due to the point charges. At
what time does the hour hand point in the same direction as the electric field vector at the center of the dial? (Hint: Use symmetry.)
80 Calculate the electric dipole moment of an electron and a proton 4.30 nm apart.
81 An electric field \(\vec{E}\) with an average magnitude of about 150 N/C points downward in the atmosphere near Earth's surface. We wish to "float" a sulfur sphere weighing 4.4 N in this field by charging the sphere. (a) What charge (both sign and magnitude) must be used? (b) Why is the experiment impractical?
82 A circular rod has a radius of curvature \(R=9.00 \mathrm{~cm}\) and a uniformly distributed positive charge \(Q=6.25 \mathrm{pC}\) and subtends an angle \(\theta=2.40 \mathrm{rad}\). What is the magnitude of the electric field that \(Q\) produces at the center of curvature?

\section*{83 SSM An electric dipole with dipole moment}
\[
\vec{p}=(3.00 \hat{\mathrm{i}}+4.00 \hat{\mathrm{j}})\left(1.24 \times 10^{-30} \mathrm{C} \cdot \mathrm{~m}\right)
\]
is in an electric field \(\vec{E}=(4000 \mathrm{~N} / \mathrm{C}) \hat{\mathrm{i}}\). (a) What is the potential energy of the electric dipole? (b) What is the torque acting on it? (c) If an external agent turns the dipole until its electric dipole moment is
\[
\vec{p}=(-4.00 \hat{\mathrm{i}}+3.00 \hat{\mathrm{j}})\left(1.24 \times 10^{-30} \mathrm{C} \cdot \mathrm{~m}\right)
\]
how much work is done by the agent?
84 In Fig. 22-68, a uniform, upward electric field \(\vec{E}\) of magnitude \(2.00 \times\) \(10^{3} \mathrm{~N} / \mathrm{C}\) has been set up between two horizontal plates by charging the lower plate positively and the upper plate negatively. The plates have


Figure 22-68 Problem 84. length \(L=10.0 \mathrm{~cm}\) and separation \(d\) \(=2.00 \mathrm{~cm}\). An electron is then shot between the plates from the left edge of the lower plate. The initial velocity \(\vec{v}_{0}\) of the electron makes an angle \(\theta=45.0^{\circ}\) with the lower plate and has a magnitude of \(6.00 \times 10^{6} \mathrm{~m} / \mathrm{s}\). (a) Will the electron strike one of the plates? (b) If so, which plate and how far horizontally from the left edge will the electron strike?
85 For the data of Problem 70, assume that the charge \(q\) on the drop is given by \(q=n e\), where \(n\) is an integer and \(e\) is the elementary charge. (a) Find \(n\) for each given value of \(q\). (b) Do a linear regression fit of the values of \(q\) versus the values of \(n\) and then use that fit to find \(e\).
86 In Fig. 22-66, particle 1 (of charge +2.00 pC ), particle 2 (of charge -2.00 pC ), and particle 3 (of charge +5.00 pC ) form an equilateral triangle of edge length \(a=9.50 \mathrm{~cm}\). (a) Relative to the positive direction of the \(x\) axis, determine the direction of the force \(\vec{F}_{3}\) on particle 3 due to the other particles by sketching electric field lines of the other particles. (b) Calculate the magnitude of \(\vec{F}_{3}\).
87 In Fig. 22-69, particle 1 of charge \(q_{1}=1.00 \mathrm{pC}\) and particle 2 of charge \(q_{2}=-2.00 \mathrm{pC}\) are fixed at a distance \(d=5.00 \mathrm{~cm}\) apart. In unit-vector notation, what is the net electric field at points (a) \(A\), (b) \(B\), and (c) \(C\) ? (d) Sketch the electric field lines.


Figure 22-69 Problem 87.

\section*{23-1 electric flux}

\section*{Learning Objectives}

After reading this module, you should be able to ...
23.01 Identify that Gauss' law relates the electric field at points on a closed surface (real or imaginary, said to be a Gaussian surface) to the net charge enclosed by that surface.
23.02 Identify that the amount of electric field piercing a surface (not skimming along the surface) is the electric flux \(\Phi\) through the surface.
23.03 Identify that an area vector for a flat surface is a vector that is perpendicular to the surface and that has a magnitude equal to the area of the surface.
23.04 Identify that any surface can be divided into area elements (patch elements) that are each small enough and flat enough for an area vector \(d \vec{A}\) to be assigned to it, with the vector perpendicular to the element and having a magnitude equal to the area of the element.
23.05 Calculate the flux \(\Phi\) through a surface by integrating the dot product of the electric field vector \(\vec{E}\) and the area vector \(d \vec{A}\) (for patch elements) over the surface, in magnitudeangle notation and unit-vector notation.
23.06 For a closed surface, explain the algebraic signs associated with inward flux and outward flux.
23.07 Calculate the net flux \(\Phi\) through a closed surface, algebraic sign included, by integrating the dot product of the electric field vector \(\vec{E}\) and the area vector \(d \vec{A}\) (for patch elements) over the full surface.
23.08 Determine whether a closed surface can be broken up into parts (such as the sides of a cube) to simplify the integration that yields the net flux through the surface.

\section*{Key Ideas}
- The electric flux \(\Phi\) through a surface is the amount of electric field that pierces the surface.
- The area vector \(d \vec{A}\) for an area element (patch element) on a surface is a vector that is perpendicular to the element and has a magnitude equal to the area \(d A\) of the element.
- The electric flux \(d \Phi\) through a patch element with area vector \(d \vec{A}\) is given by a dot product:
\[
d \Phi=\vec{E} \cdot d \vec{A}
\]
- The total flux through a surface is given by
\[
\Phi=\int \vec{E} \cdot d \vec{A} \quad \text { (total flux) }
\]
where the integration is carried out over the surface.
- The net flux through a closed surface (which is used in Gauss' law) is given by
\[
\Phi=\oint \vec{E} \cdot d \vec{A} \quad \text { (net flux) }
\]
where the integration is carried out over the entire surface.

\section*{What Is Physics?}

In the preceding chapter we found the electric field at points near extended charged objects, such as rods. Our technique was labor-intensive: We split the charge distribution up into charge elements \(d q\), found the field \(d \vec{E}\) due to an element, and resolved the vector into components. Then we determined whether the components from all the elements would end up canceling or adding. Finally we summed the adding components by integrating over all the elements, with several changes in notation along the way.

One of the primary goals of physics is to find simple ways of solving such labor-intensive problems. One of the main tools in reaching this goal is the use of symmetry. In this chapter we discuss a beautiful relationship between charge and


Figure 23-1 Electric field vectors and field lines pierce an imaginary, spherical Gaussian surface that encloses a particle with charge \(+Q\).


Figure 23-2 Now the enclosed particle has charge \(+2 Q\).


Figure 23-3 Can you tell what the enclosed charge is now?

Figure 23-4 (a) An electric field vector pierces a small square patch on a flat surface. (b) Only the \(x\) component actually pierces the patch; the \(y\) component skims across it. (c) The area vector of the patch is perpendicular to the patch, with a magnitude equal to the patch's area.
electric field that allows us, in certain symmetric situations, to find the electric field of an extended charged object with a few lines of algebra. The relationship is called Gauss' law, which was developed by German mathematician and physicist Carl Friedrich Gauss (1777-1855).

Let's first take a quick look at some simple examples that give the spirit of Gauss' law. Figure 23-1 shows a particle with charge \(+Q\) that is surrounded by an imaginary concentric sphere. At points on the sphere (said to be a Gaussian surface), the electric field vectors have a moderate magnitude (given by \(E=k Q / r^{2}\) ) and point radially away from the particle (because it is positively charged). The electric field lines are also outward and have a moderate density (which, recall, is related to the field magnitude). We say that the field vectors and the field lines pierce the surface.

Figure 23-2 is similar except that the enclosed particle has charge \(+2 Q\). Because the enclosed charge is now twice as much, the magnitude of the field vectors piercing outward through the (same) Gaussian surface is twice as much as in Fig. 23-1, and the density of the field lines is also twice as much. That sentence, in a nutshell, is Gauss' law.

Guass' law relates the electric field at points on a (closed) Gaussian surface to the net charge enclosed by that surface.

Let's check this with a third example with a particle that is also enclosed by the same spherical Gaussian surface (a Gaussian sphere, if you like, or even the catchy \(G\)-sphere) as shown in Fig. 23-3. What is the amount and sign of the enclosed charge? Well, from the inward piercing we see immediately that the charge must be negative. From the fact that the density of field lines is half that of Fig. 23-1, we also see that the charge must be \(0.5 Q\). (Using Gauss' law is like being able to tell what is inside a gift box by looking at the wrapping paper on the box.)

The problems in this chapter are of two types. Sometimes we know the charge and we use Gauss' law to find the field at some point. Sometimes we know the field on a Gaussian surface and we use Gauss' law to find the charge enclosed by the surface. However, we cannot do all this by simply comparing the density of field lines in a drawing as we just did. We need a quantitative way of determining how much electric field pierces a surface. That measure is called the electric flux.

\section*{Electric Flux}

Flat Surface, Uniform Field. We begin with a flat surface with area \(A\) in a uniform electric field \(\vec{E}\). Figure 23-4a shows one of the electric field vectors \(\vec{E}\) piercing a small square patch with area \(\Delta A\) (where \(\Delta\) indicates "small"). Actually, only the \(x\) component (with magnitude \(E_{x}=E \cos \theta\) in Fig. 23-4b) pierces the patch. The \(y\) component merely skims along the surface (no piercing in that) and does not come into play in Gauss' law. The amount of electric field piercing the patch is defined to be the electric flux \(\boldsymbol{\Delta} \boldsymbol{\Phi}\) through it:
\[
\Delta \Phi=(E \cos \theta) \Delta A
\]


There is another way to write the right side of this statement so that we have only the piercing component of \(\vec{E}\). We define an area vector \(\Delta \vec{A}\) that is perpendicular to the patch and that has a magnitude equal to the area \(\Delta A\) of the patch (Fig. 23-4c). Then we can write
\[
\Delta \Phi=\vec{E} \cdot \Delta \vec{A}
\]
and the dot product automatically gives us the component of \(\vec{E}\) that is parallel to \(\Delta \vec{A}\) and thus piercing the patch.

To find the total flux \(\Phi\) through the surface in Fig. 23-4, we sum the flux through every patch on the surface:
\[
\begin{equation*}
\Phi=\sum \vec{E} \cdot \Delta \vec{A} \tag{23-1}
\end{equation*}
\]

However, because we do not want to sum hundreds (or more) flux values, we transform the summation into an integral by shrinking the patches from small squares with area \(\Delta A\) to patch elements (or area elements) with area \(d A\). The total flux is then
\[
\begin{equation*}
\Phi=\int \vec{E} \cdot d \vec{A} \quad \text { (total flux) } \tag{23-2}
\end{equation*}
\]

Now we can find the total flux by integrating the dot product over the full surface.
Dot Product. We can evaluate the dot product inside the integral by writing the two vectors in unit-vector notation. For example, in Fig. 23-4, \(d \vec{A}=d A \hat{\mathrm{i}}\) and \(\vec{E}\) might be, say, \((4 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}) \mathrm{N} / \mathrm{C}\). Instead, we can evaluate the dot product in magnitude-angle notation: \(E \cos \theta d A\). When the electric field is uniform and the surface is flat, the product \(E \cos \theta\) is a constant and comes outside the integral. The remaining \(\int d A\) is just an instruction to sum the areas of all the patch elements to get the total area, but we already know that the total area is \(A\). So the total flux in this simple situation is
\[
\begin{equation*}
\Phi=(E \cos \theta) A \quad \text { (uniform field, flat surface }) \tag{23-3}
\end{equation*}
\]

Closed Surface. To use Gauss' law to relate flux and charge, we need a closed surface. Let's use the closed surface in Fig. 23-5 that sits in a nonuniform electric field. (Don't worry. The homework problems involve less complex surfaces.) As before, we first consider the flux through small square patches. However, now we are interested in not only the piercing components of the field but also on whether the piercing is inward or outward (just as we did with Figs. 23-1 through 23-3).

Directions. To keep track of the piercing direction, we again use an area vector \(\Delta \vec{A}\) that is perpendicular to a patch, but now we always draw it pointing outward from the surface (away from the interior). Then if a field vector pierces outward, it and the area vector are in the same direction, the angle is \(\theta=0\), and \(\cos \theta=1\). Thus, the dot product \(\vec{E} \cdot \Delta \vec{A}\) is positive and so is the flux. Conversely, if a field vector pierces inward, the angle is \(\theta=180^{\circ}\) and \(\cos \theta=-1\). Thus, the dot product is negative and so is the flux. If a field vector skims the surface (no piercing), the dot product is zero (because \(\cos 90^{\circ}=0\) ) and so is the flux. Figure \(23-5\) gives some general examples and here is a summary:

An inward piercing field is negative flux. An outward piercing field is positive flux. A skimming field is zero flux.

Net Flux. In principle, to find the net flux through the surface in Fig. 23-5, we find the flux at every patch and then sum the results (with the algebraic signs included). However, we are not about to do that much work. Instead, we shrink the squares to patch elements with area vectors \(d \vec{A}\) and then integrate:
\[
\begin{equation*}
\Phi=\oint \vec{E} \cdot d \vec{A} \quad \text { (net flux) } \tag{23-4}
\end{equation*}
\]


Figure 23-5 A Gaussian surface of arbitrary shape immersed in an electric field. The surface is divided into small squares of area \(\Delta A\). The electric field vectors \(\vec{E}\) and the area vectors \(\Delta \vec{A}\) for three representative squares, marked 1,2 , and 3 , are shown.

The loop on the integral sign indicates that we must integrate over the entire closed surface, to get the net flux through the surface (as in Fig. 23-5, flux might enter on one side and leave on another side). Keep in mind that we want to determine the net flux through a surface because that is what Gauss' law relates to the charge enclosed by the surface. (The law is coming up next.) Note that flux is a scalar (yes, we talk about field vectors but flux is the amount of piercing field, not a vector itself). The SI unit of flux is the newton-square-meter per coulomb \(\left(\mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{C}\right)\).

\section*{Checkpoint 1}

The figure here shows a Gaussian cube of face area \(A\) immersed in a uniform electric field \(\vec{E}\) that has the positive direction of the \(z\) axis. In terms of \(E\) and \(A\), what is the flux through (a) the front face (which is in the \(x y\) plane), (b) the rear face, (c) the top face, and (d) the whole cube?


\section*{Sample Problem 23.01 Flux through a closed cylinder, uniform field}

Figure 23-6 shows a Gaussian surface in the form of a closed cylinder (a Gaussian cylinder or G-cylinder) of radius \(R\). It lies in a uniform electric field \(\vec{E}\) with the cylinder's central axis (along the length of the cylinder) parallel to the field. What is the net flux \(\Phi\) of the electric field through the cylinder?

\section*{KEY IDEAS}

We can find the net flux \(\Phi\) with Eq. 23-4 by integrating the dot product \(\vec{E} \cdot d \vec{A}\) over the cylinder's surface. However, we cannot write out functions so that we can do that with one integral. Instead, we need to be a bit clever: We break up the surface into sections with which we can actually evaluate an integral.

Calculations: We break the integral of Eq. 23-4 into three terms: integrals over the left cylinder cap \(a\), the curved cylindrical surface \(b\), and the right cap \(c\) :
\[
\begin{align*}
\Phi & =\oint \vec{E} \cdot d \vec{A} \\
& =\int_{a} \vec{E} \cdot d \vec{A}+\int_{b} \vec{E} \cdot d \vec{A}+\int_{c} \vec{E} \cdot d \vec{A} \tag{23-5}
\end{align*}
\]

Pick a patch element on the left cap. Its area vector \(d \vec{A}\) must be perpendicular to the patch and pointing away from the interior of the cylinder. In Fig. 23-6, that means the angle between it and the field piercing the patch is \(180^{\circ}\). Also, note that the electric field through the end cap is uniform and thus \(E\) can be pulled out of the integration. So, we can write the flux through the left cap as
\[
\int_{a} \vec{E} \cdot d \vec{A}=\int E\left(\cos 180^{\circ}\right) d A=-E \int d A=-E A
\]
where \(\int d A\) gives the cap's area \(A\left(=\pi R^{2}\right)\). Similarly, for the right cap, where \(\theta=0\) for all points,
\[
\int_{c} \vec{E} \cdot d \vec{A}=\int E(\cos 0) d A=E A
\]

Finally, for the cylindrical surface, where the angle \(\theta\) is \(90^{\circ}\) at all points,
\[
\int_{b} \vec{E} \cdot d \vec{A}=\int E\left(\cos 90^{\circ}\right) d A=0
\]

Substituting these results into Eq. 23-5 leads us to
\[
\Phi=-E A+0+E A=0
\]
(Answer)
The net flux is zero because the field lines that represent the electric field all pass entirely through the Gaussian surface, from the left to the right.


Figure 23-6 A cylindrical Gaussian surface, closed by end caps, is immersed in a uniform electric field. The cylinder axis is parallel to the field direction.

\section*{Sample Problem 23.02 Flux through a closed cube, nonuniform field}

A nonuniform electric field given by \(\vec{E}=3.0 x \hat{\mathrm{i}}+4.0 \hat{\mathrm{j}}\) pierces the Gaussian cube shown in Fig. 23-7a. ( \(E\) is in newtons per coulomb and \(x\) is in meters.) What is the electric flux through the right face, the left face, and the top face? (We consider the other faces in another sample problem.)

\section*{KEY IDEA}

We can find the flux \(\Phi\) through the surface by integrating the scalar product \(\vec{E} \cdot d \vec{A}\) over each face.

Right face: An area vector \(\vec{A}\) is always perpendicular to its surface and always points away from the interior of a Gaussian surface. Thus, the vector \(d \vec{A}\) for any patch element (small section) on the right face of the cube must point in the positive direction of the \(x\) axis. An example of such an element is shown in Figs. 23-7b and \(c\), but we would have an identical vector for any other choice of a patch element on that face. The most convenient way to express the vector is in unit-vector notation,
\[
d \vec{A}=d A \hat{\mathrm{i}} .
\]

From Eq. 23-4, the flux \(\Phi_{r}\) through the right face is then
\[
\begin{aligned}
\Phi_{r} & =\int \vec{E} \cdot d \vec{A}=\int(3.0 x \hat{\mathrm{i}}+4.0 \hat{\mathrm{j}}) \cdot(d A \hat{\mathrm{i}}) \\
& =\int[(3.0 x)(d A) \hat{\mathrm{i}} \cdot \hat{\mathrm{i}}+(4.0)(d A) \hat{\mathrm{j}} \cdot \hat{\mathrm{i}}] \\
& =\int(3.0 x d A+0)=3.0 \int x d A .
\end{aligned}
\]

We are about to integrate over the right face, but we note that \(x\) has the same value everywhere on that face - namely, \(x=3.0 \mathrm{~m}\). This means we can substitute that constant value for \(x\). This can be a confusing argument. Although \(x\) is certainly a variable as we move left to right across the figure, because the right face is perpendicular to the \(x\) axis, every point on the face has the same \(x\) coordinate. (The \(y\) and \(z\) coordinates do not matter in our integral.) Thus, we have
\[
\Phi_{r}=3.0 \int(3.0) d A=9.0 \int d A .
\]

The integral \(\int d A\) merely gives us the area \(A=4.0 \mathrm{~m}^{2}\) of the right face, so
\[
\Phi_{r}=(9.0 \mathrm{~N} / \mathrm{C})\left(4.0 \mathrm{~m}^{2}\right)=36 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C} .
\]
(Answer)
Left face: We repeat this procedure for the left face.However,

(a)

(b)

The \(y\) component of the field skims the surface
Figure 23-7 (a) A Gaussian cube with one edge on the \(x\) axis lies within a nonuniform electric field that depends on the value of \(x .(b)\) Each patch element has an outward vector that is perpendicular to the area. (c) Right face: the \(x\) component of the field pierces the area and produces positive (outward) flux. The \(y\) component does not pierce the area and thus does not produce any flux. (Figure continues on following page)
produce any flux. (Figure continues on following page)
\[
\begin{aligned}
& 4 \\
& 4
\end{aligned}
\]

The element area vector (for a patch element) is perpendicular to the surface and outward.

two factors change. (1) The element area vector \(d \vec{A}\) points in the negative direction of the \(x\) axis, and thus \(d \vec{A}=-d A \hat{\mathrm{i}}\) (Fig. 23-7d). (2) On the left face, \(x=1.0 \mathrm{~m}\). With these changes, we find that the flux \(\Phi_{l}\) through the left face is
\[
\Phi_{l}=-12 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}
\]
(Answer)
Top face: Now \(d \vec{A}\) points in the positive direction of the \(y\) axis, and thus \(d \vec{A}=d A \hat{\mathrm{j}}\) (Fig. 23-7e). The flux \(\Phi_{t}\) is

The \(y\) component of the field pierces the surface and gives outward flux. The dot product is positive.

The \(x\) component of the field skims the surface and gives no flux. The dot product is just zero.

Figure 23-7 (Continued from previous page) (d) Left face: the \(x\) component of the field produces negative (inward) flux. (e) Top face: the \(y\) component of the field produces positive (outward) flux. Additional examples, video, and practice available at WileyPLUS

\section*{23-2 gauss' law}

\section*{Learning Objectives}

After reading this module, you should be able to ...
23.09 Apply Gauss' law to relate the net flux \(\Phi\) through a closed surface to the net enclosed charge \(q_{\text {enc }}\).
23.10 Identify how the algebraic sign of the net enclosed charge corresponds to the direction (inward or outward) of the net flux through a Gaussian surface.
23.11 Identify that charge outside a Gaussian surface makes
\[
\begin{aligned}
\Phi_{t} & =\int(3.0 x \hat{\mathrm{i}}+4.0 \hat{\mathrm{j}}) \cdot(d A \hat{\mathrm{j}}) \\
& =\int[(3.0 x)(d A) \hat{\mathrm{i}} \cdot \hat{\mathrm{j}}+(4.0)(d A) \hat{\mathrm{j}} \cdot \hat{\mathrm{j}}] \\
& =\int(0+4.0 d A)=4.0 \int d A \\
& =16 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C} .
\end{aligned}
\]
(Answer)

\section*{Key Ideas}
- Gauss' law relates the net flux \(\Phi\) penetrating a closed surface to the net charge \(q_{\text {enc }}\) enclosed by the surface:
\[
\varepsilon_{0} \Phi=q_{\mathrm{enc}} \quad \text { (Gauss' law). }
\]
no contribution to the net flux through the closed surface.
23.12 Derive the expression for the magnitude of the electric field of a charged particle by using Gauss' law.
23.13 Identify that for a charged particle or uniformly charged sphere, Gauss' law is applied with a Gaussian surface that is a concentric sphere.
- Gauss' law can also be written in terms of the electric field piercing the enclosing Gaussian surface:
\[
\varepsilon_{0} \oint \vec{E} \cdot d \vec{A}=q_{\mathrm{enc}} \quad \text { (Gauss' law) }
\]

\section*{Gauss' Law}

Gauss' law relates the net flux \(\Phi\) of an electric field through a closed surface (a Gaussian surface) to the net charge \(q_{\text {enc }}\) that is enclosed by that surface. It tells us that
\[
\begin{equation*}
\varepsilon_{0} \Phi=q_{\mathrm{enc}} \quad(\text { Gauss' law) } \tag{23-6}
\end{equation*}
\]

By substituting Eq. 23-4, the definition of flux, we can also write Gauss' law as
\[
\begin{equation*}
\varepsilon_{0} \oint \vec{E} \cdot d \vec{A}=q_{\mathrm{enc}} \quad(\text { Gauss' law }) \tag{23-7}
\end{equation*}
\]

Equations 23-6 and 23-7 hold only when the net charge is located in a vacuum or (what is the same for most practical purposes) in air. In Chapter 25, we modify Gauss' law to include situations in which a material such as mica, oil, or glass is present.

In Eqs. 23-6 and 23-7, the net charge \(q_{\text {enc }}\) is the algebraic sum of all the enclosed positive and negative charges, and it can be positive, negative, or zero. We include the sign, rather than just use the magnitude of the enclosed charge, because the sign tells us something about the net flux through the Gaussian surface: If \(q_{\text {enc }}\) is positive, the net flux is outward; if \(q_{\text {enc }}\) is negative, the net flux is inward.

Charge outside the surface, no matter how large or how close it may be, is not included in the term \(q_{\text {enc }}\) in Gauss' law. The exact form and location of the charges inside the Gaussian surface are also of no concern; the only things that matter on the right side of Eqs. 23-6 and 23-7 are the magnitude and sign of the net enclosed charge. The quantity \(\vec{E}\) on the left side of Eq. 23-7, however, is the electric field resulting from all charges, both those inside and those outside the Gaussian surface. This statement may seem to be inconsistent, but keep this in mind: The electric field due to a charge outside the Gaussian surface contributes zero net flux through the surface, because as many field lines due to that charge enter the surface as leave it.

Let us apply these ideas to Fig. 23-8, which shows two particles, with charges equal in magnitude but opposite in sign, and the field lines describing the electric fields the particles set up in the surrounding space. Four Gaussian surfaces are also shown, in cross section. Let us consider each in turn.
Surface \(\boldsymbol{S}_{1}\). The electric field is outward for all points on this surface. Thus, the flux of the electric field through this surface is positive, and so is the net charge within the surface, as Gauss' law requires. (That is, in Eq. \(23-6\), if \(\Phi\) is positive, \(q_{\text {enc }}\) must be also.)
Surface \(\mathbf{S}_{2}\). The electric field is inward for all points on this surface. Thus, the flux of the electric field through this surface is negative and so is the enclosed charge, as Gauss' law requires.
Surface \(\boldsymbol{S}_{3}\). This surface encloses no charge, and thus \(q_{\text {enc }}=0\). Gauss' law (Eq. 23-6) requires that the net flux of the electric field through this surface be zero. That is reasonable because all the field lines pass entirely through the surface, entering it at the top and leaving at the bottom.
Surface \(\boldsymbol{S}_{4}\). This surface encloses no net charge, because the enclosed positive and negative charges have equal magnitudes. Gauss' law requires that the net flux of the electric field through this surface be zero. That is reasonable because there are as many field lines leaving surface \(S_{4}\) as entering it.
What would happen if we were to bring an enormous charge \(Q\) up close to surface \(S_{4}\) in Fig. 23-8? The pattern of the field lines would certainly change, but the net flux for each of the four Gaussian surfaces would not change. Thus, the value of \(Q\) would not enter Gauss' law in any way, because \(Q\) lies outside all four of the Gaussian surfaces that we are considering.


Figure 23-8 Two charges, equal in magnitude but opposite in sign, and the field lines that represent their net electric field. Four Gaussian surfaces are shown in cross section. Surface \(S_{1}\) encloses the positive charge. Surface \(S_{2}\) encloses the negative charge. Surface \(S_{3}\) encloses no charge. Surface \(S_{4}\) encloses both charges and thus no net charge.

\section*{Checkpoint 2}

The figure shows three situations in which a Gaussian cube sits in an electric field. The arrows and the values indicate the directions of the field lines and the magnitudes (in \(\mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{C}\) ) of the flux through the six sides of each cube. (The lighter arrows are for the hidden faces.) In which situation does the cube enclose (a) a positive net charge, (b) a negative net charge, and (c) zero net charge?


(2)

(3)


Figure 23-9 A spherical Gaussian surface centered on a particle with charge \(q\).

\section*{Gauss' Law and Coulomb's Law}

One of the situations in which we can apply Gauss' law is in finding the electric field of a charged particle. That field has spherical symmetry (the field depends on the distance \(r\) from the particle but not the direction). So, to make use of that symmetry, we enclose the particle in a Gaussian sphere that is centered on the particle, as shown in Fig. 23-9 for a particle with positive charge \(q\). Then the electric field has the same magnitude \(E\) at any point on the sphere (all points are at the same distance \(r\) ). That feature will simplify the integration.

The drill here is the same as previously. Pick a patch element on the surface and draw its area vector \(d \vec{A}\) perpendicular to the patch and directed outward. From the symmetry of the situation, we know that the electric field \(\vec{E}\) at the patch is also radially outward and thus at angle \(\theta=0\) with \(d \vec{A}\). So, we rewrite Gauss' law as
\[
\begin{equation*}
\varepsilon_{0} \oint \vec{E} \cdot d \vec{A}=\varepsilon_{0} \oint E d A=q_{\mathrm{enc}} \tag{23-8}
\end{equation*}
\]

Here \(q_{\mathrm{enc}}=q\). Because the field magnitude \(E\) is the same at every patch element, \(E\) can be pulled outside the integral:
\[
\begin{equation*}
\varepsilon_{0} E \oint d A=q \tag{23-9}
\end{equation*}
\]

The remaining integral is just an instruction to sum all the areas of the patch elements on the sphere, but we already know that the total area is \(4 \pi r^{2}\). Substituting this, we have
or
\[
\begin{align*}
& \varepsilon_{0} E\left(4 \pi r^{2}\right)=q \\
& E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}} . \tag{23-10}
\end{align*}
\]

This is exactly Eq. 22-3, which we found using Coulomb's law.

\section*{Checkpoint 3}

There is a certain net flux \(\Phi_{i}\) through a Gaussian sphere of radius \(r\) enclosing an isolated charged particle. Suppose the enclosing Gaussian surface is changed to (a) a larger Gaussian sphere, (b) a Gaussian cube with edge length equal to \(r\), and (c) a Gaussian cube with edge length equal to \(2 r\). In each case, is the net flux through the new Gaussian surface greater than, less than, or equal to \(\Phi_{i}\) ?

\section*{Sample Problem 23.03 Using Gauss' law to find the electric field}

Figure 23-10a shows, in cross section, a plastic, spherical shell with uniform charge \(Q=-16 e\) and radius \(R=10 \mathrm{~cm}\). A particle with charge \(q=+5 e\) is at the center. What is the electric field (magnitude and direction) at (a) point \(P_{1}\) at radial distance \(r_{1}=\) 6.00 cm and (b) point \(P_{2}\) at radial distance \(r_{2}=12.0 \mathrm{~cm}\) ?

\section*{KEY IDEAS}
(1) Because the situation in Fig. 23-10a has spherical symmetry, we can apply Gauss' law (Eq. 23-7) to find the electric field at a point if we use a Gaussian surface in the form of a sphere concentric with the particle and shell. (2) To find the electric field at a point, we put that point on a Gaussian surface (so that the \(\vec{E}\) we want is the \(\vec{E}\) in the dot product inside the integral in Gauss' law). (3) Gauss' law relates the net electric flux through a closed surface to the net enclosed charge. Any external charge is not included.

Calculations: To find the field at point \(P_{1}\), we construct a Gaussian sphere with \(P_{1}\) on its surface and thus with a radius of \(r_{1}\). Because the charge enclosed by the Gaussian sphere is positive, the electric flux through the surface must be positive and thus outward. So, the electric field \(\vec{E}\) pierces the surface outward and, because of the spherical symmetry, must be radially outward, as drawn in Fig. 23-10b. That figure does not include the plastic shell because the shell is not enclosed by the Gaussian sphere.

Consider a patch element on the sphere at \(P_{1}\). Its area vector \(d \vec{A}\) is radially outward (it must always be outward from a Gaussian surface). Thus the angle \(\theta\) between \(\vec{E}\) and \(d \vec{A}\) is zero. We can now rewrite the left side of Eq. 23-7 (Gauss' law) as
\(\varepsilon_{0} \oint \vec{E} \cdot d \vec{A}=\varepsilon_{0} \oint E \cos 0 d A=\varepsilon_{0} \oint E d A=\varepsilon_{0} E \oint d A\),


Figure 23-10 (a) A charged plastic spherical shell encloses a charged particle. (b) To find the electric field at \(P_{1}\), arrange for the point to be on a Gaussian sphere. The electric field pierces outward. The area vector for the patch element is outward. (c) \(P_{2}\) is on a Gaussian sphere, \(\vec{E}\) is inward, and \(d \vec{A}\) is still outward.
where in the last step we pull the field magnitude \(E\) out of the integral because it is the same at all points on the Gaussian sphere and thus is a constant. The remaining integral is simply an instruction for us to sum the areas of all the patch elements on the sphere, but we already know that the surface area of a sphere is \(4 \pi r^{2}\). Substituting these results, Eq. 23-7 for Gauss' law gives us
\[
\varepsilon_{0} E 4 \pi r^{2}=q_{\mathrm{enc}} .
\]

The only charge enclosed by the Gaussian surface through \(P_{1}\) is that of the particle. Solving for \(E\) and substituting \(q_{\mathrm{enc}}=5 e\) and \(r=r_{1}=6.00 \times 10^{-2} \mathrm{~m}\), we find that the magnitude of the electric field at \(P_{1}\) is
\[
\begin{aligned}
E & =\frac{q_{\mathrm{enc}}}{4 \pi \varepsilon_{0} r^{2}} \\
& =\frac{5\left(1.60 \times 10^{-19} \mathrm{C}\right)}{4 \pi\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)(0.0600 \mathrm{~m})^{2}} \\
& =2.00 \times 10^{-6} \mathrm{~N} / \mathrm{C} .
\end{aligned}
\]
(Answer)
To find the electric field at \(P_{2}\), we follow the same procedure by constructing a Gaussian sphere with \(P_{2}\) on its surface. This time, however, the net charge enclosed by the sphere is \(q_{\mathrm{enc}}=q+Q=5 e+(-16 e)=-11 e\). Because the net charge is negative, the electric field vectors on the sphere's surface pierce inward (Fig. 23-10c), the angle \(\theta\) between \(\vec{E}\) and \(d \vec{A}\) is \(180^{\circ}\), and the dot product is \(E\left(\cos 180^{\circ}\right) d A=\) \(-E d A\). Now solving Gauss' law for \(E\) and substituting \(r=\) \(r_{2}=12.00 \times 10^{-2} \mathrm{~m}\) and the new \(q_{\text {enc }}\), we find
\[
\begin{aligned}
E & =\frac{-q_{\mathrm{enc}}}{4 \pi \varepsilon_{0} r^{2}} \\
& =\frac{-\left[-11\left(1.60 \times 10^{-19} \mathrm{C}\right)\right]}{4 \pi\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)(0.120 \mathrm{~m})^{2}} \\
& =1.10 \times 10^{-6} \mathrm{~N} / \mathrm{C} .
\end{aligned}
\]
(Answer)
Note how different the calculations would have been if we had put \(P_{1}\) or \(P_{2}\) on the surface of a Gaussian cube instead of mimicking the spherical symmetry with a Gaussian sphere. Then angle \(\theta\) and magnitude \(E\) would have varied considerably over the surface of the cube and evaluation of the integral in Gauss' law would have been difficult.

\section*{Sample Problem 23.04 Using Gauss' law to find the enclosed charge}

What is the net charge enclosed by the Gaussian cube of Sample Problem 23.02?

\section*{KEY IDEA}

The net charge enclosed by a (real or mathematical) closed surface is related to the total electric flux through the surface by Gauss' law as given by Eq. 23-6 ( \(\varepsilon_{0} \Phi=q_{\text {enc }}\) ).

Flux: To use Eq. 23-6, we need to know the flux through all six faces of the cube. We already know the flux through the right face \(\left(\Phi_{r}=36 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}\right)\), the left face \(\left(\Phi_{l}=-12\right.\) \(\left.\mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{C}\right)\), and the top face ( \(\left.\Phi_{t}=16 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}\right)\).

For the bottom face, our calculation is just like that for the top face except that the element area vector \(d \vec{A}\) is now directed downward along the \(y\) axis (recall, it must be outward from the Gaussian enclosure). Thus, we have
\(d \vec{A}=-d A \hat{\mathrm{j}}\), and we find
\[
\Phi_{b}=-16 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C} .
\]

For the front face we have \(d \vec{A}=d A \hat{\mathrm{k}}\), and for the back face, \(d \vec{A}=-d A \hat{\mathrm{k}}\). When we take the dot product of the given electric field \(\vec{E}=3.0 x \hat{\mathrm{i}}+4.0 \hat{\mathrm{j}}\) with either of these expressions for \(d \vec{A}\), we get 0 and thus there is no flux through those faces. We can now find the total flux through the six sides of the cube:
\[
\begin{aligned}
\Phi & =(36-12+16-16+0+0) \mathrm{N} \cdot \mathrm{~m}^{2} / \mathrm{C} \\
& =24 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}
\end{aligned}
\]

Enclosed charge: Next, we use Gauss' law to find the charge \(q_{\text {enc }}\) enclosed by the cube:
\[
\begin{aligned}
q_{\mathrm{enc}} & =\varepsilon_{0} \Phi=\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)\left(24 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}\right) \\
& =2.1 \times 10^{-10} \mathrm{C} . \quad \text { (Answer) }
\end{aligned}
\]

Thus, the cube encloses a net positive charge.

\section*{23-3 a charged isolated conductor}

\section*{Learning Objectives}

After reading this module, you should be able to ...
23.14 Apply the relationship between surface charge density \(\sigma\) and the area over which the charge is uniformly spread.
23.15 Identify that if excess charge (positive or negative) is placed on an isolated conductor, that charge moves to the surface and none is in the interior.
23.16 Identify the value of the electric field inside an isolated conductor.
23.17 For a conductor with a cavity that contains a charged
object, determine the charge on the cavity wall and on the external surface.
23.18 Explain how Gauss' law is used to find the electric field magnitude \(E\) near an isolated conducting surface with a uniform surface charge density \(\sigma\).
23.19 For a uniformly charged conducting surface, apply the relationship between the charge density \(\sigma\) and the electric field magnitude \(E\) at points near the conductor, and identify the direction of the field vectors.

\section*{Key Ideas}
- An excess charge on an isolated conductor is located entirely on the outer surface of the conductor.
- The internal electric field of a charged, isolated conductor is zero, and the external field (at nearby points) is perpendicu-
lar to the surface and has a magnitude that depends on the surface charge density \(\sigma\) :
\[
E=\frac{\sigma}{\varepsilon_{0}}
\]

(a)

(b)

Figure 23-11 (a) A lump of copper with a charge \(q\) hangs from an insulating thread. A Gaussian surface is placed within the metal, just inside the actual surface. (b) The lump of copper now has a cavity within it. A Gaussian surface lies within the metal, close to the cavity surface.

\section*{A Charged Isolated Conductor}

Gauss' law permits us to prove an important theorem about conductors:

If an excess charge is placed on an isolated conductor, that amount of charge will move entirely to the surface of the conductor. None of the excess charge will be found within the body of the conductor.

This might seem reasonable, considering that charges with the same sign repel one another. You might imagine that, by moving to the surface, the added charges are getting as far away from one another as they can. We turn to Gauss' law for verification of this speculation.

Figure 23-11a shows, in cross section, an isolated lump of copper hanging from an insulating thread and having an excess charge \(q\). We place a Gaussian surface just inside the actual surface of the conductor.

The electric field inside this conductor must be zero. If this were not so, the field would exert forces on the conduction (free) electrons, which are always present in a conductor, and thus current would always exist within a conductor. (That is, charge would flow from place to place within the conductor.) Of course, there is no such perpetual current in an isolated conductor, and so the internal electric field is zero.
(An internal electric field does appear as a conductor is being charged. However, the added charge quickly distributes itself in such a way that the net internal electric field-the vector sum of the electric fields due to all the charges, both inside and outside - is zero. The movement of charge then ceases, because the net force on each charge is zero; the charges are then in electrostatic equilibrium.)

If \(\vec{E}\) is zero everywhere inside our copper conductor, it must be zero for all points on the Gaussian surface because that surface, though close to the surface of the conductor, is definitely inside the conductor. This means that the flux through the Gaussian surface must be zero. Gauss' law then tells us that the net charge inside the Gaussian surface must also be zero. Then because the excess charge is not inside the Gaussian surface, it must be outside that surface, which means it must lie on the actual surface of the conductor.

\section*{An Isolated Conductor with a Cavity}

Figure \(23-11 b\) shows the same hanging conductor, but now with a cavity that is totally within the conductor. It is perhaps reasonable to suppose that when we scoop out the electrically neutral material to form the cavity, we do not change the distribution of charge or the pattern of the electric field that exists in Fig. 23-11a. Again, we must turn to Gauss' law for a quantitative proof.

We draw a Gaussian surface surrounding the cavity, close to its surface but inside the conducting body. Because \(\vec{E}=0\) inside the conductor, there can be no flux through this new Gaussian surface. Therefore, from Gauss' law, that surface can enclose no net charge. We conclude that there is no net charge on the cavity walls; all the excess charge remains on the outer surface of the conductor, as in Fig. 23-11a.

\section*{The Conductor Removed}

Suppose that, by some magic, the excess charges could be "frozen" into position on the conductor's surface, perhaps by embedding them in a thin plastic coating, and suppose that then the conductor could be removed completely. This is equivalent to enlarging the cavity of Fig. 23-11b until it consumes the entire conductor, leaving only the charges. The electric field would not change at all; it would remain zero inside the thin shell of charge and would remain unchanged for all external points. This shows us that the electric field is set up by the charges and not by the conductor. The conductor simply provides an initial pathway for the charges to take up their positions.

\section*{The External Electric Field}

You have seen that the excess charge on an isolated conductor moves entirely to the conductor's surface. However, unless the conductor is spherical, the charge does not distribute itself uniformly. Put another way, the surface charge density \(\sigma\) (charge per unit area) varies over the surface of any nonspherical conductor. Generally, this variation makes the determination of the electric field set up by the surface charges very difficult.

However, the electric field just outside the surface of a conductor is easy to determine using Gauss' law. To do this, we consider a section of the surface that is small enough to permit us to neglect any curvature and thus to take the section to be flat. We then imagine a tiny cylindrical Gaussian surface to be partially embedded in the section as shown in Fig. 23-12: One end cap is fully inside the conductor, the other is fully outside, and the cylinder is perpendicular to the conductor's surface.

The electric field \(\vec{E}\) at and just outside the conductor's surface must also be perpendicular to that surface. If it were not, then it would have a component along the conductor's surface that would exert forces on the surface charges, causing them to move. However, such motion would violate our implicit assumption that we are dealing with electrostatic equilibrium. Therefore, \(\vec{E}\) is perpendicular to the conductor's surface.

We now sum the flux through the Gaussian surface. There is no flux through the internal end cap, because the electric field within the conductor is zero. There is no flux through the curved surface of the cylinder, because internally (in the conductor) there is no electric field and externally the electric field is parallel to the curved portion of the Gaussian surface. The only flux through the Gaussian surface is that through the external end cap, where \(\vec{E}\) is perpendicular to the plane of the cap. We assume that the cap area \(A\) is small enough that the field magnitude \(E\) is constant over the cap. Then the flux through the cap is \(E A\), and that is the net flux \(\Phi\) through the Gaussian surface.

The charge \(q_{\text {enc }}\) enclosed by the Gaussian surface lies on the conductor's surface in an area \(A\). (Think of the cylinder as a cookie cutter.) If \(\sigma\) is the charge per unit area, then \(q_{\text {enc }}\) is equal to \(\sigma A\). When we substitute \(\sigma A\) for \(q_{\text {enc }}\) and \(E A\) for \(\Phi\),

(b)

Figure 23-12 (a) Perspective view and (b) side view of a tiny portion of a large, isolated conductor with excess positive charge on its surface. A (closed) cylindrical Gaussian surface, embedded perpendicularly in the conductor, encloses some of the charge. Electric field lines pierce the external end cap of the cylinder, but not the internal end cap. The external end cap has area \(A\) and area vector \(\vec{A}\).

Gauss' law (Eq. 23-6) becomes
\[
\varepsilon_{0} E A=\sigma A
\]
from which we find
\[
\begin{equation*}
E=\frac{\sigma}{\varepsilon_{0}} \quad \text { (conducting surface). } \tag{23-11}
\end{equation*}
\]

Thus, the magnitude of the electric field just outside a conductor is proportional to the surface charge density on the conductor. The sign of the charge gives us the direction of the field. If the charge on the conductor is positive, the electric field is directed away from the conductor as in Fig. 23-12. It is directed toward the conductor if the charge is negative.

The field lines in Fig. 23-12 must terminate on negative charges somewhere in the environment. If we bring those charges near the conductor, the charge density at any given location on the conductor's surface changes, and so does the magnitude of the electric field. However, the relation between \(\sigma\) and \(E\) is still given by Eq. 23-11.

\section*{Sample Problem 23.05 Spherical metal shell, electric field and enclosed charge}

Figure 23-13a shows a cross section of a spherical metal shell of inner radius \(R\). A particle with a charge of \(-5.0 \mu \mathrm{C}\) is located at a distance \(R / 2\) from the center of the shell. If the shell is electrically neutral, what are the (induced) charges on its inner and outer surfaces? Are those charges uniformly distributed? What is the field pattern inside and outside the shell?

\section*{KEY IDEAS}

Figure \(23-13 b\) shows a cross section of a spherical Gaussian surface within the metal, just outside the inner wall of the shell. The electric field must be zero inside the metal (and thus on the Gaussian surface inside the metal). This means that the electric flux through the Gaussian surface must also be zero. Gauss' law then tells us that the net charge enclosed by the Gaussian surface must be zero.

Reasoning: With a particle of charge \(-5.0 \mu \mathrm{C}\) within the shell, a charge of \(+5.0 \mu \mathrm{C}\) must lie on the inner wall of the shell in order that the net enclosed charge be zero. If the particle were centered, this positive charge would be uniformly distributed along the inner wall. However, since the particle is off-center, the distribution of positive charge is skewed, as suggested by Fig. 23-13b, because the positive charge tends to collect on the section of the inner wall nearest the (negative) particle.

Because the shell is electrically neutral, its inner wall can have a charge of \(+5.0 \mu \mathrm{C}\) only if electrons, with a total charge of \(-5.0 \mu \mathrm{C}\), leave the inner wall and move to the outer wall. There they spread out uniformly, as is also suggested by Fig. 23-13b. This distribution of negative charge is


Figure 23-13 (a) A negatively charged particle is located within a spherical metal shell that is electrically neutral. (b) As a result, positive charge is nonuniformly distributed on the inner wall of the shell, and an equal amount of negative charge is uniformly distributed on the outer wall.
uniform because the shell is spherical and because the skewed distribution of positive charge on the inner wall cannot produce an electric field in the shell to affect the distribution of charge on the outer wall. Furthermore, these negative charges repel one another.

The field lines inside and outside the shell are shown approximately in Fig. 23-13b. All the field lines intersect the shell and the particle perpendicularly. Inside the shell the pattern of field lines is skewed because of the skew of the positive charge distribution. Outside the shell the pattern is the same as if the particle were centered and the shell were missing. In fact, this would be true no matter where inside the shell the particle happened to be located.

\section*{23-4 applying gauss' Law: cylindrical symmetry}

\section*{Learning Objectives}

After reading this module, you should be able to ...
23.20 Explain how Gauss' law is used to derive the electric field magnitude outside a line of charge or a cylindrical surface (such as a plastic rod) with a uniform linear charge density \(\lambda\).
23.21 Apply the relationship between linear charge density \(\lambda\)
on a cylindrical surface and the electric field magnitude \(E\) at radial distance \(r\) from the central axis.
23.22 Explain how Gauss' law can be used to find the electric field magnitude inside a cylindrical nonconducting surface (such as a plastic rod) with a uniform volume charge density \(\rho\).

\section*{Key Idea}
- The electric field at a point near an infinite line of charge (or charged rod) with uniform linear charge density \(\lambda\) is perpendicular to the line and has magnitude
\[
E=\frac{\lambda}{2 \pi \varepsilon_{0} r} \quad \text { (line of charge), }
\]
where \(r\) is the perpendicular distance from the line to the point.

\section*{Applying Gauss' Law: Cylindrical Symmetry}

Figure 23-14 shows a section of an infinitely long cylindrical plastic rod with a uniform charge density \(\lambda\). We want to find an expression for the electric field magnitude \(E\) at radius \(r\) from the central axis of the rod, outside the rod. We could do that using the approach of Chapter 22 (charge element \(d q\), field vector \(d \vec{E}\), etc.). However, Gauss' law gives a much faster and easier (and prettier) approach.

The charge distribution and the field have cylindrical symmetry. To find the field at radius \(r\), we enclose a section of the rod with a concentric Gaussian cylinder of radius \(r\) and height \(h\). (If you want the field at a certain point, put a Gaussian surface through that point.) We can now apply Gauss' law to relate the charge enclosed by the cylinder and the net flux through the cylinder's surface.

First note that because of the symmetry, the electric field at any point must be radially outward (the charge is positive). That means that at any point on the end caps, the field only skims the surface and does not pierce it. So, the flux through each end cap is zero.

To find the flux through the cylinder's curved surface, first note that for any patch element on the surface, the area vector \(d \vec{A}\) is radially outward (away from the interior of the Gaussian surface) and thus in the same direction as the field piercing the patch. The dot product in Gauss' law is then simply \(E d A \cos 0=E d A\), and we can pull \(E\) out of the integral. The remaining integral is just the instruction to sum the areas of all patch elements on the cylinder's curved surface, but we already know that the total area is the product of the cylinder's height \(h\) and circumference \(2 \pi r\). The net flux through the cylinder is then
\[
\Phi=E A \cos \theta=E(2 \pi r h) \cos 0=E(2 \pi r h) .
\]

On the other side of Gauss's law we have the charge \(q_{\text {enc }}\) enclosed by the cylinder. Because the linear charge density (charge per unit length, remember) is uniform, the enclosed charge is \(\lambda h\). Thus, Gauss' law,
\[
\begin{gather*}
\varepsilon_{0} \Phi=q_{\mathrm{enc}} \\
\text { reduces to } \\
\varepsilon_{0} E(2 \pi r h)=\lambda h, \\
\text { yielding }  \tag{23-12}\\
E=\frac{\lambda}{2 \pi \varepsilon_{0} r} \quad \text { (line of charge). }
\end{gather*}
\]

This is the electric field due to an infinitely long, straight line of charge, at a point that is a radial distance \(r\) from the line. The direction of \(\vec{E}\) is radially outward


Figure 23-14 A Gaussian surface in the form of a closed cylinder surrounds a section of a very long, uniformly charged, cylindrical plastic rod.
from the line of charge if the charge is positive, and radially inward if it is negative. Equation 23-12 also approximates the field of a finite line of charge at points that are not too near the ends (compared with the distance from the line).

If the rod has a uniform volume charge density \(\rho\), we could use a similar procedure to find the electric field magnitude inside the rod. We would just shrink the Gaussian cylinder shown in Fig. 23-14 until it is inside the rod. The charge \(q_{\text {enc }}\) enclosed by the cylinder would then be proportional to the volume of the rod enclosed by the cylinder because the charge density is uniform.

\section*{Sample Problem 23.06 Gauss' law and an upward streamer in a lightning storm}

Upward streamer in a lightning storm. The woman in Fig. 2315 was standing on a lookout platform high in the Sequoia National Park when a large storm cloud moved overhead. Some of the conduction electrons in her body were driven into the ground by the cloud's negatively charged base (Fig. 23-16a), leaving her positively charged. You can tell she was highly charged because her hair strands repelled one another and extended away from her along the electric field lines produced by the charge on her.

Lightning did not strike the woman, but she was in extreme danger because that


Courtesy NOAA
Figure 23-15 This woman has become positively charged by an overhead storm cloud. electric field was on the verge of causing electrical breakdown in the surrounding air. Such a breakdown would have occurred along a path extending away from her in what is called an upward streamer. An upward streamer is dangerous because the resulting ionization of molecules in the air suddenly frees a tremendous number of electrons from those molecules. Had the woman in Fig. 23-15 developed an upward streamer, the free electrons in the air would have moved to neutralize her (Fig. 23-16b), producing a large, perhaps fatal, charge flow through her body. That charge flow is dangerous because it could have interfered with or even stopped her breathing (which is obviously necessary for oxygen) and the steady beat of her heart (which is obviously necessary for the blood flow that carries the oxygen). The charge flow could also have caused burns.

Let's model her body as a narrow vertical cylinder of height \(L=1.8 \mathrm{~m}\) and radius \(R=0.10 \mathrm{~m}\) (Fig. 23-16c). Assume that charge \(Q\) was uniformly distributed along the cylinder and that electrical breakdown would have occurred if the electric
field magnitude along her body had exceeded the critical value \(E_{c}=2.4 \mathrm{MN} / \mathrm{C}\). What value of \(Q\) would have put the air along her body on the verge of breakdown?

\section*{KEY IDEA}

Because \(R \ll L\), we can approximate the charge distribution as a long line of charge. Further, because we assume that the charge is uniformly distributed along this line, we can approximate the magnitude of the electric field along the side of her body with Eq. 23-12 \(\left(E=\lambda / 2 \pi \varepsilon_{0} r\right)\).

Calculations: Substituting the critical value \(E_{c}\) for \(E\), the cylinder radius \(R\) for radial distance \(r\), and the ratio \(Q / L\) for linear charge density \(\lambda\), we have
\[
E_{c}=\frac{Q / L}{2 \pi \varepsilon_{0} R}
\]
or
\[
Q=2 \pi \varepsilon_{0} R L E_{c} .
\]

Substituting given data then gives us
\[
\begin{aligned}
Q= & (2 \pi)\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)(0.10 \mathrm{~m}) \\
& \times(1.8 \mathrm{~m})\left(2.4 \times 10^{6} \mathrm{~N} / \mathrm{C}\right) \\
= & 2.402 \times 10^{-5} \mathrm{C} \approx 24 \mu \mathrm{C}
\end{aligned}
\]
(Answer)


Figure 23-16 (a) Some of the conduction electrons in the woman's body are driven into the ground, leaving her positively charged. (b) An upward streamer develops if the air undergoes electrical breakdown, which provides a path for electrons freed from molecules in the air to move to the woman. (c) A cylinder represents the woman.

\section*{23-5 apPLYING GAUSS' LAW: PLANAR SYMMETRY}

\section*{Learning Objectives}

After reading this module, you should be able to ...
23.23 Apply Gauss' law to derive the electric field magnitude \(E\) near a large, flat, nonconducting surface with a uniform surface charge density \(\sigma\).
23.24 For points near a large, flat nonconducting surface with a uniform charge density \(\sigma\), apply the relationship be-

\section*{Key Ideas}
- The electric field due to an infinite nonconducting sheet with uniform surface charge density \(\sigma\) is perpendicular to the plane of the sheet and has magnitude
\[
E=\frac{\sigma}{2 \varepsilon_{0}} \quad \text { (nonconducting sheet of charge). }
\]
tween the charge density and the electric field magnitude \(E\) and also specify the direction of the field.
23.25 For points near two large, flat, parallel, conducting surfaces with a uniform charge density \(\sigma\), apply the relationship between the charge density and the electric field magnitude \(E\) and also specify the direction of the field.
- The external electric field just outside the surface of an isolated charged conductor with surface charge density \(\sigma\) is perpendicular to the surface and has magnitude
\[
E=\frac{\sigma}{\varepsilon_{0}} \quad \text { (external, charged conductor). }
\]

Inside the conductor, the electric field is zero.

\section*{Applying Gauss’ Law: Planar Symmetry}

\section*{Nonconducting Sheet}

Figure 23-17 shows a portion of a thin, infinite, nonconducting sheet with a uniform (positive) surface charge density \(\sigma\). A sheet of thin plastic wrap, uniformly charged on one side, can serve as a simple model. Let us find the electric field \(\vec{E}\) a distance \(r\) in front of the sheet.

A useful Gaussian surface is a closed cylinder with end caps of area \(A\), arranged to pierce the sheet perpendicularly as shown. From symmetry, \(\vec{E}\) must be perpendicular to the sheet and hence to the end caps. Furthermore, since the charge is positive, \(\vec{E}\) is directed away from the sheet, and thus the electric field lines pierce the two Gaussian end caps in an outward direction. Because the field lines do not pierce the curved surface, there is no flux through this portion of the Gaussian surface. Thus \(\vec{E} \cdot d \vec{A}\) is simply \(E d A\); then Gauss' law,
becomes
\[
\varepsilon_{0} \oint \vec{E} \cdot d \vec{A}=q_{\mathrm{enc}}
\]
where \(\sigma A\) is the charge enclosed by the Gaussian surface. This gives
\[
\begin{equation*}
E=\frac{\sigma}{2 \varepsilon_{0}} \quad \text { (sheet of charge). } \tag{23-13}
\end{equation*}
\]

Since we are considering an infinite sheet with uniform charge density, this result holds for any point at a finite distance from the sheet. Equation 23-13 agrees with Eq. 22-27, which we found by integration of electric field components.

Figure 23-17 (a) Perspective view and \((b)\) side view of a portion of a very large, thin plastic sheet, uniformly charged on one side to surface charge density \(\sigma\). A closed cylindrical Gaussian surface passes through the sheet and is perpendicular to it.


(b)


Figure 23-18 (a) A thin, very large conducting plate with excess positive charge. (b) An identical plate with excess negative charge. (c) The two plates arranged so they are parallel and close.

\section*{Two Conducting Plates}

Figure 23-18a shows a cross section of a thin, infinite conducting plate with excess positive charge. From Module 23-3 we know that this excess charge lies on the surface of the plate. Since the plate is thin and very large, we can assume that essentially all the excess charge is on the two large faces of the plate.

If there is no external electric field to force the positive charge into some particular distribution, it will spread out on the two faces with a uniform surface charge density of magnitude \(\sigma_{1}\). From Eq. 23-11 we know that just outside the plate this charge sets up an electric field of magnitude \(E=\sigma_{1} / \varepsilon_{0}\). Because the excess charge is positive, the field is directed away from the plate.

Figure \(23-18 b\) shows an identical plate with excess negative charge having the same magnitude of surface charge density \(\sigma_{1}\). The only difference is that now the electric field is directed toward the plate.

Suppose we arrange for the plates of Figs. 23-18a and \(b\) to be close to each other and parallel (Fig. 23-18c). Since the plates are conductors, when we bring them into this arrangement, the excess charge on one plate attracts the excess charge on the other plate, and all the excess charge moves onto the inner faces of the plates as in Fig. 23-18c. With twice as much charge now on each inner face, the new surface charge density (call it \(\sigma\) ) on each inner face is twice \(\sigma_{1}\). Thus, the electric field at any point between the plates has the magnitude
\[
\begin{equation*}
E=\frac{2 \sigma_{1}}{\varepsilon_{0}}=\frac{\sigma}{\varepsilon_{0}} \tag{23-14}
\end{equation*}
\]

This field is directed away from the positively charged plate and toward the negatively charged plate. Since no excess charge is left on the outer faces, the electric field to the left and right of the plates is zero.

Because the charges moved when we brought the plates close to each other, the charge distribution of the two-plate system is not merely the sum of the charge distributions of the individual plates.

One reason why we discuss seemingly unrealistic situations, such as the field set up by an infinite sheet of charge, is that analyses for "infinite" situations yield good approximations to many real-world problems. Thus, Eq. 23-13 holds well for a finite nonconducting sheet as long as we are dealing with points close to the sheet and not too near its edges. Equation 23-14 holds well for a pair of finite conducting plates as long as we consider points that are not too close to their edges. The trouble with the edges is that near an edge we can no longer use planar symmetry to find expressions for the fields. In fact, the field lines there are curved (said to be an edge effect or fringing), and the fields can be very difficult to express algebraically.

\section*{Sample Problem 23.07 Electric field near two parallel nonconducting sheets with charge}

Figure 23-19a shows portions of two large, parallel, nonconducting sheets, each with a fixed uniform charge on one side. The magnitudes of the surface charge densities are \(\sigma_{(+)}=6.8 \mu \mathrm{C} / \mathrm{m}^{2}\) for the positively charged sheet and \(\sigma_{(-)}=\) \(4.3 \mu \mathrm{C} / \mathrm{m}^{2}\) for the negatively charged sheet.

Find the electric field \(\vec{E}\) (a) to the left of the sheets, (b) between the sheets, and (c) to the right of the sheets.

\section*{KEY IDEA}

With the charges fixed in place (they are on nonconductors), we can find the electric field of the sheets in Fig. 23-19a by (1) finding the field of each sheet as if that sheet were isolated and (2) algebraically adding the fields of the isolated sheets


Figure 23-19 (a) Two large, parallel sheets, uniformly charged on one side. (b) The individual electric fields resulting from the two charged sheets. (c) The net field due to both charged sheets, found by superposition.

via the superposition principle. (We can add the fields algebraically because they are parallel to each other.)

Calculations: At any point, the electric field \(\vec{E}_{(+)}\)due to the positive sheet is directed away from the sheet and, from Eq. 23-13, has the magnitude
\[
\begin{aligned}
E_{(+)} & =\frac{\sigma_{(+)}}{2 \varepsilon_{0}}=\frac{6.8 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}}{(2)\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)} \\
& =3.84 \times 10^{5} \mathrm{~N} / \mathrm{C}
\end{aligned}
\]

Similarly, at any point, the electric field \(\vec{E}_{(-)}\)due to the negative sheet is directed toward that sheet and has the magnitude
\[
\begin{aligned}
E_{(-)} & =\frac{\sigma_{(-)}}{2 \varepsilon_{0}}=\frac{4.3 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}}{(2)\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)} \\
& =2.43 \times 10^{5} \mathrm{~N} / \mathrm{C}
\end{aligned}
\]

Figure 23-19b shows the fields set up by the sheets to the left of the sheets \((L)\), between them \((B)\), and to their right \((R)\).

The resultant fields in these three regions follow from the superposition principle. To the left, the field magnitude is
\[
\begin{aligned}
E_{L} & =E_{(+)}-E_{(-)} \\
& =3.84 \times 10^{5} \mathrm{~N} / \mathrm{C}-2.43 \times 10^{5} \mathrm{~N} / \mathrm{C} \\
& =1.4 \times 10^{5} \mathrm{~N} / \mathrm{C}
\end{aligned}
\]
(Answer)
Because \(E_{(+)}\)is larger than \(E_{(-)}\), the net electric field \(\vec{E}_{L}\) in this region is directed to the left, as Fig. 23-19c shows. To the right of the sheets, the net electric field has the same magnitude but is directed to the right, as Fig. 23-19c shows.

Between the sheets, the two fields add and we have
\[
\begin{aligned}
E_{B} & =E_{(+)}+E_{(-)} \\
& =3.84 \times 10^{5} \mathrm{~N} / \mathrm{C}+2.43 \times 10^{5} \mathrm{~N} / \mathrm{C} \\
& =6.3 \times 10^{5} \mathrm{~N} / \mathrm{C} .
\end{aligned}
\]
(Answer)
The electric field \(\vec{E}_{B}\) is directed to the right.
Additional examples, video, and practice available at WileyPLUS

\section*{23-6 APPLYING GAUSS' LAW: SPHERICAL SYMMETRY}

\section*{Learning Objectives}

After reading this module, you should be able to ...
23.26 Identify that a shell of uniform charge attracts or repels a charged particle that is outside the shell as if all the shell's charge is concentrated at the center of the shell.
23.27 Identify that if a charged particle is enclosed by a shell of uniform charge, there is no electrostatic force on the particle from the shell.
23.28 For a point outside a spherical shell with uniform
charge, apply the relationship between the electric field magnitude \(E\), the charge \(q\) on the shell, and the distance \(r\) from the shell's center.
23.29 Identify the magnitude of the electric field for points enclosed by a spherical shell with uniform charge.
23.30 For a uniform spherical charge distribution (a uniform ball of charge), determine the magnitude and direction of the electric field at interior and exterior points.

\section*{Key Ideas}
- Outside a spherical shell of uniform charge \(q\), the electric field due to the shell is radial (inward or outward, depending on the sign of the charge) and has the magnitude
\[
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}} \quad \text { (outside spherical shell), }
\]
where \(r\) is the distance to the point of measurement from the center of the shell. The field is the same as though all of the charge is concentrated as a particle at the center of the shell.
- Inside the shell, the field due to the shell is zero.
- Inside a sphere with a uniform volume charge density, the field is radial and has the magnitude
\[
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{R^{3}} r \quad \text { (inside sphere of charge) }
\]
where \(q\) is the total charge, \(R\) is the sphere's radius, and \(r\) is the radial distance from the center of the sphere to the point of measurement.

\section*{Applying Gauss' Law: Spherical Symmetry}

Here we use Gauss' law to prove the two shell theorems presented without proof in Module 21-1:

A shell of uniform charge attracts or repels a charged particle that is outside the shell as if all the shell's charge were concentrated at the center of the shell.


Figure 23-20 A thin, uniformly charged, spherical shell with total charge \(q\), in cross section. Two Gaussian surfaces \(S_{1}\) and \(S_{2}\) are also shown in cross section. Surface \(S_{2}\) encloses the shell, and \(S_{1}\) encloses only the empty interior of the shell.

(a)

(b) The flux through the surface depends on only the enclosed charge.

Figure 23-21 The dots represent a spherically symmetric distribution of charge of radius \(R\), whose volume charge density \(\rho\) is a function only of distance from the center. The charged object is not a conductor, and therefore the charge is assumed to be fixed in position. A concentric spherical Gaussian surface with \(r>R\) is shown in (a). A similar Gaussian surface with \(r<R\) is shown in (b).

Figure 23-20 shows a charged spherical shell of total charge \(q\) and radius \(R\) and two concentric spherical Gaussian surfaces, \(S_{1}\) and \(S_{2}\). If we followed the procedure of Module 23-2 as we applied Gauss' law to surface \(S_{2}\), for which \(r \geq R\), we would find that
\[
\begin{equation*}
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}} \quad(\text { spherical shell, field at } r \geq R) \tag{23-15}
\end{equation*}
\]

This field is the same as one set up by a particle with charge \(q\) at the center of the shell of charge. Thus, the force produced by a shell of charge \(q\) on a charged particle placed outside the shell is the same as if all the shell's charge is concentrated as a particle at the shell's center. This proves the first shell theorem.

Applying Gauss' law to surface \(S_{1}\), for which \(r<R\), leads directly to
\[
\begin{equation*}
E=0 \quad \text { (spherical shell, field at } r<R) \tag{23-16}
\end{equation*}
\]
because this Gaussian surface encloses no charge. Thus, if a charged particle were enclosed by the shell, the shell would exert no net electrostatic force on the particle. This proves the second shell theorem.

If a charged particle is located inside a shell of uniform charge, there is no electrostatic force on the particle from the shell.

Any spherically symmetric charge distribution, such as that of Fig. 23-21, can be constructed with a nest of concentric spherical shells. For purposes of applying the two shell theorems, the volume charge density \(\rho\) should have a single value for each shell but need not be the same from shell to shell. Thus, for the charge distribution as a whole, \(\rho\) can vary, but only with \(r\), the radial distance from the center. We can then examine the effect of the charge distribution "shell by shell."

In Fig. 23-21a, the entire charge lies within a Gaussian surface with \(r>R\). The charge produces an electric field on the Gaussian surface as if the charge were that of a particle located at the center, and Eq. 23-15 holds.

Figure 23-21b shows a Gaussian surface with \(r<R\). To find the electric field at points on this Gaussian surface, we separately consider the charge inside it and the charge outside it. From Eq. 23-16, the outside charge does not set up a field on the Gaussian surface. From Eq. 23-15, the inside charge sets up a field as though it is concentrated at the center. Letting \(q^{\prime}\) represent that enclosed charge, we can then rewrite Eq. 23-15 as
\[
\begin{equation*}
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{\prime}}{r^{2}} \quad(\text { spherical distribution, field at } r \leq R) \tag{23-17}
\end{equation*}
\]

If the full charge \(q\) enclosed within radius \(R\) is uniform, then \(q^{\prime}\) enclosed within radius \(r\) in Fig. 23-21b is proportional to \(q\) :
\[
\frac{\binom{\text { charge enclosed by }}{\text { sphere of radius } r}}{\binom{\text { volume enclosed by }}{\text { sphere of radius } r}}=\frac{\text { full charge }}{\text { full volume }}
\]
\[
\begin{equation*}
\frac{q^{\prime}}{\frac{4}{3} \pi r^{3}}=\frac{q}{\frac{4}{3} \pi R^{3}} \tag{23-18}
\end{equation*}
\]

This gives us
\[
\begin{equation*}
q^{\prime}=q \frac{r^{3}}{R^{3}} \tag{23-19}
\end{equation*}
\]

Substituting this into Eq. 23-17 yields
\[
\begin{equation*}
E=\left(\frac{q}{4 \pi \varepsilon_{0} R^{3}}\right) r \quad(\text { uniform charge, field at } r \leq R) \tag{23-20}
\end{equation*}
\]

\section*{Checkpoint 4}

The figure shows two large, parallel, nonconducting sheets with identical (positive) uniform surface charge densities, and a sphere with a uniform (positive) volume charge density. Rank the four numbered points according to the magnitude of the net electric field there, greatest first.


\section*{8eview \& Summary}

Gauss' Law Gauss' law and Coulomb's law are different ways of describing the relation between charge and electric field in static situations. Gauss' law is
\[
\begin{equation*}
\varepsilon_{0} \Phi=q_{\mathrm{enc}} \quad(\text { Gauss' law }) \tag{23-6}
\end{equation*}
\]
in which \(q_{\text {enc }}\) is the net charge inside an imaginary closed surface (a Gaussian surface) and \(\Phi\) is the net flux of the electric field through the surface:
\[
\Phi=\oint \vec{E} \cdot d \vec{A} \quad \begin{align*}
& \text { (electric flux through a }  \tag{23-4}\\
& \text { Gaussian surface) }
\end{align*}
\]

Coulomb's law can be derived from Gauss' law.
Applications of Gauss' Law Using Gauss' law and, in some cases, symmetry arguments, we can derive several important results in electrostatic situations. Among these are:
1. An excess charge on an isolated conductor is located entirely on the outer surface of the conductor.
2. The external electric field near the surface of a charged conductor is perpendicular to the surface and has a magnitude that depends on the surface charge density \(\sigma\) :
\[
\begin{equation*}
E=\frac{\sigma}{\varepsilon_{0}} \quad \text { (conducting surface). } \tag{23-11}
\end{equation*}
\]

Within the conductor, \(E=0\).
3. The electric field at any point due to an infinite line of charge

\section*{Questions}

1 A surface has the area vector \(\vec{A}=(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}) \mathrm{m}^{2}\). What is the flux of a uniform electric field through the area if the field is (a) \(\vec{E}=4 \hat{\mathrm{i}} \mathrm{N} / \mathrm{C}\) and (b) \(\vec{E}=4 \hat{\mathrm{k}} \mathrm{N} / \mathrm{C}\) ?

2 Figure 23-22 shows, in cross section, three solid cylinders, each of length \(L\) and uniform charge \(Q\). Concentric with each cylinder is a cylindrical Gaussian surface, with all three surfaces having the same radius. Rank the Gaussian surfaces according to the electric field at any point on the surface, greatest first.


Figure 23-22 Question 2.
with uniform linear charge density \(\lambda\) is perpendicular to the line of charge and has magnitude
\[
\begin{equation*}
E=\frac{\lambda}{2 \pi \varepsilon_{0} r} \quad \text { (line of charge) } \tag{23-12}
\end{equation*}
\]
where \(r\) is the perpendicular distance from the line of charge to the point.
4. The electric field due to an infinite nonconducting sheet with uniform surface charge density \(\sigma\) is perpendicular to the plane of the sheet and has magnitude
\[
\begin{equation*}
E=\frac{\sigma}{2 \varepsilon_{0}} \quad \text { (sheet of charge) } \tag{23-13}
\end{equation*}
\]
5. The electric field outside a spherical shell of charge with radius \(R\) and total charge \(q\) is directed radially and has magnitude
\[
\begin{equation*}
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}} \quad(\text { spherical shell, for } r \geq R) \tag{23-15}
\end{equation*}
\]

Here \(r\) is the distance from the center of the shell to the point at which \(E\) is measured. (The charge behaves, for external points, as if it were all located at the center of the sphere.) The field inside a uniform spherical shell of charge is exactly zero:
\[
\begin{equation*}
E=0 \quad(\text { spherical shell, for } r<R) \tag{23-16}
\end{equation*}
\]
6. The electric field inside a uniform sphere of charge is directed radially and has magnitude
\[
\begin{equation*}
E=\left(\frac{q}{4 \pi \varepsilon_{0} R^{3}}\right) r . \tag{23-20}
\end{equation*}
\]

3 Figure 23-23 shows, in cross section, a central metal ball, two spherical metal shells, and three spherical Gaussian surfaces of radii \(R, 2 R\), and \(3 R\), all with the same center. The uniform charges on the three objects are: ball, \(Q\); smaller shell, \(3 Q\); larger shell, \(5 Q\). Rank the Gaussian surfaces according to the magnitude of the electric field at any point on the surface, greatest first.

Figure 23-23 Question 3.


4 Figure 23-24 shows, in cross section, two Gaussian spheres and two Gaussian cubes that are centered on a positively charged particle. (a) Rank the net flux through the four Gaussian surfaces, greatest first. (b) Rank the magnitudes of the electric fields on the surfaces, greatest first, and indicate whether the magnitudes are uniform or variable along each surface.
5 In Fig. 23-25, an electron is released between two infinite nonconducting sheets that are horizontal and have uniform surface charge densities \(\sigma_{(+)}\)and \(\sigma_{(-)}\), as indicated. The electron is subjected to the following three situations involving surface charge densities and sheet separations. Rank the magnitudes of the electron's acceleration, greatest first.
\begin{tabular}{cccc}
\hline Situation & \(\sigma_{(+)}\) & \(\sigma_{(-)}\) & Separation \\
\hline 1 & \(+4 \sigma\) & \(-4 \sigma\) & \(d\) \\
2 & \(+7 \sigma\) & \(-\sigma\) & \(4 d\) \\
3 & \(+3 \sigma\) & \(-5 \sigma\) & \(9 d\) \\
\hline
\end{tabular}


Figure 23-25 Question 5.

6 Three infinite nonconducting sheets, with uniform positive surface charge densities \(\sigma, 2 \sigma\), and \(3 \sigma\), are arranged to be parallel like the two sheets in Fig. 23-19a. What is their order, from left to right, if the electric field \(\vec{E}\) produced by the arrangement has magnitude \(E=0\) in one region and \(E=2 \sigma / \varepsilon_{0}\) in another region?
7 Figure 23-26 shows four situations in which four very long rods extend into and out of the page (we see only their cross sections). The value below each cross section gives that particular rod's uniform charge density in microcoulombs per meter. The rods are separated by either \(d\) or \(2 d\) as drawn, and a central point is shown midway between the inner rods. Rank the situations according to the magnitude of the net electric field at that central point, greatest first.
(a) \(\quad \underset{+3}{-}\)
(b)

(c) -O


Figure 23-26 Question 7.

8 Figure 23-27 shows four solid spheres, each with charge \(Q\) uniformly distributed through its volume. (a) Rank the spheres according to their volume charge density, greatest first. The figure also shows a point \(P\) for each sphere, all at the same distance from the center of the sphere. (b) Rank the spheres according to the magnitude of the electric field they produce at point \(P\), greatest first.


Figure 23-27 Question 8.
9 A small charged ball lies within the hollow of a metallic spherical shell of radius \(R\). For three situations, the net charges on the ball and shell, respectively, are (1) \(+4 q, 0\); (2) \(-6 q,+10 q\); (3) \(+16 q,-12 q\). Rank the situations according to the charge on (a) the inner surface of the shell and (b) the outer surface, most positive first.
10 Rank the situations of Question 9 according to the magnitude of the electric field (a) halfway through the shell and (b) at a point \(2 R\) from the center of the shell, greatest first.
11 Figure 23-28 shows a section of three long charged cylinders centered on the same axis. Central cylinder \(A\) has a uniform charge \(q_{A}=+3 q_{0}\). What uniform charges \(q_{B}\) and \(q_{C}\) should be on cylinders \(B\) and \(C\) so that (if possible) the net electric field is zero at (a) point \(1,(\mathrm{~b})\) point 2 , and (c) point 3 ?


Figure 23-28 Question 11.
12 Figure 23-29 shows four Gaussian surfaces consisting of identical cylindrical midsections but different end caps. The surfaces are in a uniform electric field \(\vec{E}\) that is directed parallel to the central axis of each cylindrical midsection. The end caps have these shapes: \(S_{1}\), convex hemispheres; \(S_{2}\), concave hemispheres; \(S_{3}\), cones; \(S_{4}\), flat disks. Rank the surfaces according to (a) the net electric flux through them and (b) the electric flux through the top end caps, greatest first.


\section*{©roblems}
\begin{tabular}{ll} 
Eo Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign \\
SSM & Worked-out solution available in Student Solutions Manual \\
- WWW Worked-out solution is at \\
Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com
\end{tabular}

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

\section*{Module 23-1 Electric Flux}
-1 SSm The square surface shown in Fig. 23-30 measures 3.2 mm on each side. It is immersed in a uniform electric field with magnitude \(E=1800 \mathrm{~N} / \mathrm{C}\) and with field lines at an angle of \(\theta=35^{\circ}\) with a normal to the surface, as shown. Take that normal to be directed "outward," as though the surface were one face of a box. Calculate the electric flux through the surface.
\(\because 2\) An electric field given by \(\vec{E}=4.0 \hat{\mathrm{i}}-3.0\left(y^{2}+2.0\right) \hat{\mathrm{j}}\) pierces a Gaussian cube of edge length 2.0 m and positioned as shown in Fig. 23-7. (The magnitude \(E\) is in newtons per coulomb and the position \(x\) is in meters.) What is the electric flux through the (a) top face, (b) bottom face, (c) left face, and (d) back face? (e) What is the net electric flux through the cube?
-03 The cube in Fig. 23-31 has edge length 1.40 m and is oriented as shown in a region of uniform electric field. Find the electric flux through the right face if the electric field, in newtons per coulomb, is given by (a) 6.00 \(\hat{\hat{i}}\), (b) \(-2.00 \hat{\mathrm{j}}\), and (c) \(-3.00 \hat{\mathrm{i}}+4.00 \hat{\mathrm{k}}\). (d) What is the total flux through the cube for each field?

\section*{Module 23-2 Gauss' Law}
-4 In Fig. 23-32, a butterfly net is in a uniform electric field of magnitude \(E=3.0 \mathrm{mN} / \mathrm{C}\). The rim, a circle of radius \(a=11 \mathrm{~cm}\), is aligned perpendicular to the field. The net contains no net charge. Find the electric flux through the netting.


Figure 23-32 Problem 4. -5 In Fig. 23-33, a proton is a distance \(d / 2\) directly above the center of a square of side \(d\). What is the magnitude of the electric flux through the square? (Hint:Think of the square as one face of a cube with edge \(d\).)

Figure 23-33 Problem 5.

-6 At each point on the surface of the cube shown in Fig. 23-31, the electric field is parallel to the \(z\) axis. The length of each edge of the cube is 3.0 m . On the top face of the cube the field is


Figure 23-30 Problem 1.


Figure 23-31 Problems 3, 6 , and 9.
\(\vec{E}=-34 \hat{\mathrm{k}} \mathrm{N} / \mathrm{C}\), and on the bottom face it is \(\vec{E}=+20 \hat{\mathrm{k}} \mathrm{N} / \mathrm{C}\). Determine the net charge contained within the cube.
-7 A particle of charge \(1.8 \mu \mathrm{C}\) is at the center of a Gaussian cube 55 cm on edge. What is the net electric flux through the surface?
\(\bullet 8\) When a shower is turned on in a closed bathroom, the splashing of the water on the bare tub can fill the room's air with negatively charged ions and produce an electric field in the air as great as \(1000 \mathrm{~N} / \mathrm{C}\). Consider a bathroom with dimensions \(2.5 \mathrm{~m} \times\) \(3.0 \mathrm{~m} \times 2.0 \mathrm{~m}\). Along the ceiling, floor, and four walls, approximate the electric field in the air as being directed perpendicular to the surface and as having a uniform magnitude of \(600 \mathrm{~N} / \mathrm{C}\). Also, treat those surfaces as forming a closed Gaussian surface around the room's air. What are (a) the volume charge density \(\rho\) and (b) the number of excess elementary charges \(e\) per cubic meter in the room's air?
-.9 ILw Fig. 23-31 shows a Gaussian surface in the shape of a cube with edge length 1.40 m . What are (a) the net flux \(\Phi\) through the surface and (b) the net charge \(q_{\text {enc }}\) enclosed by the surface if \(\vec{E}=(3.00 y \hat{j}) \mathrm{N} / \mathrm{C}\), with \(y\) in meters? What are (c) \(\Phi\) and (d) \(q_{\text {enc }}\) if \(\vec{E}=[-4.00 \hat{\mathrm{i}}+\) \((6.00+3.00 y) \hat{\mathrm{j}}] \mathrm{N} / \mathrm{C}\) ?
-10 Figure 23-34 shows a closed Gaussian surface in the shape of a cube of edge length 2.00 m . It lies in a region where the nonuniform electric field is given by \(\vec{E}=(3.00 x+\) \(4.00) \hat{\mathrm{i}}+6.00 \hat{\mathrm{j}}+7.00 \hat{\mathrm{k}} \mathrm{N} / \mathrm{C}\), with \(x\) in meters. What is the net charge contained by the cube?


Figure 23-34
Problem 10.
-11 © Figure \(23-35\) shows a closed Gaussian surface in the shape of a cube of edge length 2.00 m , with one corner at \(x_{1}=5.00 \mathrm{~m}, y_{1}=4.00\) m . The cube lies in a region where the electric field vector is given by \(\vec{E}=-3.00 \hat{\mathrm{i}}-4.00 y^{2} \hat{\mathrm{j}}+3.00 \hat{\mathrm{k}} \mathrm{N} / \mathrm{C}\), with \(y\) in meters. What is the net charge contained by the cube?


Figure 23-35 Problem 11.
-12 Figure 23-36 shows two nonconducting spherical shells fixed in place. Shell 1 has uniform surface charge density \(+6.0 \mu \mathrm{C} / \mathrm{m}^{2}\) on its outer surface and radius 3.0 cm ; shell 2 has uniform surface charge density \(+4.0 \mu \mathrm{C} / \mathrm{m}^{2}\) on its outer surface and radius 2.0 cm ; the shell centers are separated by \(L=10 \mathrm{~cm}\). In unit-vector notation, what is the net electric field at \(x=2.0 \mathrm{~cm}\) ?


Figure 23-36 Problem 12.
-•13 SSM The electric field in a certain region of Earth's atmosphere is directed vertically down. At an altitude of 300 m the field has magnitude \(60.0 \mathrm{~N} / \mathrm{C}\); at an altitude of 200 m , the magnitude is 100 N/C. Find the net amount of charge contained in a cube 100 m on edge, with horizontal faces at altitudes of 200 and 300 m .
-14 ©o Flux and nonconducting shells. A charged particle is suspended at the center of two concentric spherical shells that are very thin and made of nonconducting material. Figure 23-37a shows a cross section. Figure 23-37b gives the net flux \(\Phi\) through a Gaussian sphere centered on the particle, as a function of the radius \(r\) of the sphere. The scale of the vertical axis is set by \(\Phi_{s}=\) \(5.0 \times 10^{5} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}\). (a) What is the charge of the central particle? What are the net charges of (b) shell \(A\) and (c) shell \(B\) ?


Figure 23-37 Problem 14
-115 A particle of charge \(+q\) is placed at one corner of a Gaussian cube. What multiple of \(q / \varepsilon_{0}\) gives the flux through (a) each cube face forming that corner and (b) each of the other cube faces?
\(\because 0016\) The box-like Gaussian surface shown in Fig. 23-38 encloses a net charge of \(+24.0 \varepsilon_{0} \mathrm{C}\) and lies in an electric field given by \(\vec{E}=[(10.0+2.00 x) \hat{\mathrm{i}}-3.00 \hat{\mathrm{j}}+b z \hat{\mathrm{k}}] \mathrm{N} / \mathrm{C}\), with \(x\) and \(z\) in meters and \(b\) a constant. The bottom face is in the \(x z\) plane; the top face is in the horizontal plane passing through \(y_{2}=1.00 \mathrm{~m}\). For \(x_{1}=\) \(1.00 \mathrm{~m}, x_{2}=4.00 \mathrm{~m}, z_{1}=1.00 \mathrm{~m}\), and \(z_{2}=3.00 \mathrm{~m}\), what is \(b\) ?

Figure 23-38 Problem 16.


\section*{Module 23-3 A Charged Isolated Conductor}
\(\cdot 17\) SSM A uniformly charged conducting sphere of 1.2 m diameter has surface charge density \(8.1 \mu \mathrm{C} / \mathrm{m}^{2}\). Find (a) the net charge on the sphere and (b) the total electric flux leaving the surface.
-18 The electric field just above the surface of the charged conducting drum of a photocopying machine has a magnitude \(E\) of \(2.3 \times 10^{5} \mathrm{~N} / \mathrm{C}\). What is the surface charge density on the drum?
-19 Space vehicles traveling through Earth's radiation belts can intercept a significant number of electrons. The resulting charge buildup can damage electronic components and disrupt operations. Suppose a spherical metal satellite 1.3 m in diameter accumulates \(2.4 \mu \mathrm{C}\) of charge in one orbital revolution. (a) Find the resulting surface charge density. (b) Calculate the magnitude of the electric field just outside the surface of the satellite, due to the surface charge.
-20 © Flux and conducting shells. A charged particle is held at the center of two concentric conducting spherical shells. Figure 23-39a shows a cross section. Figure \(23-39 b\) gives the net flux \(\Phi\) through a Gaussian sphere centered on the particle, as a function of the radius \(r\) of the sphere. The scale of the vertical axis is set by \(\Phi_{s}=5.0 \times\) \(10^{5} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}\). What are (a) the charge of the central particle and the net charges of (b) shell \(A\) and (c) shell \(B\) ?


Figure 23-39 Problem 20.
-2 21 An isolated conductor has net charge \(+10 \times 10^{-6} \mathrm{C}\) and a cavity with a particle of charge \(q=+3.0 \times 10^{-6} \mathrm{C}\). What is the charge on (a) the cavity wall and (b) the outer surface?

\section*{Module 23-4 Applying Gauss' Law: Cylindrical Symmetry}
-22 An electron is released 9.0 cm from a very long nonconducting rod with a uniform \(6.0 \mu \mathrm{C} / \mathrm{m}\). What is the magnitude of the electron's initial acceleration?
-23 (a) The drum of a photocopying machine has a length of 42 cm and a diameter of 12 cm . The electric field just above the drum's surface is \(2.3 \times 10^{5} \mathrm{~N} / \mathrm{C}\). What is the total charge on the drum? (b) The manufacturer wishes to produce a desktop version of the machine. This requires reducing the drum length to 28 cm and the diameter to 8.0 cm . The electric field at the drum surface must not change. What must be the charge on this new drum?
-24 Figure 23-40 shows a section of a long, thin-walled metal tube of radius \(R=3.00 \mathrm{~cm}\), with a charge per unit length of \(\lambda=2.00 \times 10^{-8} \mathrm{C} / \mathrm{m}\). What is the magnitude \(E\) of the electric field at radial distance (a) \(r=R / 2.00\) and (b) \(r=2.00 R\) ? (c) Graph \(E\) versus \(r\) for the range \(r=0\) to 2.00R.
-25 SSM An infinite line of charge produces a field of magnitude \(4.5 \times\) \(10^{4} \mathrm{~N} / \mathrm{C}\) at distance 2.0 m . Find the


Figure 23-40 Problem 24. linear charge density.
-26 Figure 23-41a shows a narrow charged solid cylinder that is coaxial with a larger charged cylindrical shell. Both are noncon-
(a)



Figure 23-41 Problem 26.
ducting and thin and have uniform surface charge densities on their outer surfaces. Figure \(23-41 b\) gives the radial component \(E\) of the electric field versus radial distance \(r\) from the common axis, and \(E_{s}=3.0 \times 10^{3} \mathrm{~N} / \mathrm{C}\). What is the shell's linear charge density?
-27 ©0 A long, straight wire has fixed negative charge with a linear charge density of magnitude \(3.6 \mathrm{nC} / \mathrm{m}\). The wire is to be enclosed by a coaxial, thin-walled nonconducting cylindrical shell of radius 1.5 cm . The shell is to have positive charge on its outside surface with a surface charge density \(\sigma\) that makes the net external electric field zero. Calculate \(\sigma\).
\(\because 28\) (60 A charge of uniform linear density \(2.0 \mathrm{nC} / \mathrm{m}\) is distributed along a long, thin, nonconducting rod. The rod is coaxial with a long conducting cylindrical shell (inner radius \(=5.0 \mathrm{~cm}\), outer radius \(=\) 10 cm ). The net charge on the shell is zero. (a) What is the magnitude of the electric field 15 cm from the axis of the shell? What is the surface charge density on the (b) inner and (c) outer surface of the shell?
-229 SSM www Figure 23-42 is a section of a conducting rod of radius \(R_{1}=1.30 \mathrm{~mm}\) and length \(L=\) 11.00 m inside a thin-walled coaxial conducting cylindrical shell of radius \(R_{2}=10.0 R_{1}\) and the (same) length \(L\). The net charge on the rod is \(Q_{1}=+3.40 \times 10^{-12} \mathrm{C}\); that on the shell is \(Q_{2}=-2.00 Q_{1}\). What are the (a) magnitude \(E\) and (b) direction (radially inward or outward) of the electric field at radial distance \(r=2.00 R_{2}\) ? What are (c) \(E\) and (d) the direction at \(r=\) \(5.00 R_{1}\) ? What is the charge on the (e) interior and (f) exterior surface of the shell?
थ०30 In Fig. 23-43, short sections of two very long parallel lines of charge are shown, fixed in place, separated by \(L=8.0 \mathrm{~cm}\). The uniform linear charge densities are \(+6.0 \mu \mathrm{C} / \mathrm{m}\) for line 1 and -2.0 \(\mu \mathrm{C} / \mathrm{m}\) for line 2 . Where along the \(x\) axis shown is the net electric field from the two lines zero?


Figure 23-42 Problem 29. -031 ILw Two long, charged, thin-walled, concentric cylindrical shells have radii of 3.0 and 6.0 cm . The charge per unit length is \(5.0 \times 10^{-6} \mathrm{C} / \mathrm{m}\) on the inner shell and \(-7.0 \times 10^{-6} \mathrm{C} / \mathrm{m}\) on the outer shell. What are the (a) magnitude \(E\) and (b) direction (radially inward or outward) of the electric field at radial distance \(r=4.0 \mathrm{~cm}\) ? What are (c) \(E\) and (d) the direction at \(r=8.0 \mathrm{~cm}\) ?
-0032 © A long, nonconducting, solid cylinder of radius 4.0 cm has a nonuniform volume charge density \(\rho\) that is a function of radial distance \(r\) from the cylinder axis: \(\rho=\) \(A r^{2}\). For \(A=2.5 \mu \mathrm{C} / \mathrm{m}^{5}\), what is the magnitude of the electric field at (a) \(r=3.0 \mathrm{~cm}\) and (b) \(r=5.0 \mathrm{~cm}\) ?

\section*{Module 23-5 Applying Gauss'} Law: Planar Symmetry
-33 In Fig. 23-44, two large, thin metal plates are parallel and close to each other. On their inner faces,


Figure 23-44 Problem 33.
the plates have excess surface charge densities of opposite signs and magnitude \(7.00 \times 10^{-22} \mathrm{C} / \mathrm{m}^{2}\). In unit-vector notation, what is the electric field at points (a) to the left of the plates, (b) to the right of them, and (c) between them?
-34 In Fig. 23-45, a small circular hole of radius \(R=1.80 \mathrm{~cm}\) has been cut in the middle of an infinite, flat, nonconducting surface that has uniform charge density \(\sigma=4.50 \mathrm{pC} / \mathrm{m}^{2}\). A \(z\) axis, with its origin at the hole's center, is perpendicular to the surface. In unitvector notation, what is the electric field at point \(P\) at \(z=2.56 \mathrm{~cm}\) ? (Hint: See Eq. 22-26 and use superposition.)


Figure 23-45 Problem 34.
-35 ©0 Figure 23-46a shows three plastic sheets that are large, parallel, and uniformly charged. Figure \(23-46 b\) gives the component of the net electric field along an \(x\) axis through the sheets. The scale of the vertical axis is set by \(E_{s}=6.0 \times 10^{5} \mathrm{~N} / \mathrm{C}\). What is the ratio of the charge density on sheet 3 to that on sheet 2 ?

-36 Figure 23-47 shows cross sections through two large, parallel, nonconducting sheets with identical distributions of positive charge with surface charge density \(\sigma=1.77 \times 10^{-22} \mathrm{C} / \mathrm{m}^{2}\). In unit-vector notation, what is \(\vec{E}\) at points (a) above the sheets, (b) be-


Figure 23-47 Problem 36. tween them, and (c) below them?
-37 SSM www A square metal plate of edge length 8.0 cm and negligible thickness has a total charge of \(6.0 \times 10^{-6} \mathrm{C}\). (a) Estimate the magnitude \(E\) of the electric field just off the center of the plate (at, say, a distance of 0.50 mm from the center) by assuming that the charge is spread uniformly over the two faces of the plate. (b) Estimate \(E\) at a distance of 30 m (large relative to the plate size) by assuming that the plate is a charged particle.
-•38 ©5 In Fig. 23-48a, an electron is shot directly away from a uniformly charged plastic sheet, at speed \(v_{s}=2.0 \times 10^{5} \mathrm{~m} / \mathrm{s}\). The sheet is nonconducting, flat, and very large. Figure \(23-48 b\) gives the electron's vertical velocity component \(v\) versus time \(t\) until the return to the launch point. What is the sheet's surface charge density?


Figure 23-48 Problem 38.
-•39 SSM In Fig. 23-49, a small, nonconducting ball of mass \(m=1.0 \mathrm{mg}\) and charge \(q=2.0 \times\) \(10^{-8} \mathrm{C}\) (distributed uniformly through its volume) hangs from an insulating thread that makes an angle \(\theta=30^{\circ}\) with a vertical, uniformly charged nonconducting sheet (shown in cross section). Considering the gravitational force on the ball and assuming the sheet extends far vertically and into and out of the page, calculate the surface charge density \(\sigma\) of the sheet.
-•40 Figure 23-50 shows a very large nonconducting sheet that has a uniform surface charge density of \(\sigma=-2.00 \mu \mathrm{C} / \mathrm{m}^{2}\); it also shows a particle of charge \(Q=6.00 \mu \mathrm{C}\), at distance \(d\) from the sheet. Both are fixed in place. If \(d=0.200 \mathrm{~m}\), at what (a) positive and (b) negative coordinate on the \(x\) axis (other than infinity) is the net electric field \(\vec{E}_{\text {net }}\) of the sheet and particle zero? (c) If \(d=\) 0.800 m , at what coordinate on the \(x\) axis is \(\vec{E}_{\text {net }}=0\) ?
\(\because 41\) (60 An electron is shot directly


Figure 23-50 Problem 40. toward the center of a large metal plate that has surface charge density \(-2.0 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}\). If the initial kinetic energy of the electron is \(1.60 \times 10^{-17} \mathrm{~J}\) and if the electron is to stop (due to electrostatic repulsion from the plate) just as it reaches the plate, how far from the plate must the launch point be?
\(\bullet 42\) Two large metal plates of area \(1.0 \mathrm{~m}^{2}\) face each other, 5.0 cm apart, with equal charge magnitudes \(|q|\) but opposite signs. The field magnitude \(E\) between them (neglect fringing) is \(55 \mathrm{~N} / \mathrm{C}\). Find \(|q|\).
-•043 © Figure \(23-51\) shows a cross section through a very large nonconducting slab of thickness \(d=9.40 \mathrm{~mm}\) and uniform volume charge density \(\rho=5.80\) \(\mathrm{fC} / \mathrm{m}^{3}\). The origin of an \(x\) axis is at the slab's center. What is the magnitude of the slab's electric field at an \(x\) coordinate of (a) 0 , (b) 2.00 mm , (c) 4.70 mm , and (d) 26.0 mm ?


Figure 23-51 Problem 43.

Module 23-6 Applying Gauss' Law: Spherical Symmetry
-44 Figure 23-52 gives the magnitude of the electric field inside and outside a sphere with a positive charge distributed uniformly throughout its volume. The scale of the vertical axis is set by \(E_{s}=5.0 \times 10^{7} \mathrm{~N} / \mathrm{C}\). What is the charge on the sphere?


Figure 23-52 Problem 44.
-45 Two charged concentric spherical shells have radii 10.0 cm and 15.0 cm . The charge on the inner shell is \(4.00 \times 10^{-8} \mathrm{C}\), and that on the outer shell is \(2.00 \times 10^{-8} \mathrm{C}\). Find the electric field (a) at \(r=12.0 \mathrm{~cm}\) and (b) at \(r=20.0 \mathrm{~cm}\).
-46 Assume that a ball of charged particles has a uniformly distributed negative charge density except for a narrow radial tunnel through its center, from the surface on one side to the surface on the opposite side. Also assume that we can position a proton anywhere along the tunnel or outside the ball. Let \(F_{R}\) be the magnitude of the electrostatic force on the proton when it is located at the ball's surface, at radius \(R\). As a multiple of \(R\), how far from the surface is there a point where the force magnitude is \(0.50 F_{R}\) if we move the proton (a) away from the ball and (b) into the tunnel?
-47 SSM An unknown charge sits on a conducting solid sphere of radius 10 cm . If the electric field 15 cm from the center of the sphere has the magnitude \(3.0 \times 10^{3} \mathrm{~N} / \mathrm{C}\) and is directed radially inward, what is the net charge on the sphere?
0048 © A charged particle is held at the center of a spherical shell. Figure \(23-53\) gives the magnitude \(E\) of the electric field versus radial distance \(r\). The scale of the vertical axis is set by \(E_{s}=\) \(10.0 \times 10^{7} \mathrm{~N} / \mathrm{C}\). Approximately, what is the net charge on the shell?


Figure 23-53 Problem 48.
-049 In Fig. 23-54, a solid sphere of radius \(a=2.00 \mathrm{~cm}\) is concentric with a spherical conducting shell of inner radius \(b=2.00 a\) and outer radius \(c=\) \(2.40 a\). The sphere has a net uniform charge \(q_{1}=+5.00 \mathrm{fC}\); the shell has a net charge \(q_{2}=-q_{1}\). What is the magnitude of the electric field at radial distances (a) \(r=0\), (b) \(r=a / 2.00\), (c) \(r=a\), (d) \(r=1.50 a\), (e) \(r=2.30 a\), and (f) \(r=3.50 a\) ? What is the net charge on the (g) inner and (h) outer surface of the shell?


Figure 23-54 Problem 49.
-•50 ©o Figure 23-55 shows two nonconducting spherical shells fixed in place on an \(x\) axis. Shell 1 has uniform surface charge density \(+4.0 \mu \mathrm{C} / \mathrm{m}^{2}\) on its outer surface and radius 0.50 cm , and shell 2 has uniform surface charge density \(-2.0 \mu \mathrm{C} / \mathrm{m}^{2}\) on its outer surface and radius 2.0 cm ; the centers are separated by \(L=6.0 \mathrm{~cm}\). Other than at \(x=\infty\), where on the \(x\) axis is the net electric field equal to zero?
\(\bullet 51\) SSM Www In Fig. 23-56, a nonconducting spherical shell of inner radius \(a=2.00 \mathrm{~cm}\) and outer radius \(b=2.40 \mathrm{~cm}\) has (within its thickness) a positive volume charge density \(\rho=A / r\), where \(A\) is a constant and \(r\) is the distance from the center of the shell. In addition, a small ball of charge \(q=45.0 \mathrm{fC}\) is located at that center. What value should \(A\) have if the electric field in the shell \((a \leq r \leq\) \(b\) ) is to be uniform?
-•52 ©o Figure 23-57 shows a spherical shell with uniform volume charge density \(\rho=1.84 \mathrm{nC} / \mathrm{m}^{3}\), inner radius \(a=10.0 \mathrm{~cm}\), and outer radius \(b=\) \(2.00 a\). What is the magnitude of the electric field at radial distances (a) \(r=\) 0 ; (b) \(r=a / 2.00\), (c) \(r=a\), (d) \(r=\) \(1.50 a\), (e) \(r=b\), and (f) \(r=3.00 b\) ?
\(\bullet \bullet 53\) ILW The volume charge den-


Figure 23-55 Problem 50.


Figure 23-56 Problem 51.


Figure 23-57 Problem 52. sity of a solid nonconducting sphere of radius \(R=5.60 \mathrm{~cm}\) varies with radial distance \(r\) as given by \(\rho=\) ( \(14.1 \mathrm{pC} / \mathrm{m}^{3}\) )r/R. (a) What is the sphere's total charge? What is the field magnitude \(E\) at (b) \(r=0\), (c) \(r=R / 2.00\), and (d) \(r=R\) ? (e) Graph \(E\) versus \(r\).
\(\bullet \bullet 54\) Figure 23-58 shows, in cross section, two solid spheres with uniformly distributed charge throughout their volumes. Each has radius \(R\). Point \(P\) lies on a line connecting the centers of the spheres, at radial distance \(R / 2.00\) from the center of sphere 1 . If the net electric field at point \(P\) is zero, what is the ratio \(q_{2} / q_{1}\) of the total charges?
\(\cdots 55\) A charge distribution that is spherically symmetric but not uniform radially produces an electric field of magnitude \(E=K r^{4}\), directed radially outward from the center of the sphere. Here \(r\) is the radial distance from that center, and \(K\) is a constant. What is the volume density \(\rho\) of the charge distribution?

\section*{Additional Problems}

56 The electric field in a particular space is \(\vec{E}=(x+2) \hat{i} \mathrm{~N} / \mathrm{C}\), with \(x\) in meters. Consider a cylindrical Gaussian surface of radius 20 cm that is coaxial with the \(x\) axis. One end of the cylinder is at \(x=0\). (a) What is the magnitude of the electric flux through the other end of the cylinder at \(x=2.0 \mathrm{~m}\) ? (b) What net charge is enclosed within the cylinder?

57 A thin-walled metal spherical shell has radius 25.0 cm and charge \(2.00 \times 10^{-7} \mathrm{C}\). Find \(E\) for a point (a) inside the shell, (b) just outside it, and (c) 3.00 m from the center.
58 A uniform surface charge of density \(8.0 \mathrm{nC} / \mathrm{m}^{2}\) is distributed over the entire \(x y\) plane. What is the electric flux through a spherical Gaussian surface centered on the origin and having a radius of 5.0 cm ?
59 Charge of uniform volume density \(\rho=1.2 \mathrm{nC} / \mathrm{m}^{3}\) fills an infinite slab between \(x=-5.0 \mathrm{~cm}\) and \(x=+5.0 \mathrm{~cm}\). What is the magnitude of the electric field at any point with the coordinate (a) \(x=\) 4.0 cm and (b) \(x=6.0 \mathrm{~cm}\) ?

60 The chocolate crumb mystery. Explosions ignited by electrostatic discharges (sparks) constitute a serious danger in facilities handling grain or powder. Such an explosion occurred in chocolate crumb powder at a biscuit factory in the 1970s. Workers usually emptied newly delivered sacks of the powder into a loading bin, from which it was blown through electrically grounded plastic pipes to a silo for storage. Somewhere along this route, two conditions for an explosion were met: (1) The magnitude of an electric field became \(3.0 \times 10^{6} \mathrm{~N} / \mathrm{C}\) or greater, so that electrical breakdown and thus sparking could occur. (2) The energy of a spark was 150 mJ or greater so that it could ignite the powder explosively. Let us check for the first condition in the powder flow through the plastic pipes.

Suppose a stream of negatively charged powder was blown through a cylindrical pipe of radius \(R=5.0 \mathrm{~cm}\). Assume that the powder and its charge were spread uniformly through the pipe with a volume charge density \(\rho\). (a) Using Gauss' law, find an expression for the magnitude of the electric field \(\vec{E}\) in the pipe as a function of radial distance \(r\) from the pipe center. (b) Does \(E\) increase or decrease with increasing \(r\) ? (c) Is \(\vec{E}\) directed radially inward or outward? (d) For \(\rho=1.1 \times 10^{-3} \mathrm{C} / \mathrm{m}^{3}\) (a typical value at the factory), find the maximum \(E\) and determine where that maximum field occurs. (e) Could sparking occur, and if so, where? (The story continues with Problem 70 in Chapter 24.)
61 SSM A thin-walled metal spherical shell of radius \(a\) has a charge \(q_{a}\). Concentric with it is a thin-walled metal spherical shell of radius \(b>a\) and charge \(q_{b}\). Find the electric field at points a distance \(r\) from the common center, where (a) \(r<a\), (b) \(a<r<b\), and (c) \(r>b\). (d) Discuss the criterion you would use to determine how the charges are distributed on the inner and outer surfaces of the shells.
62 A particle of charge \(q=1.0 \times 10^{-7} \mathrm{C}\) is at the center of a spherical cavity of radius 3.0 cm in a chunk of metal. Find the electric field (a) 1.5 cm from the cavity center and (b) anyplace in the metal.
63 A proton at speed \(v=3.00 \times 10^{5} \mathrm{~m} / \mathrm{s}\) orbits at radius \(r=1.00 \mathrm{~cm}\) outside a charged sphere. Find the sphere's charge.

64 Equation 23-11 \(\left(E=\sigma / \varepsilon_{0}\right)\) gives the electric field at points near a charged conducting surface. Apply this equation to a conducting sphere of radius \(r\) and charge \(q\), and show that the electric field outside the sphere is the same as the field of a charged particle located at the center of the sphere.
65 Charge \(Q\) is uniformly distributed in a sphere of radius \(R\). (a) What fraction of the charge is contained within the radius \(r=R / 2.00\) ? (b) What is the ratio of the electric field magnitude at \(r=R / 2.00\) to that on the surface of the sphere?
66 A charged particle causes an electric flux of \(-750 \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}\) to pass through a spherical Gaussian surface of 10.0 cm radius centered on the charge. (a) If the radius of the Gaussian surface were
doubled, how much flux would pass through the surface? (b) What is the charge of the particle?
67 ssm The electric field at point \(P\) just outside the outer surface of a hollow spherical conductor of inner radius 10 cm and outer radius 20 cm has magnitude \(450 \mathrm{~N} / \mathrm{C}\) and is directed outward. When a particle of unknown charge \(Q\) is introduced into the center of the sphere, the electric field at \(P\) is still directed outward but is now \(180 \mathrm{~N} / \mathrm{C}\). (a) What was the net charge enclosed by the outer surface before \(Q\) was introduced? (b) What is charge \(Q\) ? After \(Q\) is introduced, what is the charge on the (c) inner and (d) outer surface of the conductor?

68 The net electric flux through each face of a die (singular of dice) has a magnitude in units of \(10^{3} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}\) that is exactly equal to the number of spots \(N\) on the face ( 1 through 6 ). The flux is inward for \(N\) odd and outward for \(N\) even. What is the net charge inside the die?

69 Figure 23-59 shows, in cross section, three infinitely large nonconducting sheets on which charge is uniformly spread. The surface charge densities are \(\sigma_{1}=+2.00\) \(\mu \mathrm{C} / \mathrm{m}^{2}, \quad \sigma_{2}=+4.00 \mu \mathrm{C} / \mathrm{m}^{2}\), and \(\sigma_{3}=-5.00 \mu \mathrm{C} / \mathrm{m}^{2}\), and distance \(L=1.50 \mathrm{~cm}\). In unitvector notation, what is the net electric field at point \(P\) ?


Figure 23-59 Problem 69.

70 Charge of uniform volume density \(\rho=3.2 \mu \mathrm{C} / \mathrm{m}^{3}\) fills a nonconducting solid sphere of radius 5.0 cm . What is the magnitude of the electric field (a) 3.5 cm and (b) 8.0 cm from the sphere's center?
71 A Gaussian surface in the form of a hemisphere of radius \(R=\) 5.68 cm lies in a uniform electric field of magnitude \(E=2.50 \mathrm{~N} / \mathrm{C}\). The surface encloses no net charge. At the (flat) base of the surface, the field is perpendicular to the surface and directed into the surface. What is the flux through (a) the base and (b) the curved portion of the surface?
72 What net charge is enclosed by the Gaussian cube of Problem 2?

73 A nonconducting solid sphere has a uniform volume charge density \(\rho\). Let \(\vec{r}\) be the vector from the center of the sphere to a general point \(P\) within the sphere. (a) Show that the electric field at \(P\) is given by \(\vec{E}=\rho \vec{r} / 3 \varepsilon_{0}\). (Note that the result is independent of the radius of the sphere.) (b) A spherical cavity is hollowed out of the sphere, as shown in Fig. 2360. Using superposition concepts, show that the electric field at all points within the cavity


Figure 23-60 Problem 73. is uniform and equal to \(\vec{E}=\rho \vec{a} / 3 \varepsilon_{0}\), where \(\vec{a}\) is the position vector from the center of the sphere to the center of the cavity.

74 A uniform charge density of \(500 \mathrm{nC} / \mathrm{m}^{3}\) is distributed throughout a spherical volume of radius 6.00 cm . Consider a cubical Gaussian surface with its center at the center of the sphere. What is the electric flux through this cubical surface if its edge length is (a) 4.00 cm and (b) 14.0 cm ?

75 Figure 23-61 shows a Geiger counter, a device used to detect ionizing radiation, which causes ionization of atoms. A thin, posi-
tively charged central wire is surrounded by a concentric, circular, conducting cylindrical shell with an equal negative charge, creating a strong radial electric field. The shell contains a low-pressure inert gas. A particle of radiation entering the device through the shell wall ionizes a few of the gas atoms. The resulting free electrons (e) are drawn to the positive wire. However, the electric field is so intense that, between collisions with gas atoms, the free electrons gain energy sufficient to ionize these atoms also. More free electrons are thereby created, and the process is repeated until the electrons reach the wire. The resulting "avalanche" of electrons is col-

cylindrical shell
Figure 23-61 Problem 75. lected by the wire, generating a signal that is used to record the passage of the original particle of radiation. Suppose that the radius of the central wire is \(25 \mu \mathrm{~m}\), the inner radius of the shell 1.4 cm , and the length of the shell 16 cm . If the electric field at the shell's inner wall is \(2.9 \times 10^{4} \mathrm{~N} / \mathrm{C}\), what is the total positive charge on the central wire?

76 Charge is distributed uniformly throughout the volume of an infinitely long solid cylinder of radius \(R\). (a) Show that, at a distance \(r<\) \(R\) from the cylinder axis,
\[
E=\frac{\rho r}{2 \varepsilon_{0}}
\]
where \(\rho\) is the volume charge density. (b) Write an expression for \(E\) when \(r>R\).

77 SSM A spherical conducting shell has a charge of \(-14 \mu \mathrm{C}\) on its outer surface and a charged particle in its hollow. If the net charge on the shell is \(-10 \mu \mathrm{C}\), what is the charge (a) on the inner surface of the shell and (b) of the particle?
78 A charge of 6.00 pC is spread uniformly throughout the volume of a sphere of radius \(r=4.00 \mathrm{~cm}\). What is the magnitude of the electric field at a radial distance of (a) 6.00 cm and (b) 3.00 cm ?

79 Water in an irrigation ditch of width \(w=3.22 \mathrm{~m}\) and depth \(d=\) 1.04 m flows with a speed of \(0.207 \mathrm{~m} / \mathrm{s}\). The mass flux of the flowing water through an imaginary surface is the product of the water's density \(\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\) and its volume flux through that surface. Find the mass flux through the following imaginary surfaces: (a) a surface of area \(w d\), entirely in the water, perpendicular to the flow; (b) a surface with area \(3 w d / 2\), of which \(w d\) is in the water, perpendicular to the flow; (c) a surface of area \(w d / 2\), entirely in the water, perpendicular to the flow; (d) a surface of area \(w d\), half in the water and half out, perpendicular to the flow; (e) a surface of area \(w d\), entirely in the water, with its normal \(34.0^{\circ}\) from the direction of flow.
80 Charge of uniform surface density \(8.00 \mathrm{nC} / \mathrm{m}^{2}\) is distributed over an entire \(x y\) plane; charge of uniform surface density \(3.00 \mathrm{nC} / \mathrm{m}^{2}\) is distributed over the parallel plane defined by \(z=2.00 \mathrm{~m}\). Determine the magnitude of the electric field at any point having a \(z\) coordinate of (a) 1.00 m and (b) 3.00 m .
81 A spherical ball of charged particles has a uniform charge density. In terms of the ball's radius \(R\), at what radial distances (a) inside and (b) outside the ball is the magnitude of the ball's electric field equal to \(\frac{1}{4}\) of the maximum magnitude of that field?

\section*{Electric Potential}

\section*{24-1 electric potential}

\section*{Learning Objectives}

After reading this module, you should be able to ...
24.01 Identify that the electric force is conservative and thus has an associated potential energy.
24.02 Identify that at every point in a charged object's electric field, the object sets up an electric potential \(V\), which is a scalar quantity that can be positive or negative depending on the sign of the object's charge.
24.03 For a charged particle placed at a point in an object's electric field, apply the relationship between the object's electric potential \(V\) at that point, the particle's charge \(q\), and the potential energy \(U\) of the particle-object system.
24.04 Convert energies between units of joules and electron-volts.
24.05 If a charged particle moves from an initial point to a final point in an electric field, apply the relationships
between the change \(\Delta V\) in the potential, the particle's charge \(q\), the change \(\Delta U\) in the potential energy, and the work \(W\) done by the electric force.
24.06 If a charged particle moves between two given points in the electric field of a charged object, identify that the amount of work done by the electric force is path independent.
24.07 If a charged particle moves through a change \(\Delta V\) in electric potential without an applied force acting on it, relate \(\Delta V\) and the change \(\Delta K\) in the particle's kinetic energy.
24.08 If a charged particle moves through a change \(\Delta V\) in electric potential while an applied force acts on it, relate \(\Delta V\), the change \(\Delta K\) in the particle's kinetic energy, and the work \(W_{\text {app }}\) done by the applied force.

\section*{Key Ideas}
- The electric potential \(V\) at a point \(P\) in the electric field of a charged object is
\[
V=\frac{-W_{\infty}}{q_{0}}=\frac{U}{q_{0}},
\]
where \(W_{\infty}\) is the work that would be done by the electric force on a positive test charge \(q_{0}\) were it brought from an infinite distance to \(P\), and \(U\) is the electric potential energy that would then be stored in the test charge-object system.
- If a particle with charge \(q\) is placed at a point where the electric potential of a charged object is \(V\), the electric potential energy \(U\) of the particle-object system is
\[
U=q V
\]

If the particle moves through a potential difference \(\Delta V\), the change in the electric potential energy is
\[
\Delta U=q \Delta V=q\left(V_{f}-V_{i}\right)
\]
- If a particle moves through a change \(\Delta V\) in electric potential without an applied force acting on it, applying the conservation of mechanical energy gives the change in kinetic energy as
\[
\Delta K=-q \Delta V .
\]
- If, instead, an applied force acts on the particle, doing work \(W_{\text {app }}\), the change in kinetic energy is
\[
\Delta K=-q \Delta V+W_{\mathrm{app}}
\]
- In the special case when \(\Delta K=0\), the work of an applied force involves only the motion of the particle through a potential difference:
\[
W_{\mathrm{app}}=q \Delta V
\]

\section*{What Is Physics?}

One goal of physics is to identify basic forces in our world, such as the electric force we discussed in Chapter 21. A related goal is to determine whether a force is conservative-that is, whether a potential energy can be associated with it. The motivation for associating a potential energy with a force is that we can then


Figure 24-1 Particle 1 is located at point \(P\) in the electric field of particle 2.


Figure 24-2 (a) A test charge has been brought in from infinity to point \(P\) in the electric field of the rod. (b) We define an electric potential \(V\) at \(P\) based on the potential energy of the configuration in \((a)\).
apply the principle of the conservation of mechanical energy to closed systems involving the force. This extremely powerful principle allows us to calculate the results of experiments for which force calculations alone would be very difficult. Experimentally, physicists and engineers discovered that the electric force is conservative and thus has an associated electric potential energy. In this chapter we first define this type of potential energy and then put it to use.

For a quick taste, let's return to the situation we considered in Chapter 22: In Figure 24-1, particle 1 with positive charge \(q_{1}\) is located at point \(P\) near particle 2 with positive charge \(q_{2}\). In Chapter 22 we explained how particle 2 is able to push on particle 1 without any contact. To account for the force \(\vec{F}\) (which is a vector quantity), we defined an electric field \(\vec{E}\) (also a vector quantity) that is set up at \(P\) by particle 2 . That field exists regardless of whether particle 1 is at \(P\). If we choose to place particle 1 there, the push on it is due to charge \(q_{1}\) and that pre-existing field \(\vec{E}\).

Here is a related problem. If we release particle 1 at \(P\), it begins to move and thus has kinetic energy. Energy cannot appear by magic, so from where does it come? It comes from the electric potential energy \(U\) associated with the force between the two particles in the arrangement of Fig. 24-1. To account for the potential energy \(U\) (which is a scalar quantity), we define an electric potential \(V\) (also a scalar quantity) that is set up at \(P\) by particle 2 . The electric potential exists regardless of whether particle 1 is at \(P\). If we choose to place particle 1 there, the potential energy of the two-particle system is then due to charge \(q_{1}\) and that preexisting electric potential \(V\).

Our goals in this chapter are to (1) define electric potential, (2) discuss how to calculate it for various arrangements of charged particles and objects, and (3) discuss how electric potential \(V\) is related to electric potential energy \(U\).

\section*{Electric Potential and Electric Potential Energy}

We are going to define the electric potential (or potential for short) in terms of electric potential energy, so our first job is to figure out how to measure that potential energy. Back in Chapter 8, we measured gravitational potential energy \(U\) of an object by (1) assigning \(U=0\) for a reference configuration (such as the object at table level) and (2) then calculating the work \(W\) the gravitational force does if the object is moved up or down from that level. We then defined the potential energy as being
\[
\begin{equation*}
U=-W \quad \text { (potential energy). } \tag{24-1}
\end{equation*}
\]

Let's follow the same procedure with our new conservative force, the electric force. In Fig. 24-2a, we want to find the potential energy \(U\) associated with a positive test charge \(q_{0}\) located at point \(P\) in the electric field of a charged rod. First, we need a reference configuration for which \(U=0\). A reasonable choice is for the test charge to be infinitely far from the rod, because then there is no interaction with the rod. Next, we bring the test charge in from infinity to point \(P\) to form the configuration of Fig. 24-2a. Along the way, we calculate the work done by the electric force on the test charge. The potential energy of the final configuration is then given by Eq. 24-1, where \(W\) is now the work done by the electric force. Let's use the notation \(W_{\infty}\) to emphasize that the test charge is brought in from infinity. The work and thus the potential energy can be positive or negative depending on the sign of the rod's charge.

Next, we define the electric potential \(V\) at \(P\) in terms of the work done by the electric force and the resulting potential energy:
\[
\begin{equation*}
V=\frac{-W_{\infty}}{q_{0}}=\frac{U}{q_{0}} \quad \text { (electric potential). } \tag{24-2}
\end{equation*}
\]

That is, the electric potential is the amount of electric potential energy per unit charge when a positive test charge is brought in from infinity. The rod sets up this potential \(V\) at \(P\) regardless of whether the test charge (or anything else) happens to be there (Fig. 24-2b). From Eq. 24-2 we see that \(V\) is a scalar quantity (because there is no direction associated with potential energy or charge) and can be positive or negative (because potential energy and charge have signs).

Repeating this procedure we find that an electric potential is set up at every point in the rod's electric field. In fact, every charged object sets up electric potential \(V\) at points throughout its electric field. If we happen to place a particle with, say, charge \(q\) at a point where we know the pre-existing \(V\), we can immediately find the potential energy of the configuration:
\[
(\text { electric potential energy })=(\text { particle's charge })\left(\frac{\text { electric potential energy }}{\text { unit charge }}\right)
\]
\[
\begin{equation*}
\text { or } \quad U=q V \text {, } \tag{24-3}
\end{equation*}
\]
where \(q\) can be positive or negative.
Two Cautions. (1) The (now very old) decision to call \(V\) a potential was unfortunate because the term is easily confused with potential energy. Yes, the two quantities are related (that is the point here) but they are very different and not interchangeable. (2) Electric potential is a scalar, not a vector. (When you come to the homework problems, you will rejoice on this point.)

Language. A potential energy is a property of a system (or configuration) of objects, but sometimes we can get away with assigning it to a single object. For example, the gravitational potential energy of a baseball hit to outfield is actually a potential energy of the baseball-Earth system (because it is associated with the force between the baseball and Earth). However, because only the baseball noticeably moves (its motion does not noticeably affect Earth), we might assign the gravitational potential energy to it alone. In a similar way, if a charged particle is placed in an electric field and has no noticeable effect on the field (or the charged object that sets up the field), we usually assign the electric potential energy to the particle alone.

Units. The SI unit for potential that follows from Eq. 24-2 is the joule per coulomb. This combination occurs so often that a special unit, the volt (abbreviated V ), is used to represent it. Thus,
\[
1 \text { volt }=1 \text { joule per coulomb. }
\]

With two unit conversions, we can now switch the unit for electric field from newtons per coulomb to a more conventional unit:
\[
\begin{aligned}
1 \mathrm{~N} / \mathrm{C} & =\left(1 \frac{\mathrm{~N}}{\mathrm{C}}\right)\left(\frac{1 \mathrm{~V}}{1 \mathrm{~J} / \mathrm{C}}\right)\left(\frac{1 \mathrm{~J}}{1 \mathrm{~N} \cdot \mathrm{~m}}\right) \\
& =1 \mathrm{~V} / \mathrm{m}
\end{aligned}
\]

The conversion factor in the second set of parentheses comes from our definition of volt given above; that in the third set of parentheses is derived from the definition of the joule. From now on, we shall express values of the electric field in volts per meter rather than in newtons per coulomb.

\section*{Motion Through an Electric Field}

Change in Electric Potential. If we move from an initial point \(i\) to a second point \(f\) in the electric field of a charged object, the electric potential changes by
\[
\Delta V=V_{f}-V_{i}
\]

If we move a particle with charge \(q\) from \(i\) to \(f\), then, from Eq. 24-3, the potential energy of the system changes by
\[
\begin{equation*}
\Delta U=q \Delta V=q\left(V_{f}-V_{i}\right) \tag{24-4}
\end{equation*}
\]

The change can be positive or negative, depending on the signs of \(q\) and \(\Delta V\). It can also be zero, if there is no change in potential from \(i\) to \(f\) (the points have the same value of potential). Because the electric force is conservative, the change in potential energy \(\Delta U\) between \(i\) and \(f\) is the same for all paths between those points (it is path independent).

Work by the Field. We can relate the potential energy change \(\Delta U\) to the work \(W\) done by the electric force as the particle moves from \(i\) to \(f\) by applying the general relation for a conservative force (Eq. 8-1):
\[
\begin{equation*}
W=-\Delta U \quad \text { (work, conservative force }) \tag{24-5}
\end{equation*}
\]

Next, we can relate that work to the change in the potential by substituting from Eq. 24-4:
\[
\begin{equation*}
W=-\Delta U=-q \Delta V=-q\left(V_{f}-V_{i}\right) . \tag{24-6}
\end{equation*}
\]

Up until now, we have always attributed work to a force but here can also say that \(W\) is the work done on the particle by the electric field (because it, of course, produces the force). The work can be positive, negative, or zero. Because \(\Delta U\) between any two points is path independent, so is the work \(W\) done by the field. (If you need to calculate work for a difficult path, switch to an easier path-you get the same result.)

Conservation of Energy. If a charged particle moves through an electric field with no force acting on it other than the electric force due to the field, then the mechanical energy is conserved. Let's assume that we can assign the electric potential energy to the particle alone. Then we can write the conservation of mechanical energy of the particle that moves from point \(i\) to point \(f\) as
or
\[
\begin{align*}
U_{i}+K_{i} & =U_{f}+K_{f},  \tag{24-7}\\
\Delta K & =-\Delta U . \tag{24-8}
\end{align*}
\]

Substituting Eq. 24-4, we find a very useful equation for the change in the particle's kinetic energy as a result of the particle moving through a potential difference:
\[
\begin{equation*}
\Delta K=-q \Delta V=-q\left(V_{f}-V_{i}\right) \tag{24-9}
\end{equation*}
\]

Work by an Applied Force. If some force in addition to the electric force acts on the particle, we say that the additional force is an applied force or external force, which is often attributed to an external agent. Such an applied force can do work on the particle, but the force may not be conservative and thus, in general, we cannot associate a potential energy with it. We account for that work \(W_{\text {app }}\) by modifying Eq. 24-7:
\[
\begin{align*}
& \text { (initial energy) }+(\text { work by applied force })=(\text { final energy }) \\
& U_{i}+K_{i}+W_{\mathrm{app}}=U_{f}+K_{f} \tag{24-10}
\end{align*}
\]
or

The work by the applied force can be positive, negative, or zero, and thus the energy of the system can increase, decrease, or remain the same.

In the special case where the particle is stationary before and after the move, the kinetic energy terms in Eqs. 24-10 and 24-11 are zero and we have
\[
\begin{equation*}
W_{\mathrm{app}}=q \Delta V \quad\left(\text { for } K_{i}=K_{f}\right) . \tag{24-12}
\end{equation*}
\]

In this special case, the work \(W_{\text {app }}\) involves the motion of the particle through the potential difference \(\Delta V\) and not a change in the particle's kinetic energy.

By comparing Eqs. 24-6 and 24-12, we see that in this special case, the work by the applied force is the negative of the work by the field:
\[
\begin{equation*}
W_{\text {app }}=-W \quad\left(\text { for } K_{i}=K_{f}\right) . \tag{24-13}
\end{equation*}
\]

Electron-volts. In atomic and subatomic physics, energy measures in the SI unit of joules often require awkward powers of ten. A more convenient (but nonSI unit) is the electron-volt \((\mathrm{eV})\), which is defined to be equal to the work required to move a single elementary charge \(e\) (such as that of an electron or proton) through a potential difference \(\Delta V\) of exactly one volt. From Eq. 24-6, we see that the magnitude of this work is \(q \Delta V\).Thus,
\[
\begin{align*}
1 \mathrm{eV} & =e(1 \mathrm{~V}) \\
& =\left(1.602 \times 10^{-19} \mathrm{C}\right)(1 \mathrm{~J} / \mathrm{C})=1.602 \times 10^{-19} \mathrm{~J} \tag{24-14}
\end{align*}
\]

\section*{Checkpoint 1}

In the figure, we move a proton from point \(i\) to point \(f\) in a uniform electric field. Is positive or negative work done by (a) the electric field and (b) our force? (c) Does the electric potential energy increase or decrease? (d) Does the proton move to a point of higher or lower electric potential?


\section*{Sample Problem 24.01 Work and potential energy in an electric field}

Electrons are continually being knocked out of air molecules in the atmosphere by cosmic-ray particles coming in from space. Once released, each electron experiences an electric force \(\vec{F}\) due to the electric field \(\vec{E}\) that is produced in the atmosphere by charged particles already on Earth. Near Earth's surface the electric field has the magnitude \(E=150 \mathrm{~N} / \mathrm{C}\) and is directed downward. What is the change \(\Delta U\) in the electric potential energy of a released electron when the electric force causes it to move vertically upward through a distance \(d=520 \mathrm{~m}\) (Fig. 24-3)? Through what potential change does the electron move?

\section*{KEY IDEAS}
(1) The change \(\Delta U\) in the electric potential energy of the electron is related to the work \(W\) done on the electron by the electric field. Equation 24-5 \((W=-\Delta U)\) gives the relation. (2) The work done by a constant force \(\vec{F}\) on a particle undergoing a displacement \(\vec{d}\) is
\[
W=\vec{F} \cdot \vec{d}
\]
(3) The electric force and the electric field are related by the force equation \(\vec{F}=q \vec{E}\), where here \(q\) is the charge of an electron ( \(=-1.6 \times 10^{-19} \mathrm{C}\) ).
Calculations: Substituting the force equation into the work equation and taking the dot product yield
\[
W=q \vec{E} \cdot \vec{d}=q E d \cos \theta
\]


Figure 24-3 An electron in the atmosphere is moved upward through displacement \(\vec{d}\) by an electric force \(\vec{F}\) due to an electric field \(\vec{E}\).
where \(\theta\) is the angle between the directions of \(\vec{E}\) and \(\vec{d}\). The field \(\vec{E}\) is directed downward and the displacement \(\vec{d}\) is directed upward; so \(\theta=180^{\circ}\). We can now evaluate the work as
\[
\begin{aligned}
W & =\left(-1.6 \times 10^{-19} \mathrm{C}\right)(150 \mathrm{~N} / \mathrm{C})(520 \mathrm{~m}) \cos 180^{\circ} \\
& =1.2 \times 10^{-14} \mathrm{~J}
\end{aligned}
\]

Equation 24-5 then yields
\[
\Delta U=-W=-1.2 \times 10^{-14} \mathrm{~J}
\]
(Answer)
This result tells us that during the 520 m ascent, the electric potential energy of the electron decreases by \(1.2 \times 10^{-14} \mathrm{~J}\). To find the change in electric potential, we apply Eq. 24-4:
\[
\begin{aligned}
\Delta V & =\frac{\Delta U}{-q}=\frac{-1.2 \times 10^{-14} \mathrm{~J}}{-1.6 \times 10^{-19} \mathrm{C}} \\
& =4.5 \times 10^{4} \mathrm{~V}=45 \mathrm{kV}
\end{aligned}
\]
(Answer)
This tells us that the electric force does work to move the electron to a higher potential.

\section*{24-2 equipotential surfaces and the electric Field}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
24.09 Identify an equipotential surface and describe how it is related to the direction of the associated electric field.
24.10 Given an electric field as a function of position, calculate the change in potential \(\Delta V\) from an initial point to a final point by choosing a path between the points and integrating the dot product of the field \(\vec{E}\) and a length element \(d \vec{s}\) along the path.
24.11 For a uniform electric field, relate the field magnitude \(E\) and the separation \(\Delta x\) and potential difference \(\Delta V\) between adjacent equipotential lines.
24.12 Given a graph of electric field \(E\) versus position along an axis, calculate the change in potential \(\Delta V\) from an initial point to a final point by graphical integration.
24.13 Explain the use of a zero-potential location.

\section*{Key Ideas}
- The points on an equipotential surface all have the same electric potential. The work done on a test charge in moving it from one such surface to another is independent of the locations of the initial and final points on these surfaces and of the path that joins the points. The electric field \(\vec{E}\) is always directed perpendicularly to corresponding equipotential surfaces.
- The electric potential difference between two points \(i\) and \(f\) is
\[
V_{f}-V_{i}=-\int_{i}^{f} \vec{E} \cdot d \vec{s}
\]
where the integral is taken over any path connecting the points. If the integration is difficult along any particular path,
we can choose a different path along which the integration might be easier.
- If we choose \(V_{i}=0\), we have, for the potential at a particular point,
\[
V=-\int_{i}^{f} \vec{E} \cdot d \vec{s} .
\]

In a uniform field of magnitude \(E\), the change in potential from a higher equipotential surface to a lower one, separated by distance \(\Delta x\), is
\[
\Delta V=-E \Delta x
\]

Figure 24-4 Portions of four equipotential surfaces at electric potentials \(V_{1}=100 \mathrm{~V}\), \(V_{2}=80 \mathrm{~V}, V_{3}=60 \mathrm{~V}\), and \(V_{4}=40 \mathrm{~V}\). Four paths along which a test charge may move are shown. Two electric field lines are also indicated.

\section*{Equipotential Surfaces}

Adjacent points that have the same electric potential form an equipotential surface, which can be either an imaginary surface or a real, physical surface. No net work \(W\) is done on a charged particle by an electric field when the particle moves between two points \(i\) and \(f\) on the same equipotential surface. This follows from Eq. 24-6, which tells us that \(W\) must be zero if \(V_{f}=V_{i}\). Because of the path independence of work (and thus of potential energy and potential), \(W=0\) for any path connecting points \(i\) and \(f\) on a given equipotential surface regardless of whether that path lies entirely on that surface.

Figure 24-4 shows a family of equipotential surfaces associated with the electric field due to some distribution of charges. The work done by the electric field on a charged particle as the particle moves from one end to the other of paths


I and II is zero because each of these paths begins and ends on the same equipotential surface and thus there is no net change in potential. The work done as the charged particle moves from one end to the other of paths III and IV is not zero but has the same value for both these paths because the initial and final potentials are identical for the two paths; that is, paths III and IV connect the same pair of equipotential surfaces.

From symmetry, the equipotential surfaces produced by a charged particle or a spherically symmetrical charge distribution are a family of concentric spheres. For a uniform electric field, the surfaces are a family of planes perpendicular to the field lines. In fact, equipotential surfaces are always perpendicular to electric field lines and thus to \(\vec{E}\), which is always tangent to these lines. If \(\vec{E}\) were not perpendicular to an equipotential surface, it would have a component lying along that surface. This component would then do work on a charged particle as it moved along the surface. However, by Eq. \(24-6\) work cannot be done if the surface is truly an equipotential surface; the only possible conclusion is that \(\vec{E}\) must be everywhere perpendicular to the surface. Figure \(24-5\) shows electric field lines and cross sections of the equipotential surfaces for a uniform electric field and for the field associated with a charged particle and with an electric dipole.

\section*{Calculating the Potential from the Field}

We can calculate the potential difference between any two points \(i\) and \(f\) in an electric field if we know the electric field vector \(\vec{E}\) all along any path connecting those points. To make the calculation, we find the work done on a positive test charge by the field as the charge moves from \(i\) to \(f\), and then use Eq. 24-6.

Consider an arbitrary electric field, represented by the field lines in Fig. 24-6, and a positive test charge \(q_{0}\) that moves along the path shown from point \(i\) to point \(f\). At any point on the path, an electric force \(q_{0} \vec{E}\) acts on the charge as it moves through a differential displacement \(d \vec{s}\). From Chapter 7, we know that the differential work \(d W\) done on a particle by a force \(\vec{F}\) during a displacement \(d \vec{s}\) is given by the dot product of the force and the displacement:
\[
\begin{equation*}
d W=\vec{F} \cdot d \vec{s} \tag{24-15}
\end{equation*}
\]

For the situation of Fig. 24-6, \(\vec{F}=q_{0} \vec{E}\) and Eq. \(24-15\) becomes
\[
\begin{equation*}
d W=q_{0} \vec{E} \cdot d \vec{s} \tag{24-16}
\end{equation*}
\]

To find the total work \(W\) done on the particle by the field as the particle moves from point \(i\) to point \(f\), we sum - via integration - the differential works done on the charge as it moves through all the displacements \(d \vec{s}\) along the path:
\[
\begin{equation*}
W=q_{0} \int_{i}^{f} \vec{E} \cdot d \vec{s} . \tag{24-17}
\end{equation*}
\]

If we substitute the total work \(W\) from Eq. 24-17 into Eq. 24-6, we find
\[
\begin{equation*}
V_{f}-V_{i}=-\int_{i}^{f} \vec{E} \cdot d \vec{s} \tag{24-18}
\end{equation*}
\]

Figure 24-6 A test charge \(q_{0}\) moves from point \(i\) to point \(f\) along the path shown in a nonuniform electric field. During a displacement \(d \vec{s}\), an electric force \(q_{0} \vec{E}\) acts on the test charge. This force points in the direction of the field line at the location of the test charge.



Figure 24-5 Electric field lines (purple) and cross sections of equipotential surfaces (gold) for (a) a uniform electric field, (b) the field due to a charged particle, and \((c)\) the field due to an electric dipole.

Figure 24-7 We move between points \(i\) and \(f\), between adjacent equipotential lines in a uniform electric field \(\vec{E}\), parallel to a field line.


Thus, the potential difference \(V_{f}-V_{i}\) between any two points \(i\) and \(f\) in an electric field is equal to the negative of the line integral (meaning the integral along a particular path) of \(\vec{E} \cdot d \vec{s}\) from \(i\) to \(f\). However, because the electric force is conservative, all paths (whether easy or difficult to use) yield the same result.

Equation 24-18 allows us to calculate the difference in potential between any two points in the field. If we set potential \(V_{i}=0\), then Eq. \(24-18\) becomes
\[
\begin{equation*}
V=-\int_{i}^{f} \vec{E} \cdot d \vec{s} \tag{24-19}
\end{equation*}
\]
in which we have dropped the subscript \(f\) on \(V_{f}\). Equation 24-19 gives us the potential \(V\) at any point \(f\) in the electric field relative to the zero potential at point \(i\). If we let point \(i\) be at infinity, then Eq. 24-19 gives us the potential \(V\) at any point \(f\) relative to the zero potential at infinity.

Uniform Field. Let's apply Eq. 24-18 for a uniform field as shown in Fig. 24-7. We start at point \(i\) on an equipotential line with potential \(V_{i}\) and move to point \(f\) on an equipotential line with a lower potential \(V_{f}\). The separation between the two equipotential lines is \(\Delta x\). Let's also move along a path that is parallel to the electric field \(\vec{E}\) (and thus perpendicular to the equipotential lines). The angle between \(\vec{E}\) and \(d \vec{s}\) in Eq. 24-18 is zero, and the dot product gives us
\[
\vec{E} \cdot d \vec{s}=E d s \cos 0=E d s
\]

Because \(E\) is constant for a uniform field, Eq. 24-18 becomes
\[
\begin{equation*}
V_{f}-V_{i}=-E \int_{i}^{f} d s \tag{24-20}
\end{equation*}
\]

The integral is simply an instruction for us to add all the displacement elements \(d s\) from \(i\) to \(f\), but we already know that the sum is length \(\Delta x\). Thus we can write the change in potential \(V_{f}-V_{i}\) in this uniform field as
\[
\begin{equation*}
\Delta V=-E \Delta x \quad \text { (uniform field). } \tag{24-21}
\end{equation*}
\]

This is the change in voltage \(\Delta V\) between two equipotential lines in a uniform field of magnitude \(E\), separated by distance \(\Delta x\). If we move in the direction of the field by distance \(\Delta x\), the potential decreases. In the opposite direction, it increases.

The electric field vector points from higher potential toward lower potential.

\section*{Checkpoint 2}

The figure here shows a family of parallel equipotential surfaces (in cross section) and five paths along which we shall move an electron from one surface to another. (a) What is the direction of the electric field associated with the surfaces? (b) For each path, is the work we do positive, negative, or zero? (c) Rank the paths according to the work we do, greatest first.


\section*{Sample Problem 24.02 Finding the potential change from the electric field}
(a) Figure \(24-8 a\) shows two points \(i\) and \(f\) in a uniform electric field \(\vec{E}\). The points lie on the same electric field line (not shown) and are separated by a distance \(d\). Find the potential difference \(V_{f}-V_{i}\) by moving a positive test charge \(q_{0}\) from \(i\) to \(f\) along the path shown, which is parallel to the field direction.

\section*{KEY IDEA}

We can find the potential difference between any two points in an electric field by integrating \(\vec{E} \cdot d \vec{s}\) along a path connecting those two points according to Eq. 24-18.
Calculations: We have actually already done the calculation for such a path in the direction of an electric field line in a uniform field when we derived Eq. 24-21. With slight changes in notation, Eq. 24-21 gives us
\[
V_{f}-V_{i}=-E d
\]
(Answer)
(b) Now find the potential difference \(V_{f}-V_{i}\) by moving the positive test charge \(q_{0}\) from \(i\) to \(f\) along the path icf shown in Fig. 24-8b.

Calculations: The Key Idea of (a) applies here too, except now we move the test charge along a path that consists of two lines: \(i c\) and \(c f\). At all points along line \(i c\), the displace-
ment \(d \vec{s}\) of the test charge is perpendicular to \(\vec{E}\). Thus, the angle \(\theta\) between \(\vec{E}\) and \(d \vec{s}\) is \(90^{\circ}\), and the dot product \(\vec{E} \cdot d \vec{s}\) is 0 . Equation 24-18 then tells us that points \(i\) and \(c\) are at the same potential: \(V_{c}-V_{i}=0\). Ah, we should have seen this coming. The points are on the same equipotential surface, which is perpendicular to the electric field lines.

For line \(c f\) we have \(\theta=45^{\circ}\) and, from Eq. 24-18,
\[
\begin{aligned}
V_{f}-V_{i} & =-\int_{c}^{f} \vec{E} \cdot d \vec{s}=-\int_{c}^{f} E\left(\cos 45^{\circ}\right) d s \\
& =-E\left(\cos 45^{\circ}\right) \int_{c}^{f} d s .
\end{aligned}
\]

The integral in this equation is just the length of line \(c f\); from Fig. 24-8b, that length is \(d / \cos 45^{\circ}\). Thus,
\[
V_{f}-V_{i}=-E\left(\cos 45^{\circ}\right) \frac{d}{\cos 45^{\circ}}=-E d
\]
(Answer)
This is the same result we obtained in (a), as it must be; the potential difference between two points does not depend on the path connecting them. Moral: When you want to find the potential difference between two points by moving a test charge between them, you can save time and work by choosing a path that simplifies the use of Eq. 24-18.

The electric field points from higher potential to lower potential.

The field is perpendicular to this ic path, so there is no change in the potential.


Figure 24-8 (a) A test charge \(q_{0}\) moves in a straight line from point \(i\) to point \(f\), along the direction of a uniform external electric field. (b) Charge \(q_{0}\) moves along path icf in the same electric field.

\section*{24-3 potential due to a charged particle}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
24.14 For a given point in the electric field of a charged particle, apply the relationship between the electric potential \(V\), the charge of the particle \(q\), and the distance \(r\) from the particle.
24.15 Identify the correlation between the algebraic signs of the potential set up by a particle and the charge of the particle.
24.16 For points outside or on the surface of a spherically
symmetric charge distribution, calculate the electric potential as if all the charge is concentrated as a particle at the center of the sphere.
24.17 Calculate the net potential at any given point due to several charged particles, identifying that algebraic addition is used, not vector addition.
24.18 Draw equipotential lines for a charged particle.

\section*{Key Ideas}
- The electric potential due to a single charged particle at a distance \(r\) from that charged particle is
\[
V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}
\]
where \(V\) has the same sign as \(q\).

The potential due to a collection of charged particles is
\[
V=\sum_{i=1}^{n} V_{i}=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i=1}^{n} \frac{q_{i}}{r_{i}} .
\]

Thus, the potential is the algebraic sum of the individual potentials, with no consideration of directions.


Figure 24-9 The particle with positive charge \(q\) produces an electric field \(\vec{E}\) and an electric potential \(V\) at point \(P\). We find the potential by moving a test charge \(q_{0}\) from \(P\) to infinity. The test charge is shown at distance \(r\) from the particle, during differential displacement \(d \vec{s}\).

\section*{Potential Due to a Charged Particle}

We now use Eq. 24-18 to derive, for the space around a charged particle, an expression for the electric potential \(V\) relative to the zero potential at infinity. Consider a point \(P\) at distance \(R\) from a fixed particle of positive charge \(q\) (Fig. 24-9). To use Eq. 24-18, we imagine that we move a positive test charge \(q_{0}\) from point \(P\) to infinity. Because the path we take does not matter, let us choose the simplest onea line that extends radially from the fixed particle through \(P\) to infinity.

To use Eq. 24-18, we must evaluate the dot product
\[
\begin{equation*}
\vec{E} \cdot d \vec{s}=E \cos \theta d s \tag{24-22}
\end{equation*}
\]

The electric field \(\vec{E}\) in Fig. 24-9 is directed radially outward from the fixed particle. Thus, the differential displacement \(d \vec{s}\) of the test particle along its path has the same direction as \(\vec{E}\). That means that in Eq. 24-22, angle \(\theta=0\) and \(\cos \theta=1\). Because the path is radial, let us write \(d s\) as \(d r\). Then, substituting the limits \(R\) and \(\infty\), we can write Eq. 24-18 as
\[
\begin{equation*}
V_{f}-V_{i}=-\int_{R}^{\infty} E d r \tag{24-23}
\end{equation*}
\]

Next, we set \(V_{f}=0(\) at \(\infty)\) and \(V_{i}=V\) (at \(R\) ). Then, for the magnitude of the electric field at the site of the test charge, we substitute from Eq. 22-3:
\[
\begin{equation*}
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}} . \tag{24-24}
\end{equation*}
\]

With these changes, Eq. 24-23 then gives us
\[
\begin{align*}
0-V & =-\frac{q}{4 \pi \varepsilon_{0}} \int_{R}^{\infty} \frac{1}{r^{2}} d r=\frac{q}{4 \pi \varepsilon_{0}}\left[\frac{1}{r}\right]_{R}^{\infty} \\
& =-\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{R} . \tag{24-25}
\end{align*}
\]

Solving for \(V\) and switching \(R\) to \(r\), we then have
\[
\begin{equation*}
V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r} \tag{24-26}
\end{equation*}
\]
as the electric potential \(V\) due to a particle of charge \(q\) at any radial distance \(r\) from the particle.

Although we have derived Eq. 24-26 for a positively charged particle, the derivation holds also for a negatively charged particle, in which case, \(q\) is a negative quantity. Note that the sign of \(V\) is the same as the sign of \(q\) :

A positively charged particle produces a positive electric potential. A negatively charged particle produces a negative electric potential.

Figure 24-10 shows a computer-generated plot of Eq. 24-26 for a positively charged particle; the magnitude of \(V\) is plotted vertically. Note that the magnitude increases as \(r \rightarrow 0\). In fact, according to Eq. 24-26, \(V\) is infinite at \(r=0\), although Fig. 24-10 shows a finite, smoothed-off value there.

Equation 24-26 also gives the electric potential either outside or on the external surface of a spherically symmetric charge distribution. We can prove this by using one of the shell theorems of Modules 21-1 and 23-6 to replace the actual spherical charge distribution with an equal charge concentrated at its center. Then the derivation leading to Eq. 24-26 follows, provided we do not consider a point within the actual distribution.

\section*{Potential Due to a Group of Charged Particles}

We can find the net electric potential at a point due to a group of charged particles with the help of the superposition principle. Using Eq. \(24-26\) with the plus or minus sign of the charge included, we calculate separately the potential resulting from each charge at the given point. Then we sum the potentials. Thus, for \(n\) charges, the net potential is
\[
\begin{equation*}
V=\sum_{i=1}^{n} V_{i}=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i=1}^{n} \frac{q_{i}}{r_{i}} \quad(n \text { charged particles }) . \tag{24-27}
\end{equation*}
\]

Here \(q_{i}\) is the value of the \(i\) th charge and \(r_{i}\) is the radial distance of the given point from the \(i\) th charge. The sum in Eq. 24-27 is an algebraic sum, not a vector sum like the sum that would be used to calculate the electric field resulting from a group of charged particles. Herein lies an important computational advantage of potential over electric field: It is a lot easier to sum several scalar quantities than to sum several vector quantities whose directions and components must be considered.

\section*{Checkpoint 3}

The figure here shows three arrangements of two protons. Rank the arrangements according to the net electric potential produced at point \(P\) by the protons, greatest first.

(a)

(b)

(c)


Figure 24-10 A computer-generated plot of the electric potential \(V(r)\) due to a positively charged particle located at the origin of an \(x y\) plane. The potentials at points in the \(x y\) plane are plotted vertically. (Curved lines have been added to help you visualize the plot.) The infinite value of \(V\) predicted by Eq. 24-26 for \(r=0\) is not plotted.

\section*{Sample Problem 24.03 Net potential of several charged particles}

What is the electric potential at point \(P\), located at the center of the square of charged particles shown in Fig. 24-11a? The distance \(d\) is 1.3 m , and the charges are
\[
\begin{array}{ll}
q_{1}=+12 \mathrm{nC}, & q_{3}=+31 \mathrm{nC} \\
q_{2}=-24 \mathrm{nC}, & q_{4}=+17 \mathrm{nC}
\end{array}
\]

\section*{KEY IDEA}

The electric potential \(V\) at point \(P\) is the algebraic sum of the electric potentials contributed by the four particles.

(Because electric potential is a scalar, the orientations of the particles do not matter.)
Calculations: From Eq. 24-27, we have
\[
V=\sum_{i=1}^{4} V_{i}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q_{1}}{r}+\frac{q_{2}}{r}+\frac{q_{3}}{r}+\frac{q_{4}}{r}\right)
\]

The distance \(r\) is \(d / \sqrt{2}\), which is 0.919 m , and the sum of the charges is
\[
\begin{aligned}
& \begin{aligned}
q_{1}+q_{2}+q_{3}+q_{4} & =(12-24+31+17) \times 10^{-9} \mathrm{C} \\
& =36 \times 10^{-9} \mathrm{C} . \\
\text { Thus, } \quad & \begin{aligned}
V & =\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(36 \times 10^{-9} \mathrm{C}\right)}{0.919 \mathrm{~m}} \\
& \approx 350 \mathrm{~V} .
\end{aligned}
\end{aligned} .
\end{aligned}
\]
(Answer)
Close to any of the three positively charged particles in Fig. 24-11a, the potential has very large positive values. Close to the single negative charge, the potential has very large negative values. Therefore, there must be points within the square that have the same intermediate potential as that at point \(P\). The curve in Fig. 24-11b shows the intersection of the plane of the figure with the equipotential surface that contains point \(P\).

\section*{Sample Problem 24.04 Potential is not a vector, orientation is irrelevant}
(a) In Fig. 24-12a, 12 electrons (of charge \(-e\) ) are equally spaced and fixed around a circle of radius \(R\). Relative to \(V=0\) at infinity, what are the electric potential and electric field at the center \(C\) of the circle due to these electrons?

\section*{KEY IDEAS}
(1) The electric potential \(V\) at \(C\) is the algebraic sum of the electric potentials contributed by all the electrons. Because

Potential is a scalar and
 orientation is irrelevant.

Figure 24-12 (a) Twelve electrons uniformly spaced around a circle. (b) The electrons nonuniformly spaced along an arc of the original circle.
electric potential is a scalar, the orientations of the electrons do not matter. (2) The electric field at \(C\) is a vector quantity and thus the orientation of the electrons is important.
Calculations: Because the electrons all have the same negative charge \(-e\) and are all the same distance \(R\) from \(C\), Eq. 24-27 gives us
\[
\begin{equation*}
V=-12 \frac{1}{4 \pi \varepsilon_{0}} \frac{e}{R} \tag{24-28}
\end{equation*}
\]
(Answer)
Because of the symmetry of the arrangement in Fig. 24-12a, the electric field vector at \(C\) due to any given electron is canceled by the field vector due to the electron that is diametrically opposite it. Thus, at \(C\),
\[
\vec{E}=0
\]
(Answer)
(b) The electrons are moved along the circle until they are nonuniformly spaced over a \(120^{\circ}\) arc (Fig. 24-12b). At \(C\), find the electric potential and describe the electric field.
Reasoning: The potential is still given by Eq. 24-28, because the distance between \(C\) and each electron is unchanged and orientation is irrelevant. The electric field is no longer zero, however, because the arrangement is no longer symmetric. A net field is now directed toward the charge distribution.

\section*{24-4 potental due to an electric dipole}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
24.19 Calculate the potential \(V\) at any given point due to an electric dipole, in terms of the magnitude \(p\) of the dipole moment or the product of the charge separation \(d\) and the magnitude \(q\) of either charge.
24.20 For an electric dipole, identify the locations of positive potential, negative potential, and zero potential.
24.21 Compare the decrease in potential with increasing distance for a single charged particle and an electric dipole.

\section*{Key Idea}
- At a distance \(r\) from an electric dipole with dipole moment magnitude \(p=q d\), the electric potential of the dipole is
\[
V=\frac{1}{4 \pi \varepsilon_{0}} \frac{p \cos \theta}{r^{2}}
\]
for \(r \gg d\); the angle \(\theta\) lies between the dipole moment vector and a line extending from the dipole midpoint to the point of measurement.

\section*{Potential Due to an Electric Dipole}

Now let us apply Eq. \(24-27\) to an electric dipole to find the potential at an arbitrary point \(P\) in Fig. 24-13a. At \(P\), the positively charged particle (at distance \(r_{(+)}\)) sets up potential \(V_{(+)}\)and the negatively charged particle (at distance \(r_{(-)}\)) sets up potential \(V_{(-)}\). Then the net potential at \(P\) is given by Eq. 24-27 as
\[
\begin{align*}
V & =\sum_{i=1}^{2} V_{i}=V_{(+)}+V_{(-)}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q}{r_{(+)}}+\frac{-q}{r_{(-)}}\right) \\
& =\frac{q}{4 \pi \varepsilon_{0}} \frac{r_{(-)}-r_{(+)}}{r_{(-)} r_{(+)}} . \tag{24-29}
\end{align*}
\]

Naturally occurring dipoles - such as those possessed by many molecules - are quite small; so we are usually interested only in points that are relatively far from the dipole, such that \(r \gg d\), where \(d\) is the distance between the charges and \(r\) is the distance from the dipole's midpoint to \(P\). In that case, we can approximate the two lines to \(P\) as being parallel and their length difference as being the leg of a right triangle with hypotenuse \(d\) (Fig. 24-13b). Also, that difference is so small that the product of the lengths is approximately \(r^{2}\). Thus,
\[
r_{(-)}-r_{(+)} \approx d \cos \theta \quad \text { and } \quad r_{(-)} r_{(+)} \approx r^{2}
\]

If we substitute these quantities into Eq. 24-29, we can approximate \(V\) to be
\[
V=\frac{q}{4 \pi \varepsilon_{0}} \frac{d \cos \theta}{r^{2}}
\]
where \(\theta\) is measured from the dipole axis as shown in Fig. 24-13a. We can now write \(V\) as
\[
\begin{equation*}
V=\frac{1}{4 \pi \varepsilon_{0}} \frac{p \cos \theta}{r^{2}} \quad \text { (electric dipole), } \tag{24-30}
\end{equation*}
\]
in which \(p(=q d)\) is the magnitude of the electric dipole moment \(\vec{p}\) defined in Module 22-3. The vector \(\vec{p}\) is directed along the dipole axis, from the negative to the positive charge. (Thus, \(\theta\) is measured from the direction of \(\vec{p}\).) We use this vector to report the orientation of an electric dipole.


Figure 24-13 (a) Point \(P\) is a distance \(r\) from the midpoint \(O\) of a dipole. The line \(O P\) makes an angle \(\theta\) with the dipole axis. (b) If \(P\) is far from the dipole, the lines of lengths \(r_{(+)}\)and \(r_{(-)}\)are approximately parallel to the line of length \(r\), and the dashed black line is approximately perpendicular to the line of length \(r_{(-)}\).

The electric field shifts the positive and negative charges, creating a dipole.

(a)

Figure 24-14 (a) An atom, showing the positively charged nucleus (green) and the negatively charged electrons (gold shading). The centers of positive and negative charge coincide. (b) If the atom is placed in an external electric field \(\vec{E}\), the electron orbits are distorted so that the centers of positive and negative charge no longer coincide. An induced dipole moment \(\vec{p}\) appears. The distortion is greatly exaggerated here.

\section*{Checkpoint 4}

Suppose that three points are set at equal (large) distances \(r\) from the center of the dipole in Fig. 24-13: Point \(a\) is on the dipole axis above the positive charge, point \(b\) is on the axis below the negative charge, and point \(c\) is on a perpendicular bisector through the line connecting the two charges. Rank the points according to the electric potential of the dipole there, greatest (most positive) first.

\section*{Induced Dipole Moment}

Many molecules, such as water, have permanent electric dipole moments. In other molecules (called nonpolar molecules) and in every isolated atom, the centers of the positive and negative charges coincide (Fig. 24-14a) and thus no dipole moment is set up. However, if we place an atom or a nonpolar molecule in an external electric field, the field distorts the electron orbits and separates the centers of positive and negative charge (Fig. 24-14b). Because the electrons are negatively charged, they tend to be shifted in a direction opposite the field. This shift sets up a dipole moment \(\vec{p}\) that points in the direction of the field. This dipole moment is said to be induced by the field, and the atom or molecule is then said to be polarized by the field (that is, it has a positive side and a negative side). When the field is removed, the induced dipole moment and the polarization disappear.

\section*{24-5 potential due to a continuous charge distribution}

\section*{Learning Objective}

After reading this module, you should be able to . . .
24.22 For charge that is distributed uniformly along a line or over a surface, find the net potential at a given point by splitting the distribution up into charge elements and summing (by integration) the potential due to each one.

\section*{Key Ideas}
- For a continuous distribution of charge (over an extended object), the potential is found by (1) dividing the distribution into charge elements \(d q\) that can be treated as particles and then (2) summing the potential due to each element by integrating over the full distribution:
\[
V=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{d q}{r}
\]

In order to carry out the integration, \(d q\) is replaced with the product of either a linear charge density \(\lambda\) and a length element (such as \(d x\) ), or a surface charge density \(\sigma\) and area element (such as \(d x d y\) ).
- In some cases where the charge is symmetrically distributed, a two-dimensional integration can be reduced to a onedimensional integration.

\section*{Potential Due to a Continuous Charge Distribution}

When a charge distribution \(q\) is continuous (as on a uniformly charged thin rod or disk), we cannot use the summation of Eq. 24-27 to find the potential \(V\) at a point \(P\). Instead, we must choose a differential element of charge \(d q\), determine the potential \(d V\) at \(P\) due to \(d q\), and then integrate over the entire charge distribution.

Let us again take the zero of potential to be at infinity. If we treat the element of charge \(d q\) as a particle, then we can use Eq. 24-26 to express the potential \(d V\) at point \(P\) due to \(d q\) :
\[
\begin{equation*}
d V=\frac{1}{4 \pi \varepsilon_{0}} \frac{d q}{r} \quad \text { (positive or negative } d q \text { ). } \tag{24-31}
\end{equation*}
\]

Here \(r\) is the distance between \(P\) and \(d q\). To find the total potential \(V\) at \(P\), we
integrate to sum the potentials due to all the charge elements:
\[
\begin{equation*}
V=\int d V=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{d q}{r} \tag{24-32}
\end{equation*}
\]

The integral must be taken over the entire charge distribution. Note that because the electric potential is a scalar, there are no vector components to consider in Eq. 24-32.

We now examine two continuous charge distributions, a line and a disk.

\section*{Line of Charge}

In Fig. 24-15a, a thin nonconducting rod of length \(L\) has a positive charge of uniform linear density \(\lambda\). Let us determine the electric potential \(V\) due to the rod at point \(P\), a perpendicular distance \(d\) from the left end of the rod.

We consider a differential element \(d x\) of the rod as shown in Fig. 24-15b. This (or any other) element of the rod has a differential charge of
\[
\begin{equation*}
d q=\lambda d x \tag{24-33}
\end{equation*}
\]

This element produces an electric potential \(d V\) at point \(P\), which is a distance \(r=\left(x^{2}+d^{2}\right)^{1 / 2}\) from the element (Fig. 24-15c). Treating the element as a point charge, we can use Eq. \(24-31\) to write the potential \(d V\) as
\[
\begin{equation*}
d V=\frac{1}{4 \pi \varepsilon_{0}} \frac{d q}{r}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\lambda d x}{\left(x^{2}+d^{2}\right)^{1 / 2}} \tag{24-34}
\end{equation*}
\]


Figure 24-15 (a) A thin, uniformly charged rod produces an electric potential \(V\) at point \(P\). (b) An element can be treated as a particle. (c) The potential at \(P\) due to the element depends on the distance \(r\). We need to sum the potentials due to all the elements, from the left side \((d)\) to the right side (e).


Figure 24-16 A plastic disk of radius \(R\), charged on its top surface to a uniform surface charge density \(\sigma\). We wish to find the potential \(V\) at point \(P\) on the central axis of the disk.

Since the charge on the rod is positive and we have taken \(V=0\) at infinity, we know from Module 24-3 that \(d V\) in Eq. 24-34 must be positive.

We now find the total potential \(V\) produced by the rod at point \(P\) by integrating Eq. 24-34 along the length of the rod, from \(x=0\) to \(x=L\) (Figs. 24-15d and \(e\) ), using integral 17 in Appendix E. We find
\[
\begin{aligned}
V & =\int d V=\int_{0}^{L} \frac{1}{4 \pi \varepsilon_{0}} \frac{\lambda}{\left(x^{2}+d^{2}\right)^{1 / 2}} d x \\
& =\frac{\lambda}{4 \pi \varepsilon_{0}} \int_{0}^{L} \frac{d x}{\left(x^{2}+d^{2}\right)^{1 / 2}} \\
& =\frac{\lambda}{4 \pi \varepsilon_{0}}\left[\ln \left(x+\left(x^{2}+d^{2}\right)^{1 / 2}\right)\right]_{0}^{L} \\
& =\frac{\lambda}{4 \pi \varepsilon_{0}}\left[\ln \left(L+\left(L^{2}+d^{2}\right)^{1 / 2}\right)-\ln d\right] .
\end{aligned}
\]

We can simplify this result by using the general relation \(\ln A-\ln B=\ln (A / B)\). We then find
\[
\begin{equation*}
V=\frac{\lambda}{4 \pi \varepsilon_{0}} \ln \left[\frac{L+\left(L^{2}+d^{2}\right)^{1 / 2}}{d}\right] \tag{24-35}
\end{equation*}
\]

Because \(V\) is the sum of positive values of \(d V\), it too is positive, consistent with the logarithm being positive for an argument greater than 1.

\section*{Charged Disk}

In Module 22-5, we calculated the magnitude of the electric field at points on the central axis of a plastic disk of radius \(R\) that has a uniform charge density \(\sigma\) on one surface. Here we derive an expression for \(V(z)\), the electric potential at any point on the central axis. Because we have a circular distribution of charge on the disk, we could start with a differential element that occupies angle \(d \theta\) and radial distance \(d r\). We would then need to set up a two-dimensional integration. However, let's do something easier.

In Fig. 24-16, consider a differential element consisting of a flat ring of radius \(R^{\prime}\) and radial width \(d R^{\prime}\). Its charge has magnitude
\[
d q=\sigma\left(2 \pi R^{\prime}\right)\left(d R^{\prime}\right)
\]
in which \(\left(2 \pi R^{\prime}\right)\left(d R^{\prime}\right)\) is the upper surface area of the ring. All parts of this charged element are the same distance \(r\) from point \(P\) on the disk's axis. With the aid of Fig. 24-16, we can use Eq. 24-31 to write the contribution of this ring to the electric potential at \(P\) as
\[
\begin{equation*}
d V=\frac{1}{4 \pi \varepsilon_{0}} \frac{d q}{r}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\sigma\left(2 \pi R^{\prime}\right)\left(d R^{\prime}\right)}{\sqrt{z^{2}+R^{\prime 2}}} . \tag{24-36}
\end{equation*}
\]

We find the net potential at \(P\) by adding (via integration) the contributions of all the rings from \(R^{\prime}=0\) to \(R^{\prime}=R\) :
\[
\begin{equation*}
V=\int d V=\frac{\sigma}{2 \varepsilon_{0}} \int_{0}^{R} \frac{R^{\prime} d R^{\prime}}{\sqrt{z^{2}+R^{\prime 2}}}=\frac{\sigma}{2 \varepsilon_{0}}\left(\sqrt{z^{2}+R^{2}}-z\right) . \tag{24-37}
\end{equation*}
\]

Note that the variable in the second integral of Eq. \(24-37\) is \(R^{\prime}\) and not \(z\), which remains constant while the integration over the surface of the disk is carried out. (Note also that, in evaluating the integral, we have assumed that \(z \geq 0\).)

\section*{24-6 calculating the field from the potential}

\section*{Learning Objectives}

After reading this module, you should be able to
24.23 Given an electric potential as a function of position along an axis, find the electric field along that axis.
24.24 Given a graph of electric potential versus position along an axis, determine the electric field along the axis.
24.25 For a uniform electric field, relate the field magnitude \(E\)
and the separation \(\Delta x\) and potential difference \(\Delta V\) between adjacent equipotential lines.
24.26 Relate the direction of the electric field and the directions in which the potential decreases and increases.

\section*{Key Ideas}
- The component of \(\vec{E}\) in any direction is the negative of the rate at which the potential changes with distance in that direction:
\[
E_{s}=-\frac{\partial V}{\partial s}
\]
- The \(x, y\), and \(z\) components of \(\vec{E}\) may be found from
\[
E_{x}=-\frac{\partial V}{\partial x} ; \quad E_{y}=-\frac{\partial V}{\partial y} ; \quad E_{z}=-\frac{\partial V}{\partial z}
\]

When \(\vec{E}\) is uniform, all this reduces to
\[
E=-\frac{\Delta V}{\Delta s}
\]
where \(s\) is perpendicular to the equipotential surfaces. - The electric field is zero parallel to an equipotential surface.

\section*{Calculating the Field from the Potential}

In Module 24-2, you saw how to find the potential at a point \(f\) if you know the electric field along a path from a reference point to point \(f\). In this module, we propose to go the other way - that is, to find the electric field when we know the potential. As Fig. 24-5 shows, solving this problem graphically is easy: If we know the potential \(V\) at all points near an assembly of charges, we can draw in a family of equipotential surfaces. The electric field lines, sketched perpendicular to those surfaces, reveal the variation of \(\vec{E}\). What we are seeking here is the mathematical equivalent of this graphical procedure.

Figure \(24-17\) shows cross sections of a family of closely spaced equipotential surfaces, the potential difference between each pair of adjacent surfaces being \(d V\). As the figure suggests, the field \(\vec{E}\) at any point \(P\) is perpendicular to the equipotential surface through \(P\).

Suppose that a positive test charge \(q_{0}\) moves through a displacement \(d \vec{s}\) from one equipotential surface to the adjacent surface. From Eq. 24-6, we see that the work the electric field does on the test charge during the move is \(-q_{0} d V\). From Eq. 24-16 and Fig. 24-17, we see that the work done by the electric field may also be written as the scalar product \(\left(q_{0} \vec{E}\right) \cdot d \vec{s}\), or \(q_{0} E(\cos \theta) d s\). Equating these two expressions for the work yields
or
\[
\begin{gather*}
-q_{0} d V=q_{0} E(\cos \theta) d s,  \tag{24-38}\\
E \cos \theta=-\frac{d V}{d s} . \tag{24-39}
\end{gather*}
\]

Since \(E \cos \theta\) is the component of \(\vec{E}\) in the direction of \(d \vec{s}\), Eq. 24-39 becomes
\[
\begin{equation*}
E_{s}=-\frac{\partial V}{\partial s} \tag{24-40}
\end{equation*}
\]

We have added a subscript to \(E\) and switched to the partial derivative symbols to emphasize that Eq. 24-40 involves only the variation of \(V\) along a specified axis (here called the \(s\) axis) and only the component of \(\vec{E}\) along that axis. In words, Eq. 24-40 (which is essentially the reverse operation of Eq. 24-18) states:


Figure 24-17 A test charge \(q_{0}\) moves a distance \(d \vec{s}\) from one equipotential surface to another. (The separation between the surfaces has been exaggerated for clarity.) The displacement \(d \vec{s}\) makes an angle \(\theta\) with the direction of the electric field \(\vec{E}\).

The component of \(\vec{E}\) in any direction is the negative of the rate at which the electric potential changes with distance in that direction.

If we take the \(s\) axis to be, in turn, the \(x, y\), and \(z\) axes, we find that the \(x, y\), and \(z\) components of \(\vec{E}\) at any point are
\[
\begin{equation*}
E_{x}=-\frac{\partial V}{\partial x} ; \quad E_{y}=-\frac{\partial V}{\partial y} ; \quad E_{z}=-\frac{\partial V}{\partial z} \tag{24-41}
\end{equation*}
\]

Thus, if we know \(V\) for all points in the region around a charge distribution - that is, if we know the function \(V(x, y, z)\)-we can find the components of \(\vec{E}\), and thus \(\vec{E}\) itself, at any point by taking partial derivatives.

For the simple situation in which the electric field \(\vec{E}\) is uniform, Eq. 24-40 becomes
\[
\begin{equation*}
E=-\frac{\Delta V}{\Delta s} \tag{24-42}
\end{equation*}
\]
where \(s\) is perpendicular to the equipotential surfaces. The component of the electric field is zero in any direction parallel to the equipotential surfaces because there is no change in potential along the surfaces.

\section*{Checkpoint 5}

The figure shows three pairs of parallel plates with the same separation, and the electric potential of each plate. The electric field between the

(1)

(2)

(3) plates is uniform and perpendicular to the plates. (a) Rank the pairs according to the magnitude of the electric field between the plates, greatest first. (b) For which pair is the electric field pointing rightward? (c) If an electron is released midway between the third pair of plates, does it remain there, move rightward at constant speed, move leftward at constant speed, accelerate rightward, or accelerate leftward?

\section*{Sample Problem 24.05 Finding the field from the potential}

The electric potential at any point on the central axis of a uniformly charged disk is given by Eq. 24-37,
\[
V=\frac{\sigma}{2 \varepsilon_{0}}\left(\sqrt{z^{2}+R^{2}}-z\right)
\]

Starting with this expression, derive an expression for the electric field at any point on the axis of the disk.

\section*{KEY IDEAS}

We want the electric field \(\vec{E}\) as a function of distance \(z\) along the axis of the disk. For any value of \(z\), the direction of \(\vec{E}\) must be along that axis because the disk has circular symmetry
about that axis. Thus, we want the component \(E_{z}\) of \(\vec{E}\) in the direction of \(z\). This component is the negative of the rate at which the electric potential changes with distance \(z\).

Calculation: Thus, from the last of Eqs. 24-41, we can write
\[
\begin{aligned}
E_{z} & =-\frac{\partial V}{\partial z}=-\frac{\sigma}{2 \varepsilon_{0}} \frac{d}{d z}\left(\sqrt{z^{2}+R^{2}}-z\right) \\
& =\frac{\sigma}{2 \varepsilon_{0}}\left(1-\frac{z}{\sqrt{z^{2}+R^{2}}}\right) .
\end{aligned}
\]
(Answer)

This is the same expression that we derived in Module 22-5 by integration, using Coulomb's law.

\section*{24-7 electric potential energy of a svstem of charged particles}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
24.27 Identify that the total potential energy of a system of charged particles is equal to the work an applied force must do to assemble the system, starting with the particles infinitely far apart.
24.28 Calculate the potential energy of a pair of charged particles.
24.29 Identify that if a system has more than two charged parti-
cles, then the system's total potential energy is equal to the sum of the potential energies of every pair of the particles.
24.30 Apply the principle of the conservation of mechanical energy to a system of charged particles.
24.31 Calculate the escape speed of a charged particle from a system of charged particles (the minimum initial speed required to move infinitely far from the system).

\section*{Key Idea}
- The electric potential energy of a system of charged particles is equal to the work needed to assemble the system with the particles initially at rest and infinitely distant from each other. For two particles at separation \(r\),
\[
U=W=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r} .
\]

\section*{Electric Potential Energy of a System of Charged Particles}

In this module we are going to calculate the potential energy of a system of two charged particles and then briefly discuss how to expand the result to a system of more than two particles. Our starting point is to examine the work we must do (as an external agent) to bring together two charged particles that are initially infinitely far apart and that end up near each other and stationary. If the two particles have the same sign of charge, we must fight against their mutual repulsion. Our work is then positive and results in a positive potential energy for the final two-particle system. If, instead, the two particles have opposite signs of charge, our job is easy because of the mutual attraction of the particles. Our work is then negative and results in a negative potential energy for the system.

Let's follow this procedure to build the two-particle system in Fig. 24-18, where particle 1 (with positive charge \(q_{1}\) ) and particle 2 (with positive charge \(q_{2}\) ) have separation \(r\). Although both particles are positively charged, our result will apply also to situations where they are both negatively charged or have different signs.

We start with particle 2 fixed in place and particle 1 infinitely far away, with an initial potential energy \(U_{i}\) for the two-particle system. Next we bring particle 1 to its final position, and then the system's potential energy is \(U_{f}\). Our work changes the system's potential energy by \(\Delta U=U_{f}-U_{i}\).

With Eq. 24-4 \(\left(\Delta U=q\left(V_{f}-V_{i}\right)\right)\), we can relate \(\Delta U\) to the change in potential through which we move particle 1:
\[
\begin{equation*}
U_{f}-U_{i}=q_{1}\left(V_{f}-V_{i}\right) \tag{24-43}
\end{equation*}
\]

Let's evaluate these terms. The initial potential energy is \(U_{i}=0\) because the particles are in the reference configuration (as discussed in Module 24-1). The two potentials in Eq. 24-43 are due to particle 2 and are given by Eq. 24-26:
\[
\begin{equation*}
V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{2}}{r} \tag{24-44}
\end{equation*}
\]

This tells us that when particle 1 is initially at distance \(r=\infty\), the potential at its location is \(V_{i}=0\). When we move it to the final position at distance \(r\), the potential at its location is
\[
\begin{equation*}
V_{f}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{2}}{r} . \tag{24-45}
\end{equation*}
\]


Figure 24-18 Two charges held a fixed distance \(r\) apart.

Substituting these results into Eq. 24-43 and dropping the subscript \(f\), we find that the final configuration has a potential energy of
\[
\begin{equation*}
U=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r} \quad \text { (two-particle system). } \tag{24-46}
\end{equation*}
\]

Equation 24-46 includes the signs of the two charges. If the two charges have the same sign, \(U\) is positive. If they have opposite signs, \(U\) is negative.

If we next bring in a third particle, with charge \(q_{3}\), we repeat our calculation, starting with particle 3 at an infinite distance and then bringing it to a final position at distance \(r_{31}\) from particle 1 and distance \(r_{32}\) from particle 2. At the final position, the potential \(V_{f}\) at the location of particle 3 is the algebraic sum of the potential \(V_{1}\) due to particle 1 and the potential \(V_{2}\) of particle 2 . When we work out the algebra, we find that

The total potential energy of a system of particles is the sum of the potential energies for every pair of particles in the system.

This result applies to a system for any given number of particles.
Now that we have an expression for the potential energy of a system of particles, we can apply the principle of the conservation of energy to the system as expressed in Eq. 24-10. For example, if the system consists of many particles, we might consider the kinetic energy (and the associated escape speed) required of one of the particles to escape from the rest of the particles.

\section*{Sample Problem 24.06 Potential energy of a system of three charged particles}

Figure 24-19 shows three charged particles held in fixed positions by forces that are not shown. What is the electric potential energy \(U\) of this system of charges? Assume that \(d=12 \mathrm{~cm}\) and that
\[
q_{1}=+q, \quad q_{2}=-4 q, \quad \text { and } \quad q_{3}=+2 q
\]
in which \(q=150 \mathrm{nC}\).

\section*{KEY IDEA}

The potential energy \(U\) of the system is equal to the work we must do to assemble the system, bringing in each charge from an infinite distance.

Calculations: Let's mentally build the system of Fig. 24-19, starting with one of the charges, say \(q_{1}\), in place and the others at infinity. Then we bring another one, say \(q_{2}\), in from infinity and put it in place. From Eq. 24-46 with \(d\) substituted for \(r\), the potential energy \(U_{12}\) associated with the pair of charges \(q_{1}\) and \(q_{2}\) is
\[
U_{12}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{d} .
\]

We then bring the last charge \(q_{3}\) in from infinity and put it in


Figure 24-19 Three charges are fixed at the vertices of an equilateral triangle. What is the electric potential energy of the system?
place. The work that we must do in this last step is equal to the sum of the work we must do to bring \(q_{3}\) near \(q_{1}\) and the work we must do to bring it near \(q_{2}\). From Eq. 24-46, with \(d\) substituted for \(r\), that sum is
\[
W_{13}+W_{23}=U_{13}+U_{23}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{3}}{d}+\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{2} q_{3}}{d} .
\]

The total potential energy \(U\) of the three-charge system is the sum of the potential energies associated with the three pairs of charges. This sum (which is actually independent of the order in which the charges are brought together) is
\[
\begin{aligned}
U & =U_{12}+U_{13}+U_{23} \\
& =\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{(+q)(-4 q)}{d}+\frac{(+q)(+2 q)}{d}+\frac{(-4 q)(+2 q)}{d}\right) \\
& =-\frac{10 q^{2}}{4 \pi \varepsilon_{0} d} \\
& =-\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)(10)\left(150 \times 10^{-9} \mathrm{C}\right)^{2}}{0.12 \mathrm{~m}} \\
& =-1.7 \times 10^{-2} \mathrm{~J}=-17 \mathrm{~mJ} .
\end{aligned}
\]

The negative potential energy means that negative work would have to be done to assemble this structure, starting with the three charges infinitely separated and at rest. Put another way, an external agent would have to do 17 mJ of positive work to disassemble the structure completely, ending with the three charges infinitely far apart.

The lesson here is this: If you are given an assembly of charged particles, you can find the potential energy of the assembly by finding the potential of every possible pair of the particles and then summing the results.

\section*{Sample Problem 24.07 Conservation of mechanical energy with electric potential energy}

An alpha particle (two protons, two neutrons) moves into a stationary gold atom (79 protons, 118 neutrons), passing through the electron region that surrounds the gold nucleus like a shell and headed directly toward the nucleus (Fig. 24-20). The alpha particle slows until it momentarily stops when its center is at radial distance \(r=9.23 \mathrm{fm}\) from the nuclear center. Then it moves back along its incoming path. (Because the gold nucleus is much more massive than the alpha particle, we can assume the gold nucleus does not move.) What was the kinetic energy \(K_{i}\) of the alpha particle when it was initially far away (hence external to the gold atom)? Assume that the only force acting between the alpha particle and the gold nucleus is the (electrostatic) Coulomb force and treat each as a single charged particle.

\section*{KEY IDEA}

During the entire process, the mechanical energy of the alpha particle + gold atom system is conserved.
Reasoning: When the alpha particle is outside the atom, the system's initial electric potential energy \(U_{i}\) is zero because the atom has an equal number of electrons and protons, which produce a net electric field of zero. However, once the alpha particle passes through the electron region surrounding the nucleus on its way to the nucleus, the electric field due to the electrons goes to zero. The reason is that the electrons act like a closed spherical shell of uniform negative charge and, as discussed in Module 23-6, such a shell produces zero electric field in the space it encloses. The alpha particle still experiences the electric field of the protons in the nucleus, which produces a repulsive force on the protons within the alpha particle.


Figure 24-20 An alpha particle, traveling head-on toward the center of a gold nucleus, comes to a momentary stop (at which time all its kinetic energy has been transferred to electric potential energy) and then reverses its path.

As the incoming alpha particle is slowed by this repulsive force, its kinetic energy is transferred to electric potential energy of the system. The transfer is complete when the alpha particle momentarily stops and the kinetic energy is \(K_{f}=0\).

Calculations: The principle of conservation of mechanical energy tells us that
\[
\begin{equation*}
K_{i}+U_{i}=K_{f}+U_{f} \tag{24-47}
\end{equation*}
\]

We know two values: \(U_{i}=0\) and \(K_{f}=0\). We also know that the potential energy \(U_{f}\) at the stopping point is given by the right side of Eq. 24-46, with \(q_{1}=2 e, q_{2}=79 e\) (in which \(e\) is the elementary charge, \(1.60 \times 10^{-19} \mathrm{C}\) ), and \(r=9.23 \mathrm{fm}\). Thus, we can rewrite Eq. 24-47 as
\[
\begin{aligned}
K_{i} & =\frac{1}{4 \pi \varepsilon_{0}} \frac{(2 e)(79 e)}{9.23 \mathrm{fm}} \\
& =\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)(158)\left(1.60 \times 10^{-19} \mathrm{C}\right)^{2}}{9.23 \times 10^{-15} \mathrm{~m}} \\
& =3.94 \times 10^{-12} \mathrm{~J}=24.6 \mathrm{MeV} . \quad \text { (Answer) }
\end{aligned}
\]

\section*{24-8 POtENTIAL OF A CHARGED ISOLATED CONDUCTOR}

\section*{Learning Objectives}

After reading this module, you should be able to ...
24.32 Identify that an excess charge placed on an isolated conductor (or connected isolated conductors) will distribute itself on the surface of the conductor so that all points of the conductor come to the same potential.
24.33 For an isolated spherical conducting shell, sketch graphs of the potential and the electric field magnitude versus distance from the center, both inside and outside the shell.
24.34 For an isolated spherical conducting shell, identify that internally the electric field is zero and the electric potential
has the same value as the surface and that externally the electric field and the electric potential have values as though all of the shell's charge is concentrated as a particle at its center.
24.35 For an isolated cylindrical conducting shell, identify that internally the electric field is zero and the electric potential has the same value as the surface and that externally the electric field and the electric potential have values as though all of the cylinder's charge is concentrated as a line of charge on the central axis.

\section*{Key Ideas}
- An excess charge placed on a conductor will, in the equilibrium state, be located entirely on the outer surface of the conductor.
- The entire conductor, including interior points, is at a uniform potential.
- If an isolated charged conductor is placed in an external
electric field, then at every internal point, the electric field due to the charge cancels the external electric field that otherwise would have been there.
- Also, the net electric field at every point on the surface is perpendicular to the surface.


Figure 24-21 (a) A plot of \(V(r)\) both inside and outside a charged spherical shell of radius 1.0 m . (b) A plot of \(E(r)\) for the same shell.

\section*{Potential of a Charged Isolated Conductor}

In Module 23-3, we concluded that \(\vec{E}=0\) for all points inside an isolated conductor. We then used Gauss' law to prove that an excess charge placed on an isolated conductor lies entirely on its surface. (This is true even if the conductor has an empty internal cavity.) Here we use the first of these facts to prove an extension of the second:

An excess charge placed on an isolated conductor will distribute itself on the surface of that conductor so that all points of the conductor-whether on the surface or inside-come to the same potential. This is true even if the conductor has an internal cavity and even if that cavity contains a net charge.

Our proof follows directly from Eq. 24-18, which is
\[
V_{f}-V_{i}=-\int_{i}^{f} \vec{E} \cdot d \vec{s}
\]

Since \(\vec{E}=0\) for all points within a conductor, it follows directly that \(V_{f}=V_{i}\) for all possible pairs of points \(i\) and \(f\) in the conductor.

Figure 24-21a is a plot of potential against radial distance \(r\) from the center for an isolated spherical conducting shell of 1.0 m radius, having a charge of \(1.0 \mu \mathrm{C}\). For points outside the shell, we can calculate \(V(r)\) from Eq. 24-26 because the charge \(q\) behaves for such external points as if it were concentrated at the center of the shell. That equation holds right up to the surface of the shell. Now let us push a small test charge through the shell-assuming a small hole exists-to its center. No extra work is needed to do this because no net electric force acts on the test charge once it is inside the shell. Thus, the potential at all points inside the shell has the same value as that on the surface, as Fig. 24-21a shows.

Figure \(24-21 b\) shows the variation of electric field with radial distance for the same shell. Note that \(E=0\) everywhere inside the shell. The curves of Fig. 24-21b can be derived from the curve of Fig. 24-21a by differentiating with respect to \(r\), using Eq. 24-40 (recall that the derivative of any constant is zero). The curve of Fig. 24-21 \(a\) can be derived from the curves of Fig. 24-21b by integrating with respect to \(r\), using Eq. 24-19.

\section*{Spark Discharge from a Charged Conductor}

On nonspherical conductors, a surface charge does not distribute itself uniformly over the surface of the conductor. At sharp points or sharp edges, the surface charge density - and thus the external electric field, which is proportional to it may reach very high values. The air around such sharp points or edges may become ionized, producing the corona discharge that golfers and mountaineers see on the tips of bushes, golf clubs, and rock hammers when thunderstorms threaten. Such corona discharges, like hair that stands on end, are often the precursors of lightning strikes. In such circumstances, it is wise to enclose yourself in a cavity inside a conducting shell, where the electric field is guaranteed to be zero. A car (unless it is a convertible or made with a plastic body) is almost ideal (Fig. 24-22).

\section*{Isolated Conductor in an External Electric Field}

If an isolated conductor is placed in an external electric field, as in Fig. 24-23, all points of the conductor still come to a single potential regardless of whether the conductor has an excess charge. The free conduction electrons distribute themselves on the surface in such a way that the electric field they produce at interior points cancels the external electric field that would otherwise be there. Furthermore, the electron distribution causes the net electric field at all points on the surface to be perpendicular to the surface. If the conductor in Fig. 24-23 could be somehow removed, leaving the surface charges frozen in place, the internal and external electric field would remain absolutely unchanged.

Figure 24-23 An uncharged conductor is suspended in an external electric field. The free electrons in the conductor distribute themselves on the surface as shown, so as to reduce the net electric field inside the conductor to zero and make the net field at the surface perpendicular to the surface.


Courtesy Westinghouse Electric Corporation
Figure 24-22 A large spark jumps to a car's body and then exits by moving across the insulating left front tire (note the flash there), leaving the person inside unharmed.


\section*{Seview \& Summary}

Electric Potential The electric potential \(V\) at a point \(P\) in the electric field of a charged object is
\[
\begin{equation*}
V=\frac{-W_{\infty}}{q_{0}}=\frac{U}{q_{0}} \tag{24-2}
\end{equation*}
\]
where \(W_{\infty}\) is the work that would be done by the electric force on a positive test charge were it brought from an infinite distance to \(P\), and \(U\) is the potential energy that would then be stored in the test charge-object system.

Electric Potential Energy If a particle with charge \(q\) is placed at a point where the electric potential of a charged object is \(V\), the electric potential energy \(U\) of the particle-object system is
\[
\begin{equation*}
U=q V . \tag{24-3}
\end{equation*}
\]

If the particle moves through a potential difference \(\Delta V\), the change in the electric potential energy is
\[
\begin{equation*}
\Delta U=q \Delta V=q\left(V_{f}-V_{i}\right) \tag{24-4}
\end{equation*}
\]

Mechanical Energy If a particle moves through a change \(\Delta V\) in electric potential without an applied force acting on it, applying the conservation of mechanical energy gives the change in kinetic energy as
\[
\begin{equation*}
\Delta K=-q \Delta V \tag{24-9}
\end{equation*}
\]

If, instead, an applied force acts on the particle, doing work \(W_{\text {app }}\), the change in kinetic energy is
\[
\begin{equation*}
\Delta K=-q \Delta V+W_{\mathrm{app}} \tag{24-11}
\end{equation*}
\]

In the special case when \(\Delta K=0\), the work of an applied force
involves only the motion of the particle through a potential difference:
\[
\begin{equation*}
W_{\text {app }}=q \Delta V \quad\left(\text { for } K_{i}=K_{f}\right) . \tag{24-12}
\end{equation*}
\]

Equipotential Surfaces The points on an equipotential surface all have the same electric potential. The work done on a test charge in moving it from one such surface to another is independent of the locations of the initial and final points on these surfaces and of the path that joins the points. The electric field \(\vec{E}\) is always directed perpendicularly to corresponding equipotential surfaces.

Finding \(\boldsymbol{V}\) from \(\overrightarrow{\boldsymbol{E}}\) The electric potential difference between two points \(i\) and \(f\) is
\[
\begin{equation*}
V_{f}-V_{i}=-\int_{i}^{f} \vec{E} \cdot d \vec{s}, \tag{24-18}
\end{equation*}
\]
where the integral is taken over any path connecting the points. If the integration is difficult along any particular path, we can choose a different path along which the integration might be easier. If we choose \(V_{i}=\) 0 , we have, for the potential at a particular point,
\[
\begin{equation*}
V=-\int_{i}^{f} \vec{E} \cdot d \vec{s} \tag{24-19}
\end{equation*}
\]

In the special case of a uniform field of magnitude \(E\), the potential change between two adjacent (parallel) equipotential lines separated by distance \(\Delta x\) is
\[
\begin{equation*}
\Delta V=-E \Delta x \tag{24-21}
\end{equation*}
\]

Potential Due to a Charged Particle The electric potential due to a single charged particle at a distance \(r\) from that particle is
\[
\begin{equation*}
V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}, \tag{24-26}
\end{equation*}
\]
where \(V\) has the same sign as \(q\). The potential due to a collection of charged particles is
\[
\begin{equation*}
V=\sum_{i=1}^{n} V_{i}=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i=1}^{n} \frac{q_{i}}{r_{i}} . \tag{24-27}
\end{equation*}
\]

Potential Due to an Electric Dipole At a distance \(r\) from an electric dipole with dipole moment magnitude \(p=q d\), the electric potential of the dipole is
\[
\begin{equation*}
V=\frac{1}{4 \pi \varepsilon_{0}} \frac{p \cos \theta}{r^{2}} \tag{24-30}
\end{equation*}
\]
for \(r \gg d\); the angle \(\theta\) is defined in Fig. 24-13.
Potential Due to a Continuous Charge Distribution
For a continuous distribution of charge, Eq. 24-27 becomes
\[
\begin{equation*}
V=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{d q}{r} \tag{24-32}
\end{equation*}
\]
in which the integral is taken over the entire distribution.
Calculating \(\overrightarrow{\boldsymbol{E}}\) from \(\boldsymbol{V}\) The component of \(\vec{E}\) in any direction is the negative of the rate at which the potential changes with distance in that direction:
\[
\begin{equation*}
E_{s}=-\frac{\partial V}{\partial s} \tag{24-40}
\end{equation*}
\]

The \(x, y\), and \(z\) components of \(\vec{E}\) may be found from
\[
\begin{equation*}
E_{x}=-\frac{\partial V}{\partial x} ; \quad E_{y}=-\frac{\partial V}{\partial y} ; \quad E_{z}=-\frac{\partial V}{\partial z} . \tag{24-41}
\end{equation*}
\]

When \(\vec{E}\) is uniform, Eq. 24-40 reduces to
\[
\begin{equation*}
E=-\frac{\Delta V}{\Delta s} \tag{24-42}
\end{equation*}
\]
where \(s\) is perpendicular to the equipotential surfaces.
Electric Potential Energy of a System of Charged Particles The electric potential energy of a system of charged particles is equal to the work needed to assemble the system with the particles initially at rest and infinitely distant from each other. For two particles at separation \(r\),
\[
\begin{equation*}
U=W=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r} . \tag{24-46}
\end{equation*}
\]

Potential of a Charged Conductor An excess charge placed on a conductor will, in the equilibrium state, be located entirely on the outer surface of the conductor. The charge will distribute itself so that the following occur: (1) The entire conductor, including interior points, is at a uniform potential. (2) At every internal point, the electric field due to the charge cancels the external electric field that otherwise would have been there. (3) The net electric field at every point on the surface is perpendicular to the surface.

\section*{Questions}

1 Figure 24-24 shows eight particles that form a square, with distance \(d\) between adjacent particles. What is the net electric potential at point \(P\) at the center of the square if we take the electric potential to be zero at infinity?
2 Figure 24-25 shows three sets of cross sections of equipotential surfaces in uniform electric fields; all three cover the same size region of space. The electric potential is indi-


Figure 24-24 Question 1.
cated for each equipotential surface. (a) Rank the arrangements according to the magnitude of the electric field present in the region, greatest first. (b) In which is the electric field directed down the page?


Figure 24-25 Question 2.

3 Figure 24-26 shows four pairs of charged particles. For each pair, let \(V=0\) at infinity and consider \(V_{\text {net }}\) at points on the \(x\) axis. For which pairs is there a point at which \(V_{\text {net }}=0\) (a) between the particles and (b) to the right of the particles? (c) At such a point is \(\vec{E}_{\text {net }}\) due to the particles equal to zero? (d) For each pair, are there off-axis points (other than at infinity) where \(V_{\text {net }}=0\) ?


Figure 24-26 Questions 3 and 9.
4 Figure 24-27 gives the electric potential \(V\) as a function of \(x\). (a) Rank the five regions according to the magnitude of the \(x\) component of the electric field within them, greatest first. What is the direction of the field along the \(x\) axis in (b) region 2 and (c) region 4?
5 Figure 24-28 shows three paths along which we can move the positively charged sphere \(A\) closer to positively charged sphere \(B\), which is held fixed in place. (a) Would sphere \(A\) be moved to a higher or lower electric potential? Is the work


Figure 24-27 Question 4. done (b) by our force and (c) by the electric field due to \(B\) positive, negative, or zero? (d) Rank the paths according to the work our force does, greatest first.
6 Figure 24-29 shows four arrangements of charged particles, all the same distance from the origin. Rank the situations according to the net electric potential at the origin, most positive first. Take the potential to be zero at infinity.
\[
\left.\right|_{-9 q} ^{+2 q}
\]
(a)

(b)

(c)

(d)

Figure 24-29 Question 6.
7 Figure 24-30 shows a system of three charged particles. If you move the particle of charge \(+q\) from point \(A\) to point \(D\), are the following quantities positive, negative, or zero: (a) the change in the electric potential energy of the three-particle system, (b) the work done by the net electric force on the particle you moved (that is, the net force due to the other two particles), and (c) the work done by your force? (d) What are the answers to (a) through (c) if, instead, the particle is moved from \(B\) to \(C\) ?


8 In the situation of Question 7, is the work done by your force positive, negative, or zero if the particle is moved (a) from \(A\) to \(B\), (b) from \(A\) to \(C\), and (c) from \(B\) to \(D\) ? (d) Rank those moves according to the magnitude of the work done by your force, greatest first.
9 Figure 24-26 shows four pairs of charged particles with identical separations. (a) Rank the pairs according to their electric potential energy (that is, the energy of the two-particle system), greatest (most positive) first. (b) For each pair, if the separation between the particles is increased,
does the potential energy of the pair increase or decrease?

(a)

10 (a) In Fig. 24-31a, what is the potential at point \(P\) due to charge \(Q\) at distance \(R\) from \(P\) ? Set \(V=0\) at infinity. (b) In Fig. 24-31b, the same charge \(Q\) has been spread uniformly over a circular arc of radius \(R\) and central angle \(40^{\circ}\). What is the potential at point \(P\), the center of curvature of the arc? (c) In Fig. 24-31c, the same charge \(Q\) has been spread uniformly over a circle of radius \(R\). What is the potential at point \(P\), the center of the circle? (d) Rank the three situations according to the magnitude of the electric field that is set up at \(P\), greatest first.
11 Figure 24-32 shows a thin, uni-

(b)

(c)

Figure 24-31 Question 10. formly charged rod and three points at the same distance \(d\) from the rod. Rank the magnitude of the electric potential the rod produces at those three points, greatest first.


Figure 24-32 Question 11.

12 In Fig. 24-33, a particle is to be released at rest at point \(A\) and then is to be accelerated directly through point \(B\) by an electric field. The potential difference between points \(A\) and \(B\) is 100 V . Which point should be at higher electric potential if the particle is (a) an electron, (b) a proton, and (c) an alpha particle (a nucleus of two protons and two neutrons)? (d) Rank the kinetic energies of the particles at point \(B\), greatest first.


Figure 24-33
Question 12.

\section*{Problems}


\section*{Module 24-1 Electric Potential}
\(\bullet 1\) ssm A particular 12 V car battery can send a total charge of \(84 \mathrm{~A} \cdot \mathrm{~h}\) (ampere-hours) through a circuit, from one terminal to the other. (a) How many coulombs of charge does this represent? (Hint: See Eq. 21-3.) (b) If this entire charge undergoes a change in electric potential of 12 V , how much energy is involved?
-2 The electric potential difference between the ground and a cloud in a particular thunderstorm is \(1.2 \times 10^{9} \mathrm{~V}\). In the unit electron-volts, what is the magnitude of the change in the electric potential energy of an electron that moves between the ground and the cloud?
-3 Suppose that in a lightning flash the potential difference between a cloud and the ground is \(1.0 \times 10^{9} \mathrm{~V}\) and the quantity of charge transferred is 30 C . (a) What is the change in energy of that transferred charge? (b) If all the energy released could be used to accelerate a 1000 kg car from rest, what would be its final speed?

\section*{Module 24-2 Equipotential Surfaces and the Electric Field}
-4 Two large, parallel, conducting plates are 12 cm apart and have charges of equal magnitude and opposite sign on their facing surfaces. An electric force of \(3.9 \times 10^{-15} \mathrm{~N}\) acts on an electron placed anywhere between the two plates. (Neglect fringing.) (a) Find the electric field at the position of the electron. (b) What is the potential difference between the plates?
\(\cdot 5\) SSM An infinite nonconducting sheet has a surface charge density \(\sigma=0.10 \mu \mathrm{C} / \mathrm{m}^{2}\) on one side. How far apart are equipotential surfaces whose potentials differ by 50 V ?
-6 When an electron moves from \(A\) to \(B\) along an electric field line in Fig. 24-34, the electric field does \(3.94 \times 10^{-19} \mathrm{~J}\) of work on it. What are the electric potential differences (a) \(V_{B}-V_{A}\), (b) \(V_{C}-V_{A}\), and (c) \(V_{C}-V_{B}\) ?
\({ }^{\bullet \circ} 7\) The electric field in a region of space has the components \(E_{y}=\) \(E_{z}=0\) and \(E_{x}=(4.00 \mathrm{~N} / \mathrm{C}) x\). Point


Figure 24-34 Problem 6. \(A\) is on the \(y\) axis at \(y=3.00 \mathrm{~m}\), and point \(B\) is on the \(x\) axis at \(x=4.00 \mathrm{~m}\). What is the potential difference \(V_{B}-V_{A}\) ?
\(\bullet 8\) A graph of the \(x\) component of the electric field as a function of \(x\) in a region of space is shown in Fig. 24-35. The scale of the vertical axis is set by \(E_{x s}=20.0 \mathrm{~N} / \mathrm{C}\). The \(y\) and \(z\) components of the electric field are zero in this region. If the electric potential at the origin is 10 V , (a) what is the electric potential at \(x=2.0 \mathrm{~m}\), (b) what is the greatest positive value of the electric potential for points on the \(x\) axis for which \(0 \leq x \leq 6.0 \mathrm{~m}\), and (c) for what value of \(x\) is the electric potential zero?

\(x\) (m)
Figure 24-35 Problem 8.
-09 An infinite nonconducting sheet has a surface charge density \(\sigma=+5.80 \mathrm{pC} / \mathrm{m}^{2}\). (a) How much work is done by the electric field due to the sheet if a particle of charge \(q=+1.60 \times 10^{-19} \mathrm{C}\) is moved from the sheet to a point \(P\) at distance \(d=3.56 \mathrm{~cm}\) from the sheet? (b) If the electric potential \(V\) is defined to be zero on the sheet, what is \(V\) at \(P\) ?
*0010 © Two uniformly charged, infinite, nonconducting planes are parallel to a \(y z\) plane and positioned at \(x=-50 \mathrm{~cm}\) and \(x=+50\) cm . The charge densities on the planes are \(-50 \mathrm{nC} / \mathrm{m}^{2}\) and +25 \(\mathrm{nC} / \mathrm{m}^{2}\), respectively. What is the magnitude of the potential difference between the origin and the point on the \(x\) axis at \(x=+80 \mathrm{~cm}\) ? (Hint: Use Gauss' law.)

0011 A nonconducting sphere has radius \(R=2.31 \mathrm{~cm}\) and uniformly distributed charge \(q=+3.50 \mathrm{fC}\). Take the electric potential at the sphere's center to be \(V_{0}=0\). What is \(V\) at radial distance (a) \(r=1.45 \mathrm{~cm}\) and (b) \(r=\) R. (Hint: See Module 23-6.)

\section*{Module 24-3 Potential Due to a Charged Particle}
-12 As a space shuttle moves through the dilute ionized gas of Earth's ionosphere, the shuttle's potential is typically changed by -1.0 V during one revolution. Assuming the shuttle is a sphere of radius 10 m , estimate the amount of charge it collects.
-13 What are (a) the charge and (b) the charge density on the surface of a conducting sphere of radius 0.15 m whose potential is 200 V (with \(V=0\) at infinity)?
\(\bullet 14\) Consider a particle with charge \(q=1.0 \mu \mathrm{C}\), point \(A\) at distance \(d_{1}=2.0 \mathrm{~m}\) from \(q\), and point \(B\) at distance \(d_{2}=1.0 \mathrm{~m}\). (a) If \(A\) and \(B\) are diametrically opposite each other, as in Fig. 24-36a, what is the electric potential difference \(V_{A}-V_{B}\) ? (b) What is that electric potential difference if \(A\) and \(B\) are located as in Fig. 24-36b?


Figure 24-36 Problem 14.
- 15 SSM ILW A spherical drop of water carrying a charge of 30 pC has a potential of 500 V at its surface (with \(V=0\) at infinity). (a) What is the radius of the drop? (b) If two such drops of the same charge and radius combine to form a single spherical drop, what is the potential at the surface of the new drop?
-16 ©o Figure \(24-37\) shows a rectangular array of charged particles fixed in place, with distance \(a=39.0\) cm and the charges shown as integer multiples of \(q_{1}=3.40 \mathrm{pC}\) and \(q_{2}=\) 6.00 pC . With \(V=0\) at infinity, what


Figure 24-37 Problem 16.
is the net electric potential at the rectangle's center? (Hint: Thoughtful examination of the arrangement can reduce the calculation.)
-017 ©0 In Fig. 24-38, what is the net electric potential at point \(P\) due to the four particles if \(V=0\) at infinity, \(q=5.00 \mathrm{fC}\), and \(d=4.00 \mathrm{~cm}\) ?
\(\bullet 18\) ©0 Two charged particles are shown in Fig. 24-39a. Particle 1, with charge \(q_{1}\), is fixed in place at distance \(d\). Particle 2 , with charge \(q_{2}\), can be moved along the \(x\) axis. Figure 24-39b gives the net electric potential \(V\) at the origin due to the two particles as a function of the \(x\) coordinate of particle 2 . The scale of the \(x\) axis is set by \(x_{s}=\) 16.0 cm . The plot has an asymptote of \(V=5.76 \times 10^{-7} \mathrm{~V}\) as \(x \rightarrow \infty\). What is \(q_{2}\) in terms of \(e\) ?


Figure 24-39 Problem 18.
-•19 In Fig. 24-40, particles with the charges \(q_{1}=+5 e\) and \(q_{2}=-15 e\) are fixed in place with a separation of \(d=24.0 \mathrm{~cm}\). With electric potential defined to be \(V=0\) at infinity, what are the finite (a) positive and (b) negative values of \(x\) at which the net electric potential on the \(x\) axis is zero?


Figure 24-40 Problems 19 and 20.
-20 Two particles, of charges \(q_{1}\) and \(q_{2}\), are separated by distance \(d\) in Fig. 24-40. The net electric field due to the particles is zero at \(x=d / 4\). With \(V=0\) at infinity, locate (in terms of \(d\) ) any point on the \(x\) axis (other than at infinity) at which the electric potential due to the two particles is zero.

\section*{Module 24-4 Potential Due to an Electric Dipole}
-21 ILW The ammonia molecule \(\mathrm{NH}_{3}\) has a permanent electric dipole moment equal to 1.47 D , where \(1 \mathrm{D}=1\) debye unit \(=\) \(3.34 \times 10^{-30} \mathrm{C} \cdot \mathrm{m}\). Calculate the electric potential due to an ammonia molecule at a point 52.0 nm away along the axis of the dipole. (Set \(V=0\) at infinity.)


Figure 24-41 Problem 22.
-222 In Fig. 24-41 \(a\), a particle of elementary charge \(+e\) is initially at coordinate \(z=20 \mathrm{~nm}\) on the dipole axis (here a \(z\) axis) through
an electric dipole, on the positive side of the dipole. (The origin of \(z\) is at the center of the dipole.) The particle is then moved along a circular path around the dipole center until it is at coordinate \(z=\) -20 nm , on the negative side of the dipole axis. Figure \(24-41 b\) gives the work \(W_{a}\) done by the force moving the particle versus the angle \(\theta\) that locates the particle relative to the positive direction of the \(z\) axis. The scale of the vertical axis is set by \(W_{a s}=4.0 \times 10^{-30} \mathrm{~J}\). What is the magnitude of the dipole moment?

\section*{Module 24-5 Potential Due to a Continuous}

\section*{Charge Distribution}
-23 (a) Figure 24-42a shows a nonconducting rod of length \(L=\) 6.00 cm and uniform linear charge density \(\lambda=+3.68 \mathrm{pC} / \mathrm{m}\). Assume that the electric potential is defined to be \(V=0\) at infinity. What is \(V\) at point \(P\) at distance \(d=8.00 \mathrm{~cm}\) along the rod's perpendicular bisector? (b) Figure \(24-42 b\) shows an identical rod except that one half is now negatively charged. Both halves have a linear charge density of magnitude \(3.68 \mathrm{pC} / \mathrm{m}\). With \(V=0\) at infinity, what is \(V\) at \(P\) ?


Figure 24-42 Problem 23.
-24 In Fig. 24-43, a plastic rod having a uniformly distributed charge \(Q=-25.6 \mathrm{pC}\) has been bent into a circular arc of radius \(R=3.71 \mathrm{~cm}\) and central angle \(\phi=120^{\circ}\). With \(V=0\) at infinity, what is the electric potential at \(P\), the center of curvature of the rod?
-25 A plastic rod has been bent into a circle of radius \(R=8.20 \mathrm{~cm}\). It has a charge \(Q_{1}=\) +4.20 pC uniformly distributed along onequarter of its circumference and a charge \(Q_{2}=-6 Q_{1}\) uniformly distributed along the


Figure 24-43
Problem 24. rest of the circumference (Fig. 24-44). With \(V=0\) at infinity, what is the electric potential at (a) the center \(C\) of the circle and (b) point \(P\), on the central axis of the circle at distance \(D=6.71 \mathrm{~cm}\) from the center?


Figure 24-44 Problem 25.
-226 ©0 Figure \(24-45\) shows a thin rod with a uniform charge density of \(2.00 \mu \mathrm{C} / \mathrm{m}\). Evaluate the electric potential at point \(P\) if \(d=D=\) \(L / 4.00\). Assume that the potential is zero at infinity.


Figure 24-45 Problem 26.
-•27 In Fig. 24-46, three thin plastic rods form quarter-circles with a common center of curvature at the origin. The uniform charges on the three rods are \(Q_{1}=+30 \mathrm{nC}, Q_{2}=\) \(+3.0 Q_{1}\), and \(Q_{3}=-8.0 Q_{1}\). What is the net electric potential at the origin due to the rods?
\(\bullet 28\) 6o Figure \(24-47\) shows a thin plastic rod of length \(L=12.0 \mathrm{~cm}\) and uniform positive charge \(Q=\) 56.1 fC lying on an \(x\) axis. With \(V=0\) at infinity, find the electric potential at point \(P_{1}\) on the axis, at distance \(d=2.50 \mathrm{~cm}\) from the rod.
-29 In Fig. 24-48, what is the net electric potential at the origin due to the circular arc of charge \(Q_{1}=\) +7.21 pC and the two particles of


Figure 24-46 Problem 27.


Figure 24-47 Problems 28, 33, 38 , and 40. charges \(Q_{2}=4.00 Q_{1}\) and \(Q_{3}=-2.00 Q_{1}\) ? The arc's center of curvature is at the origin and its radius is \(R=2.00 \mathrm{~m}\); the angle indicated is \(\theta=20.0^{\circ}\).


Figure 24-48 Problem 29.
-•30 60 The smiling face of Fig. 2449 consists of three items:
1. a thin rod of charge \(-3.0 \mu \mathrm{C}\) that forms a full circle of radius 6.0 cm ;
2. a second thin rod of charge \(2.0 \mu \mathrm{C}\) that forms a circular arc of radius 4.0 cm , subtending an angle of \(90^{\circ}\) about the center of the full circle;
3. an electric dipole with a dipole moment that is perpendicular to a radial line and has a magnitude of \(1.28 \times 10^{-21} \mathrm{C} \cdot \mathrm{m}\).

What is the net electric potential at the center?
-•31 SSM www A plastic disk of radius \(R=64.0 \mathrm{~cm}\) is charged on one side with a uniform surface charge density \(\sigma=7.73 \mathrm{fC} / \mathrm{m}^{2}\),


Figure 24-49 Problem 30.


Figure 24-50 Problem 31. and then three quadrants of the disk are removed. The remaining quadrant is shown in Fig. 24-50. With \(V=0\) at infinity, what is the potential due to the remaining quadrant at point \(P\), which is on the central axis of the original disk at distance \(D=25.9 \mathrm{~cm}\) from the original center?
-०032 (60 A nonuniform linear charge distribution given by \(\lambda=\) \(b x\), where \(b\) is a constant, is located along an \(x\) axis from \(x=0\) to \(x=0.20 \mathrm{~m}\). If \(b=20 \mathrm{nC} / \mathrm{m}^{2}\) and \(V=0\) at infinity, what is the electric potential at (a) the origin and (b) the point \(y=0.15 \mathrm{~m}\) on the \(y\) axis?
-0033 (60 The thin plastic rod shown in Fig. 24-47 has length \(L=\) 12.0 cm and a nonuniform linear charge density \(\lambda=c x\), where \(c=28.9 \mathrm{pC} / \mathrm{m}^{2}\). With \(V=0\) at infinity, find the electric potential at point \(P_{1}\) on the axis, at distance \(d=3.00 \mathrm{~cm}\) from one end.

\section*{Module 24-6 Calculating the Field from the Potential}
-34 Two large parallel metal plates are 1.5 cm apart and have charges of equal magnitudes but opposite signs on their facing surfaces. Take the potential of the negative plate to be zero. If the potential halfway between the plates is then +5.0 V , what is the electric field in the region between the plates?
-35 The electric potential at points in an \(x y\) plane is given by \(V=\left(2.0 \mathrm{~V} / \mathrm{m}^{2}\right) x^{2}-\left(3.0 \mathrm{~V} / \mathrm{m}^{2}\right) y^{2}\). In unit-vector notation, what is the electric field at the point \((3.0 \mathrm{~m}, 2.0 \mathrm{~m})\) ?
-36 The electric potential \(V\) in the space between two flat parallel plates 1 and 2 is given (in volts) by \(V=1500 x^{2}\), where \(x\) (in meters) is the perpendicular distance from plate 1 . At \(x=1.3 \mathrm{~cm}\), (a) what is the magnitude of the electric field and (b) is the field directed toward or away from plate 1 ?
\(\because 37\) SSM What is the magnitude of the electric field at the point ( \(3.00 \hat{\hat{i}}-2.00 \hat{j}+4.00 \hat{\mathrm{k}}\) ) m if the electric potential in the region is given by \(V=2.00 x y z^{2}\), where \(V\) is in volts and coordinates \(x, y\), and \(z\) are in meters?
-•38 Figure 24-47 shows a thin plastic rod of length \(L=13.5 \mathrm{~cm}\) and uniform charge 43.6 fC . (a) In terms of distance \(d\), find an expression for the electric potential at point \(P_{1}\). (b) Next, substitute variable \(x\) for \(d\) and find an expression for the magnitude of the component \(E_{x}\) of the electric field at \(P_{1}\). (c) What is the direction of \(E_{x}\) relative to the positive direction of the \(x\) axis? (d) What is the value of \(E_{x}\) at \(P_{1}\) for \(x=d=6.20 \mathrm{~cm}\) ? (e) From the symmetry in Fig. 24-47, determine \(E_{y}\) at \(P_{1}\).
थ39 An electron is placed in an \(x y\) plane where the electric potential depends on \(x\) and \(y\) as shown, for the coordinate axes, in Fig. 24-51 (the potential does not depend on \(z\) ). The scale of the vertical axis is set by \(V_{s}=500 \mathrm{~V}\). In unit-vector notation, what is the electric force on the electron?


Figure 24-51 Problem 39.
~0040 ©o The thin plastic rod of length \(L=10.0 \mathrm{~cm}\) in Fig. 24-47 has a nonuniform linear charge density \(\lambda=c x\), where \(c=\) \(49.9 \mathrm{pC} / \mathrm{m}^{2}\). (a) With \(V=0\) at infinity, find the electric potential at point \(P_{2}\) on the \(y\) axis at \(y=D=3.56 \mathrm{~cm}\). (b) Find the electric field component \(E_{y}\) at \(P_{2}\). (c) Why cannot the field component \(E_{x}\) at \(P_{2}\) be found using the result of (a)?

\section*{Module 24-7 Electric Potential Energy of a System}

\section*{of Charged Particles}
-41 A particle of charge \(+7.5 \mu \mathrm{C}\) is released from rest at the point \(x=60 \mathrm{~cm}\) on an \(x\) axis. The particle begins to move due to the presence of a charge \(Q\) that remains fixed at the origin. What is the kinetic energy of the particle at the instant it has moved 40 cm if (a) \(Q=+20 \mu \mathrm{C}\) and (b) \(Q=-20 \mu \mathrm{C}\) ?
-42 (a) What is the electric potential energy of two electrons separated by 2.00 nm ? (b) If the separation increases, does the potential energy increase or decrease?
-43 SSM ILW WWw How much work is required to set up the arrangement of Fig. 24-52 if \(q=2.30 \mathrm{pC}, a=64.0 \mathrm{~cm}\), and the particles are initially infinitely far apart and at rest?
-44 In Fig. 24-53, seven charged particles are fixed in place to form a square with an edge length of 4.0 cm . How much work must we do to bring a particle of charge \(+6 e\) initially at rest from an infinite distance to the center of the square?


Figure 24-53 Problem 44.
-045 ILW A particle of charge \(q\) is fixed at point \(P\), and a second particle of mass \(m\) and the same charge \(q\) is initially held a distance \(r_{1}\) from \(P\). The second particle is then released. Determine its speed when it is a distance \(r_{2}\) from \(P\). Let \(q=3.1 \mu \mathrm{C}, m=20 \mathrm{mg}, r_{1}=\) 0.90 mm , and \(r_{2}=2.5 \mathrm{~mm}\).
-•46 A charge of -9.0 nC is uniformly distributed around a thin plastic ring lying in a \(y z\) plane with the ring center at the origin. A -6.0 pC particle is located on the \(x\) axis at \(x=3.0 \mathrm{~m}\). For a ring radius of 1.5 m , how much work must an external force do on the particle to move it to the origin?
\(\bullet 47\) (60 What is the escape speed for an electron initially at rest on the surface of a sphere with a radius of 1.0 cm and a uniformly distributed charge of \(1.6 \times 10^{-15} \mathrm{C}\) ? That is, what initial speed must the electron have in order to reach an infinite distance from the sphere and have zero kinetic energy when it gets there?
-048 A thin, spherical, conducting shell of radius \(R\) is mounted on an isolating support and charged to a potential of -125 V . An electron is then fired directly toward the center of the shell, from point \(P\) at distance \(r\) from the center of the shell \((r \gtrdot>R)\). What initial speed \(v_{0}\) is needed for the electron to just reach the shell before reversing direction?
- 04 © Two electrons are fixed 2.0 cm apart. Another electron is shot from infinity and stops midway between the two. What is its initial speed?
\(\bullet 50\) In Fig. 24-54, how much work must we do to bring a particle, of charge \(Q=+16 e\) and initially at rest, along the dashed line from
infinity to the indicated point near two fixed particles of charges \(q_{1}=\) \(+4 e\) and \(q_{2}=-q_{1} / 2\) ? Distance \(d=\) \(1.40 \mathrm{~cm}, \theta_{1}=43^{\circ}\), and \(\theta_{2}=60^{\circ}\).
\(\because 51\) © 0 In the rectangle of Fig. 2455 , the sides have lengths 5.0 cm and \(15 \mathrm{~cm}, q_{1}=-5.0 \mu \mathrm{C}\), and \(q_{2}=+2.0\) \(\mu \mathrm{C}\). With \(V=0\) at infinity, what is the electric potential at (a) corner \(A\) and (b) corner \(B\) ? (c) How much work is required to move a charge \(q_{3}=+3.0\) \(\mu \mathrm{C}\) from \(B\) to \(A\) along a diagonal of the rectangle? (d) Does this work increase or decrease the electric potential energy of the three-charge system? Is more, less, or the same


Figure 24-54 Problem 50.


Figure 24-55 Problem 51. work required if \(q_{3}\) is moved along a path that is (e) inside the rectangle but not on a diagonal and (f) outside the rectangle?
- 52 Figure 24-56a shows an electron moving along an electric dipole axis toward the negative side of the dipole. The dipole is fixed in place. The electron was initially very far from the dipole, with kinetic energy 100 eV . Figure \(24-56 b\) gives the kinetic energy \(K\) of the electron versus its distance \(r\) from the dipole center. The scale of the horizontal axis is set by \(r_{s}=0.10 \mathrm{~m}\). What is the magnitude of the dipole moment?


Figure 24-56 Problem 52.
-053 Two tiny metal spheres \(A\) and \(B\), mass \(m_{A}=5.00 \mathrm{~g}\) and \(m_{B}=\) 10.0 g , have equal positive charge \(q=5.00 \mu \mathrm{C}\). The spheres are connected by a massless nonconducting string of length \(d=1.00 \mathrm{~m}\), which is much greater than the radii of the spheres. (a) What is the electric potential energy of the system? (b) Suppose you cut the string. At that instant, what is the acceleration of each sphere? (c) A long time after you cut the string, what is the speed of each sphere?
\(\because 54\) (6) A positron (charge \(+e\), mass equal to the electron mass) is moving at \(1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}\) in the positive direction of an \(x\) axis when, at \(x=0\), it encounters an electric field directed along the \(x\) axis. The electric potential \(V\) associated with the field is given in Fig. 24-57. The scale of the vertical axis is set by \(V_{s}=500.0 \mathrm{~V}\).

(a) Does the positron emerge from the field at \(x=0\) (which means its motion is reversed) or at \(x=0.50\) m (which means its motion is not reversed)? (b) What is its speed when it emerges?
-055 An electron is projected with an initial speed of \(3.2 \times 10^{5} \mathrm{~m} / \mathrm{s}\) directly toward a proton that is fixed in place. If the electron is initially a great distance from the proton, at what distance from the proton is the speed of the electron instantaneously equal to twice the initial value?
-056 Particle 1 (with a charge of \(+5.0 \mu \mathrm{C}\) ) and particle 2 (with a charge of \(+3.0 \mu \mathrm{C}\) ) are fixed in place with separation \(d=4.0 \mathrm{~cm}\)
on the \(x\) axis shown in Fig. 24-58a. Particle 3 can be moved along the \(x\) axis to the right of particle 2. Figure 24-58b gives the electric potential energy \(U\) of the three-particle system as a function of the \(x\) coordinate of particle 3 . The scale of the vertical axis is set by \(U_{s}=5.0 \mathrm{~J}\). What is the charge of particle 3?


Figure 24-58 Problem 56.
-•57 SSM Identical \(50 \mu \mathrm{C}\) charges are fixed on an \(x\) axis at \(x= \pm 3.0 \mathrm{~m}\). A particle of charge \(q=-15 \mu \mathrm{C}\) is then released from rest at a point on the positive part of the \(y\) axis. Due to the symmetry of the situation, the particle moves along the \(y\) axis and has kinetic energy 1.2 J as it passes through the point \(x=0, y=4.0 \mathrm{~m}\). (a) What is the kinetic energy of the particle as it passes through the origin? (b) At what negative value of \(y\) will the particle momentarily stop?
-058 ©0 Proton in a well. Figure 24-59 shows electric potential \(V\) along an \(x\) axis. The scale of the vertical axis is set by \(V_{s}=10.0 \mathrm{~V}\). A proton is to be released
 at \(x=3.5 \mathrm{~cm}\) with initial kinetic energy 4.00 eV . (a) If it is initially moving in the negative direction of the axis, does it reach a turning point (if so, what is the \(x\) coordinate of that point) or does it escape from the plotted region (if so, what is its speed at \(x=0\) )? (b) If it is initially moving in the positive direction of the axis, does it reach a turning point (if so, what is the \(x\) coordinate of that point) or does it escape from the plotted region (if so, what is its speed at \(x=6.0 \mathrm{~cm}\) )? What are the (c) magnitude \(F\) and (d) direction (positive or negative direction of the \(x\) axis) of the electric force on the proton if the proton moves just to the left of \(x=3.0 \mathrm{~cm}\) ? What are (e) \(F\) and (f) the direction if the proton moves just to the right of \(x=5.0 \mathrm{~cm}\) ?
\(\bullet 59\) In Fig. 24-60, a charged particle (either an electron or a proton) is moving rightward between two parallel charged plates separated by distance \(d=2.00 \mathrm{~mm}\). The plate potentials are \(V_{1}=-70.0 \mathrm{~V}\) and \(V_{2}=-50.0 \mathrm{~V}\). The particle is slowing from an initial speed of \(90.0 \mathrm{~km} / \mathrm{s}\) at the left plate. (a) Is the particle an electron or a proton? (b) What is its speed just as it


Figure 24-60
Problem 59. reaches plate 2 ?
-•60 In Fig. 24-61 \(a\), we move an electron from an infinite distance to a point at distance \(R=8.00 \mathrm{~cm}\) from a tiny charged ball. The move requires work \(W=2.16 \times 10^{-13} \mathrm{~J}\) by us. (a) What is the charge \(Q\) on the ball? In Fig. 24-61b, the ball has been sliced up and the slices spread out so that an equal amount of charge is at the hour positions on a circular clock face of radius \(R=8.00 \mathrm{~cm}\). Now the electron is brought from an infinite distance to the center of
the circle. (b) With that addition of the electron to the system of 12 charged particles, what is the change in the electric potential energy of the system?


Figure 24-61 Problem 60.
\(\bullet 61\) Suppose \(N\) electrons can be placed in either of two configurations. In configuration 1 , they are all placed on the circumference of a narrow ring of radius \(R\) and are uniformly distributed so that the distance between adjacent electrons is the same everywhere. In configuration \(2, N-1\) electrons are uniformly distributed on the ring and one electron is placed in the center of the ring. (a) What is the smallest value of \(N\) for which the second configuration is less energetic than the first? (b) For that value of \(N\), consider any one circumference electron-call it \(\mathrm{e}_{0}\). How many other circumference electrons are closer to \(\mathrm{e}_{0}\) than the central electron is?

\section*{Module 24-8 Potential of a Charged Isolated Conductor}
-62 Sphere 1 with radius \(R_{1}\) has positive charge \(q\). Sphere 2 with radius \(2.00 R_{1}\) is far from sphere 1 and initially uncharged. After the separated spheres are connected with a wire thin enough to retain only negligible charge, (a) is potential \(V_{1}\) of sphere 1 greater than, less than, or equal to potential \(V_{2}\) of sphere 2 ? What fraction of \(q\) ends up on (b) sphere 1 and (c) sphere 2? (d) What is the ratio \(\sigma_{1} / \sigma_{2}\) of the surface charge densities of the spheres?
-63 SSM WWW Two metal spheres, each of radius 3.0 cm , have a center-to-center separation of 2.0 m . Sphere 1 has charge \(+1.0 \times\) \(10^{-8} \mathrm{C}\); sphere 2 has charge \(-3.0 \times 10^{-8} \mathrm{C}\). Assume that the separation is large enough for us to say that the charge on each sphere is uniformly distributed (the spheres do not affect each other). With \(V=0\) at infinity, calculate (a) the potential at the point halfway between the centers and the potential on the surface of (b) sphere 1 and (c) sphere 2.
-64 A hollow metal sphere has a potential of +400 V with respect to ground (defined to be at \(V=0\) ) and a charge of \(5.0 \times 10^{-9} \mathrm{C}\). Find the electric potential at the center of the sphere.
-65 SSM What is the excess charge on a conducting sphere of radius \(r=0.15 \mathrm{~m}\) if the potential of the sphere is 1500 V and \(V=0\) at infinity?
-•66 Two isolated, concentric, conducting spherical shells have radii \(R_{1}=0.500 \mathrm{~m}\) and \(R_{2}=1.00 \mathrm{~m}\), uniform charges \(q_{1}=+2.00 \mu \mathrm{C}\) and \(q_{2}=+1.00 \mu \mathrm{C}\), and negligible thicknesses. What is the magnitude of the electric field \(E\) at radial distance (a) \(r=4.00 \mathrm{~m}\), (b) \(r=\) 0.700 m , and (c) \(r=0.200 \mathrm{~m}\) ? With \(V=0\) at infinity, what is \(V\) at (d) \(r=4.00 \mathrm{~m}\), (e) \(r=1.00 \mathrm{~m}\), (f) \(r=0.700 \mathrm{~m},(\mathrm{~g}) r=0.500 \mathrm{~m}\), (h) \(r=0.200 \mathrm{~m}\), and (i) \(r=0\) ? (j) Sketch \(E(r)\) and \(V(r)\).
-•67 A metal sphere of radius 15 cm has a net charge of \(3.0 \times\) \(10^{-8}\) C. (a) What is the electric field at the sphere's surface? (b) If \(V=0\) at infinity, what is the electric potential at the sphere's surface? (c) At what distance from the sphere's surface has the electric potential decreased by 500 V ?

\section*{Additional Problems}

68 Here are the charges and coordinates of two charged particles located in an \(x y\) plane: \(q_{1}=+3.00 \times 10^{-6} \mathrm{C}, x=+3.50 \mathrm{~cm}\), \(y=+0.500 \mathrm{~cm}\) and \(q_{2}=-4.00 \times 10^{-6} \mathrm{C}, x=-2.00 \mathrm{~cm}, \quad y=\) +1.50 cm . How much work must be done to locate these charges at their given positions, starting from infinite separation?
69 SSM A long, solid, conducting cylinder has a radius of 2.0 cm . The electric field at the surface of the cylinder is \(160 \mathrm{~N} / \mathrm{C}\), directed radially outward. Let \(A, B\), and \(C\) be points that are \(1.0 \mathrm{~cm}, 2.0 \mathrm{~cm}\), and 5.0 cm , respectively, from the central axis of the cylinder. What are (a) the magnitude of the electric field at \(C\) and the electric potential differences (b) \(V_{B}-V_{C}\) and (c) \(V_{A}-V_{B}\).

70 The chocolate crumb mystery. This story begins with Problem 60 in Chapter 23. (a) From the answer to part (a) of that problem, find an expression for the electric potential as a function of the radial distance \(r\) from the center of the pipe. (The electric potential is zero on the grounded pipe wall.) (b) For the typical volume charge density \(\rho=-1.1 \times 10^{-3} \mathrm{C} / \mathrm{m}^{3}\), what is the difference in the electric potential between the pipe's center and its inside wall? (The story continues with Problem 60 in Chapter 25.)
71 SSM Starting from Eq. 24-30, derive an expression for the electric field due to a dipole at a point on the dipole axis.
72 The magnitude \(E\) of an electric field depends on the radial distance \(r\) according to \(E=A / r^{4}\), where \(A\) is a constant with the unit volt-cubic meter. As a multiple of \(A\), what is the magnitude of the electric potential difference between \(r=2.00 \mathrm{~m}\) and \(r=3.00 \mathrm{~m}\) ?
73 (a) If an isolated conducting sphere 10 cm in radius has a net charge of \(4.0 \mu \mathrm{C}\) and if \(V=0\) at infinity, what is the potential on the surface of the sphere? (b) Can this situation actually occur, given that the air around the sphere undergoes electrical breakdown when the field exceeds \(3.0 \mathrm{MV} / \mathrm{m}\) ?
74 Three particles, charge \(q_{1}=+10 \mu \mathrm{C}\), \(q_{2}=-20 \mu \mathrm{C}\), and \(q_{3}=+30 \mu \mathrm{C}\), are positioned at the vertices of an isosceles triangle as shown in Fig. 24-62. If \(a=10 \mathrm{~cm}\) and \(b=\) 6.0 cm , how much work must an external agent do to exchange the positions of (a) \(q_{1}\) and \(q_{3}\) and, instead, (b) \(q_{1}\) and \(q_{2}\) ?
75 An electric field of approximately \(100 \mathrm{~V} / \mathrm{m}\) is often observed near the surface of


Figure 24-62
Problem 74. Earth. If this were the field over the entire surface, what would be the electric potential of a point on the surface? (Set \(V=0\) at infinity.)
76 A Gaussian sphere of radius 4.00 cm is centered on a ball that has a radius of 1.00 cm and a uniform charge distribution. The total (net) electric flux through the surface of the Gaussian sphere is \(+5.60 \times 10^{4} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}\). What is the electric potential 12.0 cm from the center of the ball?

77 In a Millikan oil-drop experiment (Module 22-6), a uniform electric field of \(1.92 \times 10^{5} \mathrm{~N} / \mathrm{C}\) is maintained in the region between two plates separated by 1.50 cm . Find the potential difference between the plates.
78 Figure 24-63 shows three circular, nonconducting arcs of radius \(R=8.50\) cm . The charges on the arcs are \(q_{1}=4.52\)


Figure 24-63 Problem 78.
\(\mathrm{pC}, q_{2}=-2.00 q_{1}, q_{3}=+3.00 q_{1}\). With \(V=0\) at infinity, what is the net electric potential of the arcs at the common center of curvature?

79 An electron is released from rest on the axis of an electric dipole that has charge \(e\) and charge separation \(d=20 \mathrm{pm}\) and that is fixed in place. The release point is on the positive side of the dipole, at distance 7.0 d from the dipole center. What is the electron's speed when it reaches a point 5.0 d from the dipole center?

80 Figure 24-64 shows a ring of outer radius \(R=13.0 \mathrm{~cm}\), inner radius \(r=0.200 R\), and uniform surface charge density \(\sigma=6.20 \mathrm{pC} / \mathrm{m}^{2}\). With \(V=0\) at infinity, find the electric potential at point \(P\) on the central axis of the ring, at distance \(z=2.00 R\) from the center of the ring.
81 © ©lectron in a well. Figure 24-


Figure 24-64 Problem 80. 65 shows electric potential \(V\) along an \(x\) axis. The scale of the vertical axis is set by \(V_{s}=8.0 \mathrm{~V}\). An electron is to be released at \(x=4.5\) cm with initial kinetic energy 3.00 eV . (a) If it is initially moving in the nega-


Figure 24-65 Problem 81. tive direction of the axis, does it reach a turning point (if so, what is the \(x\) coordinate of that point) or does it escape from the plotted region (if so, what is its speed at \(x=0\) )? (b) If it is initially moving in the positive direction of the axis, does it reach a turning point (if so, what is the \(x\) coordinate of that point) or does it escape from the plotted region (if so, what is its speed at \(x=7.0 \mathrm{~cm}\) )? What are the (c) magnitude \(F\) and (d) direction (positive or negative direction of the \(x\) axis) of the electric force on the electron if the electron moves just to the left of \(x=4.0 \mathrm{~cm}\) ? What are (e) \(F\) and (f) the direction if it moves just to the right of \(x=5.0 \mathrm{~cm}\) ?

82 (a) If Earth had a uniform surface charge density of 1.0 electron \(/ \mathrm{m}^{2}\) (a very artificial assumption), what would its potential be? (Set \(V=0\) at infinity.) What would be the (b) magnitude and (c) direction (radially inward or outward) of the electric field due to Earth just outside its surface?
83 In Fig. 24-66, point \(P\) is at distance \(d_{1}=4.00 \mathrm{~m}\) from particle \(1\left(q_{1}=-2 e\right)\) and distance \(d_{2}=2.00 \mathrm{~m}\) from particle \(2\left(q_{2}=+2 e\right)\), with both particles fixed in place. (a) With \(V=0\) at infinity, what is \(V\) at \(P\) ? If we bring a particle of charge \(q_{3}=+2 e\) from infinity to \(P\),


Figure 24-66 Problem 83.
(b) how much work do we do and
(c) what is the potential energy of the three-particle system?

84 A solid conducting sphere of radius 3.0 cm has a charge of 30 nC distributed uniformly over its surface. Let \(A\) be a point 1.0 cm from the center of the sphere, \(S\) be a point on the surface of the sphere, and \(B\) be a point 5.0 cm from the center of the sphere. What are the electric potential differences (a) \(V_{S}-V_{B}\) and (b) \(V_{A}-V_{B}\) ?

85 In Fig. 24-67, we move a particle of charge \(+2 e\) in from infinity to the \(x\) axis. How much work do we do? Distance \(D\) is 4.00 m .


Figure 24-67 Problem 85.

86 Figure \(24-68\) shows a hemisphere with a charge of \(4.00 \mu \mathrm{C}\) distributed uniformly through its volume. The hemisphere lies on an \(x y\) plane the way half a grapefruit might lie face down on a kitchen table.


Figure 24-68 Problem 86. Point \(P\) is located on the plane, along a radial line from the hemisphere's center of curvature, at radial distance 15 cm . What is the electric potential at point \(P\) due to the hemisphere?
87 SSM Three +0.12 C charges form an equilateral triangle 1.7 m on a side. Using energy supplied at the rate of 0.83 kW , how many days would be required to move one of the charges to the midpoint of the line joining the other two charges?
88 Two charges \(q=+2.0 \mu \mathrm{C}\) are fixed a distance \(d=2.0 \mathrm{~cm}\) apart (Fig. 24-69). (a) With \(V=0\) at infinity, what is the electric potential at point \(C\) ? (b) You bring a third charge \(q=+2.0 \mu \mathrm{C}\) from infinity to \(C\). How much work must you do? (c) What is the potential energy \(U\) of the three-charge configura-


Figure 24-69 Problem 88. tion when the third charge is in place?
89 Initially two electrons are fixed in place with a separation of \(2.00 \mu \mathrm{~m}\). How much work must we do to bring a third electron in from infinity to complete an equilateral triangle?
90 A particle of positive charge \(Q\) is fixed at point \(P\). A second particle of mass \(m\) and negative charge \(-q\) moves at constant speed in a circle of radius \(r_{1}\), centered at \(P\). Derive an expression for the work \(W\) that must be done by an external agent on the second particle to increase the radius of the circle of motion to \(r_{2}\).
91 Two charged, parallel, flat conducting surfaces are spaced \(d=\) 1.00 cm apart and produce a potential difference \(\Delta V=625 \mathrm{~V}\) between them. An electron is projected from one surface directly toward the second. What is the initial speed of the electron if it stops just at the second surface?

92 In Fig. 24-70, point \(P\) is at the center of the rectangle. With \(V=0\) at infinity, \(q_{1}=5.00 \mathrm{fC}, \quad q_{2}=2.00 \mathrm{fC}\), \(q_{3}=3.00 \mathrm{fC}\), and \(d=2.54 \mathrm{~cm}\), what is the net electric potential at \(P\) due to the six charged particles?
93 SSM A uniform charge of +16.0


Figure 24-70 Problem 92. \(\mu \mathrm{C}\) is on a thin circular ring lying in an \(x y\) plane and centered on the origin. The ring's radius is 3.00 cm . If point \(A\) is at the origin and point \(B\) is on the \(z\) axis at \(z=4.00\) cm , what is \(V_{B}-V_{A}\) ?
94 Consider a particle with charge \(q=1.50 \times 10^{-8} \mathrm{C}\), and take \(V=0\) at infinity. (a) What are the shape and dimensions of an equipotential surface having a potential of 30.0 V due to \(q\) alone?
(b) Are surfaces whose potentials differ by a constant amount ( 1.0 V , say) evenly spaced?
95 SSM A thick spherical shell of charge \(Q\) and uniform volume charge density \(\rho\) is bounded by radii \(r_{1}\) and \(r_{2}>r_{1}\). With \(V=0\) at infinity, find the electric potential \(V\) as a function of distance \(r\) from the center of the distribution, considering regions (a) \(r>r_{2}\), (b) \(r_{2}>r>r_{1}\), and (c) \(r<r_{1}\). (d) Do these solutions agree with each other at \(r=r_{2}\) and \(r=r_{1}\) ? (Hint: See Module 23-6.)

96 A charge \(q\) is distributed uniformly throughout a spherical volume of radius \(R\). Let \(V=0\) at infinity. What are (a) \(V\) at radial distance \(r<R\) and (b) the potential difference between points at \(r=R\) and the point at \(r=0\) ?
97 SSM A solid copper sphere whose radius is 1.0 cm has a very thin surface coating of nickel. Some of the nickel atoms are radioactive, each atom emitting an electron as it decays. Half of these electrons enter the copper sphere, each depositing 100 keV of energy there. The other half of the electrons escape, each carrying away a charge \(-e\). The nickel coating has an activity of \(3.70 \times 10^{8}\) radioactive decays per second. The sphere is hung from a long, nonconducting string and isolated from its surroundings. (a) How long will it take for the potential of the sphere to increase by 1000 V ? (b) How long will it take for the temperature of the sphere to increase by 5.0 K due to the energy deposited by the electrons? The heat capacity of the sphere is \(14 \mathrm{~J} / \mathrm{K}\).
98 In Fig. 24-71, a metal sphere with charge \(q=5.00 \mu \mathrm{C}\) and radius \(r=3.00 \mathrm{~cm}\) is concentric with a larger metal sphere with charge \(Q=\) \(15.0 \mu \mathrm{C}\) and radius \(R=6.00 \mathrm{~cm}\). (a) What is the potential difference between the spheres? If we connect the spheres with a wire, what then is the charge on (b) the smaller sphere and (c) the larger sphere?

99 (a) Using Eq. 24-32, show that the electric potential at a point on the central axis of a thin ring (of charge \(q\) and radius \(R\) ) and at dis-


Figure 24-71 Problem 98. tance \(z\) from the ring is
\[
V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{\sqrt{z^{2}+R^{2}}}
\]
(b) From this result, derive an expression for the electric field magnitude \(E\) at points on the ring's axis; compare your result with the calculation of \(E\) in Module 22-4.
100 An alpha particle (which has two protons) is sent directly toward a target nucleus containing 92 protons. The alpha particle has an initial kinetic energy of 0.48 pJ . What is the least center-to-center distance the alpha particle will be from the target nucleus, assuming the nucleus does not move?
101 In the quark model of fundamental particles, a proton is composed of three quarks: two "up" quarks, each having charge \(+2 e / 3\), and one "down" quark, having charge \(-e / 3\). Suppose that the three quarks are equidistant from one another. Take that separation distance to be \(1.32 \times 10^{-15} \mathrm{~m}\) and calculate the electric potential energy of the system of (a) only the two up quarks and (b) all three quarks.

102 A charge of \(1.50 \times 10^{-8} \mathrm{C}\) lies on an isolated metal sphere of radius 16.0 cm . With \(V=0\) at infinity, what is the electric potential at points on the sphere's surface?

103 In Fig. 24-72, two particles of charges \(q_{1}\) and \(q_{2}\) are fixed to an \(x\) axis. If a third particle, of charge \(+6.0 \mu \mathrm{C}\), is brought from an infinite distance to point \(P\), the three-parti-


Figure 24-72 Problem 103. cle system has the same electric potential energy as the original two-particle system. What is the charge ratio \(q_{1} / q_{2}\) ?

\section*{Capacitance}

\section*{25-1 Capacitance}

\section*{Learning Objectives}

After reading this module, you should be able to ...
25.01 Sketch a schematic diagram of a circuit with a parallelplate capacitor, a battery, and an open or closed switch.
25.02 In a circuit with a battery, an open switch, and an uncharged capacitor, explain what happens to the conduction electrons when the switch is closed.
25.03 For a capacitor, apply the relationship between the magnitude of charge \(q\) on either plate ("the charge on the capacitor"), the potential difference \(V\) between the plates ("the potential across the capacitor"), and the capacitance \(C\) of the capacitor.

\section*{Key Ideas}
- A capacitor consists of two isolated conductors (the plates) with charges \(+q\) and \(-q\). Its capacitance \(C\) is defined from
\[
q=C V
\]
where \(V\) is the potential difference between the plates.
- When a circuit with a battery, an open switch, and an uncharged capacitor is completed by closing the switch, conduction electrons shift, leaving the capacitor plates with opposite charges.

\section*{What Is Physics?}

One goal of physics is to provide the basic science for practical devices designed by engineers. The focus of this chapter is on one extremely common example-the capacitor, a device in which electrical energy can be stored. For example, the batteries in a camera store energy in the photoflash unit by charging a capacitor. The batteries can supply energy at only a modest rate, too slowly for the photoflash unit to emit a flash of light. However, once the capacitor is charged, it can supply energy at a much greater rate when the photoflash unit is triggered-enough energy to allow the unit to emit a burst of bright light.

The physics of capacitors can be generalized to other devices and to any situation involving electric fields. For example, Earth's atmospheric electric field is modeled by meteorologists as being produced by a huge spherical capacitor that partially discharges via lightning. The charge that skis collect as they slide along snow can be modeled as being stored in a capacitor that frequently discharges as sparks (which can be seen by nighttime skiers on dry snow).

The first step in our discussion of capacitors is to determine how much charge can be stored. This "how much" is called capacitance.

\section*{Capacitance}

Figure 25-1 shows some of the many sizes and shapes of capacitors. Figure 25-2 shows the basic elements of any capacitor - two isolated conductors of any

Figure 25-2 Two conductors, isolated electrically from each other and from their surroundings, form a capacitor. When the capacitor is charged, the charges on the conductors, or plates as they are called, have the same magnitude \(q\) but opposite signs.


Paul Silvermann/Fundamental Photographs
Figure 25-1 An assortment of capacitors.


Figure 25-3 (a) A parallel-plate capacitor, made up of two plates of area \(A\) separated by a distance \(d\). The charges on the facing plate surfaces have the same magnitude \(q\) but opposite signs. (b) As the field lines show, the electric field due to the charged plates is uniform in the central region between the plates. The field is not uniform at the edges of the plates, as indicated by the "fringing" of the field lines there.


Figure 25-4 (a) Battery B, switch S, and plates \(h\) and \(l\) of capacitor C , connected in a circuit. (b) A schematic diagram with the circuit elements represented by their symbols.

shape. No matter what their geometry, flat or not, we call these conductors plates.

Figure 25-3a shows a less general but more conventional arrangement, called a parallel-plate capacitor, consisting of two parallel conducting plates of area \(A\) separated by a distance \(d\). The symbol we use to represent a capacitor ( \((-\vdash)\) is based on the structure of a parallel-plate capacitor but is used for capacitors of all geometries. We assume for the time being that no material medium (such as glass or plastic) is present in the region between the plates. In Module 25-5, we shall remove this restriction.

When a capacitor is charged, its plates have charges of equal magnitudes but opposite signs: \(+q\) and \(-q\). However, we refer to the charge of a capacitor as being \(q\), the absolute value of these charges on the plates. (Note that \(q\) is not the net charge on the capacitor, which is zero.)

Because the plates are conductors, they are equipotential surfaces; all points on a plate are at the same electric potential. Moreover, there is a potential difference between the two plates. For historical reasons, we represent the absolute value of this potential difference with \(V\) rather than with the \(\Delta V\) we used in previous notation.

The charge \(q\) and the potential difference \(V\) for a capacitor are proportional to each other; that is,
\[
\begin{equation*}
q=C V \tag{25-1}
\end{equation*}
\]

The proportionality constant \(C\) is called the capacitance of the capacitor. Its value depends only on the geometry of the plates and not on their charge or potential difference. The capacitance is a measure of how much charge must be put on the plates to produce a certain potential difference between them: The greater the capacitance, the more charge is required.

The SI unit of capacitance that follows from Eq. 25-1 is the coulomb per volt. This unit occurs so often that it is given a special name, the farad (F):
\[
\begin{equation*}
1 \text { farad }=1 \mathrm{~F}=1 \text { coulomb per volt }=1 \mathrm{C} / \mathrm{V} . \tag{25-2}
\end{equation*}
\]

As you will see, the farad is a very large unit. Submultiples of the farad, such as the microfarad \(\left(1 \mu \mathrm{~F}=10^{-6} \mathrm{~F}\right)\) and the picofarad ( \(1 \mathrm{pF}=10^{-12} \mathrm{~F}\) ), are more convenient units in practice.

\section*{Charging a Capacitor}

One way to charge a capacitor is to place it in an electric circuit with a battery. An electric circuit is a path through which charge can flow. A battery is a device that maintains a certain potential difference between its terminals (points at which charge can enter or leave the battery) by means of internal electrochemical reactions in which electric forces can move internal charge.

In Fig. 25-4a, a battery B, a switch S, an uncharged capacitor C, and interconnecting wires form a circuit. The same circuit is shown in the schematic diagram of Fig. 25-4b, in which the symbols for a battery, a switch, and a capacitor represent those devices. The battery maintains potential difference \(V\) between its terminals. The terminal of higher potential is labeled + and is often called the positive terminal; the terminal of lower potential is labeled - and is often called the negative terminal.

The circuit shown in Figs. \(25-4 a\) and \(b\) is said to be incomplete because switch S is open; that is, the switch does not electrically connect the wires attached to it. When the switch is closed, electrically connecting those wires, the circuit is complete and charge can then flow through the switch and the wires. As we discussed in Chapter 21, the charge that can flow through a conductor, such as a wire, is that of electrons. When the circuit of Fig. 25-4 is completed, electrons are driven through the wires by an electric field that the battery sets up in the wires. The field drives electrons from capacitor plate \(h\) to the positive terminal of the battery; thus, plate \(h\), losing electrons, becomes positively charged. The field drives just as many electrons from the negative terminal of the battery to capacitor plate \(l\); thus, plate \(l\), gaining electrons, becomes negatively charged just as much as plate \(h\), losing electrons, becomes positively charged.

Initially, when the plates are uncharged, the potential difference between them is zero. As the plates become oppositely charged, that potential difference increases until it equals the potential difference \(V\) between the terminals of the battery. Then plate \(h\) and the positive terminal of the battery are at the same potential, and there is no longer an electric field in the wire between them. Similarly, plate \(l\) and the negative terminal reach the same potential, and there is then no electric field in the wire between them. Thus, with the field zero, there is no further drive of electrons. The capacitor is then said to be fully charged, with a potential difference \(V\) and charge \(q\) that are related by Eq. 25-1.

In this book we assume that during the charging of a capacitor and afterward, charge cannot pass from one plate to the other across the gap separating them. Also, we assume that a capacitor can retain (or store) charge indefinitely, until it is put into a circuit where it can be discharged.

\section*{Checkpoint 1}

Does the capacitance \(C\) of a capacitor increase, decrease, or remain the same (a) when the charge \(q\) on it is doubled and (b) when the potential difference \(V\) across it is tripled?

\section*{25-2 calculating the capacitance}

\section*{Learning Objectives}

After reading this module, you should be able to ...
25.04 Explain how Gauss' law is used to find the capacitance of a parallel-plate capacitor.
25.05 For a parallel-plate capacitor, a cylindrical capacitor, a spherical capacitor, and an isolated sphere, calculate the capacitance.

\section*{Key Ideas}
- We generally determine the capacitance of a particular capacitor configuration by (1) assuming a charge \(q\) to have been placed on the plates, (2) finding the electric field \(\vec{E}\) due to this charge, (3) evaluating the potential difference \(V\) between the plates, and (4) calculating \(C\) from \(q=C V\). Some results are the following:
- A parallel-plate capacitor with flat parallel plates of area \(A\) and spacing \(d\) has capacitance
\[
C=\frac{\varepsilon_{0} A}{d}
\]

A cylindrical capacitor (two long coaxial cylinders) of length
\(L\) and radii \(a\) and \(b\) has capacitance
\[
C=2 \pi \varepsilon_{0} \frac{L}{\ln \left(\frac{b}{a}\right)} .
\]
- A spherical capacitor with concentric spherical plates of radii \(a\) and \(b\) has capacitance
\[
C=4 \pi \varepsilon_{0} \frac{a b}{b-a}
\]
- An isolated sphere of radius \(R\) has capacitance
\[
C=4 \pi \varepsilon_{0} R
\]

We use Gauss' law to relate \(q\) and \(E\). Then we integrate the \(E\) to get the potential difference.


Figure 25-5 A charged parallel-plate capacitor. A Gaussian surface encloses the charge on the positive plate. The integration of Eq. 25-6 is taken along a path extending directly from the negative plate to the positive plate.

\section*{Calculating the Capacitance}

Our goal here is to calculate the capacitance of a capacitor once we know its geometry. Because we shall consider a number of different geometries, it seems wise to develop a general plan to simplify the work. In brief our plan is as follows: (1) Assume a charge \(q\) on the plates; (2) calculate the electric field \(\vec{E}\) between the plates in terms of this charge, using Gauss' law; (3) knowing \(\vec{E}\), calculate the potential difference \(V\) between the plates from Eq. 24-18; (4) calculate \(C\) from Eq. 25-1.

Before we start, we can simplify the calculation of both the electric field and the potential difference by making certain assumptions. We discuss each in turn.

\section*{Calculating the Electric Field}

To relate the electric field \(\vec{E}\) between the plates of a capacitor to the charge \(q\) on either plate, we shall use Gauss' law:
\[
\begin{equation*}
\varepsilon_{0} \oint \vec{E} \cdot d \vec{A}=q \tag{25-3}
\end{equation*}
\]

Here \(q\) is the charge enclosed by a Gaussian surface and \(\oint \vec{E} \cdot d \vec{A}\) is the net electric flux through that surface. In all cases that we shall consider, the Gaussian surface will be such that whenever there is an electric flux through it, \(\vec{E}\) will have a uniform magnitude \(E\) and the vectors \(\vec{E}\) and \(d \vec{A}\) will be parallel. Equation 25-3 then reduces to
\[
\begin{equation*}
q=\varepsilon_{0} E A \quad \text { (special case of Eq. } 25-3 \text { ) } \tag{25-4}
\end{equation*}
\]
in which \(A\) is the area of that part of the Gaussian surface through which there is a flux. For convenience, we shall always draw the Gaussian surface in such a way that it completely encloses the charge on the positive plate; see Fig. 25-5 for an example.

\section*{Calculating the Potential Difference}

In the notation of Chapter 24 (Eq. 24-18), the potential difference between the plates of a capacitor is related to the field \(\vec{E}\) by
\[
\begin{equation*}
V_{f}-V_{i}=-\int_{i}^{f} \vec{E} \cdot d \vec{s}, \tag{25-5}
\end{equation*}
\]
in which the integral is to be evaluated along any path that starts on one plate and ends on the other. We shall always choose a path that follows an electric field line, from the negative plate to the positive plate. For this path, the vectors \(\vec{E}\) and \(d \vec{s}\) will have opposite directions; so the dot product \(\vec{E} \cdot d \vec{s}\) will be equal to \(-E d s\). Thus, the right side of Eq. 25-5 will then be positive. Letting \(V\) represent the difference \(V_{f}-V_{i}\), we can then recast Eq. \(25-5\) as
\[
\begin{equation*}
V=\int_{-}^{+} E d s \quad \text { (special case of Eq. 25-5), } \tag{25-6}
\end{equation*}
\]
in which the - and + remind us that our path of integration starts on the negative plate and ends on the positive plate.

We are now ready to apply Eqs. 25-4 and 25-6 to some particular cases.

\section*{A Parallel-Plate Capacitor}

We assume, as Fig. 25-5 suggests, that the plates of our parallel-plate capacitor are so large and so close together that we can neglect the fringing of the electric field
at the edges of the plates, taking \(\vec{E}\) to be constant throughout the region between the plates.

We draw a Gaussian surface that encloses just the charge \(q\) on the positive plate, as in Fig. 25-5. From Eq. 25-4 we can then write
\[
\begin{equation*}
q=\varepsilon_{0} E A \tag{25-7}
\end{equation*}
\]
where \(A\) is the area of the plate.
Equation 25-6 yields
\[
\begin{equation*}
V=\int_{-}^{+} E d s=E \int_{0}^{d} d s=E d \tag{25-8}
\end{equation*}
\]

In Eq. 25-8, \(E\) can be placed outside the integral because it is a constant; the second integral then is simply the plate separation \(d\).

If we now substitute \(q\) from Eq. 25-7 and \(V\) from Eq. 25-8 into the relation \(q=C V(\mathrm{Eq} .25-1)\), we find
\[
\begin{equation*}
C=\frac{\varepsilon_{0} A}{d} \quad \text { (parallel-plate capacitor). } \tag{25-9}
\end{equation*}
\]

Thus, the capacitance does indeed depend only on geometrical factors-namely, the plate area \(A\) and the plate separation \(d\). Note that \(C\) increases as we increase area \(A\) or decrease separation \(d\).

As an aside, we point out that Eq. \(25-9\) suggests one of our reasons for writing the electrostatic constant in Coulomb's law in the form \(1 / 4 \pi \varepsilon_{0}\). If we had not done so, Eq. \(25-9\) - which is used more often in engineering practice than Coulomb's law-would have been less simple in form. We note further that Eq. 25-9 permits us to express the permittivity constant \(\varepsilon_{0}\) in a unit more appropriate for use in problems involving capacitors; namely,
\[
\begin{equation*}
\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}=8.85 \mathrm{pF} / \mathrm{m} \tag{25-10}
\end{equation*}
\]

We have previously expressed this constant as
\[
\begin{equation*}
\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2} \tag{25-11}
\end{equation*}
\]

\section*{A Cylindrical Capacitor}

Figure 25-6 shows, in cross section, a cylindrical capacitor of length \(L\) formed by two coaxial cylinders of radii \(a\) and \(b\). We assume that \(L \gg b\) so that we can neglect the fringing of the electric field that occurs at the ends of the cylinders. Each plate contains a charge of magnitude \(q\).

As a Gaussian surface, we choose a cylinder of length \(L\) and radius \(r\), closed by end caps and placed as is shown in Fig. 25-6. It is coaxial with the cylinders and encloses the central cylinder and thus also the charge \(q\) on that cylinder. Equation 25-4 then relates that charge and the field magnitude \(E\) as
\[
q=\varepsilon_{0} E A=\varepsilon_{0} E(2 \pi r L)
\]
in which \(2 \pi r L\) is the area of the curved part of the Gaussian surface. There is no flux through the end caps. Solving for \(E\) yields
\[
\begin{equation*}
E=\frac{q}{2 \pi \varepsilon_{0} L r} . \tag{25-12}
\end{equation*}
\]

Substitution of this result into Eq. 25-6 yields
\[
\begin{equation*}
V=\int_{-}^{+} E d s=-\frac{q}{2 \pi \varepsilon_{0} L} \int_{b}^{a} \frac{d r}{r}=\frac{q}{2 \pi \varepsilon_{0} L} \ln \left(\frac{b}{a}\right) \tag{25-13}
\end{equation*}
\]
where we have used the fact that here \(d s=-d r\) (we integrated radially inward).


Figure 25-6 A cross section of a long cylindrical capacitor, showing a cylindrical Gaussian surface of radius \(r\) (that encloses the positive plate) and the radial path of integration along which Eq. 25-6 is to be applied. This figure also serves to illustrate a spherical capacitor in a cross section through its center.

From the relation \(C=q / V\), we then have
\[
\begin{equation*}
C=2 \pi \varepsilon_{0} \frac{L}{\ln (b / a)} \quad \text { (cylindrical capacitor). } \tag{25-14}
\end{equation*}
\]

We see that the capacitance of a cylindrical capacitor, like that of a parallel-plate capacitor, depends only on geometrical factors, in this case the length \(L\) and the two radii \(b\) and \(a\).

\section*{A Spherical Capacitor}

Figure 25-6 can also serve as a central cross section of a capacitor that consists of two concentric spherical shells, of radii \(a\) and \(b\). As a Gaussian surface we draw a sphere of radius \(r\) concentric with the two shells; then Eq. 25-4 yields
\[
q=\varepsilon_{0} E A=\varepsilon_{0} E\left(4 \pi r^{2}\right)
\]
in which \(4 \pi r^{2}\) is the area of the spherical Gaussian surface. We solve this equation for \(E\), obtaining
\[
\begin{equation*}
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}} \tag{25-15}
\end{equation*}
\]
which we recognize as the expression for the electric field due to a uniform spherical charge distribution (Eq. 23-15).

If we substitute this expression into Eq. 25-6, we find
\[
\begin{equation*}
V=\int_{-}^{+} E d s=-\frac{q}{4 \pi \varepsilon_{0}} \int_{b}^{a} \frac{d r}{r^{2}}=\frac{q}{4 \pi \varepsilon_{0}}\left(\frac{1}{a}-\frac{1}{b}\right)=\frac{q}{4 \pi \varepsilon_{0}} \frac{b-a}{a b} \tag{25-16}
\end{equation*}
\]
where again we have substituted \(-d r\) for \(d s\). If we now substitute Eq. 25-16 into Eq. 25-1 and solve for \(C\), we find
\[
\begin{equation*}
C=4 \pi \varepsilon_{0} \frac{a b}{b-a} \quad \text { (spherical capacitor). } \tag{25-17}
\end{equation*}
\]

\section*{An Isolated Sphere}

We can assign a capacitance to a single isolated spherical conductor of radius \(R\) by assuming that the "missing plate" is a conducting sphere of infinite radius. After all, the field lines that leave the surface of a positively charged isolated conductor must end somewhere; the walls of the room in which the conductor is housed can serve effectively as our sphere of infinite radius.

To find the capacitance of the conductor, we first rewrite Eq. 25-17 as
\[
C=4 \pi \varepsilon_{0} \frac{a}{1-a / b} .
\]

If we then let \(b \rightarrow \infty\) and substitute \(R\) for \(a\), we find
\[
\begin{equation*}
C=4 \pi \varepsilon_{0} R \quad \text { (isolated sphere). } \tag{25-18}
\end{equation*}
\]

Note that this formula and the others we have derived for capacitance (Eqs. 25-9, \(25-14\), and \(25-17\) ) involve the constant \(\varepsilon_{0}\) multiplied by a quantity that has the dimensions of a length.

\section*{Checkpoint 2}

For capacitors charged by the same battery, does the charge stored by the capacitor increase, decrease, or remain the same in each of the following situations? (a) The plate separation of a parallel-plate capacitor is increased. (b) The radius of the inner cylinder of a cylindrical capacitor is increased. (c) The radius of the outer spherical shell of a spherical capacitor is increased.

\section*{Sample Problem 25.01 Charging the plates in a parallel-plate capacitor}

In Fig. 25-7a, switch S is closed to connect the uncharged capacitor of capacitance \(C=0.25 \mu \mathrm{~F}\) to the battery of potential difference \(V=12 \mathrm{~V}\). The lower capacitor plate has thickness \(L=0.50 \mathrm{~cm}\) and face area \(A=2.0 \times 10^{-4} \mathrm{~m}^{2}\), and it consists of copper, in which the density of conduction electrons is \(n=8.49 \times 10^{28}\) electrons \(/ \mathrm{m}^{3}\). From what depth \(d\) within the plate (Fig. 25-7b) must electrons move to the plate face as the capacitor becomes charged?

\section*{KEY IDEA}

The charge collected on the plate is related to the capacitance and the potential difference across the capacitor by Eq. 25-1 \((q=C V)\).

Calculations: Because the lower plate is connected to the negative terminal of the battery, conduction electrons move up to the face of the plate. From Eq. 25-1, the total charge

Figure 25-7 (a) A battery and capacitor circuit. (b) The lower capacitor plate.

(a)

(b)
magnitude that collects there is
\[
\begin{aligned}
q & =C V=\left(0.25 \times 10^{-6} \mathrm{~F}\right)(12 \mathrm{~V}) \\
& =3.0 \times 10^{-6} \mathrm{C}
\end{aligned}
\]

Dividing this result by \(e\) gives us the number \(N\) of conduction electrons that come up to the face:
\[
\begin{aligned}
N & =\frac{q}{e}=\frac{3.0 \times 10^{-6} \mathrm{C}}{1.602 \times 10^{-19} \mathrm{C}} \\
& =1.873 \times 10^{13} \text { electrons } .
\end{aligned}
\]

These electrons come from a volume that is the product of the face area \(A\) and the depth \(d\) we seek. Thus, from the density of conduction electrons (number per volume), we can write
\[
n=\frac{N}{A d}
\]
or
\[
\begin{aligned}
d & =\frac{N}{A n}=\frac{1.873 \times 10^{13} \text { electrons }}{\left(2.0 \times 10^{-4} \mathrm{~m}^{2}\right)\left(8.49 \times 10^{28} \text { electrons } / \mathrm{m}^{3}\right)} \\
& =1.1 \times 10^{-12} \mathrm{~m}=1.1 \mathrm{pm} .
\end{aligned}
\]

We commonly say that electrons move from the battery to the negative face but, actually, the battery sets up an electric field in the wires and plate such that electrons very close to the plate face move up to the negative face.

PLUS Additional examples, video, and practice available at WileyPLUS

\section*{25-3 capacitors in parallel and in series}

\section*{Learning Objectives}

After reading this module, you should be able to ...
25.06 Sketch schematic diagrams for a battery and (a) three capacitors in parallel and (b) three capacitors in series.
25.07 Identify that capacitors in parallel have the same potential difference, which is the same value that their equivalent capacitor has.
25.08 Calculate the equivalent of parallel capacitors.
25.09 Identify that the total charge stored on parallel capacitors is the sum of the charges stored on the individual capacitors.
25.10 Identify that capacitors in series have the same charge, which is the same value that their equivalent capacitor has.
25.11 Calculate the equivalent of series capacitors.
25.12 Identify that the potential applied to capacitors in series is equal to the sum of the potentials across the individual capacitors.
25.13 For a circuit with a battery and some capacitors in parallel and some in series, simplify the circuit in steps by finding equivalent capacitors, until the charge and potential on the final equivalent capacitor can be determined, and then reverse the steps to find the charge and potential on the individual capacitors.
25.14 For a circuit with a battery, an open switch, and one or more uncharged capacitors, determine the amount of charge that moves through a point in the circuit when the switch is closed.
25.15 When a charged capacitor is connected in parallel to one or more uncharged capacitors, determine the charge and potential difference on each capacitor when equilibrium is reached.

\section*{Key Idea}

The equivalent capacitances \(C_{\mathrm{eq}}\) of combinations of individual capacitors connected in parallel and in series can be found from
\[
C_{\mathrm{eq}}=\sum_{j=1}^{n} C_{j} \quad(n \text { capacitors in parallel })
\]
and
\[
\frac{1}{C_{\mathrm{eq}}}=\sum_{j=1}^{n} \frac{1}{C_{j}} \quad(n \text { capacitors in series }) .
\]

Equivalent capacitances can be used to calculate the capacitances of more complicated series - parallel combinations.


Figure 25-8 (a) Three capacitors connected in parallel to battery B. The battery maintains potential difference \(V\) across its terminals and thus across each capacitor. (b) The equivalent capacitor, with capacitance \(C_{\text {eq }}\), replaces the parallel combination.

\section*{Capacitors in Parallel and in Series}

When there is a combination of capacitors in a circuit, we can sometimes replace that combination with an equivalent capacitor - that is, a single capacitor that has the same capacitance as the actual combination of capacitors. With such a replacement, we can simplify the circuit, affording easier solutions for unknown quantities of the circuit. Here we discuss two basic combinations of capacitors that allow such a replacement.

\section*{Capacitors in Parallel}

Figure \(25-8 a\) shows an electric circuit in which three capacitors are connected in parallel to battery B. This description has little to do with how the capacitor plates are drawn. Rather, "in parallel" means that the capacitors are directly wired together at one plate and directly wired together at the other plate, and that the same potential difference \(V\) is applied across the two groups of wired-together plates. Thus, each capacitor has the same potential difference \(V\), which produces charge on the capacitor. (In Fig. 25-8a, the applied potential \(V\) is maintained by the battery.) In general:

> When a potential difference \(V\) is applied across several capacitors connected in parallel, that potential difference \(V\) is applied across each capacitor. The total charge \(q\) stored on the capacitors is the sum of the charges stored on all the capacitors.

When we analyze a circuit of capacitors in parallel, we can simplify it with this mental replacement:

Capacitors connected in parallel can be replaced with an equivalent capacitor that has the same total charge \(q\) and the same potential difference \(V\) as the actual capacitors.
(You might remember this result with the nonsense word "par-V," which is close to "party," to mean "capacitors in parallel have the same \(V\).") Figure \(25-8 b\) shows the equivalent capacitor (with equivalent capacitance \(C_{\text {eq }}\) ) that has replaced the three capacitors (with actual capacitances \(C_{1}, C_{2}\), and \(C_{3}\) ) of Fig. 25-8a.

To derive an expression for \(C_{\text {eq }}\) in Fig. 25-8b, we first use Eq. 25-1 to find the charge on each actual capacitor:
\[
q_{1}=C_{1} V, \quad q_{2}=C_{2} V, \quad \text { and } \quad q_{3}=C_{3} V .
\]

The total charge on the parallel combination of Fig. 25-8a is then
\[
q=q_{1}+q_{2}+q_{3}=\left(C_{1}+C_{2}+C_{3}\right) V
\]

The equivalent capacitance, with the same total charge \(q\) and applied potential difference \(V\) as the combination, is then
\[
C_{\mathrm{eq}}=\frac{q}{V}=C_{1}+C_{2}+C_{3},
\]
a result that we can easily extend to any number \(n\) of capacitors, as
\[
\begin{equation*}
C_{\mathrm{eq}}=\sum_{j=1}^{n} C_{j} \quad(n \text { capacitors in parallel }) \tag{25-19}
\end{equation*}
\]

Thus, to find the equivalent capacitance of a parallel combination, we simply add the individual capacitances.

\section*{Capacitors in Series}

Figure 25-9a shows three capacitors connected in series to battery B. This description has little to do with how the capacitors are drawn. Rather, "in series" means that the capacitors are wired serially, one after the other, and that a potential difference \(V\) is
applied across the two ends of the series. (In Fig. 25-9a, this potential difference \(V\) is maintained by battery B.) The potential differences that then exist across the capacitors in the series produce identical charges \(q\) on them.

When a potential difference \(V\) is applied across several capacitors connected in series, the capacitors have identical charge \(q\). The sum of the potential differences across all the capacitors is equal to the applied potential difference \(V\).

We can explain how the capacitors end up with identical charge by following a chain reaction of events, in which the charging of each capacitor causes the charging of the next capacitor. We start with capacitor 3 and work upward to capacitor 1.When the battery is first connected to the series of capacitors, it produces charge \(-q\) on the bottom plate of capacitor 3. That charge then repels negative charge from the top plate of capacitor 3 (leaving it with charge \(+q\) ). The repelled negative charge moves to the bottom plate of capacitor 2 (giving it charge \(-q\) ). That charge on the bottom plate of capacitor 2 then repels negative charge from the top plate of capacitor 2 (leaving it with charge \(+q\) ) to the bottom plate of capacitor 1 (giving it charge \(-q\) ). Finally, the charge on the bottom plate of capacitor 1 helps move negative charge from the top plate of capacitor 1 to the battery, leaving that top plate with charge \(+q\).

Here are two important points about capacitors in series:
1. When charge is shifted from one capacitor to another in a series of capacitors, it can move along only one route, such as from capacitor 3 to capacitor 2 in Fig. 25-9a. If there are additional routes, the capacitors are not in series.
2. The battery directly produces charges on only the two plates to which it is connected (the bottom plate of capacitor 3 and the top plate of capacitor 1 in Fig. 25-9a). Charges that are produced on the other plates are due merely to the shifting of charge already there. For example, in Fig. 25-9a, the part of the circuit enclosed by dashed lines is electrically isolated from the rest of the circuit. Thus, its charge can only be redistributed.

When we analyze a circuit of capacitors in series, we can simplify it with this mental replacement:

Capacitors that are connected in series can be replaced with an equivalent capacitor that has the same charge \(q\) and the same total potential difference \(V\) as the actual series capacitors.
(You might remember this with the nonsense word "seri-q" to mean "capacitors in series have the same \(q\).") Figure \(25-9 b\) shows the equivalent capacitor (with equivalent capacitance \(C_{\text {eq }}\) ) that has replaced the three actual capacitors (with actual capacitances \(C_{1}, C_{2}\), and \(C_{3}\) ) of Fig. 25-9a.

To derive an expression for \(C_{\text {eq }}\) in Fig. 25-9b, we first use Eq. 25-1 to find the potential difference of each actual capacitor:
\[
V_{1}=\frac{q}{C_{1}}, \quad V_{2}=\frac{q}{C_{2}}, \quad \text { and } \quad V_{3}=\frac{q}{C_{3}} .
\]

The total potential difference \(V\) due to the battery is the sum
\[
V=V_{1}+V_{2}+V_{3}=q\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}\right) .
\]

The equivalent capacitance is then
or
\[
\begin{gathered}
C_{\mathrm{eq}}=\frac{q}{V}=\frac{1}{1 / C_{1}+1 / C_{2}+1 / C_{3}}, \\
\frac{1}{C_{\mathrm{eq}}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} .
\end{gathered}
\]

(b)

Figure 25-9 (a) Three capacitors connected in series to battery B. The battery maintains potential difference \(V\) between the top and bottom plates of the series combination. (b) The equivalent capacitor, with capacitance \(C_{\text {eq }}\), replaces the series combination.

We can easily extend this to any number \(n\) of capacitors as
\[
\begin{equation*}
\frac{1}{C_{\mathrm{eq}}}=\sum_{j=1}^{n} \frac{1}{C_{j}} \quad(n \text { capacitors in series }) \tag{25-20}
\end{equation*}
\]

Using Eq. 25-20 you can show that the equivalent capacitance of a series of capacitances is always less than the least capacitance in the series.

\section*{\(\checkmark\) Checkpoint 3}

A battery of potential \(V\) stores charge \(q\) on a combination of two identical capacitors. What are the potential difference across and the charge on either capacitor if the capacitors are (a) in parallel and (b) in series?

\section*{Sample Problem 25.02 Capacitors in parallel and in series}
(a) Find the equivalent capacitance for the combination of capacitances shown in Fig. 25-10a, across which potential difference \(V\) is applied. Assume
\[
C_{1}=12.0 \mu \mathrm{~F}, \quad C_{2}=5.30 \mu \mathrm{~F}, \quad \text { and } \quad C_{3}=4.50 \mu \mathrm{~F}
\]

\section*{KEY IDEA}

Any capacitors connected in series can be replaced with their equivalent capacitor, and any capacitors connected in
parallel can be replaced with their equivalent capacitor. Therefore, we should first check whether any of the capacitors in Fig. 25-10a are in parallel or series.
Finding equivalent capacitance: Capacitors 1 and 3 are connected one after the other, but are they in series? No. The potential \(V\) that is applied to the capacitors produces charge on the bottom plate of capacitor 3. That charge causes charge to shift from the top plate of capacitor 3 . However, note that the shifting charge can move to the bot-

We first reduce the circuit to a single capacitor.

(a)

Series capacitors and their equivalent have the same \(q\) ("seri-q").

(f)

The equivalent of parallel capacitors is larger.

(b)

The equivalent of series capacitors is smaller.

(c)
)

Next, we work backwards to the desired capacitor.
(d)

d)

Parallel capacitors and their equivalent have

the same \(V\) ("par-V").
(h)


Applying \(V=q / C\) yields the potential difference.

(g)
-
(e)



> Applying \(q=C V\) yields the charge.
(i)

Figure 25-10 (a)-(d) Three capacitors are reduced to one equivalent capacitor. (e)-(i) Working backwards to get the charges.
tom plates of both capacitor 1 and capacitor 2. Because there is more than one route for the shifting charge, capacitor 3 is not in series with capacitor 1 (or capacitor 2). Any time you think you might have two capacitors in series, apply this check about the shifting charge.

Are capacitor 1 and capacitor 2 in parallel? Yes. Their top plates are directly wired together and their bottom plates are directly wired together, and electric potential is applied between the top-plate pair and the bottom-plate pair. Thus, capacitor 1 and capacitor 2 are in parallel, and Eq. 25-19 tells us that their equivalent capacitance \(C_{12}\) is
\[
C_{12}=C_{1}+C_{2}=12.0 \mu \mathrm{~F}+5.30 \mu \mathrm{~F}=17.3 \mu \mathrm{~F} .
\]

In Fig. 25-10b, we have replaced capacitors 1 and 2 with their equivalent capacitor, called capacitor 12 (say "one two" and not "twelve"). (The connections at points \(A\) and \(B\) are exactly the same in Figs. 25-10a and \(b\).)

Is capacitor 12 in series with capacitor 3? Again applying the test for series capacitances, we see that the charge that shifts from the top plate of capacitor 3 must entirely go to the bottom plate of capacitor 12 . Thus, capacitor 12 and capacitor 3 are in series, and we can replace them with their equivalent \(C_{123}\) ("one two three"), as shown in Fig. 25-10c. From Eq. 25-20, we have
\[
\begin{aligned}
\frac{1}{C_{123}} & =\frac{1}{C_{12}}+\frac{1}{C_{3}} \\
& =\frac{1}{17.3 \mu \mathrm{~F}}+\frac{1}{4.50 \mu \mathrm{~F}}=0.280 \mu \mathrm{~F}^{-1},
\end{aligned}
\]
from which
\[
C_{123}=\frac{1}{0.280 \mu \mathrm{~F}^{-1}}=3.57 \mu \mathrm{~F}
\]
(Answer)
(b) The potential difference applied to the input terminals in Fig. 25-10a is \(V=12.5 \mathrm{~V}\). What is the charge on \(C_{1}\) ?

\section*{KEY IDEAS}

We now need to work backwards from the equivalent capacitance to get the charge on a particular capacitor. We have two techniques for such "backwards work": (1) Seri-q: Series capacitors have the same charge as their equivalent capacitor. (2) Par-V: Parallel capacitors have the same potential difference as their equivalent capacitor.
Working backwards: To get the charge \(q_{1}\) on capacitor 1 , we work backwards to that capacitor, starting with the equivalent capacitor 123. Because the given potential difference \(V(=12.5 \mathrm{~V})\) is applied across the actual combination of three capacitors in Fig. 25-10a, it is also applied across \(C_{123}\) in Figs. 25-10d and \(e\). Thus, Eq. 25-1 \((q=C V)\) gives us
\[
q_{123}=C_{123} V=(3.57 \mu \mathrm{~F})(12.5 \mathrm{~V})=44.6 \mu \mathrm{C}
\]

The series capacitors 12 and 3 in Fig. 25-10b each have the same charge as their equivalent capacitor 123 (Fig. 25-10f). Thus, capacitor 12 has charge \(q_{12}=q_{123}=44.6 \mu\) C. From Eq. 25-1 and Fig. 25-10g, the potential difference across capacitor 12 must be
\[
V_{12}=\frac{q_{12}}{C_{12}}=\frac{44.6 \mu \mathrm{C}}{17.3 \mu \mathrm{~F}}=2.58 \mathrm{~V}
\]

The parallel capacitors 1 and 2 each have the same potential difference as their equivalent capacitor 12 (Fig. 25-10h). Thus, capacitor 1 has potential difference \(V_{1}=V_{12}=2.58 \mathrm{~V}\), and, from Eq. \(25-1\) and Fig. 25-10i, the charge on capacitor 1 must be
\[
\begin{aligned}
q_{1}=C_{1} V_{1} & =(12.0 \mu \mathrm{~F})(2.58 \mathrm{~V}) \\
& =31.0 \mu \mathrm{C}
\end{aligned}
\]
(Answer)

\section*{Sample Problem 25.03 One capacitor charging up another capacitor}

Capacitor 1, with \(C_{1}=3.55 \mu \mathrm{~F}\), is charged to a potential difference \(V_{0}=6.30 \mathrm{~V}\), using a 6.30 V battery. The battery is then removed, and the capacitor is connected as in Fig. 25-11 to an uncharged capacitor 2 , with \(C_{2}=8.95 \mu \mathrm{~F}\). When switch S is closed, charge flows between the capacitors. Find the charge on each capacitor when equilibrium is reached.

\section*{KEY IDEAS}

The situation here differs from the previous example because here an applied electric potential is not maintained across a combination of capacitors by a battery or some other source. Here, just after switch S is closed, the only applied electric potential is that of capacitor 1 on capacitor 2, and that potential is decreasing. Thus, the capacitors in Fig. 25-11 are not connected in series; and although they are drawn parallel, in this situation they are not in parallel.

As the electric potential across capacitor 1 decreases, that across capacitor 2 increases. Equilibrium is reached when the two potentials are equal because, with no potential difference between connected plates of the capacitors, there

Figure 25-11 A potential difference \(V_{0}\) is applied to capacitor 1 and the charging battery is removed. Switch S is then closed so that the charge on capacitor 1 is shared with capacitor 2.

After the switch is closed, charge is transferred until the potential differences match.

is no electric field within the connecting wires to move conduction electrons. The initial charge on capacitor 1 is then shared between the two capacitors.

Calculations: Initially, when capacitor 1 is connected to the battery, the charge it acquires is, from Eq. 25-1,
\[
\begin{aligned}
q_{0} & =C_{1} V_{0}=\left(3.55 \times 10^{-6} \mathrm{~F}\right)(6.30 \mathrm{~V}) \\
& =22.365 \times 10^{-6} \mathrm{C} .
\end{aligned}
\]

When switch S in Fig. 25-11 is closed and capacitor 1 begins to charge capacitor 2, the electric potential and charge on capacitor 1 decrease and those on capacitor 2 increase until
\[
V_{1}=V_{2} \quad \text { (equilibrium). }
\]

From Eq. 25-1, we can rewrite this as
\[
\frac{q_{1}}{C_{1}}=\frac{q_{2}}{C_{2}} \quad \text { (equilibrium). }
\]

Because the total charge cannot magically change, the total after the transfer must be
\[
q_{1}+q_{2}=q_{0} \quad \text { (charge conservation); }
\]
thus
\[
q_{2}=q_{0}-q_{1} .
\]

We can now rewrite the second equilibrium equation as
\[
\frac{q_{1}}{C_{1}}=\frac{q_{0}-q_{1}}{C_{2}} .
\]

Solving this for \(q_{1}\) and substituting given data, we find
\[
q_{1}=6.35 \mu \mathrm{C} .
\]
(Answer)
The rest of the initial charge \(\left(q_{0}=22.365 \mu \mathrm{C}\right)\) must be on capacitor 2:
\[
q_{2}=16.0 \mu \mathrm{C} .
\]
(Answer)

\section*{25-4 energy stored in an electric field}

\section*{Learning Objectives}

After reading this module, you should be able to ...
25.16 Explain how the work required to charge a capacitor results in the potential energy of the capacitor.
25.17 For a capacitor, apply the relationship between the potential energy \(U\), the capacitance \(C\), and the potential difference \(V\).
25.18 For a capacitor, apply the relationship between the
potential energy, the internal volume, and the internal energy density.
25.19 For any electric field, apply the relationship between the potential energy density \(u\) in the field and the field's magnitude \(E\).
25.20 Explain the danger of sparks in airborne dust.

\section*{Key Ideas}
- The electric potential energy \(U\) of a charged capacitor,
\[
U=\frac{q^{2}}{2 c}=\frac{1}{2} C V^{2}
\]
is equal to the work required to charge the capacitor. This energy can be associated with the capacitor's electric field \(\vec{E}\).
- Every electric field, in a capacitor or from any other source, has an associated stored energy. In vacuum, the energy density \(u\) (potential energy per unit volume) in a field of magnitude \(E\) is
\[
u=\frac{1}{2} \varepsilon_{0} E^{2} .
\]

\section*{Energy Stored in an Electric Field}

Work must be done by an external agent to charge a capacitor. We can imagine doing the work ourselves by transferring electrons from one plate to the other, one by one. As the charges build, so does the electric field between the plates, which opposes the continued transfer. So, greater amounts of work are required. Actually, a battery does all this for us, at the expense of its stored chemical energy. We visualize the work as being stored as electric potential energy in the electric field between the plates.

Suppose that, at a given instant, a charge \(q^{\prime}\) has been transferred from one plate of a capacitor to the other. The potential difference \(V^{\prime}\) between the plates at that instant will be \(q^{\prime} / C\). If an extra increment of charge \(d q^{\prime}\) is then transferred, the increment of work required will be, from Eq. 24-6,
\[
d W=V^{\prime} d q^{\prime}=\frac{q^{\prime}}{C} d q^{\prime}
\]

The work required to bring the total capacitor charge up to a final value \(q\) is
\[
W=\int d W=\frac{1}{C} \int_{0}^{q} q^{\prime} d q^{\prime}=\frac{q^{2}}{2 C}
\]

This work is stored as potential energy \(U\) in the capacitor, so that
\[
\begin{equation*}
U=\frac{q^{2}}{2 C} \quad \text { (potential energy). } \tag{25-21}
\end{equation*}
\]

From Eq. 25-1, we can also write this as
\[
\begin{equation*}
U=\frac{1}{2} C V^{2} \quad \text { (potential energy). } \tag{25-22}
\end{equation*}
\]

Equations 25-21 and 25-22 hold no matter what the geometry of the capacitor is.
To gain some physical insight into energy storage, consider two parallelplate capacitors that are identical except that capacitor 1 has twice the plate separation of capacitor 2 . Then capacitor 1 has twice the volume between its plates and also, from Eq. 25-9, half the capacitance of capacitor 2. Equation 254 tells us that if both capacitors have the same charge \(q\), the electric fields between their plates are identical. And Eq. 25-21 tells us that capacitor 1 has twice the stored potential energy of capacitor 2 . Thus, of two otherwise identical capacitors with the same charge and same electric field, the one with twice the volume between its plates has twice the stored potential energy. Arguments like this tend to verify our earlier assumption:

The potential energy of a charged capacitor may be viewed as being stored in the electric field between its plates.

\section*{Explosions in Airborne Dust}

As we discussed in Module 24-8, making contact with certain materials, such as clothing, carpets, and even playground slides, can leave you with a significant electrical potential. You might become painfully aware of that potential if a spark leaps between you and a grounded object, such as a faucet. In many industries involving the production and transport of powder, such as in the cosmetic and food industries, such a spark can be disastrous. Although the powder in bulk may not burn at all, when individual powder grains are airborne and thus surrounded by oxygen, they can burn so fiercely that a cloud of the grains burns as an explosion. Safety engineers cannot eliminate all possible sources of sparks in the powder industries. Instead, they attempt to keep the amount of energy available in the sparks below the threshold value \(U_{t}(\approx 150 \mathrm{~mJ})\) typically required to ignite airborne grains.

Suppose a person becomes charged by contact with various surfaces as he walks through an airborne powder. We can roughly model the person as a spherical capacitor of radius \(R=1.8 \mathrm{~m}\). From Eq. 25-18 \(\left(C=4 \pi \varepsilon_{0} R\right)\) and Eq. 25-22 \(\left(U=\frac{1}{2} C V^{2}\right)\), we see that the energy of the capacitor is
\[
U=\frac{1}{2}\left(4 \pi \varepsilon_{0} R\right) V^{2}
\]

From this we see that the threshold energy corresponds to a potential of
\[
\begin{aligned}
V & =\sqrt{\frac{2 U_{t}}{4 \pi \varepsilon_{0} R}}=\sqrt{\frac{2\left(150 \times 10^{-3} \mathrm{~J}\right)}{4 \pi\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)(1.8 \mathrm{~m})}} \\
& =3.9 \times 10^{4} \mathrm{~V} .
\end{aligned}
\]

Safety engineers attempt to keep the potential of the personnel below this level by "bleeding" off the charge through, say, a conducting floor.

\section*{Energy Density}

In a parallel-plate capacitor, neglecting fringing, the electric field has the same value at all points between the plates. Thus, the energy density \(u\)-that is, the potential energy per unit volume between the plates-should also be uniform. We can find \(u\) by dividing the total potential energy by the volume \(A d\) of the space between the plates. Using Eq. \(25-22\), we obtain
\[
\begin{equation*}
u=\frac{U}{A d}=\frac{C V^{2}}{2 A d} \tag{25-23}
\end{equation*}
\]

With Eq. 25-9 \(\left(C=\varepsilon_{0} A / d\right)\), this result becomes
\[
\begin{equation*}
u=\frac{1}{2} \varepsilon_{0}\left(\frac{V}{d}\right)^{2} . \tag{25-24}
\end{equation*}
\]

However, from Eq. 24-42 \((E=-\Delta V / \Delta s), V / d\) equals the electric field magnitude \(E\);so
\[
\begin{equation*}
u=\frac{1}{2} \varepsilon_{0} E^{2} \quad \text { (energy density). } \tag{25-25}
\end{equation*}
\]

Although we derived this result for the special case of an electric field of a parallel-plate capacitor, it holds for any electric field. If an electric field \(\vec{E}\) exists at any point in space, that site has an electric potential energy with a density (amount per unit volume) given by Eq. 25-25.

\section*{Sample Problem 25.04 Potential energy and energy density of an electric field}

An isolated conducting sphere whose radius \(R\) is 6.85 cm has a charge \(q=1.25 \mathrm{nC}\).
(a) How much potential energy is stored in the electric field of this charged conductor?

\section*{KEY IDEAS}
(1) An isolated sphere has capacitance given by Eq. 25-18 ( \(C=4 \pi \varepsilon_{0} R\) ). (2) The energy \(U\) stored in a capacitor depends on the capacitor's charge \(q\) and capacitance \(C\) according to Eq. 25-21 \(\left(U=q^{2} / 2 C\right)\).
Calculation: Substituting \(C=4 \pi \varepsilon_{0} R\) into Eq. 25-21 gives us
\[
\begin{aligned}
U & =\frac{q^{2}}{2 C}=\frac{q^{2}}{8 \pi \varepsilon_{0} R} \\
& =\frac{\left(1.25 \times 10^{-9} \mathrm{C}\right)^{2}}{(8 \pi)\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)(0.0685 \mathrm{~m})} \\
& =1.03 \times 10^{-7} \mathrm{~J}=103 \mathrm{~nJ} .
\end{aligned}
\]
(Answer)
(b) What is the energy density at the surface of the sphere?

\section*{KEY IDEA}

The density \(u\) of the energy stored in an electric field depends on the magnitude \(E\) of the field, according to Eq. 25-25 ( \(u=\frac{1}{2} \varepsilon_{0} E^{2}\) ).
Calculations: Here we must first find \(E\) at the surface of the sphere, as given by Eq. 23-15:
\[
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{R^{2}}
\]

The energy density is then
\[
\begin{aligned}
u & =\frac{1}{2} \varepsilon_{0} E^{2}=\frac{q^{2}}{32 \pi^{2} \varepsilon_{0} R^{4}} \\
& =\frac{\left(1.25 \times 10^{-9} \mathrm{C}\right)^{2}}{\left(32 \pi^{2}\right)\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)(0.0685 \mathrm{~m})^{4}} \\
& =2.54 \times 10^{-5} \mathrm{~J} / \mathrm{m}^{3}=25.4 \mu \mathrm{~J} / \mathrm{m}^{3} .
\end{aligned}
\]
(Answer)

\section*{25-5 capacitor with a dielectric}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
25.21 Identify that capacitance is increased if the space between the plates is filled with a dielectric material.
25.22 For a capacitor, calculate the capacitance with and without a dielectric.
25.23 For a region filled with a dielectric material with a given dielectric constant \(\kappa\), identify that all electrostatic equations containing the permittivity constant \(\varepsilon_{0}\) are modified by multiplying that constant by the dielectric constant to get \(\kappa \varepsilon_{0}\).
25.24 Name some of the common dielectrics.
25.25 In adding a dielectric to a charged capacitor, distinguish the results for a capacitor (a) connected to a battery and (b) not connected to a battery.
25.26 Distinguish polar dielectrics from nonpolar dielectrics.
25.27 In adding a dielectric to a charged capacitor, explain what happens to the electric field between the plates in terms of what happens to the atoms in the dielectric.

\section*{Key Ideas}
- If the space between the plates of a capacitor is completely filled with a dielectric material, the capacitance \(C\) in vacuum (or, effectively, in air) is multiplied by the material's dielectric constant \(\kappa\), which is a number greater than 1 .
- In a region that is completely filled by a dielectric, all electrostatic equations containing the permittivity constant \(\varepsilon_{0}\) must be modified by replacing \(\varepsilon_{0}\) with \(\kappa \varepsilon_{0}\).
- When a dielectric material is placed in an external electric field, it develops an internal electric field that is oriented opposite the external field, thus reducing the magnitude of the electric field inside the material.
- When a dielectric material is placed in a capacitor with a fixed amount of charge on the surface, the net electric field between the plates is decreased.

\section*{Capacitor with a Dielectric}

If you fill the space between the plates of a capacitor with a dielectric, which is an insulating material such as mineral oil or plastic, what happens to the capacitance? Michael Faraday - to whom the whole concept of capacitance is largely due and for whom the SI unit of capacitance is named-first looked into this matter in 1837. Using simple equipment much like that shown in Fig. 25-12, he found that the capacitance increased by a numerical factor \(\kappa\), which he called


\footnotetext{
The Royal Institute, England/Bridgeman Art Library/NY
}

Figure 25-12 The simple electrostatic apparatus used by Faraday. An assembled apparatus (second from left) forms a spherical capacitor consisting of a central brass ball and a concentric brass shell. Faraday placed dielectric materials in the space between the ball and the shell.

Table 25-1 Some Properties of Dielectrics \({ }^{a}\)
\begin{tabular}{|c|c|c|}
\hline Material & Dielectric Constant \(\kappa\) & Dielectric Strength (kV/mm) \\
\hline Air (1 atm) & 1.00054 & 3 \\
\hline Polystyrene & 2.6 & 24 \\
\hline Paper & 3.5 & 16 \\
\hline Transformer oil & 4.5 & \\
\hline Pyrex & 4.7 & 14 \\
\hline Ruby mica & 5.4 & \\
\hline Porcelain & 6.5 & \\
\hline Silicon & 12 & \\
\hline Germanium & 16 & \\
\hline Ethanol & 25 & \\
\hline Water ( \(20^{\circ} \mathrm{C}\) ) & 80.4 & \\
\hline Water ( \(25^{\circ} \mathrm{C}\) ) & 78.5 & \\
\hline Titania ceramic & 130 & \\
\hline Strontium titanate & 310 & 8 \\
\hline
\end{tabular}

For a vacuum, \(\kappa=\) unity.
\({ }^{a}\) Measured at room temperature, except for the water.
the dielectric constant of the insulating material. Table 25-1 shows some dielectric materials and their dielectric constants. The dielectric constant of a vacuum is unity by definition. Because air is mostly empty space, its measured dielectric constant is only slightly greater than unity. Even common paper can significantly increase the capacitance of a capacitor, and some materials, such as strontium titanate, can increase the capacitance by more than two orders of magnitude.

Another effect of the introduction of a dielectric is to limit the potential difference that can be applied between the plates to a certain value \(V_{\text {max }}\), called the breakdown potential. If this value is substantially exceeded, the dielectric material will break down and form a conducting path between the plates. Every dielectric material has a characteristic dielectric strength, which is the maximum value of the electric field that it can tolerate without breakdown. A few such values are listed in Table 25-1.

As we discussed just after Eq. 25-18, the capacitance of any capacitor can be written in the form
\[
\begin{equation*}
C=\varepsilon_{0} \mathscr{L}, \tag{25-26}
\end{equation*}
\]
in which \(\mathscr{L}\) has the dimension of length. For example, \(\mathscr{L}=A / d\) for a parallel-plate capacitor. Faraday's discovery was that, with a dielectric completely filling the space between the plates, Eq. \(25-26\) becomes
\[
\begin{equation*}
C=\kappa \varepsilon_{0} \mathscr{L}=\kappa C_{\mathrm{air}}, \tag{25-27}
\end{equation*}
\]
where \(C_{\text {air }}\) is the value of the capacitance with only air between the plates. For example, if we fill a capacitor with strontium titanate, with a dielectric constant of 310, we multiply the capacitance by 310 .

Figure 25-13 provides some insight into Faraday's experiments. In Fig. 25-13 \(a\) the battery ensures that the potential difference \(V\) between the plates will remain constant. When a dielectric slab is inserted between the plates, the charge \(q\) on the plates increases by a factor of \(\kappa\); the additional charge is delivered to the capacitor plates by the battery. In Fig. 25-13 \(b\) there is no battery, and therefore the charge \(q\) must remain constant when the dielectric slab is inserted; then the potential difference \(V\) between the plates decreases by a factor of \(\kappa\). Both these observations are consistent (through the relation \(q=C V\) ) with the increase in capacitance caused by the dielectric.

Comparison of Eqs. 25-26 and 25-27 suggests that the effect of a dielectric can be summed up in more general terms:

In a region completely filled by a dielectric material of dielectric constant \(\kappa\), all electrostatic equations containing the permittivity constant \(\varepsilon_{0}\) are to be modified by replacing \(\varepsilon_{0}\) with \(\kappa \varepsilon_{0}\).


Figure 25-13 (a) If the potential difference between the plates of a capacitor is maintained, as by battery B, the effect of a dielectric is to increase the charge on the plates. ( \(b\) ) If the charge on the capacitor plates is maintained, as in this case, the effect of a dielectric is to reduce the potential difference between the plates. The scale shown is that of a potentiometer, a device used to measure potential difference (here, between the plates). A capacitor cannot discharge through a potentiometer.

Thus, the magnitude of the electric field produced by a point charge inside a dielectric is given by this modified form of Eq. 23-15:
\[
\begin{equation*}
E=\frac{1}{4 \pi \kappa \varepsilon_{0}} \frac{q}{r^{2}} . \tag{25-28}
\end{equation*}
\]

Also, the expression for the electric field just outside an isolated conductor immersed in a dielectric (see Eq. 23-11) becomes
\[
\begin{equation*}
E=\frac{\sigma}{\kappa \varepsilon_{0}} \tag{25-29}
\end{equation*}
\]

Because \(\kappa\) is always greater than unity, both these equations show that for a fixed distribution of charges, the effect of a dielectric is to weaken the electric field that would otherwise be present.

\section*{Sample Problem 25.05 Work and energy when a dielectric is inserted into a capacitor}

A parallel-plate capacitor whose capacitance \(C\) is 13.5 pF is charged by a battery to a potential difference \(V=12.5 \mathrm{~V}\) between its plates. The charging battery is now disconnected, and a porcelain slab \((\kappa=6.50)\) is slipped between the plates.
(a) What is the potential energy of the capacitor before the slab is inserted?

\section*{KEY IDEA}

We can relate the potential energy \(U_{i}\) of the capacitor to the capacitance \(C\) and either the potential \(V\) (with Eq. 25-22) or the charge \(q\) (with Eq. 25-21):
\[
U_{i}=\frac{1}{2} C V^{2}=\frac{q^{2}}{2 C}
\]

Calculation: Because we are given the initial potential \(V\) ( \(=12.5 \mathrm{~V}\) ), we use Eq. \(25-22\) to find the initial stored energy:
\[
\begin{aligned}
U_{i} & =\frac{1}{2} C V^{2}=\frac{1}{2}\left(13.5 \times 10^{-12} \mathrm{~F}\right)(12.5 \mathrm{~V})^{2} \\
& =1.055 \times 10^{-9} \mathrm{~J}=1055 \mathrm{pJ} \approx 1100 \mathrm{pJ} . \quad \text { (Answer) }
\end{aligned}
\]
(b) What is the potential energy of the capacitor-slab device after the slab is inserted?

\section*{KEY IDEA}

Because the battery has been disconnected, the charge on the capacitor cannot change when the dielectric is inserted. However, the potential does change.
Calculations: Thus, we must now use Eq. 25-21 to write the final potential energy \(U_{f}\), but now that the slab is within the capacitor, the capacitance is \(\kappa C\). We then have
\[
\begin{aligned}
U_{f} & =\frac{q^{2}}{2 \kappa C}=\frac{U_{i}}{\kappa}=\frac{1055 \mathrm{pJ}}{6.50} \\
& =162 \mathrm{pJ} \approx 160 \mathrm{pJ}
\end{aligned}
\]
(Answer)
When the slab is introduced, the potential energy decreases by a factor of \(\kappa\).

The "missing" energy, in principle, would be apparent to the person who introduced the slab. The capacitor would exert a tiny tug on the slab and would do work on it, in amount
\[
W=U_{i}-U_{f}=(1055-162) \mathrm{pJ}=893 \mathrm{pJ}
\]

If the slab were allowed to slide between the plates with no restraint and if there were no friction, the slab would oscillate back and forth between the plates with a (constant) mechanical energy of 893 pJ , and this system energy would transfer back and forth between kinetic energy of the moving slab and potential energy stored in the electric field.

\section*{Dielectrics: An Atomic View}

What happens, in atomic and molecular terms, when we put a dielectric in an electric field? There are two possibilities, depending on the type of molecule:
1. Polar dielectrics. The molecules of some dielectrics, like water, have permanent electric dipole moments. In such materials (called polar dielectrics), the


Figure 25-14 (a) Molecules with a permanent electric dipole moment, showing their random orientation in the absence of an external electric field. (b) An electric field is applied, producing partial alignment of the dipoles. Thermal agitation prevents complete alignment.
electric dipoles tend to line up with an external electric field as in Fig. 25-14. Because the molecules are continuously jostling each other as a result of their random thermal motion, this alignment is not complete, but it becomes more complete as the magnitude of the applied field is increased (or as the temperature, and thus the jostling, are decreased). The alignment of the electric dipoles produces an electric field that is directed opposite the applied field and is smaller in magnitude.
2. Nonpolar dielectrics. Regardless of whether they have permanent electric dipole moments, molecules acquire dipole moments by induction when placed in an external electric field. In Module 24-4 (see Fig. 24-14), we saw that this occurs because the external field tends to "stretch" the molecules, slightly separating the centers of negative and positive charge.
Figure 25-15a shows a nonpolar dielectric slab with no external electric field applied. In Fig. 25-15b, an electric field \(\vec{E}_{0}\) is applied via a capacitor, whose plates are charged as shown. The result is a slight separation of the centers of the positive and negative charge distributions within the slab, producing positive charge on one face of the slab (due to the positive ends of dipoles there) and negative charge on the opposite face (due to the negative ends of dipoles there). The slab as a whole remains electrically neutral and - within the slab-there is no excess charge in any volume element.

Figure \(25-15 c\) shows that the induced surface charges on the faces produce an electric field \(\vec{E}^{\prime}\) in the direction opposite that of the applied electric field \(\vec{E}_{0}\). The resultant field \(\vec{E}\) inside the dielectric (the vector sum of fields \(\vec{E}_{0}\) and \(\vec{E}^{\prime}\) ) has the direction of \(\vec{E}_{0}\) but is smaller in magnitude.

Both the field \(\vec{E}^{\prime}\) produced by the surface charges in Fig. 25-15c and the electric field produced by the permanent electric dipoles in Fig. 25-14 act in the same way - they oppose the applied field \(\vec{E}\). Thus, the effect of both polar and nonpolar dielectrics is to weaken any applied field within them, as between the plates of a capacitor.


Figure 25-15 (a) A nonpolar dielectric slab. The circles represent the electrically neutral atoms within the slab. (b) An electric field is applied via charged capacitor plates; the field slightly stretches the atoms, separating the centers of positive and negative charge. (c) The separation produces surface charges on the slab faces. These charges set up a field \(\vec{E}^{\prime}\), which opposes the applied field \(\vec{E}_{0}\). The resultant field \(\vec{E}\) inside the dielectric (the vector sum of \(\vec{E}_{0}\) and \(\vec{E}^{\prime}\) ) has the same direction as \(\vec{E}_{0}\) but a smaller magnitude.

The applied field aligns the atomic dipole moments.

(b)

The field of the aligned atoms is opposite the applied field.

(c)

\section*{25-6 delectrics and gauss' law}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
25.28 In a capacitor with a dielectric, distinguish free charge from induced charge.
25.29 When a dielectric partially or fully fills the space in a
capacitor, find the free charge, the induced charge, the electric field between the plates (if there is a gap, there is more than one field value), and the potential between the plates.

\section*{Key Ideas}
- Inserting a dielectric into a capacitor causes induced charge to appear on the faces of the dielectric and weakens the electric field between the plates.
- The induced charge is less than the free charge on the plates.
- When a dielectric is present, Gauss' law may be
generalized to
\[
\varepsilon_{0} \oint \kappa \vec{E} \cdot d \vec{A}=q
\]
where \(q\) is the free charge. Any induced surface charge is accounted for by including the dielectric constant \(\kappa\) inside the integral.

\section*{Dielectrics and Gauss' Law}

In our discussion of Gauss' law in Chapter 23, we assumed that the charges existed in a vacuum. Here we shall see how to modify and generalize that law if dielectric materials, such as those listed in Table 25-1, are present. Figure 25-16 shows a parallel-plate capacitor of plate area \(A\), both with and without a dielectric. We assume that the charge \(q\) on the plates is the same in both situations. Note that the field between the plates induces charges on the faces of the dielectric by one of the methods described in Module 25-5.

For the situation of Fig. 25-16a, without a dielectric, we can find the electric field \(\vec{E}_{0}\) between the plates as we did in Fig. 25-5: We enclose the charge \(+q\) on the top plate with a Gaussian surface and then apply Gauss' law. Letting \(E_{0}\) represent the magnitude of the field, we find
or
\[
\begin{gather*}
\varepsilon_{0} \oint \vec{E} \cdot d \vec{A}=\varepsilon_{0} E A=q  \tag{25-30}\\
E_{0}=\frac{q}{\varepsilon_{0} A} \tag{25-31}
\end{gather*}
\]

In Fig. 25-16b, with the dielectric in place, we can find the electric field between the plates (and within the dielectric) by using the same Gaussian surface. However, now the surface encloses two types of charge: It still encloses charge \(+q\) on the top plate, but it now also encloses the induced charge \(-q^{\prime}\) on the top face of the dielectric. The charge on the conducting plate is said to be free charge because it can move if we change the electric potential of the plate; the induced charge on the surface of the dielectric is not free charge because it cannot move from that surface.

(a)

(b)

Figure 25-16 A parallel-plate capacitor \((a)\) without and \((b)\) with a dielectric slab inserted. The charge \(q\) on the plates is assumed to be the same in both cases.

The net charge enclosed by the Gaussian surface in Fig. 25-16b is \(q-q^{\prime}\), so Gauss' law now gives
or
\[
\begin{gather*}
\varepsilon_{0} \oint \vec{E} \cdot d \vec{A}=\varepsilon_{0} E A=q-q^{\prime},  \tag{25-32}\\
E=\frac{q-q^{\prime}}{\varepsilon_{0} A} . \tag{25-33}
\end{gather*}
\]

The effect of the dielectric is to weaken the original field \(E_{0}\) by a factor of \(\kappa\); so we may write
\[
\begin{equation*}
E=\frac{E_{0}}{\kappa}=\frac{q}{\kappa \varepsilon_{0} A} . \tag{25-34}
\end{equation*}
\]

Comparison of Eqs. 25-33 and 25-34 shows that
\[
\begin{equation*}
q-q^{\prime}=\frac{q}{\kappa} . \tag{25-35}
\end{equation*}
\]

Equation 25-35 shows correctly that the magnitude \(q^{\prime}\) of the induced surface charge is less than that of the free charge \(q\) and is zero if no dielectric is present (because then \(\kappa=1\) in Eq. 25-35).

By substituting for \(q-q^{\prime}\) from Eq. 25-35 in Eq. 25-32, we can write Gauss' law in the form
\[
\begin{equation*}
\varepsilon_{0} \oint \kappa \vec{E} \cdot d \vec{A}=q \quad \text { (Gauss' law with dielectric). } \tag{25-36}
\end{equation*}
\]

This equation, although derived for a parallel-plate capacitor, is true generally and is the most general form in which Gauss' law can be written. Note:
1. The flux integral now involves \(\kappa \vec{E}\), not just \(\vec{E}\). (The vector \(\varepsilon_{0} \kappa \vec{E}\) is sometimes called the electric displacement \(\vec{D}\), so that Eq. 25-36 can be written in the form \(\oint \vec{D} \cdot d \vec{A}=q\).)
2. The charge \(q\) enclosed by the Gaussian surface is now taken to be the free charge only. The induced surface charge is deliberately ignored on the right side of Eq. 25-36, having been taken fully into account by introducing the dielectric constant \(\kappa\) on the left side.
3. Equation 25-36 differs from Eq. 23-7, our original statement of Gauss' law, only in that \(\varepsilon_{0}\) in the latter equation has been replaced by \(\kappa \varepsilon_{0}\). We keep \(\kappa\) inside the integral of Eq. \(25-36\) to allow for cases in which \(\kappa\) is not constant over the entire Gaussian surface.

\section*{Sample Problem 25.06 Dielectric partially filling the gap in a capacitor}

Figure 25-17 shows a parallel-plate capacitor of plate area \(A\) and plate separation \(d\). A potential difference \(V_{0}\) is applied between the plates by connecting a battery between them. The battery is then disconnected, and a dielectric slab of thickness \(b\) and dielectric constant \(\kappa\) is placed between the plates as shown. Assume \(A=115 \mathrm{~cm}^{2}, d=1.24 \mathrm{~cm}\), \(V_{0}=85.5 \mathrm{~V}, b=0.780 \mathrm{~cm}\), and \(\kappa=2.61\).
(a) What is the capacitance \(C_{0}\) before the dielectric slab is inserted?


Figure 25-17 A parallel-plate capacitor containing a dielectric slab that only partially fills the space between the plates.

Calculation: From Eq. 25-9 we have
\[
\begin{aligned}
C_{0} & =\frac{\varepsilon_{0} A}{d}=\frac{\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)\left(115 \times 10^{-4} \mathrm{~m}^{2}\right)}{1.24 \times 10^{-2} \mathrm{~m}} \\
& =8.21 \times 10^{-12} \mathrm{~F}=8.21 \mathrm{pF}
\end{aligned}
\]
(b) What free charge appears on the plates?

Calculation: From Eq. 25-1,
\[
\begin{aligned}
q & =C_{0} V_{0}=\left(8.21 \times 10^{-12} \mathrm{~F}\right)(85.5 \mathrm{~V}) \\
& =7.02 \times 10^{-10} \mathrm{C}=702 \mathrm{pC}
\end{aligned}
\]
(Answer)
Because the battery was disconnected before the slab was inserted, the free charge is unchanged.
(c) What is the electric field \(E_{0}\) in the gaps between the plates and the dielectric slab?

\section*{KEY IDEA}

We need to apply Gauss' law, in the form of Eq. 25-36, to Gaussian surface I in Fig. 25-17.

Calculations: That surface passes through the gap, and so it encloses only the free charge on the upper capacitor plate. Electric field pierces only the bottom of the Gaussian surface. Because there the area vector \(d \vec{A}\) and the field vector \(\vec{E}_{0}\) are both directed downward, the dot product in Eq. 25-36 becomes
\[
\vec{E}_{0} \cdot d \vec{A}=E_{0} d A \cos 0^{\circ}=E_{0} d A
\]

Equation 25-36 then becomes
\[
\varepsilon_{0} \kappa E_{0} \oint d A=q
\]

The integration now simply gives the surface area \(A\) of the plate. Thus, we obtain
or
\[
\varepsilon_{0} \kappa E_{0} A=q,
\]
\[
E_{0}=\frac{q}{\varepsilon_{0} \kappa A}
\]

We must put \(\kappa=1\) here because Gaussian surface I does not pass through the dielectric. Thus, we have
\[
\begin{aligned}
E_{0} & =\frac{q}{\varepsilon_{0} \kappa A}=\frac{7.02 \times 10^{-10} \mathrm{C}}{\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)(1)\left(115 \times 10^{-4} \mathrm{~m}^{2}\right)} \\
& =6900 \mathrm{~V} / \mathrm{m}=6.90 \mathrm{kV} / \mathrm{m}
\end{aligned}
\]

Note that the value of \(E_{0}\) does not change when the slab is introduced because the amount of charge enclosed by Gaussian surface I in Fig. 25-17 does not change.
(d) What is the electric field \(E_{1}\) in the dielectric slab?

\section*{KEY IDEA}

Now we apply Gauss' law in the form of Eq. 25-36 to Gaussian surface II in Fig. 25-17.
Calculations: Only the free charge \(-q\) is in Eq. \(25-36\), so
\[
\begin{equation*}
\varepsilon_{0} \oint \kappa \vec{E}_{1} \cdot d \vec{A}=-\varepsilon_{0} \kappa E_{1} A=-q \tag{25-37}
\end{equation*}
\]

The first minus sign in this equation comes from the dot product \(\vec{E}_{1} \cdot d \vec{A}\) along the top of the Gaussian surface because now the field vector \(\vec{E}_{1}\) is directed downward and the area vector \(d \vec{A}\) (which, as always, points outward from the interior of a closed Gaussian surface) is directed upward. With \(180^{\circ}\) between the vectors, the dot product is negative. Now \(\kappa=2.61\). Thus, Eq. 25-37 gives us
\[
\begin{aligned}
E_{1} & =\frac{q}{\varepsilon_{0} \kappa A}=\frac{E_{0}}{\kappa}=\frac{6.90 \mathrm{kV} / \mathrm{m}}{2.61} \\
& =2.64 \mathrm{kV} / \mathrm{m} .
\end{aligned}
\]
(Answer)
(e) What is the potential difference \(V\) between the plates after the slab has been introduced?

\section*{KEY IDEA}

We find \(V\) by integrating along a straight line directly from the bottom plate to the top plate.
Calculation: Within the dielectric, the path length is \(b\) and the electric field is \(E_{1}\). Within the two gaps above and below the dielectric, the total path length is \(d-b\) and the electric field is \(E_{0}\). Equation 25-6 then yields
\[
\begin{aligned}
V= & \int_{-}^{+} E d s=E_{0}(d-b)+E_{1} b \\
= & (6900 \mathrm{~V} / \mathrm{m})(0.0124 \mathrm{~m}-0.00780 \mathrm{~m}) \\
& +(2640 \mathrm{~V} / \mathrm{m})(0.00780 \mathrm{~m}) \\
= & 52.3 \mathrm{~V} .
\end{aligned}
\]
(Answer)
This is less than the original potential difference of 85.5 V .
(f) What is the capacitance with the slab in place?

\section*{KEY IDEA}

The capacitance \(C\) is related to \(q\) and \(V\) via Eq. 25-1.
Calculation: Taking \(q\) from (b) and \(V\) from (e), we have
\[
\begin{aligned}
C & =\frac{q}{V}=\frac{7.02 \times 10^{-10} \mathrm{C}}{52.3 \mathrm{~V}} \\
& =1.34 \times 10^{-11} \mathrm{~F}=13.4 \mathrm{pF}
\end{aligned}
\]
(Answer)
This is greater than the original capacitance of 8.21 pF .

\section*{8eview \& Summary}

Capacitor; Capacitance A capacitor consists of two isolated conductors (the plates) with charges \(+q\) and \(-q\). Its capacitance \(C\) is defined from
\[
\begin{equation*}
q=C V, \tag{25-1}
\end{equation*}
\]
where \(V\) is the potential difference between the plates.
Determining Capacitance We generally determine the capacitance of a particular capacitor configuration by (1) assuming a charge \(q\) to have been placed on the plates, (2) finding the electric field \(\vec{E}\) due to this charge, (3) evaluating the potential difference \(V\), and (4) calculating \(C\) from Eq. \(25-1\). Some specific results are the following:

A parallel-plate capacitor with flat parallel plates of area \(A\) and spacing \(d\) has capacitance
\[
\begin{equation*}
C=\frac{\varepsilon_{0} A}{d} . \tag{25-9}
\end{equation*}
\]

A cylindrical capacitor (two long coaxial cylinders) of length \(L\) and radii \(a\) and \(b\) has capacitance
\[
\begin{equation*}
C=2 \pi \varepsilon_{0} \frac{L}{\ln (b / a)} . \tag{25-14}
\end{equation*}
\]

A spherical capacitor with concentric spherical plates of radii \(a\) and \(b\) has capacitance
\[
\begin{equation*}
C=4 \pi \varepsilon_{0} \frac{a b}{b-a} . \tag{25-17}
\end{equation*}
\]

An isolated sphere of radius \(R\) has capacitance
\[
\begin{equation*}
C=4 \pi \varepsilon_{0} R . \tag{25-18}
\end{equation*}
\]

Capacitors in Parallel and in Series The equivalent capacitances \(C_{\text {eq }}\) of combinations of individual capacitors connected in parallel and in series can be found from
\[
\begin{align*}
C_{\mathrm{eq}} & =\sum_{j=1}^{n} C_{j} \quad(n \text { capacitors in parallel })  \tag{25-19}\\
\text { and } \quad \frac{1}{C_{\mathrm{eq}}} & =\sum_{j=1}^{n} \frac{1}{C_{j}} \quad(n \text { capacitors in series }) . \tag{25-20}
\end{align*}
\]

\section*{Questions}

1 Figure 25-18 shows plots of charge versus potential difference for three parallel-plate capacitors that have the plate areas and separations given in the table. Which
 plot goes with which capacitor?

Figure 25-18 Question 1.
\begin{tabular}{ccc}
\hline Capacitor & Area & Separation \\
\hline 1 & \(A\) & \(d\) \\
2 & \(2 A\) & \(d\) \\
3 & \(A\) & \(2 d\)
\end{tabular}

2 What is \(C_{\text {eq }}\) of three capacitors, each of capacitance \(C\), if they are connected to a battery (a) in series with one another and (b) in parallel? (c) In which arrangement is there more charge on the equivalent capacitance?

Equivalent capacitances can be used to calculate the capacitances of more complicated series-parallel combinations.

Potential Energy and Energy Density The electric potential energy \(U\) of a charged capacitor,
\[
\begin{equation*}
U=\frac{q^{2}}{2 C}=\frac{1}{2} C V^{2}, \tag{25-21,25-22}
\end{equation*}
\]
is equal to the work required to charge the capacitor. This energy can be associated with the capacitor's electric field \(\vec{E}\). By extension we can associate stored energy with any electric field. In vacuum, the energy density \(u\), or potential energy per unit volume, within an electric field of magnitude \(E\) is given by
\[
\begin{equation*}
u=\frac{1}{2} \varepsilon_{0} E^{2} . \tag{25-25}
\end{equation*}
\]

Capacitance with a Dielectric If the space between the plates of a capacitor is completely filled with a dielectric material, the capacitance \(C\) is increased by a factor \(\kappa\), called the dielectric constant, which is characteristic of the material. In a region that is completely filled by a dielectric, all electrostatic equations containing \(\varepsilon_{0}\) must be modified by replacing \(\varepsilon_{0}\) with \(\kappa \varepsilon_{0}\).

The effects of adding a dielectric can be understood physically in terms of the action of an electric field on the permanent or induced electric dipoles in the dielectric slab. The result is the formation of induced charges on the surfaces of the dielectric, which results in a weakening of the field within the dielectric for a given amount of free charge on the plates.

Gauss' Law with a Dielectric When a dielectric is present, Gauss' law may be generalized to
\[
\begin{equation*}
\varepsilon_{0} \oint \kappa \vec{E} \cdot d \vec{A}=q . \tag{25-36}
\end{equation*}
\]

Here \(q\) is the free charge; any induced surface charge is accounted for by including the dielectric constant \(\kappa\) inside the integral.

3 (a) In Fig. 25-19a, are capacitors 1 and 3 in series? (b) In the same
(a)


(b)

(c)
(d)


Figure 25-19 Question 3.
figure, are capacitors 1 and 2 in parallel? (c) Rank the equivalent capacitances of the four circuits shown in Fig. 25-19, greatest first.

4 Figure 25-20 shows three circuits, each consisting of a switch and two capacitors, initially charged as indicated (top plate positive). After the switches have been closed, in which circuit (if any) will the charge on the left-hand capacitor (a) increase, (b) decrease, and (c) remain the same?


Figure 25-20 Question 4.
5 Initially, a single capacitance \(C_{1}\) is wired to a battery. Then capacitance \(C_{2}\) is added in parallel. Are (a) the potential difference across \(C_{1}\) and (b) the charge \(q_{1}\) on \(C_{1}\) now more than, less than, or the same as previously? (c) Is the equivalent capacitance \(C_{12}\) of \(C_{1}\) and \(C_{2}\) more than, less than, or equal to \(C_{1}\) ? (d) Is the charge stored on \(C_{1}\) and \(C_{2}\) together more than, less than, or equal to the charge stored previously on \(C_{1}\) ?
6 Repeat Question 5 for \(C_{2}\) added in series rather than in parallel.
7 For each circuit in Fig. 25-21, are the capacitors connected in series, in parallel, or in neither mode?


Figure 25-21 Question 7.

8 Figure 25-22 shows an open switch, a battery of potential difference \(V\), a current-measuring meter A , and three identical uncharged capacitors of capacitance \(C\). When the switch is closed and the circuit reaches equilibrium, what are (a) the


Figure 25-22 Question 8. potential difference across each capacitor and (b) the charge on the left plate of each capacitor? (c) During charging, what net charge passes through the meter?
9 A parallel-plate capacitor is connected to a battery of electric potential difference \(V\). If the plate separation is decreased, do the following quantities increase, decrease, or remain the same: (a) the capacitor's capacitance, (b) the potential difference across the capacitor, (c) the charge on the capacitor, (d) the energy stored by the capacitor, (e) the magnitude of the electric field between the plates, and (f) the energy density of that electric field?
10 When a dielectric slab is inserted between the plates of one of the two identical capacitors in Fig. 25-23, do the following properties of that capacitor increase, decrease, or remain the same: (a) capacitance, (b) charge, (c) potential difference, and (d) potential energy?


Question 10
(e) How about the same properties of the other capacitor?
11 You are to connect capacitances \(C_{1}\) and \(C_{2}\), with \(C_{1}>C_{2}\), to a battery, first individually, then in series, and then in parallel. Rank those arrangements according to the amount of charge stored, greatest first.

\section*{8roblems}
```

 Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign
 SSM Worked-out solution available in Student Solutions Manual WWW Worked-out solution is at
-- Number of dots indicates level of problem difficulty ILW Interactive solution is at
Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

```

\section*{Module 25-1 Capacitance}
-1 The two metal objects in Fig. 25-24 have net charges of +70 pC and -70 pC , which result in a 20 V potential difference between them. (a) What is the capacitance of the system? (b) If the charges are changed to +200 pC and -200 pC , what does the capacitance become? (c) What does the potential difference become?

Figure 25-24 Problem 1.

-2 The capacitor in Fig. 25-25 has a capacitance of \(25 \mu \mathrm{~F}\) and is initially uncharged. The battery provides a potential difference of 120 V . After switch S is closed, how much charge will pass through it?

\section*{Module 25-2 Calculating the Capacitance}
-3 SSM A parallel-plate capacitor has circular plates of 8.20 cm radius and 1.30 mm separation. (a) Calculate the capacitance. (b) Find the charge for a potential difference of 120 V .
-4 The plates of a spherical capacitor have radii 38.0 mm and 40.0 mm . (a) Calculate the capacitance. (b) What must be the plate area of a parallel-plate capacitor with the same plate separation and capacitance?
-5 What is the capacitance of a drop that results when two mercury spheres, each of radius \(R=2.00 \mathrm{~mm}\), merge?
-6 You have two flat metal plates, each of area \(1.00 \mathrm{~m}^{2}\), with which to construct a parallel-plate capacitor. (a) If the capacitance of the device is to be 1.00 F , what must be the separation between the plates? (b) Could this capacitor actually be constructed?
-7 If an uncharged parallel-plate capacitor (capacitance \(C\) ) is connected to a battery, one plate becomes negatively charged as
electrons move to the plate face (area A). In Fig. 25-26, the depth \(d\) from which the electrons come in the plate in a particular capacitor is plotted against a range of values for the potential difference \(V\) of the battery. The density of conduction electrons in the copper plates is \(8.49 \times 10^{28}\) electrons \(/ \mathrm{m}^{3}\). The vertical scale is set by \(d_{s}=1.00 \mathrm{pm}\), and the horizontal scale is set by \(V_{s}=20.0 \mathrm{~V}\). What is the ratio \(C / A\) ?


Figure 25-26 Problem 7.

\section*{Module 25-3 Capacitors in Parallel and in Series}
-8 How many \(1.00 \mu \mathrm{~F}\) capacitors must be connected in parallel to store a charge of 1.00 C with a potential of 110 V across the capacitors?
-9 Each of the uncharged capacitors in Fig. 25-27 has a capacitance of \(25.0 \mu \mathrm{~F}\). A potential difference of \(V=4200 \mathrm{~V}\) is established when the switch is closed. How many coulombs of charge then pass through meter A?
-10 In Fig. 25-28, find the equiva-


Figure 25-27 Problem 9. lent capacitance of the combination. Assume that \(C_{1}\) is \(10.0 \mu \mathrm{~F}, C_{2}\) is \(5.00 \mu \mathrm{~F}\), and \(C_{3}\) is \(4.00 \mu \mathrm{~F}\).


Figure 25-28 Problems 10 and 34.
-11 ILW In Fig. 25-29, find the equivalent capacitance of the combination. Assume that \(C_{1}=10.0 \mu \mathrm{~F}, C_{2}=5.00 \mu \mathrm{~F}\), and \(C_{3}=\) \(4.00 \mu \mathrm{~F}\).


Figure 25-29 Problems 11, 17, and 38.
\(\bullet 12\) Two parallel-plate capacitors, \(6.0 \mu \mathrm{~F}\) each, are connected in parallel to a 10 V battery. One of the capacitors is then squeezed so that its plate separation is \(50.0 \%\) of its initial value. Because of the squeezing, (a) how much additional charge is transferred to the capacitors by the battery and (b) what is the increase in the total charge stored on the capacitors?
- 13 SSM ILW A 100 pF capacitor is charged to a potential difference of 50 V , and the charging battery is disconnected. The capacitor is then connected in parallel with a second (initially uncharged) capacitor. If the potential difference across the first
capacitor drops to 35 V , what is the capacitance of this second capacitor?
\(\because 14\) © In Fig. 25-30, the battery has a potential difference of \(V=10.0 \mathrm{~V}\) and the five capacitors each have a capacitance of \(10.0 \mu \mathrm{~F}\). What is the charge on (a) capacitor 1 and (b) capacitor 2?
-•15 © In Fig. 25-31, a 20.0 V battery is connected across capacitors


Figure 25-30 Problem 14. of capacitances \(C_{1}=C_{6}=3.00 \mu \mathrm{~F}\) and \(C_{3}=C_{5}=2.00 C_{2}=2.00 C_{4}=4.00 \mu \mathrm{~F}\). What are (a) the equivalent capacitance \(C_{\mathrm{eq}}\) of the capacitors and (b) the charge stored by \(C_{\text {eq }}\) ? What are (c) \(V_{1}\) and (d) \(q_{1}\) of capacitor 1 , (e) \(V_{2}\) and (f) \(q_{2}\) of capacitor 2 , and (g) \(V_{3}\) and (h) \(q_{3}\) of capacitor 3 ?


Figure 25-31 Problem 15.
\(\bullet 16\) Plot 1 in Fig. 25-32a gives the charge \(q\) that can be stored on capacitor 1 versus the electric potential \(V\) set up across it. The vertical scale is set by \(q_{s}=16.0 \mu \mathrm{C}\), and the horizontal scale is set by \(V_{s}=2.0 \mathrm{~V}\). Plots 2 and 3 are similar plots for capacitors 2 and 3, respectively. Figure \(25-32 b\) shows a circuit with those three capacitors and a 6.0 V battery. What is the charge stored on capacitor 2 in that circuit?


Figure 25-32 Problem 16.
\(\because 17\) © In Fig. 25-29, a potential difference of \(V=100.0 \mathrm{~V}\) is applied across a capacitor arrangement with capacitances \(C_{1}=10.0 \mu \mathrm{~F}\), \(C_{2}=5.00 \mu \mathrm{~F}\), and \(C_{3}=4.00 \mu \mathrm{~F}\). If capacitor 3 undergoes electrical breakdown so that it becomes equivalent to conducting wire, what is the increase in (a) the charge on capacitor 1 and (b) the potential difference across capacitor 1 ?
-18 Figure 25-33 shows a circuit section of four air-filled capacitors that is connected to a larger circuit. The graph below the section shows the electric potential \(V(x)\) as a function of position \(x\) along the lower part of the section, through capacitor 4. Similarly, the graph above the section shows the electric potential \(V(x)\) as a function of position \(x\) along the upper part of the section, through capacitors 1,2 , and 3 .

Capacitor 3 has a capacitance of \(0.80 \mu \mathrm{~F}\). What are the capacitances of (a) capacitor 1 and (b) capacitor 2?

Figure 25-33 Problem 18.

-19 © In Fig. 25-34, the battery has potential difference \(V=9.0\) \(\mathrm{V}, C_{2}=3.0 \mu \mathrm{~F}, C_{4}=4.0 \mu \mathrm{~F}\), and all the capacitors are initially uncharged. When switch S is closed, a total charge of \(12 \mu \mathrm{C}\) passes through point \(a\) and a total charge of \(8.0 \mu \mathrm{C}\) passes through point b. What are (a) \(C_{1}\) and (b) \(C_{3}\) ?


Figure 25-34 Problem 19.
-20 Figure 25-35 shows a variable "air gap" capacitor for manual tuning. Alternate plates are connected together; one group of plates is fixed in position, and the other group is capable of rotation. Consider a capacitor of \(n=8\) plates of alternating polarity, each plate


Figure 25-35 Problem 20. having area \(A=1.25 \mathrm{~cm}^{2}\) and separated from adjacent plates by distance \(d=3.40 \mathrm{~mm}\). What is the maximum capacitance of the device?
- 21 ssm www In Fig. 25-36, the capacitances are \(C_{1}=1.0 \mu \mathrm{~F}\) and \(C_{2}=3.0 \mu \mathrm{~F}\), and both capacitors are charged to a potential difference of \(V=100 \mathrm{~V}\) but with opposite polarity as shown. Switches \(\mathrm{S}_{1}\) and \(\mathrm{S}_{2}\) are


Figure 25-36 Problem 21. now closed. (a) What is now the potential difference between points \(a\) and \(b\) ? What now is the charge on capacitor (b) 1 and (c) 2 ?
-22 In Fig. 25-37, \(V=10 \mathrm{~V}, C_{1}=10\) \(\mu \mathrm{F}\), and \(C_{2}=C_{3}=20 \mu \mathrm{~F}\). Switch S is first thrown to the left side until capacitor 1 reaches equilibrium. Then the switch is thrown to the right. When equilibrium is again reached, how much charge is on capacitor 1 ?


Figure 25-37 Problem 22.
-23 The capacitors in Fig. 25-38 are initially uncharged. The capacitances are \(C_{1}=4.0 \mu \mathrm{~F}, C_{2}=8.0 \mu \mathrm{~F}\), and \(C_{3}=12 \mu \mathrm{~F}\), and the battery's potential difference is \(V=12 \mathrm{~V}\). When switch S is closed, how many electrons travel through (a) point \(a\),


Figure 25-38 Problem 23. (b) point \(b\), (c) point \(c\), and (d) point \(d\) ? In the figure, do the electrons travel up or down through (e) point \(b\) and (f) point \(c\) ?
-24 ©0 Figure 25-39 represents two air-filled cylindrical capacitors connected in series across a battery with potential \(V=10 \mathrm{~V}\). Capacitor 1 has an inner plate radius of 5.0 mm , an outer plate radius of 1.5 cm , and a length of 5.0 cm . Capacitor 2 has an inner plate radius of 2.5 mm , an outer plate radius of 1.0 cm , and a length of 9.0 cm . The outer plate of capacitor 2 is a conducting organic membrane that can be stretched, and the capacitor can be inflated to increase the plate separation. If the outer plate radius is increased to 2.5 cm by inflation, (a) how many electrons move through point \(P\) and (b) do they move toward or away from the battery?
-25 60 In Fig. 25-40, two parallel-plate capacitors (with air between the plates) are connected to a battery. Capacitor 1 has a plate area of \(1.5 \mathrm{~cm}^{2}\) and an electric field (between its plates) of magnitude


Figure 25-39 Problem 24. \(2000 \mathrm{~V} / \mathrm{m}\). Capacitor 2 has a plate area of \(0.70 \mathrm{~cm}^{2}\) and an electric field of magnitude \(1500 \mathrm{~V} / \mathrm{m}\). What is the total charge on the two capacitors?
0026 (60 Capacitor 3 in Fig. 25-41a is a variable capacitor (its capacitance \(C_{3}\) can be varied). Figure 25-41b gives the electric potential \(V_{1}\) across capacitor 1 versus \(C_{3}\). The horizontal scale is set by \(C_{3 s}=12.0 \mu \mathrm{~F}\). Electric potential \(V_{1}\) approaches an asymptote of 10 V as \(C_{3} \rightarrow \infty\). What are (a) the electric potential \(V\) across the battery, (b) \(C_{1}\), and (c) \(C_{2}\) ?


Figure 25-40
Problem 25.


Figure 25-41 Problem 26.
00027 © Figure \(25-42\) shows a 12.0 V battery and four uncharged capacitors of capacitances \(C_{1}=1.00 \mu \mathrm{~F}\), \(C_{2}=2.00 \mu \mathrm{~F}, C_{3}=3.00 \mu \mathrm{~F}\), and \(C_{4}=\) \(4.00 \mu \mathrm{~F}\). If only switch \(\mathrm{S}_{1}\) is closed, what is the charge on (a) capacitor 1 , (b) capacitor 2 , (c) capacitor 3 , and (d) capacitor 4? If both switches are closed, what is the charge on (e) capacitor 1,(f) capacitor 2, (g) capacitor 3 , and (h) capacitor 4?


Figure 25-42 Problem 27.
-•028 © Figure \(25-43\) displays a 12.0 V battery and 3 uncharged capacitors of capacitances \(C_{1}=4.00 \mu \mathrm{~F}\), \(C_{2}=6.00 \mu \mathrm{~F}\), and \(C_{3}=3.00 \mu \mathrm{~F}\). The switch is thrown to the left side until capacitor 1 is fully charged. Then the switch is thrown to the right. What is the final charge on (a) capacitor 1 , (b) capacitor 2 , and (c) capacitor 3 ?

\section*{Module 25-4 Energy Stored in an Electric Field}
-29 What capacitance is required to store an energy of \(10 \mathrm{~kW} \cdot \mathrm{~h}\) at a potential difference of 1000 V ?
-30 How much energy is stored in \(1.00 \mathrm{~m}^{3}\) of air due to the "fair weather" electric field of magnitude \(150 \mathrm{~V} / \mathrm{m}\) ?
-31 SSM A \(2.0 \mu \mathrm{~F}\) capacitor and a \(4.0 \mu \mathrm{~F}\) capacitor are connected in parallel across a 300 V potential difference. Calculate the total energy stored in the capacitors.
-32 A parallel-plate air-filled capacitor having area \(40 \mathrm{~cm}^{2}\) and plate spacing 1.0 mm is charged to a potential difference of 600 V . Find (a) the capacitance, (b) the magnitude of the charge on each plate, (c) the stored energy, (d) the electric field between the plates, and (e) the energy density between the plates.
-33 A charged isolated metal sphere of diameter 10 cm has a potential of 8000 V relative to \(V=0\) at infinity. Calculate the energy density in the electric field near the surface of the sphere.
-•34 In Fig. 25-28, a potential difference \(V=100 \mathrm{~V}\) is applied across a capacitor arrangement with capacitances \(C_{1}=10.0 \mu \mathrm{~F}\), \(C_{2}=5.00 \mu \mathrm{~F}\), and \(C_{3}=4.00 \mu \mathrm{~F}\). What are (a) charge \(q_{3}\), (b) potential difference \(V_{3}\), and (c) stored energy \(U_{3}\) for capacitor 3, (d) \(q_{1}\), (e) \(V_{1}\), and (f) \(U_{1}\) for capacitor 1 , and (g) \(q_{2}\), (h) \(V_{2}\), and (i) \(U_{2}\) for capacitor 2?
-035 Assume that a stationary electron is a point of charge. What is the energy density \(u\) of its electric field at radial distances (a) \(r=\) 1.00 mm , (b) \(r=1.00 \mu \mathrm{~m}\), (c) \(r=1.00 \mathrm{~nm}\), and (d) \(r=1.00 \mathrm{pm}\) ? (e) What is \(u\) in the limit as \(r \rightarrow 0\) ?
-036 As a safety engineer, you must evaluate the practice of storing flammable conducting liquids in nonconducting containers. The company supplying a certain liquid has been using a squat, cylindrical plastic container of radius \(r=0.20 \mathrm{~m}\) and filling it to height \(h=10 \mathrm{~cm}\), which is not the container's full interior height (Fig. 25-44). Your investigation reveals that during handling at the company, the exterior surface of the container commonly acquires a negative charge density of magnitude \(2.0 \mu \mathrm{C} / \mathrm{m}^{2}\) (approximately uniform). Because the liquid is a conducting material, the charge on the container induces charge separation within the liquid. (a) How much negative charge is induced in the center of the liquid's bulk? (b) Assume the capacitance of the central portion of the liquid relative to ground is 35 pF . What is the potential energy associated with the negative charge in that effective capacitor? (c) If a spark occurs between the ground and the central portion of the liquid (through the venting port), the potential energy can be fed into the spark. The minimum spark energy needed to ignite the liquid is 10 mJ . In this situation, can a spark ignite the liquid?


Figure 25-43 Problem 28.
-037 SSM ILW Www The parallel plates in a capacitor, with a plate area of \(8.50 \mathrm{~cm}^{2}\) and an air-filled separation of 3.00 mm , are charged by a 6.00 V battery. They are then disconnected from the battery and pulled apart (without discharge) to a separation of 8.00 mm . Neglecting fringing, find (a) the potential difference between the plates, (b) the initial stored energy, (c) the final stored energy, and (d) the work required to separate the plates.
थ.38 In Fig. 25-29, a potential difference \(V=100 \mathrm{~V}\) is applied across a capacitor arrangement with capacitances \(C_{1}=10.0 \mu \mathrm{~F}\), \(C_{2}=5.00 \mu \mathrm{~F}\), and \(C_{3}=15.0 \mu \mathrm{~F}\). What are (a) charge \(q_{3}\), (b) potential difference \(V_{3}\), and (c) stored energy \(U_{3}\) for capacitor 3, (d) \(q_{1}\), (e) \(V_{1}\), and (f) \(U_{1}\) for capacitor 1, and (g) \(q_{2}\), (h) \(V_{2}\), and (i) \(U_{2}\) for capacitor 2?
-•39 ©0 In Fig. 25-45, \(C_{1}=10.0\) \(\mu \mathrm{F}, C_{2}=20.0 \mu \mathrm{~F}\), and \(C_{3}=\) \(25.0 \mu \mathrm{~F}\). If no capacitor can


Figure 25-45 Problem 39. withstand a potential difference of more than 100 V without failure, what are (a) the magnitude of the maximum potential difference that can exist between points \(A\) and \(B\) and (b) the maximum energy that can be stored in the three-capacitor arrangement?

\section*{Module 25-5 Capacitor with a Dielectric}
-40 An air-filled parallel-plate capacitor has a capacitance of 1.3 pF . The separation of the plates is doubled, and wax is inserted between them. The new capacitance is 2.6 pF . Find the dielectric constant of the wax.
-41 SSM A coaxial cable used in a transmission line has an inner radius of 0.10 mm and an outer radius of 0.60 mm . Calculate the capacitance per meter for the cable. Assume that the space between the conductors is filled with polystyrene.
-42 A parallel-plate air-filled capacitor has a capacitance of 50 pF . (a) If each of its plates has an area of \(0.35 \mathrm{~m}^{2}\), what is the separation? (b) If the region between the plates is now filled with material having \(\kappa=5.6\), what is the capacitance?
-43 Given a 7.4 pF air-filled capacitor, you are asked to convert it to a capacitor that can store up to \(7.4 \mu \mathrm{~J}\) with a maximum potential difference of 652 V . Which dielectric in Table \(25-1\) should you use to fill the gap in the capacitor if you do not allow for a margin of error?
๑44 You are asked to construct a capacitor having a capacitance near 1 nF and a breakdown potential in excess of 10000 V . You think of using the sides of a tall Pyrex drinking glass as a dielectric, lining the inside and outside curved surfaces with aluminum foil to act as the plates. The glass is 15 cm tall with an inner radius of 3.6 cm and an outer radius of 3.8 cm . What are the (a) capacitance and (b) breakdown potential of this capacitor?
0045 A certain parallel-plate capacitor is filled with a dielectric for which \(\kappa=5.5\). The area of each plate is \(0.034 \mathrm{~m}^{2}\), and the plates are separated by 2.0 mm . The capacitor will fail (short out and burn up) if the electric field between the plates exceeds \(200 \mathrm{kN} / \mathrm{C}\). What is the maximum energy that can be stored in the capacitor?
-•46 In Fig. 25-46, how much charge is stored on the parallel-plate capacitors by the 12.0 V battery? One is filled with air, and the other is filled with a dielectric for which \(\kappa=3.00\); both capacitors have a plate area of \(5.00 \times 10^{-3} \mathrm{~m}^{2}\) and a plate separation of 2.00 mm .


Figure 25-46 Problem 46.
\(\bullet 47\) SSM ILW A certain substance has a dielectric constant of 2.8 and a dielectric strength of \(18 \mathrm{MV} / \mathrm{m}\). If it is used as the dielectric material in a parallel-plate capacitor, what minimum area should the plates of the capacitor have to obtain a capacitance of \(7.0 \times 10^{-2} \mu \mathrm{~F}\) and to ensure that the capacitor will be able to withstand a potential difference of 4.0 kV ?
©48 Figure \(25-47\) shows a parallelplate capacitor with a plate area \(A\) \(=5.56 \mathrm{~cm}^{2}\) and separation \(d=5.56\) mm . The left half of the gap is filled with material of dielectric constant \(\kappa_{1}=7.00\); the right half is filled with material of dielectric constant \(\kappa_{2}=\)


Figure 25-47 Problem 48. 12.0. What is the capacitance?
-•49 Figure 25-48 shows a parallel-plate capacitor with a plate area \(A=7.89 \mathrm{~cm}^{2}\) and plate separation \(d=4.62 \mathrm{~mm}\). The top half of the gap is filled with material of dielectric constant \(\kappa_{1}=11.0\); the bottom half is filled with material of dielectric constant \(\kappa_{2}=12.0\). What is the capacitance?


Figure 25-48
Problem 49.
-050 © Figure 25-49 shows a parallelplate capacitor of plate area \(A=10.5\) \(\mathrm{cm}^{2}\) and plate separation \(2 d=7.12 \mathrm{~mm}\). The left half of the gap is filled with material of dielectric constant \(\kappa_{1}=21.0\); the top of the right half is filled with material of dielectric constant \(\kappa_{2}=42.0\); the bottom of the right half is filled with material of dielectric constant \(\kappa_{3}=\) 58.0. What is the capacitance?


Figure 25-49 Problem 50.

\section*{Module 25-6 Dielectrics and Gauss' Law}
-51 SSIM WWW A parallel-plate capacitor has a capacitance of 100 pF , a plate area of \(100 \mathrm{~cm}^{2}\), and a mica dielectric \((\kappa=5.4)\) completely filling the space between the plates. At 50 V potential difference, calculate (a) the electric field magnitude \(E\) in the mica, (b) the magnitude of the free charge on the plates, and (c) the magnitude of the induced surface charge on the mica.
-52 For the arrangement of Fig. 25-17, suppose that the battery remains connected while the dielectric slab is being introduced. Calculate (a) the capacitance, (b) the charge on the capacitor plates, (c) the electric field in the gap, and (d) the electric field in the slab, after the slab is in place.
-•53 A parallel-plate capacitor has plates of area \(0.12 \mathrm{~m}^{2}\) and a separation of 1.2 cm . A battery charges the plates to a potential difference of 120 V and is then disconnected. A dielectric slab of thickness 4.0 mm and dielectric constant 4.8 is then placed symmetrically between the plates. (a) What is the capacitance before the slab is inserted? (b) What is the capacitance with the slab in place? What is the free charge \(q\) (c) before and (d) after the slab is inserted? What is the magnitude of the electric field (e) in the space between the plates and dielectric and (f) in the dielectric itself? (g) With the slab in place, what is the potential difference across the plates? (h) How much external work is involved in inserting the slab?
\(\bullet 54\) Two parallel plates of area \(100 \mathrm{~cm}^{2}\) are given charges of equal magnitudes \(8.9 \times 10^{-7} \mathrm{C}\) but opposite signs. The electric field within the dielectric material filling the space between the plates is \(1.4 \times 10^{6} \mathrm{~V} / \mathrm{m}\). (a) Calculate the dielectric constant of the
material. (b) Determine the magnitude of the charge induced on each dielectric surface.
-•55 The space between two concentric conducting spherical shells of radii \(b=1.70 \mathrm{~cm}\) and \(a=1.20 \mathrm{~cm}\) is filled with a substance of dielectric constant \(\kappa=23.5\). A potential difference \(V=73.0 \mathrm{~V}\) is applied across the inner and outer shells. Determine (a) the capacitance of the device, (b) the free charge \(q\) on the inner shell, and (c) the charge \(q^{\prime}\) induced along the surface of the inner shell.

\section*{Additional Problems}

56 In Fig. 25-50, the battery potential difference \(V\) is 10.0 V and each of the seven capacitors has capacitance \(10.0 \mu \mathrm{~F}\). What is the charge on (a) capacitor 1 and (b) capacitor 2 ?


Figure 25-50
Problem 56.

57 SSM In Fig. 25-51, \(V=9.0 \mathrm{~V}, C_{1}=C_{2}=30\)
\(\mu \mathrm{F}\), and \(C_{3}=C_{4}=15 \mu \mathrm{~F}\). What is the charge on capacitor 4 ?


Figure 25-51 Problem 57.
58 (a) If \(C=50 \mu \mathrm{~F}\) in Fig. 25-52, what is the equivalent capacitance between points \(A\) and \(B\) ? (Hint: First imagine that a battery is connected between those two points.) (b) Repeat for points \(A\) and \(D\).
59 In Fig. 25-53, \(V=12 \mathrm{~V}, C_{1}=C_{4}=\) \(2.0 \mu \mathrm{~F}, C_{2}=4.0 \mu \mathrm{~F}\), and \(C_{3}=1.0 \mu \mathrm{~F}\). What is the charge on capacitor 4 ?
60 The chocolate crumb mystery. This story begins with Problem 60 in Chapter 23. As part of the investigation of the biscuit factory explosion, the electric potentials of the workers were measured as they emptied sacks of chocolate crumb powder into the loading bin, stirring up a cloud of the powder


Figure 25-52 Problem 58.


Figure 25-53 Problem 59. around themselves. Each worker had an electric potential of about 7.0 kV relative to the ground, which was taken as zero potential. (a) Assuming that each worker was effectively a capacitor with a typical capacitance of 200 pF , find the energy stored in that effective capacitor. If a single spark between the worker and any conducting object connected to the ground neutralized the worker, that energy would be transferred to the spark. According to measurements, a spark that could ignite a cloud of chocolate crumb powder, and thus set off an explosion, had to have an energy of at least 150 mJ . (b) Could a spark from a worker have set off an explosion in the cloud of powder in the loading bin? (The story continues with Problem 60 in Chapter 26.)
61 Figure \(25-54\) shows capacitor \(1\left(C_{1}=8.00 \mu \mathrm{~F}\right.\) ), capacitor \(2\left(C_{2}\right.\) \(=6.00 \mu \mathrm{~F})\), and capacitor \(3\left(C_{3}=\right.\)


Figure 25-54 Problem 61.
\(8.00 \mu \mathrm{~F}\) ) connected to a 12.0 V battery. When switch S is closed so as to connect uncharged capacitor 4 ( \(C_{4}=6.00 \mu \mathrm{~F}\) ), (a) how much charge passes through point \(P\) from the battery and (b) how much charge shows up on capacitor 4? (c) Explain the discrepancy in those two results.
62 Two air-filled, parallel-plate capacitors are to be connected to a 10 V battery, first individually, then in series, and then in parallel. In those arrangements, the energy stored in the capacitors turns out to be, listed least to greatest: \(75 \mu \mathrm{~J}, 100 \mu \mathrm{~J}, 300 \mu \mathrm{~J}\), and \(400 \mu \mathrm{~J}\). Of the two capacitors, what is the (a) smaller and (b) greater capacitance?
63 Two parallel-plate capacitors, \(6.0 \mu \mathrm{~F}\) each, are connected in series to a 10 V battery. One of the capacitors is then squeezed so that its plate separation is halved. Because of the squeezing, (a) how much additional charge is transferred to the capacitors by the battery and (b) what is the increase in the total charge stored on the capacitors (the charge on the positive plate of one capacitor plus the charge on the positive plate of the other capacitor)?
64 (60) In Fig. 25-55, \(V=12 \mathrm{~V}, C_{1}=\) \(C_{5}=C_{6}=6.0 \mu \mathrm{~F}\), and \(C_{2}=C_{3}=C_{4}=\) \(4.0 \mu \mathrm{~F}\). What are (a) the net charge stored on the capacitors and (b) the charge on capacitor 4?
65 SSM In Fig. 25-56, the parallel-plate capacitor of plate area \(2.00 \times 10^{-2} \mathrm{~m}^{2}\) is filled with two dielectric slabs, each with thickness 2.00 mm . One slab has dielectric constant 3.00 , and the other, 4.00 . How much charge does the 7.00 V battery store on the capacitor?
66 A cylindrical capacitor has radii \(a\) and \(b\) as in Fig. 25-6. Show that half the stored electric potential energy lies within a cylinder whose radius is \(r=\sqrt{a b}\).


Figure 25-55 Problem 64.


Figure 25-56
Problem 65.

67 A capacitor of capacitance \(C_{1}=\) \(6.00 \mu \mathrm{~F}\) is connected in series with a capacitor of capacitance \(C_{2}=\) \(4.00 \mu \mathrm{~F}\), and a potential difference of 200 V is applied across the pair. (a) Calculate the equivalent capacitance. What are (b) charge \(q_{1}\) and (c) potential difference \(V_{1}\) on capacitor 1 and (d) \(q_{2}\) and (e) \(V_{2}\) on capacitor 2?
68 Repeat Problem 67 for the same two capacitors but with them now connected in parallel.
69 A certain capacitor is charged to a potential difference \(V\). If you wish to increase its stored energy by \(10 \%\), by what percentage should you increase \(V\) ?

70 A slab of copper of thickness \(b=2.00 \mathrm{~mm}\) is thrust into a parallelplate capacitor of plate area \(A=2.40\) \(\mathrm{cm}^{2}\) and plate separation \(d=5.00\) mm , as shown in Fig. 25-57; the slab is exactly halfway between the plates. (a) What is the capacitance after the slab is introduced? (b) If a charge


Figure 25-57
Problems 70 and 71. \(q=3.40 \mu \mathrm{C}\) is maintained on the plates, what is the ratio of the stored energy before to that after the slab is inserted? (c) How much work is done on the slab as it is inserted? (d) Is the slab sucked in or must it be pushed in?

71 Repeat Problem 70, assuming that a potential difference \(V=\) 85.0 V , rather than the charge, is held constant.

72 A potential difference of 300 V is applied to a series connection of two capacitors of capacitances \(C_{1}=2.00 \mu \mathrm{~F}\) and \(C_{2}=8.00 \mu \mathrm{~F}\). What are (a) charge \(q_{1}\) and (b) potential difference \(V_{1}\) on capacitor 1 and (c) \(q_{2}\) and (d) \(V_{2}\) on capacitor 2? The charged capacitors are then disconnected from each other and from the battery. Then the capacitors are reconnected with plates of the same signs wired together (the battery is not used). What now are (e) \(q_{1}\), (f) \(V_{1}\), (g) \(q_{2}\), and (h) \(V_{2}\) ? Suppose, instead, the capacitors charged in part (a) are reconnected with plates of opposite signs wired together. What now are (i) \(q_{1},(\mathrm{j}) V_{1}\), (k) \(q_{2}\), and (l) \(V_{2}\) ?

73 Figure 25-58 shows a fourcapacitor arrangement that is connected to a larger circuit at points \(A\) and \(B\). The capacitances are \(C_{1}=\) \(10 \mu \mathrm{~F}\) and \(C_{2}=C_{3}=C_{4}=20 \mu \mathrm{~F}\). The charge on capacitor 1 is \(30 \mu \mathrm{C}\). What is the magnitude of the potential difference \(V_{A}-V_{B}\) ?


Figure 25-58 Problem 73.

74 You have two plates of copper, a sheet of mica (thickness = \(0.10 \mathrm{~mm}, \kappa=5.4\) ), a sheet of glass (thickness \(=2.0 \mathrm{~mm}, \kappa=7.0\) ), and a slab of paraffin (thickness \(=1.0 \mathrm{~cm}, \kappa=2.0\) ). To make a parallel-plate capacitor with the largest \(C\), which sheet should you place between the copper plates?
75 A capacitor of unknown capacitance \(C\) is charged to 100 V and connected across an initially uncharged \(60 \mu \mathrm{~F}\) capacitor. If the final potential difference across the \(60 \mu \mathrm{~F}\) capacitor is 40 V , what is \(C\) ?

76 A 10 V battery is connected to a series of \(n\) capacitors, each of capacitance \(2.0 \mu \mathrm{~F}\). If the total stored energy is \(25 \mu \mathrm{~J}\), what is \(n\) ?

77 SSM In Fig. 25-59, two parallelplate capacitors \(A\) and \(B\) are connected in parallel across a 600 V battery. Each plate has area \(80.0 \mathrm{~cm}^{2}\); the plate separations are 3.00 mm .


Figure 25-59 Problem 77. Capacitor \(A\) is filled with air; capacitor \(B\) is filled with a dielectric of dielectric constant \(\kappa=2.60\). Find the magnitude of the electric field within (a) the dielectric of capacitor \(B\) and (b) the air of capacitor \(A\). What are the free charge densities \(\sigma\) on the higher-potential plate of (c) capacitor \(A\) and (d) capacitor \(B\) ? (e) What is the induced charge density \(\sigma^{\prime}\) on the top surface of the dielectric?
78 You have many \(2.0 \mu \mathrm{~F}\) capacitors, each capable of withstanding 200 V without undergoing electrical breakdown (in which they conduct charge instead of storing it). How would you assemble a combination having an equivalent capacitance of (a) \(0.40 \mu \mathrm{~F}\) and (b) \(1.2 \mu \mathrm{~F}\), each combination capable of withstanding 1000 V ? 79 A parallel-plate capacitor has charge \(q\) and plate area \(A\). (a) By finding the work needed to increase the plate separation from \(x\) to \(x+d x\), determine the force between the plates. (Hint: See Eq. 8-22.) (b) Then show that the force per unit area (the electrostatic stress) acting on either plate is equal to the energy density \(\varepsilon_{0} E^{2} / 2\) between the plates.
80 A capacitor is charged until its stored energy is 4.00 J . A second capacitor is then connected to it in parallel. (a) If the charge distributes equally, what is the total energy stored in the electric fields? (b) Where did the missing energy go?

\section*{Current and Resistance}

\section*{26-1 electric current}

\section*{Learning Objectives}

After reading this module, you should be able to ...
26.01 Apply the definition of current as the rate at which charge moves through a point, including solving for the amount of charge that passes the point in a given time interval.
26.02 Identify that current is normally due to the motion of conduction electrons that are driven by electric fields (such as those set up in a wire by a battery).
26.03 Identify a junction in a circuit and apply the fact that (due to conservation of charge) the total current into a junction must equal the total current out of the junction.
26.04 Explain how current arrows are drawn in a schematic diagram of a circuit, and identify that the arrows are not vectors.

\section*{Key Ideas}
- An electric current \(i\) in a conductor is defined by
\[
i=\frac{d q}{d t}
\]
where \(d q\) is the amount of positive charge that passes in time \(d t\).
- By convention, the direction of electric current is taken as the direction in which positive charge carriers would move even though (normally) only conduction electrons can move.

\section*{What Is Physics?}

In the last five chapters we discussed electrostatics - the physics of stationary charges. In this and the next chapter, we discuss the physics of electric currents that is, charges in motion.

Examples of electric currents abound and involve many professions. Meteorologists are concerned with lightning and with the less dramatic slow flow of charge through the atmosphere. Biologists, physiologists, and engineers working in medical technology are concerned with the nerve currents that control muscles and especially with how those currents can be reestablished after spinal cord injuries. Electrical engineers are concerned with countless electrical systems, such as power systems, lightning protection systems, information storage systems, and music systems. Space engineers monitor and study the flow of charged particles from our Sun because that flow can wipe out telecommunication systems in orbit and even power transmission systems on the ground. In addition to such scholarly work, almost every aspect of daily life now depends on information carried by electric currents, from stock trades to ATM transfers and from video entertainment to social networking.

In this chapter we discuss the basic physics of electric currents and why they can be established in some materials but not in others. We begin with the meaning of electric current.


Figure 26-1 (a) A loop of copper in electrostatic equilibrium. The entire loop is at a single potential, and the electric field is zero at all points inside the copper. (b) Adding a battery imposes an electric potential difference between the ends of the loop that are connected to the terminals of the battery. The battery thus produces an electric field within the loop, from terminal to terminal, and the field causes charges to move around the loop. This movement of charges is a current \(i\).

The current is the same in any cross section.


Figure 26-2 The current \(i\) through the conductor has the same value at planes \(a a^{\prime}\), \(b b^{\prime}\), and \(c c^{\prime}\).

\section*{Electric Current}

Although an electric current is a stream of moving charges, not all moving charges constitute an electric current. If there is to be an electric current through a given surface, there must be a net flow of charge through that surface. Two examples clarify our meaning.
1. The free electrons (conduction electrons) in an isolated length of copper wire are in random motion at speeds of the order of \(10^{6} \mathrm{~m} / \mathrm{s}\). If you pass a hypothetical plane through such a wire, conduction electrons pass through it in both directions at the rate of many billions per second—but there is no net transport of charge and thus no current through the wire. However, if you connect the ends of the wire to a battery, you slightly bias the flow in one direction, with the result that there now is a net transport of charge and thus an electric current through the wire.
2. The flow of water through a garden hose represents the directed flow of positive charge (the protons in the water molecules) at a rate of perhaps several million coulombs per second. There is no net transport of charge, however, because there is a parallel flow of negative charge (the electrons in the water molecules) of exactly the same amount moving in exactly the same direction.
In this chapter we restrict ourselves largely to the study - within the framework of classical physics-of steady currents of conduction electrons moving through metallic conductors such as copper wires.

As Fig. 26-1a reminds us, any isolated conducting loop-regardless of whether it has an excess charge - is all at the same potential. No electric field can exist within it or along its surface. Although conduction electrons are available, no net electric force acts on them and thus there is no current.

If, as in Fig. 26-1b, we insert a battery in the loop, the conducting loop is no longer at a single potential. Electric fields act inside the material making up the loop, exerting forces on the conduction electrons, causing them to move and thus establishing a current. After a very short time, the electron flow reaches a constant value and the current is in its steady state (it does not vary with time).

Figure 26-2 shows a section of a conductor, part of a conducting loop in which current has been established. If charge \(d q\) passes through a hypothetical plane (such as \(a a^{\prime}\) ) in time \(d t\), then the current \(i\) through that plane is defined as
\[
\begin{equation*}
i=\frac{d q}{d t} \quad \text { (definition of current) } \tag{26-1}
\end{equation*}
\]

We can find the charge that passes through the plane in a time interval extending from 0 to \(t\) by integration:
\[
\begin{equation*}
q=\int d q=\int_{0}^{t} i d t \tag{26-2}
\end{equation*}
\]
in which the current \(i\) may vary with time.
Under steady-state conditions, the current is the same for planes \(a a^{\prime}, b b^{\prime}\), and \(c c^{\prime}\) and indeed for all planes that pass completely through the conductor, no matter what their location or orientation. This follows from the fact that charge is conserved. Under the steady-state conditions assumed here, an electron must pass through plane \(a a^{\prime}\) for every electron that passes through plane \(c c^{\prime}\). In the same way, if we have a steady flow of water through a garden hose, a drop of water must leave the nozzle for every drop that enters the hose at the other end. The amount of water in the hose is a conserved quantity.

The SI unit for current is the coulomb per second, or the ampere (A), which is an SI base unit:
\[
1 \text { ampere }=1 \mathrm{~A}=1 \text { coulomb per second }=1 \mathrm{C} / \mathrm{s} .
\]

The formal definition of the ampere is discussed in Chapter 29.

Current, as defined by Eq. 26-1, is a scalar because both charge and time in that equation are scalars. Yet, as in Fig. 26-1b, we often represent a current with an arrow to indicate that charge is moving. Such arrows are not vectors, however, and they do not require vector addition. Figure \(26-3 a\) shows a conductor with current \(i_{0}\) splitting at a junction into two branches. Because charge is conserved, the magnitudes of the currents in the branches must add to yield the magnitude of the current in the original conductor, so that
\[
\begin{equation*}
i_{0}=i_{1}+i_{2} . \tag{26-3}
\end{equation*}
\]

As Fig. 26-3 \(b\) suggests, bending or reorienting the wires in space does not change the validity of Eq. 26-3. Current arrows show only a direction (or sense) of flow along a conductor, not a direction in space.

\section*{The Directions of Currents}

In Fig. 26-1 \(b\) we drew the current arrows in the direction in which positively charged particles would be forced to move through the loop by the electric field. Such positive charge carriers, as they are often called, would move away from the positive battery terminal and toward the negative terminal. Actually, the charge carriers in the copper loop of Fig. 26-1b are electrons and thus are negatively charged. The electric field forces them to move in the direction opposite the current arrows, from the negative terminal to the positive terminal. For historical reasons, however, we use the following convention:

A current arrow is drawn in the direction in which positive charge carriers would move, even if the actual charge carriers are negative and move in the opposite direction.

We can use this convention because in most situations, the assumed motion of positive charge carriers in one direction has the same effect as the actual motion of negative charge carriers in the opposite direction. (When the effect is not the same, we shall drop the convention and describe the actual motion.)

\section*{Checkpoint 1}

The figure here shows a portion of a circuit. What are the magnitude and direction of the current \(i\) in the lower right-hand wire?


The current into the junction must equal the current out (charge is conserved).

(a)

(b)

Figure 26-3 The relation \(i_{0}=i_{1}+i_{2}\) is true at junction \(a\) no matter what the orientation in space of the three wires. Currents are scalars, not vectors.

\section*{Sample Problem 26.01 Current is the rate at which charge passes a point}

Water flows through a garden hose at a volume flow rate \(d V / d t\) of \(450 \mathrm{~cm}^{3} / \mathrm{s}\). What is the current of negative charge?

\section*{KEY IDEAS}

The current \(i\) of negative charge is due to the electrons in the water molecules moving through the hose. The current is the rate at which that negative charge passes through any plane that cuts completely across the hose.

Calculations: We can write the current in terms of the number of molecules that pass through such a plane per second as
\[
i=\left(\begin{array}{c}
\text { charge } \\
\text { per } \\
\text { electron }
\end{array}\right)\left(\begin{array}{c}
\text { electrons } \\
\text { per } \\
\text { molecule }
\end{array}\right)\left(\begin{array}{c}
\text { molecules } \\
\text { per } \\
\text { second }
\end{array}\right)
\]
or
\[
i=(e)(10) \frac{d N}{d t}
\]

We substitute 10 electrons per molecule because a water \(\left(\mathrm{H}_{2} \mathrm{O}\right)\) molecule contains 8 electrons in the single oxygen atom and 1 electron in each of the two hydrogen atoms.

We can express the rate \(d N / d t\) in terms of the given volume flow rate \(d V / d t\) by first writing
\[
\begin{aligned}
\left(\begin{array}{c}
\text { molecules } \\
\text { per } \\
\text { second }
\end{array}\right)= & \left(\begin{array}{c}
\text { molecules } \\
\text { per } \\
\text { mole }
\end{array}\right)\left(\begin{array}{c}
\text { moles } \\
\text { per unit } \\
\text { mass }
\end{array}\right) \\
& \times\left(\begin{array}{c}
\text { mass } \\
\text { per unit } \\
\text { volume }
\end{array}\right)\left(\begin{array}{c}
\text { volume } \\
\text { per } \\
\text { second }
\end{array}\right) .
\end{aligned}
\]
"Molecules per mole" is Avogadro's number \(N_{\mathrm{A}}\). "Moles per unit mass" is the inverse of the mass per mole, which is the molar mass \(M\) of water. "Mass per unit volume" is the (mass) density \(\rho_{\text {mass }}\) of water. The volume per second is the volume flow rate \(d V / d t\). Thus, we have
\[
\frac{d N}{d t}=N_{\mathrm{A}}\left(\frac{1}{M}\right) \rho_{\mathrm{mass}}\left(\frac{d V}{d t}\right)=\frac{N_{\mathrm{A}} \rho_{\mathrm{mass}}}{M} \frac{d V}{d t}
\]

Substituting this into the equation for \(i\), we find
\[
i=10 e N_{\mathrm{A}} M^{-1} \rho_{\mathrm{mass}} \frac{d V}{d t}
\]

We know that Avogadro's number \(N_{\mathrm{A}}\) is \(6.02 \times 10^{23}\) molecules \(/ \mathrm{mol}\), or \(6.02 \times 10^{23} \mathrm{~mol}^{-1}\), and from Table \(15-1\) we know that the density of water \(\rho_{\text {mass }}\) under normal conditions is \(1000 \mathrm{~kg} / \mathrm{m}^{3}\). We can get the molar mass of water from the molar masses listed in Appendix F (in grams per mole): We add the molar mass of oxygen \((16 \mathrm{~g} / \mathrm{mol})\) to twice the molar mass of hydrogen ( \(1 \mathrm{~g} / \mathrm{mol}\) ), obtaining \(18 \mathrm{~g} / \mathrm{mol}=\) \(0.018 \mathrm{~kg} / \mathrm{mol}\). So, the current of negative charge due to the electrons in the water is
\[
\begin{aligned}
i= & (10)\left(1.6 \times 10^{-19} \mathrm{C}\right)\left(6.02 \times 10^{23} \mathrm{~mol}^{-1}\right) \\
& \times(0.018 \mathrm{~kg} / \mathrm{mol})^{-1}\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(450 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{s}\right) \\
= & 2.41 \times 10^{7} \mathrm{C} / \mathrm{s}=2.41 \times 10^{7} \mathrm{~A} \\
= & 24.1 \mathrm{MA} .
\end{aligned}
\]

This current of negative charge is exactly compensated by a current of positive charge associated with the nuclei of the three atoms that make up the water molecule. Thus, there is no net flow of charge through the hose.

PLUS Additional examples, video, and practice available at WileyPLUS

\section*{26-2 current density}

\section*{Learning Objectives}

After reading this module, you should be able to ...
26.05 Identify a current density and a current density vector.
26.06 For current through an area element on a cross section through a conductor (such as a wire), identify the element's area vector \(d \vec{A}\).
26.07 Find the current through a cross section of a conductor by integrating the dot product of the current density vector \(\vec{J}\) and the element area vector \(d \vec{A}\) over the full cross section.
26.08 For the case where current is uniformly spread over a cross section in a conductor, apply the relationship
between the current \(i\), the current density magnitude \(J\), and the area \(A\).
26.09 Identify streamlines.
26.10 Explain the motion of conduction electrons in terms of their drift speed.
26.11 Distinguish the drift speeds of conduction electrons from their random-motion speeds, including relative magnitudes.
26.12 Identify carrier charge density \(n\).
26.13 Apply the relationship between current density \(J\), charge carrier density \(n\), and charge carrier drift speed \(v_{d}\).

\section*{Key Ideas}
- Current \(i\) (a scalar quantity) is related to current density \(\vec{J}\) (a vector quantity) by
\[
i=\int \vec{J} \cdot d \vec{A}
\]
where \(d \vec{A}\) is a vector perpendicular to a surface element of area \(d A\) and the integral is taken over any surface cutting across the conductor. The current density \(\vec{J}\) has the same direction as the velocity of the moving charges if
they are positive and the opposite direction if they are negative.
- When an electric field \(\vec{E}\) is established in a conductor, the charge carriers (assumed positive) acquire a drift speed \(v_{d}\) in the direction of \(\vec{E}\).
- The drift velocity \(\vec{v}_{d}\) is related to the current density by
\[
\vec{J}=(n e) \vec{v}_{d},
\]
where \(n e\) is the carrier charge density.

\section*{Current Density}

Sometimes we are interested in the current \(i\) in a particular conductor. At other times we take a localized view and study the flow of charge through a cross section of the conductor at a particular point. To describe this flow, we can use the current density \(\vec{J}\), which has the same direction as the velocity of the moving charges if they are positive and the opposite direction if they are negative. For each element of the cross section, the magnitude \(J\) is equal to the current per unit area through that element. We can write the amount of current through the element as \(\vec{J} \cdot d \vec{A}\), where \(d \vec{A}\) is the area vector of the element, perpendicular to the element. The total current through the surface is then
\[
\begin{equation*}
i=\int \vec{J} \cdot d \vec{A} \tag{26-4}
\end{equation*}
\]

If the current is uniform across the surface and parallel to \(d \vec{A}\), then \(\vec{J}\) is also uniform and parallel to \(d \vec{A}\). Then Eq. 26-4 becomes
so
\[
\begin{align*}
i=\int J d A & =J \int d A=J A \\
J & =\frac{i}{A} \tag{26-5}
\end{align*}
\]
where \(A\) is the total area of the surface. From Eq. 26-4 or 26-5 we see that the SI unit for current density is the ampere per square meter \(\left(\mathrm{A} / \mathrm{m}^{2}\right)\).

In Chapter 22 we saw that we can represent an electric field with electric field lines. Figure \(26-4\) shows how current density can be represented with a similar set of lines, which we can call streamlines. The current, which is toward the right in Fig. 26-4, makes a transition from the wider conductor at the left to the narrower conductor at the right. Because charge is conserved during the transition, the amount of charge and thus the amount of current cannot change. However, the current density does change-it is greater in the narrower conductor. The spacing of the streamlines suggests this increase in current density; streamlines that are closer together imply greater current density.

\section*{Drift Speed}

When a conductor does not have a current through it, its conduction electrons move randomly, with no net motion in any direction. When the conductor does have a current through it, these electrons actually still move randomly, but now they tend to drift with a drift speed \(v_{d}\) in the direction opposite that of the applied electric field that causes the current. The drift speed is tiny compared with the speeds in the random motion. For example, in the copper conductors of household wiring, electron drift speeds are perhaps \(10^{-5}\) or \(10^{-4} \mathrm{~m} / \mathrm{s}\), whereas the random-motion speeds are around \(10^{6} \mathrm{~m} / \mathrm{s}\).

We can use Fig. 26-5 to relate the drift speed \(v_{d}\) of the conduction electrons in a current through a wire to the magnitude \(J\) of the current density in the wire. For

Figure 26-5 Positive charge carriers drift at speed \(v_{d}\) in the direction of the applied electric field \(\vec{E}\). By convention, the direction of the current density \(\vec{J}\) and the sense of the current arrow are drawn in that same direction.

Current is said to be due to positive charges that are propelled by the electric field.



Figure 26-4 Streamlines representing current density in the flow of charge through a constricted conductor.
convenience, Fig. 26-5 shows the equivalent drift of positive charge carriers in the direction of the applied electric field \(\vec{E}\). Let us assume that these charge carriers all move with the same drift speed \(v_{d}\) and that the current density \(J\) is uniform across the wire's cross-sectional area \(A\). The number of charge carriers in a length \(L\) of the wire is \(n A L\), where \(n\) is the number of carriers per unit volume. The total charge of the carriers in the length \(L\), each with charge \(e\), is then
\[
q=(n A L) e .
\]

Because the carriers all move along the wire with speed \(v_{d}\), this total charge moves through any cross section of the wire in the time interval
\[
t=\frac{L}{v_{d}} .
\]

Equation 26-1 tells us that the current \(i\) is the time rate of transfer of charge across a cross section, so here we have
\[
\begin{equation*}
i=\frac{q}{t}=\frac{n A L e}{L / v_{d}}=n A e v_{d} \tag{26-6}
\end{equation*}
\]

Solving for \(v_{d}\) and recalling Eq. 26-5 \((J=i / A)\), we obtain
\[
v_{d}=\frac{i}{n A e}=\frac{J}{n e}
\]
or, extended to vector form,
\[
\begin{equation*}
\vec{J}=(n e) \vec{v}_{d} . \tag{26-7}
\end{equation*}
\]

Here the product \(n e\), whose SI unit is the coulomb per cubic meter \(\left(\mathrm{C} / \mathrm{m}^{3}\right)\), is the carrier charge density. For positive carriers, ne is positive and Eq. \(26-7\) predicts that \(\vec{J}\) and \(\vec{v}_{d}\) have the same direction. For negative carriers, \(n e\) is negative and \(\vec{J}\) and \(\vec{v}_{d}\) have opposite directions.

\section*{Checkpoint 2}

The figure shows conduction electrons moving leftward in a wire. Are the following leftward or
 rightward: (a) the current \(i\), (b) the current density \(\vec{J}\), (c) the electric field \(\vec{E}\) in the wire?

\section*{Sample Problem 26.02 Current density, uniform and nonuniform}
(a) The current density in a cylindrical wire of radius \(R=\) 2.0 mm is uniform across a cross section of the wire and is \(J=\) \(2.0 \times 10^{5} \mathrm{~A} / \mathrm{m}^{2}\). What is the current through the outer portion of the wire between radial distances \(R / 2\) and \(R\) (Fig. 26-6a) ?

\section*{KEY IDEA}

Because the current density is uniform across the cross section, the current density \(J\), the current \(i\), and the crosssectional area \(A\) are related by Eq. 26-5 \((J=i / A)\).

Calculations: We want only the current through a reduced cross-sectional area \(A^{\prime}\) of the wire (rather than the entire
area), where
\[
\begin{aligned}
A^{\prime} & =\pi R^{2}-\pi\left(\frac{R}{2}\right)^{2}=\pi\left(\frac{3 R^{2}}{4}\right) \\
& =\frac{3 \pi}{4}(0.0020 \mathrm{~m})^{2}=9.424 \times 10^{-6} \mathrm{~m}^{2} .
\end{aligned}
\]

So, we rewrite Eq. 26-5 as
\[
i=J A^{\prime}
\]
and then substitute the data to find
\[
\begin{aligned}
i & =\left(2.0 \times 10^{5} \mathrm{~A} / \mathrm{m}^{2}\right)\left(9.424 \times 10^{-6} \mathrm{~m}^{2}\right) \\
& =1.9 \mathrm{~A} .
\end{aligned}
\]
(Answer)
(b) Suppose, instead, that the current density through a cross section varies with radial distance \(r\) as \(J=a r^{2}\), in which \(a=3.0 \times 10^{11} \mathrm{~A} / \mathrm{m}^{4}\) and \(r\) is in meters. What now is the current through the same outer portion of the wire?

\section*{KEY IDEA}

Because the current density is not uniform across a cross section of the wire, we must resort to Eq. 26-4 \(\left(i=\int \vec{J} \cdot d \vec{A}\right)\) and integrate the current density over the portion of the wire from \(r=R / 2\) to \(r=R\).

Calculations: The current density vector \(\vec{J}\) (along the wire's length) and the differential area vector \(d \vec{A}\) (perpendicular to a cross section of the wire) have the same direction. Thus,
\[
\vec{J} \cdot d \vec{A}=J d A \cos 0=J d A .
\]

We need to replace the differential area \(d A\) with something we can actually integrate between the limits \(r=R / 2\) and \(r=R\). The simplest replacement (because \(J\) is given as a function of \(r\) ) is the area \(2 \pi r d r\) of a thin ring of circumference \(2 \pi r\) and width \(d r\) (Fig. 26-6b). We can then integrate with \(r\) as the variable of integration. Equation 26-4 then gives us
\[
\begin{aligned}
i & =\int \vec{J} \cdot d \vec{A}=\int J d A \\
& =\int_{R / 2}^{R} a r^{2} 2 \pi r d r=2 \pi a \int_{R / 2}^{R} r^{3} d r \\
& =2 \pi a\left[\frac{r^{4}}{4}\right]_{R / 2}^{R}=\frac{\pi a}{2}\left[R^{4}-\frac{R^{4}}{16}\right]=\frac{15}{32} \pi a R^{4} \\
& =\frac{15}{32} \pi\left(3.0 \times 10^{11} \mathrm{~A} / \mathrm{m}^{4}\right)(0.0020 \mathrm{~m})^{4}=7.1 \mathrm{~A}
\end{aligned}
\]
(Answer)

We want the current in the area between these two radii.


If the current is nonuniform, we start with a ring that is so thin that we can approximate the current density as being uniform within it.


Our job is to sum the current in all rings from this smallest one ...


Its area is the product of the circumference and the width.


The current within the ring is the product of the current density and the ring's area.
... to this largest one.


Figure 26-6 (a) Cross section of a wire of radius \(R\). If the current density is uniform, the current is just the product of the current density and the area. (b)-(e) If the current is nonuniform, we must first find the current through a thin ring and then sum (via integration) the currents in all such rings in the given area.

Additional examples, video, and practice available at WileyPLUS

\section*{Sample Problem 26.03 In a current, the conduction electrons move very slowly}

What is the drift speed of the conduction electrons in a copper wire with radius \(r=900 \mu \mathrm{~m}\) when it has a uniform current \(i=17 \mathrm{~mA}\) ? Assume that each copper atom contributes one conduction electron to the current and that the current density is uniform across the wire's cross section.

\section*{KEY IDEAS}
1. The drift speed \(v_{d}\) is related to the current density \(\vec{J}\) and the number \(n\) of conduction electrons per unit volume according to Eq. 26-7, which we can write as \(J=n e v_{d}\).
2. Because the current density is uniform, its magnitude \(J\) is related to the given current \(i\) and wire size by Eq. 26-5 ( \(J=i / A\), where \(A\) is the cross-sectional area of the wire).
3. Because we assume one conduction electron per atom, the number \(n\) of conduction electrons per unit volume is the same as the number of atoms per unit volume.

Calculations: Let us start with the third idea by writing
\[
n=\left(\begin{array}{c}
\text { atoms } \\
\text { per unit } \\
\text { volume }
\end{array}\right)=\left(\begin{array}{c}
\text { atoms } \\
\text { per } \\
\text { mole }
\end{array}\right)\left(\begin{array}{c}
\text { moles } \\
\text { per unit } \\
\text { mass }
\end{array}\right)\left(\begin{array}{c}
\text { mass } \\
\text { per unit } \\
\text { volume }
\end{array}\right) .
\]

The number of atoms per mole is just Avogadro's number \(N_{\mathrm{A}}\left(=6.02 \times 10^{23} \mathrm{~mol}^{-1}\right)\). Moles per unit mass is the inverse of the mass per mole, which here is the molar mass \(M\) of copper. The mass per unit volume is the (mass) density \(\rho_{\text {mass }}\) of copper. Thus,
\[
n=N_{\mathrm{A}}\left(\frac{1}{M}\right) \rho_{\mathrm{mass}}=\frac{N_{\mathrm{A}} \rho_{\mathrm{mass}}}{M} .
\]

Taking copper's molar mass \(M\) and density \(\rho_{\text {mass }}\) from Appendix F, we then have (with some conversions of units)
\[
\begin{aligned}
n & =\frac{\left(6.02 \times 10^{23} \mathrm{~mol}^{-1}\right)\left(8.96 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)}{63.54 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}} \\
& =8.49 \times 10^{28} \text { electrons } / \mathrm{m}^{3} \\
& n=8.49 \times 10^{28} \mathrm{~m}^{-3}
\end{aligned}
\]

Next let us combine the first two key ideas by writing
\[
\frac{i}{A}=n e v_{d} .
\]

Substituting for \(A\) with \(\pi r^{2}\left(=2.54 \times 10^{-6} \mathrm{~m}^{2}\right)\) and solving for \(v_{d}\), we then find
\[
\begin{aligned}
v_{d} & =\frac{i}{n e\left(\pi r^{2}\right)} \\
& =\frac{17 \times 10^{-3} \mathrm{~A}}{\left(8.49 \times 10^{28} \mathrm{~m}^{-3}\right)\left(1.6 \times 10^{-19} \mathrm{C}\right)\left(2.54 \times 10^{-6} \mathrm{~m}^{2}\right)} \\
& =4.9 \times 10^{-7} \mathrm{~m} / \mathrm{s},
\end{aligned}
\]
which is only \(1.8 \mathrm{~mm} / \mathrm{h}\), slower than a sluggish snail.
Lights are fast: You may well ask: "If the electrons drift so slowly, why do the room lights turn on so quickly when I throw the switch?" Confusion on this point results from not distinguishing between the drift speed of the electrons and the speed at which changes in the electric field configuration travel along wires. This latter speed is nearly that of light; electrons everywhere in the wire begin drifting almost at once, including into the lightbulbs. Similarly, when you open the valve on your garden hose with the hose full of water, a pressure wave travels along the hose at the speed of sound in water. The speed at which the water itself moves through the hosemeasured perhaps with a dye marker - is much slower.

PLU'S
Additional examples, video, and practice available at WileyPLUS

\section*{26-3 RESISTANCE AND RESISTIVITY}

\section*{Learning Objectives}

After reading this module, you should be able to ...
26.14 Apply the relationship between the potential difference \(V\) applied across an object, the object's resistance \(R\), and the resulting current \(i\) through the object, between the application points.
26.15 Identify a resistor.
26.16 Apply the relationship between the electric field magnitude \(E\) set up at a point in a given material, the material's resistivity \(\rho\), and the resulting current density magnitude \(J\) at that point.
26.17 For a uniform electric field set up in a wire, apply the relationship between the electric field magnitude \(E\),
the potential difference \(V\) between the two ends, and the wire's length \(L\).
26.18 Apply the relationship between resistivity \(\rho\) and conductivity \(\sigma\).
26.19 Apply the relationship between an object's resistance \(R\), the resistivity of its material \(\rho\), its length \(L\), and its crosssectional area \(A\).
26.20 Apply the equation that approximately gives a conductor's resistivity \(\rho\) as a function of temperature \(T\).
26.21 Sketch a graph of resistivity \(\rho\) versus temperature \(T\) for a metal.

\section*{Key Ideas}
- The resistance \(R\) of a conductor is defined as
\[
R=\frac{V}{i}
\]
where \(V\) is the potential difference across the conductor and \(i\) is the current.
- The resistivity \(\rho\) and conductivity \(\sigma\) of a material are related by
\[
\rho=\frac{1}{\sigma}=\frac{E}{J},
\]
where \(E\) is the magnitude of the applied electric field and \(J\) is the magnitude of the current density.
- The electric field and current density are related to the resistivity by
\[
\vec{E}=\rho \vec{J} .
\]
- The resistance \(R\) of a conducting wire of length \(L\) and uniform cross section is
\[
R=\rho \frac{L}{A}
\]
where \(A\) is the cross-sectional area.
- The resistivity \(\rho\) for most materials changes with temperature. For many materials, including metals, the relation between \(\rho\) and temperature \(T\) is approximated by the equation
\[
\rho-\rho_{0}=\rho_{0} \alpha\left(T-T_{0}\right)
\]

Here \(T_{0}\) is a reference temperature, \(\rho_{0}\) is the resistivity at \(T_{0}\), and \(\alpha\) is the temperature coefficient of resistivity for the material.

\section*{Resistance and Resistivity}

If we apply the same potential difference between the ends of geometrically similar rods of copper and of glass, very different currents result. The characteristic of the conductor that enters here is its electrical resistance. We determine the resistance between any two points of a conductor by applying a potential difference \(V\) between those points and measuring the current \(i\) that results. The resistance \(R\) is then
\[
\begin{equation*}
R=\frac{V}{i} \quad(\text { definition of } R) \tag{26-8}
\end{equation*}
\]

The SI unit for resistance that follows from Eq. \(26-8\) is the volt per ampere. This combination occurs so often that we give it a special name, the ohm (symbol \(\Omega\) ); that is,
\[
\begin{align*}
1 \mathrm{ohm} & =1 \Omega=1 \text { volt per ampere } \\
& =1 \mathrm{~V} / \mathrm{A} . \tag{26-9}
\end{align*}
\]

A conductor whose function in a circuit is to provide a specified resistance is called a resistor (see Fig. 26-7). In a circuit diagram, we represent a resistor and a resistance with the symbol -W - If we write Eq. 26-8 as
\[
i=\frac{V}{R}
\]
we see that, for a given \(V\), the greater the resistance, the smaller the current.
The resistance of a conductor depends on the manner in which the potential difference is applied to it. Figure \(26-8\), for example, shows a given potential difference applied in two different ways to the same conductor. As the current density streamlines suggest, the currents in the two cases - hence the measured resistances - will be different. Unless otherwise stated, we shall assume that any given potential difference is applied as in Fig. 26-8b.


Figure 26-8 Two ways of applying a potential difference to a conducting rod. The gray connectors are assumed to have negligible resistance. When they are arranged as in \((a)\) in a small region at each rod end, the measured resistance is larger than when they are arranged as in \((b)\) to cover the entire rod end.


Figure 26-7 An assortment of resistors. The circular bands are color-coding marks that identify the value of the resistance.

Table 26-1 Resistivities of Some Materials at Room Temperature \(\left(20^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|c|c|c|}
\hline Material & Resistivity, \(\rho\)
\[
(\Omega \cdot \mathrm{m})
\] & Temperature Coefficient of Resistivity, \(\alpha\left(\mathrm{K}^{-1}\right)\) \\
\hline & \multicolumn{2}{|l|}{Typical Metals} \\
\hline Silver & \(1.62 \times 10^{-8}\) & \(4.1 \times 10^{-3}\) \\
\hline Copper & \(1.69 \times 10^{-8}\) & \(4.3 \times 10^{-3}\) \\
\hline Gold & \(2.35 \times 10^{-8}\) & \(4.0 \times 10^{-3}\) \\
\hline Aluminum & \(2.75 \times 10^{-8}\) & \(4.4 \times 10^{-3}\) \\
\hline Manganin \({ }^{\text {a }}\) & \(4.82 \times 10^{-8}\) & \(0.002 \times 10^{-3}\) \\
\hline Tungsten & \(5.25 \times 10^{-8}\) & \(4.5 \times 10^{-3}\) \\
\hline Iron & \(9.68 \times 10^{-8}\) & \(6.5 \times 10^{-3}\) \\
\hline Platinum & \(10.6 \times 10^{-8}\) & \(3.9 \times 10^{-3}\) \\
\hline & \multicolumn{2}{|l|}{Typical Semiconductors} \\
\hline Silicon, pure & \(2.5 \times 10^{3}\) & \(-70 \times 10^{-3}\) \\
\hline Silicon, \(n\)-type \({ }^{b}\) & \(8.7 \times 10^{-4}\) & \\
\hline \multirow[t]{2}{*}{Silicon, \(p\)-type \({ }^{c}\)} & \(2.8 \times 10^{-3}\) & \\
\hline & Typical Insula & ors \\
\hline Glass & \(10^{10}-10^{14}\) & \\
\hline Fused quartz & \(\sim 10^{16}\) & \\
\hline
\end{tabular}
\({ }^{a}\) An alloy specifically designed to have a small value of \(\alpha\).
\({ }^{b}\) Pure silicon doped with phosphorus impurities to a charge carrier density of \(10^{23} \mathrm{~m}^{-3}\).
\({ }^{c}\) Pure silicon doped with aluminum impurities to a charge carrier density of \(10^{23} \mathrm{~m}^{-3}\).

Figure 26-9 A potential difference \(V\) is applied between the ends of a wire of length \(L\) and cross section \(A\), establishing a current \(i\).

As we have done several times in other connections, we often wish to take a general view and deal not with particular objects but with materials. Here we do so by focusing not on the potential difference \(V\) across a particular resistor but on the electric field \(\vec{E}\) at a point in a resistive material. Instead of dealing with the current \(i\) through the resistor, we deal with the current density \(\vec{J}\) at the point in question. Instead of the resistance \(R\) of an object, we deal with the resistivity \(\rho\) of the material:
\[
\begin{equation*}
\rho=\frac{E}{J} \quad(\text { definition of } \rho) . \tag{26-10}
\end{equation*}
\]
(Compare this equation with Eq. 26-8.)
If we combine the SI units of \(E\) and \(J\) according to Eq. 26-10, we get, for the unit of \(\rho\), the ohm-meter \((\Omega \cdot \mathrm{m})\) :
\[
\frac{\operatorname{unit}(E)}{\operatorname{unit}(J)}=\frac{\mathrm{V} / \mathrm{m}}{\mathrm{~A} / \mathrm{m}^{2}}=\frac{\mathrm{V}}{\mathrm{~A}} \mathrm{~m}=\Omega \cdot \mathrm{m} .
\]
(Do not confuse the ohm-meter, the unit of resistivity, with the ohmmeter, which is an instrument that measures resistance.) Table 26-1 lists the resistivities of some materials.

We can write Eq. 26-10 in vector form as
\[
\begin{equation*}
\vec{E}=\rho \vec{J} \tag{26-11}
\end{equation*}
\]

Equations 26-10 and 26-11 hold only for isotropic materials - materials whose electrical properties are the same in all directions.

We often speak of the conductivity \(\sigma\) of a material. This is simply the reciprocal of its resistivity, so
\[
\begin{equation*}
\sigma=\frac{1}{\rho} \quad(\text { definition of } \sigma) \tag{26-12}
\end{equation*}
\]

The SI unit of conductivity is the reciprocal ohm-meter, \((\Omega \cdot \mathrm{m})^{-1}\). The unit name mhos per meter is sometimes used (mho is ohm backwards). The definition of \(\sigma\) allows us to write Eq. 26-11 in the alternative form
\[
\begin{equation*}
\vec{J}=\sigma \vec{E} \tag{26-13}
\end{equation*}
\]

\section*{Calculating Resistance from Resistivity}

We have just made an important distinction:

Resistance is a property of an object. Resistivity is a property of a material.

If we know the resistivity of a substance such as copper, we can calculate the resistance of a length of wire made of that substance. Let \(A\) be the cross-sectional area of the wire, let \(L\) be its length, and let a potential difference \(V\) exist between its ends (Fig. 26-9). If the streamlines representing the current density are uniform throughout the wire, the electric field and the current density will be constant for all points within the wire and, from Eqs. 24-42 and 26-5, will have the values
\[
\begin{equation*}
E=V / L \quad \text { and } \quad J=i / A . \tag{26-14}
\end{equation*}
\]

We can then combine Eqs. 26-10 and 26-14 to write
\[
\begin{equation*}
\rho=\frac{E}{J}=\frac{V / L}{i / A} . \tag{26-15}
\end{equation*}
\]

However, \(V / i\) is the resistance \(R\), which allows us to recast Eq. \(26-15\) as
\[
\begin{equation*}
R=\rho \frac{L}{A} \tag{26-16}
\end{equation*}
\]

Equation 26-16 can be applied only to a homogeneous isotropic conductor of uniform cross section, with the potential difference applied as in Fig. 26-8b.

The macroscopic quantities \(V, i\), and \(R\) are of greatest interest when we are making electrical measurements on specific conductors. They are the quantities that we read directly on meters. We turn to the microscopic quantities \(E, J\), and \(\rho\) when we are interested in the fundamental electrical properties of materials.

\section*{Checkpoint 3}

The figure here shows three cylindrical copper conductors along with their face areas and lengths. Rank them according to the current through them, greatest first, when the same potential difference \(V\) is placed across their lengths.

(a)

(b)

(c)

\section*{Variation with Temperature}

The values of most physical properties vary with temperature, and resistivity is no exception. Figure \(26-10\), for example, shows the variation of this property for copper over a wide temperature range. The relation between temperature and resistivity for copper - and for metals in general - is fairly linear over a rather broad temperature range. For such linear relations we can write an empirical approximation that is good enough for most engineering purposes:
\[
\begin{equation*}
\rho-\rho_{0}=\rho_{0} \alpha\left(T-T_{0}\right) \tag{26-17}
\end{equation*}
\]

Here \(T_{0}\) is a selected reference temperature and \(\rho_{0}\) is the resistivity at that temperature. Usually \(T_{0}=293 \mathrm{~K}\) (room temperature), for which \(\rho_{0}=1.69 \times 10^{-8} \Omega \cdot \mathrm{~m}\) for copper.

Because temperature enters Eq. 26-17 only as a difference, it does not matter whether you use the Celsius or Kelvin scale in that equation because the sizes of degrees on these scales are identical. The quantity \(\alpha\) in Eq. 26-17, called the temperature coefficient of resistivity, is chosen so that the equation gives good agreement with experiment for temperatures in the chosen range. Some values of \(\alpha\) for metals are listed in Table 26-1.


Resistivity can depend on temperature.

Figure 26-10 The resistivity of copper as a function of temperature. The dot on the curve marks a convenient reference point at temperature \(T_{0}=293 \mathrm{~K}\) and resistivity \(\rho_{0}=1.69 \times\) \(10^{-8} \Omega \cdot \mathrm{~m}\).

\section*{Sample Problem 26.04 A material has resistivity, a block of the material has resistance}

A rectangular block of iron has dimensions \(1.2 \mathrm{~cm} \times\) \(1.2 \mathrm{~cm} \times 15 \mathrm{~cm}\). A potential difference is to be applied to the block between parallel sides and in such a way that those sides are equipotential surfaces (as in Fig. 26-8b). What is the resistance of the block if the two parallel sides are (1) the square ends (with dimensions \(1.2 \mathrm{~cm} \times\) 1.2 cm ) and (2) two rectangular sides (with dimensions \(1.2 \mathrm{~cm} \times 15 \mathrm{~cm})\) ?

\section*{KEY IDEA}

The resistance \(R\) of an object depends on how the electric potential is applied to the object. In particular, it depends on the ratio \(L / A\), according to Eq. 26-16 \((R=\rho L / A)\), where \(A\) is the area of the surfaces to which the potential difference is applied and \(L\) is the distance between those surfaces.

Calculations: For arrangement 1, we have \(L=15 \mathrm{~cm}=\) 0.15 m and
\[
A=(1.2 \mathrm{~cm})^{2}=1.44 \times 10^{-4} \mathrm{~m}^{2} .
\]

Substituting into Eq. 26-16 with the resistivity \(\rho\) from Table 26-1, we then find that for arrangement 1,
\[
\begin{aligned}
R & =\frac{\rho L}{A}=\frac{\left(9.68 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)(0.15 \mathrm{~m})}{1.44 \times 10^{-4} \mathrm{~m}^{2}} \\
& =1.0 \times 10^{-4} \Omega=100 \mu \Omega
\end{aligned}
\]
(Answer)
Similarly, for arrangement 2, with distance \(L=1.2 \mathrm{~cm}\) and area \(A=(1.2 \mathrm{~cm})(15 \mathrm{~cm})\), we obtain
\[
\begin{aligned}
R & =\frac{\rho L}{A}=\frac{\left(9.68 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)\left(1.2 \times 10^{-2} \mathrm{~m}\right)}{1.80 \times 10^{-3} \mathrm{~m}^{2}} \\
& =6.5 \times 10^{-7} \Omega=0.65 \mu \Omega
\end{aligned} \quad \text { (Answer) } \quad
\]

\section*{26-4 애N'S LAW}

\section*{Learning Objectives}

After reading this module, you should be able to ...
26.22 Distinguish between an object that obeys Ohm's law and one that does not.
26.23 Distinguish between a material that obeys Ohm's law and one that does not.
26.24 Describe the general motion of a conduction electron in a current.
26.25 For the conduction electrons in a conductor, explain the relationship between the mean free time \(\tau\), the effective speed, and the thermal (random) motion.
26.26 Apply the relationship between resistivity \(\rho\), number density \(n\) of conduction electrons, and the mean free time \(\tau\) of the electrons.

\section*{Key Ideas}
- A given device (conductor, resistor, or any other electrical device) obeys Ohm's law if its resistance \(R(=V / i)\) is independent of the applied potential difference \(V\).
- A given material obeys Ohm's law if its resistivity \(\rho(=E / J)\) is independent of the magnitude and direction of the applied electric field \(\vec{E}\).
- The assumption that the conduction electrons in a metal are free to move like the molecules in a gas leads to an
expression for the resistivity of a metal:
\[
\rho=\frac{m}{e^{2} n \tau} .
\]

Here \(n\) is the number of free electrons per unit volume and \(\tau\) is the mean time between the collisions of an electron with the atoms of the metal.
- Metals obey Ohm's law because the mean free time \(\tau\) is approximately independent of the magnitude \(E\) of any electric field applied to a metal.

\section*{Ohm's Law}

As we just discussed, a resistor is a conductor with a specified resistance. It has that same resistance no matter what the magnitude and direction (polarity) of the applied potential difference are. Other conducting devices, however, might have resistances that change with the applied potential difference.

Figure 26-11a shows how to distinguish such devices. A potential difference \(V\) is applied across the device being tested, and the resulting current \(i\) through the device is measured as \(V\) is varied in both magnitude and polarity. The polarity of \(V\) is arbitrarily taken to be positive when the left terminal of the device is at a higher potential than the right terminal. The direction of the resulting current (from left to right) is arbitrarily assigned a plus sign. The reverse polarity of \(V\) (with the right terminal at a higher potential) is then negative; the current it causes is assigned a minus sign.

Figure \(26-11 b\) is a plot of \(i\) versus \(V\) for one device. This plot is a straight line passing through the origin, so the ratio \(i / V\) (which is the slope of the straight line) is the same for all values of \(V\). This means that the resistance \(R=V / i\) of the device is independent of the magnitude and polarity of the applied potential difference \(V\).

Figure \(26-11 c\) is a plot for another conducting device. Current can exist in this device only when the polarity of \(V\) is positive and the applied potential difference is more than about 1.5 V . When current does exist, the relation between \(i\) and \(V\) is not linear; it depends on the value of the applied potential difference \(V\).

We distinguish between the two types of device by saying that one obeys Ohm's law and the other does not.

Ohm's law is an assertion that the current through a device is always directly proportional to the potential difference applied to the device.
(This assertion is correct only in certain situations; still, for historical reasons, the term "law" is used.) The device of Fig. 26-11b - which turns out to be a \(1000 \Omega\) resistor - obeys Ohm's law. The device of Fig. 26-11c - which is called a pn junction diode - does not.

A conducting device obeys Ohm's law when the resistance of the device is independent of the magnitude and polarity of the applied potential difference.

It is often contended that \(V=i R\) is a statement of Ohm's law. That is not true! This equation is the defining equation for resistance, and it applies to all conducting devices, whether they obey Ohm's law or not. If we measure the potential difference \(V\) across, and the current \(i\) through, any device, even a \(p n\) junction diode, we can find its resistance at that value of \(V\) as \(R=V / i\). The essence of Ohm's law, however, is that a plot of \(i\) versus \(V\) is linear; that is, \(R\) is independent of \(V\). We can generalize this for conducting materials by using Eq. 26-11 \((\vec{E}=\rho \vec{J})\) :

A conducting material obeys Ohm's law when the resistivity of the material is independent of the magnitude and direction of the applied electric field.

All homogeneous materials, whether they are conductors like copper or semiconductors like pure silicon or silicon containing special impurities, obey Ohm's law within some range of values of the electric field. If the field is too strong, however, there are departures from Ohm's law in all cases.

\section*{Checkpoint 4}

The following table gives the current \(i\) (in amperes) through two devices for several values of potential difference \(V\) (in volts). From these data, determine which device does not obey Ohm's law.
\begin{tabular}{lcllc}
\hline \multicolumn{2}{c}{ Device 1} & & \multicolumn{2}{c}{ Device 2 } \\
\cline { 5 - 6 }\(V\) & & & & \(V\) \\
\hline & & & \(i\) \\
\hline 2.00 & 4.50 & & 2.00 & 1.50 \\
3.00 & 6.75 & & 3.00 & 2.20 \\
4.00 & 9.00 & & 4.00 & 2.80 \\
\hline
\end{tabular}


Figure 26-11 (a) A potential difference \(V\) is applied to the terminals of a device, establishing a current \(i\).(b) A plot of current \(i\) versus applied potential difference \(V\) when the device is a \(1000 \Omega\) resistor. (c) A plot when the device is a semiconducting \(p n\) junction diode.

\section*{A Microscopic View of Ohm’s Law}

To find out why particular materials obey Ohm's law, we must look into the details of the conduction process at the atomic level. Here we consider only conduction in metals, such as copper. We base our analysis on the free-electron model, in which we assume that the conduction electrons in the metal are free to move throughout the volume of a sample, like the molecules of a gas in a closed container. We also assume that the electrons collide not with one another but only with atoms of the metal.

According to classical physics, the electrons should have a Maxwellian speed distribution somewhat like that of the molecules in a gas (Module 19-6), and thus the average electron speed should depend on the temperature. The motions of electrons are, however, governed not by the laws of classical physics but by those of quantum physics. As it turns out, an assumption that is much closer to the quantum reality is that conduction electrons in a metal move with a single effective speed \(v_{\text {eff }}\), and this speed is essentially independent of the temperature. For copper, \(v_{\text {eff }} \approx 1.6 \times 10^{6} \mathrm{~m} / \mathrm{s}\).

When we apply an electric field to a metal sample, the electrons modify their random motions slightly and drift very slowly - in a direction opposite that of the field—with an average drift speed \(v_{d}\). The drift speed in a typical metallic conductor is about \(5 \times 10^{-7} \mathrm{~m} / \mathrm{s}\), less than the effective speed \(\left(1.6 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)\) by many orders of magnitude. Figure 26-12 suggests the relation between these two speeds. The gray lines show a possible random path for an electron in the absence of an applied field; the electron proceeds from \(A\) to \(B\), making six collisions along the way. The green lines show how the same events might occur when an electric field \(\vec{E}\) is applied. We see that the electron drifts steadily to the right, ending at \(B^{\prime}\) rather than at \(B\). Figure 26-12 was drawn with the assumption that \(v_{d} \approx 0.02 v_{\text {eff }}\). However, because the actual value is more like \(v_{d} \approx\left(10^{-13}\right) v_{\text {eff }}\), the drift displayed in the figure is greatly exaggerated.

The motion of conduction electrons in an electric field \(\vec{E}\) is thus a combination of the motion due to random collisions and that due to \(\vec{E}\). When we consider all the free electrons, their random motions average to zero and make no contribution to the drift speed. Thus, the drift speed is due only to the effect of the electric field on the electrons.

If an electron of mass \(m\) is placed in an electric field of magnitude \(E\), the electron will experience an acceleration given by Newton's second law:
\[
\begin{equation*}
a=\frac{F}{m}=\frac{e E}{m} . \tag{26-18}
\end{equation*}
\]

After a typical collision, each electron will-so to speak-completely lose its memory of its previous drift velocity, starting fresh and moving off in a random direction. In the average time \(\tau\) between collisions, the average electron will acquire a drift speed of \(v_{d}=a \tau\). Moreover, if we measure the drift speeds of all the electrons at any instant, we will find that their average drift speed is also \(a \tau\). Thus, at any instant, on average, the electrons will have drift speed \(v_{d}=a \tau\). Then Eq. 26-18 gives us
\[
\begin{equation*}
v_{d}=a \tau=\frac{e E \tau}{m} \tag{26-19}
\end{equation*}
\]

Figure 26-12 The gray lines show an electron moving from \(A\) to \(B\), making six collisions en route. The green lines show what the electron's path might be in the presence of an applied electric field \(\vec{E}\). Note the steady drift in the direction of \(-\vec{E}\). (Actually, the green lines should be slightly curved, to represent the parabolic paths followed by the electrons between collisions, under the influence of an electric field.)


Combining this result with Eq. 26-7 \(\left(\vec{J}=n e \vec{v}_{d}\right)\), in magnitude form, yields
\[
\begin{equation*}
v_{d}=\frac{J}{n e}=\frac{e E \tau}{m} \tag{26-20}
\end{equation*}
\]
which we can write as
\[
\begin{equation*}
E=\left(\frac{m}{e^{2} n \tau}\right) J \tag{26-21}
\end{equation*}
\]

Comparing this with Eq. 26-11 \((\vec{E}=\rho \vec{J})\), in magnitude form, leads to
\[
\begin{equation*}
\rho=\frac{m}{e^{2} n \tau} . \tag{26-22}
\end{equation*}
\]

Equation 26-22 may be taken as a statement that metals obey Ohm's law if we can show that, for metals, their resistivity \(\rho\) is a constant, independent of the strength of the applied electric field \(\vec{E}\). Let's consider the quantities in Eq. 26-22. We can reasonably assume that \(n\), the number of conduction electrons per volume, is independent of the field, and \(m\) and \(e\) are constants. Thus, we only need to convince ourselves that \(\tau\), the average time (or mean free time) between collisions, is a constant, independent of the strength of the applied electric field. Indeed, \(\tau\) can be considered to be a constant because the drift speed \(v_{d}\) caused by the field is so much smaller than the effective speed \(v_{\text {eff }}\) that the electron speedand thus \(\tau\)-is hardly affected by the field. Thus, because the right side of Eq. 26-22 is independent of the field magnitude, metals obey Ohm's law.

\section*{Sample Problem 26.05 Mean free time and mean free distance}
(a) What is the mean free time \(\tau\) between collisions for the conduction electrons in copper?

\section*{KEY IDEAS}

The mean free time \(\tau\) of copper is approximately constant, and in particular does not depend on any electric field that might be applied to a sample of the copper. Thus, we need not consider any particular value of applied electric field. However, because the resistivity \(\rho\) displayed by copper under an electric field depends on \(\tau\), we can find the mean free time \(\tau\) from Eq. 26-22 \(\left(\rho=m / e^{2} n \tau\right)\).
Calculations: That equation gives us
\[
\begin{equation*}
\tau=\frac{m}{n e^{2} \rho} \tag{26-23}
\end{equation*}
\]

The number of conduction electrons per unit volume in copper is \(8.49 \times 10^{28} \mathrm{~m}^{-3}\). We take the value of \(\rho\) from Table 26-1. The denominator then becomes
\[
\begin{aligned}
\left(8.49 \times 10^{28} \mathrm{~m}^{-3}\right) & \left(1.6 \times 10^{-19} \mathrm{C}\right)^{2}\left(1.69 \times 10^{-8} \Omega \cdot \mathrm{~m}\right) \\
= & 3.67 \times 10^{-17} \mathrm{C}^{2} \cdot \Omega / \mathrm{m}^{2}=3.67 \times 10^{-17} \mathrm{~kg} / \mathrm{s}
\end{aligned}
\]
where we converted units as
\[
\frac{\mathrm{C}^{2} \cdot \Omega}{\mathrm{~m}^{2}}=\frac{\mathrm{C}^{2} \cdot \mathrm{~V}}{\mathrm{~m}^{2} \cdot \mathrm{~A}}=\frac{\mathrm{C}^{2} \cdot \mathrm{~J} / \mathrm{C}}{\mathrm{~m}^{2} \cdot \mathrm{C} / \mathrm{s}}=\frac{\mathrm{kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}}{\mathrm{~m}^{2} / \mathrm{s}}=\frac{\mathrm{kg}}{\mathrm{~s}}
\]

Using these results and substituting for the electron mass \(m\), we then have
\[
\tau=\frac{9.1 \times 10^{-31} \mathrm{~kg}}{3.67 \times 10^{-17} \mathrm{~kg} / \mathrm{s}}=2.5 \times 10^{-14} \mathrm{~s}
\]
(Answer)
(b) The mean free path \(\lambda\) of the conduction electrons in a conductor is the average distance traveled by an electron between collisions. (This definition parallels that in Module 19-5 for the mean free path of molecules in a gas.) What is \(\lambda\) for the conduction electrons in copper, assuming that their effective speed \(v_{\text {eff }}\) is \(1.6 \times 10^{6} \mathrm{~m} / \mathrm{s}\) ?

\section*{KEY IDEA}

The distance \(d\) any particle travels in a certain time \(t\) at a constant speed \(v\) is \(d=v t\).
Calculation: For the electrons in copper, this gives us
\[
\begin{align*}
\lambda & =v_{\mathrm{eff}} \tau  \tag{26-24}\\
& =\left(1.6 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)\left(2.5 \times 10^{-14} \mathrm{~s}\right) \\
& =4.0 \times 10^{-8} \mathrm{~m}=40 \mathrm{~nm}
\end{align*}
\]
(Answer)
This is about 150 times the distance between nearestneighbor atoms in a copper lattice. Thus, on the average, each conduction electron passes many copper atoms before finally hitting one.

Additional examples, video, and practice available at WileyPLUS

\section*{26-5 POWER, SEMICONDUCTORS, SUPERCONDUCTORS}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
26.27 Explain how conduction electrons in a circuit lose energy in a resistive device.
26.28 Identify that power is the rate at which energy is transferred from one type to another.
26.29 For a resistive device, apply the relationships between power \(P\), current \(i\), voltage \(V\), and resistance \(R\).
26.30 For a battery, apply the relationship between power \(P\), current \(i\), and potential difference \(V\).
26.31 Apply the conservation of energy to a circuit with a battery and a resistive device to relate the energy transfers in the circuit.
26.32 Distinguish conductors, semiconductors, and superconductors.

\section*{Key Ideas}
- The power \(P\), or rate of energy transfer, in an electrical device across which a potential difference \(V\) is maintained is
\[
P=i V
\]
- If the device is a resistor, the power can also be written as
\[
P=i^{2} R=\frac{V^{2}}{R}
\]
- In a resistor, electric potential energy is converted to internal
thermal energy via collisions between charge carriers and atoms.
- Semiconductors are materials that have few conduction electrons but can become conductors when they are doped with other atoms that contribute charge carriers.
- Superconductors are materials that lose all electrical resistance. Most such materials require very low temperatures, but some become superconducting at temperatures as high as room temperature.

The battery at the left supplies energy to the conduction electrons that form the current.


Figure 26-13 A battery B sets up a current \(i\) in a circuit containing an unspecified conducting device.

\section*{Power in Electric Circuits}

Figure 26-13 shows a circuit consisting of a battery \(B\) that is connected by wires, which we assume have negligible resistance, to an unspecified conducting device. The device might be a resistor, a storage battery (a rechargeable battery), a motor, or some other electrical device. The battery maintains a potential difference of magnitude \(V\) across its own terminals and thus (because of the wires) across the terminals of the unspecified device, with a greater potential at terminal \(a\) of the device than at terminal \(b\).

Because there is an external conducting path between the two terminals of the battery, and because the potential differences set up by the battery are maintained, a steady current \(i\) is produced in the circuit, directed from terminal \(a\) to terminal \(b\). The amount of charge \(d q\) that moves between those terminals in time interval \(d t\) is equal to \(i d t\). This charge \(d q\) moves through a decrease in potential of magnitude \(V\), and thus its electric potential energy decreases in magnitude by the amount
\[
\begin{equation*}
d U=d q V=i d t V \tag{26-25}
\end{equation*}
\]

The principle of conservation of energy tells us that the decrease in electric potential energy from \(a\) to \(b\) is accompanied by a transfer of energy to some other form. The power \(P\) associated with that transfer is the rate of transfer \(d U / d t\), which is given by Eq. 26-25 as
\[
\begin{equation*}
P=i V \quad \text { (rate of electrical energy transfer) } \tag{26-26}
\end{equation*}
\]

Moreover, this power \(P\) is also the rate at which energy is transferred from the battery to the unspecified device. If that device is a motor connected to a mechanical load, the energy is transferred as work done on the load. If the device is a storage battery that is being charged, the energy is transferred to stored chemical energy in the storage battery. If the device is a resistor, the energy is transferred to internal thermal energy, tending to increase the resistor's temperature.

The unit of power that follows from Eq. 26-26 is the volt-ampere (V•A). We can write it as
\[
1 \mathrm{~V} \cdot \mathrm{~A}=\left(1 \frac{\mathrm{~J}}{\mathrm{C}}\right)\left(1 \frac{\mathrm{C}}{\mathrm{~s}}\right)=1 \frac{\mathrm{~J}}{\mathrm{~s}}=1 \mathrm{~W}
\]

As an electron moves through a resistor at constant drift speed, its average kinetic energy remains constant and its lost electric potential energy appears as thermal energy in the resistor and the surroundings. On a microscopic scale this energy transfer is due to collisions between the electron and the molecules of the resistor, which leads to an increase in the temperature of the resistor lattice. The mechanical energy thus transferred to thermal energy is dissipated (lost) because the transfer cannot be reversed.

For a resistor or some other device with resistance \(R\), we can combine Eqs. 26-8 \((R=V / i)\) and 26-26 to obtain, for the rate of electrical energy dissipation due to a resistance, either
\[
\begin{equation*}
P=i^{2} R \quad \text { (resistive dissipation) } \tag{26-27}
\end{equation*}
\]
\[
\text { or } \quad P=\frac{V^{2}}{R} \quad \text { (resistive dissipation). }
\]

Caution: We must be careful to distinguish these two equations from Eq. 26-26: \(P=i V\) applies to electrical energy transfers of all kinds; \(P=i^{2} R\) and \(P=V^{2} / R\) apply only to the transfer of electric potential energy to thermal energy in a device with resistance.

\section*{Checkpoint 5}

A potential difference \(V\) is connected across a device with resistance \(R\), causing current \(i\) through the device. Rank the following variations according to the change in the rate at which electrical energy is converted to thermal energy due to the resistance, greatest change first: (a) \(V\) is doubled with \(R\) unchanged, (b) \(i\) is doubled with \(R\) unchanged, (c) \(R\) is doubled with \(V\) unchanged, (d) \(R\) is doubled with \(i\) unchanged.

\section*{Sample Problem 26.06 Rate of energy dissipation in a wire carrying current}

You are given a length of uniform heating wire made of a nickel-chromium-iron alloy called Nichrome; it has a resistance \(R\) of \(72 \Omega\). At what rate is energy dissipated in each of the following situations? (1) A potential difference of 120 V is applied across the full length of the wire. (2) The wire is cut in half, and a potential difference of 120 V is applied across the length of each half.

\section*{KEY IDEA}

Current in a resistive material produces a transfer of mechanical energy to thermal energy; the rate of transfer (dissipation) is given by Eqs. 26-26 to 26-28.
Calculations: Because we know the potential \(V\) and resistance \(R\), we use Eq. 26-28, which yields, for situation 1,
\[
P=\frac{V^{2}}{R}=\frac{(120 \mathrm{~V})^{2}}{72 \Omega}=200 \mathrm{~W}
\]
(Answer)
In situation 2 , the resistance of each half of the wire is \((72 \Omega) / 2\), or \(36 \Omega\). Thus, the dissipation rate for each half is
\[
P^{\prime}=\frac{(120 \mathrm{~V})^{2}}{36 \Omega}=400 \mathrm{~W}
\]
and that for the two halves is
\[
P=2 P^{\prime}=800 \mathrm{~W}
\]
(Answer)
This is four times the dissipation rate of the full length of wire. Thus, you might conclude that you could buy a heating coil, cut it in half, and reconnect it to obtain four times the heat output. Why is this unwise? (What would happen to the amount of current in the coil?)

Additional examples, video, and practice available at WileyPLUS

\section*{Semiconductors}

Semiconducting devices are at the heart of the microelectronic revolution that ushered in the information age. Table 26-2 compares the properties of silicona typical semiconductor - and copper - a typical metallic conductor. We see that silicon has many fewer charge carriers, a much higher resistivity, and a temperature coefficient of resistivity that is both large and negative. Thus, although the resistivity of copper increases with increasing temperature, that of pure silicon decreases.

Pure silicon has such a high resistivity that it is effectively an insulator and thus not of much direct use in microelectronic circuits. However, its resistivity can be greatly reduced in a controlled way by adding minute amounts of specific "impurity" atoms in a process called doping. Table 26-1 gives typical values of resistivity for silicon before and after doping with two different impurities.

We can roughly explain the differences in resistivity (and thus in conductivity) between semiconductors, insulators, and metallic conductors in terms of the energies of their electrons. (We need quantum physics to explain in more detail.) In a metallic conductor such as copper wire, most of the electrons are firmly locked in place within the atoms; much energy would be required to free them so they could move and participate in an electric current. However, there are also some electrons that, roughly speaking, are only loosely held in place and that require only little energy to become free. Thermal energy can supply that energy, as can an electric field applied across the conductor. The field would not only free these loosely held electrons but would also propel them along the wire; thus, the field would drive a current through the conductor.

In an insulator, significantly greater energy is required to free electrons so they can move through the material. Thermal energy cannot supply enough energy, and neither can any reasonable electric field applied to the insulator. Thus, no electrons are available to move through the insulator, and hence no current occurs even with an applied electric field.

A semiconductor is like an insulator except that the energy required to free some electrons is not quite so great. More important, doping can supply electrons or positive charge carriers that are very loosely held within the material and thus are easy to get moving. Moreover, by controlling the doping of a semiconductor, we can control the density of charge carriers that can participate in a current and thereby can control some of its electrical properties. Most semiconducting devices, such as transistors and junction diodes, are fabricated by the selective doping of different regions of the silicon with impurity atoms of different kinds.

Let us now look again at Eq. 26-22 for the resistivity of a conductor:
\[
\begin{equation*}
\rho=\frac{m}{e^{2} n \tau} \tag{26-29}
\end{equation*}
\]
where \(n\) is the number of charge carriers per unit volume and \(\tau\) is the mean time between collisions of the charge carriers. The equation also applies to semiconductors. Let's consider how \(n\) and \(\tau\) change as the temperature is increased.

In a conductor, \(n\) is large but very nearly constant with any change in temperature. The increase of resistivity with temperature for metals (Fig. 26-10) is due to an increase in the collision rate of the charge carriers, which shows up in Eq. 26-29 as a decrease in \(\tau\), the mean time between collisions.

Table 26-2 Some Electrical Properties of Copper and Silicon
\begin{tabular}{lcc}
\hline \multicolumn{1}{c}{ Property } & Copper & Silicon \\
\hline Type of material & Metal & Semiconductor \\
Charge carrier density, \(\mathrm{m}^{-3}\) & \(8.49 \times 10^{28}\) & \(1 \times 10^{16}\) \\
Resistivity, \(\Omega \cdot \mathrm{m}\) & \(1.69 \times 10^{-8}\) & \(2.5 \times 10^{3}\) \\
Temperature coefficient of resistivity, \(\mathrm{K}^{-1}\) & \(+4.3 \times 10^{-3}\) & \(-70 \times 10^{-3}\) \\
\hline
\end{tabular}

In a semiconductor, \(n\) is small but increases very rapidly with temperature as the increased thermal agitation makes more charge carriers available. This causes a decrease of resistivity with increasing temperature, as indicated by the negative temperature coefficient of resistivity for silicon in Table 26-2. The same increase in collision rate that we noted for metals also occurs for semiconductors, but its effect is swamped by the rapid increase in the number of charge carriers.

\section*{Superconductors}

In 1911, Dutch physicist Kamerlingh Onnes discovered that the resistivity of mercury absolutely disappears at temperatures below about 4 K (Fig. 26-14). This phenomenon of superconductivity is of vast potential importance in technology because it means that charge can flow through a superconducting conductor without losing its energy to thermal energy. Currents created in a superconducting ring, for example, have persisted for several years without loss; the electrons making up the current require a force and a source of energy at start-up time but not thereafter.

Prior to 1986, the technological development of superconductivity was throttled by the cost of producing the extremely low temperatures required to achieve the effect. In 1986, however, new ceramic materials were discovered that become superconducting at considerably higher (and thus cheaper to produce) temperatures. Practical application of superconducting devices at room temperature may eventually become commonplace.

Superconductivity is a phenomenon much different from conductivity. In fact, the best of the normal conductors, such as silver and copper, cannot become superconducting at any temperature, and the new ceramic superconductors are actually good insulators when they are not at low enough temperatures to be in a superconducting state.

One explanation for superconductivity is that the electrons that make up the current move in coordinated pairs. One of the electrons in a pair may electrically distort the molecular structure of the superconducting material as it moves through, creating nearby a short-lived concentration of positive charge. The other electron in the pair may then be attracted toward this positive charge. According to the theory, such coordination between electrons would prevent them from colliding with the molecules of the material and thus would eliminate electrical resistance. The theory worked well to explain the pre-1986, lower temperature superconductors, but new theories appear to be needed for the newer, higher temperature superconductors.


Figure 26-14 The resistance of mercury drops to zero at a temperature of about 4 K .


Courtesy Shoji Tonaka/International Superconductivity Technology Center, Tokyo, Japan
A disk-shaped magnet is levitated above a superconducting material that has been cooled by liquid nitrogen. The goldfish is along for the ride.

\section*{Seview \& Summary}

Current An electric current \(i\) in a conductor is defined by
\[
\begin{equation*}
i=\frac{d q}{d t} . \tag{26-1}
\end{equation*}
\]

Here \(d q\) is the amount of (positive) charge that passes in time \(d t\) through a hypothetical surface that cuts across the conductor. By convention, the direction of electric current is taken as the direction in which positive charge carriers would move. The SI unit of electric current is the ampere (A): \(1 \mathrm{~A}=1 \mathrm{C} / \mathrm{s}\).
Current Density Current (a scalar) is related to current density \(\vec{J}\) (a vector) by
\[
\begin{equation*}
i=\int \vec{J} \cdot d \vec{A} \tag{26-4}
\end{equation*}
\]
where \(d \vec{A}\) is a vector perpendicular to a surface element of area \(d A\) and the integral is taken over any surface cutting across the conductor. \(\vec{J}\) has the same direction as the velocity of the moving charges if they are positive and the opposite direction if they are negative.

Drift Speed of the Charge Carriers When an electric field \(\vec{E}\) is established in a conductor, the charge carriers (assumed positive) acquire a drift speed \(v_{d}\) in the direction of \(\vec{E}\); the velocity \(\vec{v}_{d}\) is related to the current density by
\[
\begin{equation*}
\vec{J}=(n e) \vec{v}_{d}, \tag{26-7}
\end{equation*}
\]
where \(n e\) is the carrier charge density.
Resistance of a Conductor The resistance \(R\) of a conductor is defined as
\[
\begin{equation*}
R=\frac{V}{i} \quad(\text { definition of } R) \tag{26-8}
\end{equation*}
\]
where \(V\) is the potential difference across the conductor and \(i\) is the current. The SI unit of resistance is the \(\mathbf{o h m}(\Omega): 1 \Omega=1 \mathrm{~V} / \mathrm{A}\). Similar equations define the resistivity \(\rho\) and conductivity \(\sigma\) of a material:
\[
\begin{equation*}
\rho=\frac{1}{\sigma}=\frac{E}{J} \quad(\text { definitions of } \rho \text { and } \sigma), \tag{26-12,26-10}
\end{equation*}
\]
where \(E\) is the magnitude of the applied electric field. The SI unit of resistivity is the ohm-meter \((\Omega \cdot \mathrm{m})\). Equation 26-10 corresponds to the vector equation
\[
\begin{equation*}
\vec{E}=\rho \vec{J} . \tag{26-11}
\end{equation*}
\]

The resistance \(R\) of a conducting wire of length \(L\) and uniform cross section is
\[
\begin{equation*}
R=\rho \frac{L}{A}, \tag{26-16}
\end{equation*}
\]
where \(A\) is the cross-sectional area.
Change of \(\rho\) with Temperature The resistivity \(\rho\) for most materials changes with temperature. For many materials, including metals, the relation between \(\rho\) and temperature \(T\) is approximated by the equation
\[
\begin{equation*}
\rho-\rho_{0}=\rho_{0} \alpha\left(T-T_{0}\right) . \tag{26-17}
\end{equation*}
\]

Here \(T_{0}\) is a reference temperature, \(\rho_{0}\) is the resistivity at \(T_{0}\), and \(\alpha\) is the temperature coefficient of resistivity for the material.

Ohm's Law A given device (conductor, resistor, or any other electrical device) obeys Ohm's law if its resistance \(R\), defined by Eq. 26-8 as \(V / i\), is independent of the applied potential difference \(V\). A given material obeys Ohm's law if its resistivity, defined by Eq. 26-10, is independent of the magnitude and direction of the applied electric field \(\vec{E}\).

Resistivity of a Metal By assuming that the conduction electrons in a metal are free to move like the molecules of a gas, it is
possible to derive an expression for the resistivity of a metal:
\[
\begin{equation*}
\rho=\frac{m}{e^{2} n \tau} \tag{26-22}
\end{equation*}
\]

Here \(n\) is the number of free electrons per unit volume and \(\tau\) is the mean time between the collisions of an electron with the atoms of the metal. We can explain why metals obey Ohm's law by pointing out that \(\tau\) is essentially independent of the magnitude \(E\) of any electric field applied to a metal.

Power The power \(P\), or rate of energy transfer, in an electrical device across which a potential difference \(V\) is maintained is
\[
\begin{equation*}
P=i V \quad \text { (rate of electrical energy transfer). } \tag{26-26}
\end{equation*}
\]

Resistive Dissipation If the device is a resistor, we can write Eq. 26-26 as
\[
\begin{equation*}
P=i^{2} R=\frac{V^{2}}{R} \quad \text { (resistive dissipation). } \tag{26-27,26-28}
\end{equation*}
\]

In a resistor, electric potential energy is converted to internal thermal energy via collisions between charge carriers and atoms.

Semiconductors Semiconductors are materials that have few conduction electrons but can become conductors when they are doped with other atoms that contribute charge carriers.

Superconductors Superconductors are materials that lose all electrical resistance at low temperatures. Some materials are superconducting at surprisingly high temperatures.

\section*{uestions}

1 Figure 26-15 shows cross sections through three long conductors of the same length and material, with square cross sections of edge lengths as shown. Conductor \(B\) fits snugly within conductor \(A\), and conductor \(C\) fits snugly within conductor \(B\). Rank the following according to their end-to-end resistances, greatest first: the individual conductors and the combinations of \(A+B(B\) inside \(A)\), \(B+C(C\) inside \(B)\), and \(A+B+C(B\) inside \(A\) inside \(C)\).


2 Figure 26-16 shows cross sections through three wires of identical length and material; the sides are given in millimeters. Rank the wires according to their resistance (measured end to end along each wire's length), greatest first.
(a)

(b)

(c)


Figure 26-16 Question 2.

3 Figure 26-17 shows a rectangular solid conductor of edge lengths \(L, 2 L\), and \(3 L\). A potential difference \(V\) is to be applied uniformly between pairs of opposite faces of the conductor as in Fig. 26-8b. (The potential difference is applied between the entire face on


Figure 26-17 Question 3. one side and the entire face on the other side.) First \(V\) is applied between the left-right faces, then between the top-bottom faces, and then between the front-back faces. Rank those pairs, greatest first, according to the following (within the conductor): (a) the magnitude of the electric field, (b) the current density, (c) the current, and (d) the drift speed of the electrons.
4 Figure 26-18 shows plots of the current \(i\) through a certain cross section of a wire over four different time periods. Rank the periods according to the net charge that passes through the cross section during the period, greatest first.


Figure 26-18 Question 4.

5 Figure 26-19 shows four situations in which positive and negative charges move horizontally and gives the rate at which each charge moves. Rank the situations according to the effective current through the regions, greatest first.
(a)

(b)

(c)

Figure 26-19 Question 5.
6 In Fig. 26-20, a wire that carries a current consists of three sections with different radii. Rank the sections according to the following quantities, greatest first: (a) current, (b) magnitude of current density, and (c) magnitude of electric field.


Figure 26-20 Question 6.


Figure 26-21 Question 7.

7 Figure 26-21 gives the electric potential \(V(x)\) versus position \(x\) along a copper wire carrying current. The wire consists of three sections that differ in radius. Rank the three sections according to the magnitude of the (a) electric field and (b) current density, greatest first.

8 The following table gives the lengths of three copper rods, their diameters, and the potential differences between their ends. Rank the rods according to (a) the magnitude of the electric field within them, (b) the current density within them, and (c) the drift speed of electrons through them, greatest first.
\begin{tabular}{cccc}
\hline Rod & Length & Diameter & Potential Difference \\
\hline 1 & \(L\) & \(3 d\) & \(V\) \\
2 & \(2 L\) & \(d\) & \(2 V\) \\
3 & \(3 L\) & \(2 d\) & \(2 V\) \\
\hline
\end{tabular}

9 Figure 26-22 gives the drift speed \(v_{d}\) of conduction electrons in a copper wire versus position \(x\) along the wire. The wire consists of three sections that differ in radius. Rank the three sections according to the following quantities, greatest first: (a) radius,


Figure 26-22 Question 9.
(b) number of conduction electrons per cubic meter, (c) magnitude of electric field, (d) conductivity.
10 Three wires, of the same diameter, are connected in turn between two points maintained at a constant potential difference. Their resistivities and lengths are \(\rho\) and \(L\) (wire \(A\) ), \(1.2 \rho\) and \(1.2 L\) (wire \(B\) ), and \(0.9 \rho\) and \(L\) (wire \(C\) ). Rank the wires according to the rate at which energy is transferred to thermal energy within them, greatest first.
11 Figure 26-23 gives, for three wires of radius \(R\), the current density \(J(r)\) versus radius \(r\), as measured from the center of a circular cross section through the wire. The wires are all made from the same material. Rank the wires according


Figure 26-23 Question 11. to the magnitude of the electric field (a) at the center, (b) halfway to the surface, and (c) at the surface, greatest first.

\section*{8roblems}
```

Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign
SSM Worked-out solution available in Student Solutions Manual WWW Worked-out solution is at
-- Number of dots indicates level of problem difficulty ILW Interactive solution is at http://www.wiley.com/college/halliday
Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

```

\section*{Module 26-1 Electric Current}
-1 During the 4.0 min a 5.0 A current is set up in a wire, how many (a) coulombs and (b) electrons pass through any cross section across the wire's width?
\(\bullet 2\) An isolated conducting sphere has a 10 cm radius. One wire carries a current of 1.0000020 A into it. Another wire carries a current of 1.0000000 A out of it. How long would it take for the sphere to increase in potential by 1000 V ?
\(\propto 3\) A charged belt, 50 cm wide, travels at \(30 \mathrm{~m} / \mathrm{s}\) between a source of charge and a sphere. The belt carries charge into the sphere at a rate corresponding to \(100 \mu \mathrm{~A}\). Compute the surface charge density on the belt.

\section*{Module 26-2 Current Density}
-4 The (United States) National Electric Code, which sets maximum safe currents for insulated copper wires of various diameters, is given (in part) in the table. Plot the safe current density as a function of diameter. Which wire gauge has the maximum safe current density? ("Gauge" is a way of identifying wire diameters, and \(1 \mathrm{mil}=10^{-3} \mathrm{in}\).)
\begin{tabular}{lrrrrrrrr}
\hline Gauge & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 \\
Diameter, mils & 204 & 162 & 129 & 102 & 81 & 64 & 51 & 40 \\
Safe current, A & 70 & 50 & 35 & 25 & 20 & 15 & 6 & 3 \\
\hline
\end{tabular}
.5 SSM www A beam contains \(2.0 \times 10^{8}\) doubly charged positive ions per cubic centimeter, all of which are moving north with a speed of \(1.0 \times 10^{5} \mathrm{~m} / \mathrm{s}\). What are the (a) magnitude and (b) direction of the current density \(\vec{J}\) ? (c) What additional quantity do you need to calculate the total current \(i\) in this ion beam?
-6 A certain cylindrical wire carries current. We draw a circle of radius \(r\) around its central axis in Fig. 26-24a to determine the current \(i\) within the circle. Figure 26\(24 b\) shows current \(i\) as a function of \(r^{2}\). The vertical scale is set by \(i_{s}=4.0 \mathrm{~mA}\), and the

(a)

(b)

Figure 26-24 Problem 6.
horizontal scale is set by \(r_{s}^{2}=4.0 \mathrm{~mm}^{2}\). (a) Is the current density uniform? (b) If so, what is its magnitude?
\(\bullet 7\) A fuse in an electric circuit is a wire that is designed to melt, and thereby open the circuit, if the current exceeds a predetermined value. Suppose that the material to be used in a fuse melts when the current density rises to \(440 \mathrm{~A} / \mathrm{cm}^{2}\). What diameter of cylindrical wire should be used to make a fuse that will limit the current to 0.50 A ?
-8 A small but measurable current of \(1.2 \times 10^{-10} \mathrm{~A}\) exists in a copper wire whose diameter is 2.5 mm . The number of charge carriers per unit volume is \(8.49 \times 10^{28} \mathrm{~m}^{-3}\). Assuming the current is uniform, calculate the (a) current density and (b) electron drift speed.
-9 The magnitude \(J(r)\) of the current density in a certain cylindrical wire is given as a function of radial distance from the center of the wire's cross section as \(J(r)=B r\), where \(r\) is in meters, \(J\) is in amperes per square meter, and \(B=2.00 \times 10^{5} \mathrm{~A} / \mathrm{m}^{3}\). This function applies out to the wire's radius of 2.00 mm . How much current is contained within the width of a thin ring concentric with the wire if the ring has a radial width of \(10.0 \mu \mathrm{~m}\) and is at a radial distance of 1.20 mm ?
- 10 The magnitude \(J\) of the current density in a certain lab wire with a circular cross section of radius \(R=2.00 \mathrm{~mm}\) is given by \(J=\left(3.00 \times 10^{8}\right) r^{2}\), with \(J\) in amperes per square meter and radial distance \(r\) in meters. What is the current through the outer section bounded by \(r=0.900 R\) and \(r=R\) ?
-०11 What is the current in a wire of radius \(R=3.40 \mathrm{~mm}\) if the magnitude of the current density is given by (a) \(J_{a}=J_{0} r / R\) and (b) \(J_{b}=J_{0}(1-r / R)\), in which \(r\) is the radial distance and \(J_{0}=\) \(5.50 \times 10^{4} \mathrm{~A} / \mathrm{m}^{2}\) ? (c) Which function maximizes the current density near the wire's surface?
-•12 Near Earth, the density of protons in the solar wind (a stream of particles from the Sun) is \(8.70 \mathrm{~cm}^{-3}\), and their speed is \(470 \mathrm{~km} / \mathrm{s}\). (a) Find the current density of these protons. (b) If Earth's magnetic field did not deflect the protons, what total current would Earth receive?
-13 ©0 ILw How long does it take electrons to get from a car battery to the starting motor? Assume the current is 300 A and the electrons travel through a copper wire with cross-sectional area \(0.21 \mathrm{~cm}^{2}\) and length 0.85 m . The number of charge carriers per unit volume is \(8.49 \times 10^{28} \mathrm{~m}^{-3}\).

\section*{Module 26-3 Resistance and Resistivity}
-14 A human being can be electrocuted if a current as small as 50 mA passes near the heart. An electrician working with sweaty hands makes good contact with the two conductors he is holding, one in each hand. If his resistance is \(2000 \Omega\), what might the fatal voltage be?
\(\cdot 15\) SSM A coil is formed by winding 250 turns of insulated 16-gauge copper wire (diameter \(=1.3 \mathrm{~mm}\) ) in a single layer on a cylindrical form of radius 12 cm . What is the resistance of the coil? Neglect the thickness of the insulation. (Use Table 26-1.)
-16 Copper and aluminum are being considered for a high-voltage transmission line that must carry a current of 60.0 A . The resistance per unit length is to be \(0.150 \Omega / \mathrm{km}\). The densities of copper and aluminum are 8960 and \(2600 \mathrm{~kg} / \mathrm{m}^{3}\), respectively. Compute (a) the magnitude \(J\) of the current density and (b) the mass per unit length \(\lambda\) for a copper cable and (c) \(J\) and (d) \(\lambda\) for an aluminum cable.
-17 A wire of Nichrome (a nickel-chromium-iron alloy commonly used in heating elements) is 1.0 m long and \(1.0 \mathrm{~mm}^{2}\) in cross-sectional area. It carries a current of 4.0 A when a 2.0 V potential difference is applied between its ends. Calculate the conductivity \(\sigma\) of Nichrome.
-18 A wire 4.00 m long and 6.00 mm in diameter has a resistance of \(15.0 \mathrm{~m} \Omega\). A potential difference of 23.0 V is applied between the ends. (a) What is the current in the wire? (b) What is the magnitude of the current density? (c) Calculate the resistivity of the wire material. (d) Using Table 26-1, identify the material.
\(\bullet 19\) SSM What is the resistivity of a wire of 1.0 mm diameter, 2.0 m length, and \(50 \mathrm{~m} \Omega\) resistance?
-20 A certain wire has a resistance \(R\). What is the resistance of a second wire, made of the same material, that is half as long and has half the diameter?
021 ILW A common flashlight bulb is rated at 0.30 A and 2.9 V (the values of the current and voltage under operating conditions). If the resistance of the tungsten bulb filament at room temperature \(\left(20^{\circ} \mathrm{C}\right)\) is \(1.1 \Omega\), what is the temperature of the filament when the bulb is on?
022 Kiting during a storm. The legend that Benjamin Franklin flew a kite as a storm approached is only a legend-he was neither stupid nor suicidal. Suppose a kite string of radius 2.00 mm extends directly upward by 0.800 km and is coated with a 0.500 mm layer of water having resistivity \(150 \Omega \cdot \mathrm{~m}\). If the potential difference between the two ends of the string is 160 MV , what is the current through the water layer? The danger is not this current but the chance that the string draws a lightning strike, which can have a current as large as 500000 A (way beyond just being lethal).
\(\because 23\) When 115 V is applied across a wire that is 10 m long and has a 0.30 mm radius, the magnitude of the current density is \(1.4 \times\) \(10^{8} \mathrm{~A} / \mathrm{m}^{2}\). Find the resistivity of the wire.
\(\bullet 24\) ©o Figure 26-25a gives the magnitude \(E(x)\) of the electric fields that have been set up by a battery along a resistive rod of length 9.00 mm (Fig. 26-25b). The vertical scale is set by \(E_{s}=4.00 \times\) \(10^{3} \mathrm{~V} / \mathrm{m}\). The rod consists of three sections of the same material but with different radii. (The schematic diagram of Fig. 26-25b does not indicate the different radii.) The radius of section 3 is 2.00 mm . What is the radius of (a) section 1 and (b) section 2 ?

\(\bullet 25\) SSM ILW A wire with a resistance of \(6.0 \Omega\) is drawn out through a die so that its new length is three times its original length. Find the resistance of the longer wire, assuming that the resistivity and density of the material are unchanged.
-•26 In Fig. 26-26a, a 9.00 V battery is connected to a resistive strip that consists of three sections with the same cross-sectional areas but different conductivities. Figure 26-26b gives the electric
potential \(V(x)\) versus position \(x\) along the strip. The horizontal scale is set by \(x_{s}=8.00 \mathrm{~mm}\). Section 3 has conductivity \(3.00 \times\) \(10^{7}(\Omega \cdot \mathrm{~m})^{-1}\). What is the conductivity of section (a) 1 and (b) 2 ?


Figure 26-26 Problem 26.
-•27 SSM WWw Two conductors are made of the same material and have the same length. Conductor \(A\) is a solid wire of diameter 1.0 mm . Conductor \(B\) is a hollow tube of outside diameter 2.0 mm and inside diameter 1.0 mm . What is the resistance ratio \(R_{A} / R_{B}\), measured between their ends?
-228 ©0 Figure 26-27 gives the electric potential \(V(x)\) along a copper wire carrying uniform current, from a point of higher potential \(V_{s}=12.0 \mu \mathrm{~V}\) at \(x=0\) to a point of zero potential at \(x_{s}=3.00 \mathrm{~m}\). The wire has a radius of 2.00 mm . What is the current in the wire?
-29 A potential difference of 3.00 nV is set up across a 2.00 cm


Figure 26-27 Problem 28. length of copper wire that has a radius of 2.00 mm . How much charge drifts through a cross section in 3.00 ms ?
-•30 If the gauge number of a wire is increased by 6 , the diameter is halved; if a gauge number is increased by 1, the diameter decreases by the factor \(2^{1 / 6}\) (see the table in Problem 4). Knowing this, and knowing that 1000 ft of 10 -gauge copper wire has a resistance of approximately \(1.00 \Omega\), estimate the resistance of 25 ft of 22-gauge copper wire.
-•31 An electrical cable consists of 125 strands of fine wire, each having \(2.65 \mu \Omega\) resistance. The same potential difference is applied between the ends of all the strands and results in a total current of 0.750 A . (a) What is the current in each strand? (b) What is the applied potential difference? (c) What is the resistance of the cable?
-•32 Earth's lower atmosphere contains negative and positive ions that are produced by radioactive elements in the soil and cosmic rays from space. In a certain region, the atmospheric


Figure 26-28 Problem 32.
electric field strength is \(120 \mathrm{~V} / \mathrm{m}\) and the field is directed vertically down. This field causes singly charged positive ions, at a density of \(620 \mathrm{~cm}^{-3}\), to drift downward and singly charged negative ions, at a density of \(550 \mathrm{~cm}^{-3}\), to drift upward (Fig. 26-28). The measured conductivity of the air in that region is \(2.70 \times 10^{-14}\) \((\Omega \cdot \mathrm{m})^{-1}\). Calculate (a) the magnitude of the current density and (b) the ion drift speed, assumed to be the same for positive and negative ions.
-.33 A block in the shape of a rectangular solid has a crosssectional area of \(3.50 \mathrm{~cm}^{2}\) across its width, a front-to-rear length of 15.8 cm , and a resistance of \(935 \Omega\). The block's material contains \(5.33 \times 10^{22}\) conduction electrons \(/ \mathrm{m}^{3}\). A potential difference of 35.8 V is maintained between its front and rear faces. (a) What is the current in the block? (b) If the current density is uniform, what is its magnitude? What are (c) the drift velocity of the conduction electrons and (d) the magnitude of the electric field in the block?
\(\bullet \bullet 34\) ©o Figure \(26-29\) shows wire section 1 of diameter \(D_{1}=4.00 R\) and wire section 2 of diameter \(D_{2}=\)


Figure 26-29 Problem 34. \(2.00 R\), connected by a tapered section. The wire is copper and carries a current. Assume that the current is uniformly distributed across any cross-sectional area through the wire's width. The electric potential change \(V\) along the length \(L=2.00 \mathrm{~m}\) shown in section 2 is \(10.0 \mu \mathrm{~V}\). The number of charge carriers per unit volume is \(8.49 \times 10^{28} \mathrm{~m}^{-3}\). What is the drift speed of the conduction electrons in section 1 ?
-•035 ©o In Fig. 26-30, current is set up through a truncated right circular cone of resistivity \(731 \Omega \cdot \mathrm{~m}\), left radius \(a=2.00 \mathrm{~mm}\), right radius \(b=2.30 \mathrm{~mm}\), and length \(L=1.94 \mathrm{~cm}\). Assume that the current density is uniform across any cross section taken perpendicular to the length. What is the resistance of the cone?


Figure 26-30 Problem 35.
\(\bullet\) ©0 Sw Swimming during a storm. Figure \(26-31\) shows a swimmer at distance \(D=35.0 \mathrm{~m}\) from a lightning strike to the water, with current \(I=78 \mathrm{kA}\). The water has resistivity \(30 \Omega \cdot \mathrm{~m}\), the width of the swimmer along a radial line from the strike is 0.70 m , and his resistance across that width is \(4.00 \mathrm{k} \Omega\). Assume that the current spreads


Figure 26-31 Problem 36. through the water over a hemisphere centered on the strike point. What is the current through the swimmer?

\section*{Module 26-4 Ohm's Law}
-•37 Show that, according to the free-electron model of electrical conduction in metals and classical physics, the resistivity of metals should be proportional to \(\sqrt{T}\), where \(T\) is the temperature in kelvins. (See Eq. 19-31.)

\section*{Module 26-5 Power, Semiconductors, Superconductors}
-38 In Fig. 26-32a, a \(20 \Omega\) resistor is connected to a battery. Figure \(26-32 b\) shows the increase of thermal energy \(E_{\text {th }}\) in the resistor as a function of time \(t\). The vertical scale is set by \(E_{\mathrm{th}, s}=\) 2.50 mJ , and the horizontal scale is set by \(t_{s}=4.0 \mathrm{~s}\). What is the electric potential across the battery?


Figure 26-32 Problem 38.
-39 A certain brand of hot-dog cooker works by applying a potential difference of 120 V across opposite ends of a hot dog and allowing it to cook by means of the thermal energy produced. The current is 10.0 A , and the energy required to cook one hot \(\operatorname{dog}\) is 60.0 kJ . If the rate at which energy is supplied is unchanged, how long will it take to cook three hot dogs simultaneously?
-40 Thermal energy is produced in a resistor at a rate of 100 W when the current is 3.00 A . What is the resistance?
-41 SSM A 120 V potential difference is applied to a space heater whose resistance is \(14 \Omega\) when hot. (a) At what rate is electrical energy transferred to thermal energy? (b) What is the cost for 5.0 h at US\$0.05/kW \(\cdot \mathrm{h}\) ?
-42 In Fig. 26-33, a battery of potential difference \(V=12 \mathrm{~V}\) is connected to a resistive strip of resistance \(R=6.0 \Omega\). When an electron moves through the strip from one end to the other, (a) in which direction in the figure does the electron move, (b) how much work is done on the electron by the electric


Figure 26-33
Problem 42. field in the strip, and (c) how much energy is transferred to the thermal energy of the strip by the electron?
-43 ILW An unknown resistor is connected between the terminals of a 3.00 V battery. Energy is dissipated in the resistor at the rate of 0.540 W . The same resistor is then connected between the terminals of a 1.50 V battery. At what rate is energy now dissipated?
-44 A student kept his 9.0 V, 7.0 W radio turned on at full volume from 9:00 p.M. until 2:00 A.M. How much charge went through it?
-45 SSM ILW A 1250 W radiant heater is constructed to operate at 115 V . (a) What is the current in the heater when the unit is operating? (b) What is the resistance of the heating coil? (c) How much thermal energy is produced in 1.0 h ?
- 46 (60) A copper wire of cross-sectional area \(2.00 \times 10^{-6} \mathrm{~m}^{2}\) and length 4.00 m has a current of 2.00 A uniformly distributed across that area. (a) What is the magnitude of the electric field along the wire? (b) How much electrical energy is transferred to thermal energy in 30 min ?
\(\bullet 47\) A heating element is made by maintaining a potential difference of 75.0 V across the length of a Nichrome wire that
has a \(2.60 \times 10^{-6} \mathrm{~m}^{2}\) cross section. Nichrome has a resistivity of \(5.00 \times 10^{-7} \Omega \cdot \mathrm{~m}\). (a) If the element dissipates 5000 W , what is its length? (b) If 100 V is used to obtain the same dissipation rate, what should the length be?
\(\bullet 48\) Exploding shoes. The rain-soaked shoes of a person may explode if ground current from nearby lightning vaporizes the water. The sudden conversion of water to water vapor causes a dramatic expansion that can rip apart shoes. Water has density \(1000 \mathrm{~kg} / \mathrm{m}^{3}\) and requires \(2256 \mathrm{~kJ} / \mathrm{kg}\) to be vaporized. If horizontal current lasts 2.00 ms and encounters water with resistivity \(150 \Omega \cdot \mathrm{~m}\), length 12.0 cm , and vertical cross-sectional area \(15 \times 10^{-5} \mathrm{~m}^{2}\), what average current is required to vaporize the water?
\(\bullet 49\) A 100 W lightbulb is plugged into a standard 120 V outlet. (a) How much does it cost per 31-day month to leave the light turned on continuously? Assume electrical energy costs US \(\$ 0.06 / \mathrm{kW} \cdot \mathrm{h}\). (b) What is the resistance of the bulb? (c) What is the current in the bulb?
-•50 © © The current through the battery and resistors 1 and 2 in Fig. 26-34a is 2.00 A . Energy is transferred from the current to thermal energy \(E_{\text {th }}\) in both resistors. Curves 1 and 2 in Fig. 26-34b give that thermal energy \(E_{\text {th }}\) for resistors 1 and 2, respectively, as a function of time \(t\). The vertical scale is set by \(E_{\mathrm{th}, s}=40.0 \mathrm{~mJ}\), and the horizontal scale is set by \(t_{s}=5.00 \mathrm{~s}\). What is the power of the battery?
(a)


\(t\) (s)

(b)

Figure 26-34 Problem 50.
-•51 ©0 SSM Www Wire \(C\) and wire \(D\) are made from different materials and have length \(L_{C}=L_{D}\) \(=1.0 \mathrm{~m}\). The resistivity and diameter of wire \(C\) are \(2.0 \times 10^{-6} \Omega \cdot \mathrm{~m}\) and 1.00 mm , and those of wire \(D\) are \(1.0 \times 10^{-6} \Omega \cdot \mathrm{~m}\) and 0.50 mm .


Figure 26-35 Problem 51. The wires are joined as shown in Fig. 26-35, and a current of 2.0 A is set up in them. What is the electric potential difference between (a) points 1 and 2 and (b) points 2 and 3 ? What is the rate at which energy is dissipated between (c) points 1 and 2 and (d) points 2 and 3 ?
-•52 ©0 The current-density magnitude in a certain circular wire is \(J=\left(2.75 \times 10^{10} \mathrm{~A} / \mathrm{m}^{4}\right) r^{2}\), where \(r\) is the radial distance out to the wire's radius of 3.00 mm . The potential applied to the wire (end to end) is 60.0 V . How much energy is converted to thermal energy in 1.00 h ?
-•53 A 120 V potential difference is applied to a space heater that dissipates 500 W during operation. (a) What is its resistance during operation? (b) At what rate do electrons flow through any cross section of the heater element?
-0054 © Figure 26-36a shows a rod of resistive material. The resistance per unit length of the rod increases in the positive direction of the \(x\) axis. At any position \(x\) along the rod, the resistance \(d R\) of a narrow (differential) section of width \(d x\) is given by \(d R=5.00 x d x\), where \(d R\) is in ohms and \(x\) is in meters. Figure 26-36b


Figure 26-36 Problem 54. shows such a narrow section. You are to slice off a length of the rod between \(x=0\) and some position \(x=L\) and then connect that length to a battery with potential difference \(V=5.0 \mathrm{~V}\) (Fig. 26-36c). You want the current in the length to transfer energy to thermal energy at the rate of 200 W . At what position \(x=L\) should you cut the rod?

\section*{Additional Problems}

55 SSM A Nichrome heater dissipates 500 W when the applied potential difference is 110 V and the wire temperature is \(800^{\circ} \mathrm{C}\). What would be the dissipation rate if the wire temperature were held at \(200^{\circ} \mathrm{C}\) by immersing the wire in a bath of cooling oil? The applied potential difference remains the same, and \(\alpha\) for Nichrome at \(800^{\circ} \mathrm{C}\) is \(4.0 \times 10^{-4} \mathrm{~K}^{-1}\).

56 A potential difference of 1.20 V will be applied to a 33.0 m length of 18 -gauge copper wire (diameter \(=0.0400 \mathrm{in}\).). Calculate (a) the current, (b) the magnitude of the current density, (c) the magnitude of the electric field within the wire, and (d) the rate at which thermal energy will appear in the wire.
57 An 18.0 W device has 9.00 V across \(i\). How much charge goes through the device in 4.00 h ?
58 An aluminum rod with a square cross section is 1.3 m long and 5.2 mm on edge. (a) What is the resistance between its ends? (b) What must be the diameter of a cylindrical copper rod of length 1.3 m if its resistance is to be the same as that of the aluminum rod?

59 A cylindrical metal rod is 1.60 m long and 5.50 mm in diameter. The resistance between its two ends (at \(20^{\circ} \mathrm{C}\) ) is \(1.09 \times\) \(10^{-3} \Omega\). (a) What is the material? (b) A round disk, 2.00 cm in diameter and 1.00 mm thick, is formed of the same material. What is the resistance between the round faces, assuming that each face is an equipotential surface?
60 The chocolate crumb mystery. This story begins with Problem 60 in Chapter 23 and continues through Chapters 24 and 25 . The chocolate crumb powder moved to the silo through a pipe of radius \(R\) with uniform speed \(v\) and uniform charge density \(\rho\). (a) Find an expression for the current \(i\) (the rate at which charge on the powder moved) through a perpendicular cross section of the pipe. (b) Evaluate \(i\) for the conditions at the factory: pipe radius \(R=\) 5.0 cm , speed \(v=2.0 \mathrm{~m} / \mathrm{s}\), and charge density \(\rho=1.1 \times 10^{-3} \mathrm{C} / \mathrm{m}^{3}\).

If the powder were to flow through a change \(V\) in electric potential, its energy could be transferred to a spark at the rate \(P=i V\). (c) Could there be such a transfer within the pipe due to the radial potential difference discussed in Problem 70 of Chapter 24?

As the powder flowed from the pipe into the silo, the electric potential of the powder changed. The magnitude of that change was at least equal to the radial potential difference within the pipe (as evaluated in Problem 70 of Chapter 24). (d) Assuming that value for the potential difference and using the current found in (b) above, find the rate at which energy could have been transferred from the powder to a spark as the powder exited the pipe. (e) If a spark did occur at the exit and lasted for 0.20 s (a reasonable expectation), how much energy would have been transferred to the spark? Recall
from Problem 60 in Chapter 23 that a minimum energy transfer of 150 mJ is needed to cause an explosion. (f) Where did the powder explosion most likely occur: in the powder cloud at the unloading bin (Problem 60 of Chapter 25), within the pipe, or at the exit of the pipe into the silo?
61 SSM A steady beam of alpha particles ( \(q=+2 e\) ) traveling with constant kinetic energy 20 MeV carries a current of \(0.25 \mu \mathrm{~A}\). (a) If the beam is directed perpendicular to a flat surface, how many alpha particles strike the surface in 3.0 s ? (b) At any instant, how many alpha particles are there in a given 20 cm length of the beam? (c) Through what potential difference is it necessary to accelerate each alpha particle from rest to bring it to an energy of 20 MeV ?
62 A resistor with a potential difference of 200 V across it transfers electrical energy to thermal energy at the rate of 3000 W . What is the resistance of the resistor?
63 A 2.0 kW heater element from a dryer has a length of 80 cm . If a 10 cm section is removed, what power is used by the now shortened element at 120 V ?
64 A cylindrical resistor of radius 5.0 mm and length 2.0 cm is made of material that has a resistivity of \(3.5 \times 10^{-5} \Omega \cdot \mathrm{~m}\). What are (a) the magnitude of the current density and (b) the potential difference when the energy dissipation rate in the resistor is 1.0 W ?
65 A potential difference \(V\) is applied to a wire of cross-sectional area \(A\), length \(L\), and resistivity \(\rho\). You want to change the applied potential difference and stretch the wire so that the energy dissipation rate is multiplied by 30.0 and the current is multiplied by 4.00 . Assuming the wire's density does not change, what are (a) the ratio of the new length to \(L\) and (b) the ratio of the new cross-sectional area to \(A\) ?
66 The headlights of a moving car require about 10 A from the 12 V alternator, which is driven by the engine. Assume the alternator is \(80 \%\) efficient (its output electrical power is \(80 \%\) of its input mechanical power), and calculate the horsepower the engine must supply to run the lights.
67 A 500 W heating unit is designed to operate with an applied potential difference of 115 V . (a) By what percentage will its heat output drop if the applied potential difference drops to 110 V ? Assume no change in resistance. (b) If you took the variation of resistance with temperature into account, would the actual drop in heat output be larger or smaller than that calculated in (a)?
68 The copper windings of a motor have a resistance of \(50 \Omega\) at \(20^{\circ} \mathrm{C}\) when the motor is idle. After the motor has run for several hours, the resistance rises to \(58 \Omega\). What is the temperature of the windings now? Ignore changes in the dimensions of the windings. (Use Table 26-1.)
69 How much electrical energy is transferred to thermal energy in 2.00 h by an electrical resistance of \(400 \Omega\) when the potential applied across it is 90.0 V ?
70 A caterpillar of length 4.0 cm crawls in the direction of electron drift along a \(5.2-\mathrm{mm}\)-diameter bare copper wire that carries a uniform current of 12 A . (a) What is the potential difference between the two ends of the caterpillar? (b) Is its tail positive or negative relative to its head? (c) How much time does the caterpillar take to crawl 1.0 cm if it crawls at the drift speed of the electrons in the wire? (The number of charge carriers per unit volume is \(8.49 \times 10^{28} \mathrm{~m}^{-3}\).)
71 SSM (a) At what temperature would the resistance of a copper conductor be double its resistance at \(20.0^{\circ} \mathrm{C}\) ? (Use \(20.0^{\circ} \mathrm{C}\) as the reference point in Eq. 26-17; compare your answer with

Fig. 26-10.) (b) Does this same "doubling temperature" hold for all copper conductors, regardless of shape or size?
72 A steel trolley-car rail has a cross-sectional area of \(56.0 \mathrm{~cm}^{2}\). What is the resistance of 10.0 km of rail? The resistivity of the steel is \(3.00 \times 10^{-7} \Omega \cdot \mathrm{~m}\).
73 A coil of current-carrying Nichrome wire is immersed in a liquid. (Nichrome is a nickel-chromium-iron alloy commonly used in heating elements.) When the potential difference across the coil is 12 V and the current through the coil is 5.2 A , the liquid evaporates at the steady rate of \(21 \mathrm{mg} / \mathrm{s}\). Calculate the heat of vaporization of the liquid (see Module 18-4).
74 ©o The current density in a wire is uniform and has magnitude \(2.0 \times 10^{6} \mathrm{~A} / \mathrm{m}^{2}\), the wire's length is 5.0 m , and the density of conduction electrons is \(8.49 \times 10^{28} \mathrm{~m}^{-3}\). How long does an electron take (on the average) to travel the length of the wire?
75 A certain x-ray tube operates at a current of 7.00 mA and a potential difference of 80.0 kV . What is its power in watts?
76 A current is established in a gas discharge tube when a sufficiently high potential difference is applied across the two electrodes in the tube. The gas ionizes; electrons move toward the positive terminal and singly charged positive ions toward the negative terminal. (a) What is the current in a hydrogen discharge tube in which \(3.1 \times 10^{18}\) electrons and \(1.1 \times 10^{18}\) protons move past a crosssectional area of the tube each second? (b) Is the direction of the current density \(\vec{J}\) toward or away from the negative terminal?

77 In Fig. 26-37, a resistance coil, wired to an external battery, is placed inside a thermally insulated cylinder fitted with a frictionless piston and containing an ideal gas. A current \(i=240 \mathrm{~mA}\) flows through the coil, which has a resistance \(R=550 \Omega\). At what speed \(v\) must the piston, of mass \(m=12 \mathrm{~kg}\), move upward in order that the temperature of the gas remains unchanged?

78 An insulating belt moves at speed \(30 \mathrm{~m} / \mathrm{s}\) and has a width of 50 cm . It carries


Figure 26-37 Problem 77. charge into an experimental device at a rate corresponding to \(100 \mu \mathrm{~A}\). What is the surface charge density on the belt?

79 In a hypothetical fusion research lab, high temperature helium gas is completely ionized and each helium atom is separated into two free electrons and the remaining positively charged nucleus, which is called an alpha particle. An applied electric field causes the alpha particles to drift to the east at \(25.0 \mathrm{~m} / \mathrm{s}\) while the electrons drift to the west at \(88.0 \mathrm{~m} / \mathrm{s}\). The alpha particle density is \(2.80 \times 10^{15} \mathrm{~cm}^{-3}\). What are (a) the net current density and (b) the current direction?

80 When a metal rod is heated, not only its resistance but also its length and cross-sectional area change. The relation \(R=\rho L / A\) suggests that all three factors should be taken into account in measuring \(\rho\) at various temperatures. If the temperature changes by \(1.0 \mathrm{C}^{\circ}\), what percentage changes in (a) \(L\), (b) \(A\), and (c) \(R\) occur for a copper conductor? (d) What conclusion do you draw? The coefficient of linear expansion is \(1.70 \times 10^{-5} \mathrm{~K}^{-1}\).
81 A beam of 16 MeV deuterons from a cyclotron strikes a copper block. The beam is equivalent to current of \(15 \mu \mathrm{~A}\). (a) At what rate do deuterons strike the block? (b) At what rate is thermal energy produced in the block?
82 A linear accelerator produces a pulsed beam of electrons. The pulse current is 0.50 A , and the pulse duration is \(0.10 \mu \mathrm{~s}\). (a) How many electrons are accelerated per pulse? (b) What is the average current for a machine operating at 500 pulses/s? If the electrons are accelerated to an energy of 50 MeV , what are the (c) average power and (d) peak power of the accelerator?
83 An electric immersion heater normally takes 100 min to bring cold water in a well-insulated container to a certain temperature, after which a thermostat switches the heater off. One day the line voltage is reduced by \(6.00 \%\) because of a laboratory overload. How long does heating the water now take? Assume that the resistance of the heating element does not change.

84 A 400 W immersion heater is placed in a pot containing 2.00 L of water at \(20^{\circ} \mathrm{C}\). (a) How long will the water take to rise to the boiling temperature, assuming that \(80 \%\) of the available energy is absorbed by the water? (b) How much longer is required to evaporate half of the water?

85 A \(30 \mu \mathrm{~F}\) capacitor is connected across a programmed power supply. During the interval from \(t=0\) to \(t=3.00 \mathrm{~s}\) the output voltage of the supply is given by \(V(t)=6.00+4.00 t-2.00 t^{2}\) volts. At \(t=0.500 \mathrm{~s}\) find (a) the charge on the capacitor, (b) the current into the capacitor, and (c) the power output from the power supply.

\section*{27-1 single-loop circuits}

\section*{Learning Objectives}

After reading this module, you should be able to ...
27.01 Identify the action of an emf source in terms of the work it does.
27.02 For an ideal battery, apply the relationship between the emf, the current, and the power (rate of energy transfer).
27.03 Draw a schematic diagram for a single-loop circuit containing a battery and three resistors.
27.04 Apply the loop rule to write a loop equation that relates the potential differences of the circuit elements around a (complete) loop.
27.05 Apply the resistance rule in crossing through a resistor.
27.06 Apply the emf rule in crossing through an emf.
27.07 Identify that resistors in series have the same current, which is the same value that their equivalent resistor has.
27.08 Calculate the equivalent of series resistors.
27.09 Identify that a potential applied to resistors wired in
series is equal to the sum of the potentials across the individual resistors.
27.10 Calculate the potential difference between any two points in a circuit.
27.11 Distinguish a real battery from an ideal battery and, in a circuit diagram, replace a real battery with an ideal battery and an explicitly shown resistance.
27.12 With a real battery in a circuit, calculate the potential difference between its terminals for current in the direction of the emf and in the opposite direction.
27.13 Identify what is meant by grounding a circuit, and draw a schematic diagram for such a connection.
27.14 Identify that grounding a circuit does not affect the current in a circuit.
27.15 Calculate the dissipation rate of energy in a real battery.
27.16 Calculate the net rate of energy transfer in a real battery for current in the direction of the emf and in the opposite direction.
tered in a complete traversal of any loop of a circuit must be zero. Conservation of charge leads to the junction rule (Chapter 26): Junction Rule. The sum of the currents entering any junction must be equal to the sum of the currents leaving that junction.
- When a real battery of emf \(\mathscr{E}\) and internal resistance \(r\) does work on the charge carriers in a current \(i\) through the battery, the rate \(P\) of energy transfer to the charge carriers is
\[
P=i V,
\]
where \(V\) is the potential across the terminals of the battery.
- The rate \(P_{r}\) at which energy is dissipated as thermal energy in the battery is
\[
P_{r}=i^{2} r .
\]
- The rate \(P_{\text {emf }}\) at which the chemical energy in the battery changes is
\[
P_{\mathrm{emf}}=i \mathscr{C} .
\]
- When resistances are in series, they have the same current. The equivalent resistance that can replace a series combination of resistances is
\[
R_{\mathrm{eq}}=\sum_{j=1}^{n} R_{j} \quad(n \text { resistances in series })
\]


Courtesy Southern California Edison Company
The world's largest battery energy storage plant (dismantled in 1996) connected over 8000 large lead-acid batteries in 8 strings at 1000 V each with a capability of 10 MW of power for 4 hours. Charged up at night, the batteries were then put to use during peak power demands on the electrical system.

\section*{What Is Physics?}

You are surrounded by electric circuits. You might take pride in the number of electrical devices you own and might even carry a mental list of the devices you wish you owned. Every one of those devices, as well as the electrical grid that powers your home, depends on modern electrical engineering. We cannot easily estimate the current financial worth of electrical engineering and its products, but we can be certain that the financial worth continues to grow yearly as more and more tasks are handled electrically. Radios are now tuned electronically instead of manually. Messages are now sent by email instead of through the postal system. Research journals are now read on a computer instead of in a library building, and research papers are now copied and filed electronically instead of photocopied and tucked into a filing cabinet. Indeed, you may be reading an electronic version of this book.

The basic science of electrical engineering is physics. In this chapter we cover the physics of electric circuits that are combinations of resistors and batteries (and, in Module 27-4, capacitors). We restrict our discussion to circuits through which charge flows in one direction, which are called either directcurrent circuits or \(D C\) circuits. We begin with the question: How can you get charges to flow?

\section*{"Pumping" Charges}

If you want to make charge carriers flow through a resistor, you must establish a potential difference between the ends of the device. One way to do this is to connect each end of the resistor to one plate of a charged capacitor. The trouble with this scheme is that the flow of charge acts to discharge the capacitor, quickly bringing the plates to the same potential. When that happens, there is no longer an electric field in the resistor, and thus the flow of charge stops.

To produce a steady flow of charge, you need a "charge pump," a device that - by doing work on the charge carriers - maintains a potential difference between a pair of terminals. We call such a device an emf device, and the device is said to provide an emf \(\mathscr{E}\), which means that it does work on charge carriers. An emf device is sometimes called a seat of emf. The term emf comes from the outdated phrase electromotive force, which was adopted before scientists clearly understood the function of an emf device.

In Chapter 26, we discussed the motion of charge carriers through a circuit in terms of the electric field set up in the circuit - the field produces forces that move the charge carriers. In this chapter we take a different approach: We discuss the motion of the charge carriers in terms of the required energy - an emf device supplies the energy for the motion via the work it does.

A common emf device is the battery, used to power a wide variety of machines from wristwatches to submarines. The emf device that most influences our daily lives, however, is the electric generator, which, by means of electrical connections (wires) from a generating plant, creates a potential difference in our homes and workplaces. The emf devices known as solar cells, long familiar as the wing-like panels on spacecraft, also dot the countryside for domestic applications. Less familiar emf devices are the fuel cells that powered the space shuttles and the thermopiles that provide onboard electrical power for some spacecraft and for remote stations in Antarctica and elsewhere. An emf device does not have to be an instrument - living systems, ranging from electric eels and human beings to plants, have physiological emf devices.

Although the devices we have listed differ widely in their modes of operation, they all perform the same basic function - they do work on charge carriers and thus maintain a potential difference between their terminals.

\section*{Work, Energy, and Emf}

Figure 27-1 shows an emf device (consider it to be a battery) that is part of a simple circuit containing a single resistance \(R\) (the symbol for resistance and a resistor is \(-\mathcal{W}\) ). The emf device keeps one of its terminals (called the positive terminal and often labeled + ) at a higher electric potential than the other terminal (called the negative terminal and labeled -). We can represent the emf of the device with an arrow that points from the negative terminal toward the positive terminal as in Fig. 27-1. A small circle on the tail of the emf arrow distinguishes it from the arrows that indicate current direction.

When an emf device is not connected to a circuit, the internal chemistry of the device does not cause any net flow of charge carriers within it. However, when it is connected to a circuit as in Fig. 27-1, its internal chemistry causes a net flow of positive charge carriers from the negative terminal to the positive terminal, in the direction of the emf arrow. This flow is part of the current that is set up around the circuit in that same direction (clockwise in Fig. 27-1).

Within the emf device, positive charge carriers move from a region of low electric potential and thus low electric potential energy (at the negative terminal) to a region of higher electric potential and higher electric potential energy (at the positive terminal). This motion is just the opposite of what the electric field between the terminals (which is directed from the positive terminal toward the negative terminal) would cause the charge carriers to do.

Thus, there must be some source of energy within the device, enabling it to do work on the charges by forcing them to move as they do. The energy source may be chemical, as in a battery or a fuel cell. It may involve mechanical forces, as in an electric generator. Temperature differences may supply the energy, as in a thermopile; or the Sun may supply it, as in a solar cell.

Let us now analyze the circuit of Fig. 27-1 from the point of view of work and energy transfers. In any time interval \(d t\), a charge \(d q\) passes through any cross section of this circuit, such as \(a a^{\prime}\). This same amount of charge must enter the emf device at its low-potential end and leave at its high-potential end. The device must do an amount of work \(d W\) on the charge \(d q\) to force it to move in this way. We define the emf of the emf device in terms of this work:
\[
\begin{equation*}
\left.\mathscr{E}=\frac{d W}{d q} \quad \text { (definition of } \mathscr{E}\right) . \tag{27-1}
\end{equation*}
\]

In words, the emf of an emf device is the work per unit charge that the device does in moving charge from its low-potential terminal to its high-potential terminal. The SI unit for emf is the joule per coulomb; in Chapter 24 we defined that unit as the volt.

An ideal emf device is one that lacks any internal resistance to the internal movement of charge from terminal to terminal. The potential difference between the terminals of an ideal emf device is equal to the emf of the device. For example, an ideal battery with an emf of 12.0 V always has a potential difference of 12.0 V between its terminals.

A real emf device, such as any real battery, has internal resistance to the internal movement of charge. When a real emf device is not connected to a circuit, and thus does not have current through it, the potential difference between its terminals is equal to its emf. However, when that device has current through it, the potential difference between its terminals differs from its emf. We shall discuss such real batteries near the end of this module.

When an emf device is connected to a circuit, the device transfers energy to the charge carriers passing through it. This energy can then be transferred from the charge carriers to other devices in the circuit, for example, to light a bulb. Figure 27-2a shows a circuit containing two ideal rechargeable (storage) batteries A and B , a resistance \(R\), and an electric motor M that can lift an object by using


Figure 27-1 A simple electric circuit, in which a device of \(\operatorname{emf} \mathscr{E}\) does work on the charge carriers and maintains a steady current \(i\) in a resistor of resistance \(R\).


Figure 27-2 \((a)\) In the circuit, \(\mathscr{E}_{\mathrm{B}}>\mathscr{E}_{\mathrm{A}} ;\) so battery B determines the direction of the current. (b) The energy transfers in the circuit.

The battery drives current through the resistor, from high potential to low potential.


Figure 27-3 A single-loop circuit in which a resistance \(R\) is connected across an ideal battery B with emf \(\mathscr{E}\). The resulting current \(i\) is the same throughout the circuit.
energy it obtains from charge carriers in the circuit. Note that the batteries are connected so that they tend to send charges around the circuit in opposite directions. The actual direction of the current in the circuit is determined by the battery with the larger emf, which happens to be battery \(B\), so the chemical energy within battery \(B\) is decreasing as energy is transferred to the charge carriers passing through it. However, the chemical energy within battery \(A\) is increasing because the current in it is directed from the positive terminal to the negative terminal. Thus, battery B is charging battery A . Battery B is also providing energy to motor M and energy that is being dissipated by resistance \(R\). Figure \(27-2 b\) shows all three energy transfers from battery B; each decreases that battery's chemical energy.

\section*{Calculating the Current in a Single-Loop Circuit}

We discuss here two equivalent ways to calculate the current in the simple singleloop circuit of Fig. 27-3; one method is based on energy conservation considerations, and the other on the concept of potential. The circuit consists of an ideal battery B with emf \(\mathscr{E}\), a resistor of resistance \(R\), and two connecting wires. (Unless otherwise indicated, we assume that wires in circuits have negligible resistance. Their function, then, is merely to provide pathways along which charge carriers can move.)

\section*{Energy Method}

Equation 26-27 \(\left(P=i^{2} R\right)\) tells us that in a time interval \(d t\) an amount of energy given by \(i^{2} R d t\) will appear in the resistor of Fig. 27-3 as thermal energy. As noted in Module 26-5, this energy is said to be dissipated. (Because we assume the wires to have negligible resistance, no thermal energy will appear in them.) During the same interval, a charge \(d q=i d t\) will have moved through battery B , and the work that the battery will have done on this charge, according to Eq. 27-1, is
\[
d W=\mathscr{E} d q=\mathscr{E} i d t
\]

From the principle of conservation of energy, the work done by the (ideal) battery must equal the thermal energy that appears in the resistor:
\[
\mathscr{E} i d t=i^{2} R d t
\]

This gives us
\[
\mathscr{E}=i R
\]

The emf \(\mathscr{E}\) is the energy per unit charge transferred to the moving charges by the battery. The quantity \(i R\) is the energy per unit charge transferred from the moving charges to thermal energy within the resistor. Therefore, this equation means that the energy per unit charge transferred to the moving charges is equal to the energy per unit charge transferred from them. Solving for \(i\), we find
\[
\begin{equation*}
i=\frac{\mathscr{E}}{R} \tag{27-2}
\end{equation*}
\]

\section*{Potential Method}

Suppose we start at any point in the circuit of Fig. 27-3 and mentally proceed around the circuit in either direction, adding algebraically the potential differences that we encounter. Then when we return to our starting point, we must also have returned to our starting potential. Before actually doing so, we shall formalize this idea in a statement that holds not only for single-loop circuits such as that of Fig. 27-3 but also for any complete loop in a multiloop circuit, as we shall discuss in Module 27-2:

LOOP RULE: The algebraic sum of the changes in potential encountered in a complete traversal of any loop of a circuit must be zero.

This is often referred to as Kirchhoff's loop rule (or Kirchhoff's voltage law), after German physicist Gustav Robert Kirchhoff. This rule is equivalent to saying that each point on a mountain has only one elevation above sea level. If you start from any point and return to it after walking around the mountain, the algebraic sum of the changes in elevation that you encounter must be zero.

In Fig. 27-3, let us start at point \(a\), whose potential is \(V_{a}\), and mentally walk clockwise around the circuit until we are back at \(a\), keeping track of potential changes as we move. Our starting point is at the low-potential terminal of the battery. Because the battery is ideal, the potential difference between its terminals is equal to \(\mathscr{E}\). When we pass through the battery to the high-potential terminal, the change in potential is \(+\mathscr{E}\).

As we walk along the top wire to the top end of the resistor, there is no potential change because the wire has negligible resistance; it is at the same potential as the high-potential terminal of the battery. So too is the top end of the resistor. When we pass through the resistor, however, the potential changes according to Eq. 26-8 (which we can rewrite as \(V=i R\) ). Moreover, the potential must decrease because we are moving from the higher potential side of the resistor. Thus, the change in potential is \(-i R\).

We return to point \(a\) by moving along the bottom wire. Because this wire also has negligible resistance, we again find no potential change. Back at point \(a\), the potential is again \(V_{a}\). Because we traversed a complete loop, our initial potential, as modified for potential changes along the way, must be equal to our final potential; that is,
\[
V_{a}+\mathscr{E}-i R=V_{a} .
\]

The value of \(V_{a}\) cancels from this equation, which becomes
\[
\mathscr{E}-i R=0
\]

Solving this equation for \(i\) gives us the same result, \(i=\mathscr{E} / R\), as the energy method (Eq. 27-2).

If we apply the loop rule to a complete counterclockwise walk around the circuit, the rule gives us
\[
-\mathscr{E}+i R=0
\]
and we again find that \(i=\mathscr{E} / R\). Thus, you may mentally circle a loop in either direction to apply the loop rule.

To prepare for circuits more complex than that of Fig. 27-3, let us set down two rules for finding potential differences as we move around a loop:

RESISTANCE RULE: For a move through a resistance in the direction of the current, the change in potential is \(-i R\); in the opposite direction it is \(+i R\).

EMF RULE: For a move through an ideal emf device in the direction of the emf arrow, the change in potential is \(+\mathscr{E}\); in the opposite direction it is \(-\mathscr{E}\).

\section*{Checkpoint 1}

The figure shows the current \(i\) in a single-loop circuit with a battery B and a resistance \(R\) (and wires of negligible resistance). (a) Should the emf arrow at B be
 drawn pointing leftward or rightward? At points \(a, b\), and \(c, \operatorname{rank}\) (b) the magnitude of the current, (c) the electric potential, and (d) the electric potential energy of the charge carriers, greatest first.

\section*{Other Single-Loop Circuits}

Next we extend the simple circuit of Fig. 27-3 in two ways.

\section*{Internal Resistance}

Figure 27-4a shows a real battery, with internal resistance \(r\), wired to an external resistor of resistance \(R\). The internal resistance of the battery is the electrical resistance of the conducting materials of the battery and thus is an unremovable feature of the battery. In Fig. 27-4a, however, the battery is drawn as if it could be separated into an ideal battery with emf \(\mathscr{E}\) and a resistor of resistance \(r\). The order in which the symbols for these separated parts are drawn does not matter.


(a)

Series resistors and their equivalent have the same current ("ser-i").

(b)

Figure 27-5 (a) Three resistors are connected in series between points \(a\) and \(b\). (b) An equivalent circuit, with the three resistors replaced with their equivalent resistance \(R_{\text {eq }}\).

Figure 27-4 (a) A single-loop circuit containing a real battery having internal resistance \(r\) and emf \(\mathscr{E} .(b)\) The same circuit, now spread out in a line. The potentials encountered in traversing the circuit clockwise from \(a\) are also shown. The potential \(V_{a}\) is arbitrarily assigned a value of zero, and other potentials in the circuit are graphed relative to \(V_{a}\).

If we apply the loop rule clockwise beginning at point \(a\), the changes in potential give us
\[
\begin{equation*}
\mathscr{E}-i r-i R=0 . \tag{27-3}
\end{equation*}
\]

Solving for the current, we find
\[
\begin{equation*}
i=\frac{\mathscr{E}}{R+r} . \tag{27-4}
\end{equation*}
\]

Note that this equation reduces to Eq. 27-2 if the battery is ideal—that is, if \(r=0\).
Figure \(27-4 b\) shows graphically the changes in electric potential around the circuit. (To better link Fig. 27-4b with the closed circuit in Fig. 27-4a, imagine curling the graph into a cylinder with point \(a\) at the left overlapping point \(a\) at the right.) Note how traversing the circuit is like walking around a (potential) mountain back to your starting point - you return to the starting elevation.

In this book, when a battery is not described as real or if no internal resistance is indicated, you can generally assume that it is ideal-but, of course, in the real world batteries are always real and have internal resistance.

\section*{Resistances in Series}

Figure 27-5a shows three resistances connected in series to an ideal battery with emf \(\mathscr{E}\). This description has little to do with how the resistances are drawn. Rather, "in series" means that the resistances are wired one after another and that a potential difference \(V\) is applied across the two ends of the series. In Fig. 27-5a, the resistances are connected one after another between \(a\) and \(b\), and a potential difference is maintained across \(a\) and \(b\) by the battery. The potential differences that then exist across the resistances in the series produce identical currents \(i\) in them. In general,

When a potential difference \(V\) is applied across resistances connected in series, the resistances have identical currents \(i\). The sum of the potential differences across the resistances is equal to the applied potential difference \(V\).

Note that charge moving through the series resistances can move along only a single route. If there are additional routes, so that the currents in different resistances are different, the resistances are not connected in series.

Resistances connected in series can be replaced with an equivalent resistance \(R_{\text {eq }}\) that has the same current \(i\) and the same total potential difference \(V\) as the actual resistances.

You might remember that \(R_{\text {eq }}\) and all the actual series resistances have the same current \(i\) with the nonsense word "ser-i." Figure 27-5b shows the equivalent resistance \(R_{\text {eq }}\) that can replace the three resistances of Fig. 27-5a.

To derive an expression for \(R_{\text {eq }}\) in Fig. 27-5b, we apply the loop rule to both circuits. For Fig. 27-5a, starting at \(a\) and going clockwise around the circuit, we find
or
\[
\mathscr{E}-i R_{1}-i R_{2}-i R_{3}=0,
\]
\[
\begin{equation*}
i=\frac{\mathscr{E}}{R_{1}+R_{2}+R_{3}} \tag{27-5}
\end{equation*}
\]

For Fig. 27-5b, with the three resistances replaced with a single equivalent resistance \(R_{\text {eq }}\), we find
or
\[
\begin{gather*}
\mathscr{E}-i R_{\mathrm{eq}}=0 \\
i=\frac{\mathscr{E}}{R_{\mathrm{eq}}} \tag{27-6}
\end{gather*}
\]

Comparison of Eqs. 27-5 and 27-6 shows that
\[
R_{\mathrm{eq}}=R_{1}+R_{2}+R_{3} .
\]

The extension to \(n\) resistances is straightforward and is
\[
\begin{equation*}
R_{\mathrm{eq}}=\sum_{j=1}^{n} R_{j} \quad(n \text { resistances in series }) \tag{27-7}
\end{equation*}
\]

Note that when resistances are in series, their equivalent resistance is greater than any of the individual resistances.

\section*{Checkpoint 2}

In Fig. 27-5a, if \(R_{1}>R_{2}>R_{3}\), rank the three resistances according to (a) the current through them and (b) the potential difference across them, greatest first.

\section*{Potential Difference Between Two Points}

We often want to find the potential difference between two points in a circuit. For example, in Fig. 27-6, what is the potential difference \(V_{b}-V_{a}\) between points \(a\) and \(b\) ? To find out, let's start at point \(a\) (at potential \(V_{a}\) ) and move through the battery to point \(b\) (at potential \(V_{b}\) ) while keeping track of the potential changes we encounter. When we pass through the battery's emf, the potential increases by \(\mathscr{E}\). When we pass through the battery's internal resistance \(r\), we move in the direction of the current and thus the potential decreases by \(i r\). We are then at the

The internal resistance reduces the potential difference between the terminals.


Figure 27-6 Points \(a\) and \(b\), which are at the terminals of a real battery, differ in potential.
potential of point \(b\) and we have
or
\[
\begin{align*}
& V_{a}+\mathscr{E}-i r=V_{b}, \\
& V_{b}-V_{a}=\mathscr{E}-i r . \tag{27-8}
\end{align*}
\]

To evaluate this expression, we need the current \(i\). Note that the circuit is the same as in Fig. 27-4a, for which Eq. 27-4 gives the current as
\[
\begin{equation*}
i=\frac{\mathscr{E}}{R+r} . \tag{27-9}
\end{equation*}
\]

Substituting this equation into Eq. 27-8 gives us
\[
\begin{align*}
V_{b}-V_{a} & =\mathscr{E}-\frac{\mathscr{E}}{R+r} r \\
& =\frac{\mathscr{E}}{R+r} R . \tag{27-10}
\end{align*}
\]

Now substituting the data given in Fig. 27-6, we have
\[
\begin{equation*}
V_{b}-V_{a}=\frac{12 \mathrm{~V}}{4.0 \Omega+2.0 \Omega} 4.0 \Omega=8.0 \mathrm{~V} \tag{27-11}
\end{equation*}
\]

Suppose, instead, we move from \(a\) to \(b\) counterclockwise, passing through resistor \(R\) rather than through the battery. Because we move opposite the current, the potential increases by \(i R\). Thus,
or
\[
\begin{align*}
& V_{a}+i R=V_{b} \\
& V_{b}-V_{a}=i R . \tag{27-12}
\end{align*}
\]

Substituting for \(i\) from Eq. 27-9, we again find Eq. 27-10. Hence, substitution of the data in Fig. 27-6 yields the same result, \(V_{b}-V_{a}=8.0 \mathrm{~V}\). In general,

To find the potential between any two points in a circuit, start at one point and traverse the circuit to the other point, following any path, and add algebraically the changes in potential you encounter.

\section*{Potential Difference Across a Real Battery}

In Fig. 27-6, points \(a\) and \(b\) are located at the terminals of the battery. Thus, the potential difference \(V_{b}-V_{a}\) is the terminal-to-terminal potential difference \(V\) across the battery. From Eq. 27-8, we see that
\[
\begin{equation*}
V=\mathscr{E}-i r \tag{27-13}
\end{equation*}
\]

If the internal resistance \(r\) of the battery in Fig. 27-6 were zero, Eq. 27-13 tells us that \(V\) would be equal to the emf \(\mathscr{E}\) of the battery - namely, 12 V . However, because \(r=2.0 \Omega\), Eq. 27-13 tells us that \(V\) is less than \(\mathscr{E}\). From Eq. 27-11, we know that \(V\) is only 8.0 V . Note that the result depends on the value of the current through the battery. If the same battery were in a different circuit and had a different current through it, \(V\) would have some other value.

\section*{Grounding a Circuit}

Figure 27-7a shows the same circuit as Fig. 27-6 except that here point \(a\) is directly connected to ground, as indicated by the common symbol \(\frac{\perp}{=}\). Grounding a circuit usually means connecting the circuit to a conducting path to Earth's surface (actually to the electrically conducting moist dirt and rock below ground). Here, such a connection means only that the potential is defined to be zero at the grounding point in the circuit. Thus in Fig. 27-7a, the potential at \(a\) is defined to be \(V_{a}=0\). Equation 27-11 then tells us that the potential at \(b\) is \(V_{b}=8.0 \mathrm{~V}\).


Figure 27-7 (a) Point \(a\) is directly connected to ground. (b) Point \(b\) is directly connected to ground.

Figure \(27-7 b\) is the same circuit except that point \(b\) is now directly connected to ground. Thus, the potential there is defined to be \(V_{b}=0\). Equation 27-11 now tells us that the potential at \(a\) is \(V_{a}=-8.0 \mathrm{~V}\).

\section*{Power, Potential, and Emf}

When a battery or some other type of emf device does work on the charge carriers to establish a current \(i\), the device transfers energy from its source of energy (such as the chemical source in a battery) to the charge carriers. Because a real emf device has an internal resistance \(r\), it also transfers energy to internal thermal energy via resistive dissipation (Module 26-5). Let us relate these transfers.

The net rate \(P\) of energy transfer from the emf device to the charge carriers is given by Eq. 26-26:
\[
\begin{equation*}
P=i V \tag{27-14}
\end{equation*}
\]
where \(V\) is the potential across the terminals of the emf device. From Eq. 27-13, we can substitute \(V=\mathscr{E}\) - ir into Eq. 27-14 to find
\[
\begin{equation*}
P=i(\mathscr{C}-i r)=i \mathscr{E}-i^{2} r . \tag{27-15}
\end{equation*}
\]

From Eq. 26-27, we recognize the term \(i^{2} r\) in Eq. 27-15 as the rate \(P_{r}\) of energy transfer to thermal energy within the emf device:
\[
\begin{equation*}
P_{r}=i^{2} r \quad \text { (internal dissipation rate). } \tag{27-16}
\end{equation*}
\]

Then the term \(i \mathscr{E}\) in Eq. 27-15 must be the rate \(P_{\text {emf }}\) at which the emf device transfers energy both to the charge carriers and to internal thermal energy. Thus,
\[
\begin{equation*}
P_{\mathrm{emf}}=i \mathscr{E} \quad \text { (power of emf device). } \tag{27-17}
\end{equation*}
\]

If a battery is being recharged, with a "wrong way" current through it, the energy transfer is then from the charge carriers to the battery-both to the battery's chemical energy and to the energy dissipated in the internal resistance \(r\). The rate of change of the chemical energy is given by Eq. 27-17, the rate of dissipation is given by Eq. 27-16, and the rate at which the carriers supply energy is given by Eq. 27-14.

\section*{Checkpoint 3}

A battery has an emf of 12 V and an internal resistance of \(2 \Omega\). Is the terminal-toterminal potential difference greater than, less than, or equal to 12 V if the current in the battery is (a) from the negative to the positive terminal, (b) from the positive to the negative terminal, and (c) zero?

\section*{Sample Problem 27.01 Single-loop circuit with two real batteries}

The emfs and resistances in the circuit of Fig. 27-8a have the following values:
\[
\begin{gathered}
\mathscr{E}_{1}=4.4 \mathrm{~V}, \quad \mathscr{E}_{2}=2.1 \mathrm{~V} \\
r_{1}=2.3 \Omega, \quad r_{2}=1.8 \Omega, \quad R=5.5 \Omega .
\end{gathered}
\]
(a) What is the current \(i\) in the circuit?

\section*{KEY IDEA}

We can get an expression involving the current \(i\) in this single-loop circuit by applying the loop rule, in which we sum the potential changes around the full loop.

Calculations: Although knowing the direction of \(i\) is not necessary, we can easily determine it from the emfs of the


Figure 27-8 (a) A single-loop circuit containing two real batteries and a resistor. The batteries oppose each other; that is, they tend to send current in opposite directions through the resistor. (b) A graph of the potentials, counterclockwise from point \(a\), with the potential at \(a\) arbitrarily taken to be zero. (To better link the circuit with the graph, mentally cut the circuit at \(a\) and then unfold the left side of the circuit toward the left and the right side of the circuit toward the right.)
two batteries. Because \(\mathscr{E}_{1}\) is greater than \(\mathscr{E}_{2}\), battery 1 controls the direction of \(i\), so the direction is clockwise. Let us then apply the loop rule by going counterclockwise against the current - and starting at point \(a\). (These decisions about where to start and which way you go are arbitrary but, once made, you must be consistent with decisions about the plus and minus signs.) We find
\[
-\mathscr{E}_{1}+i r_{1}+i R+i r_{2}+\mathscr{E}_{2}=0
\]

Check that this equation also results if we apply the loop rule clockwise or start at some point other than \(a\). Also, take the time to compare this equation term by term with Fig. 27-8b, which shows the potential changes graphically (with the potential at point \(a\) arbitrarily taken to be zero).

Solving the above loop equation for the current \(i\), we obtain
\[
\begin{aligned}
i & =\frac{\mathscr{E}_{1}-\mathscr{E}_{2}}{R+r_{1}+r_{2}}=\frac{4.4 \mathrm{~V}-2.1 \mathrm{~V}}{5.5 \Omega+2.3 \Omega+1.8 \Omega} \\
& =0.2396 \mathrm{~A} \approx 240 \mathrm{~mA}
\end{aligned}
\]
(Answer)
(b) What is the potential difference between the terminals of battery 1 in Fig. 27-8a?

\section*{KEY IDEA}

We need to sum the potential differences between points \(a\) and \(b\).

Calculations: Let us start at point \(b\) (effectively the negative terminal of battery 1) and travel clockwise through battery 1 to point \(a\) (effectively the positive terminal), keeping track of potential changes. We find that
\[
V_{b}-i r_{1}+\mathscr{E}_{1}=V_{a}
\]
which gives us
\[
\begin{aligned}
V_{a}-V_{b} & =-i r_{1}+\mathscr{E}_{1} \\
& =-(0.2396 \mathrm{~A})(2.3 \Omega)+4.4 \mathrm{~V} \\
& =+3.84 \mathrm{~V} \approx 3.8 \mathrm{~V},
\end{aligned}
\]
(Answer)
which is less than the emf of the battery. You can verify this result by starting at point \(b\) in Fig. 27-8a and traversing the circuit counterclockwise to point \(a\). We learn two points here. (1) The potential difference between two points in a circuit is independent of the path we choose to go from one to the other. (2) When the current in the battery is in the "proper" direction, the terminal-to-terminal potential difference is low, that is, lower than the stated emf for the battery that you might find printed on the battery.

\section*{27-2 multiloop circuits}

\section*{Learning Objectives}

After reading this module, you should be able to ...
27.17 Apply the junction rule.
27.18 Draw a schematic diagram for a battery and three parallel resistors and distinguish it from a diagram with a battery and three series resistors.
27.19 Identify that resistors in parallel have the same potential difference, which is the same value that their equivalent resistor has.
27.20 Calculate the resistance of the equivalent resistor of several resistors in parallel.
27.21 Identify that the total current through parallel resistors is the sum of the currents through the individual resistors.
27.22 For a circuit with a battery and some resistors in parallel and some in series, simplify the circuit in steps by finding
equivalent resistors, until the current through the battery can be determined, and then reverse the steps to find the currents and potential differences of the individual resistors.
27.23 If a circuit cannot be simplified by using equivalent resistors, identify the several loops in the circuit, choose names and directions for the currents in the branches, set up loop equations for the various loops, and solve these simultaneous equations for the unknown currents.
27.24 In a circuit with identical real batteries in series, replace them with a single ideal battery and a single resistor.
27.25 In a circuit with identical real batteries in parallel, replace them with a single ideal battery and a single resistor.

\section*{Key Idea}
- When resistances are in parallel, they have the same potential difference. The equivalent resistance that can replace a parallel combination of resistances is given by
\[
\frac{1}{R_{\mathrm{eq}}}=\sum_{j=1}^{n} \frac{1}{R_{j}} \quad(n \text { resistances in parallel) } .
\]

\section*{Multiloop Circuits}

Figure 27-9 shows a circuit containing more than one loop. For simplicity, we assume the batteries are ideal. There are two junctions in this circuit, at \(b\) and \(d\), and there are three branches connecting these junctions. The branches are the left branch (bad), the right branch (bcd), and the central branch \((b d)\). What are the currents in the three branches?

We arbitrarily label the currents, using a different subscript for each branch. Current \(i_{1}\) has the same value everywhere in branch bad, \(i_{2}\) has the same value everywhere in branch \(b c d\), and \(i_{3}\) is the current through branch \(b d\). The directions of the currents are assumed arbitrarily.

Consider junction \(d\) for a moment: Charge comes into that junction via incoming currents \(i_{1}\) and \(i_{3}\), and it leaves via outgoing current \(i_{2}\). Because there is no variation in the charge at the junction, the total incoming current must equal the total outgoing current:
\[
\begin{equation*}
i_{1}+i_{3}=i_{2} \tag{27-18}
\end{equation*}
\]

You can easily check that applying this condition to junction \(b\) leads to exactly the same equation. Equation 27-18 thus suggests a general principle:

JUNCTION RULE: The sum of the currents entering any junction must be equal to the sum of the currents leaving that junction.

This rule is often called Kirchhoff's junction rule (or Kirchhoff's current law). It is simply a statement of the conservation of charge for a steady flow of charge there is neither a buildup nor a depletion of charge at a junction. Thus, our basic tools for solving complex circuits are the loop rule (based on the conservation of energy) and the junction rule (based on the conservation of charge).

The current into the junction must equal the current out (charge is conserved).


Figure 27-9 A multiloop circuit consisting of three branches: left-hand branch bad, righthand branch \(b c d\), and central branch \(b d\). The circuit also consists of three loops: lefthand loop \(b a d b\), right-hand loop \(b c d b\), and big loop badcb.

Equation 27-18 is a single equation involving three unknowns. To solve the circuit completely (that is, to find all three currents), we need two more equations involving those same unknowns. We obtain them by applying the loop rule twice. In the circuit of Fig. 27-9, we have three loops from which to choose: the left-hand loop ( \(b a d b\) ), the right-hand loop ( \(b c d b\) ), and the big loop ( \(b a d c b\) ). Which two loops we choose does not matter - let's choose the left-hand loop and the righthand loop.

If we traverse the left-hand loop in a counterclockwise direction from point \(b\), the loop rule gives us
\[
\begin{equation*}
\mathscr{E}_{1}-i_{1} R_{1}+i_{3} R_{3}=0 . \tag{27-19}
\end{equation*}
\]

If we traverse the right-hand loop in a counterclockwise direction from point \(b\), the loop rule gives us
\[
\begin{equation*}
-i_{3} R_{3}-i_{2} R_{2}-\mathscr{E}_{2}=0 \tag{27-20}
\end{equation*}
\]

We now have three equations (Eqs. 27-18, 27-19, and 27-20) in the three unknown currents, and they can be solved by a variety of techniques.

If we had applied the loop rule to the big loop, we would have obtained (moving counterclockwise from \(b\) ) the equation
\[
\mathscr{E}_{1}-i_{1} R_{1}-i_{2} R_{2}-\mathscr{C}_{2}=0 .
\]

However, this is merely the sum of Eqs. 27-19 and 27-20.

\section*{Resistances in Parallel}

Figure \(27-10 a\) shows three resistances connected in parallel to an ideal battery of emf \(\mathscr{E}\). The term "in parallel" means that the resistances are directly wired together on one side and directly wired together on the other side, and that a potential difference \(V\) is applied across the pair of connected sides. Thus, all three resistances have the same potential difference \(V\) across them, producing a current through each. In general,

When a potential difference \(V\) is applied across resistances connected in parallel, the resistances all have that same potential difference \(V\).

In Fig. 27-10a, the applied potential difference \(V\) is maintained by the battery. In Fig. 27-10b, the three parallel resistances have been replaced with an equivalent resistance \(R_{\text {eq }}\).


Figure 27-10 (a) Three resistors connected in parallel across points \(a\) and \(b\). (b) An equivalent circuit, with the three resistors replaced with their equivalent resistance \(R_{\text {eq }}\).

Resistances connected in parallel can be replaced with an equivalent resistance \(R_{\text {eq }}\) that has the same potential difference \(V\) and the same total current \(i\) as the actual resistances.

You might remember that \(R_{\text {eq }}\) and all the actual parallel resistances have the same potential difference \(V\) with the nonsense word "par-V."

To derive an expression for \(R_{\text {eq }}\) in Fig. 27-10b, we first write the current in each actual resistance in Fig. 27-10 \(a\) as
\[
i_{1}=\frac{V}{R_{1}}, \quad i_{2}=\frac{V}{R_{2}}, \quad \text { and } \quad i_{3}=\frac{V}{R_{3}}
\]
where \(V\) is the potential difference between \(a\) and \(b\). If we apply the junction rule at point \(a\) in Fig. 27-10a and then substitute these values, we find
\[
\begin{equation*}
i=i_{1}+i_{2}+i_{3}=V\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right) \tag{27-21}
\end{equation*}
\]

If we replaced the parallel combination with the equivalent resistance \(R_{\text {eq }}\) (Fig. 27-10b), we would have
\[
\begin{equation*}
i=\frac{V}{R_{\mathrm{eq}}} \tag{27-22}
\end{equation*}
\]

Comparing Eqs. 27-21 and 27-22 leads to
\[
\begin{equation*}
\frac{1}{R_{\mathrm{eq}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} \tag{27-23}
\end{equation*}
\]

Extending this result to the case of \(n\) resistances, we have
\[
\begin{equation*}
\frac{1}{R_{\mathrm{eq}}}=\sum_{j=1}^{n} \frac{1}{R_{j}} \quad(n \text { resistances in parallel }) \tag{27-24}
\end{equation*}
\]

For the case of two resistances, the equivalent resistance is their product divided by their sum; that is,
\[
\begin{equation*}
R_{\mathrm{eq}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \tag{27-25}
\end{equation*}
\]

Note that when two or more resistances are connected in parallel, the equivalent resistance is smaller than any of the combining resistances. Table 27-1 summarizes the equivalence relations for resistors and capacitors in series and in parallel.

Table 27-1 Series and Parallel Resistors and Capacitors
\begin{tabular}{|c|c|c|c|}
\hline Series & Parallel & Series & Parallel \\
\hline & \(\underline{\text { Resistors }}\) & \multicolumn{2}{|c|}{Capacitors} \\
\hline \[
R_{\mathrm{eq}}=\sum_{j=1}^{n} R_{j} \quad \text { Eq. 27-7 }
\] & \[
\frac{1}{R_{\mathrm{eq}}}=\sum_{j=1}^{n} \frac{1}{R_{j}} \quad \text { Eq. 27-24 }
\] & \[
\frac{1}{C_{\mathrm{eq}}}=\sum_{j=1}^{n} \frac{1}{C_{j}} \quad \text { Eq. } 25-20
\] & \[
C_{\mathrm{eq}}=\sum_{j=1}^{n} C_{j} \quad \text { Eq. 25-19 }
\] \\
\hline Same current through all resistors & Same potential difference across all resistors & Same charge on all capacitors & Same potential difference across all capacitors \\
\hline
\end{tabular}

\section*{Checkpoint 4}

A battery, with potential \(V\) across it, is connected to a combination of two identical resistors and then has current \(i\) through it. What are the potential difference across and the current through either resistor if the resistors are (a) in series and (b) in parallel?

\section*{Sample Problem 27.02 Resistors in parallel and in series}

Figure 27-11a shows a multiloop circuit containing one ideal battery and four resistances with the following values:
\[
\begin{array}{ll}
R_{1}=20 \Omega, & R_{2}=20 \Omega, \quad \mathscr{E}=12 \mathrm{~V}, \\
R_{3}=30 \Omega, & R_{4}=8.0 \Omega .
\end{array}
\]
(a) What is the current through the battery?

\section*{KEY IDEA}

Noting that the current through the battery must also be the current through \(R_{1}\), we see that we might find the current by applying the loop rule to a loop that includes \(R_{1}\) because the current would be included in the potential difference across \(R_{1}\).

Incorrect method: Either the left-hand loop or the big loop should do. Noting that the emf arrow of the battery points upward, so the current the battery supplies is clockwise, we might apply the loop rule to the left-hand loop, clockwise from point \(a\). With \(i\) being the current through the battery, we would get
\[
+\mathscr{E}-i R_{1}-i R_{2}-i R_{4}=0 \quad \text { (incorrect) }
\]

However, this equation is incorrect because it assumes that \(R_{1}, R_{2}\), and \(R_{4}\) all have the same current \(i\). Resistances \(R_{1}\) and \(R_{4}\) do have the same current, because the current passing through \(R_{4}\) must pass through the battery and then through \(R_{1}\) with no change in value. However, that current splits at junction point \(b\)-only part passes through \(R_{2}\), the rest through \(R_{3}\).

Dead-end method: To distinguish the several currents in the circuit, we must label them individually as in Fig. 27-11b. Then, circling clockwise from \(a\), we can write the loop rule for the left-hand loop as
\[
+\mathscr{E}-i_{1} R_{1}-i_{2} R_{2}-i_{1} R_{4}=0 .
\]

Unfortunately, this equation contains two unknowns, \(i_{1}\) and \(i_{2}\); we would need at least one more equation to find them.

Successful method: A much easier option is to simplify the circuit of Fig. 27-11 \(b\) by finding equivalent resistances. Note carefully that \(R_{1}\) and \(R_{2}\) are not in series and thus cannot be replaced with an equivalent resistance. However, \(R_{2}\) and \(R_{3}\) are in parallel, so we can use either Eq. 27-24 or Eq. 27-25 to find their equivalent resistance \(R_{23}\). From the latter,
\[
R_{23}=\frac{R_{2} R_{3}}{R_{2}+R_{3}}=\frac{(20 \Omega)(30 \Omega)}{50 \Omega}=12 \Omega .
\]

We can now redraw the circuit as in Fig. 27-11c; note that the current through \(R_{23}\) must be \(i_{1}\) because charge that moves through \(R_{1}\) and \(R_{4}\) must also move through \(R_{23}\). For this simple one-loop circuit, the loop rule (applied clockwise from point \(a\) as in Fig. 27-11d) yields
\[
+\mathscr{E}-i_{1} R_{1}-i_{1} R_{23}-i_{1} R_{4}=0 .
\]

Substituting the given data, we find
\[
12 \mathrm{~V}-i_{1}(20 \Omega)-i_{1}(12 \Omega)-i_{1}(8.0 \Omega)=0,
\]
which gives us
\[
i_{1}=\frac{12 \mathrm{~V}}{40 \Omega}=0.30 \mathrm{~A}
\]
(Answer)
(b) What is the current \(i_{2}\) through \(R_{2}\) ?

\section*{KEY IDEAS}
(1) we must now work backward from the equivalent circuit of Fig. 27-11d, where \(R_{23}\) has replaced \(R_{2}\) and \(R_{3}\). (2) Because \(R_{2}\) and \(R_{3}\) are in parallel, they both have the same potential difference across them as \(R_{23}\).
Working backward: We know that the current through \(R_{23}\) is \(i_{1}=0.30 \mathrm{~A}\). Thus, we can use Eq. 26-8 \((R=V / i)\) and Fig. 27-11e to find the potential difference \(V_{23}\) across \(R_{23}\). Setting \(R_{23}=12 \Omega\) from (a), we write Eq. 26-8 as
\[
V_{23}=i_{1} R_{23}=(0.30 \mathrm{~A})(12 \Omega)=3.6 \mathrm{~V}
\]

The potential difference across \(R_{2}\) is thus also 3.6 V (Fig. 27-11f), so the current \(i_{2}\) in \(R_{2}\) must be, by Eq. 26-8 and Fig. 27-11g,
\[
i_{2}=\frac{V_{2}}{R_{2}}=\frac{3.6 \mathrm{~V}}{20 \Omega}=0.18 \mathrm{~A}
\]
(Answer)
(c) What is the current \(i_{3}\) through \(R_{3}\) ?

\section*{KEY IDEAS}

We can answer by using either of two techniques: (1) Apply Eq. 26-8 as we just did. (2) Use the junction rule, which tells us that at point \(b\) in Fig. 27-11b, the incoming current \(i_{1}\) and the outgoing currents \(i_{2}\) and \(i_{3}\) are related by
\[
i_{1}=i_{2}+i_{3} .
\]

Calculation: Rearranging this junction-rule result yields the result displayed in Fig. 27-11g:
\[
\begin{aligned}
i_{3} & =i_{1}-i_{2}=0.30 \mathrm{~A}-0.18 \mathrm{~A} \\
& =0.12 \mathrm{~A} .
\end{aligned}
\]
(Answer)


Figure 27-11 (a) A circuit with an ideal battery. (b) Label the currents. (c) Replacing the parallel resistors with their equivalent. \((d)-(g)\) Working backward to find the currents through the parallel resistors.

\section*{Sample Problem 27.03 Many real batteries in series and in parallel in an electric fish}

Electric fish can generate current with biological emf cells called electroplaques. In the South American eel they are arranged in 140 rows, each row stretching horizontally along the body and each containing 5000 cells, as suggested by Fig. 27-12a. Each electroplaque has an emf \(\mathscr{E}\) of 0.15 V and an internal resistance \(r\) of \(0.25 \Omega\). The water surrounding the eel completes a circuit between the two ends of the electroplaque array, one end at the head of the animal and the other near the tail.
(a) If the surrounding water has resistance \(R_{w}=800 \Omega\), how much current can the eel produce in the water?

\section*{KEY IDEA}

We can simplify the circuit of Fig. 27-12a by replacing combinations of emfs and internal resistances with equivalent emfs and resistances.

Calculations: We first consider a single row. The total emf \(\mathscr{E}_{\text {row }}\) along a row of 5000 electroplaques is the sum of the emfs:
\[
\mathscr{E}_{\text {row }}=5000 \mathscr{C}=(5000)(0.15 \mathrm{~V})=750 \mathrm{~V}
\]

The total resistance \(R_{\text {row }}\) along a row is the sum of the internal resistances of the 5000 electroplaques:
\[
R_{\mathrm{row}}=5000 r=(5000)(0.25 \Omega)=1250 \Omega
\]

We can now represent each of the 140 identical rows as having a single emf \(\mathscr{E}_{\text {row }}\) and a single resistance \(R_{\text {row }}\) (Fig. 27-12b).

In Fig. 27-12b, the emf between point \(a\) and point \(b\) on any row is \(\mathscr{E}_{\text {row }}=750 \mathrm{~V}\). Because the rows are identical and because they are all connected together at the left in Fig. 27-12b, all points \(b\) in that figure are at the same electric potential. Thus, we can consider them to be connected so that there is only a single point \(b\). The emf between point \(a\) and this single point \(b\) is \(\mathscr{E}_{\text {row }}=750 \mathrm{~V}\), so we can draw the circuit as shown in Fig. 27-12c.

Between points \(b\) and \(c\) in Fig. 27-12c are 140 resistances \(R_{\text {row }}=1250 \Omega\), all in parallel. The equivalent resistance \(R_{\text {eq }}\) of this combination is given by Eq. 27-24 as
\[
\begin{gathered}
\frac{1}{R_{\mathrm{eq}}}=\sum_{j=1}^{140} \frac{1}{R_{j}}=140 \frac{1}{R_{\mathrm{row}}}, \\
R_{\mathrm{eq}}=\frac{R_{\mathrm{row}}}{140}=\frac{1250 \Omega}{140}=8.93 \Omega .
\end{gathered}
\]

First, reduce each row to one emf and one resistance.


Figure 27-12 (a) A model of the electric circuit of an eel in water. Along each of 140 rows extending from the head to the tail of the eel, there are 5000 electroplaques. The surrounding water has resistance \(R_{w} .(b)\) The \(\operatorname{emf} \mathscr{E}_{\text {row }}\) and resistance \(R_{\text {row }}\) of each row. (c) The emf between points \(a\) and \(b\) is \(\mathscr{E}_{\text {row }}\). Between points \(b\) and \(c\) are 140 parallel resistances \(R_{\text {row. }}\) (d) The simplified circuit.

Replacing the parallel combination with \(R_{\text {eq }}\), we obtain the simplified circuit of Fig. 27-12d. Applying the loop rule to this circuit counterclockwise from point \(b\), we have
\[
\mathscr{E}_{\text {row }}-i R_{w}-i R_{\text {eq }}=0
\]

Solving for \(i\) and substituting the known data, we find
\[
\begin{aligned}
i & =\frac{\mathscr{E}_{\text {row }}}{R_{w}+R_{\mathrm{eq}}}=\frac{750 \mathrm{~V}}{800 \Omega+8.93 \Omega} \\
& =0.927 \mathrm{~A} \approx 0.93 \mathrm{~A}
\end{aligned}
\]
(Answer)
If the head or tail of the eel is near a fish, some of this current could pass along a narrow path through the fish, stunning or killing it.
(b) How much current \(i_{\text {row }}\) travels through each row of Fig. 27-12a?

\section*{KEY IDEA}

Because the rows are identical, the current into and out of the eel is evenly divided among them.

Calculation: Thus, we write
\[
i_{\text {row }}=\frac{i}{140}=\frac{0.927 \mathrm{~A}}{140}=6.6 \times 10^{-3} \mathrm{~A} .
\]
(Answer)
Thus, the current through each row is small, so that the eel need not stun or kill itself when it stuns or kills a fish.

\section*{Sample Problem 27.04 Multiloop circuit and simultaneous loop equations}

Figure 27-13 shows a circuit whose elements have the following values: \(\mathscr{E}_{1}=3.0 \mathrm{~V}, \mathscr{E}_{2}=6.0 \mathrm{~V}, R_{1}=2.0 \Omega, R_{2}=\) \(4.0 \Omega\). The three batteries are ideal batteries. Find the magnitude and direction of the current in each of the three branches.

\section*{KEY IDEAS}

It is not worthwhile to try to simplify this circuit, because no two resistors are in parallel, and the resistors that are in series (those in the right branch or those in the left branch) present no problem. So, our plan is to apply the junction and loop rules.
Junction rule: Using arbitrarily chosen directions for the currents as shown in Fig. 27-13, we apply the junction rule at point \(a\) by writing
\[
\begin{equation*}
i_{3}=i_{1}+i_{2} . \tag{27-26}
\end{equation*}
\]

An application of the junction rule at junction \(b\) gives only the same equation, so we next apply the loop rule to any two of the three loops of the circuit.

Left-hand loop: We first arbitrarily choose the left-hand loop, arbitrarily start at point \(b\), and arbitrarily traverse the loop in the clockwise direction, obtaining
\[
-i_{1} R_{1}+\mathscr{E}_{1}-i_{1} R_{1}-\left(i_{1}+i_{2}\right) R_{2}-\mathscr{E}_{2}=0,
\]
where we have used \(\left(i_{1}+i_{2}\right)\) instead of \(i_{3}\) in the middle branch. Substituting the given data and simplifying yield
\[
\begin{equation*}
i_{1}(8.0 \Omega)+i_{2}(4.0 \Omega)=-3.0 \mathrm{~V} \tag{27-27}
\end{equation*}
\]

Right-hand loop: For our second application of the loop rule, we arbitrarily choose to traverse the right-hand loop counterclockwise from point \(b\), finding
\[
-i_{2} R_{1}+\mathscr{E}_{2}-i_{2} R_{1}-\left(i_{1}+i_{2}\right) R_{2}-\mathscr{E}_{2}=0
\]

Substituting the given data and simplifying yield
\[
\begin{equation*}
i_{1}(4.0 \Omega)+i_{2}(8.0 \Omega)=0 . \tag{27-28}
\end{equation*}
\]

Figure 27-13 A multiloop circuit with three ideal batteries and five resistances.


Combining equations: We now have a system of two equations (Eqs. 27-27 and 27-28) in two unknowns ( \(i_{1}\) and \(i_{2}\) ) to solve either "by hand" (which is easy enough here) or with a "math package." (One solution technique is Cramer's rule, given in Appendix E.) We find
\[
\begin{equation*}
i_{1}=-0.50 \mathrm{~A} \tag{27-29}
\end{equation*}
\]
(The minus sign signals that our arbitrary choice of direction for \(i_{1}\) in Fig. 27-13 is wrong, but we must wait to correct it.) Substituting \(i_{1}=-0.50 \mathrm{~A}\) into Eq. 27-28 and solving for \(i_{2}\) then give us
\[
i_{2}=0.25 \mathrm{~A} .
\]
(Answer)
With Eq. 27-26 we then find that
\[
\begin{aligned}
i_{3}=i_{1}+i_{2} & =-0.50 \mathrm{~A}+0.25 \mathrm{~A} \\
& =-0.25 \mathrm{~A} .
\end{aligned}
\]

The positive answer we obtained for \(i_{2}\) signals that our choice of direction for that current is correct. However, the negative answers for \(i_{1}\) and \(i_{3}\) indicate that our choices for those currents are wrong. Thus, as a last step here, we correct the answers by reversing the arrows for \(i_{1}\) and \(i_{3}\) in Fig.27-13 and then writing
\[
i_{1}=0.50 \mathrm{~A} \quad \text { and } \quad i_{3}=0.25 \mathrm{~A} .
\]
(Answer)
Caution: Always make any such correction as the last step and not before calculating all the currents.

\section*{27-3 the ammeter and the voltmeter}

\section*{Learning Objective}

After reading this module, you should be able to . . .
27.26 Explain the use of an ammeter and a voltmeter, includ-
ing the resistance required of each in order not to affect the measured quantities.

\section*{Key Idea}
- Here are three measurement instruments used with circuits: An ammeter measures current. A voltmeter measures
voltage (potential differences). A multimeter can be used to measure current, voltage, or resistance.


Figure 27-14 A single-loop circuit, showing how to connect an ammeter (A) and a voltmeter (V).

\section*{The Ammeter and the Voltmeter}

An instrument used to measure currents is called an ammeter. To measure the current in a wire, you usually have to break or cut the wire and insert the ammeter so that the current to be measured passes through the meter. (In Fig. 27-14, ammeter A is set up to measure current \(i\).) It is essential that the resistance \(R_{\mathrm{A}}\) of the ammeter be very much smaller than other resistances in the circuit. Otherwise, the very presence of the meter will change the current to be measured.

A meter used to measure potential differences is called a voltmeter. To find the potential difference between any two points in the circuit, the voltmeter terminals are connected between those points without breaking or cutting the wire. (In Fig. 27-14, voltmeter V is set up to measure the voltage across \(R_{1}\).) It is essential that the resistance \(R_{\mathrm{V}}\) of a voltmeter be very much larger than the resistance of any circuit element across which the voltmeter is connected. Otherwise, the meter alters the potential difference that is to be measured.

Often a single meter is packaged so that, by means of a switch, it can be made to serve as either an ammeter or a voltmeter - and usually also as an ohmmeter, designed to measure the resistance of any element connected between its terminals. Such a versatile unit is called a multimeter.

\section*{27-4 recircuits}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
27.27 Draw schematic diagrams of charging and discharging \(R C\) circuits.
27.28 Write the loop equation (a differential equation) for a charging \(R C\) circuit.
27.29 Write the loop equation (a differential equation) for a discharging \(R C\) circuit.
27.30 For a capacitor in a charging or discharging \(R C\) circuit, apply the relationship giving the charge as a function of time.
27.31 From the function giving the charge as a function of time in a charging or discharging \(R C\) circuit, find the capacitor's potential difference as a function of time.
27.32 In a charging or discharging \(R C\) circuit, find the resistor's current and potential difference as functions of time.
27.33 Calculate the capacitive time constant \(\tau\).
27.34 For a charging \(R C\) circuit and a discharging \(R C\) circuit, determine the capacitor's charge and potential difference at the start of the process and then a long time later.

\section*{Key Ideas}
- When an emf \(\mathscr{E}\) is applied to a resistance \(R\) and capacitance \(C\) in series, the charge on the capacitor increases according to
\[
q=C \mathscr{E}\left(1-e^{-t / R C}\right) \quad \text { (charging a capacitor) }
\]
in which \(C_{\mathscr{E}}^{\mathscr{E}}=q_{0}\) is the equilibrium (final) charge and \(R C=\tau\) is the capacitive time constant of the circuit.

During the charging, the current is
\[
i=\frac{d q}{d t}=\left(\frac{\mathscr{E}}{R}\right) e^{-t / R C} \quad \text { (charging a capacitor) }
\]
- When a capacitor discharges through a resistance \(R\), the charge on the capacitor decays according to
\[
q=q_{0} e^{-t / R C} \quad \text { (discharging a capacitor) }
\]
- During the discharging, the current is
\[
i=\frac{d q}{d t}=-\left(\frac{q_{0}}{R C}\right) e^{-t / R C} \quad \text { (discharging a capacitor) }
\]

\section*{RC Circuits}

In preceding modules we dealt only with circuits in which the currents did not vary with time. Here we begin a discussion of time-varying currents.

\section*{Charging a Capacitor}

The capacitor of capacitance \(C\) in Fig. 27-15 is initially uncharged. To charge it, we close switch S on point \(a\). This completes an RC series circuit consisting of the capacitor, an ideal battery of \(\operatorname{emf} \mathscr{E}\), and a resistance \(R\).

From Module 25-1, we already know that as soon as the circuit is complete, charge begins to flow (current exists) between a capacitor plate and a battery terminal on each side of the capacitor. This current increases the charge \(q\) on the plates and the potential difference \(V_{C}(=q / C)\) across the capacitor. When that potential difference equals the potential difference across the battery (which here is equal to the emf \(\mathscr{E}\) ), the current is zero. From Eq. 25-1 \((q=C V)\), the equilibrium (final) charge on the then fully charged capacitor is equal to \(C \mathscr{E}\).

Here we want to examine the charging process. In particular we want to know how the charge \(q(t)\) on the capacitor plates, the potential difference \(V_{C}(t)\) across the capacitor, and the current \(i(t)\) in the circuit vary with time during the charging process. We begin by applying the loop rule to the circuit, traversing it clockwise from the negative terminal of the battery. We find
\[
\begin{equation*}
\mathscr{E}-i R-\frac{q}{C}=0 \tag{27-30}
\end{equation*}
\]

The last term on the left side represents the potential difference across the capacitor. The term is negative because the capacitor's top plate, which is connected to the battery's positive terminal, is at a higher potential than the lower plate. Thus, there is a drop in potential as we move down through the capacitor.

We cannot immediately solve Eq. 27-30 because it contains two variables, \(i\) and \(q\).However, those variables are not independent but are related by
\[
\begin{equation*}
i=\frac{d q}{d t} . \tag{27-31}
\end{equation*}
\]

Substituting this for \(i\) in Eq. 27-30 and rearranging, we find
\[
\begin{equation*}
R \frac{d q}{d t}+\frac{q}{C}=\mathscr{E} \quad \text { (charging equation). } \tag{27-32}
\end{equation*}
\]

This differential equation describes the time variation of the charge \(q\) on the capacitor in Fig. 27-15. To solve it, we need to find the function \(q(t)\) that satisfies this equation and also satisfies the condition that the capacitor be initially uncharged; that is, \(q=0\) at \(t=0\).

We shall soon show that the solution to Eq. 27-32 is
\[
\begin{equation*}
q=C \mathscr{E}\left(1-e^{-t / R C}\right) \quad \text { (charging a capacitor) } \tag{27-33}
\end{equation*}
\]
(Here \(e\) is the exponential base, \(2.718 \ldots\), and not the elementary charge.) Note that Eq. 27-33 does indeed satisfy our required initial condition, because at \(t=0\) the term \(e^{-t / R C}\) is unity; so the equation gives \(q=0\). Note also that as \(t\) goes to infinity (that is, a long time later), the term \(e^{-t / R C}\) goes to zero; so the equation gives the proper value for the full (equilibrium) charge on the capacitor-namely, \(q=C \mathscr{E}\). A plot of \(q(t)\) for the charging process is given in Fig. 27-16a.

The derivative of \(q(t)\) is the current \(i(t)\) charging the capacitor:
\[
\begin{equation*}
i=\frac{d q}{d t}=\left(\frac{\mathscr{E}}{R}\right) e^{-t / R C} \quad(\text { charging a capacitor }) \tag{27-34}
\end{equation*}
\]


Figure 27-15 When switch S is closed on \(a\), the capacitor is charged through the resistor. When the switch is afterward closed on \(b\), the capacitor discharges through the resistor.


Figure 27-16 (a) A plot of Eq. 27-33, which shows the buildup of charge on the capacitor of Fig. 27-15. (b) A plot of Eq. 27-34, which shows the decline of the charging current in the circuit of Fig. 27-15. The curves are plotted for \(R=2000 \Omega, C=1 \mu \mathrm{~F}\), and \(\mathscr{E}=10 \mathrm{~V}\); the small triangles represent successive intervals of one time constant \(\tau\).

A plot of \(i(t)\) for the charging process is given in Fig. 27-16b. Note that the current has the initial value \(\mathscr{E} / R\) and that it decreases to zero as the capacitor becomes fully charged.

A capacitor that is being charged initially acts like ordinary connecting wire relative to the charging current. A long time later, it acts like a broken wire.

By combining Eq. 25-1 \((q=C V)\) and Eq. 27-33, we find that the potential difference \(V_{C}(t)\) across the capacitor during the charging process is
\[
\begin{equation*}
V_{C}=\frac{q}{C}=\mathscr{E}\left(1-e^{-t / R C}\right) \quad \text { (charging a capacitor). } \tag{27-35}
\end{equation*}
\]

This tells us that \(V_{C}=0\) at \(t=0\) and that \(V_{C}=\mathscr{E}\) when the capacitor becomes fully charged as \(t \rightarrow \infty\).

\section*{The Time Constant}

The product \(R C\) that appears in Eqs. 27-33, 27-34, and 27-35 has the dimensions of time (both because the argument of an exponential must be dimensionless and because, in fact, \(1.0 \Omega \times 1.0 \mathrm{~F}=1.0 \mathrm{~s}\) ). The product \(R C\) is called the capacitive time constant of the circuit and is represented with the symbol \(\tau\) :
\[
\begin{equation*}
\tau=R C \quad \text { (time constant). } \tag{27-36}
\end{equation*}
\]

From Eq. 27-33, we can now see that at time \(t=\tau(=R C)\), the charge on the initially uncharged capacitor of Fig. 27-15 has increased from zero to
\[
\begin{equation*}
q=C \mathscr{E}\left(1-e^{-1}\right)=0.63 C \mathscr{E} . \tag{27-37}
\end{equation*}
\]

In words, during the first time constant \(\tau\) the charge has increased from zero to \(63 \%\) of its final value \(C \mathscr{E}\). In Fig. 27-16, the small triangles along the time axes mark successive intervals of one time constant during the charging of the capacitor. The charging times for \(R C\) circuits are often stated in terms of \(\tau\). For example, a circuit with \(\tau=1 \mu\) s charges quickly while one with \(\tau=100 \mathrm{~s}\) charges much more slowly,

\section*{Discharging a Capacitor}

Assume now that the capacitor of Fig. 27-15 is fully charged to a potential \(V_{0}\) equal to the emf \(\mathscr{E}\) of the battery. At a new time \(t=0\), switch S is thrown from \(a\) to \(b\) so that the capacitor can discharge through resistance \(R\). How do the charge \(q(t)\) on the capacitor and the current \(i(t)\) through the discharge loop of capacitor and resistance now vary with time?

The differential equation describing \(q(t)\) is like Eq. 27-32 except that now, with no battery in the discharge loop, \(\mathscr{E}=0\). Thus,
\[
\begin{equation*}
R \frac{d q}{d t}+\frac{q}{C}=0 \quad \text { (discharging equation). } \tag{27-38}
\end{equation*}
\]

The solution to this differential equation is
\[
\begin{equation*}
q=q_{0} e^{-t / R C} \quad(\text { discharging a capacitor }) \tag{27-39}
\end{equation*}
\]
where \(q_{0}\left(=C V_{0}\right)\) is the initial charge on the capacitor. You can verify by substitution that Eq. 27-39 is indeed a solution of Eq. 27-38.

Equation 27-39 tells us that \(q\) decreases exponentially with time, at a rate that is set by the capacitive time constant \(\tau=R C\). At time \(t=\tau\), the capacitor's charge has been reduced to \(q_{0} e^{-1}\), or about \(37 \%\) of the initial value. Note that a greater \(\tau\) means a greater discharge time.

Differentiating Eq. 27-39 gives us the current \(i(t)\) :
\[
\begin{equation*}
i=\frac{d q}{d t}=-\left(\frac{q_{0}}{R C}\right) e^{-t / R C} \quad \text { (discharging a capacitor) } \tag{27-40}
\end{equation*}
\]

This tells us that the current also decreases exponentially with time, at a rate set by \(\tau\). The initial current \(i_{0}\) is equal to \(q_{0} / R C\). Note that you can find \(i_{0}\) by simply applying the loop rule to the circuit at \(t=0\); just then the capacitor's initial potential \(V_{0}\) is connected across the resistance \(R\), so the current must be \(i_{0}=V_{0} / R=\) \(\left(q_{0} / C\right) / R=q_{0} / R C\). The minus sign in Eq. 27-40 can be ignored; it merely means that the capacitor's charge \(q\) is decreasing.

\section*{Derivation of Eq. 27-33}

To solve Eq. 27-32, we first rewrite it as
\[
\begin{equation*}
\frac{d q}{d t}+\frac{q}{R C}=\frac{\mathscr{E}}{R} \tag{27-41}
\end{equation*}
\]

The general solution to this differential equation is of the form
\[
\begin{equation*}
q=q_{\mathrm{p}}+K e^{-a t} \tag{27-42}
\end{equation*}
\]
where \(q_{\mathrm{p}}\) is a particular solution of the differential equation, \(K\) is a constant to be evaluated from the initial conditions, and \(a=1 / R C\) is the coefficient of \(q\) in Eq. 27-41. To find \(q_{\mathrm{p}}\), we set \(d q / d t=0\) in Eq. 27-41 (corresponding to the final condition of no further charging), let \(q=q_{\mathrm{p}}\), and solve, obtaining
\[
\begin{equation*}
q_{\mathrm{p}}=C \mathscr{E} \tag{27-43}
\end{equation*}
\]

To evaluate \(K\), we first substitute this into Eq. 27-42 to get
\[
q=C \mathscr{E}+K e^{-a t}
\]

Then substituting the initial conditions \(q=0\) and \(t=0\) yields
\[
0=C \mathscr{E}+K
\]
or \(K=-C \mathscr{E}\). Finally, with the values of \(q_{\mathrm{p}}, a\), and \(K\) inserted, Eq. 27-42 becomes
\[
q=C \mathscr{E}-C \mathscr{E} e^{-t / R C}
\]
which, with a slight modification, is Eq. 27-33.

\section*{Checkpoint 5}

The table gives four sets of values for the circuit elements in Fig. 27-15. Rank the sets according to (a) the initial current (as the switch is closed on \(a\) ) and (b) the time required for the current to decrease to half its initial value, greatest first.
\begin{tabular}{lrrcr}
\hline & 1 & 2 & 3 & 4 \\
\hline \(\mathscr{E}(\mathrm{~V})\) & 12 & 12 & 10 & 10 \\
\(R(\Omega)\) & 2 & 3 & 10 & 5 \\
\(C(\mu \mathrm{~F})\) & 3 & 2 & 0.5 & 2 \\
\hline
\end{tabular}

\section*{Sample Problem 27.05 Discharging an \(R C\) circuit to avoid a fire in a race car pit stop}

As a car rolls along pavement, electrons move from the pavement first onto the tires and then onto the car body. The car stores this excess charge and the associated electric potential energy as if the car body were one plate of a capacitor and the pavement were the other plate (Fig. 27-17a). When the car stops, it discharges its excess charge and energy through the tires, just as a capacitor can discharge through a resistor. If a conducting object comes within a few centimeters of the car before the car is discharged, the remaining energy can be suddenly transferred to a spark between the car and the object. Suppose the conducting object is a fuel dispenser. The spark will not ignite the fuel and cause a fire if the spark energy is less than the critical value \(U_{\text {fire }}=50 \mathrm{~mJ}\).

When the car of Fig. 27-17a stops at time \(t=0\), the carground potential difference is \(V_{0}=30 \mathrm{kV}\). The car-ground capacitance is \(C=500 \mathrm{pF}\), and the resistance of each tire is \(R_{\text {tire }}=100 \mathrm{G} \Omega\). How much time does the car take to discharge through the tires to drop below the critical value \(U_{\text {fire }}\) ?

\section*{KEY IDEAS}
(1) At any time \(t\), a capacitor's stored electric potential energy \(U\) is related to its stored charge \(q\) according to Eq. 25-21 ( \(U=\) \(q^{2} / 2 C\) ). (2) While a capacitor is discharging, the charge decreases with time according to Eq. 27-39 \(\left(q=q_{0} e^{-t / R C}\right)\).
Calculations: We can treat the tires as resistors that are connected to one another at their tops via the car body and at their bottoms via the pavement. Figure \(27-17 b\) shows how the four resistors are connected in parallel across the car's capacitance, and Fig. 27-17c shows their equivalent resistance \(R\). From Eq. \(27-24, R\) is given by
\[
\frac{1}{R}=\frac{1}{R_{\text {tire }}}+\frac{1}{R_{\text {tire }}}+\frac{1}{R_{\text {tire }}}+\frac{1}{R_{\text {tire }}}
\]
or
\[
\begin{equation*}
R=\frac{R_{\text {tire }}}{4}=\frac{100 \times 10^{9} \Omega}{4}=25 \times 10^{9} \Omega \tag{27-44}
\end{equation*}
\]

When the car stops, it discharges its excess charge and energy through \(R\). We now use our two Key Ideas to analyze the discharge. Substituting Eq. 27-39 into Eq. 25-21 gives
\[
\begin{align*}
U & =\frac{q^{2}}{2 C}=\frac{\left(q_{0} e^{-t / R C}\right)^{2}}{2 C} \\
& =\frac{q_{0}^{2}}{2 C} e^{-2 t / R C} . \tag{27-45}
\end{align*}
\]

From Eq. 25-1 \((q=C V)\), we can relate the initial charge \(q_{0}\) on the car to the given initial potential difference \(V_{0}: q_{0}=\) \(C V_{0}\). Substituting this equation into Eq. 27-45 brings us to
\[
U=\frac{\left(C V_{0}\right)^{2}}{2 C} e^{-2 t / R C}=\frac{C V_{0}^{2}}{2} e^{-2 t / R C},
\]


Figure 27-17 (a) A charged car and the pavement acts like a capacitor that can discharge through the tires. (b) The effective circuit of the car-pavement capacitor, with four tire resistances \(R_{\text {tire }}\) connected in parallel. (c) The equivalent resistance \(R\) of the tires. (d) The electric potential energy \(U\) in the car-pavement capacitor decreases during discharge.

or
\[
\begin{equation*}
e^{-2 t / R C}=\frac{2 U}{C V_{0}^{2}} \tag{27-46}
\end{equation*}
\]

Taking the natural logarithms of both sides, we obtain
\[
\begin{align*}
& -\frac{2 t}{R C}=\ln \left(\frac{2 U}{C V_{0}^{2}}\right), \\
t & =-\frac{R C}{2} \ln \left(\frac{2 U}{C V_{0}^{2}}\right) \tag{27-47}
\end{align*}
\]

Substituting the given data, we find that the time the car takes to discharge to the energy level \(U_{\text {fire }}=50 \mathrm{~mJ}\) is
\[
\begin{aligned}
t= & -\frac{\left(25 \times 10^{9} \Omega\right)\left(500 \times 10^{-12} \mathrm{~F}\right)}{2} \\
& \times \ln \left(\frac{2\left(50 \times 10^{-3} \mathrm{~J}\right)}{\left(500 \times 10^{-12} \mathrm{~F}\right)\left(30 \times 10^{3} \mathrm{~V}\right)^{2}}\right)
\end{aligned}
\]
\[
=9.4 \mathrm{~s}
\]
(Answer)
Fire or no fire: This car requires at least 9.4 s before fuel can be brought safely near it. A pit crew cannot wait that long. So the tires include some type of conducting material (such as carbon black) to lower the tire resistance and thus increase the discharge rate. Figure 27-17d shows the stored energy \(U\) versus time \(t\) for tire resistances of \(R=100 \mathrm{G} \Omega\) (our value) and \(R=\) \(10 \mathrm{G} \Omega\). Note how much more rapidly a car discharges to level \(U_{\text {fire }}\) with the lower \(R\) value.

\section*{\& Review \& Summary}

Emf An emf device does work on charges to maintain a potential difference between its output terminals. If \(d W\) is the work the device does to force positive charge \(d q\) from the negative to the positive terminal, then the \(\mathbf{e m f}\) (work per unit charge) of the device is
\[
\begin{equation*}
\mathscr{E}=\frac{d W}{d q} \quad(\text { definition of } \mathscr{E}) \tag{27-1}
\end{equation*}
\]

The volt is the SI unit of emf as well as of potential difference. An ideal emf device is one that lacks any internal resistance. The potential difference between its terminals is equal to the emf. A real emf device has internal resistance. The potential difference between its terminals is equal to the emf only if there is no current through the device.
Analyzing Circuits The change in potential in traversing a resistance \(R\) in the direction of the current is \(-i R\); in the opposite direction it is \(+i R\) (resistance rule). The change in potential in traversing an ideal emf device in the direction of the emf arrow is \(+\mathscr{E}\); in the opposite direction it is \(-\mathscr{E}\) (emf rule). Conservation of energy leads to the loop rule:

Loop Rule. The algebraic sum of the changes in potential encountered in a complete traversal of any loop of a circuit must be zero.
Conservation of charge gives us the junction rule:
Junction Rule. The sum of the currents entering any junction must be equal to the sum of the currents leaving that junction.

Single-Loop Circuits The current in a single-loop circuit containing a single resistance \(R\) and an emf device with emf \(\mathscr{E}\) and internal resistance \(r\) is
\[
\begin{equation*}
i=\frac{\mathscr{E}}{R+r}, \tag{27-4}
\end{equation*}
\]
which reduces to \(i=\mathscr{E} / R\) for an ideal emf device with \(r=0\).
Power When a real battery of emf \(\mathscr{E}\) and internal resistance \(r\) does work on the charge carriers in a current \(i\) through the battery, the rate \(P\) of energy transfer to the charge carriers is
\[
\begin{equation*}
P=i V \tag{27-14}
\end{equation*}
\]

\section*{Questions}

1 (a) In Fig. 27-18a, with \(R_{1}>R_{2}\), is the potential difference


Figure 27-18 Questions 1 and 2.
where \(V\) is the potential across the terminals of the battery. The rate \(P_{r}\) at which energy is dissipated as thermal energy in the battery is
\[
\begin{equation*}
P_{r}=i^{2} r . \tag{27-16}
\end{equation*}
\]

The rate \(P_{\text {emf }}\) at which the chemical energy in the battery changes is
\[
\begin{equation*}
P_{\mathrm{emf}}=i \mathscr{C} . \tag{27-17}
\end{equation*}
\]

Series Resistances When resistances are in series, they have the same current. The equivalent resistance that can replace a series combination of resistances is
\[
\begin{equation*}
R_{\mathrm{eq}}=\sum_{j=1}^{n} R_{j} \quad(n \text { resistances in series }) \tag{27-7}
\end{equation*}
\]

Parallel Resistances When resistances are in parallel, they have the same potential difference. The equivalent resistance that can replace a parallel combination of resistances is given by
\[
\begin{equation*}
\frac{1}{R_{\mathrm{eq}}}=\sum_{j=1}^{n} \frac{1}{R_{j}} \quad(n \text { resistances in parallel). } \tag{27-24}
\end{equation*}
\]
\(\boldsymbol{R C}\) Circuits When an emf \(\mathscr{E}\) is applied to a resistance \(R\) and capacitance \(C\) in series, as in Fig. 27-15 with the switch at \(a\), the charge on the capacitor increases according to
\[
\begin{equation*}
q=C \mathscr{E}\left(1-e^{-t / R C}\right) \quad \text { (charging a capacitor) } \tag{27-33}
\end{equation*}
\]
in which \(C_{\mathscr{E}}^{\mathscr{E}}=q_{0}\) is the equilibrium (final) charge and \(R C=\tau\) is the capacitive time constant of the circuit. During the charging, the current is
\[
\begin{equation*}
i=\frac{d q}{d t}=\left(\frac{\mathscr{E}}{R}\right) e^{-t / R C} \quad \text { (charging a capacitor). } \tag{27-34}
\end{equation*}
\]

When a capacitor discharges through a resistance \(R\), the charge on the capacitor decays according to
\[
\begin{equation*}
q=q_{0} e^{-t / R C} \quad \text { (discharging a capacitor). } \tag{27-39}
\end{equation*}
\]

During the discharging, the current is
\[
\begin{equation*}
i=\frac{d q}{d t}=-\left(\frac{q_{0}}{R C}\right) e^{-t / R C} \quad \text { (discharging a capacitor). } \tag{27-40}
\end{equation*}
\]
across \(R_{2}\) more than, less than, or equal to that across \(R_{1}\) ? (b) Is the current through resistor \(R_{2}\) more than, less than, or equal to that through resistor \(R_{1}\) ?
2 (a) In Fig. 27-18a, are resistors \(R_{1}\) and \(R_{3}\) in series? (b) Are resistors \(R_{1}\) and \(R_{2}\) in parallel? (c) Rank the equivalent resistances of the four circuits shown in Fig. 27-18, greatest first.
3 You are to connect resistors \(R_{1}\) and \(R_{2}\), with \(R_{1}>R_{2}\), to a battery, first individually, then in series, and then in parallel. Rank those arrangements according to the amount of current through the battery, greatest first.
4 In Fig. 27-19, a circuit consists of a battery and two uniform resistors, and the section lying along an \(x\) axis is divided into five segments of equal lengths. (a) Assume that \(R_{1}=R_{2}\) and rank the segments according to the magnitude of the average electric


Figure 27-19 Question 4.
field in them, greatest first. (b) Now assume that \(R_{1}>R_{2}\) and then again rank the segments. (c) What is the direction of the electric field along the \(x\) axis?

5 For each circuit in Fig. 27-20, are the resistors connected in series, in parallel, or neither?


Figure 27-20 Question 5.

6 Res-monster maze. In Fig. 27-21, all the resistors have a resistance of \(4.0 \Omega\) and all the (ideal) batteries have an emf of 4.0 V . What is the current through resistor \(R\) ? (If you can find the proper loop through this maze, you can answer the question with a few seconds of mental calculation.)


Figure 27-21 Question 6.

7 A resistor \(R_{1}\) is wired to a battery, then resistor \(R_{2}\) is added in series. Are (a) the potential difference across \(R_{1}\) and (b) the current \(i_{1}\) through \(R_{1}\) now more than, less than, or the same as previously? (c) Is the equivalent resistance \(R_{12}\) of \(R_{1}\) and \(R_{2}\) more than, less than, or equal to \(R_{1}\) ?

8 What is the equivalent resistance of three resistors, each of resistance \(R\), if they are connected to an ideal battery (a) in series with one another and (b) in parallel with one another? (c) Is the potential difference across the series arrangement greater than, less than, or equal to that across the parallel arrangement?
9 Two resistors are wired to a battery. (a) In which arrangement, parallel or series, are the potential differences across each resistor and across the equivalent resistance all equal? (b) In which arrangement are the currents through each resistor and through the equivalent resistance all equal?
10 Cap-monster maze. In Fig. 27-22, all the capacitors have a capacitance of \(6.0 \mu \mathrm{~F}\), and all the batteries have an emf of 10 V . What is the charge on capacitor \(C\) ? (If you can find the proper loop through this maze, you can answer the question with a few seconds of mental calculation.)


Figure 27-22 Question 10.
11 Initially, a single resistor \(R_{1}\) is wired to a battery. Then resistor \(R_{2}\) is added in parallel. Are (a) the potential difference across \(R_{1}\) and (b) the current \(i_{1}\) through \(R_{1}\) now more than, less than, or the same as previously? (c) Is the equivalent resistance \(R_{12}\) of \(R_{1}\) and \(R_{2}\) more than, less than, or equal to \(R_{1}\) ? (d) Is the total current through \(R_{1}\) and \(R_{2}\) together more than, less than, or equal to the current through \(R_{1}\) previously?
12 After the switch in Fig. 27-15 is closed on point \(a\), there is current \(i\) through resistance \(R\). Figure 27-23 gives that current for four sets of values of \(R\) and capacitance \(C\) : (1) \(R_{0}\) and \(C_{0}\), (2) \(2 R_{0}\) and \(C_{0}\), (3) \(R_{0}\) and \(2 C_{0}\), (4) \(2 R_{0}\) and \(2 C_{0}\). Which set goes with which curve?

Figure 27-23 Question 12.


13 Figure 27-24 shows three sections of circuit that are to be connected in turn to the same battery via a switch as in Fig. 27-15. The resistors are all identical, as are the capacitors. Rank the sections according to (a) the final (equilibrium) charge on the capacitor and (b) the time required for the capacitor to reach \(50 \%\) of its final charge, greatest first.


Figure 27-24 Question 13.

\section*{8roblems}
\begin{tabular}{lllll|l} 
co & Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign & & \\
SSIM & Worked-out solution available in Student Solutions Manual & WWW & Worked-out solution is at & \\
\begin{tabular}{llll} 
- & http://www.wiley.com/college/halliday
\end{tabular} \\
\hline
\end{tabular}

Module 27-1 Single-Loop Circuits \(\bullet 1\) ssm www In Fig. 27-25, the ideal batteries have emfs \(\mathscr{E}_{1}=12 \mathrm{~V}\) and \(\mathscr{C}_{2}=6.0 \mathrm{~V}\). What are (a) the current, the dissipation rate in (b) resistor 1 (4.0 \(\Omega\) ) and (c) resistor \(2(8.0 \Omega)\), and the energy transfer rate in (d) battery 1 and (e) battery 2 ? Is energy being supplied or absorbed by (f) battery 1 and (g) battery 2 ?
-2 In Fig. 27-26, the ideal batteries have emfs \(\mathscr{E}_{1}=150 \mathrm{~V}\) and \(\mathscr{E}_{2}=50 \mathrm{~V}\) and the resistances are \(R_{1}=3.0 \Omega\) and \(R_{2}=2.0 \Omega\). If the potential at \(P\) is 100 V , what is it at \(Q\) ?
-3 ILW A car battery with a 12 V emf and an internal resistance of \(0.040 \Omega\) is being charged with a current of 50 A . What are (a) the potential difference \(V\) across the terminals, (b) the rate \(P_{r}\) of energy dissipation inside the battery, and (c) the rate \(P_{\text {emf }}\) of energy conversion to chemical form? When the battery is used to supply 50 A to the starter motor, what are (d) \(V\) and (e) \(P_{r}\) ?
-4 © Figure 27-27 shows a circuit of four resistors that are connected to a larger circuit. The graph below the circuit shows the electric potential \(V(x)\) as a function of position \(x\) along the lower branch of the circuit, through resistor 4 ; the potential \(V_{A}\) is 12.0 V . The graph above the circuit shows the electric potential \(V(x)\) versus position \(x\) along the upper branch of the circuit, through resistors 1,2 , and 3 ; the potential differences are \(\Delta V_{B}=2.00 \mathrm{~V}\) and \(\Delta V_{C}=5.00 \mathrm{~V}\). Resistor 3 has a resistance of \(200 \Omega\). What is the resistance of (a) resistor 1 and (b) resistor 2?

Figure 27-27
Problem 4.

-5 A 5.0 A current is set up in a circuit for 6.0 min by a rechargeable battery with a 6.0 V emf. By how much is the chemical energy of the battery reduced?


Figure 27-25
Problem 1.


Figure 27-26 Problem 2.
-9 (a) In electron-volts, how much work does an ideal battery with a 12.0 V emf do on an electron that passes through the battery from the positive to the negative terminal? (b) If \(3.40 \times 10^{18}\) electrons pass through each second, what is the power of the battery in watts?
\(\bullet 10\) (a) In Fig. 27-28, what value must \(R\) have if the current in the circuit is to be 1.0 mA ? Take \(\mathscr{E}_{1}=2.0\) \(\mathrm{V}, \mathscr{E}_{2}=3.0 \mathrm{~V}\), and \(r_{1}=r_{2}=3.0 \Omega\). (b) What is the rate at which thermal energy appears in \(R\) ?
\(\bullet 11\) SSM In Fig. 27-29, circuit section \(A B\) absorbs energy at a rate of 50 W when current \(i=1.0 \mathrm{~A}\) through it is in the indicated direction. Resistance \(R=2.0 \Omega\). (a) What is the potential difference between \(A\) and \(B\) ? Emf device \(X\) lacks


Figure 27-28 Problem 10.


Figure 27-29 Problem 11. internal resistance. (b) What is its emf? (c) Is point \(B\) connected to the positive terminal of \(X\) or to the negative terminal?
- 12 Figure 27-30 shows a resistor of resistance \(R=6.00 \Omega\) connected to an ideal battery of emf \(\mathscr{E}=12.0 \mathrm{~V}\) by means of two copper wires. Each wire has length 20.0 cm and radius 1.00 mm . In dealing with such circuits in this chapter, we generally neglect the potential differences along the wires and the transfer of energy to thermal energy in them. Check the validity of this neglect for the circuit of


Figure 27-30
Problem 12. Fig. 27-30: What is the potential difference across (a) the resistor and (b) each of the two sections of wire? At what rate is energy lost to thermal energy in (c) the resistor and (d) each section of wire?
-•13 A 10-km-long underground cable extends east to west and consists of two parallel wires, each of which has resistance \(13 \Omega / \mathrm{km}\). An electrical short develops at distance \(x\) from the west end when
a conducting path of resistance \(R\) connects the wires (Fig. 27-31). The resistance of the wires and the short is then \(100 \Omega\) when measured from the east end and \(200 \Omega\) when measured from the west end. What are


Figure 27-31 Problem 13. (a) \(x\) and (b) \(R\) ?
\(\bullet 14\) © In Fig. 27-32a, both batteries have \(\mathrm{emf}_{\mathscr{E}} \mathscr{E}=1.20 \mathrm{~V}\) and the external resistance \(R\) is a variable resistor. Figure 27-32b gives the electric potentials \(V\) between the terminals of each battery as functions of \(R\) : Curve 1 corresponds to battery 1 , and curve 2 corresponds to battery 2 . The horizontal scale is set by \(R_{s}=0.20 \Omega\). What is the internal resistance of (a) battery 1 and (b) battery 2 ?


Figure 27-32 Problem 14.
-•15 ILW The current in a single-loop circuit with one resistance \(R\) is 5.0 A. When an additional resistance of \(2.0 \Omega\) is inserted in series with \(R\), the current drops to 4.0 A . What is \(R\) ?
\(\cdots 16\) A solar cell generates a potential difference of 0.10 V when a \(500 \Omega\) resistor is connected across it, and a potential difference of 0.15 V when a \(1000 \Omega\) resistor is substituted. What are the (a) internal resistance and (b) emf of the solar cell? (c) The area of the cell is \(5.0 \mathrm{~cm}^{2}\), and the rate per unit area at which it receives energy from light is \(2.0 \mathrm{~mW} / \mathrm{cm}^{2}\). What is the efficiency of the cell for converting light energy to thermal energy in the \(1000 \Omega\) external resistor?
\(\overbrace{0} 17\) SSM In Fig. 27-33, battery 1 has emf \(\mathscr{E}_{1}=12.0 \mathrm{~V}\) and internal resistance \(r_{1}=\) \(0.016 \Omega\) and battery 2 has emf \(\mathscr{E}_{2}=12.0 \mathrm{~V}\) and internal resistance \(r_{2}=0.012 \Omega\). The batteries are connected in series with an external resistance \(R\). (a) What \(R\) value makes the terminal-to-terminal potential difference of one of the batteries zero? (b) Which


Figure 27-33 Problem 17. battery is that?

\section*{Module 27-2 Multiloop Circuits}
-18 In Fig. 27-9, what is the potential difference \(V_{d}-V_{c}\) between points \(d\) and \(c\) if \(\mathscr{C}_{1}=4.0 \mathrm{~V}, \mathscr{E}_{2}=1.0 \mathrm{~V}, R_{1}=R_{2}=10 \Omega\), and \(R_{3}=\) \(5.0 \Omega\), and the battery is ideal?
-19 A total resistance of \(3.00 \Omega\) is to be produced by connecting an unknown resistance to a \(12.0 \Omega\) resistance. (a) What must be the value of the unknown resistance, and (b) should it be connected in series or in parallel?
-20 When resistors 1 and 2 are connected in series, the equivalent resistance is \(16.0 \Omega\). When they are connected in parallel, the equivalent resistance is \(3.0 \Omega\). What are (a) the smaller resistance and (b) the larger resistance of these two resistors?
-21 Four \(18.0 \Omega\) resistors are connected in parallel across a 25.0 V ideal battery. What is the current through the battery?
-22 Figure 27-34 shows five \(5.00 \Omega\) resistors. Find the equivalent resistance between points (a) \(F\) and \(H\) and (b) \(F\) and \(G\). (Hint: For each pair of points, imagine that a battery is connected across the pair.)
-23 In Fig. 27-35, \(R_{1}=100 \Omega, R_{2}=\) \(50 \Omega\), and the ideal batteries have emfs \(\mathscr{E}_{1}=6.0 \mathrm{~V}, \mathscr{E}_{2}=5.0 \mathrm{~V}\), and \(\mathscr{E}_{3}=4.0 \mathrm{~V}\). Find (a) the current in resistor 1, (b) the current in resistor 2, and (c) the potential difference between points \(a\) and \(b\).
-24 In Fig. 27-36, \(R_{1}=R_{2}=4.00 \Omega\) and \(R_{3}=2.50 \Omega\). Find the equivalent resistance between points \(D\) and \(E\). (Hint: Imagine that a battery is connected across those points.)
-25 SSM Nine copper wires of length \(l\) and diameter \(d\) are connected in parallel to form a single composite conductor of resistance \(R\). What must be the diameter \(D\) of a single copper wire of length \(l\) if it is to have the same resistance?
-026 Figure 27-37 shows a battery connected across a uniform resistor \(R_{0}\). A sliding contact can move across the resistor from \(x=0\) at the left to \(x=10 \mathrm{~cm}\) at the right. Moving the contact changes how much resistance is to the left of the contact and how much is to the right. Find the rate at which energy is dissipated in resistor \(R\) as a function of \(x\). Plot the function for \(\mathscr{E}=50 \mathrm{~V}, R=2000 \Omega\), and \(R_{0}=100 \Omega\).
\(\because 27\) Side flash. Figure 27-38 indicates one reason no one should stand under a tree during a lightning storm. If lightning comes down the side of the tree, a portion can jump over to the person, especially if the current on the tree reaches a dry region on the bark and thereafter must


Figure 27-34 Problem 22.


Figure 27-35 Problem 23.


Figure 27-36 Problem 24.


Figure 27-37 Problem 26.


Figure 27-38 Problem 27. travel through air to reach the ground. In the figure, part of the lightning jumps through distance \(d\) in air and then travels through the person (who has negligible resistance relative to that of air because of the highly conducting salty fluids within the body). The rest of the current travels through air alongside the tree, for a distance \(h\). If \(d / h=0.400\) and the total current is \(I=5000 \mathrm{~A}\), what is the current through the person?
\(\bullet 28\) The ideal battery in Fig. 27-39a has emf \(\mathscr{E}=6.0\) V. Plot 1 in Fig. 27-39b gives the electric potential difference \(V\) that can appear across resistor 1 versus the current \(i\) in that resistor when the resistor
is individually tested by putting a variable potential across it. The scale of the \(V\) axis is set by \(V_{s}=18.0 \mathrm{~V}\), and the scale of the \(i\) axis is set by \(i_{s}=3.00 \mathrm{~mA}\). Plots 2 and 3 are similar plots for resistors 2 and 3 , respectively, when they are individually tested by putting a variable potential across them. What is the current in resistor 2 in the circuit of Fig. 27-39a?


Figure 27-39 Problem 28.
-229 In Fig. 27-40, \(R_{1}=6.00 \Omega\), \(R_{2}=18.0 \Omega\), and the ideal battery has emf \(\mathscr{E}=12.0 \mathrm{~V}\). What are the (a) size and (b) direction (left or right) of current \(i_{1}\) ? (c) How much energy is dissipated by all four resistors in 1.00 min ?
-•30 ©0 In Fig. 27-41, the ideal batteries have emfs \(\mathscr{E}_{1}=10.0 \mathrm{~V}\) and \(\mathscr{E}_{2}=0.500 \mathscr{E}_{1}\), and the resistances are each \(4.00 \Omega\). What is the current in (a) resistance 2 and (b) resistance 3 ?
\(\bullet 31\) SSm eo In Fig. 27-42, the ideal batteries have emfs \(\mathscr{E}_{1}=5.0 \mathrm{~V}\) and \(\mathscr{E}_{2}=12 \mathrm{~V}\), the resistances are each \(2.0 \Omega\), and the potential is defined to be zero at the grounded point of the circuit. What are potentials (a) \(V_{1}\) and (b) \(V_{2}\) at the indicated points?
-032 Both batteries in Fig. 27-43a are ideal. Emf \(\mathscr{E}_{1}\) of battery 1 has a fixed value, but emf \(\mathscr{E}_{2}\) of battery 2 can be varied between 1.0 V and 10 V. The plots in Fig. 27-43b give the currents through the two batteries as a function of \(\mathscr{E}_{2}\). The vertical scale is set by \(i_{s}=0.20 \mathrm{~A}\). You must decide which plot corresponds to which battery, but for both plots, a negative current occurs when the direction of the current through the
(a)


\(\mathscr{E}_{2}(\mathrm{~V})\)
(b)
b)
ure 27-43 Problem 32.


Figure 27-42 Problem 31.

Figure 27-41 Problems 30, 41, and 88.
battery is opposite the direction of that battery's emf. What are (a) emf \(\mathscr{E}_{1}\), (b) resistance \(R_{1}\), and (c) resistance \(R_{2}\) ?
-•33 ©0 In Fig. 27-44, the current in resistance 6 is \(i_{6}=1.40 \mathrm{~A}\) and the resistances are \(R_{1}=R_{2}=R_{3}=2.00 \Omega, R_{4}=16.0 \Omega, R_{5}=\) \(8.00 \Omega\), and \(R_{6}=4.00 \Omega\). What is the emf of the ideal battery?


Figure 27-44 Problem 33.
-•34 The resistances in Figs. 27-45a and \(b\) are all \(6.0 \Omega\), and the batteries are ideal 12 V batteries. (a) When switch S in Fig. 27-45a is closed, what is the change in the electric potential \(V_{1}\) across resistor 1 , or does \(V_{1}\) remain the same? (b) When switch S in Fig. 27-45b is closed, what is the change in \(V_{1}\) across resistor 1 , or does \(V_{1}\) remain the same?


Figure 27-45 Problem 34.
-•35 ©0 In Fig. 27-46, \(\mathscr{E}=12.0 \mathrm{~V}\), \(R_{1}=2000 \Omega, \quad R_{2}=3000 \Omega\), and \(R_{3}=4000 \Omega\). What are the potential differences (a) \(V_{A}-V_{B}\), (b) \(V_{B}-V_{C}\), (c) \(V_{C}-V_{D}\), and (d) \(V_{A}-V_{C}\) ?
\(\bullet 36\) ©० In Fig. \(27-47, \mathscr{E}_{1}=6.00 \mathrm{~V}\), \(\mathscr{E}_{2}=12.0 \mathrm{~V}, R_{1}=100 \Omega, R_{2}=200 \Omega\), and \(R_{3}=300 \Omega\). One point of the circuit is grounded \((V=0)\). What are the (a) size and (b) direction (up or down) of the current through resistance 1 , the (c) size and (d) direction (left or right) of the current through resistance 2 , and the (e) size and (f) direction of the current through resistance 3? (g) What is the electric potential at point \(A\) ?
-.37 In Fig. 27-48, the resistances are \(R_{1}=2.00 \Omega, R_{2}=5.00 \Omega\), and the battery is ideal. What value of \(R_{3}\) maximizes the dissipation rate in resistance 3?
-•38 Figure 27-49 shows a section of a circuit. The resistances are \(R_{1}=2.0\) \(\Omega, R_{2}=4.0 \Omega\), and \(R_{3}=6.0 \Omega\), and the indicated current is \(i=6.0 \mathrm{~A}\). The electric potential difference between points \(A\) and \(B\) that connect the section to the rest of the circuit is \(V_{A}-V_{B}=78 \mathrm{~V}\). (a) Is the device represented by "Box" absorbing or providing energy to the circuit, and (b) at what rate?


Figure 27-46 Problem 35.


Figure 27-47 Problem 36.


Figure 27-48 Problems 37 and 98.


Figure 27-49 Problem 38.
-039 60 In Fig. 27-50, two batteries with an emf \(\mathscr{E}=12.0 \mathrm{~V}\) and an internal resistance \(r=0.300 \Omega\) are connected in parallel across a resistance \(R\). (a) For what value of \(R\) is the dissipation rate in the resistor a maximum? (b) What is that maximum?
-०40 © Two identical batteries of emf \(\mathscr{E}=\) 12.0 V and internal resistance \(r=0.200 \Omega\) are to be connected to an external resistance \(R\), either in parallel (Fig. 27-50) or in series (Fig. 27-51). If \(R=2.00 r\), what is the current \(i\) in the external resistance in the (a) parallel and (b) series arrangements? (c) For which arrangement is \(i\) greater? If \(R=\) \(r / 2.00\), what is \(i\) in the external resistance in the (d) parallel arrangement and (e) series arrangement? (f) For which arrangement is \(i\) greater now?
\({ }^{\bullet} 41\) In Fig. 27-41, \(\mathscr{E}_{1}=3.00 \mathrm{~V}, \mathscr{E}_{2}=\) \(1.00 \mathrm{~V}, R_{1}=4.00 \Omega, R_{2}=2.00 \Omega, R_{3}=\) \(5.00 \Omega\), and both batteries are ideal.


Figure 27-51 Problem 40. What is the rate at which energy is dissipated in (a) \(R_{1}\), (b) \(R_{2}\), and (c) \(R_{3}\) ? What is the power of (d) battery 1 and (e) battery 2?
-.42 In Fig. 27-52, an array of \(n\) parallel resistors is connected in series to a resistor and an ideal battery. All the resistors have the same resistance. If an identical resistor were added in parallel to the parallel array, the current through the battery would


Figure 27-52 Problem 42. change by \(1.25 \%\). What is the value of \(n\) ?
-•43 You are given a number of \(10 \Omega\) resistors, each capable of dissipating only 1.0 W without being destroyed. What is the minimum number of such resistors that you need to combine in series or in parallel to make a \(10 \Omega\) resistance that is capable of dissipating at least 5.0 W ?
\(\because 44\) © In Fig. 27-53, \(R_{1}=100 \Omega\), \(R_{2}=R_{3}=50.0 \Omega, R_{4}=75.0 \Omega\), and the ideal battery has emf \(\mathscr{E}=6.00 \mathrm{~V}\). (a) What is the equivalent resistance? What is \(i\) in (b) resistance 1 , (c) resistance 2 , (d) resistance 3 , and (e) resistance 4 ?
-•45 ILW In Fig. 27-54, the resistances are \(R_{1}=1.0 \quad \Omega\) and \(R_{2}=2.0 \Omega\), and the ideal batteries have emfs \(\mathscr{E}_{1}=2.0 \mathrm{~V}\) and \(\mathscr{E}_{2}=\mathscr{E}_{3}=4.0 \mathrm{~V}\). What are the (a) size and (b) direction (up or down) of the current in battery 1 , the (c) size and (d) direction of the current in battery 2, and the (e) size


Figure 27-53
Problems 44 and 48.


Figure 27-54 Problem 45. and (f) direction of the current in battery 3 ? (g) What is the potential difference \(V_{a}-V_{b}\) ?
-046 In Fig. 27-55a, resistor 3 is a variable resistor and the ideal battery has emf \(\mathscr{E}=12 \mathrm{~V}\). Figure \(27-55 b\) gives the current \(i\)
through the battery as a function of \(R_{3}\). The horizontal scale is set by \(R_{3 s}=20 \Omega\). The curve has an asymptote of 2.0 mA as \(R_{3} \rightarrow\) \(\infty\). What are (a) resistance \(R_{1}\) and (b) resistance \(R_{2}\) ?


Figure 27-55 Problem 46.
00047 SSM A copper wire of radius \(a=0.250 \mathrm{~mm}\) has an aluminum jacket of outer radius \(b=0.380 \mathrm{~mm}\). There is a current \(i=\) 2.00 A in the composite wire. Using Table 26-1, calculate the current in (a) the copper and (b) the aluminum. (c) If a potential difference \(V=12.0 \mathrm{~V}\) between the ends maintains the current, what is the length of the composite wire?
©0048 ©0 In Fig. 27-53, the resistors have the values \(R_{1}=7.00 \Omega\), \(R_{2}=12.0 \Omega\), and \(R_{3}=4.00 \Omega\), and the ideal battery's emf is \(\mathscr{E}=24.0 \mathrm{~V}\). For what value of \(R_{4}\) will the rate at which the battery transfers energy to the resistors equal (a) 60.0 W , (b) the maximum possible rate \(P_{\max }\), and (c) the minimum possible rate \(P_{\min }\) ? What are (d) \(P_{\text {max }}\) and (e) \(P_{\text {min }}\) ?

\section*{Module 27-3 The Ammeter and the Voltmeter}

००49 ILw (a) In Fig. 27-56, what current does the ammeter read if \(\mathscr{E}=\) 5.0 V (ideal battery), \(R_{1}=2.0 \Omega, R_{2}=\) \(4.0 \Omega\), and \(R_{3}=6.0 \Omega\) ? (b) The ammeter and battery are now interchanged. Show that the ammeter reading is unchanged.
\({ }^{\circ} 50\) In Fig. 27-57, \(R_{1}=2.00 R\), the ammeter resistance is zero, and the battery is ideal. What multiple of \(\mathscr{E} / R\) gives the current in the ammeter?
© 51 In Fig. 27-58, a voltmeter of resistance \(R_{\mathrm{V}}=300 \Omega\) and an ammeter of resistance \(R_{\mathrm{A}}=3.00 \Omega\) are being used to measure a resistance \(R\) in a circuit that also contains a resistance \(R_{0}=100 \Omega\) and an ideal battery with an emf of \(\mathscr{E}=12.0 \mathrm{~V}\). Resistance \(R\) is given by \(R=V / i\), where \(V\) is the potential across \(R\) and \(i\) is the ammeter reading. The voltmeter reading is \(V^{\prime}\), which is \(V\) plus the potential difference


Figure 27-56 Problem 49.


Figure 27-57 Problem 50.


Figure 27-58 Problem 51. across the ammeter. Thus, the ratio of the two meter readings is not \(R\) but only an apparent resistance \(R^{\prime}=V^{\prime} / i\). If \(R=85.0 \Omega\), what are (a) the ammeter reading, (b) the voltmeter reading, and (c) \(R^{\prime}\) ? (d) If \(R_{\mathrm{A}}\) is decreased, does the difference between \(R^{\prime}\) and \(R\) increase, decrease, or remain the same?
-052 A simple ohmmeter is made by connecting a 1.50 V flashlight battery in series with a resistance \(R\) and an ammeter that
reads from 0 to 1.00 mA , as shown in Fig. 27-59. Resistance \(R\) is adjusted so that when the clip leads are shorted together, the meter deflects to its full-scale value of 1.00 mA . What external resistance across the leads results in a deflection of (a)


Figure 27-59 Problem 52. \(10.0 \%\), (b) \(50.0 \%\), and (c) \(90.0 \%\) of full scale? (d) If the ammeter has a resistance of \(20.0 \Omega\) and the internal resistance of the battery is negligible, what is the value of \(R\) ?
\(\because 53\) In Fig. 27-14, assume that \(\mathscr{E}=3.0 \mathrm{~V}, r=100 \Omega, R_{1}=250 \Omega\), and \(R_{2}=300 \Omega\). If the voltmeter resistance \(R_{\mathrm{V}}\) is \(5.0 \mathrm{k} \Omega\), what percent error does it introduce into the measurement of the potential difference across \(R_{1}\) ? Ignore the presence of the ammeter.
\(\because 54\) When the lights of a car are switched on, an ammeter in series with them reads 10.0 A and a voltmeter connected across them reads 12.0 V (Fig. \(27-60\) ). When the electric starting motor is turned on, the ammeter reading drops to 8.00 A and the lights dim somewhat. If the internal resistance of the battery is 0.0500 \(\Omega\) and that of the ammeter is negligible, what are (a) the emf of the battery and (b) the current through the starting motor when the lights are on?
\({ }^{\circ} 55\) In Fig. 27-61, \(R_{s}\) is to be adjusted in value by moving the sliding contact across it until points \(a\) and \(b\) are brought to the


Figure 27-60 Problem 54. same potential. (One tests for this condition by momentarily connecting a sensitive ammeter between \(a\) and \(b\); if these points are at the same potential, the ammeter will not deflect.) Show that when this adjustment is made, the following relation holds: \(R_{x}=R_{s} R_{2} / R_{1}\). An unknown resistance ( \(R_{x}\) ) can be measured in terms of a standard \(\left(R_{s}\right)\) using this device, which is called a Wheatstone bridge.
-056 In Fig. 27-62, a voltmeter of resistance \(R_{\mathrm{V}}=300 \Omega\) and an ammeter of resistance \(R_{\mathrm{A}}=3.00 \Omega\) are being used to measure a resistance \(R\) in a circuit that also contains a resistance \(R_{0}=100 \Omega\) and an ideal battery of emf \(\mathscr{E}=12.0 \mathrm{~V}\). Resistance \(R\) is given by \(R=V / i\), where \(V\) is the voltmeter reading and \(i\) is the current in resistance \(R\). However, the ammeter reading is not \(i\) but rather \(i^{\prime}\), which is \(i\) plus the current through the voltmeter. Thus, the ratio of the two meter


Figure 27-61 Problem 55.


Figure 27-62 Problem 56. readings is not \(R\) but only an apparent resistance \(R^{\prime}=V / i^{\prime}\). If \(R=85.0 \Omega\), what are (a) the ammeter reading, (b) the voltmeter reading, and (c) \(R^{\prime}\) ? (d) If \(R_{\mathrm{V}}\) is increased, does the difference between \(R^{\prime}\) and \(R\) increase, decrease, or remain the same?

\section*{Module 27-4 RC Circuits}
\({ }^{-57}\) Switch S in Fig. 27-63 is closed at time \(t=0\), to begin charging an initially uncharged capacitor of capacitance \(C=\) \(15.0 \mu \mathrm{~F}\) through a resistor of resistance \(R=20.0 \Omega\). At what time is the potential across the capacitor equal to that across the resistor?


Figure 27-63 Problems 57 and 96.
-58 In an \(R C\) series circuit, emf \(\mathscr{E}=12.0 \mathrm{~V}\), resistance \(R=\) \(1.40 \mathrm{M} \Omega\), and capacitance \(C=1.80 \mu \mathrm{~F}\). (a) Calculate the time constant. (b) Find the maximum charge that will appear on the capacitor during charging. (c) How long does it take for the charge to build up to \(16.0 \mu \mathrm{C}\) ?
- 59 SSm What multiple of the time constant \(\tau\) gives the time taken by an initially uncharged capacitor in an \(R C\) series circuit to be charged to \(99.0 \%\) of its final charge?
\(\bullet 60\) A capacitor with initial charge \(q_{0}\) is discharged through a resistor. What multiple of the time constant \(\tau\) gives the time the capacitor takes to lose (a) the first one-third of its charge and (b) two-thirds of its charge?
-61 ILW A \(15.0 \mathrm{k} \Omega\) resistor and a capacitor are connected in series, and then a 12.0 V potential difference is suddenly applied across them. The potential difference across the capacitor rises to 5.00 V in \(1.30 \mu \mathrm{~s}\). (a) Calculate the time constant of the circuit. (b) Find the capacitance of the capacitor.
-062 Figure 27-64 shows the circuit of a flashing lamp, like those attached to barrels at highway construction sites. The fluorescent lamp L (of negligible capacitance) is connected in parallel across the capacitor \(C\) of an \(R C\) circuit. There is a current through the lamp only when the potential difference across it reaches the breakdown volt-


Figure 27-64
Problem 62. age \(V_{\mathrm{L}}\); then the capacitor discharges completely through the lamp and the lamp flashes briefly. For a lamp with breakdown voltage \(V_{\mathrm{L}}=72.0 \mathrm{~V}\), wired to a 95.0 V ideal battery and a \(0.150 \mu \mathrm{~F}\) capacitor, what resistance \(R\) is needed for two flashes per second?
-063 SSM www In the circuit of Fig. \(27-65, \mathscr{E}=1.2 \mathrm{kV}, C=6.5 \mu \mathrm{~F}, \quad R_{1}=\) \(R_{2}=R_{3}=0.73 \mathrm{M} \Omega\). With \(C\) completely uncharged, switch S is suddenly closed (at \(t=0\) ). At \(t=0\), what are (a) current \(i_{1}\) in resistor \(1,\left(\right.\) b) current \(i_{2}\) in resistor 2 , and (c) current \(i_{3}\) in resistor 3? At \(t=\infty\) (that is, after many time constants),


Figure 27-65 Problem 63. what are (d) \(i_{1}\), (e) \(i_{2}\), and (f) \(i_{3}\) ? What is the potential difference \(V_{2}\) across resistor 2 at (g) \(t=0\) and (h) \(t=\infty\) ? (i) Sketch \(V_{2}\) versus \(t\) between these two extreme times.
\(\because 64\) A capacitor with an initial potential difference of 100 V is discharged through a resistor when a switch between them is closed at \(t=0\). At \(t=10.0 \mathrm{~s}\), the potential difference across the capacitor is 1.00 V . (a) What is the time constant of the circuit? (b) What is the potential difference across the capacitor at \(t=17.0 \mathrm{~s}\) ?
-065 ©0 In Fig. 27-66, \(R_{1}=10.0 \mathrm{k} \Omega\), \(R_{2}=15.0 \mathrm{k} \Omega, C=0.400 \mu \mathrm{~F}\), and the


Figure 27-66
Problems 65 and 99.
ideal battery has \(\operatorname{emf} \mathscr{E}=20.0 \mathrm{~V}\). First, the switch is closed a long time so that the steady state is reached. Then the switch is opened at time \(t=0\). What is the current in resistor 2 at \(t=4.00 \mathrm{~ms}\) ?
-•66 Figure 27-67 displays two circuits with a charged capacitor that is to be discharged through a resistor when a switch is closed. In Fig. 27-67a, \(R_{1}=20.0 \Omega\) and \(C_{1}=5.00\) \(\mu\) F. In Fig. 27-67b, \(R_{2}=10.0 \Omega\) and \(C_{2}=8.00 \mu \mathrm{~F}\). The ratio of the initial charges on the two capacitors is \(q_{02} / q_{01}=1.50\). At time \(t=0\), both switches are closed. At what time \(t\) do the two capacitors have the same charge?
\(\bullet 67\) The potential difference between the plates of a leaky (meaning that charge leaks from one plate to the other) \(2.0 \mu \mathrm{~F}\) capacitor drops to one-fourth its initial value in 2.0 s . What is the equivalent resistance between the capacitor plates?
\({ }^{\circ} 68\) A \(1.0 \mu \mathrm{~F}\) capacitor with an initial stored energy of 0.50 J is discharged through a \(1.0 \mathrm{M} \Omega\) resistor. (a) What is the initial charge on the capacitor? (b) What is the current through the resistor when the discharge starts? Find an expression that gives, as a function of time \(t\), (c) the potential difference \(V_{C}\) across the capacitor, (d) the potential difference \(V_{R}\) across the resistor, and (e) the rate at which thermal energy is produced in the resistor.
-0069 © 6 A \(3.00 \mathrm{M} \Omega\) resistor and a \(1.00 \mu \mathrm{~F}\) capacitor are connected in series with an ideal battery of emf \(\mathscr{E}=4.00 \mathrm{~V}\). At 1.00 s after the connection is made, what is the rate at which (a) the charge of the capacitor is increasing, (b) energy is being stored in the capacitor, (c) thermal energy is appearing in the resistor, and (d) energy is being delivered by the battery?

\section*{Additional Problems}

70 ©o Each of the six real batteries in Fig. 27-68 has an emf of 20 V and a resistance of \(4.0 \Omega\). (a) What is the current through the (external) resistance \(R=4.0 \Omega\) ? (b) What is the potential difference across each battery? (c) What is the power of each battery? (d) At what rate does each battery transfer energy to internal thermal energy?


Figure 27-68
Problem 70.

71 In Fig. 27-69, \(R_{1}=20.0 \Omega, R_{2}=\) \(10.0 \Omega\), and the ideal battery has emf \(\mathscr{E}=120 \mathrm{~V}\). What is the current at point \(a\) if we close (a) only switch \(\mathrm{S}_{1}\), (b) only switches \(\mathrm{S}_{1}\) and \(\mathrm{S}_{2}\), and (c) all three switches?
72 In Fig. 27-70, the ideal battery has emf \(\mathscr{E}=30.0 \mathrm{~V}\), and the resistances are \(\quad R_{1}=R_{2}=14 \quad \Omega, \quad R_{3}=R_{4}=\) \(R_{5}=6.0 \Omega, R_{6}=2.0 \Omega\), and \(R_{7}=1.5\) \(\Omega\). What are currents (a) \(i_{2}\), (b) \(i_{4}\), (c) \(i_{1}\), (d) \(i_{3}\), and (e) \(i_{5}\) ?

Figure 27-70
Problem 72.


73 ssm Wires \(A\) and \(B\), having equal lengths of 40.0 m and equal diameters of 2.60 mm , are connected in series. A potential difference of 60.0 V is applied between the ends of the composite wire. The resistances are \(R_{A}=0.127 \Omega\) and \(R_{B}=0.729 \Omega\). For wire \(A\), what are (a) magnitude \(J\) of the current density and (b) potential difference \(V\) ? (c) Of what type material is wire \(A\) made (see Table 26-1)? For wire \(B\), what are (d) \(J\) and (e) \(V\) ? (f) Of what type material is \(B\) made?
74 What are the (a) size and (b) direction (up or down) of current \(i\) in Fig. 27-71, where all resistances are \(4.0 \Omega\) and all batteries are ideal and have an emf of 10 V ? (Hint: This can be answered using only mental calculation.)


Figure 27-71 Problem 74.

75 Suppose that, while you are sitting in a chair, charge separation between your clothing and the chair puts you at a potential of 200 V , with the capacitance between you and the chair at 150 pF . When you stand up, the increased separation between your body and the chair decreases the capacitance to 10 pF . (a) What then is the potential of your body? That potential is reduced over time, as the charge on you drains through your body and shoes (you are a capacitor discharging through a resistance). Assume that the resistance along that route is 300 \(G \Omega\). If you touch an electrical component while your potential is greater than 100 V , you could ruin the component. (b) How long must you wait until your potential reaches the safe level of 100 V ?

If you wear a conducting wrist strap that is connected to ground, your potential does not increase as much when you stand up; you also discharge more rapidly because the resistance through the grounding connection is much less than through your body and shoes. (c) Suppose that when you stand up, your potential is 1400 V and the chair-to-you capacitance is 10 pF . What resistance in that wrist-strap grounding connection will allow you to discharge to 100 V in 0.30 s , which is less time than you would need to reach for, say, your computer?
76 ©0 In Fig. 27-72, the ideal batteries have emfs \(\mathscr{E}_{1}=20.0 \mathrm{~V}\), \(\mathscr{E}_{2}=10.0 \mathrm{~V}\), and \(\mathscr{E}_{3}=5.00 \mathrm{~V}\), and the resistances are each \(2.00 \Omega\). What are the (a) size and (b) direction (left or right) of current \(i_{1}\) ? (c) Does battery 1 supply or absorb energy, and (d) what is its power? (e) Does battery 2 supply or absorb energy, and (f) what is
its power? (g) Does battery 3 supply or absorb energy, and (h) what is its power?

Figure 27-72 Problem 76.


77 SSM A temperature-stable resistor is made by connecting a resistor made of silicon in series with one made of iron. If the required total resistance is \(1000 \Omega\) in a wide temperature range around \(20^{\circ} \mathrm{C}\), what should be the resistance of the (a) silicon resistor and (b) iron resistor? (See Table 26-1.)
78 In Fig. 27-14, assume that \(\mathscr{E}=5.0 \mathrm{~V}, r=2.0 \Omega, R_{1}=5.0 \Omega\), and \(R_{2}=4.0 \Omega\). If the ammeter resistance \(R_{\mathrm{A}}\) is \(0.10 \Omega\), what percent error does it introduce into the measurement of the current? Assume that the voltmeter is not present.
79 SSIM An initially uncharged capacitor \(C\) is fully charged by a device of constant emf \(\mathscr{E}\) connected in series with a resistor \(R\). (a) Show that the final energy stored in the capacitor is half the energy supplied by the emf device. (b) By direct integration of \(i^{2} R\) over the charging time, show that the thermal energy dissipated by the resistor is also half the energy supplied by the emf device.
80 In Fig. 27-73, \(R_{1}=5.00 \Omega, R_{2}=\) \(10.0 \Omega, R_{3}=15.0 \Omega, C_{1}=5.00 \mu \mathrm{~F}\), \(C_{2}=10.0 \mu \mathrm{~F}\), and the ideal battery has \(\operatorname{emf}_{\mathscr{E}}=20.0 \mathrm{~V}\). Assuming that the circuit is in the steady state, what is the total energy stored in the two capacitors?

81 In Fig. 27-5a, find the potential difference across \(R_{2}\) if \(\mathscr{E}=12 \mathrm{~V}, R_{1}\)


Figure 27-73 Problem 80. \(=3.0 \Omega, R_{2}=4.0 \Omega\), and \(R_{3}=5.0 \Omega\).
82 In Fig. 27-8a, calculate the potential difference between \(a\) and \(c\) by considering a path that contains \(R, r_{1}\), and \(\mathscr{E}_{1}\).
83 SSM A controller on an electronic arcade game consists of a variable resistor connected across the plates of a \(0.220 \mu \mathrm{~F}\) capacitor. The capacitor is charged to 5.00 V , then discharged through the resistor. The time for the potential difference across the plates to decrease to 0.800 V is measured by a clock inside the game. If the range of discharge times that can be handled effectively is from \(10.0 \mu \mathrm{~s}\) to 6.00 ms , what should be the (a) lower value and (b) higher value of the resistance range of the resistor?

84 An automobile gasoline gauge is shown schematically in Fig. 27-74. The indicator (on the dashboard) has a resistance of \(10 \Omega\). The tank


Figure 27-74 Problem 84.
unit is a float connected to a variable resistor whose resistance varies linearly with the volume of gasoline. The resistance is \(140 \Omega\) when the tank is empty and \(20 \Omega\) when the tank is full. Find the current in the circuit when the tank is (a) empty, (b) half-full, and (c) full. Treat the battery as ideal.

85 SSM The starting motor of a car is turning too slowly, and the mechanic has to decide whether to replace the motor, the cable, or the battery. The car's manual says that the 12 V battery should have no more than \(0.020 \Omega\) internal resistance, the motor no more than \(0.200 \Omega\) resistance, and the cable no more than \(0.040 \Omega\) resistance. The mechanic turns on the motor and measures 11.4 V across the battery, 3.0 V across the cable, and a current of 50 A . Which part is defective?
86 Two resistors \(R_{1}\) and \(R_{2}\) may be connected either in series or in parallel across an ideal battery with emf \(\mathscr{E}\). We desire the rate of energy dissipation of the parallel combination to be five times that of the series combination. If \(R_{1}=100 \Omega\), what are the (a) smaller and (b) larger of the two values of \(R_{2}\) that result in that dissipation rate?

87 The circuit of Fig. 27-75 shows a capacitor, two ideal batteries, two resistors, and a switch S. Initially S has been open for a long time. If it is then closed for a long time, what is the change in the charge on the capacitor? Assume \(C=10 \mu \mathrm{~F}, \mathscr{E}_{1}=1.0 \mathrm{~V}, \mathscr{E}_{2}=3.0\) \(\mathrm{V}, R_{1}=0.20 \Omega\), and \(R_{2}=0.40 \Omega\).
88 In Fig. 27-41, \(R_{1}=10.0 \Omega, R_{2}=\) \(20.0 \Omega\), and the ideal batteries have emfs \(\mathscr{E}_{1}=20.0 \mathrm{~V}\) and \(\mathscr{E}_{2}=50.0 \mathrm{~V}\). What value of \(R_{3}\) results in no current through battery 1 ?
89 In Fig. 27-76, \(R=10 \Omega\). What is the equivalent resistance between points \(A\) and \(B\) ? (Hint: This circuit section might look simpler if you first assume that points \(A\) and \(B\) are connected to a battery.)
90 (a) In Fig. 27-4a, show that the rate at which energy is dissipated in \(R\) as thermal energy is a maximum when \(R=r\). (b) Show that this maximum power is \(P=\mathscr{E}^{2} / 4 r\).
91 In Fig. 27-77, the ideal batteries have emfs \(\mathscr{E}_{1}=12.0 \mathrm{~V}\) and \(\mathscr{E}_{2}=4.00\) V , and the resistances are each \(4.00 \Omega\). What are the (a) size and (b) direction (up or down) of \(i_{1}\) and the (c) size and (d) direction of \(i_{2}\) ? (e) Does battery 1 supply or absorb energy, and (f) what is its energy transfer rate? (g) Does battery 2 supply or absorb energy, and (h) what is its energy transfer rate?

92 Figure 27-78 shows a portion of a circuit through which there is a current \(I=6.00 \mathrm{~A}\). The resistances are \(R_{1}=\) \(R_{2}=2.00 R_{3}=2.00 R_{4}=4.00 \Omega\). What is the current \(i_{1}\) through resistor 1 ?
93 Thermal energy is to be generated in a \(0.10 \Omega\) resistor at the rate of


Figure 27-75 Problem 87.


Figure 27-76 Problem 89.


Figure 27-77 Problem 91.


Figure 27-78 Problem 92.

10 W by connecting the resistor to a battery whose emf is 1.5 V . (a) What potential difference must exist across the resistor? (b) What must be the internal resistance of the battery?
94 Figure 27-79 shows three \(20.0 \Omega\) resistors. Find the equivalent resistance between points (a) \(A\) and \(B\), (b) \(A\) and \(C\), and (c) \(B\) and \(C\). (Hint: Imagine that a battery is connected between a given pair of points.)


Figure 27-79 Problem 94.

95 A 120 V power line is protected by a 15 A fuse. What is the maximum number of 500 W lamps that can be simultaneously operated in parallel on this line without "blowing" the fuse because of an excess of current?
96 Figure 27-63 shows an ideal battery of emf \(\mathscr{E}=12 \mathrm{~V}\), a resistor of resistance \(R=4.0 \Omega\), and an uncharged capacitor of capacitance \(C=4.0 \mu \mathrm{~F}\). After switch S is closed, what is the current through the resistor when the charge on the capacitor is \(8.0 \mu \mathrm{C}\) ?
97 SSM A group of \(N\) identical batteries of emf \(\mathscr{E}\) and internal resistance \(r\) may be connected all in series (Fig. 27-80a) or all in parallel (Fig. 27-80b) and then across a resistor \(R\). Show that both arrangements give the same current in \(R\) if \(R=r\).


Figure 27-80 Problem 97.
98 SSM In Fig. 27-48, \(R_{1}=R_{2}=\) \(10.0 \Omega\), and the ideal battery has emf \(\mathscr{E}=12.0 \mathrm{~V}\). (a) What value of \(R_{3}\) maximizes the rate at which the battery supplies energy and (b) what is that maximum rate?
99 ssm In Fig. 27-66, the ideal battery has emf \(\mathscr{E}=30 \mathrm{~V}\), the resistances are \(R_{1}=20 \mathrm{k} \Omega\) and \(R_{2}=10 \mathrm{k} \Omega\), and the capacitor is uncharged. When the switch is closed at time \(t=0\), what is the current in (a) resistance 1 and (b) resistance 2? (c) A long time later, what is the current in resistance 2 ?
100 In Fig. 27-81, the ideal batteries have emfs \(\mathscr{E}_{1}=20.0 \mathrm{~V}, \mathscr{E}_{2}=10.0 \mathrm{~V}\),


Figure 27-81 Problem 100.
\(\mathscr{C}_{3}=5.00 \mathrm{~V}\), and \(\mathscr{E}_{4}=5.00 \mathrm{~V}\), and the resistances are each \(2.00 \Omega\). What are the (a) size and (b) direction (left or right) of current \(i_{1}\) and the (c) size and (d) direction of current \(i_{2}\) ? (This can be answered with only mental calculation.) (e) At what rate is energy being transferred in battery 4 , and ( f ) is the energy being supplied or absorbed by the battery?
101 In Fig. 27-82, an ideal battery of \(\mathrm{emf} \mathscr{E}=12.0 \mathrm{~V}\) is connected to a network of resistances \(R_{1}=6.00 \Omega\), \(R_{2}=12.0 \Omega, R_{3}=4.00 \Omega, R_{4}=3.00 \Omega\), and \(R_{5}=5.00 \Omega\). What is the potential difference across resistance 5 ?
102 The following table gives the electric potential difference \(V_{T}\) across the terminals of a battery as a


Figure 27-82 Problem 101. function of current \(i\) being drawn from the battery. (a) Write an equation that represents the relationship between \(V_{T}\) and \(i\). Enter the data into your graphing calculator and perform a linear regression fit of \(V_{T}\) versus \(i\). From the parameters of the fit, find (b) the battery's emf and (c) its internal resistance.
\begin{tabular}{llllllll}
\hline\(i(\mathrm{~A}):\) & 50.0 & 75.0 & 100 & 125 & 150 & 175 & 200 \\
\(V_{T}(\mathrm{~V}):\) & 10.7 & 9.00 & 7.70 & 6.00 & 4.80 & 3.00 & 1.70 \\
\hline
\end{tabular}

103 In Fig. 27-83, \(\mathscr{E}_{1}=6.00 \mathrm{~V}, \mathscr{E}_{2}=\) \(12.0 \mathrm{~V}, R_{1}=200 \Omega\), and \(R_{2}=100 \Omega\). What are the (a) size and (b) direction (up or down) of the current through resistance 1 , the (c) size and (d) direction of the current through resistance 2 , and the (e) size and (f) direction of


Figure 27-83 Problem 103. the current through battery 2 ?
104 A three-way 120 V lamp bulb that contains two filaments is rated for 100-200-300 W. One filament burns out. Afterward, the bulb operates at the same intensity (dissipates energy at the same rate) on its lowest as on its highest switch positions but does not operate at all on the middle position. (a) How are the two filaments wired to the three switch positions? What are the (b) smaller and (c) larger values of the filament resistances?
105 In Fig. 27-84, \(R_{1}=R_{2}=2.0 \Omega, R_{3}=4.0 \Omega, R_{4}=3.0 \Omega, R_{5}=\) \(1.0 \Omega\), and \(R_{6}=R_{7}=R_{8}=8.0 \Omega\), and the ideal batteries have emfs \(\mathscr{E}_{1}=16 \mathrm{~V}\) and \(\mathscr{E}_{2}=8.0 \mathrm{~V}\). What are the (a) size and (b) direction (up or down) of current \(i_{1}\) and the (c) size and (d) direction of current \(i_{2}\) ? What is the energy transfer rate in (e) battery 1 and (f) battery 2? Is energy being supplied or absorbed in (g) battery 1 and (h) battery 2 ?


Figure 27-84 Problem 105.

\section*{28-1 magnetic fields and the definition of \(\vec{B}\)}

\section*{Learning Objectives}

After reading this module, you should be able to ...
28.01 Distinguish an electromagnet from a permanent magnet.
28.02 Identify that a magnetic field is a vector quantity and thus has both magnitude and direction.
28.03 Explain how a magnetic field can be defined in terms of what happens to a charged particle moving through the field.
28.04 For a charged particle moving through a uniform magnetic field, apply the relationship between force magnitude \(F_{B}\), charge \(q\), speed \(v\), field magnitude \(B\), and the angle \(\phi\) between the directions of the velocity vector \(\vec{v}\) and the magnetic field vector \(\vec{B}\).
28.05 For a charged particle sent through a uniform magnetic field, find the direction of the magnetic force
\(\vec{F}_{B}\) by (1) applying the right-hand rule to find the direction
of the cross product \(\vec{v} \times \vec{B}\) and (2) determining what effect the charge \(q\) has on the direction.
28.06 Find the magnetic force \(\vec{F}_{B}\) acting on a moving charged particle by evaluating the cross product \(q(\vec{v} \times \vec{B})\) in unit-vector notation and magnitude-angle notation.
28.07 Identify that the magnetic force vector \(\vec{F}_{B}\) must always be perpendicular to both the velocity vector \(\vec{v}\) and the magnetic field vector \(\vec{B}\).
28.08 Identify the effect of the magnetic force on the particle's speed and kinetic energy.
28.09 Identify a magnet as being a magnetic dipole.
28.10 Identify that opposite magnetic poles attract each other and like magnetic poles repel each other.
28.11 Explain magnetic field lines, including where they originate and terminate and what their spacing represents.

\section*{Key Ideas}
- When a charged particle moves through a magnetic field \(\vec{B}\), a magnetic force acts on the particle as given by
\[
\vec{F}_{B}=q(\vec{v} \times \vec{B})
\]
where \(q\) is the particle's charge (sign included) and \(\vec{v}\) is the particle's velocity.
- The right-hand rule for cross products gives the direction
of \(\vec{v} \times \vec{B}\). The sign of \(q\) then determines whether \(\vec{F}_{B}\) is in the same direction as \(\vec{v} \times \vec{B}\) or in the opposite direction.
- The magnitude of \(\vec{F}_{B}\) is given by
\[
F_{B}=|q| \nu B \sin \phi,
\]
where \(\phi\) is the angle between \(\vec{v}\) and \(\vec{B}\).

\section*{What Is Physics?}

As we have discussed, one major goal of physics is the study of how an electric field can produce an electric force on a charged object. A closely related goal is the study of how a magnetic field can produce a magnetic force on a (moving) charged particle or on a magnetic object such as a magnet. You may already have a hint of what a magnetic field is if you have ever attached a note to a refrigerator door with a small magnet or accidentally erased a credit card by moving it near a magnet. The magnet acts on the door or credit card via its magnetic field.

The applications of magnetic fields and magnetic forces are countless and changing rapidly every year. Here are just a few examples. For decades, the entertainment industry depended on the magnetic recording of music and images on audiotape and videotape. Although digital technology has largely replaced


Digital Vision/Getty Images, Inc.
Figure 28-1 Using an electromagnet to collect and transport scrap metal at a steel mill.
magnetic recording, the industry still depends on the magnets that control CD and DVD players and computer hard drives; magnets also drive the speaker cones in headphones, TVs, computers, and telephones. A modern car comes equipped with dozens of magnets because they are required in the motors for engine ignition, automatic window control, sunroof control, and windshield wiper control. Most security alarm systems, doorbells, and automatic door latches employ magnets. In short, you are surrounded by magnets.

The science of magnetic fields is physics; the application of magnetic fields is engineering. Both the science and the application begin with the question "What produces a magnetic field?"

\section*{What Produces a Magnetic Field?}

Because an electric field \(\vec{E}\) is produced by an electric charge, we might reasonably expect that a magnetic field \(\vec{B}\) is produced by a magnetic charge. Although individual magnetic charges (called magnetic monopoles) are predicted by certain theories, their existence has not been confirmed. How then are magnetic fields produced? There are two ways.

One way is to use moving electrically charged particles, such as a current in a wire, to make an electromagnet. The current produces a magnetic field that can be used, for example, to control a computer hard drive or to sort scrap metal (Fig. 28-1). In Chapter 29, we discuss the magnetic field due to a current.

The other way to produce a magnetic field is by means of elementary particles such as electrons because these particles have an intrinsic magnetic field around them. That is, the magnetic field is a basic characteristic of each particle just as mass and electric charge (or lack of charge) are basic characteristics. As we discuss in Chapter 32, the magnetic fields of the electrons in certain materials add together to give a net magnetic field around the material. Such addition is the reason why a permanent magnet, the type used to hang refrigerator notes, has a permanent magnetic field. In other materials, the magnetic fields of the electrons cancel out, giving no net magnetic field surrounding the material. Such cancellation is the reason you do not have a permanent field around your body, which is good because otherwise you might be slammed up against a refrigerator door every time you passed one.

Our first job in this chapter is to define the magnetic field \(\vec{B}\). We do so by using the experimental fact that when a charged particle moves through a magnetic field, a magnetic force \(\vec{F}_{B}\) acts on the particle.

\section*{The Definition of \(\vec{B}\)}

We determined the electric field \(\vec{E}\) at a point by putting a test particle of charge \(q\) at rest at that point and measuring the electric force \(\vec{F}_{E}\) acting on the particle. We then defined \(\vec{E}\) as
\[
\begin{equation*}
\vec{E}=\frac{\vec{F}_{E}}{q} . \tag{28-1}
\end{equation*}
\]

If a magnetic monopole were available, we could define \(\vec{B}\) in a similar way. Because such particles have not been found, we must define \(\vec{B}\) in another way, in terms of the magnetic force \(\vec{F}_{B}\) exerted on a moving electrically charged test particle.

Moving Charged Particle. In principle, we do this by firing a charged particle through the point at which \(\vec{B}\) is to be defined, using various directions and speeds for the particle and determining the force \(\vec{F}_{B}\) that acts on the particle at that point. After many such trials we would find that when the particle's velocity
\(\vec{v}\) is along a particular axis through the point, force \(\vec{F}_{B}\) is zero. For all other directions of \(\vec{v}\), the magnitude of \(\vec{F}_{B}\) is always proportional to \(v \sin \phi\), where \(\phi\) is the angle between the zero-force axis and the direction of \(\vec{v}\). Furthermore, the direction of \(\vec{F}_{B}\) is always perpendicular to the direction of \(\vec{v}\). (These results suggest that a cross product is involved.)

The Field. We can then define a magnetic field \(\vec{B}\) to be a vector quantity that is directed along the zero-force axis. We can next measure the magnitude of \(\vec{F}_{B}\) when \(\vec{v}\) is directed perpendicular to that axis and then define the magnitude of \(\vec{B}\) in terms of that force magnitude:
\[
B=\frac{F_{B}}{|q| v}
\]
where \(q\) is the charge of the particle.
We can summarize all these results with the following vector equation:
\[
\begin{equation*}
\vec{F}_{B}=q \vec{v} \times \vec{B} \tag{28-2}
\end{equation*}
\]
that is, the force \(\vec{F}_{B}\) on the particle is equal to the charge \(q\) times the cross product of its velocity \(\vec{v}\) and the field \(\vec{B}\) (all measured in the same reference frame). Using Eq. 3-24 for the cross product, we can write the magnitude of \(\vec{F}_{B}\) as
\[
\begin{equation*}
F_{B}=|q| v B \sin \phi, \tag{28-3}
\end{equation*}
\]
where \(\phi\) is the angle between the directions of velocity \(\vec{v}\) and magnetic field \(\vec{B}\).

\section*{Finding the Magnetic Force on a Particle}

Equation 28-3 tells us that the magnitude of the force \(\vec{F}_{B}\) acting on a particle in a magnetic field is proportional to the charge \(q\) and speed \(v\) of the particle. Thus, the force is equal to zero if the charge is zero or if the particle is stationary. Equation 28-3 also tells us that the magnitude of the force is zero if \(\vec{v}\) and \(\vec{B}\) are either parallel \(\left(\phi=0^{\circ}\right)\) or antiparallel \(\left(\phi=180^{\circ}\right)\), and the force is at its maximum when \(\vec{v}\) and \(\vec{B}\) are perpendicular to each other.

Directions. Equation 28-2 tells us all this plus the direction of \(\vec{F}_{B}\). From Module 3-3, we know that the cross product \(\vec{v} \times \vec{B}\) in Eq. 28-2 is a vector that is perpendicular to the two vectors \(\vec{v}\) and \(\vec{B}\). The right-hand rule (Figs. 28-2a through \(c\) ) tells us that the thumb of the right hand points in the direction of \(\vec{v} \times \vec{B}\) when the fingers sweep \(\vec{v}\) into \(\vec{B}\). If \(q\) is positive, then (by Eq. 28-2) the force \(\vec{F}_{B}\) has the same sign as \(\vec{v} \times \vec{B}\) and thus must be in the same direction; that is, for positive \(q, \vec{F}_{B}\) is directed along the thumb (Fig. 28-2d). If \(q\) is negative, then


Figure 28-2 (a)-(c) The right-hand rule (in which \(\vec{v}\) is swept into \(\vec{B}\) through the smaller angle \(\phi\) between them) gives the direction of \(\vec{v} \times \vec{B}\) as the direction of the thumb. (d) If \(q\) is positive, then the direction of \(\vec{F}_{B}=q \vec{v} \times \vec{B}\) is in the direction of \(\vec{v} \times \vec{B}\). (e) If \(q\) is negative, then the direction of \(\vec{F}_{B}\) is opposite that of \(\vec{v} \times \vec{B}\).


Lawrence Berkeley Laboratory/Photo Researchers, Inc.
Figure 28-3 The tracks of two electrons ( \(\mathrm{e}^{-}\)) and a positron \(\left(\mathrm{e}^{+}\right)\)in a bubble chamber that is immersed in a uniform magnetic field that is directed out of the plane of the page.

Table 28-1 Some Approximate
Magnetic Fields
\begin{tabular}{lr}
\hline At surface of neutron star & \(10^{8} \mathrm{~T}\) \\
Near big electromagnet & 1.5 T \\
Near small bar magnet & \(10^{-2} \mathrm{~T}\) \\
At Earth's surface & \(10^{-4} \mathrm{~T}\) \\
In interstellar space & \(10^{-10} \mathrm{~T}\) \\
\begin{tabular}{l} 
Smallest value in \\
\begin{tabular}{l} 
magnetically \\
shielded room
\end{tabular}
\end{tabular} & \(10^{-14} \mathrm{~T}\) \\
\hline
\end{tabular}
the force \(\vec{F}_{B}\) and cross product \(\vec{v} \times \vec{B}\) have opposite signs and thus must be in opposite directions. For negative \(q, \vec{F}_{B}\) is directed opposite the thumb (Fig. 28-2e). Heads up: Neglect of this effect of negative \(q\) is a very common error on exams.

Regardless of the sign of the charge, however,

The force \(\vec{F}_{B}\) acting on a charged particle moving with velocity \(\vec{v}\) through a magnetic field \(\vec{B}\) is always perpendicular to \(\vec{v}\) and \(\vec{B}\).

Thus, \(\vec{F}_{B}\) never has a component parallel to \(\vec{v}\). This means that \(\vec{F}_{B}\) cannot change the particle's speed \(v\) (and thus it cannot change the particle's kinetic energy). The force can change only the direction of \(\vec{v}\) (and thus the direction of travel); only in this sense can \(\vec{F}_{B}\) accelerate the particle.

To develop a feeling for Eq. 28-2, consider Fig. 28-3, which shows some tracks left by charged particles moving rapidly through a bubble chamber. The chamber, which is filled with liquid hydrogen, is immersed in a strong uniform magnetic field that is directed out of the plane of the figure. An incoming gamma ray particle - which leaves no track because it is uncharged - transforms into an electron (spiral track marked \(\mathrm{e}^{-}\)) and a positron (track marked \(\mathrm{e}^{+}\)) while it knocks an electron out of a hydrogen atom (long track marked \(\mathrm{e}^{-}\)). Check with Eq. 28-2 and Fig. 28-2 that the three tracks made by these two negative particles and one positive particle curve in the proper directions.

Unit. The SI unit for \(\vec{B}\) that follows from Eqs. 28-2 and 28-3 is the newton per coulomb-meter per second. For convenience, this is called the tesla (T):
\[
1 \text { tesla }=1 \mathrm{~T}=1 \frac{\text { newton }}{(\text { coulomb })(\text { meter } / \text { second })}
\]

Recalling that a coulomb per second is an ampere, we have
\[
\begin{equation*}
1 \mathrm{~T}=1 \frac{\text { newton }}{(\text { coulomb/second })(\text { meter })}=1 \frac{\mathrm{~N}}{\mathrm{~A} \cdot \mathrm{~m}} \tag{28-4}
\end{equation*}
\]

An earlier (non-SI) unit for \(\vec{B}\), still in common use, is the gauss (G), and
\[
\begin{equation*}
1 \text { tesla }=10^{4} \text { gauss. } \tag{28-5}
\end{equation*}
\]

Table 28-1 lists the magnetic fields that occur in a few situations. Note that Earth's magnetic field near the planet's surface is about \(10^{-4} \mathrm{~T}(=100 \mu \mathrm{~T}\) or 1 G\()\).

\section*{Checkpoint 1}

The figure shows three situations in which a charged particle with velocity \(\vec{v}\) travels through a uniform magnetic field \(\vec{B}\). In each situation, what is the direction of the magnetic force \(\vec{F}_{B}\) on the particle?

(a)

(b)

(c)

\section*{Magnetic Field Lines}

We can represent magnetic fields with field lines, as we did for electric fields. Similar rules apply: (1) the direction of the tangent to a magnetic field line at any point gives the direction of \(\vec{B}\) at that point, and (2) the spacing of the lines represents the magnitude of \(\vec{B}\)-the magnetic field is stronger where the lines are closer together, and conversely.

Figure \(28-4 a\) shows how the magnetic field near a bar magnet (a permanent magnet in the shape of a bar) can be represented by magnetic field lines. The lines all pass through the magnet, and they all form closed loops (even those that are not shown closed in the figure). The external magnetic effects of a bar magnet are strongest near its ends, where the field lines are most closely spaced. Thus, the magnetic field of the bar magnet in Fig. 28-4b collects the iron filings mainly near the two ends of the magnet.

Two Poles. The (closed) field lines enter one end of a magnet and exit the other end. The end of a magnet from which the field lines emerge is called the north pole of the magnet; the other end, where field lines enter the magnet, is called the south pole. Because a magnet has two poles, it is said to be a magnetic dipole. The magnets we use to fix notes on refrigerators are short bar magnets. Figure 28-5 shows two other common shapes for magnets: a horseshoe magnet and a magnet that has been bent around into the shape of a \(\mathbf{C}\) so that the pole faces are facing each other. (The magnetic field between the pole faces can then be approximately uniform.) Regardless of the shape of the magnets, if we place two of them near each other we find:

Opposite magnetic poles attract each other, and like magnetic poles repel each other.

When you hold two magnets near each other with your hands, this attraction or repulsion seems almost magical because there is no contact between the two to visibly justify the pulling or pushing. As we did with the electrostatic force between two charged particles, we explain this noncontact force in terms of a field that you cannot see, here the magnetic field.

Earth has a magnetic field that is produced in its core by still unknown mechanisms. On Earth's surface, we can detect this magnetic field with a compass, which is essentially a slender bar magnet on a low-friction pivot. This bar magnet, or this needle, turns because its north-pole end is attracted toward the Arctic region of Earth. Thus, the south pole of Earth's magnetic field must be located toward the Arctic. Logically, we then should call the pole there a south pole. However, because we call that direction north, we are trapped into the statement that Earth has a geomagnetic north pole in that direction.

With more careful measurement we would find that in the Northern Hemisphere, the magnetic field lines of Earth generally point down into Earth and toward the Arctic. In the Southern Hemisphere, they generally point up out of Earth and away from the Antarctic-that is, away from Earth's geomagnetic south pole.



Courtesy Dr. Richard Cannon, Southeast Missouri State University, Cape Girardeau
Figure 28-4 (a) The magnetic field lines for a bar magnet. (b) A "cow magnet" - a bar magnet that is intended to be slipped down into the rumen of a cow to prevent accidentally ingested bits of scrap iron from reaching the cow's intestines. The iron filings at its ends reveal the magnetic field lines.

\section*{Sample Problem 28.01 Magnetic force on a moving charged particle}

A uniform magnetic field \(\vec{B}\), with magnitude 1.2 mT , is directed vertically upward throughout the volume of a laboratory chamber. A proton with kinetic energy 5.3 MeV enters the chamber, moving horizontally from south to north. What magnetic deflecting force acts on the proton as it enters the chamber? The proton mass is \(1.67 \times 10^{-27} \mathrm{~kg}\). (Neglect Earth's magnetic field.)

\section*{KEY IDEAS}

Because the proton is charged and moving through a magnetic field, a magnetic force \(\vec{F}_{B}\) can act on it. Because the initial direction of the proton's velocity is not along a magnetic field line, \(\vec{F}_{B}\) is not simply zero.
Magnitude: To find the magnitude of \(\vec{F}_{B}\), we can use Eq. 28-3 \(\left(F_{B}=|q| \nu B \sin \phi\right)\) provided we first find the proton's speed \(v\). We can find \(v\) from the given kinetic energy because \(K=\frac{1}{2} m v^{2}\). Solving for \(v\), we obtain
\[
\begin{aligned}
v & =\sqrt{\frac{2 K}{m}}=\sqrt{\frac{(2)(5.3 \mathrm{MeV})\left(1.60 \times 10^{-13} \mathrm{~J} / \mathrm{MeV}\right)}{1.67 \times 10^{-27} \mathrm{~kg}}} \\
& =3.2 \times 10^{7} \mathrm{~m} / \mathrm{s}
\end{aligned}
\]

Equation 28-3 then yields
\[
\begin{aligned}
F_{B}= & |q| v B \sin \phi \\
= & \left(1.60 \times 10^{-19} \mathrm{C}\right)\left(3.2 \times 10^{7} \mathrm{~m} / \mathrm{s}\right) \\
& \times\left(1.2 \times 10^{-3} \mathrm{~T}\right)\left(\sin 90^{\circ}\right) \\
= & 6.1 \times 10^{-15} \mathrm{~N} .
\end{aligned}
\]
(Answer)
This may seem like a small force, but it acts on a particle of small mass, producing a large acceleration; namely,
\[
a=\frac{F_{B}}{m}=\frac{6.1 \times 10^{-15} \mathrm{~N}}{1.67 \times 10^{-27} \mathrm{~kg}}=3.7 \times 10^{12} \mathrm{~m} / \mathrm{s}^{2}
\]

Direction: To find the direction of \(\vec{F}_{B}\), we use the fact that \(\vec{F}_{B}\) has the direction of the cross product \(q \vec{v} \times \vec{B}\). Because the charge \(q\) is positive, \(\vec{F}_{B}\) must have the same direction as \(\vec{v} \times \vec{B}\), which can be determined with the right-hand rule for cross products (as in Fig. 28-2d). We know that \(\vec{v}\) is directed horizontally from south to north and \(\vec{B}\) is directed vertically up. The right-hand rule shows us that the deflecting force \(\vec{F}_{B}\) must be directed horizontally from west to east, as Fig. 28-6 shows. (The array of dots in the figure represents a magnetic field directed out of the plane of the figure. An array of Xs would have represented a magnetic field directed into that plane.)

If the charge of the particle were negative, the magnetic deflecting force would be directed in the opposite directionthat is, horizontally from east to west. This is predicted automatically by Eq. 28-2 if we substitute a negative value for \(q\).


Figure 28-6 An overhead view of a proton moving from south to north with velocity \(\vec{v}\) in a chamber. A magnetic field is directed vertically upward in the chamber, as represented by the array of dots (which resemble the tips of arrows). The proton is deflected toward the east.

\section*{28-2 CROSSED FIELDS: DISCOVERY OF THE ELECTRON}

\section*{Learning Objectives}

After reading this module, you should be able to ...
28.12 Describe the experiment of J. J. Thomson.
28.13 For a charged particle moving through a magnetic field and an electric field, determine the net force on the particle in both magnitude-angle notation and unit-vector notation.
28.14 In situations where the magnetic force and electric force on a particle are in opposite directions, determine the speeds at which the forces cancel, the magnetic force dominates, and the electric force dominates.

\section*{Key Ideas}
- If a charged particle moves through a region containing both an electric field and a magnetic field, it can be affected by both an electric force and a magnetic force.

If the fields are perpendicular to each other, they are said to be crossed fields.
- If the forces are in opposite directions, a particular speed will result in no deflection of the particle.

\section*{Crossed Fields: Discovery of the Electron}

Both an electric field \(\vec{E}\) and a magnetic field \(\vec{B}\) can produce a force on a charged particle. When the two fields are perpendicular to each other, they are said to be crossed fields. Here we shall examine what happens to charged particlesnamely, electrons - as they move through crossed fields. We use as our example the experiment that led to the discovery of the electron in 1897 by J. J. Thomson at Cambridge University.

Two Forces. Figure 28-7 shows a modern, simplified version of Thomson's experimental apparatus - a cathode ray tube (which is like the picture tube in an old-type television set). Charged particles (which we now know as electrons) are emitted by a hot filament at the rear of the evacuated tube and are accelerated by an applied potential difference \(V\). After they pass through a slit in screen \(C\), they form a narrow beam. They then pass through a region of crossed \(\vec{E}\) and \(\vec{B}\) fields, headed toward a fluorescent screen S, where they produce a spot of light (on a television screen the spot is part of the picture). The forces on the charged particles in the crossed-fields region can deflect them from the center of the screen. By controlling the magnitudes and directions of the fields, Thomson could thus control where the spot of light appeared on the screen. Recall that the force on a negatively charged particle due to an electric field is directed opposite the field. Thus, for the arrangement of Fig. 28-7, electrons are forced up the page by electric field \(\vec{E}\) and down the page by magnetic field \(\vec{B}\); that is, the forces are in opposition. Thomson's procedure was equivalent to the following series of steps.
1. Set \(E=0\) and \(B=0\) and note the position of the spot on screen S due to the undeflected beam.
2. Turn on \(\vec{E}\) and measure the resulting beam deflection.
3. Maintaining \(\vec{E}\), now turn on \(\vec{B}\) and adjust its value until the beam returns to the undeflected position. (With the forces in opposition, they can be made to cancel.)

We discussed the deflection of a charged particle moving through an electric field \(\vec{E}\) between two plates (step 2 here) in Sample Problem 22.04. We found that the deflection of the particle at the far end of the plates is
\[
\begin{equation*}
y=\frac{|q| E L^{2}}{2 m v^{2}} \tag{28-6}
\end{equation*}
\]
where \(v\) is the particle's speed, \(m\) its mass, and \(q\) its charge, and \(L\) is the length of the plates. We can apply this same equation to the beam of electrons in Fig. 28-7; if need be, we can calculate the deflection by measuring the deflection of the beam on screen \(S\) and then working back to calculate the deflection \(y\) at the end of the plates. (Because the direction of the deflection is set by the sign of the particle's charge, Thomson was able to show that the particles that were lighting up his screen were negatively charged.)

Figure 28-7 A modern version of J. J. Thomson's apparatus for measuring the ratio of mass to charge for the electron. An electric field \(\vec{E}\) is established by connecting a battery across the deflecting-plate terminals. The magnetic field \(\vec{B}\) is set up by means of a current in a system of coils (not shown). The magnetic field shown is into the plane of the figure, as represented by the array of Xs (which resemble the feathered ends of arrows).


Canceling Forces. When the two fields in Fig. 28-7 are adjusted so that the two deflecting forces cancel (step 3), we have from Eqs. 28-1 and 28-3
\[
|q| E=|q| v B \sin \left(90^{\circ}\right)=|q| v B
\]
or
\[
\begin{equation*}
v=\frac{E}{B} \quad \text { (opposite forces canceling). } \tag{28-7}
\end{equation*}
\]

Thus, the crossed fields allow us to measure the speed of the charged particles passing through them. Substituting Eq. 28-7 for \(v\) in Eq. 28-6 and rearranging yield
\[
\begin{equation*}
\frac{m}{|q|}=\frac{B^{2} L^{2}}{2 y E}, \tag{28-8}
\end{equation*}
\]
in which all quantities on the right can be measured. Thus, the crossed fields allow us to measure the ratio \(m /|q|\) of the particles moving through Thomson's apparatus. (Caution: Equation 28-7 applies only when the electric and magnetic forces are in opposite directions. You might see other situations in the homework problems.)

Thomson claimed that these particles are found in all matter. He also claimed that they are lighter than the lightest known atom (hydrogen) by a factor of more than 1000. (The exact ratio proved later to be 1836.15.) His \(m /|q|\) measurement, coupled with the boldness of his two claims, is considered to be the "discovery of the electron."

\section*{Checkpoint 2}

The figure shows four directions for the velocity vector \(\vec{v}\) of a positively charged particle moving through a uniform electric field \(\vec{E}\) (directed out of the page and represented with an encircled dot) and a uniform magnetic field \(\vec{B}\). (a) Rank directions 1,2 , and 3 according to the magnitude of the net force on the particle, greatest first. (b) Of all four directions, which might result in a net force of zero?


\section*{28-3 crossed fields: the hall effect}

\section*{Learning Objectives}

After reading this module, you should be able to ...
28.15 Describe the Hall effect for a metal strip carrying current, explaining how the electric field is set up and what limits its magnitude.
28.16 For a conducting strip in a Hall-effect situation, draw the vectors for the magnetic field and electric field. For the conduction electrons, draw the vectors for the velocity, magnetic force, and electric force.
28.17 Apply the relationship between the Hall potential
difference \(V\), the electric field magnitude \(E\), and the width of the strip \(d\).
28.18 Apply the relationship between charge-carrier number density \(n\), magnetic field magnitude \(B\), current \(i\), and Hall-effect potential difference \(V\).
28.19 Apply the Hall-effect results to a conducting object moving through a uniform magnetic field, identifying the width across which a Hall-effect potential difference \(V\) is set up and calculating \(V\).

\section*{Key Ideas}
- When a uniform magnetic field \(B\) is applied to a conducting strip carrying current \(i\), with the field perpendicular to the direction of the current, a Hall-effect potential difference \(V\) is set up across the strip.
- The electric force \(\vec{F}_{E}\) on the charge carriers is then balanced by the magnetic force \(\vec{F}_{B}\) on them.
- The number density \(n\) of the charge carriers can then be determined from
\[
n=\frac{B i}{V l e}
\]
where \(l\) is the thickness of the strip (parallel to \(\vec{B}\) ).
- When a conductor moves through a uniform magnetic field \(\vec{B}\) at speed \(v\), the Hall-effect potential difference \(V\) across it is
\[
V=v B d
\]
where \(d\) is the width perpendicular to both velocity \(\vec{v}\) and field \(\vec{B}\).

\section*{Crossed Fields: The Hall Effect}

As we just discussed, a beam of electrons in a vacuum can be deflected by a magnetic field. Can the drifting conduction electrons in a copper wire also be deflected by a magnetic field? In 1879, Edwin H. Hall, then a 24 -year-old graduate student at the Johns Hopkins University, showed that they can. This Hall effect allows us to find out whether the charge carriers in a conductor are positively or negatively charged. Beyond that, we can measure the number of such carriers per unit volume of the conductor.

Figure \(28-8 a\) shows a copper strip of width \(d\), carrying a current \(i\) whose conventional direction is from the top of the figure to the bottom. The charge carriers are electrons and, as we know, they drift (with drift speed \(v_{d}\) ) in the opposite direction, from bottom to top. At the instant shown in Fig. 28-8a, an external magnetic field \(\vec{B}\), pointing into the plane of the figure, has just been turned on. From Eq. 28-2 we see that a magnetic deflecting force \(\vec{F}_{B}\) will act on each drifting electron, pushing it toward the right edge of the strip.

As time goes on, electrons move to the right, mostly piling up on the right edge of the strip, leaving uncompensated positive charges in fixed positions at the left edge. The separation of positive charges on the left edge and negative charges on the right edge produces an electric field \(\vec{E}\) within the strip, pointing from left to right in Fig. 28-8b. This field exerts an electric force \(\vec{F}_{E}\) on each electron, tending to push it to the left. Thus, this electric force on the electrons, which opposes the magnetic force on them, begins to build up.

Equilibrium. An equilibrium quickly develops in which the electric force on each electron has increased enough to match the magnetic force. When this happens, as Fig. 28-8b shows, the force due to \(\vec{B}\) and the force due to \(\vec{E}\) are in balance. The drifting electrons then move along the strip toward the top of the page at velocity \(\vec{v}_{d}\) with no further collection of electrons on the right edge of the strip and thus no further increase in the electric field \(\vec{E}\).

A Hall potential difference \(V\) is associated with the electric field across strip width \(d\). From Eq. 24-21, the magnitude of that potential difference is
\[
\begin{equation*}
V=E d \tag{28-9}
\end{equation*}
\]

By connecting a voltmeter across the width, we can measure the potential difference between the two edges of the strip. Moreover, the voltmeter can tell us which edge is at higher potential. For the situation of Fig. \(28-8 b\), we would find that the left edge is at higher potential, which is consistent with our assumption that the charge carriers are negatively charged.

For a moment, let us make the opposite assumption, that the charge carriers in current \(i\) are positively charged (Fig. 28-8c). Convince yourself that as these charge carriers move from top to bottom in the strip, they are pushed to the right edge by \(\vec{F}_{B}\) and thus that the right edge is at higher potential. Because that last statement is contradicted by our voltmeter reading, the charge carriers must be negatively charged.

Number Density. Now for the quantitative part. When the electric and magnetic forces are in balance (Fig. 28-8b), Eqs. 28-1 and 28-3 give us
\[
\begin{equation*}
e E=e v_{d} B . \tag{28-10}
\end{equation*}
\]

From Eq. 26-7, the drift speed \(v_{d}\) is
\[
\begin{equation*}
v_{d}=\frac{J}{n e}=\frac{i}{n e A}, \tag{28-11}
\end{equation*}
\]
in which \(J(=i / A)\) is the current density in the strip, \(A\) is the cross-sectional area of the strip, and \(n\) is the number density of charge carriers (number per unit volume).

In Eq. 28-10, substituting for \(E\) with Eq. 28-9 and substituting for \(v_{d}\) with Eq. 28-11, we obtain
\[
\begin{equation*}
n=\frac{B i}{V l e} \tag{28-12}
\end{equation*}
\]


Figure 28-8 A strip of copper carrying a current \(i\) is immersed in a magnetic field \(\vec{B}\). (a) The situation immediately after the magnetic field is turned on. The curved path that will then be taken by an electron is shown. (b) The situation at equilibrium, which quickly follows. Note that negative charges pile up on the right side of the strip, leaving uncompensated positive charges on the left. Thus, the left side is at a higher potential than the right side. (c) For the same current direction, if the charge carriers were positively charged, they would pile up on the right side, and the right side would be at the higher potential.
in which \(l(=A / d)\) is the thickness of the strip. With this equation we can find \(n\) from measurable quantities.

Drift Speed. It is also possible to use the Hall effect to measure directly the drift speed \(v_{d}\) of the charge carriers, which you may recall is of the order of centimeters per hour. In this clever experiment, the metal strip is moved mechanically through the magnetic field in a direction opposite that of the drift velocity of the charge carriers. The speed of the moving strip is then adjusted until the Hall potential difference vanishes. At this condition, with no Hall effect, the velocity of the charge carriers with respect to the laboratory frame must be zero, so the velocity of the strip must be equal in magnitude but opposite the direction of the velocity of the negative charge carriers.

Moving Conductor. When a conductor begins to move at speed \(v\) through a magnetic field, its conduction electrons do also. They are then like the moving conduction electrons in the current in Figs. 28-8a and \(b\), and an electric field \(\vec{E}\) and potential difference \(V\) are quickly set up. As with the current, equilibrium of the electric and magnetic forces is established, but we now write that condition in terms of the conductor's speed \(v\) instead of the drift speed \(v_{d}\) in a current as we did in Eq. 28-10:
\[
e E=e v B .
\]

Substituting for \(E\) with Eq. 28-9, we find that the potential difference is
\[
\begin{equation*}
V=v B d . \tag{28-13}
\end{equation*}
\]

Such a motion-caused circuit potential difference can be of serious concern in some situations, such as when a conductor in an orbiting satellite moves through Earth's magnetic field. However, if a conducting line (said to be an electrodynamic tether) dangles from the satellite, the potential produced along the line might be used to maneuver the satellite.

\section*{Sample Problem 28.02 Potential difference set up across a moving conductor}

Figure \(28-9 a\) shows a solid metal cube, of edge length \(d=1.5 \mathrm{~cm}\), moving in the positive \(y\) direction at a constant velocity \(\vec{v}\) of magnitude \(4.0 \mathrm{~m} / \mathrm{s}\). The cube moves through a uniform magnetic field \(\vec{B}\) of magnitude 0.050 T in the positive \(z\) direction.
(a) Which cube face is at a lower electric potential and which is at a higher electric potential because of the motion through the field?

\section*{KEY IDEA}

Because the cube is moving through a magnetic field \(\vec{B}\), a magnetic force \(\vec{F}_{B}\) acts on its charged particles, including its conduction electrons.

Reasoning: When the cube first begins to move through the magnetic field, its electrons do also. Because each electron has charge \(q\) and is moving through a magnetic field with velocity \(\vec{v}\), the magnetic force \(\vec{F}_{B}\) acting on the electron is given by Eq. 28-2. Because \(q\) is negative, the direction of \(\vec{F}_{B}\) is opposite the cross product \(\vec{v} \times \vec{B}\), which is in the posi-
tive direction of the \(x\) axis (Fig. 28-9b). Thus, \(\vec{F}_{B}\) acts in the negative direction of the \(x\) axis, toward the left face of the cube (Fig. 28-9c).

Most of the electrons are fixed in place in the atoms of the cube. However, because the cube is a metal, it contains conduction electrons that are free to move. Some of those conduction electrons are deflected by \(\vec{F}_{B}\) to the left cube face, making that face negatively charged and leaving the right face positively charged (Fig. 28-9d). This charge separation produces an electric field \(\vec{E}\) directed from the positively charged right face to the negatively charged left face (Fig. 28-9e). Thus, the left face is at a lower electric potential, and the right face is at a higher electric potential.
(b) What is the potential difference between the faces of higher and lower electric potential?

\section*{KEY IDEAS}
1. The electric field \(\vec{E}\) created by the charge separation produces an electric force \(\vec{F}_{E}=q \vec{E}\) on each electron


Figure 28-9 (a) A solid metal cube moves at constant velocity through a uniform magnetic field. (b)-(d) In these front views, the magnetic force acting on an electron forces the electron to the left face, making that face negative and leaving the opposite face positive. (e)-(f) The resulting weak electric field creates a weak electric force on the next electron, but it too is forced to the left face. Now \((g)\) the electric field is stronger and \((h)\) the electric force matches the magnetic force.
(Fig. 28-9f ). Because \(q\) is negative, this force is directed opposite the field \(\vec{E}\)-that is, rightward. Thus on each electron, \(\vec{F}_{E}\) acts toward the right and \(\vec{F}_{B}\) acts toward the left.
2. When the cube had just begun to move through the magnetic field and the charge separation had just begun, the magnitude of \(\vec{E}\) began to increase from zero. Thus, the magnitude of \(\vec{F}_{E}\) also began to increase from zero and was initially smaller than the magnitude of \(\vec{F}_{B}\). During this early stage, the net force on any electron was dominated by \(\vec{F}_{B}\), which continuously moved additional electrons to the left cube face, increasing the charge separation between the left and right cube faces (Fig. 28-9g).
3. However, as the charge separation increased, eventually magnitude \(F_{E}\) became equal to magnitude \(F_{B}\) (Fig. 28-9h). Because the forces were in opposite directions, the net force on any electron was then zero, and no additional electrons were moved to the left cube face. Thus, the magnitude of \(\vec{F}_{E}\) could not increase further, and the electrons were then in equilibrium.

Calculations: We seek the potential difference \(V\) between the left and right cube faces after equilibrium was reached (which occurred quickly). We can obtain \(V\) with Eq. 28-9 ( \(V=E d\) ) provided we first find the magnitude \(E\) of the electric field at equilibrium. We can do so with the equation for the balance of forces \(\left(F_{E}=F_{B}\right)\).

For \(F_{E}\), we substitute \(|q| E\), and then for \(F_{B}\), we substitute \(|q| v B \sin \phi\) from Eq. 28-3. From Fig. 28-9a, we see that the angle \(\phi\) between velocity vector \(\vec{v}\) and magnetic field vector \(\vec{B}\) is \(90^{\circ}\); thus \(\sin \phi=1\) and \(F_{E}=F_{B}\) yields
\[
|q| E=|q| v B \sin 90^{\circ}=|q| v B .
\]

This gives us \(E=v B\); so \(V=E d\) becomes
\[
V=v B d
\]

Substituting known values tells us that the potential difference between the left and right cube faces is
\[
\begin{aligned}
V & =(4.0 \mathrm{~m} / \mathrm{s})(0.050 \mathrm{~T})(0.015 \mathrm{~m}) \\
& =0.0030 \mathrm{~V}=3.0 \mathrm{mV}
\end{aligned}
\]
(Answer)

\section*{28-4 a CIRCULATING CHARGED PARTICLE}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
28.20 For a charged particle moving through a uniform magnetic field, identify under what conditions it will travel in a straight line, in a circular path, and in a helical path.
28.21 For a charged particle in uniform circular motion due to a magnetic force, start with Newton's second law and derive an expression for the orbital radius \(r\) in terms of the field magnitude \(B\) and the particle's mass \(m\), charge magnitude \(q\), and speed \(v\).
28.22 For a charged particle moving along a circular path in a magnetic field, calculate and relate speed, centripetal force, centripetal acceleration, radius, period, frequency, and angular frequency, and identify which of the quantities do not depend on speed.
28.23 For a positive particle and a negative particle moving
along a circular path in a uniform magnetic field, sketch the path and indicate the magnetic field vector, the velocity vector, the result of the cross product of the velocity and field vectors, and the magnetic force vector.
28.24 For a charged particle moving in a helical path in a magnetic field, sketch the path and indicate the magnetic field, the pitch, the radius of curvature, the velocity component parallel to the field, and the velocity component perpendicular to the field.
28.25 For helical motion in a magnetic field, apply the relationship between the radius of curvature and one of the velocity components.
28.26 For helical motion in a magnetic field, identify pitch \(p\) and relate it to one of the velocity components.

\section*{Key Ideas}

A charged particle with mass \(m\) and charge magnitude \(|q|\) moving with velocity \(\vec{v}\) perpendicular to a uniform magnetic field \(\vec{B}\) will travel in a circle.
- Applying Newton's second law to the circular motion yields
\[
|q| v B=\frac{m v^{2}}{r}
\]
from which we find the radius \(r\) of the circle to be
\[
r=\frac{m v}{|q| B}
\]

The frequency of revolution \(f\), the angular frequency \(\omega\), and the period of the motion \(T\) are given by
\[
f=\frac{\omega}{2 \pi}=\frac{1}{T}=\frac{|q| B}{2 \pi m} .
\]
- If the velocity of the particle has a component parallel to the magnetic field, the particle moves in a helical path about field vector \(\vec{B}\).

\section*{A Circulating Charged Particle}

If a particle moves in a circle at constant speed, we can be sure that the net force acting on the particle is constant in magnitude and points toward the center of the circle, always perpendicular to the particle's velocity. Think of a stone tied to a string and whirled in a circle on a smooth horizontal surface, or of a satellite moving in a circular orbit around Earth. In the first case, the tension in the string provides the necessary force and centripetal acceleration. In the second case, Earth's gravitational attraction provides the force and acceleration.

Figure 28-10 shows another example: A beam of electrons is projected into a chamber by an electron gun G . The electrons enter in the plane of the page with speed \(v\) and then move in a region of uniform magnetic field \(\vec{B}\) directed out of that plane. As a result, a magnetic force \(\vec{F}_{B}=q \vec{v} \times \vec{B}\) continuously deflects the electrons, and because \(\vec{v}\) and \(\vec{B}\) are always perpendicular to each other, this deflection causes the electrons to follow a circular path. The path is visible in the photo because atoms of gas in the chamber emit light when some of the circulating electrons collide with them.

We would like to determine the parameters that characterize the circular motion of these electrons, or of any particle of charge magnitude \(|q|\) and mass \(m\) moving perpendicular to a uniform magnetic field \(\vec{B}\) at speed \(v\). From Eq. 28-3, the force acting on the particle has a magnitude of \(|q| v B\). From Newton's second law \((\vec{F}=m \vec{a})\) applied to uniform circular motion (Eq. 6-18),
\[
\begin{equation*}
F=m \frac{v^{2}}{r} \tag{28-14}
\end{equation*}
\]


Courtesy Jearl Walker
Figure 28-10 Electrons circulating in a chamber containing gas at low pressure (their path is the glowing circle). A uniform magnetic field \(\vec{B}\), pointing directly out of the plane of the page, fills the chamber. Note the radially directed magnetic force \(\vec{F}_{B}\); for circular motion to occur, \(\vec{F}_{B}\) must point toward the center of the circle. Use the right-hand rule for cross products to confirm that \(\vec{F}_{B}=q \vec{v} \times \vec{B}\) gives \(\vec{F}_{B}\) the proper direction. (Don't forget the sign of \(q\).)
we have
\[
\begin{equation*}
|q| v B=\frac{m v^{2}}{r} \tag{28-15}
\end{equation*}
\]

Solving for \(r\), we find the radius of the circular path as
\[
\begin{equation*}
r=\frac{m v}{|q| B} \quad \text { (radius). } \tag{28-16}
\end{equation*}
\]

The period \(T\) (the time for one full revolution) is equal to the circumference divided by the speed:
\[
\begin{equation*}
T=\frac{2 \pi r}{v}=\frac{2 \pi}{v} \frac{m v}{|q| B}=\frac{2 \pi m}{|q| B} \quad(\text { period }) \tag{28-17}
\end{equation*}
\]

The frequency \(f\) (the number of revolutions per unit time) is
\[
\begin{equation*}
f=\frac{1}{T}=\frac{|q| B}{2 \pi m} \quad \text { (frequency). } \tag{28-18}
\end{equation*}
\]

The angular frequency \(\omega\) of the motion is then
\[
\begin{equation*}
\omega=2 \pi f=\frac{|q| B}{m} \quad \text { (angular frequency). } \tag{28-19}
\end{equation*}
\]

The quantities \(T, f\), and \(\omega\) do not depend on the speed of the particle (provided the speed is much less than the speed of light). Fast particles move in large circles and slow ones in small circles, but all particles with the same charge-to-mass ratio \(|q| / m\) take the same time \(T\) (the period) to complete one round trip. Using Eq. 28-2, you can show that if you are looking in the direction of \(\vec{B}\), the direction of rotation for a positive particle is always counterclockwise, and the direction for a negative particle is always clockwise.


Figure 28-11 (a) A charged particle moves in a uniform magnetic field \(\vec{B}\), the particle's velocity \(\vec{v}\) making an angle \(\phi\) with the field direction. (b) The particle follows a helical path of radius \(r\) and pitch \(p\). (c) A charged particle spiraling in a nonuniform magnetic field. (The particle can become trapped in this magnetic bottle, spiraling back and forth between the strong field regions at either end.) Note that the magnetic force vectors at the left and right sides have a component pointing toward the center of the figure.

\section*{Helical Paths}

If the velocity of a charged particle has a component parallel to the (uniform) magnetic field, the particle will move in a helical path about the direction of the field vector. Figure \(28-11 a\), for example, shows the velocity vector \(\vec{v}\) of such a particle resolved into two components, one parallel to \(\vec{B}\) and one perpendicular to it:
\[
\begin{equation*}
v_{\|}=v \cos \phi \quad \text { and } \quad v_{\perp}=v \sin \phi \tag{28-20}
\end{equation*}
\]

The parallel component determines the pitch \(p\) of the helix-that is, the distance between adjacent turns (Fig. 28-11b). The perpendicular component determines the radius of the helix and is the quantity to be substituted for \(v\) in Eq. 28-16.

Figure \(28-11 c\) shows a charged particle spiraling in a nonuniform magnetic field. The more closely spaced field lines at the left and right sides indicate that the magnetic field is stronger there. When the field at an end is strong enough, the particle "reflects" from that end.

\section*{Checkpoint 3}

The figure here shows the circular paths of two particles that travel at the same speed in a uniform magnetic field \(\vec{B}\), which is directed into the page. One particle is a proton; the other is an electron (which is less massive). (a) Which particle follows the smaller circle, \(\vec{B}\) and (b) does that particle travel clockwise or counterclockwise?


\section*{Sample Problem 28.03 Helical motion of a charged particle in a magnetic field}

An electron with a kinetic energy of 22.5 eV moves into a region of uniform magnetic field \(\vec{B}\) of magnitude \(4.55 \times\) \(10^{-4} \mathrm{~T}\). The angle between the directions of \(\vec{B}\) and the electron's velocity \(\vec{v}\) is \(65.5^{\circ}\). What is the pitch of the helical path taken by the electron?

\section*{KEY IDEAS}
(1) The pitch \(p\) is the distance the electron travels parallel to the magnetic field \(\vec{B}\) during one period \(T\) of circulation. (2) The period \(T\) is given by Eq. 28-17 for any nonzero angle between \(\vec{v}\) and \(\vec{B}\).

Calculations: Using Eqs. 28-20 and 28-17, we find
\[
\begin{equation*}
p=v_{\|} T=(v \cos \phi) \frac{2 \pi m}{|q| B} . \tag{28-21}
\end{equation*}
\]

Calculating the electron's speed \(v\) from its kinetic energy, we find that \(v=2.81 \times 10^{6} \mathrm{~m} / \mathrm{s}\), and so Eq. 28-21 gives us
\[
\begin{aligned}
p= & \left(2.81 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)\left(\cos 65.5^{\circ}\right) \\
& \times \frac{2 \pi\left(9.11 \times 10^{-31} \mathrm{~kg}\right)}{\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(4.55 \times 10^{-4} \mathrm{~T}\right)} \\
= & 9.16 \mathrm{~cm} .
\end{aligned}
\]
(Answer)

\section*{Sample Problem 28.04 Uniform circular motion of a charged particle in a magnetic field}

Figure 28-12 shows the essentials of a mass spectrometer, which can be used to measure the mass of an ion; an ion of mass \(m\) (to be measured) and charge \(q\) is produced in source \(S\). The initially stationary ion is accelerated by the electric field due to a potential difference \(V\). The ion leaves \(S\) and enters a separator chamber in which a uniform magnetic field \(\vec{B}\) is perpendicular to the path of the ion. A wide detector lines the bottom wall of the chamber, and the \(\vec{B}\) causes the ion to move in a semicircle and thus strike the detector. Suppose that \(B=80.000 \mathrm{mT}, V=1000.0 \mathrm{~V}\), and ions of charge \(q=\) \(+1.6022 \times 10^{-19} \mathrm{C}\) strike the detector at a point that lies at \(x=1.6254 \mathrm{~m}\). What is the mass \(m\) of the individual ions, in atomic mass units (Eq. 1-7: \(\left.1 \mathrm{u}=1.6605 \times 10^{-27} \mathrm{~kg}\right)\) ?

\section*{KEY IDEAS}
(1) Because the (uniform) magnetic field causes the (charged) ion to follow a circular path, we can relate the ion's mass \(m\) to the path's radius \(r\) with Eq. 28-16 \((r=m v /|q| B)\). From Fig. 28-12 we see that \(r=x / 2\) (the radius is half the diameter). From the problem statement, we know the magnitude \(B\) of the magnetic field. However, we lack the ion's speed \(v\) in the magnetic field after the ion has been accelerated due to the potential difference \(V\). (2) To relate \(v\) and \(V\), we use the fact that mechanical energy \(\left(E_{\text {mec }}=K+U\right)\) is conserved during the acceleration.
Finding speed: When the ion emerges from the source, its kinetic energy is approximately zero. At the end of the acceleration, its kinetic energy is \(\frac{1}{2} m v^{2}\). Also, during the acceleration, the positive ion moves through a change in potential of \(-V\). Thus, because the ion has positive charge \(q\), its potential energy changes by \(-q V\). If we now write the conservation of mechanical energy as
\(\Delta K+\Delta U=0\),

Figure 28-12 A positive ion is accelerated from its source \(S\) by a potential difference \(V\), enters a chamber of uniform magnetic field \(\vec{B}\), travels through a semicircle of radius \(r\), and strikes a detector at a distance \(x\).

we get
or
\[
\begin{align*}
& \frac{1}{2} m v^{2}-q V=0 \\
& v=\sqrt{\frac{2 q V}{m}} \tag{28-22}
\end{align*}
\]

Finding mass: Substituting this value for \(v\) into Eq. 28-16 gives us
\[
r=\frac{m v}{q B}=\frac{m}{q B} \sqrt{\frac{2 q V}{m}}=\frac{1}{B} \sqrt{\frac{2 m V}{q}} .
\]

Thus,
\[
x=2 r=\frac{2}{B} \sqrt{\frac{2 m V}{q}} .
\]

Solving this for \(m\) and substituting the given data yield
\[
\begin{aligned}
m & =\frac{B^{2} q x^{2}}{8 V} \\
& =\frac{(0.080000 \mathrm{~T})^{2}\left(1.6022 \times 10^{-19} \mathrm{C}\right)(1.6254 \mathrm{~m})^{2}}{8(1000.0 \mathrm{~V})} \\
& =3.3863 \times 10^{-25} \mathrm{~kg}=203.93 \mathrm{u} .
\end{aligned}
\]
(Answer)

\section*{28-5 cyclotrons and synchrotrons}

\section*{Learning Objectives}

After reading this module, you should be able to ...
28.27 Describe how a cyclotron works, and in a sketch indicate a particle's path and the regions where the kinetic energy is increased.
28.28 Identify the resonance condition.

\section*{Key Ideas}
- In a cyclotron, charged particles are accelerated by electric forces as they circle in a magnetic field.
> 28.29 For a cyclotron, apply the relationship between the particle's mass and charge, the magnetic field, and the frequency of circling.
> 28.30 Distinguish between a cyclotron and a synchrotron.


Figure 28-13 The elements of a cyclotron, showing the particle source \(S\) and the dees. A uniform magnetic field is directed up from the plane of the page. Circulating protons spiral outward within the hollow dees, gaining energy every time they cross the gap between the dees.

\section*{Cyclotrons and Synchrotrons}

Beams of high-energy particles, such as high-energy electrons and protons, have been enormously useful in probing atoms and nuclei to reveal the fundamental structure of matter. Such beams were instrumental in the discovery that atomic nuclei consist of protons and neutrons and in the discovery that protons and neutrons consist of quarks and gluons. Because electrons and protons are charged, they can be accelerated to the required high energy if they move through large potential differences. The required acceleration distance is reasonable for electrons (low mass) but unreasonable for protons (greater mass).

A clever solution to this problem is first to let protons and other massive particles move through a modest potential difference (so that they gain a modest amount of energy) and then use a magnetic field to cause them to circle back and move through a modest potential difference again. If this procedure is repeated thousands of times, the particles end up with a very large energy.

Here we discuss two accelerators that employ a magnetic field to repeatedly bring particles back to an accelerating region, where they gain more and more energy until they finally emerge as a high-energy beam.

\section*{The Cyclotron}

Figure 28-13 is a top view of the region of a cyclotron in which the particles (protons, say) circulate. The two hollow D-shaped objects (each open on its straight edge) are made of sheet copper. These dees, as they are called, are part of an electrical oscillator that alternates the electric potential difference across the gap between the dees. The electrical signs of the dees are alternated so that the electric field in the gap alternates in direction, first toward one dee and then toward the other dee, back and forth. The dees are immersed in a large magnetic field directed out of the plane of the page. The magnitude \(B\) of this field is set via a control on the electromagnet producing the field.

Suppose that a proton, injected by source \(S\) at the center of the cyclotron in Fig. 28-13, initially moves toward a negatively charged dee. It will accelerate toward this dee and enter it. Once inside, it is shielded from electric fields by the copper walls of the dee; that is, the electric field does not enter the dee. The magnetic field, however, is not screened by the (nonmagnetic) copper dee, so the proton moves in a circular path whose radius, which depends on its speed, is given by Eq. 28-16 \((r=m v /|q| B)\).

Let us assume that at the instant the proton emerges into the center gap from the first dee, the potential difference between the dees is reversed. Thus, the proton again faces a negatively charged dee and is again accelerated. This process continues, the circulating proton always being in step with the oscillations of the dee potential, until the proton has spiraled out to the edge of the dee system. There a deflector plate sends it out through a portal.

Frequency. The key to the operation of the cyclotron is that the frequency \(f\) at which the proton circulates in the magnetic field (and that does not depend on its speed) must be equal to the fixed frequency \(f_{\text {osc }}\) of the electrical oscillator, or
\[
\begin{equation*}
f=f_{\text {osc }} \quad \text { (resonance condition). } \tag{28-23}
\end{equation*}
\]

This resonance condition says that, if the energy of the circulating proton is to increase, energy must be fed to it at a frequency \(f_{\text {osc }}\) that is equal to the natural frequency \(f\) at which the proton circulates in the magnetic field.

Combining Eqs. 28-18 ( \(f=|q| B / 2 \pi m\) ) and 28-23 allows us to write the resonance condition as
\[
\begin{equation*}
|q| B=2 \pi m f_{\text {osc }} \tag{28-24}
\end{equation*}
\]

The oscillator (we assume) is designed to work at a single fixed frequency \(f_{\text {osc }}\). We
then "tune" the cyclotron by varying \(B\) until Eq. 28-24 is satisfied, and then many protons circulate through the magnetic field, to emerge as a beam.

\section*{The Proton Synchrotron}

At proton energies above 50 MeV , the conventional cyclotron begins to fail because one of the assumptions of its design - that the frequency of revolution of a charged particle circulating in a magnetic field is independent of the particle's speed-is true only for speeds that are much less than the speed of light. At greater proton speeds (above about \(10 \%\) of the speed of light), we must treat the problem relativistically. According to relativity theory, as the speed of a circulating proton approaches that of light, the proton's frequency of revolution decreases steadily. Thus, the proton gets out of step with the cyclotron's oscillator - whose frequency remains fixed at \(f_{\text {osc }}\)-and eventually the energy of the still circulating proton stops increasing.

There is another problem. For a 500 GeV proton in a magnetic field of 1.5 T , the path radius is 1.1 km . The corresponding magnet for a conventional cyclotron of the proper size would be impossibly expensive, the area of its pole faces being about \(4 \times 10^{6} \mathrm{~m}^{2}\).

The proton synchrotron is designed to meet these two difficulties. The magnetic field \(B\) and the oscillator frequency \(f_{\text {osc }}\), instead of having fixed values as in the conventional cyclotron, are made to vary with time during the accelerating cycle. When this is done properly, (1) the frequency of the circulating protons remains in step with the oscillator at all times, and (2) the protons follow a circular - not a spiral - path. Thus, the magnet need extend only along that circular path, not over some \(4 \times 10^{6} \mathrm{~m}^{2}\). The circular path, however, still must be large if high energies are to be achieved.

\section*{Sample Problem 28.05 Accelerating a charged particle in a cyclotron}

Suppose a cyclotron is operated at an oscillator frequency of 12 MHz and has a dee radius \(R=53 \mathrm{~cm}\).
(a) What is the magnitude of the magnetic field needed for deuterons to be accelerated in the cyclotron? The deuteron mass is \(m=3.34 \times 10^{-27} \mathrm{~kg}\) (twice the proton mass).

\section*{KEY IDEA}

For a given oscillator frequency \(f_{\text {osc }}\), the magnetic field magnitude \(B\) required to accelerate any particle in a cyclotron depends on the ratio \(m /|q|\) of mass to charge for the particle, according to Eq. 28-24 ( \(\left.|q| B=2 \pi m f_{\text {osc }}\right)\).
Calculation: For deuterons and the oscillator frequency \(f_{\text {osc }}=\) 12 MHz , we find
\[
\begin{aligned}
B & =\frac{2 \pi m f_{\text {osc }}}{|q|}=\frac{(2 \pi)\left(3.34 \times 10^{-27} \mathrm{~kg}\right)\left(12 \times 10^{6} \mathrm{~s}^{-1}\right)}{1.60 \times 10^{-19} \mathrm{C}} \\
& =1.57 \mathrm{~T} \approx 1.6 \mathrm{~T}
\end{aligned}
\]

Note that, to accelerate protons, \(B\) would have to be reduced by a factor of 2 , provided the oscillator frequency remained fixed at 12 MHz .
(b) What is the resulting kinetic energy of the deuterons?

\section*{KEY IDEAS}
(1) The kinetic energy \(\left(\frac{1}{2} m v^{2}\right)\) of a deuteron exiting the cyclotron is equal to the kinetic energy it had just before exiting, when it was traveling in a circular path with a radius approximately equal to the radius \(R\) of the cyclotron dees. (2) We can find the speed \(v\) of the deuteron in that circular path with Eq. 28-16 \((r=m v /|q| B)\).

Calculations: Solving that equation for \(v\), substituting \(R\) for \(r\), and then substituting known data, we find
\[
\begin{aligned}
v & =\frac{R|q| B}{m}=\frac{(0.53 \mathrm{~m})\left(1.60 \times 10^{-19} \mathrm{C}\right)(1.57 \mathrm{~T})}{3.34 \times 10^{-27} \mathrm{~kg}} \\
& =3.99 \times 10^{7} \mathrm{~m} / \mathrm{s}
\end{aligned}
\]

This speed corresponds to a kinetic energy of
\[
\begin{aligned}
K & =\frac{1}{2} m v^{2} \\
& =\frac{1}{2}\left(3.34 \times 10^{-27} \mathrm{~kg}\right)\left(3.99 \times 10^{7} \mathrm{~m} / \mathrm{s}\right)^{2} \\
& =2.7 \times 10^{-12} \mathrm{~J}
\end{aligned}
\]
(Answer)
or about 17 MeV .

\section*{28-6 magnetic force on a current-carrying wire}

\section*{Learning Objectives}

After reading this module, you should be able to ...
28.31 For the situation where a current is perpendicular to a magnetic field, sketch the current, the direction of the magnetic field, and the direction of the magnetic force on the current (or wire carrying the current).
28.32 For a current in a magnetic field, apply the relationship between the magnetic force magnitude \(F_{B}\), the current \(i\), the length of the wire \(L\), and the angle \(\phi\) between the length vector \(\vec{L}\) and the field vector \(\vec{B}\).
28.33 Apply the right-hand rule for cross products to find
the direction of the magnetic force on a current in a magnetic field.
28.34 For a current in a magnetic field, calculate the magnetic force \(\vec{F}_{B}\) with a cross product of the length vector \(\vec{L}\) and the field vector \(\vec{B}\), in magnitude-angle and unit-vector notations.
28.35 Describe the procedure for calculating the force on a current-carrying wire in a magnetic field if the wire is not straight or if the field is not uniform.

\section*{Key Ideas}
- A straight wire carrying a current \(i\) in a uniform magnetic field experiences a sideways force
\[
\vec{F}_{B}=i \vec{L} \times \vec{B}
\]
- The force acting on a current element \(i d \vec{L}\) in a magnetic
field is
\[
d \vec{F}_{B}=i d \vec{L} \times \vec{B}
\]
- The direction of the length vector \(\vec{L}\) or \(d \vec{L}\) is that of the current \(i\).


Figure 28-14 A flexible wire passes between the pole faces of a magnet (only the farther pole face is shown). (a) Without current in the wire, the wire is straight. (b) With upward current, the wire is deflected rightward. (c) With downward current, the deflection is leftward. The connections for getting the current into the wire at one end and out of it at the other end are not shown.

\section*{Magnetic Force on a Current-Carrying Wire}

We have already seen (in connection with the Hall effect) that a magnetic field exerts a sideways force on electrons moving in a wire. This force must then be transmitted to the wire itself, because the conduction electrons cannot escape sideways out of the wire.

In Fig. 28-14a, a vertical wire, carrying no current and fixed in place at both ends, extends through the gap between the vertical pole faces of a magnet. The magnetic field between the faces is directed outward from the page. In Fig. 28-14b, a current is sent upward through the wire; the wire deflects to the right. In Fig. 28-14c, we reverse the direction of the current and the wire deflects to the left.

Figure \(28-15\) shows what happens inside the wire of Fig. 28-14b. We see one of the conduction electrons, drifting downward with an assumed drift speed \(v_{d}\). Equation 28-3, in which we must put \(\phi=90^{\circ}\), tells us that a force \(\vec{F}_{B}\) of magnitude \(e v_{d} B\) must act on each such electron. From Eq. 28-2 we see that this force must be directed to the right. We expect then that the wire as a whole will experience a force to the right, in agreement with Fig. 28-14b.

If, in Fig. 28-15, we were to reverse either the direction of the magnetic field or the direction of the current, the force on the wire would reverse, being directed now to the left. Note too that it does not matter whether we consider negative charges

Figure 28-15 A close-up view of a section of the wire of Fig. 28-14b The current direction is upward, which means that electrons drift downward. A magnetic field that emerges from the plane of the page causes the electrons and the wire to be deflected to the right.

drifting downward in the wire (the actual case) or positive charges drifting upward. The direction of the deflecting force on the wire is the same. We are safe then in dealing with a current of positive charge, as we usually do in dealing with circuits.

Find the Force. Consider a length \(L\) of the wire in Fig. 28-15. All the conduction electrons in this section of wire will drift past plane \(x x\) in Fig. 28-15 in a time \(t=L / v_{d}\). Thus, in that time a charge given by
\[
q=i t=i \frac{L}{v_{d}}
\]
will pass through that plane. Substituting this into Eq. 28-3 yields
or
\[
\begin{gather*}
F_{B}=q v_{d} B \sin \phi=\frac{i L}{v_{d}} v_{d} B \sin 90^{\circ} \\
F_{B}=i L B \tag{28-25}
\end{gather*}
\]

Note that this equation gives the magnetic force that acts on a length \(L\) of straight wire carrying a current \(i\) and immersed in a uniform magnetic field \(\vec{B}\) that is perpendicular to the wire.

If the magnetic field is not perpendicular to the wire, as in Fig. 28-16, the magnetic force is given by a generalization of Eq. 28-25:
\[
\begin{equation*}
\vec{F}_{B}=i \vec{L} \times \vec{B} \quad \text { (force on a current) } \tag{28-26}
\end{equation*}
\]

Here \(\vec{L}\) is a length vector that has magnitude \(L\) and is directed along the wire segment in the direction of the (conventional) current. The force magnitude \(F_{B}\) is
\[
\begin{equation*}
F_{B}=i L B \sin \phi, \tag{28-27}
\end{equation*}
\]
where \(\phi\) is the angle between the directions of \(\vec{L}\) and \(\vec{B}\). The direction of \(\vec{F}_{B}\) is that of the cross product \(\vec{L} \times \vec{B}\) because we take current \(i\) to be a positive quantity. Equation 28-26 tells us that \(\vec{F}_{B}\) is always perpendicular to the plane defined by vectors \(\vec{L}\) and \(\vec{B}\), as indicated in Fig. 28-16.

Equation 28-26 is equivalent to Eq. 28-2 in that either can be taken as the defining equation for \(\vec{B}\). In practice, we define \(\vec{B}\) from Eq. 28-26 because it is much easier to measure the magnetic force acting on a wire than that on a single moving charge.

Crooked Wire. If a wire is not straight or the field is not uniform, we can imagine the wire broken up into small straight segments and apply Eq. 28-26 to each segment. The force on the wire as a whole is then the vector sum of all the forces on the segments that make it up. In the differential limit, we can write
\[
\begin{equation*}
d \vec{F}_{B}=i d \vec{L} \times \vec{B} \tag{28-28}
\end{equation*}
\]
and we can find the resultant force on any given arrangement of currents by integrating Eq. 28-28 over that arrangement.

In using Eq. 28-28, bear in mind that there is no such thing as an isolated current-carrying wire segment of length \(d L\). There must always be a way to introduce the current into the segment at one end and take it out at the other end.

\section*{Checkpoint 4}

The figure shows a current \(i\) through a wire in a uniform magnetic field \(\vec{B}\), as well as the magnetic force \(\vec{F}_{B}\) acting on the wire. The field is oriented so that the force is maximum. In what direction is the field?



Figure 28-16 A wire carrying current \(i\) makes an angle \(\phi\) with magnetic field \(\vec{B}\). The wire has length \(L\) in the field and length vector \(\vec{L}\) (in the direction of the current). A magnetic force \(\vec{F}_{B}=i \vec{L} \times \vec{B}\) acts on the wire.

\section*{Sample Problem 28.06 Magnetic force on a wire carrying current}

A straight, horizontal length of copper wire has a current \(i=28\) A through it. What are the magnitude and direction of the minimum magnetic field \(\vec{B}\) needed to suspend the wire-that is, to balance the gravitational force on it? The linear density (mass per unit length) of the wire is \(46.6 \mathrm{~g} / \mathrm{m}\).

\section*{KEY IDEAS}
(1) Because the wire carries a current, a magnetic force \(\vec{F}_{B}\) can act on the wire if we place it in a magnetic field \(\vec{B}\). To balance the downward gravitational force \(\vec{F}_{g}\) on the wire, we want \(\vec{F}_{B}\) to be directed upward (Fig. 28-17). (2) The direction of \(\vec{F}_{B}\) is related to the directions of \(\vec{B}\) and the wire's length vector \(\vec{L}\) by Eq. 28-26 \(\left(\vec{F}_{B}=i \vec{L} \times \vec{B}\right)\).
Calculations: Because \(\vec{L}\) is directed horizontally (and the current is taken to be positive), Eq. 28-26 and the righthand rule for cross products tell us that \(\vec{B}\) must be horizontal and rightward (in Fig. 28-17) to give the required upward \(\vec{F}_{B}\).

The magnitude of \(\vec{F}_{B}\) is \(F_{\underline{B}}=i L B \sin \phi\) (Eq. 28-27). Because we want \(\vec{F}_{B}\) to balance \(\vec{F}_{g}\), we want
\[
\begin{equation*}
i L B \sin \phi=m g, \tag{28-29}
\end{equation*}
\]

Figure 28-17 A wire (shown in cross section) carrying current out of the page.

where \(m g\) is the magnitude of \(\vec{F}_{g}\) and \(m\) is the mass of the wire. We also want the minimal field magnitude \(B\) for \(\vec{F}_{B}\) to balance \(\vec{F}\). Thus, we need to maximize \(\sin \phi\) in Eq. 28-29. To do so, we set \(\phi=90^{\circ}\), thereby arranging for \(\vec{B}\) to be perpendicular to the wire. We then have \(\sin \phi=1\), so Eq. 28-29 yields
\[
\begin{equation*}
B=\frac{m g}{i L \sin \phi}=\frac{(m / L) g}{i} \tag{28-30}
\end{equation*}
\]

We write the result this way because we know \(m / L\), the linear density of the wire. Substituting known data then gives us
\[
\begin{aligned}
B & =\frac{\left(46.6 \times 10^{-3} \mathrm{~kg} / \mathrm{m}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{28 \mathrm{~A}} \\
& =1.6 \times 10^{-2} \mathrm{~T}
\end{aligned}
\]
(Answer)
This is about 160 times the strength of Earth's magnetic field.

\section*{28-7 torque on a current loop}

\section*{Learning Objectives}

After reading this module, you should be able to ...
28.36 Sketch a rectangular loop of current in a magnetic field, indicating the magnetic forces on the four sides, the direction of the current, the normal vector \(\vec{n}\), and the direction in which a torque from the forces tends to rotate the loop.
28.37 For a current-carrying coil in a magnetic field, apply the relationship between the torque magnitude \(\tau\), the number of turns \(N\), the area of each turn \(A\), the current \(i\), the magnetic field magnitude \(B\), and the angle \(\theta\) between the normal vector \(\vec{n}\) and the magnetic field vector \(\vec{B}\).

\section*{Key Ideas}
- Various magnetic forces act on the sections of a currentcarrying coil lying in a uniform external magnetic field, but the net force is zero.
- The net torque acting on the coil has a magnitude given by
\[
\tau=N i A B \sin \theta,
\]
where \(N\) is the number of turns in the coil, \(A\) is the area of each turn, \(i\) is the current, \(B\) is the field magnitude, and \(\theta\) is the angle between the magnetic field \(\vec{B}\) and the normal vector to the coil \(\vec{n}\).

\section*{Torque on a Current Loop}

Much of the world's work is done by electric motors. The forces behind this work are the magnetic forces that we studied in the preceding section-that is, the forces that a magnetic field exerts on a wire that carries a current.

Figure 28-18 shows a simple motor, consisting of a single current-carrying loop immersed in a magnetic field \(\vec{B}\). The two magnetic forces \(\vec{F}\) and \(-\vec{F}\) produce a torque on the loop, tending to rotate it about its central axis. Although many essential details have been omitted, the figure does suggest how the action of a magnetic field on a current loop produces rotary motion. Let us analyze that action.

Figure 28-19a shows a rectangular loop of sides \(a\) and \(b\), carrying current \(i\) through uniform magnetic field \(\vec{B}\). We place the loop in the field so that its long sides, labeled 1 and 3 , are perpendicular to the field direction (which is into the page), but its short sides, labeled 2 and 4, are not. Wires to lead the current into and out of the loop are needed but, for simplicity, are not shown.

To define the orientation of the loop in the magnetic field, we use a normal vector \(\vec{n}\) that is perpendicular to the plane of the loop. Figure \(28-19 b\) shows a right-hand rule for finding the direction of \(\vec{n}\). Point or curl the fingers of your right hand in the direction of the current at any point on the loop. Your extended thumb then points in the direction of the normal vector \(\vec{n}\).

In Fig. 28-19c, the normal vector of the loop is shown at an arbitrary angle \(\theta\) to the direction of the magnetic field \(\vec{B}\). We wish to find the net force and net torque acting on the loop in this orientation.

Net Torque. The net force on the loop is the vector sum of the forces acting on its four sides. For side 2 the vector \(\vec{L}\) in Eq. \(28-26\) points in the direction of the current and has magnitude \(b\). The angle between \(\vec{L}\) and \(\vec{B}\) for side 2 (see Fig. 28-19c) is \(90^{\circ}-\theta\). Thus, the magnitude of the force acting on this side is
\[
\begin{equation*}
F_{2}=i b B \sin \left(90^{\circ}-\theta\right)=i b B \cos \theta \tag{28-31}
\end{equation*}
\]

You can show that the force \(\vec{F}_{4}\) acting on side 4 has the same magnitude as \(\vec{F}_{2}\) but the opposite direction. Thus, \(\vec{F}_{2}\) and \(\vec{F}_{4}\) cancel out exactly. Their net force is zero and, because their common line of action is through the center of the loop, their net torque is also zero.

The situation is different for sides 1 and 3. For them, \(\vec{L}\) is perpendicular to \(\vec{B}\), so the forces \(\vec{F}_{1}\) and \(\vec{F}_{3}\) have the common magnitude \(i a B\). Because these two forces have opposite directions, they do not tend to move the loop up or down. However, as Fig. 28-19c shows, these two forces do not share the same line of action; so they do produce a net torque. The torque tends to rotate the loop so as to align its normal vector \(\vec{n}\) with the direction of the magnetic field \(\vec{B}\). That torque has moment \(\operatorname{arm}(b / 2) \sin \theta\) about the central axis of the loop. The magnitude \(\tau^{\prime}\) of the torque due to forces \(\vec{F}_{1}\) and \(\vec{F}_{3}\) is then (see Fig. 28-19c)
\[
\begin{equation*}
\tau^{\prime}=\left(i a B \frac{b}{2} \sin \theta\right)+\left(i a B \frac{b}{2} \sin \theta\right)=i a b B \sin \theta \tag{28-32}
\end{equation*}
\]

Coil. Suppose we replace the single loop of current with a coil of \(N\) loops, or turns. Further, suppose that the turns are wound tightly enough that they can be
(a)


(b)


Figure 28-18 The elements of an electric motor. A rectangular loop of wire, carrying a current and free to rotate about a fixed axis, is placed in a magnetic field. Magnetic forces on the wire produce a torque that rotates it. A commutator (not shown) reverses the direction of the current every half-revolution so that the torque always acts in the same direction.

Figure 28-19 A rectangular loop, of length \(a\) and width \(b\) and carrying a current \(i\), is located in a uniform magnetic field. A torque \(\tau\) acts to align the normal vector \(\vec{n}\) with the direction of the field. (a) The loop as seen by looking in the direction of the magnetic field. (b) A perspective of the loop showing how the right-hand rule gives the direction of \(\vec{n}\), which is perpendicular to the plane of the loop. (c) A side view of the loop, from side 2 . The loop rotates as indicated.

approximated as all having the same dimensions and lying in a plane. Then the turns form a flat coil, and a torque \(\tau^{\prime}\) with the magnitude given in Eq. 28-32 acts on each of them. The total torque on the coil then has magnitude
\[
\begin{equation*}
\tau=N \tau^{\prime}=N i a b B \sin \theta=(N i A) B \sin \theta, \tag{28-33}
\end{equation*}
\]
in which \(A(=a b)\) is the area enclosed by the coil. The quantities in parentheses \((N i A)\) are grouped together because they are all properties of the coil: its number of turns, its area, and the current it carries. Equation 28-33 holds for all flat coils, no matter what their shape, provided the magnetic field is uniform. For example, for the common circular coil, with radius \(r\), we have
\[
\begin{equation*}
\tau=\left(N i \pi r^{2}\right) B \sin \theta \tag{28-34}
\end{equation*}
\]

Normal Vector. Instead of focusing on the motion of the coil, it is simpler to keep track of the vector \(\vec{n}\), which is normal to the plane of the coil. Equation 28-33 tells us that a current-carrying flat coil placed in a magnetic field will tend to rotate so that \(\vec{n}\) has the same direction as the field. In a motor, the current in the coil is reversed as \(\vec{n}\) begins to line up with the field direction, so that a torque continues to rotate the coil. This automatic reversal of the current is done via a commutator that electrically connects the rotating coil with the stationary contacts on the wires that supply the current from some source.

\section*{28-8 the magnetic dipole moment}

\section*{Learning Objectives}

After reading this module, you should be able to ...
28.38 Identify that a current-carrying coil is a magnetic dipole with a magnetic dipole moment \(\vec{\mu}\) that has the direction of the normal vector \(\vec{n}\), as given by a right-hand rule.
28.39 For a current-carrying coil, apply the relationship between the magnitude \(\mu\) of the magnetic dipole moment, the number of turns \(N\), the area \(A\) of each turn, and the current \(i\).
28.40 On a sketch of a current-carrying coil, draw the direction of the current, and then use a right-hand rule to determine the direction of the magnetic dipole moment vector \(\vec{\mu}\).
28.41 For a magnetic dipole in an external magnetic field, apply the relationship between the torque magnitude \(\tau\), the dipole moment magnitude \(\mu\), the magnetic field magnitude \(B\), and the angle \(\theta\) between the dipole moment vector \(\vec{\mu}\) and the magnetic field vector \(\vec{B}\).
28.42 Identify the convention of assigning a plus or minus sign to a torque according to the direction of rotation.
28.43 Calculate the torque on a magnetic dipole by evaluating a cross product of the dipole moment vector \(\vec{\mu}\) and the
external magnetic field vector \(\vec{B}\), in magnitude-angle notation and unit-vector notation.
28.44 For a magnetic dipole in an external magnetic field, identify the dipole orientations at which the torque magnitude is minimum and maximum.
28.45 For a magnetic dipole in an external magnetic field, apply the relationship between the orientation energy \(U\), the dipole moment magnitude \(\mu\), the external magnetic field magnitude \(B\), and the angle \(\theta\) between the dipole moment vector \(\vec{\mu}\) and the magnetic field vector \(\vec{B}\).
28.46 Calculate the orientation energy \(U\) by taking a dot product of the dipole moment vector \(\vec{\mu}\) and the external magnetic field vector \(\vec{B}\), in magnitude-angle and unit-vector notations.
28.47 Identify the orientations of a magnetic dipole in an external magnetic field that give the minimum and maximum orientation energies.
28.48 For a magnetic dipole in a magnetic field, relate the orientation energy \(U\) to the work \(W_{a}\) done by an external torque as the dipole rotates in the magnetic field.

\section*{Key Ideas}
- A coil (of area \(A\) and \(N\) turns, carrying current \(i\) ) in a uniform magnetic field \(\vec{B}\) will experience a torque \(\vec{\tau}\) given by
\[
\vec{\tau}=\vec{\mu} \times \vec{B}
\]

Here \(\vec{\mu}\) is the magnetic dipole moment of the coil, with magnitude \(\mu=N i A\) and direction given by the righthand rule.
- The orientation energy of a magnetic dipole in a magnetic
field is
\[
U(\theta)=-\vec{\mu} \cdot \vec{B}
\]
- If an external agent rotates a magnetic dipole from an initial orientation \(\theta_{i}\) to some other orientation \(\theta_{f}\) and the dipole is stationary both initially and finally, the work \(W_{a}\) done on the dipole by the agent is
\[
W_{a}=\Delta U=U_{f}-U_{i}
\]

\section*{The Magnetic Dipole Moment}

As we have just discussed, a torque acts to rotate a current-carrying coil placed in a magnetic field. In that sense, the coil behaves like a bar magnet placed in the magnetic field. Thus, like a bar magnet, a current-carrying coil is said to be a magnetic dipole. Moreover, to account for the torque on the coil due to the magnetic field, we assign a magnetic dipole moment \(\vec{\mu}\) to the coil. The direction of \(\vec{\mu}\) is that of the normal vector \(\vec{n}\) to the plane of the coil and thus is given by the same righthand rule shown in Fig. 28-19. That is, grasp the coil with the fingers of your right hand in the direction of current \(i\); the outstretched thumb of that hand gives the direction of \(\vec{\mu}\). The magnitude of \(\vec{\mu}\) is given by
\[
\begin{equation*}
\mu=N i A \quad \text { (magnetic moment }) \tag{28-35}
\end{equation*}
\]
in which \(N\) is the number of turns in the coil, \(i\) is the current through the coil, and \(A\) is the area enclosed by each turn of the coil. From this equation, with \(i\) in amperes and \(A\) in square meters, we see that the unit of \(\vec{\mu}\) is the ampere-square meter \(\left(\mathrm{A} \cdot \mathrm{m}^{2}\right)\).

Torque. Using \(\vec{\mu}\), we can rewrite Eq. \(28-33\) for the torque on the coil due to a magnetic field as
\[
\begin{equation*}
\tau=\mu B \sin \theta \tag{28-36}
\end{equation*}
\]
in which \(\theta\) is the angle between the vectors \(\vec{\mu}\) and \(\vec{B}\).
We can generalize this to the vector relation
\[
\begin{equation*}
\vec{\tau}=\vec{\mu} \times \vec{B} \tag{28-37}
\end{equation*}
\]
which reminds us very much of the corresponding equation for the torque exerted by an electric field on an electric dipole - namely, Eq. 22-34:
\[
\vec{\tau}=\vec{p} \times \vec{E}
\]

In each case the torque due to the field - either magnetic or electric - is equal to the vector product of the corresponding dipole moment and the field vector.

Energy. A magnetic dipole in an external magnetic field has an energy that depends on the dipole's orientation in the field. For electric dipoles we have shown (Eq. 22-38) that
\[
U(\theta)=-\vec{p} \cdot \vec{E}
\]

In strict analogy, we can write for the magnetic case
\[
\begin{equation*}
U(\theta)=-\vec{\mu} \cdot \vec{B} \tag{28-38}
\end{equation*}
\]

In each case the energy due to the field is equal to the negative of the scalar product of the corresponding dipole moment and the field vector.

A magnetic dipole has its lowest energy \((=-\mu B \cos 0=-\mu B)\) when its dipole moment \(\vec{\mu}\) is lined up with the magnetic field (Fig. 28-20). It has its highest energy \(\left(=-\mu B \cos 180^{\circ}=+\mu B\right)\) when \(\vec{\mu}\) is directed opposite the field. From Eq. 28-38, with \(U\) in joules and \(\vec{B}\) in teslas, we see that the unit of \(\vec{\mu}\) can be the joule per tesla ( \(\mathrm{J} / \mathrm{T}\) ) instead of the ampere-square meter as suggested by Eq. 28-35.

Work. If an applied torque (due to "an external agent") rotates a magnetic dipole from an initial orientation \(\theta_{i}\) to another orientation \(\theta_{f}\), then work \(W_{a}\) is done on the dipole by the applied torque. If the dipole is stationary before and after the change in its orientation, then work \(W_{a}\) is
\[
\begin{equation*}
W_{a}=U_{f}-U_{i} \tag{28-39}
\end{equation*}
\]
where \(U_{f}\) and \(U_{i}\) are calculated with Eq. 28-38.

The magnetic moment vector attempts to align with the magnetic field.


Figure 28-20 The orientations of highest and lowest energy of a magnetic dipole (here a coil carrying current) in an external magnetic field \(\vec{B}\). The direction of the current \(i\) gives the direction of the magnetic dipole moment \(\vec{\mu}\) via the right-hand rule shown for \(\vec{n}\) in Fig. 28-19b.

Table 28-2 Some Magnetic Dipole

\section*{Moments}
\begin{tabular}{lc} 
Small bar magnet & \multicolumn{1}{c}{\(\mathrm{J} / \mathrm{T}\)} \\
Earth & \(8.0 \times 10^{22} \mathrm{~J} / \mathrm{T}\) \\
Proton & \(1.4 \times 10^{-26} \mathrm{~J} / \mathrm{T}\) \\
Electron & \(9.3 \times 10^{-24} \mathrm{~J} / \mathrm{T}\) \\
\hline
\end{tabular}

So far, we have identified only a current-carrying coil and a permanent magnet as a magnetic dipole. However, a rotating sphere of charge is also a magnetic dipole, as is Earth itself (approximately). Finally, most subatomic particles, including the electron, the proton, and the neutron, have magnetic dipole moments. As you will see in Chapter 32, all these quantities can be viewed as current loops. For comparison, some approximate magnetic dipole moments are shown in Table 28-2.

Language. Some instructors refer to \(U\) in Eq. 28-38 as a potential energy and relate it to work done by the magnetic field when the orientation of the dipole changes. Here we shall avoid the debate and say that \(U\) is an energy associated with the dipole orientation.

\section*{Checkpoint 5}

The figure shows four orientations, at angle \(\theta\), of a magnetic dipole moment \(\vec{\mu}\) in a magnetic field. Rank the orientations according to (a) the magnitude of the torque on the dipole and (b) the orientation energy of the dipole, greatest first.


\section*{Sample Problem 28.07 Rotating a magnetic dipole in a magnetic field}

Figure 28-21 shows a circular coil with 250 turns, an area \(A\) of \(2.52 \times 10^{-4} \mathrm{~m}^{2}\), and a current of \(100 \mu \mathrm{~A}\). The coil is at rest in a uniform magnetic field of magnitude \(B=0.85 \mathrm{~T}\), with its magnetic dipole moment \(\vec{\mu}\) initially aligned with \(\vec{B}\).
(a) In Fig. 28-21, what is the direction of the current in the coil?

Right-hand rule: Imagine cupping the coil with your right hand so that your right thumb is outstretched in the direction of \(\vec{\mu}\). The direction in which your fingers curl around the coil is the direction of the current in the coil. Thus, in the wires on the near side of the coil-those we see in Fig. 28-21-the current is from top to bottom.
(b) How much work would the torque applied by an external agent have to do on the coil to rotate it \(90^{\circ}\) from its ini-


Figure 28-21 A side view of a circular coil carrying a current and oriented so that its magnetic dipole moment is aligned with magnetic field \(\vec{B}\).
tial orientation, so that \(\vec{\mu}\) is perpendicular to \(\vec{B}\) and the coil is again at rest?

\section*{KEY IDEA}

The work \(W_{a}\) done by the applied torque would be equal to the change in the coil's orientation energy due to its change in orientation.

Calculations: From Eq. 28-39 ( \(W_{a}=U_{f}-U_{i}\) ), we find
\[
\begin{aligned}
W_{a} & =U\left(90^{\circ}\right)-U\left(0^{\circ}\right) \\
& =-\mu B \cos 90^{\circ}-\left(-\mu B \cos 0^{\circ}\right)=0+\mu B \\
& =\mu B .
\end{aligned}
\]

Substituting for \(\mu\) from Eq. 28-35 \((\mu=N i A)\), we find that
\[
\begin{aligned}
W_{a} & =(N i A) B \\
& =(250)\left(100 \times 10^{-6} \mathrm{~A}\right)\left(2.52 \times 10^{-4} \mathrm{~m}^{2}\right)(0.85 \mathrm{~T}) \\
& =5.355 \times 10^{-6} \mathrm{~J} \approx 5.4 \mu \mathrm{~J} .
\end{aligned}
\]
(Answer)
Similarly, we can show that to change the orientation by another \(90^{\circ}\), so that the dipole moment is opposite the field, another \(5.4 \mu \mathrm{~J}\) is required.

\section*{Beview \& Summary}

Magnetic Field \(\overrightarrow{\boldsymbol{B}}\) A magnetic field \(\vec{B}\) is defined in terms of the force \(\vec{F}_{B}\) acting on a test particle with charge \(q\) moving through the field with velocity \(\vec{v}\) :
\[
\begin{equation*}
\vec{F}_{B}=q \vec{v} \times \vec{B} . \tag{28-2}
\end{equation*}
\]

The SI unit for \(\vec{B}\) is the tesla \((\mathrm{T}): 1 \mathrm{~T}=1 \mathrm{~N} /(\mathrm{A} \cdot \mathrm{m})=10^{4}\) gauss.
The Hall Effect When a conducting strip carrying a current \(i\) is placed in a uniform magnetic field \(\vec{B}\), some charge carriers (with charge \(e\) ) build up on one side of the conductor, creating a potential difference \(V\) across the strip. The polarities of the sides indicate the sign of the charge carriers.

\section*{A Charged Particle Circulating in a Magnetic Field A} charged particle with mass \(m\) and charge magnitude \(|q|\) moving with velocity \(\vec{v}\) perpendicular to a uniform magnetic field \(\vec{B}\) will travel in a circle. Applying Newton's second law to the circular motion yields
\[
\begin{equation*}
|q| v B=\frac{m v^{2}}{r} \tag{28-15}
\end{equation*}
\]
from which we find the radius \(r\) of the circle to be
\[
\begin{equation*}
r=\frac{m v}{|q| B} . \tag{28-16}
\end{equation*}
\]

The frequency of revolution \(f\), the angular frequency \(\omega\), and the period of the motion \(T\) are given by
\[
\begin{equation*}
f=\frac{\omega}{2 \pi}=\frac{1}{T}=\frac{|q| B}{2 \pi m} . \tag{28-19,28-18,28-17}
\end{equation*}
\]

\section*{Questions}

1 Figure 28-22 shows three situations in which a positively charged particle moves at velocity \(\vec{v}\) through a uniform magnetic field \(\vec{B}\) and experiences a magnetic force \(\vec{F}_{B}\). In each situation, determine whether the orientations of the vectors are physically reasonable.


Figure 28-22 Question 1.
2 Figure 28-23 shows a wire that carries current to the right through a uniform magnetic field. It also shows four choices for the direction of that field. (a) Rank the choices according to the magnitude of the electric potential difference that would be set up across the width of the wire, greatest first. (b) For which choice is the top side of the wire at higher potential than the bottom side of the wire?
3 Figure 28-24 shows a metallic, rectangular solid that is to move at a certain speed \(v\) through the uniform magnetic field \(\vec{B}\). The dimensions of the solid are multiples of \(d\), as shown. You have six choices for the direction of the velocity: parallel to \(x, y\), or \(z\) in ei-

Magnetic Force on a Current-Carrying Wire A straight wire carrying a current \(i\) in a uniform magnetic field experiences a sideways force
\[
\begin{equation*}
\vec{F}_{B}=i \vec{L} \times \vec{B} \tag{28-26}
\end{equation*}
\]

The force acting on a current element \(i d \vec{L}\) in a magnetic field is
\[
\begin{equation*}
d \vec{F}_{B}=i d \vec{L} \times \vec{B} . \tag{28-28}
\end{equation*}
\]

The direction of the length vector \(\vec{L}\) or \(d \vec{L}\) is that of the current \(i\).
Torque on a Current-Carrying Coil A coil (of area \(A\) and \(N\) turns, carrying current \(i\) ) in a uniform magnetic field \(\vec{B}\) will experience a torque \(\vec{\tau}\) given by
\[
\begin{equation*}
\vec{\tau}=\vec{\mu} \times \vec{B} \tag{28-37}
\end{equation*}
\]

Here \(\vec{\mu}\) is the magnetic dipole moment of the coil, with magnitude \(\mu=N i A\) and direction given by the right-hand rule.

Orientation Energy of a Magnetic Dipole The orientation energy of a magnetic dipole in a magnetic field is
\[
\begin{equation*}
U(\theta)=-\vec{\mu} \cdot \vec{B} \tag{28-38}
\end{equation*}
\]

If an external agent rotates a magnetic dipole from an initial orientation \(\theta_{i}\) to some other orientation \(\theta_{f}\) and the dipole is stationary both initially and finally, the work \(W_{a}\) done on the dipole by the agent is
\[
\begin{equation*}
W_{a}=\Delta U=U_{f}-U_{i} . \tag{28-39}
\end{equation*}
\]
ther the positive or negative direction. (a) Rank the six choices according to the potential difference set up across the solid, greatest first. (b) For which choice is the front face at lower potential?
4 Figure \(28-25\) shows the path of a particle through six regions of uniform magnetic field, where the path is either


Figure 28-24 Question 3. a half-circle or a quarter-circle. Upon leaving the last region, the particle travels between two charged, parallel plates and is deflected toward the plate of higher potential. What is the direction of the magnetic field in each of the six regions?


Figure 28-25 Question 4.

5 In Module 28-2, we discussed a charged particle moving through crossed fields with the forces \(\vec{F}_{E}\) and \(\vec{F}_{B}\) in opposition. We found that the particle moves in a straight line (that is, neither force dominates the motion) if its speed is given by Eq. 28-7 ( \(v=\) \(E / B)\). Which of the two forces dominates if the speed of the particle is (a) \(v<E / B\) and (b) \(v>E / B\) ?
6 Figure 28-26 shows crossed uniform electric and magnetic fields \(\vec{E}\) and \(\vec{B}\) and, at a certain instant, the velocity vectors of the 10 charged particles listed in Table 28-3. (The vectors are not drawn to scale.) The speeds given in the table are either less than or greater than \(E / B\) (see Question 5). Which particles will move out of the page toward you after the instant shown in Fig. 28-26?


Table 28-3 Question 6
\begin{tabular}{ccl|ccl}
\hline Particle & Charge & Speed & Particle & Charge & Speed \\
\hline 1 & + & Less & 6 & - & Greater \\
2 & + & Greater & 7 & + & Less \\
3 & + & Less & 8 & + & Greater \\
4 & + & Greater & 9 & - & Less \\
5 & - & Less & 10 & - & Greater \\
\hline
\end{tabular}

7 Figure 28-27 shows the path of an electron that passes through two regions containing uniform magnetic fields of magnitudes \(B_{1}\) and \(B_{2}\). Its path in each region is a half-circle. (a) Which field is stronger? (b) What is the direction of each field? (c) Is the time spent by the electron in the \(\vec{B}_{1}\) region greater than, less than, or the same as the time spent


Figure 28-27 Question 7. in the \(\vec{B}_{2}\) region?
8 Figure 28-28 shows the path of an electron in a region of uniform magnetic field. The path consists of two straight sections, each between a pair of uniformly charged plates, and two half-circles. Which plate is at the higher electric potential in (a) the top pair of plates and (b) the


Figure 28-28 Question 8. bottom pair? (c) What is the direction of the magnetic field?
9 (a) In Checkpoint 5 , if the dipole moment \(\vec{\mu}\) is rotated from orientation 2 to orientation 1 by an external agent, is the work done on the dipole by the agent positive, negative, or zero? (b) Rank the work done on the dipole by the agent for these three rotations, greatest first: \(2 \rightarrow 1,2 \rightarrow 4,2 \rightarrow 3\).
10 Particle roundabout. Figure 28-29 shows 11 paths through a region of uniform magnetic field. One path is a straight line; the rest are half-circles. Table \(28-4\) gives the masses, charges, and speeds of 11 particles that take these paths through the field in the directions shown. Which path in the figure corresponds to which
particle in the table? (The direction of the magnetic field can be determined by means of one of the paths, which is unique.)


Figure 28-29 Question 10.
Table 28-4 Question 10
\begin{tabular}{cccc}
\hline Particle & Mass & Charge & Speed \\
\hline 1 & \(2 m\) & \(q\) & \(v\) \\
2 & \(m\) & \(2 q\) & \(v\) \\
3 & \(m / 2\) & \(q\) & \(2 v\) \\
4 & \(3 m\) & \(3 q\) & \(3 v\) \\
5 & \(2 m\) & \(q\) & \(2 v\) \\
6 & \(m\) & \(-q\) & \(2 v\) \\
7 & \(m\) & \(-4 q\) & \(v\) \\
8 & \(m\) & \(-q\) & \(v\) \\
9 & \(2 m\) & \(-2 q\) & \(3 v\) \\
10 & \(m\) & \(-2 q\) & \(8 v\) \\
11 & \(3 m\) & 0 & \(3 v\) \\
\hline
\end{tabular}

11 In Fig. 28-30, a charged particle enters a uniform magnetic field \(\vec{B}\) with speed \(v_{0}\), moves through a halfcircle in time \(T_{0}\), and then leaves the field. (a) Is the charge positive or negative? (b) Is the final speed of the particle greater than, less than, or equal to \(v_{0}\) ? (c) If the initial speed had been \(0.5 v_{0}\), would the time spent in field \(\vec{B}\) have been greater than, less than, or equal to \(T_{0}\) ? (d) Would the path have been a half-circle, more than a half-circle, or less than a half-circle?

12 Figure 28-31 gives snapshots for three situations in which a positively charged particle passes through a uniform magnetic field \(\vec{B}\). The velocities \(\vec{v}\) of the particle differ in orientation in the three snapshots but not in magnitude. Rank the situations according to (a) the period, (b) the frequency, and (c) the pitch of the particle's motion, greatest first.


Figure 28-31 Question 12.

\section*{Problems}


\section*{Module 28-1 Magnetic Fields and the Definition of \(\overrightarrow{\boldsymbol{B}}\)}
\(\bullet 1\) SSM ILW A proton traveling at \(23.0^{\circ}\) with respect to the direction of a magnetic field of strength 2.60 mT experiences a magnetic force of \(6.50 \times 10^{-17} \mathrm{~N}\). Calculate (a) the proton's speed and (b) its kinetic energy in electron-volts.
-2 A particle of mass 10 g and charge \(80 \mu \mathrm{C}\) moves through a uniform magnetic field, in a region where the free-fall acceleration is \(-9.8 \hat{\mathrm{j} ~ m} / \mathrm{s}^{2}\). The velocity of the particle is a constant \(20 \hat{\mathrm{i}} \mathrm{km} / \mathrm{s}\), which is perpendicular to the magnetic field. What, then, is the magnetic field?
-3 An electron that has an instantaneous velocity of
\[
\vec{v}=\left(2.0 \times 10^{6} \mathrm{~m} / \mathrm{s}\right) \hat{\mathrm{i}}+\left(3.0 \times 10^{6} \mathrm{~m} / \mathrm{s}\right) \hat{\mathrm{j}}
\]
is moving through the uniform magnetic field \(\vec{B}=(0.030 \mathrm{~T}) \hat{\mathrm{i}}-\) ( 0.15 T\() \hat{\mathrm{j}}\). (a) Find the force on the electron due to the magnetic field. (b) Repeat your calculation for a proton having the same velocity.
-4 An alpha particle travels at a velocity \(\vec{v}\) of magnitude \(550 \mathrm{~m} / \mathrm{s}\) through a uniform magnetic field \(\vec{B}\) of magnitude 0.045 T . (An alpha particle has a charge of \(+3.2 \times 10^{-19} \mathrm{C}\) and a mass of \(6.6 \times\) \(10^{-27} \mathrm{~kg}\).) The angle between \(\vec{v}\) and \(\vec{B}\) is \(52^{\circ}\). What is the magnitude of (a) the force \(\vec{F}_{B}\) acting on the particle due to the field and (b) the acceleration of the particle due to \(\vec{F}_{B}\) ? (c) Does the speed of the particle increase, decrease, or remain the same?
\(\bullet 5\) © An electron moves through a uniform magnetic field given by \(\vec{B}=B_{x} \hat{i}+\left(3.0 B_{x}\right) \hat{\mathrm{j}}\). At a particular instant, the electron has velocity \(\vec{v}=(2.0 \hat{\mathrm{i}}+4.0 \hat{\mathrm{j}}) \mathrm{m} / \mathrm{s}\) and the magnetic force acting on it is \(\left(6.4 \times 10^{-19} \mathrm{~N}\right) \hat{\mathrm{k}}\). Find \(B_{x}\).
\(\because 6\) ©0 A proton moves through a uniform magnetic field given by \(\vec{B}=(10 \hat{\mathrm{i}}-20 \hat{\mathrm{j}}+30 \hat{\mathrm{k}}) \mathrm{mT}\). At time \(t_{1}\), the proton has a velocity given by \(\vec{v}=v_{x} \hat{i}+v_{y} \hat{j}+(2.0 \mathrm{~km} / \mathrm{s}) \hat{\mathrm{k}}\) and the magnetic force on the proton is \(\vec{F}_{B}=\left(4.0 \times 10^{-17} \mathrm{~N}\right) \hat{\mathrm{i}}+\left(2.0 \times 10^{-17} \mathrm{~N}\right) \hat{\mathrm{j}}\). At that instant, what are (a) \(v_{x}\) and (b) \(v_{y}\) ?

\section*{Module 28-2 Crossed Fields: Discovery of the Electron}
-7 An electron has an initial velocity of \((12.0 \hat{\mathrm{j}}+15.0 \hat{\mathrm{k}}) \mathrm{km} / \mathrm{s}\) and a constant acceleration of \(\left(2.00 \times 10^{12} \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathrm{i}}\) in a region in which uniform electric and magnetic fields are present. If \(\vec{B}=(400 \mu \mathrm{~T}) \hat{\mathrm{i}}\), find the electric field \(\vec{E}\).
-8 An electric field of \(1.50 \mathrm{kV} / \mathrm{m}\) and a perpendicular magnetic field of 0.400 T act on a moving electron to produce no net force. What is the electron's speed?
-9 ILw In Fig. 28-32, an electron accelerated from rest through potential difference \(V_{1}=1.00 \mathrm{kV}\) enters the gap between two parallel plates having separation \(d=20.0 \mathrm{~mm}\) and potential difference


Figure 28-32 Problem 9.
\(V_{2}=100 \mathrm{~V}\). The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap?
-110 A proton travels through uniform magnetic and electric fields. The magnetic field is \(\vec{B}=-2.50 \hat{\mathrm{i}} \mathrm{mT}\). At one instant the velocity of the proton is \(\vec{v}=2000 \hat{\mathrm{j}} \mathrm{m} / \mathrm{s}\). At that instant and in unit-vector notation, what is the net force acting on the proton if the electric field is (a) \(4.00 \hat{\mathrm{k}} \mathrm{V} / \mathrm{m}\), (b) \(-4.00 \hat{\mathrm{k}} \mathrm{V} / \mathrm{m}\), and (c) \(4.00 \hat{\mathrm{i}} \mathrm{V} / \mathrm{m}\) ?
-•11 ©0 An ion source is producing \({ }^{6} \mathrm{Li}\) ions, which have charge \(+e\) and mass \(9.99 \times 10^{-27} \mathrm{~kg}\). The ions are accelerated by a potential difference of 10 kV and pass horizontally into a region in which there is a uniform vertical magnetic field of magnitude \(B=1.2 \mathrm{~T}\). Calculate the strength of the smallest electric field, to be set up over the same region, that will allow the \({ }^{6} \mathrm{Li}\) ions to pass through undeflected.
00012 ©o At time \(t_{1}\), an electron is sent along the positive direction of an \(x\) axis, through both an electric field \(\vec{E}\) and a magnetic field \(\vec{B}\), with \(\vec{E}\) directed parallel to the \(y\) axis. Figure 28-33 gives the \(y\) component \(F_{\text {net, },}\) of the net force on the electron due to the two fields, as a function of the electron's speed \(v\) at time \(t_{1}\). The scale of the velocity axis is set by \(v_{s}=100.0 \mathrm{~m} / \mathrm{s}\). The \(x\) and \(z\) components of the net force are zero at \(t_{1}\).


Figure 28-33 Problem 12. Assuming \(B_{x}=0\), find (a) the magnitude \(E\) and (b) \(\vec{B}\) in unit-vector notation.

\section*{Module 28-3 Crossed Fields: The Hall Effect}
\(\bullet 13\) A strip of copper \(150 \mu \mathrm{~m}\) thick and 4.5 mm wide is placed in a uniform magnetic field \(\vec{B}\) of magnitude 0.65 T , with \(\vec{B}\) perpendicular to the strip. A current \(i=23 \mathrm{~A}\) is then sent through the strip such that a Hall potential difference \(V\) appears across the width of the strip. Calculate \(V\). (The number of charge carriers per unit volume for copper is \(8.47 \times 10^{28}\) electrons \(/ \mathrm{m}^{3}\).)
-14 A metal strip 6.50 cm long, 0.850 cm wide, and 0.760 mm thick moves with constant velocity \(\vec{v}\) through a uniform magnetic field \(B=\) 1.20 mT directed perpendicular to the strip, as shown in Fig. 28-34. A potential difference of \(3.90 \mu \mathrm{~V}\) is measured between points \(x\) and \(y\) across the strip. Calculate the speed \(v\).
- 15 © A conducting rectangular solid of dimensions \(d_{x}=5.00 \mathrm{~m}, d_{y}=\) 3.00 m , and \(d_{z}=2.00 \mathrm{~m}\) moves with a


Figure 28-34 Problem 14. constant velocity \(\vec{v}=(20.0 \mathrm{~m} / \mathrm{s}) \hat{\mathrm{i}}\) through a uniform magnetic field
\(\vec{B}=(30.0 \mathrm{mT}) \hat{\mathrm{j}}\) (Fig. 28-35). What are the resulting (a) electric field within the solid, in unit-vector notation, and (b) potential difference across the solid?
-0016 ©o Figure 28-35 shows a metallic block, with its faces parallel to coordinate axes. The block is in a uniform magnetic field of magnitude 0.020 T . One edge length of the block is 25 cm ; the block is not drawn to scale. The block is moved at \(3.0 \mathrm{~m} / \mathrm{s}\) parallel to each axis, in turn, and the resulting potential difference \(V\) that appears across the block is meas-


Figure 28-35 Problems 15 and 16. ured. With the motion parallel to the \(y\) axis, \(V=12 \mathrm{mV}\); with the motion parallel to the \(z\) axis, \(V=18\) mV ; with the motion parallel to the \(x\) axis, \(V=0\). What are the block lengths (a) \(d_{x}\), (b) \(d_{y}\), and (c) \(d_{z}\) ?

\section*{Module 28-4 A Circulating Charged Particle}
-17 An alpha particle can be produced in certain radioactive decays of nuclei and consists of two protons and two neutrons. The particle has a charge of \(q=+2 e\) and a mass of 4.00 u , where u is the atomic mass unit, with \(1 \mathrm{u}=1.661 \times 10^{-27} \mathrm{~kg}\). Suppose an alpha particle travels in a circular path of radius 4.50 cm in a uniform magnetic field with \(B=1.20 \mathrm{~T}\). Calculate (a) its speed, (b) its period of revolution, (c) its kinetic energy, and (d) the potential difference through which it would have to be accelerated to achieve this energy.
-18 ©0 In Fig. 28-36, a particle moves along a circle in a region of uniform magnetic field of magnitude \(B=4.00 \mathrm{mT}\). The particle is either a proton or an electron (you must decide which). It experiences a magnetic force of magnitude \(3.20 \times 10^{-15} \mathrm{~N}\). What are (a) the particle's speed, (b) the radius of the circle, and (c) the period of


Figure 28-36
Problem 18. the motion?
-19 A certain particle is sent into a uniform magnetic field, with the particle's velocity vector perpendicular to the direction of the field. Figure \(28-37\) gives the period \(T\) of the particle's motion versus the inverse of the field magnitude \(B\). The vertical axis scale is set by \(T_{s}=40.0 \mathrm{~ns}\), and the horizontal axis scale is set by \(B_{s}^{-1}=5.0 \mathrm{~T}^{-1}\). What is the ratio \(\mathrm{m} / \mathrm{q}\) of the particle's mass to the magnitude of its charge?


Figure 28-37 Problem 19.
-20 An electron is accelerated from rest through potential difference \(V\) and then enters a region of uniform magnetic field, where it
undergoes uniform circular motion. Figure 28-38 gives the radius \(r\) of that motion versus \(V^{1 / 2}\). The vertical axis scale is set by \(r_{s}=3.0 \mathrm{~mm}\), and the horizontal axis scale is set by \(V_{s}^{1 / 2}=40.0 \mathrm{~V}^{1 / 2}\). What is the magnitude of the magnetic field?
-21 SSM An electron of kinetic energy 1.20 keV circles in a plane perpendicular to a uniform magnetic field. The orbit radius is 25.0 cm . Find


Figure 28-38 Problem 20. (a) the electron's speed, (b) the magnetic field magnitude, (c) the circling frequency, and (d) the period of the motion.
-22 In a nuclear experiment a proton with kinetic energy 1.0 MeV moves in a circular path in a uniform magnetic field. What energy must (a) an alpha particle ( \(q=+2 e, m=4.0 \mathrm{u}\) ) and (b) a deuteron \((q=+e, m=2.0 \mathrm{u})\) have if they are to circulate in the same circular path?
-23 What uniform magnetic field, applied perpendicular to a beam of electrons moving at \(1.30 \times 10^{6} \mathrm{~m} / \mathrm{s}\), is required to make the electrons travel in a circular arc of radius 0.350 m ?
-24 An electron is accelerated from rest by a potential difference of 350 V . It then enters a uniform magnetic field of magnitude 200 mT with its velocity perpendicular to the field. Calculate (a) the speed of the electron and (b) the radius of its path in the magnetic field.
-25 (a) Find the frequency of revolution of an electron with an energy of 100 eV in a uniform magnetic field of magnitude \(35.0 \mu \mathrm{~T}\). (b) Calculate the radius of the path of this electron if its velocity is perpendicular to the magnetic field.
-22 In Fig. 28-39, a charged particle moves into a region of uniform magnetic field \(\vec{B}\), goes through half a circle, and then exits that region. The particle is either a proton or an electron (you must decide which).


Figure 28-39 Problem 26. It spends 130 ns in the region. (a) What is the magnitude of \(\vec{B}\) ? (b) If the particle is sent back through the magnetic field (along the same initial path) but with 2.00 times its previous kinetic energy, how much time does it spend in the field during this trip?
\(\because 27\) A mass spectrometer (Fig. 28-12) is used to separate uranium ions of mass \(3.92 \times 10^{-25} \mathrm{~kg}\) and charge \(3.20 \times 10^{-19} \mathrm{C}\) from related species. The ions are accelerated through a potential difference of 100 kV and then pass into a uniform magnetic field, where they are bent in a path of radius 1.00 m . After traveling through \(180^{\circ}\) and passing through a slit of width 1.00 mm and height 1.00 cm , they are collected in a cup. (a) What is the magnitude of the (perpendicular) magnetic field in the separator? If the machine is used to separate out 100 mg of material per hour, calculate (b) the current of the desired ions in the machine and (c) the thermal energy produced in the cup in 1.00 h .
-28 A particle undergoes uniform circular motion of radius \(26.1 \mu \mathrm{~m}\) in a uniform magnetic field. The magnetic force on the particle has a magnitude of \(1.60 \times 10^{-17} \mathrm{~N}\). What is the kinetic energy of the particle?
-29 An electron follows a helical path in a uniform magnetic field of magnitude 0.300 T . The pitch of the path is \(6.00 \mu \mathrm{~m}\), and the
magnitude of the magnetic force on the electron is \(2.00 \times 10^{-15} \mathrm{~N}\). What is the electron's speed?
-030 ©0 In Fig. 28-40, an electron with an initial kinetic energy of 4.0 keV enters region 1 at time \(t=0\). That region contains a uniform magnetic field directed into the page, with magnitude 0.010 T . The electron goes through a half-circle and then exits region 1, headed toward region 2 across a gap of 25.0 cm . There is an electric potential difference \(\Delta V=2000 \mathrm{~V}\) across the gap, with a polarity such that the electron's speed increases uniformly as it traverses


Figure 28-40
Problem 30. the gap. Region 2 contains a uniform magnetic field directed out of the page, with magnitude 0.020 T . The electron goes through a halfcircle and then leaves region 2 . At what time \(t\) does it leave?
-031 A particular type of fundamental particle decays by transforming into an electron \(\mathrm{e}^{-}\)and a positron \(\mathrm{e}^{+}\). Suppose the decaying particle is at rest in a uniform magnetic field \(\vec{B}\) of magnitude 3.53 mT and the \(\mathrm{e}^{-}\)and \(\mathrm{e}^{+}\)move away from the decay point in paths lying in a plane perpendicular to \(\vec{B}\). How long after the decay do the \(\mathrm{e}^{-}\)and \(\mathrm{e}^{+}\)collide?
-•32 A source injects an electron of speed \(v=1.5 \times 10^{7} \mathrm{~m} / \mathrm{s}\) into a uniform magnetic field of magnitude \(B=1.0 \times 10^{-3} \mathrm{~T}\). The velocity of the electron makes an angle \(\theta=10^{\circ}\) with the direction of the magnetic field. Find the distance \(d\) from the point of injection at which the electron next crosses the field line that passes through the injection point.
\(\because 33\) SSM Www A positron with kinetic energy 2.00 keV is projected into a uniform magnetic field \(\vec{B}\) of magnitude 0.100 T , with its velocity vector making an angle of \(89.0^{\circ}\) with \(\vec{B}\). Find (a) the period, (b) the pitch \(p\), and (c) the radius \(r\) of its helical path.
थ34 An electron follows a helical path in a uniform magnetic field given by \(\vec{B}=(20 \hat{\mathrm{i}}-50 \hat{\mathrm{j}}-30 \hat{\mathrm{k}}) \mathrm{mT}\). At time \(t=0\), the electron's velocity is given by \(\vec{v}=(20 \hat{\mathrm{i}}-30 \hat{\mathrm{j}}+50 \hat{\mathrm{k}}) \mathrm{m} / \mathrm{s}\). (a) What is the angle \(\phi\) between \(\vec{v}\) and \(\vec{B}\) ? The electron's velocity changes with time. Do (b) its speed and (c) the angle \(\phi\) change with time? (d) What is the radius of the helical path?

\section*{Module 28-5 Cyclotrons and Synchrotrons}
-35 A proton circulates in a cyclotron, beginning approximately at rest at the center. Whenever it passes through the gap between dees, the electric potential difference between the dees is 200 V . (a) By how much does its kinetic energy increase with each passage through the gap? (b) What is its kinetic energy as it completes 100 passes through the gap? Let \(r_{100}\) be the radius of the proton's circular path as it completes those 100 passes and enters a dee, and let \(r_{101}\) be its next radius, as it enters a dee the next time. (c) By what percentage does the radius increase when it changes from \(r_{100}\) to \(r_{101}\) ? That is, what is
\[
\text { percentage increase }=\frac{r_{101}-r_{100}}{r_{100}} 100 \% \text { ? }
\]

थ36 A cyclotron with dee radius 53.0 cm is operated at an oscillator frequency of 12.0 MHz to accelerate protons. (a) What magnitude \(B\) of magnetic field is required to achieve resonance? (b) At that field magnitude, what is the kinetic energy of a proton emerging from the cyclotron? Suppose, instead, that \(B=1.57\) T. (c) What oscillator frequency is required to achieve resonance now? (d) At that frequency, what is the kinetic energy of an emerging proton?
©37 Estimate the total path length traveled by a deuteron in a cyclotron of radius 53 cm and operating frequency 12 MHz during the (entire) acceleration process. Assume that the accelerating potential between the dees is 80 kV .
-38 In a certain cyclotron a proton moves in a circle of radius 0.500 m . The magnitude of the magnetic field is 1.20 T . (a) What is the oscillator frequency? (b) What is the kinetic energy of the proton, in electron-volts?

\section*{Module 28-6 Magnetic Force on a Current-Carrying Wire}
-39 SSM A horizontal power line carries a current of 5000 A from south to north. Earth's magnetic field \((60.0 \mu \mathrm{~T})\) is directed toward the north and inclined downward at \(70.0^{\circ}\) to the horizontal. Find the (a) magnitude and (b) direction of the magnetic force on 100 m of the line due to Earth's field.
-40 A wire 1.80 m long carries a current of 13.0 A and makes an angle of \(35.0^{\circ}\) with a uniform magnetic field of magnitude \(B=\) 1.50 T . Calculate the magnetic force on the wire.
\(\bullet 41\) ILW A 13.0 g wire of length \(L=62.0 \mathrm{~cm}\) is suspended by a pair of flexible leads in a uniform magnetic field of magnitude 0.440 T (Fig. 28-41). What are the (a) magnitude and (b) direction (left or right) of the current required to remove the tension in the supporting leads?


Figure 28-41 Problem 41.


Figure 28-42 Problem 42. -42 The bent wire shown in Fig. 2842 lies in a uniform magnetic field. Each straight section is 2.0 m long and makes an angle of \(\theta=60^{\circ}\) with the \(x\) axis, and the wire carries a current of 2.0 A . What is the net magnetic force on the wire in unit-vector notation if the magnetic field is given by (a) \(4.0 \hat{\mathrm{k}} \mathrm{T}\) and (b) \(4.0 \hat{\mathrm{i}} \mathrm{T}\) ?
-43 A single-turn current loop, carrying a current of 4.00 A , is in the shape of a right triangle with sides \(50.0,120\), and 130 cm . The loop is in a uniform magnetic field of magnitude 75.0 mT whose direction is parallel to the current in the 130 cm side of the loop. What is the magnitude of the magnetic force on (a) the 130 cm side, (b) the 50.0 cm side, and (c) the 120 cm side? (d) What is the magnitude of the net force on the loop?
-•44 Figure \(28-43\) shows a wire ring of radius \(a=1.8 \mathrm{~cm}\) that is perpendicular to the general direction of a radially symmetric, diverging magnetic field. The magnetic field at the ring is everywhere of the same magnitude \(B=3.4 \mathrm{mT}\), and its direction at the ring everywhere


Figure 28-43 Problem 44. makes an angle \(\theta=20^{\circ}\) with a normal to the plane of the ring. The twisted lead wires have no effect on the problem. Find the magnitude of the force the field exerts on the ring if the ring carries a current \(i=4.6 \mathrm{~mA}\).
\(\bullet 45\) A wire 50.0 cm long carries a 0.500 A current in the positive direction of an \(x\) axis through a magnetic field \(\vec{B}=\) \((3.00 \mathrm{mT}) \hat{\mathrm{j}}+(10.0 \mathrm{mT}) \hat{\mathrm{k}}\). In unit-vector notation, what is the magnetic force on the wire?
-•46 In Fig. 28-44, a metal wire of mass \(m=24.1 \mathrm{mg}\) can slide with negligible friction on two horizontal parallel rails separated by distance \(d=2.56 \mathrm{~cm}\). The track lies in a vertical uniform magnetic field of magnitude 56.3 mT . At time \(t=0\), device \(G\) is connected to the rails, producing a constant current \(i=9.13 \mathrm{~mA}\) in the wire and rails (even as the wire moves). At \(t=61.1 \mathrm{~ms}\), what are the wire's (a) speed and (b) direction of motion (left or right)?


Figure 28-44 Problem 46.
\(\bullet\) © \(\because 17\) A 1.0 kg copper rod rests on two horizontal rails 1.0 m apart and carries a current of 50 A from one rail to the other. The coefficient of static friction between rod and rails is 0.60 . What are the (a) magnitude and (b) angle (relative to the vertical) of the smallest magnetic field that puts the rod on the verge of sliding?
\(\bullet \bullet 48\) A A long, rigid conductor, lying along an \(x\) axis, carries a current of 5.0 A in the negative \(x\) direction. A magnetic field \(\vec{B}\) is present, given by \(\vec{B}=3.0 \hat{\mathrm{i}}+8.0 x^{2} \hat{\mathrm{j}}\), with \(x\) in meters and \(\vec{B}\) in milliteslas. Find, in unit-vector notation, the force on the 2.0 m seg ment of the conductor that lies between \(x=1.0 \mathrm{~m}\) and \(x=3.0 \mathrm{~m}\).

\section*{Module 28-7 Torque on a Current Loop}
-49 SSm Figure \(28-45\) shows a rectangular 20-turn coil of wire, of dimensions 10 cm by 5.0 cm . It carries a current of 0.10 A and is hinged along one long side. It is mounted in the \(x y\) plane, at angle \(\theta=30^{\circ}\) to the direction of a uniform magnetic field of magnitude 0.50 T . In unit-vector notation, what is the torque acting on the coil about the hinge line?
-050 An electron moves in a circle of radius \(r=5.29 \times 10^{-11} \mathrm{~m}\) with speed \(2.19 \times 10^{6} \mathrm{~m} / \mathrm{s}\). Treat the circular path as a current loop with a constant current equal to the ratio of the electron's charge magnitude to the period of the motion. If the circle lies in a uniform magnetic field of magnitude \(B=7.10 \mathrm{mT}\), what is the maximum possible magnitude of the torque produced on the loop by the field?
-•51 Figure 28-46 shows a wood cylinder of mass \(m=0.250 \mathrm{~kg}\) and length \(L=0.100 \mathrm{~m}\), with \(N=10.0\) turns of wire wrapped around it longitudinally, so that the plane of the wire coil contains the long central axis of the cylinder. The cylinder is released on a plane inclined at an angle \(\theta\) to the horizontal, with the plane of the coil parallel to the incline plane. If there is a vertical uniform magnetic field of magnitude 0.500 T , what is the least current \(i\) through the coil that keeps the cylinder from rolling down the plane?


Figure 28-46 Problem 51.
-•52 In Fig. 28-47, a rectangular loop carrying current lies in the plane of a uniform magnetic field of magnitude 0.040 T . The loop consists of a single turn of flexible conducting wire that is wrapped around a flexible mount such that the dimensions of the rectangle can be changed. (The total length of the wire is not changed.) As edge length \(x\) is varied from approximately zero to its


Figure 28-47
Problem 52. maximum value of approximately 4.0 cm , the magnitude \(\tau\) of the torque on the loop changes. The maximum value of \(\tau\) is \(4.80 \times\) \(10^{-8} \mathrm{~N} \cdot \mathrm{~m}\). What is the current in the loop?
-•53 Prove that the relation \(\tau=N i A B \sin \theta\) holds not only for the rectangular loop of Fig. 28-19 but also for a closed loop of any shape. (Hint: Replace the loop of arbitrary shape with an assembly of adjacent long, thin, approximately rectangular loops that are nearly equivalent to the loop of arbitrary shape as far as the distribution of current is concerned.)

\section*{Module 28-8 The Magnetic Dipole Moment}
-54 A magnetic dipole with a dipole moment of magnitude \(0.020 \mathrm{~J} / \mathrm{T}\) is released from rest in a uniform magnetic field of magnitude 52 mT . The rotation of the dipole due to the magnetic force on it is unimpeded. When the dipole rotates through the orientation where its dipole moment is aligned with the magnetic field, its kinetic energy is 0.80 mJ . (a) What is the initial angle between the dipole moment and the magnetic field? (b) What is the angle when the dipole is next (momentarily) at rest?
-55 SSM Two concentric, circular wire loops, of radii \(r_{1}=20.0 \mathrm{~cm}\) and \(r_{2}=30.0 \mathrm{~cm}\), are located in an \(x y\) plane; each carries a clockwise current of 7.00 A (Fig. 28-48). (a) Find the magnitude of the net magnetic dipole moment of the system. (b) Repeat for reversed current in the inner loop.
-56 A circular wire loop of radius 15.0 cm carries a current of 2.60 A . It is placed so that the normal to its plane makes an angle of \(41.0^{\circ}\) with a uniform magnetic field of magni-


Figure 28-48 Problem 55. tude 12.0 T . (a) Calculate the magnitude of the magnetic dipole moment of the loop. (b) What is the magnitude of the torque acting on the loop?
\(\cdot 57\) SSM A circular coil of 160 turns has a radius of 1.90 cm . (a) Calculate the current that results in a magnetic dipole moment of magnitude \(2.30 \mathrm{~A} \cdot \mathrm{~m}^{2}\). (b) Find the maximum magnitude of the torque that the coil, carrying this current, can experience in a uniform 35.0 mT magnetic field.
-58 The magnetic dipole moment of Earth has magnitude \(8.00 \times\) \(10^{22} \mathrm{~J} / \mathrm{T}\). Assume that this is produced by charges flowing in Earth's molten outer core. If the radius of their circular path is 3500 km , calculate the current they produce.
-59 A current loop, carrying a current of 5.0 A , is in the shape of a right triangle with sides 30,40 , and 50 cm . The loop is in a uniform magnetic field of magnitude 80 mT whose direction is parallel to the current in the 50 cm side of the loop. Find the magnitude of (a) the magnetic dipole moment of the loop and (b) the torque on the loop.
-060 Figure 28-49 shows a current loop \(A B C D E F A\) carrying a current \(i=\) 5.00 A . The sides of the loop are parallel to the coordinate axes shown, with \(A B=20.0 \mathrm{~cm}, B C=30.0 \mathrm{~cm}\), and \(F A=\) 10.0 cm . In unit-vector notation, what is the magnetic dipole moment of this loop? (Hint: Imagine equal and opposite currents \(i\) in the line segment \(A D\); then treat the two rectangular loops \(A B C D A\) and \(A D E F A\).)
\({ }^{\bullet \circ} 61\) SSM The coil in Fig. 28-50 carries current \(i=2.00 \mathrm{~A}\) in the direction indicated, is parallel to an \(x z\) plane, has 3.00 turns and an area of \(4.00 \times 10^{-3} \mathrm{~m}^{2}\), and lies in a uniform magnetic field \(\vec{B}=(2.00 \hat{\mathrm{i}}-3.00 \hat{\mathrm{j}}-4.00 \hat{\mathrm{k}}) \mathrm{mT}\). What are (a) the orientation energy of the coil in the magnetic field and (b) the torque (in unit-vector notation) on the coil due to the magnetic field?


Figure 28-50 Problem 61.
-•62 (60 In Fig. 28-51a, two concentric coils, lying in the same plane, carry currents in opposite directions. The current in the larger coil 1 is fixed. Current \(i_{2}\) in coil 2 can be varied. Figure \(28-51 b\) gives the net magnetic moment of the two-coil system as a function of \(i_{2}\). The vertical axis scale is set by \(\mu_{\text {net,s }}=2.0 \times 10^{-5} \mathrm{~A} \cdot \mathrm{~m}^{2}\), and the horizontal axis scale is set by \(i_{2 s}=10.0 \mathrm{~mA}\). If the current in coil 2 is then reversed, what is the magnitude of the net magnetic moment of the two-coil system when \(i_{2}=7.0 \mathrm{~mA}\) ?


Figure 28-51 Problem 62.
-063 A circular loop of wire having a radius of 8.0 cm carries a current of 0.20 A . A vector of unit length and parallel to the dipole moment \(\vec{\mu}\) of the loop is given by \(0.60 \hat{\mathrm{i}}-0.80 \hat{\mathrm{j}}\). (This unit vector gives the orientation of the magnetic dipole moment vector.) If the loop is located in a uniform magnetic field given by \(\vec{B}=\) \((0.25 \mathrm{~T}) \hat{\mathrm{i}}+(0.30 \mathrm{~T}) \hat{\mathrm{k}}\), find (a) the torque on the loop (in unit-vector notation) and (b) the orientation energy of the loop.
-064 ©0 Figure 28-52 gives the orientation energy \(U\) of a magnetic dipole in an external magnetic field \(\vec{B}\), as a function of angle \(\phi\) between the directions of \(\vec{B}\) and the dipole moment. The vertical axis scale is set by \(U_{s}=2.0 \times 10^{-4} \mathrm{~J}\). The dipole can be rotated about an axle with negligible friction in order to change \(\phi\). Counterclockwise rotation from \(\phi=0\) yields positive values of \(\phi\),
and clockwise rotations yield negative values. The dipole is to be released at angle \(\phi=0\) with a rotational kinetic energy of \(6.7 \times\) \(10^{-4} \mathrm{~J}\), so that it rotates counterclockwise. To what maximum value of \(\phi\) will it rotate? (In the language of Module 8-3, what value \(\phi\) is the turning point in the potential well of Fig. 28-52?)


Figure 28-52 Problem 64.
-•65 SSM ILW A wire of length 25.0 cm carrying a current of 4.51 mA is to be formed into a circular coil and placed in a uniform magnetic field \(\vec{B}\) of magnitude 5.71 mT . If the torque on the coil from the field is maximized, what are (a) the angle between \(\vec{B}\) and the coil's magnetic dipole moment and (b) the number of turns in the coil? (c) What is the magnitude of that maximum torque?

\section*{Additional Problems}
\(66 \quad\) A proton of charge \(+e\) and mass \(m\) enters a uniform magnetic field \(\vec{B}=B \hat{i}\) with an initial velocity \(\vec{v}=v_{0 x} \hat{i}+v_{0 y} \hat{j}\). Find an expression in unit-vector notation for its velocity \(\vec{v}\) at any later time \(t\).
67 A stationary circular wall clock has a face with a radius of 15 cm . Six turns of wire are wound around its perimeter; the wire carries a current of 2.0 A in the clockwise direction. The clock is located where there is a constant, uniform external magnetic field of magnitude 70 mT (but the clock still keeps perfect time). At exactly 1:00 P.m., the hour hand of the clock points in the direction of the external magnetic field. (a) After how many minutes will the minute hand point in the direction of the torque on the winding due to the magnetic field? (b) Find the torque magnitude.

68 A wire lying along a \(y\) axis from \(y=0\) to \(y=0.250 \mathrm{~m}\) carries a current of 2.00 mA in the negative direction of the axis. The wire fully lies in a nonuniform magnetic field that is given by \(\vec{B}=(0.300 \mathrm{~T} / \mathrm{m}) y \hat{\mathrm{i}}+(0.400 \mathrm{~T} / \mathrm{m}) y \hat{\mathrm{j}}\). In unit-vector notation, what is the magnetic force on the wire?
69 Atom 1 of mass \(35 u\) and atom 2 of mass \(37 u\) are both singly ionized with a charge of \(+e\). After being introduced into a mass spectrometer (Fig. 28-12) and accelerated from rest through a potential difference \(V=7.3 \mathrm{kV}\), each ion follows a circular path in a uniform magnetic field of magnitude \(B=0.50 \mathrm{~T}\). What is the distance \(\Delta x\) between the points where the ions strike the detector?

70 An electron with kinetic energy 2.5 keV moving along the positive direction of an \(x\) axis enters a region in which a uniform electric field of magnitude \(10 \mathrm{kV} / \mathrm{m}\) is in the negative direction of the \(y\) axis. A uniform magnetic field \(\vec{B}\) is to be set up to keep the electron moving along the \(x\) axis, and the direction of \(\vec{B}\) is to be chosen to minimize the required magnitude of \(\vec{B}\). In unit-vector notation, what \(\vec{B}\) should be set up?

71 Physicist S. A. Goudsmit devised a method for measuring the mass of heavy ions by timing their period of revolution in a known magnetic field. A singly charged ion of iodine makes 7.00 rev in a 45.0 mT field in 1.29 ms . Calculate its mass in atomic mass units.

72 A beam of electrons whose kinetic energy is \(K\) emerges from a thin-foil "window" at the end of an accelerator tube. A metal plate at distance \(d\) from this window is perpendicular to the direction of the emerging beam (Fig. 28-53). (a) Show that we can prevent the beam from hitting the plate if we apply a uniform magnetic field such that
\[
B \geq \sqrt{\frac{2 m K}{e^{2} d^{2}}},
\]
in which \(m\) and \(e\) are the electron mass and charge. (b) How should \(\vec{B}\) be oriented?

73 ssm At time \(t=0\), an electron with kinetic energy 12 keV moves through \(x=0\) in the positive direction of an \(x\) axis that is parallel to the horizontal component of Earth's magnetic field \(\vec{B}\). The field's vertical component is downward and has magnitude \(55.0 \mu \mathrm{~T}\). (a) What is the magnitude of the electron's acceleration due to \(\vec{B}\) ? (b) What is the electron's distance from the \(x\) axis when the electron reaches coordinate \(x=20 \mathrm{~cm}\) ?
74 © A particle with charge 2.0 C moves through a uniform magnetic field. At one instant the velocity of the particle is \((2.0 \hat{\mathrm{i}}+4.0 \hat{\mathrm{j}}+6.0 \hat{\mathrm{k}}) \mathrm{m} / \mathrm{s}\) and the magnetic force on the particle is \((4.0 \hat{\mathrm{i}}-20 \hat{\mathrm{j}}+12 \hat{\mathrm{k}}) \mathrm{N}\). The \(x\) and \(y\) components of the magnetic field are equal. What is \(\vec{B}\) ?
75 A proton, a deuteron ( \(q=+e, m=2.0 \mathrm{u})\), and an alpha particle \((q=+2 e, m=4.0 \mathrm{u})\) all having the same kinetic energy enter a region of uniform magnetic field \(\vec{B}\), moving perpendicular to \(\vec{B}\). What is the ratio of (a) the radius \(r_{d}\) of the deuteron path to the radius \(r_{p}\) of the proton path and (b) the radius \(r_{\alpha}\) of the alpha particle path to \(r_{p}\) ?
76 Bainbridge's mass spectrometer, shown in Fig. 28-54, separates ions having the same velocity. The ions, after entering through slits, \(\mathrm{S}_{1}\) and \(\mathrm{S}_{2}\), pass through a velocity selector composed of an electric field produced by the charged plates P and \(\mathrm{P}^{\prime}\), and a magnetic field \(\vec{B}\) perpendicular to the electric field and the ion path. The ions that then pass undeviated through the crossed \(\vec{E}\) and \(\vec{B}\) fields enter into a region where a second magnetic field \(\overrightarrow{B^{\prime}}\) exists, where they are made to follow circular paths. A photographic plate (or a modern detector) registers their arrival. Show that, for the ions, \(q / m=E / r B B^{\prime}\), where \(r\) is the radius of the circular orbit.
77 SSM In Fig. 28-55, an electron moves at speed \(v=100 \mathrm{~m} / \mathrm{s}\) along an \(x\) axis through uniform electric and magnetic fields. The magnetic field \(\vec{B}\) is directed into the page and has magnitude 5.00 T . In unit-vector notation, what is the electric field?
78 (a) In Fig. 28-8, show that the ratio of the Hall electric field magnitude \(E\) to the magnitude \(E_{C}\) of the electric field responsible for moving charge (the current) along the length of


Figure 28-54 Problem 76.

87 Figure 28-56 shows a homopolar generator, which has a solid conducting disk as rotor and which is rotated by a motor (not shown). Conducting brushes connect this emf device to a circuit through which the device drives current. The device can produce a greater emf than wire loop rotors because they can spin at a much higher angular speed without rupturing. The disk has radius \(R=\) 0.250 m and rotation frequency \(f=4000 \mathrm{~Hz}\), and the device is in a uniform magnetic field of magnitude \(B=60.0 \mathrm{mT}\) that is perpendicular to the disk. As the disk is rotated, conduction electrons along the conducting path (dashed line) are forced to move through the magnetic field. (a) For the indicated rotation, is the magnetic force on those electrons up or down in the figure? (b) Is the magnitude of that force greater at the rim or near the center of the disk? (c) What is the work per unit charge done by that force in moving charge along the radial line, between the rim and the center? (d) What, then, is the emf of the device? (e) If the current is 50.0 A , what is the power at which electrical energy is being produced?


88 In Fig. 28-57, the two ends of a U-shaped wire of mass \(m=\) 10.0 g and length \(L=20.0 \mathrm{~cm}\) are immersed in mercury (which is a conductor). The wire is in a uniform field of magnitude \(B=0.100 \mathrm{~T}\). A switch (unshown) is rapidly closed and then reopened, sending a pulse of current through the wire, which causes the wire to jump upward. If jump height \(h=3.00 \mathrm{~m}\), how much charge was in the pulse? Assume that the duration of the pulse is much less than the time of flight. Consider the definition of impulse (Eq. 9-30) and its
relationship with momentum (Eq. 9-31). Also consider the relationship between charge and current (Eq.26-2).


Figure 28-57 Problem 88.

89 In Fig. 28-58, an electron of mass \(m\), charge \(-e\), and low (negligible) speed enters the region between two plates of potential difference \(V\) and plate separation \(d\), initially headed directly toward the top plate. A uniform magnetic field of


Figure 28-58 Problem 89. magnitude \(B\) is normal to the plane of the figure. Find the minimum value of \(B\) such that the electron will not strike the top plate.
90 A particle of charge \(q\) moves in a circle of radius \(r\) with speed \(v\). Treating the circular path as a current loop with an average current, find the maximum torque exerted on the loop by a uniform field of magnitude \(B\).
91 In a Hall-effect experiment, express the number density of charge carriers in terms of the Hall-effect electric field magnitude \(E\), the current density magnitude \(J\), and the magnetic field magnitude \(B\).
92 An electron that is moving through a uniform magnetic field has velocity \(\vec{v}=(40 \mathrm{~km} / \mathrm{s}) \hat{\mathrm{i}}+(35 \mathrm{~km} / \mathrm{s}) \hat{\mathrm{j}}\) when it experiences a force \(\vec{F}=-(4.2 \mathrm{fN}) \hat{\mathrm{i}}+(4.8 \mathrm{fN}) \hat{\mathrm{j}}\) due to the magnetic field. If \(B_{x}=0\), calculate the magnetic field \(\vec{B}\).

\section*{Magnetic Fields Due to Currents}

\section*{29-1 magnetic field due to a current}

\section*{Learning Objectives}

After reading this module, you should be able to .
29.01 Sketch a current-length element in a wire and indicate the direction of the magnetic field that it sets up at a given point near the wire.
29.02 For a given point near a wire and a given current-element in the wire, determine the magnitude and direction of the magnetic field due to that element.
29.03 Identify the magnitude of the magnetic field set up by a current-length element at a point in line with the direction of that element.
29.04 For a point to one side of a long straight wire carrying current, apply the relationship between the magnetic field magnitude, the current, and the distance to the point.
29.05 For a point to one side of a long straight wire carrying
current, use a right-hand rule to determine the direction of the field vector.
29.06 Identify that around a long straight wire carrying current, the magnetic field lines form circles.
29.07 For a point to one side of the end of a semi-infinite wire carrying current, apply the relationship between the magnetic field magnitude, the current, and the distance to the point.
29.08 For the center of curvature of a circular arc of wire carrying current, apply the relationship between the magnetic field magnitude, the current, the radius of curvature, and the angle subtended by the arc (in radians).
29.09 For a point to one side of a short straight wire carrying current, integrate the Biot-Savart law to find the magnetic field set up at the point by the current.

\section*{Key Ideas}
- The magnetic field set up by a current-carrying conductor can be found from the Biot-Savart law. This law asserts that the contribution \(d \vec{B}\) to the field produced by a current-length element \(i d \vec{s}\) at a point \(P\) located a distance \(r\) from the current element is
\[
d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{i d \vec{s} \times \hat{\mathrm{r}}}{r^{2}} \quad \text { (Biot-Savart law). }
\]

Here \(\hat{\mathrm{r}}\) is a unit vector that points from the element toward \(P\). The quantity \(\mu_{0}\), called the permeability constant, has the value
\[
4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A} \approx 1.26 \times 10^{-6} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}
\]

For a long straight wire carrying a current \(i\), the Biot-Savart law gives, for the magnitude of the magnetic field at a perpendicular distance \(R\) from the wire,
\[
B=\frac{\mu_{0} i}{2 \pi R} \quad \text { (long straight wire). }
\]
- The magnitude of the magnetic field at the center of a circular arc, of radius \(R\) and central angle \(\phi\) (in radians), carrying current \(i\), is
\[
B=\frac{\mu_{0} i \phi}{4 \pi R} \quad \text { (at center of circular arc). }
\]

\section*{What Is Physics?}

One basic observation of physics is that a moving charged particle produces a magnetic field around itself. Thus a current of moving charged particles produces a magnetic field around the current. This feature of electromagnetism, which is the combined study of electric and magnetic effects, came as a surprise to the people who discovered it. Surprise or not, this feature has become enormously important in everyday life because it is the basis of countless electromagnetic devices. For example, a magnetic field is produced in maglev trains and other devices used to lift heavy loads.

Our first step in this chapter is to find the magnetic field due to the current in a very small section of current-carrying wire. Then we shall find the magnetic field due to the entire wire for several different arrangements of the wire.

\section*{Calculating the Magnetic Field Due to a Current}

Figure 29-1 shows a wire of arbitrary shape carrying a current \(i\). We want to find the magnetic field \(\vec{B}\) at a nearby point \(P\). We first mentally divide the wire into differential elements \(d s\) and then define for each element a length vector \(d \vec{s}\) that has length \(d s\) and whose direction is the direction of the current in \(d s\). We can then define a differential current-length element to be \(i d \vec{s}\); we wish to calculate the field \(d \vec{B}\) produced at \(P\) by a typical current-length element. From experiment we find that magnetic fields, like electric fields, can be superimposed to find a net field. Thus, we can calculate the net field \(\vec{B}\) at \(P\) by summing, via integration, the contributions \(d \vec{B}\) from all the current-length elements. However, this summation is more challenging than the process associated with electric fields because of a complexity; whereas a charge element \(d q\) producing an electric field is a scalar, a current-length element \(i d \vec{s}\) producing a magnetic field is a vector, being the product of a scalar and a vector.

Magnitude. The magnitude of the field \(d \vec{B}\) produced at point \(P\) at distance \(r\) by a current-length element \(i d \vec{s}\) turns out to be
\[
\begin{equation*}
d B=\frac{\mu_{0}}{4 \pi} \frac{i d s \sin \theta}{r^{2}} \tag{29-1}
\end{equation*}
\]
where \(\theta\) is the angle between the directions of \(d \vec{s}\) and \(\hat{\mathrm{r}}\), a unit vector that points from \(d s\) toward \(P\). Symbol \(\mu_{0}\) is a constant, called the permeability constant, whose value is defined to be exactly
\[
\begin{equation*}
\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A} \approx 1.26 \times 10^{-6} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A} \tag{29-2}
\end{equation*}
\]

Direction. The direction of \(d \vec{B}\), shown as being into the page in Fig. 29-1, is that of the cross product \(d \vec{s} \times \hat{\mathrm{r}}\). We can therefore write Eq. \(29-1\) in vector form as
\[
\begin{equation*}
d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{i d \vec{s} \times \hat{\mathrm{r}}}{r^{2}} \quad \text { (Biot-Savart law). } \tag{29-3}
\end{equation*}
\]

This vector equation and its scalar form, Eq. 29-1, are known as the law of Biot and Savart (rhymes with "Leo and bazaar"). The law, which is experimentally deduced, is an inverse-square law. We shall use this law to calculate the net magnetic field \(\vec{B}\) produced at a point by various distributions of current.

Here is one easy distribution: If current in a wire is either directly toward or directly away from a point \(P\) of measurement, can you see from Eq. 29-1 that the magnetic field at \(P\) from the current is simply zero (the angle \(\theta\) is either \(0^{\circ}\) for toward or \(180^{\circ}\) for away, and both result in \(\sin \theta=0\) )?

\section*{Magnetic Field Due to a Current in a Long Straight Wire}

Shortly we shall use the law of Biot and Savart to prove that the magnitude of the magnetic field at a perpendicular distance \(R\) from a long (infinite) straight wire carrying a current \(i\) is given by
\[
\begin{equation*}
B=\frac{\mu_{0} i}{2 \pi R} \quad \text { (long straight wire). } \tag{29-4}
\end{equation*}
\]

The field magnitude \(B\) in Eq. 29-4 depends only on the current and the perpendicular distance \(R\) of the point from the wire. We shall show in our derivation that the field lines of \(\vec{B}\) form concentric circles around the wire, as Fig. 29-2 shows

Figure 29-2 The magnetic field lines produced by a current in a long straight wire form concentric circles around the wire. Here the current is into the page, as indicated by the \(\times\).

This element of current creates a magnetic field at \(P\), into the page.


Figure 29-1 A current-length element \(i d \vec{S}\) produces a differential magnetic field \(d \vec{B}\) at point \(P\). The green \(\times\) (the tail of an arrow) at the dot for point \(P\) indicates that \(d \vec{B}\) is directed into the page there.

The magnetic field vector at any point is tangent to a circle.



Figure 29-4 The magnetic field vector \(\vec{B}\) is perpendicular to the radial line extending from a long straight wire with current, but which of the two perpendicular vectors is it?

Figure 29-5 A right-hand rule gives the direction of the magnetic field due to a current in a wire. (a) The situation of Fig. 29-2, seen from the side. The magnetic field \(\vec{B}\) at any point to the left of the wire is perpendicular to the dashed radial line and directed into the page, in the direction of the fingertips, as indicated by the \(\times\). (b) If the current is reversed, \(\vec{B}\) at any point to the left is still perpendicular to the dashed radial line but now is directed out of the page, as indicated by the dot.


Courtesy Education Development Center
Figure 29-3 Iron filings that have been sprinkled onto cardboard collect in concentric circles when current is sent through the central wire. The alignment, which is along magnetic field lines, is caused by the magnetic field produced by the current.
and as the iron filings in Fig. 29-3 suggest. The increase in the spacing of the lines in Fig. 29-2 with increasing distance from the wire represents the \(1 / R\) decrease in the magnitude of \(\vec{B}\) predicted by Eq. 29-4. The lengths of the two vectors \(\vec{B}\) in the figure also show the \(1 / R\) decrease.

Directions. Plugging values into Eq. 29-4 to find the field magnitude \(B\) at a given radius is easy. What is difficult for many students is finding the direction of a field vector \(\vec{B}\) at a given point. The field lines form circles around a long straight wire, and the field vector at any point on a circle must be tangent to the circle. That means it must be perpendicular to a radial line extending to the point from the wire. But there are two possible directions for that perpendicular vector, as shown in Fig. 29-4. One is correct for current into the figure, and the other is correct for current out of the figure. How can you tell which is which? Here is a simple right-hand rule for telling which vector is correct:

Curled-straight right-hand rule: Grasp the element in your right hand with your extended thumb pointing in the direction of the current. Your fingers will then naturally curl around in the direction of the magnetic field lines due to that element.

The result of applying this right-hand rule to the current in the straight wire of Fig. 29-2 is shown in a side view in Fig. 29-5a. To determine the direction of the magnetic field \(\vec{B}\) set up at any particular point by this current, mentally wrap your right hand around the wire with your thumb in the direction of the current. Let your fingertips pass through the point; their direction is then the direction of the magnetic field at that point. In the view of Fig. 29-2, \(\vec{B}\) at any point is tangent to a magnetic field line; in the view of Fig. 29-5, it is perpendicular to a dashed radial line connecting the point and the current.


The thumb is in the current's direction. The fingers reveal the field vector's direction, which is tangent to a circle.

\section*{Proof of Equation 29-4}

Figure 29-6, which is just like Fig. 29-1 except that now the wire is straight and of infinite length, illustrates the task at hand. We seek the field \(\vec{B}\) at point \(P\), a perpendicular distance \(R\) from the wire. The magnitude of the differential magnetic field produced at \(P\) by the current-length element \(i d \vec{s}\) located a distance \(r\) from \(P\) is given by Eq. 29-1:
\[
d B=\frac{\mu_{0}}{4 \pi} \frac{i d s \sin \theta}{r^{2}}
\]

The direction of \(d \vec{B}\) in Fig. 29-6 is that of the vector \(d \vec{s} \times \hat{\mathrm{r}}\) —namely, directly into the page.

Note that \(d \vec{B}\) at point \(P\) has this same direction for all the current-length elements into which the wire can be divided. Thus, we can find the magnitude of the magnetic field produced at \(P\) by the current-length elements in the upper half of the infinitely long wire by integrating \(d B\) in Eq. 29-1 from 0 to \(\infty\).

Now consider a current-length element in the lower half of the wire, one that is as far below \(P\) as \(d \vec{s}\) is above \(P\). By Eq. 29-3, the magnetic field produced at \(P\) by this current-length element has the same magnitude and direction as that from element \(i d \vec{s}\) in Fig. 29-6. Further, the magnetic field produced by the lower half of the wire is exactly the same as that produced by the upper half. To find the magnitude of the total magnetic field \(\vec{B}\) at \(P\), we need only multiply the result of our integration by 2 . We get
\[
\begin{equation*}
B=2 \int_{0}^{\infty} d B=\frac{\mu_{0} i}{2 \pi} \int_{0}^{\infty} \frac{\sin \theta d s}{r^{2}} . \tag{29-5}
\end{equation*}
\]

The variables \(\theta, s\), and \(r\) in this equation are not independent; Fig. 29-6 shows that they are related by
\[
r=\sqrt{s^{2}+R^{2}}
\]
and
\[
\sin \theta=\sin (\pi-\theta)=\frac{R}{\sqrt{s^{2}+R^{2}}}
\]

With these substitutions and integral 19 in Appendix E, Eq. 29-5 becomes
\[
\begin{align*}
B & =\frac{\mu_{0} i}{2 \pi} \int_{0}^{\infty} \frac{R d s}{\left(s^{2}+R^{2}\right)^{3 / 2}} \\
& =\frac{\mu_{0} i}{2 \pi R}\left[\frac{s}{\left(s^{2}+R^{2}\right)^{1 / 2}}\right]_{0}^{\infty}=\frac{\mu_{0} i}{2 \pi R} \tag{29-6}
\end{align*}
\]
as we wanted. Note that the magnetic field at \(P\) due to either the lower half or the upper half of the infinite wire in Fig. 29-6 is half this value; that is,
\[
\begin{equation*}
B=\frac{\mu_{0} i}{4 \pi R} \quad \text { (semi-infinite straight wire). } \tag{29-7}
\end{equation*}
\]

\section*{Magnetic Field Due to a Current in a Circular Arc of Wire}

To find the magnetic field produced at a point by a current in a curved wire, we would again use Eq. 29-1 to write the magnitude of the field produced by a single current-length element, and we would again integrate to find the net field produced by all the current-length elements. That integration can be difficult, depending on the shape of the wire; it is fairly straightforward, however, when the wire is a circular arc and the point is the center of curvature.

Figure 29-7a shows such an arc-shaped wire with central angle \(\phi\), radius \(R\), and center \(C\), carrying current \(i\). At \(C\), each current-length element \(i d \vec{s}\) of the wire produces a magnetic field of magnitude \(d B\) given by Eq. 29-1. Moreover, as Fig. 29-7b shows, no matter where the element is located on the wire, the angle \(\theta\)


Figure 29-6 Calculating the magnetic field produced by a current \(i\) in a long straight wire. The field \(d \vec{B}\) at \(P\) associated with the current-length element \(i d \vec{s}\) is directed into the page, as shown.

(a)

(b)

(c)
The right-hand rule reveals the field's direction at the center.

Figure 29-7 (a) A wire in the shape of a circular arc with center \(C\) carries current \(i\). (b) For any element of wire along the arc, the angle between the directions of \(d \vec{s}\) and \(\hat{\mathrm{r}}\) is \(90^{\circ}\). (c) Determining the direction of the magnetic field at the center \(C\) due to the current in the wire; the field is out of the page, in the direction of the fingertips, as indicated by the colored dot at \(C\).
between the vectors \(d \vec{s}\) and \(\hat{\mathrm{r}}\) is \(90^{\circ}\); also, \(r=R\). Thus, by substituting \(R\) for \(r\) and \(90^{\circ}\) for \(\theta\) in Eq. 29-1, we obtain
\[
\begin{equation*}
d B=\frac{\mu_{0}}{4 \pi} \frac{i d s \sin 90^{\circ}}{R^{2}}=\frac{\mu_{0}}{4 \pi} \frac{i d s}{R^{2}} . \tag{29-8}
\end{equation*}
\]

The field at \(C\) due to each current-length element in the arc has this magnitude.
Directions. How about the direction of the differential field \(d \vec{B}\) set up by an element? From above we know that the vector must be perpendicular to a radial line extending through point \(C\) from the element, either into the plane of Fig. 29-7a or out of it. To tell which direction is correct, we use the right-hand rule for any of the elements, as shown in Fig. 29-7c. Grasping the wire with the thumb in the direction of the current and bringing the fingers into the region near \(C\), we see that the vector \(d \vec{B}\) due to any of the differential elements is out of the plane of the figure, not into it.

Total Field. To find the total field at \(C\) due to all the elements on the arc, we need to add all the differential field vectors \(d \vec{B}\). However, because the vectors are all in the same direction, we do not need to find components. We just sum the magnitudes \(d B\) as given by Eq. 29-8. Since we have a vast number of those magnitudes, we sum via integration. We want the result to indicate how the total field depends on the angle \(\phi\) of the arc (rather than the arc length). So, in Eq. 29-8 we switch from \(d s\) to \(d \phi\) by using the identity \(d s=R d \phi\). The summation by integration then becomes
\[
B=\int d B=\int_{0}^{\phi} \frac{\mu_{0}}{4 \pi} \frac{i R d \phi}{R^{2}}=\frac{\mu_{0} i}{4 \pi R} \int_{0}^{\phi} d \phi
\]

Integrating, we find that
\[
\begin{equation*}
B=\frac{\mu_{0} i \phi}{4 \pi R} \quad \text { (at center of circular arc). } \tag{29-9}
\end{equation*}
\]

Heads Up. Note that this equation gives us the magnetic field only at the center of curvature of a circular arc of current. When you insert data into the equation, you must be careful to express \(\phi\) in radians rather than degrees. For example, to find the magnitude of the magnetic field at the center of a full circle of current, you would substitute \(2 \pi\) rad for \(\phi\) in Eq. 29-9, finding
\[
\begin{equation*}
B=\frac{\mu_{0} i(2 \pi)}{4 \pi R}=\frac{\mu_{0} i}{2 R} \quad \text { (at center of full circle). } \tag{29-10}
\end{equation*}
\]

\section*{Sample Problem 29.01 Magnetic field at the center of a circular arc of current}

The wire in Fig. 29-8a carries a current \(i\) and consists of a circular arc of radius \(R\) and central angle \(\pi / 2 \mathrm{rad}\), and two straight sections whose extensions intersect the center \(C\) of the arc. What magnetic field \(\vec{B}\) (magnitude and direction) does the current produce at \(C\) ?

\section*{KEY IDEAS}

We can find the magnetic field \(\vec{B}\) at point \(C\) by applying the Biot-Savart law of Eq. 29-3 to the wire, point by point along the full length of the wire. However, the application of Eq. 29-3 can be simplified by evaluating \(\vec{B}\) separately for the three distinguishable sections of the wire-namely, (1) the
straight section at the left, (2) the straight section at the right, and (3) the circular arc.

Straight sections: For any current-length element in section 1, the angle \(\theta\) between \(d \vec{s}\) and \(\hat{\mathrm{r}}\) is zero (Fig. 29-8b); so Eq. 29-1 gives us
\[
d B_{1}=\frac{\mu_{0}}{4 \pi} \frac{i d s \sin \theta}{r^{2}}=\frac{\mu_{0}}{4 \pi} \frac{i d s \sin 0}{r^{2}}=0
\]

Thus, the current along the entire length of straight section 1 contributes no magnetic field at \(C\) :
\[
B_{1}=0 .
\]

Figure 29-8 (a) A wire consists of two straight sections ( 1 and 2 ) and a circular arc (3), and carries current \(i\). (b) For a current-length element in section 1, the angle between \(d \vec{s}\) and \(\hat{\mathrm{r}}\) is zero. (c) Determining the direction of magnetic field \(\vec{B}_{3}\) at \(C\) due to the current in the circular arc; the field is into the page there.

Current directly toward or away from \(C\) does not create any field there.

The same situation prevails in straight section 2 , where the angle \(\theta\) between \(d \vec{s}\) and \(\hat{\mathrm{r}}\) for any current-length element is \(180^{\circ}\). Thus,
\[
B_{2}=0 .
\]

Circular arc: Application of the Biot-Savart law to evaluate the magnetic field at the center of a circular arc leads to Eq. 29-9 \(\left(B=\mu_{0} i \phi / 4 \pi R\right)\). Here the central angle \(\phi\) of the arc is \(\pi / 2 \mathrm{rad}\). Thus from Eq. 29-9, the magnitude of the magnetic field \(\vec{B}_{3}\) at the arc's center \(C\) is
\[
B_{3}=\frac{\mu_{0} i(\pi / 2)}{4 \pi R}=\frac{\mu_{0} i}{8 R}
\]

To find the direction of \(\vec{B}_{3}\), we apply the right-hand rule displayed in Fig. 29-5. Mentally grasp the circular arc with your right hand as in Fig. 29-8c, with your thumb in the

direction of the current. The direction in which your fingers curl around the wire indicates the direction of the magnetic field lines around the wire. They form circles around the wire, coming out of the page above the arc and going into the page inside the arc. In the region of point \(C\) (inside the arc), your fingertips point into the plane of the page. Thus, \(\vec{B}_{3}\) is directed into that plane.

Net field: Generally, we combine multiple magnetic fields as vectors. Here, however, only the circular arc produces a magnetic field at point \(C\). Thus, we can write the magnitude of the net field \(\vec{B}\) as
\[
B=B_{1}+B_{2}+B_{3}=0+0+\frac{\mu_{0} i}{8 R}=\frac{\mu_{0} i}{8 R}
\]
(Answer)
The direction of \(\vec{B}\) is the direction of \(\vec{B}_{3}-\) namely, into the plane of Fig. 29-8.

\section*{Sample Problem 29.02 Magnetic field off to the side of two long straight currents}

Figure 29-9a shows two long parallel wires carrying currents \(i_{1}\) and \(i_{2}\) in opposite directions. What are the magnitude and direction of the net magnetic field at point \(P\) ? Assume the following values: \(i_{1}=15 \mathrm{~A}, i_{2}=32 \mathrm{~A}\), and \(d=5.3 \mathrm{~cm}\).

\section*{KEY IDEAS}
(1) The net magnetic field \(\vec{B}\) at point \(P\) is the vector sum of the magnetic fields due to the currents in the two wires. (2) We can find the magnetic field due to any current by applying the Biot-Savart law to the current. For points near the current in a long straight wire, that law leads to Eq. 29-4.

Finding the vectors: In Fig. 29-9a, point \(P\) is distance \(R\) from both currents \(i_{1}\) and \(i_{2}\). Thus, Eq. 29-4 tells us that at point \(P\) those currents produce magnetic fields \(\vec{B}_{1}\) and \(\vec{B}_{2}\) with magnitudes
\[
B_{1}=\frac{\mu_{0} i_{1}}{2 \pi R} \quad \text { and } \quad B_{2}=\frac{\mu_{0} i_{2}}{2 \pi R} .
\]

In the right triangle of Fig. 29-9a, note that the base angles (between sides \(R\) and \(d\) ) are both \(45^{\circ}\). This allows us to write

(a)

The two currents create magnetic fields that must be added as vectors to get the net field.


Figure 29-9 (a) Two wires carry currents \(i_{1}\) and \(i_{2}\) in opposite directions (out of and into the page). Note the right angle at \(P\).(b) The separate fields \(\vec{B}_{1}\) and \(\vec{B}_{2}\) are combined vectorially to yield the net field \(\vec{B}\).
\(\cos 45^{\circ}=R / d\) and replace \(R\) with \(d \cos 45^{\circ}\). Then the field magnitudes \(B_{1}\) and \(B_{2}\) become
\[
B_{1}=\frac{\mu_{0} i_{1}}{2 \pi d \cos 45^{\circ}} \quad \text { and } \quad B_{2}=\frac{\mu_{0} i_{2}}{2 \pi d \cos 45^{\circ}}
\]

We want to combine \(\vec{B}_{1}\) and \(\vec{B}_{2}\) to find their vector sum, which is the net field \(\vec{B}\) at \(P\). To find the directions of \(\vec{B}_{1}\) and \(\vec{B}_{2}\), we apply the right-hand rule of Fig. 29-5 to each current in Fig. 29-9a. For wire 1, with current out of the page, we mentally grasp the wire with the right hand, with the thumb pointing out of the page. Then the curled fingers indicate that the field lines run counterclockwise. In particular, in the region of point \(P\), they are directed upward to the left. Recall that the magnetic field at a point near a long, straight current-carrying wire must be directed perpendicular to a radial line between the point and the current. Thus, \(\vec{B}_{1}\) must be directed upward to the left as drawn in Fig. 29-9b. (Note carefully the perpendicular symbol between vector \(\vec{B}_{1}\) and the line connecting point \(P\) and wire 1.)

Repeating this analysis for the current in wire 2, we find that \(\vec{B}_{2}\) is directed upward to the right as drawn in Fig. 29-9b.

Adding the vectors: We can now vectorially add \(\vec{B}_{1}\) and \(\vec{B}_{2}\) to find the net magnetic field \(\vec{B}\) at point \(P\), either by using a vector-capable calculator or by resolving the vectors into components and then combining the components of \(\vec{B}\).

However, in Fig. 29-9b, there is a third method: Because \(\vec{B}_{1}\) and \(\vec{B}_{2}\) are perpendicular to each other, they form the legs of a right triangle, with \(\vec{B}\) as the hypotenuse. So,
\[
\begin{align*}
B & =\sqrt{B_{1}^{2}+B_{2}^{2}}=\frac{\mu_{0}}{2 \pi d\left(\cos 45^{\circ}\right)} \sqrt{i_{1}^{2}+i_{2}^{2}} \\
& =\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right) \sqrt{(15 \mathrm{~A})^{2}+(32 \mathrm{~A})^{2}}}{(2 \pi)\left(5.3 \times 10^{-2} \mathrm{~m}\right)\left(\cos 45^{\circ}\right)} \\
& =1.89 \times 10^{-4} \mathrm{~T} \approx 190 \mu \mathrm{~T} . \tag{Answer}
\end{align*}
\]

The angle \(\phi\) between the directions of \(\vec{B}\) and \(\vec{B}_{2}\) in Fig. 29-9b follows from
\[
\phi=\tan ^{-1} \frac{B_{1}}{B_{2}}
\]
which, with \(B_{1}\) and \(B_{2}\) as given above, yields
\[
\phi=\tan ^{-1} \frac{i_{1}}{i_{2}}=\tan ^{-1} \frac{15 \mathrm{~A}}{32 \mathrm{~A}}=25^{\circ} .
\]

The angle between \(\vec{B}\) and the \(x\) axis shown in Fig. 29-9b is then
\[
\phi+45^{\circ}=25^{\circ}+45^{\circ}=70^{\circ}
\]
(Answer)

\section*{29-2 force between two parallel currents}

\section*{Learning Objectives}

After reading this module, you should be able to ...
29.10 Given two parallel or antiparallel currents, find the magnetic field of the first current at the location of the second current and then find the force acting on that second current.
29.11 Identify that parallel currents attract each other, and antiparallel currents repel each other.
29.12 Describe how a rail gun works.

\section*{Key Ideas}
- Parallel wires carrying currents in the same direction attract each other, whereas parallel wires carrying currents in opposite directions repel each other. The magnitude of the force on a length \(L\) of either wire is
\[
F_{b a}=i_{b} L B_{a} \sin 90^{\circ}=\frac{\mu_{0} L i_{a} i_{b}}{2 \pi d}
\]
where \(d\) is the wire separation, and \(i_{a}\) and \(i_{b}\) are the currents in the wires.

\section*{Force Between Two Parallel Currents}

Two long parallel wires carrying currents exert forces on each other. Figure 29-10 shows two such wires, separated by a distance \(d\) and carrying currents \(i_{a}\) and \(i_{b}\). Let us analyze the forces on these wires due to each other.

We seek first the force on wire \(b\) in Fig. 29-10 due to the current in wire \(a\). That current produces a magnetic field \(\vec{B}_{a}\), and it is this magnetic field that actually causes the force we seek. To find the force, then, we need the magnitude and direction of the field \(\vec{B}_{a}\) at the site of wire \(b\). The magnitude of \(\vec{B}_{a}\) at every point of wire \(b\) is, from Eq. 29-4,
\[
\begin{equation*}
B_{a}=\frac{\mu_{0} i_{a}}{2 \pi d} . \tag{29-11}
\end{equation*}
\]

The curled-straight right-hand rule tells us that the direction of \(\vec{B}_{a}\) at wire \(b\) is down, as Fig. 29-10 shows. Now that we have the field, we can find the force it produces on wire \(b\). Equation 28-26 tells us that the force \(\vec{F}_{b a}\) on a length \(L\) of wire \(b\) due to the external magnetic field \(\vec{B}_{a}\) is
\[
\begin{equation*}
\vec{F}_{b a}=i_{b} \vec{L} \times \vec{B}_{a}, \tag{29-12}
\end{equation*}
\]
where \(\vec{L}\) is the length vector of the wire. In Fig. 29-10, vectors \(\vec{L}\) and \(\vec{B}_{a}\) are perpendicular to each other, and so with Eq. 29-11, we can write
\[
\begin{equation*}
F_{b a}=i_{b} L B_{a} \sin 90^{\circ}=\frac{\mu_{0} L i_{a} i_{b}}{2 \pi d} \tag{29-13}
\end{equation*}
\]

The direction of \(\vec{F}_{b a}\) is the direction of the cross product \(\vec{L} \times \vec{B}_{a}\). Applying the right-hand rule for cross products to \(\vec{L}\) and \(\vec{B}_{a}\) in Fig. 29-10, we see that \(\vec{F}_{b a}\) is directly toward wire \(a\), as shown.

The general procedure for finding the force on a current-carrying wire is this:

To find the force on a current-carrying wire due to a second current-carrying wire, first find the field due to the second wire at the site of the first wire. Then find the force on the first wire due to that field.

We could now use this procedure to compute the force on wire \(a\) due to the current in wire \(b\). We would find that the force is directly toward wire \(b\); hence, the two wires with parallel currents attract each other. Similarly, if the two currents were antiparallel, we could show that the two wires repel each other. Thus,

Parallel currents attract each other, and antiparallel currents repel each other.
The force acting between currents in parallel wires is the basis for the definition of the ampere, which is one of the seven SI base units. The definition, adopted in 1946, is this: The ampere is that constant current which, if maintained in two straight, parallel conductors of infinite length, of negligible circular cross section, and placed 1 m apart in vacuum, would produce on each of these conductors a force of magnitude \(2 \times 10^{-7}\) newton per meter of wire length.

\section*{Rail Gun}

The basics of a rail gun are shown in Fig. 29-11a. A large current is sent out along one of two parallel conducting rails, across a conducting "fuse" (such as a narrow piece of copper) between the rails, and then back to the current source along the second rail. The projectile to be fired lies on the far side of the fuse and fits loosely between the rails. Immediately after the current begins, the fuse element melts and vaporizes, creating a conducting gas between the rails where the fuse had been.

The curled-straight right-hand rule of Fig. 29-5 reveals that the currents in the rails of Fig. 29-11a produce magnetic fields that are directed downward between the rails. The net magnetic field \(\vec{B}\) exerts a force \(\vec{F}\) on the gas due to the current \(i\) through the gas (Fig. 29-11b). With Eq. 29-12 and the right-hand rule for cross products, we find that \(\vec{F}\) points outward along the rails. As the gas is forced outward along the rails, it pushes the projectile, accelerating it by as much as \(5 \times 10^{6} \mathrm{~g}\), and then launches it with a speed of \(10 \mathrm{~km} / \mathrm{s}\), all within 1 ms . Someday rail guns may be used to launch materials into space from mining operations on the Moon or an asteroid.


Figure 29-10 Two parallel wires carrying currents in the same direction attract each other. \(\vec{B}_{a}\) is the magnetic field at wire \(b\) produced by the current in wire \(a \cdot \vec{F}_{b a}\) is the resulting force acting on wire \(b\) because it carries current in \(\vec{B}_{a}\).

(a)

(b)

Figure 29-11 (a) A rail gun, as a current \(i\) is set up in it. The current rapidly causes the conducting fuse to vaporize. ( \(b\) ) The current produces a magnetic field \(\vec{B}\) between the rails, and the field causes a force \(\vec{F}\) to act on the conducting gas, which is part of the current path. The gas propels the projectile along the rails, launching it.

\section*{Checkpoint 1}

The figure here shows three long, straight, parallel, equally spaced wires with identical currents either into or out of the page. Rank the wires according to the magnitude of the force on each due to the currents in the other two wires, greatest first.


\section*{29-3 ampere's law}

\section*{Learning Objectives}

After reading this module, you should be able to ...
29.13 Apply Ampere's law to a loop that encircles current.
29.14 With Ampere's law, use a right-hand rule for determining the algebraic sign of an encircled current.
29.15 For more than one current within an Amperian loop, determine the net current to be used in Ampere's law.
29.16 Apply Ampere's law to a long straight wire with current, to find the magnetic field magnitude inside and outside the wire, identifying that only the current encircled by the Amperian loop matters.

\section*{Key Idea}
- Ampere's law states that
\[
\oint \vec{B} \cdot d \vec{s}=\mu_{0} i_{\mathrm{enc}} \quad \text { (Ampere's law) }
\]

The line integral in this equation is evaluated around a closed loop called an Amperian loop. The current \(i\) on the right side is the net current encircled by the loop.

\section*{Ampere's Law}

We can find the net electric field due to any distribution of charges by first writing the differential electric field \(d \vec{E}\) due to a charge element and then summing the contributions of \(d \vec{E}\) from all the elements. However, if the distribution is complicated, we may have to use a computer. Recall, however, that if the distribution has planar, cylindrical, or spherical symmetry, we can apply Gauss' law to find the net electric field with considerably less effort.

Similarly, we can find the net magnetic field due to any distribution of currents by first writing the differential magnetic field \(d \vec{B}\) (Eq. 29-3) due to a current-length element and then summing the contributions of \(d \vec{B}\) from all the elements. Again we may have to use a computer for a complicated distribution. However, if the distribution has some symmetry, we may be able to apply Ampere's law to find the magnetic field with considerably less effort. This law, which can be derived from the Biot-Savart law, has traditionally been credited to André-Marie Ampère (1775-1836), for whom the SI unit of current is named. However, the law actually was advanced by English physicist James Clerk Maxwell. Ampere's law is
\[
\begin{equation*}
\oint \vec{B} \cdot d \vec{s}=\mu_{0} i_{\mathrm{enc}} \quad \text { (Ampere's law). } \tag{29-14}
\end{equation*}
\]

The loop on the integral sign means that the scalar (dot) product \(\vec{B} \cdot d \vec{s}\) is to be integrated around a closed loop, called an Amperian loop. The current \(i_{\text {enc }}\) is the net current encircled by that closed loop.

To see the meaning of the scalar product \(\vec{B} \cdot d \vec{s}\) and its integral, let us first apply Ampere's law to the general situation of Fig. 29-12. The figure shows cross sections of three long straight wires that carry currents \(i_{1}, i_{2}\), and \(i_{3}\) either directly into or directly out of the page. An arbitrary Amperian loop lying in the plane of the page encircles two of the currents but not the third. The counterclockwise direction marked on the loop indicates the arbitrarily chosen direction of integration for Eq. 29-14.

To apply Ampere's law, we mentally divide the loop into differential vector elements \(d \vec{s}\) that are everywhere directed along the tangent to the loop in the direction of integration. Assume that at the location of the element \(d \vec{s}\) shown in Fig. 29-12, the net magnetic field due to the three currents is \(\vec{B}\). Because the wires are perpendicular to the page, we know that the magnetic
field at \(d \vec{s}\) due to each current is in the plane of Fig. 29-12; thus, their net magnetic field \(\vec{B}\) at \(d \vec{s}\) must also be in that plane. However, we do not know the orientation of \(\vec{B}\) within the plane. In Fig. 29-12, \(\vec{B}\) is arbitrarily drawn at an angle \(\theta\) to the direction of \(d \vec{s}\). The scalar product \(\vec{B} \cdot d \vec{s}\) on the left side of Eq. 29-14 is equal to \(B \cos \theta d s\). Thus, Ampere's law can be written as
\[
\begin{equation*}
\oint \vec{B} \cdot d \vec{s}=\oint B \cos \theta d s=\mu_{0} i_{\mathrm{enc}} \tag{29-15}
\end{equation*}
\]

We can now interpret the scalar product \(\vec{B} \cdot d \vec{s}\) as being the product of a length \(d s\) of the Amperian loop and the field component \(B \cos \theta\) tangent to the loop. Then we can interpret the integration as being the summation of all such products around the entire loop.

Signs. When we can actually perform this integration, we do not need to know the direction of \(\vec{B}\) before integrating. Instead, we arbitrarily assume \(\vec{B}\) to be generally in the direction of integration (as in Fig. 29-12). Then we use the following curled-straight right-hand rule to assign a plus sign or a minus sign to each of the currents that make up the net encircled current \(i_{\text {enc }}\) :

Curl your right hand around the Amperian loop, with the fingers pointing in the direction of integration. A current through the loop in the general direction of your outstretched thumb is assigned a plus sign, and a current generally in the opposite direction is assigned a minus sign.

Finally, we solve Eq. 29-15 for the magnitude of \(\vec{B}\). If \(B\) turns out positive, then the direction we assumed for \(\vec{B}\) is correct. If it turns out negative, we neglect the minus sign and redraw \(\vec{B}\) in the opposite direction.

Net Current. In Fig. 29-13 we apply the curled-straight right-hand rule for Ampere's law to the situation of Fig. 29-12. With the indicated counterclockwise direction of integration, the net current encircled by the loop is
\[
i_{\mathrm{enc}}=i_{1}-i_{2}
\]
(Current \(i_{3}\) is not encircled by the loop.) We can then rewrite Eq. 29-15 as
\[
\begin{equation*}
\oint B \cos \theta d s=\mu_{0}\left(i_{1}-i_{2}\right) \tag{29-16}
\end{equation*}
\]

You might wonder why, since current \(i_{3}\) contributes to the magnetic-field magnitude \(B\) on the left side of Eq. 29-16, it is not needed on the right side. The answer is that the contributions of current \(i_{3}\) to the magnetic field cancel out because the integration in Eq. 29-16 is made around the full loop. In contrast, the contributions of an encircled current to the magnetic field do not cancel out.

We cannot solve Eq. 29-16 for the magnitude \(B\) of the magnetic field because for the situation of Fig. 29-12 we do not have enough information to simplify and solve the integral. However, we do know the outcome of the integration; it must be equal to \(\mu_{0}\left(i_{1}-i_{2}\right)\), the value of which is set by the net current passing through the loop.

We shall now apply Ampere's law to two situations in which symmetry does allow us to simplify and solve the integral, hence to find the magnetic field.

\section*{Magnetic Field Outside a Long Straight Wire with Current}

Figure \(29-14\) shows a long straight wire that carries current \(i\) directly out of the page. Equation 29-4 tells us that the magnetic field \(\vec{B}\) produced by the current has the same magnitude at all points that are the same distance \(r\) from the wire; that is, the field \(\vec{B}\) has cylindrical symmetry about the wire. We can take advantage of that symmetry to simplify the integral in Ampere's law (Eqs. 29-14 and 29-15) if we encircle the wire with a concentric circular Amperian loop of radius \(r\), as in Fig. 29-14. The magnetic field then has the same magnitude \(B\) at every point on the loop. We shall integrate counterclockwise, so that \(d \vec{s}\) has the direction shown in Fig. 29-14.


Figure 29-12 Ampere's law applied to an arbitrary Amperian loop that encircles two long straight wires but excludes a third wire. Note the directions of the currents.

This is how to assign a sign to a current used in Ampere's law.


Figure 29-13 A right-hand rule for Ampere's law, to determine the signs for currents encircled by an Amperian loop. The situation is that of Fig. 29-12.

All of the current is encircled and thus all is used in Ampere's law.


Figure 29-14 Using Ampere's law to find the magnetic field that a current \(i\) produces outside a long straight wire of circular cross section. The Amperian loop is a concentric circle that lies outside the wire.

Only the current encircled by the loop is used in Ampere's law.


Figure 29-15 Using Ampere's law to find the magnetic field that a current \(i\) produces inside a long straight wire of circular cross section. The current is uniformly distributed over the cross section of the wire and emerges from the page. An Amperian loop is drawn inside the wire.

We can further simplify the quantity \(B \cos \theta\) in Eq. 29-15 by noting that \(\vec{B}\) is tangent to the loop at every point along the loop, as is \(d \vec{s}\). Thus, \(\vec{B}\) and \(d \vec{s}\) are either parallel or antiparallel at each point of the loop, and we shall arbitrarily assume the former. Then at every point the angle \(\theta\) between \(d \vec{s}\) and \(\vec{B}\) is \(0^{\circ}\), so \(\cos \theta=\cos 0^{\circ}=1\). The integral in Eq. 29-15 then becomes
\[
\oint \vec{B} \cdot d \vec{s}=\oint B \cos \theta d s=B \oint d s=B(2 \pi r)
\]

Note that \(\oint d s\) is the summation of all the line segment lengths \(d s\) around the circular loop; that is, it simply gives the circumference \(2 \pi r\) of the loop.

Our right-hand rule gives us a plus sign for the current of Fig. 29-14. The right side of Ampere's law becomes \(+\mu_{0} i\), and we then have
or
\[
\begin{gather*}
B(2 \pi r)=\mu_{0} i \\
B=\frac{\mu_{0} i}{2 \pi r} \quad \text { (outside straight wire). } \tag{29-17}
\end{gather*}
\]

With a slight change in notation, this is Eq. 29-4, which we derived earlier - with considerably more effort - using the law of Biot and Savart. In addition, because the magnitude \(B\) turned out positive, we know that the correct direction of \(\vec{B}\) must be the one shown in Fig. 29-14.

\section*{Magnetic Field Inside a Long Straight Wire with Current}

Figure \(29-15\) shows the cross section of a long straight wire of radius \(R\) that carries a uniformly distributed current \(i\) directly out of the page. Because the current is uniformly distributed over a cross section of the wire, the magnetic field \(\vec{B}\) produced by the current must be cylindrically symmetrical. Thus, to find the magnetic field at points inside the wire, we can again use an Amperian loop of radius \(r\), as shown in Fig. 29-15, where now \(r<R\). Symmetry again suggests that \(\vec{B}\) is tangent to the loop, as shown; so the left side of Ampere's law again yields
\[
\begin{equation*}
\oint \vec{B} \cdot d \vec{s}=B \oint d s=B(2 \pi r) \tag{29-18}
\end{equation*}
\]

Because the current is uniformly distributed, the current \(i_{\text {enc }}\) encircled by the loop is proportional to the area encircled by the loop; that is,
\[
\begin{equation*}
i_{\mathrm{enc}}=i \frac{\pi r^{2}}{\pi R^{2}} \tag{29-19}
\end{equation*}
\]

Our right-hand rule tells us that \(i_{\text {enc }}\) gets a plus sign. Then Ampere's law gives us
\[
\begin{gather*}
B(2 \pi r)=\mu_{0} i \frac{\pi r^{2}}{\pi R^{2}} \\
B=\left(\frac{\mu_{0} i}{2 \pi R^{2}}\right) r \quad \text { (inside straight wire). } \tag{29-20}
\end{gather*}
\]

Thus, inside the wire, the magnitude \(B\) of the magnetic field is proportional to \(r\), is zero at the center, and is maximum at \(r=R\) (the surface). Note that Eqs. 29-17 and 29-20 give the same value for \(B\) at the surface.

\section*{Checkpoint 2}

The figure here shows three equal currents \(i\) (two parallel and one antiparallel) and four Amperian loops. Rank the loops according to the magnitude of \(\oint \vec{B} \cdot d \vec{s}\) along each, greatest first.


\section*{Sample Problem 29.03 Ampere's law to find the field inside a long cylinder of current}

Figure 29-16a shows the cross section of a long conducting cylinder with inner radius \(a=2.0 \mathrm{~cm}\) and outer radius \(b=4.0 \mathrm{~cm}\). The cylinder carries a current out of the page, and the magnitude of the current density in the cross section is given by \(J=c r^{2}\), with \(c=3.0 \times 10^{6} \mathrm{~A} / \mathrm{m}^{4}\) and \(r\) in meters. What is the magnetic field \(\vec{B}\) at the dot in Fig. 29-16a, which is at radius \(r=3.0 \mathrm{~cm}\) from the central axis of the cylinder?

\section*{KEY IDEAS}

The point at which we want to evaluate \(\vec{B}\) is inside the material of the conducting cylinder, between its inner and outer radii. We note that the current distribution has cylindrical symmetry (it is the same all around the cross section for any given radius). Thus, the symmetry allows us to use Ampere's law to find \(\vec{B}\) at the point. We first draw the Amperian loop shown in Fig. 29-16b. The loop is concentric with the cylinder and has radius \(r=3.0 \mathrm{~cm}\) because we want to evaluate \(\vec{B}\) at that distance from the cylinder's central axis.

Next, we must compute the current \(i_{\text {enc }}\) that is encircled by the Amperian loop. However, we cannot set up a proportionality as in Eq. 29-19, because here the current is not uniformly distributed. Instead, we must integrate the current density magnitude from the cylinder's inner radius \(a\) to the loop radius \(r\), using the steps shown in Figs. 29-16 \(c\) through \(h\).

Calculations: We write the integral as
\[
\begin{aligned}
i_{\mathrm{enc}} & =\int J d A=\int_{a}^{r} c r^{2}(2 \pi r d r) \\
& =2 \pi c \int_{a}^{r} r^{3} d r=2 \pi c\left[\frac{r^{4}}{4}\right]_{a}^{r} \\
& =\frac{\pi c\left(r^{4}-a^{4}\right)}{2}
\end{aligned}
\]

Note that in these steps we took the differential area \(d A\) to be the area of the thin ring in Figs. 29-16d-f and then

We want the magnetic field at the dot at radius \(r\).

(a)

Its area \(d A\) is the product of the ring's circumference and the width \(d r\).

(e)

So, we put a concentric Amperian loop through the dot.

We need to find the current in the area encircled by the loop.

(c)

Our job is to sum the currents in all rings from this smallest one ..

(g)

We start with a ring that is so thin that we can approximate the current density as being uniform within it.

(d)
... to this largest one, which has the same radius as the Amperian loop.

(h)

Figure 29-16 \((a)-(b)\) To find the magnetic field at a point within this conducting cylinder, we use a concentric Amperian loop through the point. We then need the current encircled by the loop. \((c)-(h)\) Because the current density is nonuniform, we start with a thin ring and then sum (via integration) the currents in all such rings in the encircled area.
replaced it with its equivalent, the product of the ring's circumference \(2 \pi r\) and its thickness \(d r\).

For the Amperian loop, the direction of integration indicated in Fig. 29-16b is (arbitrarily) clockwise. Applying the right-hand rule for Ampere's law to that loop, we find that we should take \(i_{\text {enc }}\) as negative because the current is directed out of the page but our thumb is directed into the page.

We next evaluate the left side of Ampere's law as we did in Fig. 29-15, and we again obtain Eq. 29-18. Then Ampere's law,
\[
\oint \vec{B} \cdot d \vec{s}=\mu_{0} i_{\mathrm{enc}}
\]
gives us
\[
B(2 \pi r)=-\frac{\mu_{0} \pi c}{2}\left(r^{4}-a^{4}\right)
\]

Solving for \(B\) and substituting known data yield
\[
\begin{aligned}
B= & -\frac{\mu_{0} c}{4 r}\left(r^{4}-a^{4}\right) \\
= & -\frac{\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(3.0 \times 10^{6} \mathrm{~A} / \mathrm{m}^{4}\right)}{4(0.030 \mathrm{~m})} \\
& \times\left[(0.030 \mathrm{~m})^{4}-(0.020 \mathrm{~m})^{4}\right] \\
= & -2.0 \times 10^{-5} \mathrm{~T} .
\end{aligned}
\]

Thus, the magnetic field \(\vec{B}\) at a point 3.0 cm from the central axis has magnitude
\[
B=2.0 \times 10^{-5} \mathrm{~T}
\]
(Answer)
and forms magnetic field lines that are directed opposite our direction of integration, hence counterclockwise in Fig. 29-16b.

\section*{29-4 solenoids and toroids}

\section*{Learning Objectives}

After reading this module, you should be able to ...
29.17 Describe a solenoid and a toroid and sketch their magnetic field lines.
29.18 Explain how Ampere's law is used to find the magnetic field inside a solenoid.
29.19 Apply the relationship between a solenoid's internal magnetic field \(B\), the current \(i\), and the number of turns per
unit length \(n\) of the solenoid.
29.20 Explain how Ampere's law is used to find the magnetic field inside a toroid.
29.21 Apply the relationship between a toroid's internal magnetic field \(B\), the current \(i\), the radius \(r\), and the total number of turns \(N\).

\section*{Key Ideas}
- Inside a long solenoid carrying current \(i\), at points not near its ends, the magnitude \(B\) of the magnetic field is
\[
B=\mu_{0} i n \quad \text { (ideal solenoid) }
\]
where \(n\) is the number of turns per unit length.

At a point inside a toroid, the magnitude \(B\) of the magnetic field is
\[
B=\frac{\mu_{0} i N}{2 \pi} \frac{1}{r} \quad \text { (toroid), }
\]
where \(r\) is the distance from the center of the toroid to the point.


Figure 29-17 A solenoid carrying current \(i\).

\section*{Solenoids and Toroids}

\section*{Magnetic Field of a Solenoid}

We now turn our attention to another situation in which Ampere's law proves useful. It concerns the magnetic field produced by the current in a long, tightly wound helical coil of wire. Such a coil is called a solenoid (Fig. 29-17). We assume that the length of the solenoid is much greater than the diameter.

Figure 29-18 shows a section through a portion of a "stretched-out" solenoid. The solenoid's magnetic field is the vector sum of the fields produced by the individual turns (windings) that make up the solenoid. For points very


Figure 29-18 A vertical cross section through the central axis of a "stretched-out" solenoid. The back portions of five turns are shown, as are the magnetic field lines due to a current through the solenoid. Each turn produces circular magnetic field lines near itself. Near the solenoid's axis, the field lines combine into a net magnetic field that is directed along the axis. The closely spaced field lines there indicate a strong magnetic field. Outside the solenoid the field lines are widely spaced; the field there is very weak.
close to a turn, the wire behaves magnetically almost like a long straight wire, and the lines of \(\vec{B}\) there are almost concentric circles. Figure 29-18 suggests that the field tends to cancel between adjacent turns. It also suggests that, at points inside the solenoid and reasonably far from the wire, \(\vec{B}\) is approximately parallel to the (central) solenoid axis. In the limiting case of an ideal solenoid, which is infinitely long and consists of tightly packed (close-packed) turns of square wire, the field inside the coil is uniform and parallel to the solenoid axis.

At points above the solenoid, such as \(P\) in Fig. 29-18, the magnetic field set up by the upper parts of the solenoid turns (these upper turns are marked \(\odot\) ) is directed to the left (as drawn near \(P\) ) and tends to cancel the field set up at \(P\) by the lower parts of the turns (these lower turns are marked \(\otimes\) ), which is directed to the right (not drawn). In the limiting case of an ideal solenoid, the magnetic field outside the solenoid is zero. Taking the external field to be zero is an excellent assumption for a real solenoid if its length is much greater than its diameter and if we consider external points such as point \(P\) that are not at either end of the solenoid. The direction of the magnetic field along the solenoid axis is given by a curled-straight right-hand rule: Grasp the solenoid with your right hand so that your fingers follow the direction of the current in the windings; your extended right thumb then points in the direction of the axial magnetic field.

Figure \(29-19\) shows the lines of \(\vec{B}\) for a real solenoid. The spacing of these lines in the central region shows that the field inside the coil is fairly strong and uniform over the cross section of the coil. The external field, however, is relatively weak.

Ampere's Law. Let us now apply Ampere's law,
\[
\begin{equation*}
\oint \vec{B} \cdot d \vec{s}=\mu_{0} i_{\mathrm{enc}} \tag{29-21}
\end{equation*}
\]
to the ideal solenoid of Fig. 29-20, where \(\vec{B}\) is uniform within the solenoid and zero outside it, using the rectangular Amperian loop \(a b c d a\). We write \(\oint \vec{B} \cdot d \vec{s}\) as the sum of four integrals, one for each loop segment:
\[
\begin{equation*}
\oint \vec{B} \cdot d \vec{s}=\int_{a}^{b} \vec{B} \cdot d \vec{s}+\int_{b}^{c} \vec{B} \cdot d \vec{s}+\int_{c}^{d} \vec{B} \cdot d \vec{s}+\int_{d}^{a} \vec{B} \cdot d \vec{s} \tag{29-22}
\end{equation*}
\]


Figure 29-19 Magnetic field lines for a real solenoid of finite length. The field is strong and uniform at interior points such as \(P_{1}\) but relatively weak at external points such as \(P_{2}\).


Figure 29-20 Application of Ampere's law to a section of a long ideal solenoid carrying a current \(i\). The Amperian loop is the rectangle \(a b c d a\).


Figure 29-21 (a) A toroid carrying a current \(i\). (b) A horizontal cross section of the toroid. The interior magnetic field (inside the bracelet-shaped tube) can be found by applying Ampere's law with the Amperian loop shown.

The first integral on the right of Eq. 29-22 is \(B h\), where \(B\) is the magnitude of the uniform field \(\vec{B}\) inside the solenoid and \(h\) is the (arbitrary) length of the segment from \(a\) to \(b\). The second and fourth integrals are zero because for every element \(d s\) of these segments, \(\vec{B}\) either is perpendicular to \(d s\) or is zero, and thus the product \(\vec{B} \cdot d \vec{s}\) is zero. The third integral, which is taken along a segment that lies outside the solenoid, is zero because \(B=0\) at all external points. Thus, \(\oint \vec{B} \cdot d \vec{s}\) for the entire rectangular loop has the value \(B h\).

Net Current. The net current \(i_{\text {enc }}\) encircled by the rectangular Amperian loop in Fig. 29-20 is not the same as the current \(i\) in the solenoid windings because the windings pass more than once through this loop. Let \(n\) be the number of turns per unit length of the solenoid; then the loop encloses \(n h\) turns and
\[
i_{\mathrm{enc}}=i(n h) .
\]

Ampere's law then gives us
\[
B h=\mu_{0} i n h
\]
\[
\begin{equation*}
\text { or } \quad B=\mu_{0} \text { in } \quad \text { (ideal solenoid). } \tag{29-23}
\end{equation*}
\]

Although we derived Eq. 29-23 for an infinitely long ideal solenoid, it holds quite well for actual solenoids if we apply it only at interior points and well away from the solenoid ends. Equation 29-23 is consistent with the experimental fact that the magnetic field magnitude \(B\) within a solenoid does not depend on the diameter or the length of the solenoid and that \(B\) is uniform over the solenoidal cross section. A solenoid thus provides a practical way to set up a known uniform magnetic field for experimentation, just as a parallel-plate capacitor provides a practical way to set up a known uniform electric field.

\section*{Magnetic Field of a Toroid}

Figure 29-21a shows a toroid, which we may describe as a (hollow) solenoid that has been curved until its two ends meet, forming a sort of hollow bracelet. What magnetic field \(\vec{B}\) is set up inside the toroid (inside the hollow of the bracelet)? We can find out from Ampere's law and the symmetry of the bracelet.

From the symmetry, we see that the lines of \(\vec{B}\) form concentric circles inside the toroid, directed as shown in Fig. 29-21b. Let us choose a concentric circle of radius \(r\) as an Amperian loop and traverse it in the clockwise direction. Ampere's law (Eq. 29-14) yields
\[
(B)(2 \pi r)=\mu_{0} i N
\]
where \(i\) is the current in the toroid windings (and is positive for those windings enclosed by the Amperian loop) and \(N\) is the total number of turns. This gives
\[
\begin{equation*}
B=\frac{\mu_{0} i N}{2 \pi} \frac{1}{r} \quad \text { (toroid) } \tag{29-24}
\end{equation*}
\]

In contrast to the situation for a solenoid, \(B\) is not constant over the cross section of a toroid.

It is easy to show, with Ampere's law, that \(B=0\) for points outside an ideal toroid (as if the toroid were made from an ideal solenoid). The direction of the magnetic field within a toroid follows from our curled-straight right-hand rule: Grasp the toroid with the fingers of your right hand curled in the direction of the current in the windings; your extended right thumb points in the direction of the magnetic field.

\section*{Sample Problem 29.04 The field inside a solenoid (a long coil of current)}

A solenoid has length \(L=1.23 \mathrm{~m}\) and inner diameter \(d=3.55 \mathrm{~cm}\), and it carries a current \(i=5.57 \mathrm{~A}\). It consists of five close-packed layers, each with 850 turns along length \(L\). What is \(B\) at its center?

\section*{KEY IDEA}

The magnitude \(B\) of the magnetic field along the solenoid's central axis is related to the solenoid's current \(i\) and number of turns per unit length \(n\) by Eq. 29-23 ( \(B=\mu_{0}\) in).

Calculation: Because \(B\) does not depend on the diameter of the windings, the value of \(n\) for five identical layers is simply five times the value for each layer. Equation 29-23 then tells us
\[
\begin{aligned}
B & =\mu_{0} \text { in }=\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(5.57 \mathrm{~A}) \frac{5 \times 850 \text { turns }}{1.23 \mathrm{~m}} \\
& =2.42 \times 10^{-2} \mathrm{~T}=24.2 \mathrm{mT} .
\end{aligned}
\]

To a good approximation, this is the field magnitude throughout most of the solenoid.

PLU'S

\section*{29-5 a current-carrying coil as a magnetic dipole}

\section*{Learning Objectives}

After reading this module, you should be able to ...
29.22 Sketch the magnetic field lines of a flat coil that is carrying current.
29.23 For a current-carrying coil, apply the relationship between the dipole moment magnitude \(\mu\) and the coil's
current \(i\), number of turns \(N\), and area per turn \(A\).
29.24 For a point along the central axis, apply the relationship between the magnetic field magnitude \(B\), the magnetic moment \(\mu\), and the distance \(z\) from the center of the coil.

\section*{Key Idea}
- The magnetic field produced by a current-carrying coil, which is a magnetic dipole, at a point \(P\) located a distance \(z\) along the coil's perpendicular central axis is parallel to the axis and is given by
\[
\vec{B}(z)=\frac{\mu_{0}}{2 \pi} \frac{\vec{\mu}}{z^{3}}
\]
where \(\vec{\mu}\) is the dipole moment of the coil. This equation applies only when \(z\) is much greater than the dimensions of the coil.

\section*{A Current-Carrying Coil as a Magnetic Dipole}

So far we have examined the magnetic fields produced by current in a long straight wire, a solenoid, and a toroid. We turn our attention here to the field produced by a coil carrying a current. You saw in Module 28-8 that such a coil behaves as a magnetic dipole in that, if we place it in an external magnetic field \(\vec{B}\), a torque \(\vec{\tau}\) given by
\[
\begin{equation*}
\vec{\tau}=\vec{\mu} \times \vec{B} \tag{29-25}
\end{equation*}
\]
acts on it. Here \(\vec{\mu}\) is the magnetic dipole moment of the coil and has the magnitude \(N i A\), where \(N\) is the number of turns, \(i\) is the current in each turn, and \(A\) is the area enclosed by each turn. (Caution: Don't confuse the magnetic dipole moment \(\vec{\mu}\) with the permeability constant \(\mu_{0}\).)

Recall that the direction of \(\vec{\mu}\) is given by a curled-straight right-hand rule: Grasp the coil so that the fingers of your right hand curl around it in the direction of the current; your extended thumb then points in the direction of the dipole moment \(\vec{\mu}\).


Figure 29-22 A current loop produces a magnetic field like that of a bar magnet and thus has associated north and south poles. The magnetic dipole moment \(\vec{\mu}\) of the loop, its direction given by a curled-straight right-hand rule, points from the south pole to the north pole, in the direction of the field \(\vec{B}\) within the loop.

\section*{Magnetic Field of a Coil}

We turn now to the other aspect of a current-carrying coil as a magnetic dipole. What magnetic field does it produce at a point in the surrounding space? The problem does not have enough symmetry to make Ampere's law useful; so we must turn to the law of Biot and Savart. For simplicity, we first consider only a coil with a single circular loop and only points on its perpendicular central axis, which we take to be a \(z\) axis. We shall show that the magnitude of the magnetic field at such points is
\[
\begin{equation*}
B(z)=\frac{\mu_{0} i R^{2}}{2\left(R^{2}+z^{2}\right)^{3 / 2}} \tag{29-26}
\end{equation*}
\]
in which \(R\) is the radius of the circular loop and \(z\) is the distance of the point in question from the center of the loop. Furthermore, the direction of the magnetic field \(\vec{B}\) is the same as the direction of the magnetic dipole moment \(\vec{\mu}\) of the loop.

Large \(z\). For axial points far from the loop, we have \(z \gg R\) in Eq. 29-26. With that approximation, the equation reduces to
\[
B(z) \approx \frac{\mu_{0} i R^{2}}{2 z^{3}}
\]

Recalling that \(\pi R^{2}\) is the area \(A\) of the loop and extending our result to include a coil of \(N\) turns, we can write this equation as
\[
B(z)=\frac{\mu_{0}}{2 \pi} \frac{N i A}{z^{3}} .
\]

Further, because \(\vec{B}\) and \(\vec{\mu}\) have the same direction, we can write the equation in vector form, substituting from the identity \(\mu=N i A\) :
\[
\begin{equation*}
\vec{B}(z)=\frac{\mu_{0}}{2 \pi} \frac{\vec{\mu}}{z^{3}} \quad \text { (current-carrying coil). } \tag{29-27}
\end{equation*}
\]

Thus, we have two ways in which we can regard a current-carrying coil as a magnetic dipole: (1) it experiences a torque when we place it in an external magnetic field; (2) it generates its own intrinsic magnetic field, given, for distant points along its axis, by Eq. 29-27. Figure 29-22 shows the magnetic field of a current loop; one side of the loop acts as a north pole (in the direction of \(\vec{\mu}\) )
and the other side as a south pole, as suggested by the lightly drawn magnet in the figure. If we were to place a current-carrying coil in an external magnetic field, it would tend to rotate just like a bar magnet would.

\section*{Checkpoint 3}

The figure here shows four arrangements of circular loops of radius \(r\) or \(2 r\), centered on vertical axes (perpendicular to the loops) and carrying identical currents in the directions indicated. Rank the arrangements according to the magnitude of the net magnetic field at the dot, midway between the loops on the central axis, greatest first.

(a)

(b)

(c)

(d)

\section*{Proof of Equation 29-26}

Figure 29-23 shows the back half of a circular loop of radius \(R\) carrying a current \(i\). Consider a point \(P\) on the central axis of the loop, a distance \(z\) from its plane. Let us apply the law of Biot and Savart to a differential element \(d s\) of the loop, located at the left side of the loop. The length vector \(d \vec{s}\) for this element points perpendicularly out of the page. The angle \(\theta\) between \(d \vec{s}\) and \(\hat{\mathrm{r}}\) in Fig. 29-23 is \(90^{\circ}\); the plane formed by these two vectors is perpendicular to the plane of the page and contains both \(\hat{r}\) and \(d \vec{s}\). From the law of Biot and Savart (and the right-hand rule), the differential field \(d \vec{B}\) produced at point \(P\) by the current in this element is perpendicular to this plane and thus is directed in the plane of the figure, perpendicular to \(\hat{\mathrm{r}}\), as indicated in Fig. 29-23.

Let us resolve \(d \vec{B}\) into two components: \(d B_{\|}\)along the axis of the loop and \(d B_{\perp}\) perpendicular to this axis. From the symmetry, the vector sum of all the perpendicular components \(d B_{\perp}\) due to all the loop elements \(d s\) is zero. This leaves only the axial (parallel) components \(d B_{\|}\)and we have
\[
B=\int d B_{\|}
\]

For the element \(d \vec{s}\) in Fig. 29-23, the law of Biot and Savart (Eq. 29-1) tells us that the magnetic field at distance \(r\) is
\[
d B=\frac{\mu_{0}}{4 \pi} \frac{i d s \sin 90^{\circ}}{r^{2}}
\]

We also have
\[
d B_{\|}=d B \cos \alpha
\]

Combining these two relations, we obtain
\[
\begin{equation*}
d B_{\|}=\frac{\mu_{0} i \cos \alpha d s}{4 \pi r^{2}} \tag{29-28}
\end{equation*}
\]

Figure 29-23 shows that \(r\) and \(\alpha\) are related to each other. Let us express each in terms of the variable \(z\), the distance between point \(P\) and the center of the loop. The relations are
\[
\begin{equation*}
r=\sqrt{R^{2}+z^{2}} \tag{29-29}
\end{equation*}
\]


Figure 29-23 Cross section through a current loop of radius \(R\). The plane of the loop is perpendicular to the page, and only the back half of the loop is shown. We use the law of Biot and Savart to find the magnetic field at point \(P\) on the central perpendicular axis of the loop.
and
\[
\begin{equation*}
\cos \alpha=\frac{R}{r}=\frac{R}{\sqrt{R^{2}+z^{2}}} . \tag{29-30}
\end{equation*}
\]

Substituting Eqs. 29-29 and 29-30 into Eq. 29-28, we find
\[
d B_{\|}=\frac{\mu_{0} i R}{4 \pi\left(R^{2}+z^{2}\right)^{3 / 2}} d s
\]

Note that \(i, R\), and \(z\) have the same values for all elements \(d s\) around the loop; so when we integrate this equation, we find that
\[
\begin{aligned}
B & =\int d B_{\|} \\
& =\frac{\mu_{0} i R}{4 \pi\left(R^{2}+z^{2}\right)^{3 / 2}} \int d s
\end{aligned}
\]
or, because \(\int d s\) is simply the circumference \(2 \pi R\) of the loop,
\[
B(z)=\frac{\mu_{0} i R^{2}}{2\left(R^{2}+z^{2}\right)^{3 / 2}} .
\]

This is Eq. 29-26, the relation we sought to prove.

\section*{8, Review \& Summary}

The Biot-Savart Law The magnetic field set up by a currentcarrying conductor can be found from the Biot-Savart law. This law asserts that the contribution \(d \vec{B}\) to the field produced by a current-length element \(i d \vec{s}\) at a point \(P\) located a distance \(r\) from the current element is
\[
\begin{equation*}
d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{i d \vec{s} \times \hat{\mathrm{r}}}{r^{2}} \quad \text { (Biot-Savart law). } \tag{29-3}
\end{equation*}
\]

Here \(\hat{\mathrm{r}}\) is a unit vector that points from the element toward \(P\). The quantity \(\mu_{0}\), called the permeability constant, has the value
\[
4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A} \approx 1.26 \times 10^{-6} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}
\]

Magnetic Field of a Long Straight Wire For a long straight wire carrying a current \(i\), the Biot-Savart law gives, for the magnitude of the magnetic field at a perpendicular distance \(R\) from the wire,
\[
\begin{equation*}
B=\frac{\mu_{0} i}{2 \pi R} \quad \text { (long straight wire). } \tag{29-4}
\end{equation*}
\]

Magnetic Field of a Circular Arc The magnitude of the magnetic field at the center of a circular arc, of radius \(R\) and central angle \(\phi\) (in radians), carrying current \(i\), is
\[
\begin{equation*}
B=\frac{\mu_{0} i \phi}{4 \pi R} \quad \text { (at center of circular arc). } \tag{29-9}
\end{equation*}
\]

Force Between Parallel Currents Parallel wires carrying currents in the same direction attract each other, whereas parallel wires carrying currents in opposite directions repel each other. The magnitude of the force on a length \(L\) of either wire is
\[
\begin{equation*}
F_{b a}=i_{b} L B_{a} \sin 90^{\circ}=\frac{\mu_{0} L i_{a} i_{b}}{2 \pi d}, \tag{29-13}
\end{equation*}
\]
where \(d\) is the wire separation, and \(i_{a}\) and \(i_{b}\) are the currents in the wires.

Ampere's Law Ampere's law states that
\[
\begin{equation*}
\oint \vec{B} \cdot d \vec{s}=\mu_{0} i_{\text {enc }} \quad \text { (Ampere's law). } \tag{29-14}
\end{equation*}
\]

The line integral in this equation is evaluated around a closed loop called an Amperian loop. The current \(i\) on the right side is the net current encircled by the loop. For some current distributions, Eq. 29-14 is easier to use than Eq. 29-3 to calculate the magnetic field due to the currents.

Fields of a Solenoid and a Toroid Inside a long solenoid carrying current \(i\), at points not near its ends, the magnitude \(B\) of the magnetic field is
\[
\begin{equation*}
B=\mu_{0} \text { in } \quad \text { (ideal solenoid) }, \tag{29-23}
\end{equation*}
\]
where \(n\) is the number of turns per unit length. Thus the internal magnetic field is uniform. Outside the solenoid, the magnetic field is approximately zero.

At a point inside a toroid, the magnitude \(B\) of the magnetic field is
\[
\begin{equation*}
B=\frac{\mu_{0} i N}{2 \pi} \frac{1}{r} \quad \text { (toroid), } \tag{29-24}
\end{equation*}
\]
where \(r\) is the distance from the center of the toroid to the point.
Field of a Magnetic Dipole The magnetic field produced by a current-carrying coil, which is a magnetic dipole, at a point \(P\) located a distance \(z\) along the coil's perpendicular central axis is parallel to the axis and is given by
\[
\begin{equation*}
\vec{B}(z)=\frac{\mu_{0}}{2 \pi} \frac{\vec{\mu}}{z^{3}}, \tag{29-27}
\end{equation*}
\]
where \(\vec{\mu}\) is the dipole moment of the coil. This equation applies only when \(z\) is much greater than the dimensions of the coil.

\section*{Questions}

1 Figure 29-24 shows three circuits, each consisting of two radial lengths and two concentric circular arcs, one of radius \(r\) and the other of radius \(R>r\). The circuits have the same current through them and the same angle between the two radial lengths. Rank the circuits according to the magnitude of the net magnetic field at the center, greatest first.


Figure 29-24 Question 1.

2 Figure 29-25 represents a snapshot of the velocity vectors of four
 rent \(i\). The four velocities have the same magnitude; velocity \(\vec{\nu}_{2}\) is directed into the page. Electrons 1 and 2 are at the same distance from the wire, as are electrons 3 and 4 . Rank the electrons according to the magnitudes of the magnetic forces on


Figure 29-25 Question 2. them due to current \(i\), greatest first.
3 Figure 29-26 shows four arrangements in which long parallel wires carry equal currents directly into or out of the page at the corners of identical squares. Rank the arrangements according to the magnitude of the net magnetic field at the center of the square, greatest first.


Figure 29-26 Question 3.

4 Figure 29-27 shows cross sections of two long straight wires; the lefthand wire carries current \(i_{1}\) directly out of the page. If the net magnetic


Figure 29-27 Question 4. field due to the two currents is to be zero at point \(P\), (a) should the direction of current \(i_{2}\) in the right-hand wire be directly into or out of the page and (b) should \(i_{2}\) be greater than, less than, or equal to \(i_{1}\) ?
5 Figure 29-28 shows three circuits consisting of straight radial lengths and concentric circular arcs (either half- or quarter-circles

(a)

(b)

(c)

Figure 29-28 Question 5.
of radii \(r, 2 r\), and \(3 r\) ). The circuits carry the same current. Rank them according to the magnitude of the magnetic field produced at the center of curvature (the dot), greatest first.
6 Figure 29-29 gives, as a function of radial distance \(r\), the magnitude \(B\) of the magnetic field inside and outside four wires \((a, b, c\), and \(d\) ), each of which carries a current that is uniformly distributed across the wire's cross section. Overlapping portions of the plots (drawn slightly separated) are indicated by double labels. Rank the wires according to (a) radius, (b) the magnitude of the magnetic field on the surface, and (c) the value of the current, greatest first. (d) Is the magnitude of the current density in wire \(a\) greater than, less than, or equal to that in wire \(c\) ?


Figure 29-29 Question 6.
7 Figure 29-30 shows four circular Amperian loops ( \(a, b, c, d\) ) concentric with a wire whose current is directed out of the page. The current is uniform across the wire's circular cross section (the shaded region). Rank the loops according to the magnitude of \(\oint \vec{B} \cdot d \vec{s}\) around each, greatest first.


Figure 29-30 Question 7.

8 Figure 29-31 shows four arrangements in which long, parallel, equally spaced wires carry equal currents directly into or out of the page. Rank the arrangements according to the magnitude of the net force on the central wire due to the currents in the other wires, greatest first.


9 Figure 29-32 shows four circular Amperian loops \((a, b, c, d)\) and, in cross section, four long circular conductors (the shaded regions), all of which are concentric. Three of the conductors are hollow cylinders; the central conductor is a solid cylinder. The currents in the conductors are, from smallest radius to largest radius, 4 A out of


Figure 29-32 Question 9.
the page, 9 A into the page, 5 A out of the page, and 3 A into the page. Rank the Amperian loops according to the magnitude of \(\oint \vec{B} \cdot d \vec{s}\) around each, greatest first.
10 Figure 29-33 shows four identical currents \(i\) and five Amperian paths ( \(a\) through \(e\) ) encircling them. Rank the paths according to the value of \(\oint \vec{B} \cdot d \vec{s}\) taken in the directions shown, most positive first.

11 Figure 29-34 shows three arrangements of three long straight wires carrying equal currents directly into or out of the page.
(a) Rank the arrangements according to the magnitude of the net force on wire \(A\) due to the currents in the other wires, greatest first. (b) In arrangement 3, is the angle between the net force on wire \(A\) and the dashed line equal to, less than, or more than \(45^{\circ}\) ?


Figure 29-33 Question 10.

(1)


(2)

(3)

Figure 29-34 Question 11.

\section*{Problems}


\section*{Module 29-1 Magnetic Field Due to a Current}
-1 A surveyor is using a magnetic compass 6.1 m below a power line in which there is a steady current of 100 A . (a) What is the magnetic field at the site of the compass due to the power line? (b) Will this field interfere seriously with the compass reading? The horizontal component of Earth's magnetic field at the site is \(20 \mu \mathrm{~T}\).
-2 Figure 29-35a shows an element of length \(d s=1.00 \mu \mathrm{~m}\) in a very long straight wire carrying current. The current in that element sets up a differential magnetic field \(d \vec{B}\) at points in the surrounding space. Figure 29-35b gives the magnitude \(d B\) of the field for points 2.5 cm from the element, as a function of angle \(\theta\) between the wire and a straight line to the point. The vertical scale is set by \(d B_{s}=60.0 \mathrm{pT}\). What is the magnitude of the magnetic field set up by the entire wire at perpendicular distance 2.5 cm from the wire?
\(\cdot 3\) SSM At a certain location in the Philippines, Earth's magnetic field of \(39 \mu \mathrm{~T}\) is horizontal and directed due north. Suppose the net field is zero exactly 8.0 cm above a long, straight, horizontal wire that carries a constant current. What are the (a) magnitude and (b) direction of the current?
-4 A straight conductor carrying current \(i=5.0 \mathrm{~A}\) splits into identical semicircular arcs as shown in Fig. 29-36. What is the magnetic field at the center \(C\) of the resulting circular loop?
\(\cdot 5\) In Fig. 29-37, a current \(i=10 \mathrm{~A}\) is set up in a long hairpin conductor formed by bending a wire into a semicircle of radius \(R=5.0 \mathrm{~mm}\). Point \(b\) is midway between the straight sections and so distant from the semicircle that each straight section can be approximated as being an infinite wire. What are the (a) magnitude and


Figure 29-36 Problem 4.


Figure 29-37 Problem 5.
(b) direction (into or out of the page)
of \(\vec{B}\) at \(a\) and the (c) magnitude and
(d) direction of \(\vec{B}\) at \(b\) ?
-6 In Fig. 29-38, point \(P\) is at perpendicular distance \(R=2.00 \mathrm{~cm}\) from a very long straight wire carrying a current. The magnetic field \(\vec{B}\) set up at point \(P\) is due to contributions from all the identical cur-rent-length elements \(i d \vec{s}\) along the wire. What is the distance \(s\) to the


Figure 29-38 Problem 6.
element making (a) the greatest contribution to field \(\vec{B}\) and (b) \(10.0 \%\) of the greatest contribution?
-7 © In Fig. 29-39, two circular arcs have radii \(a=13.5 \mathrm{~cm}\) and \(b=\) 10.7 cm , subtend angle \(\theta=74.0^{\circ}\), carry current \(i=0.411 \mathrm{~A}\), and share the same center of curvature \(P\). What are the (a) magnitude and (b) direction (into or out of the page) of the net magnetic field at \(P\) ?
-8 In Fig. 29-40, two semicircular arcs have radii \(R_{2}=7.80 \mathrm{~cm}\) and \(R_{1}=3.15 \mathrm{~cm}\), carry current \(i=0.281\) A, and have the same center of curvature \(C\). What are the (a) magnitude and (b) direction (into or out of the page) of the net magnetic field at \(C\) ? -9 SSM Two long straight wires are parallel and 8.0 cm apart. They


Figure 29-39 Problem 7.


Figure 29-40 Problem 8. are to carry equal currents such that the magnetic field at a point halfway between them has magnitude \(300 \mu \mathrm{~T}\). (a) Should the currents be in the same or opposite directions? (b) How much current is needed?
-10 In Fig. 29-41, a wire forms a semicircle of radius \(R=9.26 \mathrm{~cm}\) and two (radial) straight segments each of length \(L=13.1 \mathrm{~cm}\). The wire carries current \(i=34.8 \mathrm{~mA}\). What are the (a) magnitude and (b) direction (into or out of the page) of the net magnetic field at the semicircle's center of curvature \(C\) ?
-11 In Fig. 29-42, two long straight wires are perpendicular to the page and separated by distance \(d_{1}=0.75 \mathrm{~cm}\). Wire 1 carries 6.5 A into the page. What are the (a) magnitude and (b) direction (into or out of the page) of the current in wire 2 if the net magnetic field due to the two currents is zero at point \(P\) located at distance \(d_{2}=1.50 \mathrm{~cm}\) from wire 2?
-12 In Fig. 29-43, two long straight wires at separation \(d=16.0 \mathrm{~cm}\) carry currents \(i_{1}=3.61 \mathrm{~mA}\) and \(i_{2}=3.00 i_{1}\) out of the page. (a) Where on the \(x\) axis is the net magnetic field equal to zero? (b) If the two currents are doubled, is the zero-field point shifted toward wire 1 , shifted toward wire 2 , or unchanged?


Figure 29-42 Problem 11.


Figure 29-43 Problem 12. \(\bullet 13\) In Fig. 29-44, point \(P_{1}\) is at distance \(R=13.1 \mathrm{~cm}\) on the perpendicular bisector of a straight wire of length \(L=18.0 \mathrm{~cm}\) carrying

Figure 29-44 Problems 13 and 17.

current \(i=58.2 \mathrm{~mA}\). (Note that the wire is not long.) What is the magnitude of the magnetic field at \(P_{1}\) due to \(i\) ?
\(\bullet 14\) Equation 29-4 gives the magnitude \(B\) of the magnetic field set up by a current in an infinitely long straight wire, at a point \(P\) at perpendicular distance \(R\) from the wire. Suppose that point \(P\) is actually at perpendicular distance \(R\) from the midpoint of a wire with a finite length \(L\). Using Eq. 29-4 to calculate \(B\) then results in a certain percentage error. What value must the ratio \(L / R\) exceed if the percentage error is to be less than \(1.00 \%\) ? That is, what \(L / R\) gives
\[
\frac{(B \text { from Eq. } 29-4)-(B \text { actual })}{(B \text { actual })}(100 \%)=1.00 \% ?
\]
-015 Figure 29-45 shows two current segments. The lower segment carries a current of \(i_{1}=0.40 \mathrm{~A}\) and includes a semicircular arc with radius 5.0 cm , angle \(180^{\circ}\), and center point \(P\). The upper segment carries current \(i_{2}=2 i_{1}\) and includes a circular arc with radius 4.0 cm , angle \(120^{\circ}\),


Figure 29-45 Problem 15. and the same center point \(P\). What are the (a) magnitude and (b) direction of the net magnetic field \(\vec{B}\) at \(P\) for the indicated current directions? What are the (c) magnitude and (d) direction of \(\vec{B}\) if \(i_{1}\) is reversed?
\(\bullet \bullet 16\)
In Fig. 29-46, two concentric circular loops of wire carrying current in the same direction lie in the same plane. Loop 1 has radius 1.50 cm and carries 4.00 mA . Loop 2


Figure 29-46 Problem 16. has radius 2.50 cm and carries 6.00 mA . Loop 2 is to be rotated about a diameter while the net magnetic field \(\vec{B}\) set up by the two loops at their common center is measured. Through what angle must loop 2 be rotated so that the magnitude of that net field is 100 nT ?
\(\bullet 17\) SSM In Fig. 29-44, point \(P_{2}\) is at perpendicular distance \(R=\) 25.1 cm from one end of a straight wire of length \(L=13.6 \mathrm{~cm}\) carrying current \(i=0.693 \mathrm{~A}\). (Note that the wire is not long.) What is the magnitude of the magnetic field at \(P_{2}\) ?
\(\because 18\) A current is set up in a wire loop consisting of a semicircle of radius 4.00 cm , a smaller concentric semicircle, and two radial straight lengths, all in the same plane. Figure 29-47a shows the arrangement but is not drawn to scale. The magnitude


Figure 29-47 Problem 18. of the magnetic field produced at the center of curvature is \(47.25 \mu \mathrm{~T}\). The smaller semicircle is then flipped over (rotated) until the loop is again entirely in the same plane (Fig. 29-47b). The magnetic field produced at the (same) center of curvature now has magnitude \(15.75 \mu \mathrm{~T}\), and its direction is reversed from the initial magnetic field. What is the radius of the smaller semicircle?
-•19 One long wire lies along an \(x\) axis and carries a current of 30 A in the positive \(x\) direction. A second long wire is perpendicular to the \(x y\) plane, passes through the point \((0,4.0 \mathrm{~m}, 0)\), and carries a current of 40 A in the positive \(z\) direction. What is the magnitude of the resulting magnetic field at the point \((0,2.0 \mathrm{~m}, 0)\) ?
-•20 In Fig. 29-48, part of a long insulated wire carrying current \(i=5.78 \mathrm{~mA}\) is bent into a circular section of radius \(R=1.89 \mathrm{~cm}\). In unit-vector notation, what is the magnetic field at the center of curvature \(C\) if the circular section (a) lies in the plane of the page as shown and (b) is perpendicular to the plane of the page after being rotated \(90^{\circ}\) counterclockwise as indicated?
-221 ©0 Figure 29-49 shows two very long straight wires (in cross section) that each carry a current of 4.00 A directly out of the page. Distance \(d_{1}=6.00 \mathrm{~m}\) and distance \(d_{2}=4.00 \mathrm{~m}\). What is the magnitude of the net magnetic field at point \(P\), which lies on a perpendicular bisector to the wires?
-22 60 Figure 29-50a shows, in cross section, two long, parallel wires carrying current and separated by distance \(L\). The ratio \(i_{1} / i_{2}\) of their currents is 4.00 ; the directions of the currents are not indicated. Figure \(29-50 b\) shows the \(y\) component \(B_{y}\) of their net magnetic field along the \(x\) axis to the right of wire 2 . The vertical scale is set by \(B_{y s}=4.0 \mathrm{nT}\), and the horizontal scale is set by \(x_{s}=20.0 \mathrm{~cm}\). (a) At what value of \(x>0\) is \(B_{y}\) maximum? (b) If \(i_{2}=3 \mathrm{~mA}\), what is the value of that maximum? What is the direction (into or out of the page) of (c) \(i_{1}\) and (d) \(i_{2}\) ?


Figure 29-50 Problem 22.
-23 ILW Figure \(29-51\) shows a snapshot of a proton moving at velocity \(\vec{v}=(-200 \mathrm{~m} / \mathrm{s}) \hat{j}\) toward a long straight wire with current \(i=350 \mathrm{~mA}\). At the instant shown, the proton's distance from the wire is \(d=2.89 \mathrm{~cm}\). In unitvector notation, what is the magnetic force on the proton due to the current?
\(\bullet 24\) ©o Figure 29-52 shows, in cross section, four thin wires that are parallel, straight, and very long. They carry identical currents in the directions indicated. Initially all four wires are at distance \(d=15.0 \mathrm{~cm}\) from the origin of the coordinate system, where they create a net magnetic field \(\vec{B}\). (a) To what value of \(x\) must you move wire 1 along the \(x\) axis in order to rotate \(\vec{B}\) counterclockwise by \(30^{\circ}\) ? (b) With wire 1 in that new position, to what value of \(x\)


Figure 29-51 Problem 23.


Figure 29-52
Problem 24.
must you move wire 3 along the \(x\) axis to rotate \(\vec{B}\) by \(30^{\circ}\) back to its initial orientation?
\(\because 25\) SSM A wire with current \(i=3.00 \mathrm{~A}\) is shown in Fig. 29-53. Two semi-infinite straight sections, both tangent to the same circle, are connected by a circular arc that has a central angle \(\theta\) and runs along the circumference of the circle. The arc and the two straight


Figure 29-53
Problem 25. sections all lie in the same plane. If \(B=\) 0 at the circle's center, what is \(\theta\) ?
-26 ©0 In Fig. 29-54a, wire 1 consists of a circular arc and two radial lengths; it carries current \(i_{1}=0.50 \mathrm{~A}\) in the direction indicated. Wire 2 , shown in cross section, is long, straight, and perpendicular to the plane of the figure. Its distance from the center of the arc is equal to the radius \(R\) of the arc, and it carries a current \(i_{2}\) that can be varied. The two currents set up a net magnetic field \(\vec{B}\) at the center of the arc. Figure \(29-54 b\) gives the square of the field's magnitude \(B^{2}\) plotted versus the square of the current \(i_{2}^{2}\). The vertical scale is set by \(B_{s}^{2}=10.0 \times 10^{-10} \mathrm{~T}^{2}\). What angle is subtended by the arc?


Figure 29-54 Problem 26.
-•27 In Fig. 29-55, two long straight wires (shown in cross section) carry the currents \(i_{1}=30.0 \mathrm{~mA}\) and \(i_{2}=\) 40.0 mA directly out of the page. They are equal distances from the origin, where they set up a magnetic field \(\vec{B}\). To what value must current \(i_{1}\) be changed in order to rotate \(\vec{B} 20.0^{\circ}\) clockwise?


Figure 29-55 Problem 27.
-228 ©0 Figure 29-56a shows two
wires, each carrying a current. Wire 1 consists of a circular arc of


Figure 29-56 Problem 28.
radius \(R\) and two radial lengths; it carries current \(i_{1}=2.0 \mathrm{~A}\) in the direction indicated. Wire 2 is long and straight; it carries a current \(i_{2}\) that can be varied; and it is at distance \(R / 2\) from the center of the arc. The net magnetic field \(\vec{B}\) due to the two currents is measured at the center of curvature of the arc. Figure \(29-56 b\) is a plot of the component of \(\vec{B}\) in the direction perpendicular to the figure as a function of current \(i_{2}\). The horizontal scale is set by \(i_{2 s}=1.00 \mathrm{~A}\). What is the angle subtended by the arc?
-29 SSM In Fig. 29-57, four long straight wires are perpendicular to the page, and their cross sections form a square of edge length \(a=20 \mathrm{~cm}\). The currents are out of the page in wires 1 and 4 and into the page in wires 2 and 3, and each wire carries 20 A . In unit-vector notation, what is the net magnetic field at the square's center?

Figure 29-57 Problems 29, 37, and 40.

\(\bullet \bullet 30\) © © Two long straight thin wires with current lie against an equally long plastic cylinder, at radius \(R=20.0 \mathrm{~cm}\) from the cylinder's central axis. Figure 29-58a shows, in cross section, the cylinder and wire 1 but not wire 2 . With wire 2 fixed in place, wire 1 is moved around the cylinder, from angle \(\theta_{1}=0^{\circ}\) to angle \(\theta_{1}=180^{\circ}\), through the first and second quadrants of the \(x y\) coordinate system. The net magnetic field \(\vec{B}\) at the center of the cylinder is measured as a function of \(\theta_{1}\). Figure 29-58b gives the \(x\) component \(B_{x}\) of that field as a function of \(\theta_{1}\) (the vertical scale is set by \(B_{x s}=6.0 \mu \mathrm{~T}\) ), and Fig. \(29-58 c\) gives the \(y\) component \(B_{y}\) (the vertical scale is set by \(B_{y s}=4.0\) \(\mu \mathrm{T})\). (a) At what angle \(\theta_{2}\) is wire 2 located? What are the (b) size and (c) direction (into or out of the page) of the current in wire 1 and the (d) size and (e) direction of the current in wire 2 ?

(a)


Figure 29-58 Problem 30.
\(\bullet \bullet 31\) In Fig. 29-59, length \(a\) is 4.7 cm (short) and current \(i\) is 13 A . What are the (a) magnitude and (b) direction (into or out of the page) of the magnetic field at point \(P\) ?
\(\bullet 032\) (6) The current-carrying wire loop in Fig. 29-60a lies all in one plane and consists of a semicircle of radius 10.0 cm , a smaller semicircle with the same center, and two radial lengths. The smaller semicircle is rotated out of that plane by angle \(\theta\), until it is perpendicular


Figure 29-59 Problem 31. to the plane (Fig. 29-60b). Figure 29-60c gives the magnitude of the net magnetic field at the center of curvature versus angle \(\theta\). The vertical scale is set by \(B_{a}=10.0 \mu \mathrm{~T}\) and \(B_{b}=12.0 \mu \mathrm{~T}\). What is the radius of the smaller semicircle?


Figure 29-60 Problem 32.
©on33 SSM ILW Figure 29-61 shows a cross section of a long thin ribbon of width \(w=4.91 \mathrm{~cm}\) that is carrying a uniformly distributed total current \(i=4.61 \mu \mathrm{~A}\) into the page. In unit-vector notation, what is the magnetic field \(\vec{B}\) at a point \(P\) in the plane of the ribbon at a distance \(d=2.16 \mathrm{~cm}\) from its edge? (Hint: Imagine the ribbon as being constructed from many long, thin, parallel wires.)
00034 ©o Figure 29-62 shows, in cross section, two long straight wires held against a plastic cylinder of radius 20.0 cm . Wire 1 carries current \(i_{1}=60.0 \mathrm{~mA}\) out of the page and is fixed in place at the left side of the cylinder. Wire 2 carries current \(i_{2}=\) 40.0 mA out of the page and can be moved around the cylinder. At what (positive) angle \(\theta_{2}\) should wire 2 be positioned such that, at the origin, the net magnetic field due to the two currents has magnitude 80.0 nT ?
Module 29-2 Force Between Two Parallel Currents
-35 ssm Figure 29-63 shows wire 1 in cross section; the wire is long


Figure 29-61 Problem 33.


Figure 29-62 Problem 34.


Figure 29-63 Problem 35.
and straight, carries a current of 4.00 mA out of the page, and is at distance \(d_{1}=2.40 \mathrm{~cm}\) from a surface. Wire 2 , which is parallel to wire 1 and also long, is at horizontal distance \(d_{2}=5.00 \mathrm{~cm}\) from wire 1 and carries a current of 6.80 mA into the page. What is the \(x\) component of the magnetic force per unit length on wire 2 due to wire 1 ?
-036 In Fig. 29-64, five long parallel wires in an \(x y\) plane are separated by distance \(d=8.00 \mathrm{~cm}\), have lengths of 10.0 m , and carry identical currents of 3.00 A out of the page. Each wire experiences a magnetic force due to the currents in the other wires. In unit-vector notation, what is the net magnetic force on (a) wire 1 , (b) wire 2 , (c) wire 3 , (d) wire 4 , and (e) wire 5 ?
-37 © In Fig. 29-57, four long straight wires are perpendicular to the page, and their cross sections form a square of edge length \(a=13.5 \mathrm{~cm}\). Each wire carries 7.50 A , and the currents are out of the page in wires 1 and 4 and into the page in wires 2 and 3. In unitvector notation, what is the net magnetic force per meter of wire length on wire 4?
-•38 ©0 Figure 29-65a shows, in cross section, three currentcarrying wires that are long, straight, and parallel to one another. Wires 1 and 2 are fixed in place on an \(x\) axis, with separation \(d\). Wire 1 has a current of 0.750 A , but the direction of the current is not given. Wire 3 , with a current of 0.250 A out of the page, can be moved along the \(x\) axis to the right of wire 2 . As wire 3 is moved, the magnitude of the net magnetic force \(\vec{F}_{2}\) on wire 2 due to the currents in wires 1 and 3 changes. The \(x\) component of that force is \(F_{2 x}\) and the value per unit length of wire 2 is \(F_{2 x} / L_{2}\). Figure 29-65b gives \(F_{2 x} / L_{2}\) versus the position \(x\) of wire 3. The plot has an asymptote \(F_{2 x} / L_{2}=-0.627 \mu \mathrm{~N} / \mathrm{m}\) as \(x \rightarrow \infty\). The horizontal scale is set by \(x_{s}=12.0 \mathrm{~cm}\). What are the (a) size and (b) direction (into or out of the page) of the current in wire 2 ?


Figure 29-65 Problem 38.
-039 © In Fig. 29-64, five long parallel wires in an \(x y\) plane are separated by distance \(d=50.0 \mathrm{~cm}\). The currents into the page are \(i_{1}=2.00 \mathrm{~A}, i_{3}=0.250 \mathrm{~A}, i_{4}=4.00 \mathrm{~A}\), and \(i_{5}=2.00 \mathrm{~A}\); the current out of the page is \(i_{2}=4.00 \mathrm{~A}\). What is the magnitude of the net force per unit length acting on wire 3 due to the currents in the other wires?
-•40 In Fig. 29-57, four long straight wires are perpendicular to the page, and their cross sections form a square of edge length \(a=8.50 \mathrm{~cm}\). Each wire carries 15.0 A , and all the currents are out of the page. In unit-vector notation, what is the net magnetic force per meter of wire length on wire 1 ?
\(0^{0041}\) ILW In Fig. 29-66, a long straight wire carries a current \(i_{1}=\) 30.0 A and a rectangular loop carries current \(i_{2}=20.0 \mathrm{~A}\). Take the dimensions to be \(a=1.00 \mathrm{~cm}, b=\) 8.00 cm , and \(L=30.0 \mathrm{~cm}\). In unitvector notation, what is the net force on the loop due to \(i_{1}\) ?

\section*{Module 29-3 Ampere's Law}
-42 In a particular region there is a uniform current density of 15


Figure 29-66 Problem 41. \(\mathrm{A} / \mathrm{m}^{2}\) in the positive \(z\) direction. What is the value of \(\oint \vec{B} \cdot d \vec{s}\) when that line integral is calculated along a closed path consisting of the three straight-line segments from \((x, y, z)\) coordinates \((4 d, 0,0)\) to \((4 d, 3 d, 0)\) to \((0,0,0)\) to \((4 d, 0,0)\), where \(d=\) 20 cm ?
-43 Figure 29-67 shows a cross section across a diameter of a long cylindrical conductor of radius \(a=2.00 \mathrm{~cm}\) carrying uniform current 170 A . What is the magnitude of the current's magnetic field at radial distance (a) 0 , (b) 1.00 cm , (c) 2.00 cm (wire's surface), and (d) 4.00 cm ?
-44 Figure 29-68 shows two closed paths wrapped around two conducting loops carrying currents \(i_{1}=5.0 \mathrm{~A}\) and \(i_{2}=3.0 \mathrm{~A}\). What is the value of the integral \(\oint \vec{B} \cdot d \vec{s}\) for (a) path 1 and (b) path 2 ?


Figure 29-68 Problem 44.
-45 SSM Each of the eight conductors in Fig. 29-69 carries 2.0 A of current into or out of the page. Two paths are indicated for the line integral \(\oint \vec{B} \cdot d \vec{s}\). What is the value of the integral for (a) path 1 and (b) path 2 ?


Figure 29-69 Problem 45.
-46 Eight wires cut the page perpendicularly at the points shown in Fig. 29-70. A wire labeled with the integer \(k(k=1,2, \ldots, 8)\) carries the current \(k i\), where \(i=4.50 \mathrm{~mA}\). For those wires with odd \(k\), the current is out of the page; for those with even \(k\), it is into the page. Evaluate \(\oint \vec{B} \cdot d \vec{s}\) along the closed path indicated and in the direction shown.


Figure 29-70 Problem 46.
-•47 ILw The current density \(\vec{J}\) in-
side a long, solid, cylindrical wire of radius \(a=3.1 \mathrm{~mm}\) is in the direction of the central axis, and its magnitude varies linearly with radial distance \(r\) from the axis according to \(J=J_{0} r / a\), where \(J_{0}=\)
\(310 \mathrm{~A} / \mathrm{m}^{2}\). Find the magnitude of the magnetic field at (a) \(r=0\), (b) \(r=a / 2\), and (c) \(r=a\).
-•48 In Fig. 29-71, a long circular pipe with outside radius \(R=2.6 \mathrm{~cm}\) carries a (uniformly distributed) current \(i=\) 8.00 mA into the page. A wire runs parallel to the pipe at a distance of \(3.00 R\) from center to center. Find the (a) magnitude and (b) direction (into or out of the page) of the current in the wire such that the net magnetic field at point \(P\) has the same magnitude as the net magnetic field at the center of the pipe but is in the opposite direction.


Figure 29-71
Problem 48.

\section*{Module 29-4 Solenoids and Toroids}
-49 A toroid having a square cross section, 5.00 cm on a side, and an inner radius of 15.0 cm has 500 turns and carries a current of 0.800 A. (It is made up of a square solenoid—instead of a round one as in Fig. 29-17—bent into a doughnut shape.) What is the magnetic field inside the toroid at (a) the inner radius and (b) the outer radius?
-50 A solenoid that is 95.0 cm long has a radius of 2.00 cm and a winding of 1200 turns; it carries a current of 3.60 A . Calculate the magnitude of the magnetic field inside the solenoid.
-51 A 200-turn solenoid having a length of 25 cm and a diameter of 10 cm carries a current of 0.29 A . Calculate the magnitude of the magnetic field \(\vec{B}\) inside the solenoid.
-52 A solenoid 1.30 m long and 2.60 cm in diameter carries a current of 18.0 A . The magnetic field inside the solenoid is 23.0 mT . Find the length of the wire forming the solenoid.
-•53 A long solenoid has 100 turns/cm and carries current \(i\). An electron moves within the solenoid in a circle of radius 2.30 cm perpendicular to the solenoid axis. The speed of the electron is \(0.0460 c(c=\) speed of light \()\). Find the current \(i\) in the solenoid.
\(\bullet \cdot 54\) An electron is shot into one end of a solenoid. As it enters the uniform magnetic field within the solenoid, its speed is \(800 \mathrm{~m} / \mathrm{s}\) and its velocity vector makes an angle of \(30^{\circ}\) with the central axis of the solenoid. The solenoid carries 4.0 A and has 8000 turns along its length. How many revolutions does the electron make along its helical path within the solenoid by the time it emerges from the solenoid's opposite end? (In a real solenoid, where the field is not uniform at the two ends, the number of revolutions would be slightly less than the answer here.)
-•55 SSM ILW WWW A long solenoid with 10.0 turns/cm and a radius of 7.00 cm carries a current of 20.0 mA . A current of 6.00 A exists in a straight conductor located along the central axis of the solenoid. (a) At what radial distance from the axis will the direction of the resulting magnetic field be at \(45.0^{\circ}\) to the axial direction? (b) What is the magnitude of the magnetic field there?

\section*{Module 29-5 A Current-Carrying} Coil as a Magnetic Dipole
-56 Figure 29-72 shows an arrangement known as a Helmholtz coil. It consists of two circular coaxial coils, each of 200 turns and radius \(R=25.0 \mathrm{~cm}\), separated by a distance


Figure 29-72
Problem 56.
\(s=R\). The two coils carry equal currents \(i=12.2 \mathrm{~mA}\) in the same direction. Find the magnitude of the net magnetic field at \(P\), midway between the coils.
-57 SSM A student makes a short electromagnet by winding 300 turns of wire around a wooden cylinder of diameter \(d=5.0 \mathrm{~cm}\). The coil is connected to a battery producing a current of 4.0 A in the wire. (a) What is the magnitude of the magnetic dipole moment of this device? (b) At what axial distance \(z \gg d\) will the magnetic field have the magnitude \(5.0 \mu \mathrm{~T}\) (approximately one-tenth that of Earth's magnetic field)?
-58 Figure 29-73a shows a length of wire carrying a current \(i\) and bent into a circular coil of one turn. In Fig. 2973 b the same length of wire has been bent to give a coil of two turns, each of half the original radius. (a) If \(B_{a}\) and \(B_{b}\) are the magnitudes of the magnetic fields at the centers of the two coils, what is the ratio \(B_{b} / B_{a}\) ? (b) What is the ratio \(\mu_{b} / \mu_{a}\) of the dipole moment mag-


Figure 29-73 Problem 58. nitudes of the coils?
-59 SSM What is the magnitude of the magnetic dipole moment \(\vec{\mu}\) of the solenoid described in Problem 51?
\(\bullet 60\) © \(\bullet\) In Fig. 29-74a, two circular loops, with different currents but the same radius of 4.0 cm , are centered on a \(y\) axis. They are initially separated by distance \(L=3.0 \mathrm{~cm}\), with loop 2 positioned at the origin of the axis. The currents in the two loops produce a net magnetic field at the origin, with \(y\) component \(B_{y}\). That component is to be measured as loop 2 is gradually moved in the positive direction of the \(y\) axis. Figure 29-74b gives \(B_{y}\) as a function of the position \(y\) of loop 2 . The curve approaches an asymptote of \(B_{y}=7.20 \mu \mathrm{~T}\) as \(y \rightarrow \infty\). The horizontal scale is set by \(y_{s}=10.0 \mathrm{~cm}\). What are (a) current \(i_{1}\) in loop 1 and (b) current \(i_{2}\) in loop 2 ?


Figure 29-74 Problem 60.
-061 A circular loop of radius 12 cm carries a current of 15 A . A flat coil of radius 0.82 cm , having 50 turns and a current of 1.3 A , is concentric with the loop. The plane of the loop is perpendicular to the plane of the coil. Assume the loop's magnetic field is uniform across the coil. What is the magnitude of (a) the magnetic field produced by the loop at its center and (b) the torque on the coil due to the loop?
-•62 In Fig. 29-75, current \(i=\) 56.2 mA is set up in a loop having two radial lengths and two semicir-


Figure 29-75 Problem 62.
cles of radii \(a=5.72 \mathrm{~cm}\) and \(b=9.36 \mathrm{~cm}\) with a common center \(P\). What are the (a) magnitude and (b) direction (into or out of the page) of the magnetic field at \(P\) and the (c) magnitude and (d) direction of the loop's magnetic dipole moment?
-•63 In Fig. 29-76, a conductor carries 6.0 A along the closed path abcdefgha running along 8 of the 12 edges of a cube of edge length 10 cm . (a) Taking the path to be a combination of three square current loops ( \(b c f g b\), abgha, and \(c d e f c\) ), find the net magnetic moment of the path in unitvector notation. (b) What is the magnitude of the net magnetic field at the \(x y z\) coordinates of \((0,5.0 \mathrm{~m}, 0)\) ?

\section*{Additional Problems}

64 In Fig. 29-77, a closed loop carries current \(i=200 \mathrm{~mA}\). The loop consists of two radial straight wires and two concentric circular arcs of radii 2.00 m and 4.00 m . The angle \(\theta\) is \(\pi / 4 \mathrm{rad}\). What are the (a) magnitude and (b) direction (into or out of the page) of the net magnetic field at the center of curvature \(P\) ?

65 A cylindrical cable of radius 8.00 mm carries a current of 25.0 A , uniformly spread over its cross-sectional area. At what distance from the center of the wire is there a point within the wire where the magnetic field magnitude is 0.100 mT ?
66 Two long wires lie in an \(x y\) plane, and each carries a current in the positive direction of the \(x\) axis. Wire 1 is at \(y=10.0 \mathrm{~cm}\) and carries 6.00 A ; wire 2 is at \(y=5.00 \mathrm{~cm}\) and carries 10.0 A . (a) In unitvector notation, what is the net magnetic field \(\vec{B}\) at the origin? (b) At what value of \(y\) does \(\vec{B}=0\) ? (c) If the current in wire 1 is reversed, at what value of \(y\) does \(\vec{B}=0\) ?
67 Two wires, both of length \(L\), are formed into a circle and a square, and each carries current \(i\). Show that the square produces a greater magnetic field at its center than the circle produces at its center.
68 A long straight wire carries a current of 50 A . An electron, traveling at \(1.0 \times 10^{7} \mathrm{~m} / \mathrm{s}\), is 5.0 cm from the wire. What is the magnitude of the magnetic force on the electron if the electron velocity is directed (a) toward the wire, (b) parallel to the wire in the direction of the current, and (c) perpendicular to the two directions defined by (a) and (b)?
69 Three long wires are parallel to a \(z\) axis, and each carries a current of 10 A in the positive \(z\) direction. Their points of intersection with the xy plane form an equilateral triangle with sides of 50 cm , as shown in Fig. 29-78. A fourth wire (wire \(b\) ) passes through the midpoint of the base of the triangle and is parallel to the other three wires. If the net magnetic force on wire \(a\) is zero, what are the (a) size and (b) direction \((+z\) or \(-z)\) of the current in wire \(b\) ?

70 Figure 29-79 shows a closed loop with current \(i=2.00 \mathrm{~A}\). The loop consists of a half-circle of radius 4.00 m , two quarter-circles each of radius 2.00 m , and three radial straight wires. What is the magnitude of the net magnetic field at the common center of the circular sections?
71 A 10-gauge bare copper wire


Figure 29-79 Problem 70. ( 2.6 mm in diameter) can carry a current of 50 A without overheating. For this current, what is the magnitude of the magnetic field at the surface of the wire?

72 A long vertical wire carries an unknown current. Coaxial with the wire is a long, thin, cylindrical conducting surface that carries a current of 30 mA upward. The cylindrical surface has a radius of 3.0 mm . If the magnitude of the magnetic field at a point 5.0 mm from the wire is \(1.0 \mu \mathrm{~T}\), what are the (a) size and (b) direction of the current in the wire?
73 Figure \(29-80\) shows a cross section of a long cylindrical conductor of radius \(a=4.00 \mathrm{~cm}\) containing a long cylindrical hole of radius \(b=1.50 \mathrm{~cm}\). The central axes of the cylinder and hole are parallel and are distance \(d=\) 2.00 cm apart; current \(i=5.25 \mathrm{~A}\) is uniformly distributed over the tinted area. (a) What is the magnitude of the magnetic field at the center of the hole? (b) Discuss the two special cases \(b=0\) and \(d=0\).


Figure 29-80
Problem 73.

74 The magnitude of the magnetic field at a point 88.0 cm from the central axis of a long straight wire is \(7.30 \mu \mathrm{~T}\). What is the current in the wire?
75 SSM Figure 29-81 shows a wire segment of length \(\Delta s=3.0 \mathrm{~cm}\), centered at the origin, carrying current \(i=2.0 \mathrm{~A}\) in the positive \(y\) direction (as part of some complete circuit). To calculate the magnitude of the magnetic field \(\vec{B}\) produced by the segment at a point several meters from the origin, we can use \(B=\left(\mu_{0} / 4 \pi\right) i \Delta s(\sin \theta) / r^{2}\) as


Figure 29-81 Problem 75. the Biot-Savart law. This is because \(r\) and \(\theta\) are essentially constant over the segment. Calculate \(\vec{B}\) (in unit-vector notation) at the \((x, y, z)\) coordinates (a) \((0,0,5.0 \mathrm{~m})\), (b) ( \(0,6.0 \mathrm{~m}, 0\) ), (c) \((7.0 \mathrm{~m}, 7.0 \mathrm{~m}, 0)\), and (d) ( \(-3.0 \mathrm{~m},-4.0 \mathrm{~m}, 0\) ).
76 © Figure \(29-82\) shows, in cross section, two long parallel wires spaced by distance \(d=10.0 \mathrm{~cm}\); each carries 100 A , out of the page in wire 1. Point \(P\) is on a perpendicular bisector of the line connecting the wires. In unit-vector notation, what is the net magnetic field at \(P\) if the current in wire 2 is (a) out of the page and (b) into the page?


Figure 29-82 Problem 76.

77 In Fig. 29-83, two infinitely long wires carry equal currents \(i\). Each follows a \(90^{\circ}\) arc on the circumference of the same circle of radius \(R\). Show that the magnetic field \(\vec{B}\) at the center of the circle is the same as the field \(\vec{B}\) a distance \(R\) below an infinite straight wire carrying a current \(i\) to the left.

78 A long wire carrying 100 A is perpendicular to the magnetic field lines of a uniform magnetic field of magnitude 5.0 mT . At what distance from the wire is the net magnetic field equal to zero?
79 A long, hollow, cylindrical conductor (with inner radius 2.0 mm and outer radius 4.0 mm ) carries a current of 24 A distributed uniformly across its cross section. A long thin wire that is coaxial with the cylinder carries a current of 24 A in the opposite direction. What is the magnitude of the magnetic field (a) 1.0 mm , (b) 3.0 mm , and (c) 5.0 mm from the central axis of the wire and cylinder?
80 A long wire is known to have a radius greater than 4.0 mm and to carry a current that is uniformly distributed over its cross section. The magnitude of the magnetic field due to that current is 0.28 mT at a point 4.0 mm from the axis of the wire, and 0.20 mT at a point 10 mm from the axis of the wire. What is the radius of the wire?
81 SSM Figure 29-84 shows a cross section of an infinite conducting sheet carrying a current per unit \(x\)-length of \(\lambda\); the current emerges perpendicularly out of the page. (a) Use the Biot-Savart law and symmetry to show that for all points \(P\) above the sheet and all points \(P^{\prime}\) below it, the magnetic field \(\vec{B}\) is parallel to the sheet and directed as shown. (b) Use Ampere's law to prove that \(B=\frac{1}{2} \mu_{0} \lambda\) at all points \(P\) and \(P^{\prime}\).
82 Figure 29-85 shows, in cross section, two long parallel wires that are separated by distance \(d=18.6 \mathrm{~cm}\). Each carries 4.23 A , out of the page in wire 1 and into the page in wire 2. In unit-vector notation, what is the net magnetic field at point \(P\) at distance \(R=34.2 \mathrm{~cm}\), due to the two currents?
83 SSM In unit-vector notation, what is the magnetic field at point \(P\) in Fig. 29-86 if \(i=10 \mathrm{~A}\) and \(a=\) 8.0 cm ? (Note that the wires are not long.)
84 Three long wires all lie in an \(x y\) plane parallel to the \(x\) axis. They are spaced equally, 10 cm apart. The two outer wires each carry a current of 5.0 A in the positive \(x\) direction. What is the magnitude of the force on a 3.0 m section of either of the outer wires if the current in the cen-


Figure 29-85 Problem 82.


Figure 29-86 Problem 83.
ter wire is 3.2 A (a) in the positive \(x\) direction and (b) in the negative \(x\) direction?

85 SSM Figure 29-87 shows a cross section of a hollow cylindrical conductor of radii \(a\) and \(b\), carrying a uniformly distributed current \(i\). (a) Show that the magnetic field magnitude \(B(r)\) for the radial distance \(r\) in the range \(b<r<a\) is given by
\[
B=\frac{\mu_{0} i}{2 \pi\left(a^{2}-b^{2}\right)} \frac{r^{2}-b^{2}}{r}
\]


Figure 29-87
Problem 85.
(b) Show that when \(r=a\), this equation gives the magnetic field magnitude \(B\) at the surface of a long straight wire carrying current \(i\); when \(r=b\), it gives zero magnetic field; and when \(b=0\), it gives the magnetic field inside a solid conductor of radius \(a\) carrying current \(i\). (c) Assume that \(a=2.0\) \(\mathrm{cm}, b=1.8 \mathrm{~cm}\), and \(i=100 \mathrm{~A}\), and then plot \(B(r)\) for the range \(0<r<6 \mathrm{~cm}\).
86 Show that the magnitude of the magnetic field produced at the center of a rectangular loop of wire of length \(L\) and width \(W\), carrying a current \(i\), is
\[
B=\frac{2 \mu_{0} i}{\pi} \frac{\left(L^{2}+W^{2}\right)^{1 / 2}}{L W} .
\]

87 Figure 29-88 shows a cross section of a long conducting coaxial cable and gives its radii \((a, b, c)\). Equal but opposite currents \(i\) are uniformly distributed in the two conductors. Derive expressions for \(B(r)\) with radial distance \(r\) in the ranges (a) \(r<c\), (b) \(c<r<b\), (c) \(b<r<a\), and (d) \(r>a\). (e) Test these expressions for all the special cases that occur to you. (f) Assume that \(a=2.0 \mathrm{~cm}, b=1.8 \mathrm{~cm}, c=\)


Figure 29-88 Problem 87. 0.40 cm , and \(i=120 \mathrm{~A}\) and plot the function \(B(r)\) over the range \(0<r<3 \mathrm{~cm}\).
88 Figure 29-89 is an idealized schematic drawing of a rail gun. Projectile \(P\) sits between two wide rails of circular cross section; a source of current sends current through the rails and through the (conducting) projectile (a fuse is not used). (a) Let \(w\) be the distance between the rails, \(R\) the radius of each rail, and \(i\) the current. Show that the force on the projectile is directed to the right along the rails and is given approximately by
\[
F=\frac{i^{2} \mu_{0}}{2 \pi} \ln \frac{w+R}{R} .
\]
(b) If the projectile starts from the left end of the rails at rest, find the speed \(v\) at which it is expelled at the right. Assume that \(i=\) \(450 \mathrm{kA}, w=12 \mathrm{~mm}, R=6.7 \mathrm{~cm}, L=4.0 \mathrm{~m}\), and the projectile mass is 10 g .


Figure 29-89 Problem 88.

\section*{C H A P T E R \(\mathbf{B}\) O}

\section*{Induction and Inductance}

\section*{30-1 faraday'S Law and lenz'S Law}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
30.01 Identify that the amount of magnetic field piercing a surface (not skimming along the surface) is the magnetic flux \(\Phi\) through the surface.
30.02 Identify that an area vector for a flat surface is a vector that is perpendicular to the surface and that has a magnitude equal to the area of the surface.
30.03 Identify that any surface can be divided into area elements (patch elements) that are each small enough and flat enough for an area vector \(d \vec{A}\) to be assigned to it, with the vector perpendicular to the element and having a magnitude equal to the area of the element.
30.04 Calculate the magnetic flux \(\Phi\) through a surface by integrating the dot product of the magnetic field vector \(\vec{B}\) and the area vector \(d \vec{A}\) (for patch elements) over the surface, in magnitude-angle notation and unit-vector notation.
30.05 Identify that a current is induced in a conducting loop while the number of magnetic field lines intercepted by the loop is changing.
30.06 Identify that an induced current in a conducting loop is driven by an induced emf.
30.07 Apply Faraday's law, which is the relationship between an induced emf in a conducting loop and the rate at which magnetic flux through the loop changes.
30.08 Extend Faraday's law from a loop to a coil with multiple loops.
30.09 Identify the three general ways in which the magnetic flux through a coil can change.
30.10 Use a right-hand rule for Lenz's law to determine the direction of induced emf and induced current in a conducting loop.
30.11 Identify that when a magnetic flux through a loop changes, the induced current in the loop sets up a magnetic field to oppose that change.
30.12 If an emf is induced in a conducting loop containing a battery, determine the net emf and calculate the corresponding current in the loop.

\section*{Key Ideas}
- The magnetic flux \(\Phi_{B}\) through an area \(A\) in a magnetic field \(\vec{B}\) is defined as
\[
\Phi_{B}=\int \vec{B} \cdot d \vec{A},
\]
where the integral is taken over the area. The SI unit of magnetic flux is the weber, where \(1 \mathrm{~Wb}=1 \mathrm{~T} \cdot \mathrm{~m}^{2}\). - If \(\vec{B}\) is perpendicular to the area and uniform over it, the flux is
\[
\Phi_{B}=B A \quad(\vec{B} \perp A, \vec{B} \text { uniform }) .
\]
- If the magnetic flux \(\Phi_{B}\) through an area bounded by a closed conducting loop changes with time, a current and
an emf are produced in the loop; this process is called induction. The induced emf is
\[
\mathscr{E}=-\frac{d \Phi_{B}}{d t} \quad \text { (Faraday's law) }
\]
- If the loop is replaced by a closely packed coil of \(N\) turns, the induced emf is
\[
\mathscr{E}=-N \frac{d \Phi_{B}}{d t}
\]
- An induced current has a direction such that the magnetic field due to the current opposes the change in the magnetic flux that induces the current. The induced emf has the same direction as the induced current.

\section*{What Is Physics?}

In Chapter 29 we discussed the fact that a current produces a magnetic field. That fact came as a surprise to the scientists who discovered the effect. Perhaps even more surprising was the discovery of the reverse effect: A magnetic field can produce an electric field that can drive a current. This link between a magnetic field and the electric field it produces (induces) is now called Faraday's law of induction.

The observations by Michael Faraday and other scientists that led to this law were at first just basic science. Today, however, applications of that basic science are almost everywhere. For example, induction is the basis of the electric guitars that revolutionized early rock and still drive heavy metal and punk today. It is also the basis of the electric generators that power cities and transportation lines and of the huge induction furnaces that are commonplace in foundries where large amounts of metal must be melted rapidly.

Before we get to applications like the electric guitar, we must examine two simple experiments about Faraday's law of induction.

\section*{Two Experiments}

Let us examine two simple experiments to prepare for our discussion of Faraday's law of induction.

First Experiment. Figure 30-1 shows a conducting loop connected to a sensitive ammeter. Because there is no battery or other source of emf included, there is no current in the circuit. However, if we move a bar magnet toward the loop, a current suddenly appears in the circuit. The current disappears when the magnet stops. If we then move the magnet away, a current again suddenly appears, but now in the opposite direction. If we experimented for a while, we would discover the following:
1. A current appears only if there is relative motion between the loop and the magnet (one must move relative to the other); the current disappears when the relative motion between them ceases.
2. Faster motion produces a greater current.
3. If moving the magnet's north pole toward the loop causes, say, clockwise current, then moving the north pole away causes counterclockwise current. Moving the south pole toward or away from the loop also causes currents, but in the reversed directions.

The current produced in the loop is called an induced current; the work done per unit charge to produce that current (to move the conduction electrons that constitute the current) is called an induced emf; and the process of producing the current and emf is called induction.

Second Experiment. For this experiment we use the apparatus of Fig. 30-2, with the two conducting loops close to each other but not touching. If we close switch S , to turn on a current in the right-hand loop, the meter suddenly and briefly registers a current - an induced current -in the left-hand loop. If we then open the switch, another sudden and brief induced current appears in the left-hand loop, but in the opposite direction. We get an induced current (and thus an induced emf) only when the current in the right-hand loop is changing (either turning on or turning off) and not when it is constant (even if it is large).

The induced emf and induced current in these experiments are apparently caused when something changes - but what is that "something"? Faraday knew.

\section*{Faraday's Law of Induction}

Faraday realized that an emf and a current can be induced in a loop, as in our two experiments, by changing the amount of magnetic field passing through the loop. He further realized that the "amount of magnetic field" can be visualized in terms of the magnetic field lines passing through the loop. Faraday's law of induction, stated in terms of our experiments, is this:

An emf is induced in the loop at the left in Figs. 30-1 and 30-2 when the number of magnetic field lines that pass through the loop is changing.


Figure 30-1 An ammeter registers a current in the wire loop when the magnet is moving with respect to the loop.


Figure 30-2 An ammeter registers a current in the left-hand wire loop just as switch S is closed (to turn on the current in the righthand wire loop) or opened (to turn off the current in the right-hand loop). No motion of the coils is involved.

The actual number of field lines passing through the loop does not matter; the values of the induced emf and induced current are determined by the rate at which that number changes.

In our first experiment (Fig. 30-1), the magnetic field lines spread out from the north pole of the magnet. Thus, as we move the north pole closer to the loop, the number of field lines passing through the loop increases. That increase apparently causes conduction electrons in the loop to move (the induced current) and provides energy (the induced emf) for their motion. When the magnet stops moving, the number of field lines through the loop no longer changes and the induced current and induced emf disappear.

In our second experiment (Fig. 30-2), when the switch is open (no current), there are no field lines. However, when we turn on the current in the right-hand loop, the increasing current builds up a magnetic field around that loop and at the left-hand loop. While the field builds, the number of magnetic field lines through the left-hand loop increases. As in the first experiment, the increase in field lines through that loop apparently induces a current and an emf there. When the current in the right-hand loop reaches a final, steady value, the number of field lines through the left-hand loop no longer changes, and the induced current and induced emf disappear.

\section*{A Quantitative Treatment}

To put Faraday's law to work, we need a way to calculate the amount of magnetic field that passes through a loop. In Chapter 23, in a similar situation, we needed to calculate the amount of electric field that passes through a surface. There we defined an electric flux \(\Phi_{E}=\int \vec{E} \cdot d \vec{A}\). Here we define a magnetic flux: Suppose a loop enclosing an area \(A\) is placed in a magnetic field \(\vec{B}\). Then the magnetic flux through the loop is
\[
\begin{equation*}
\Phi_{B}=\int \vec{B} \cdot d \vec{A} \quad(\text { magnetic flux through area } A) \tag{30-1}
\end{equation*}
\]

As in Chapter 23, \(d \vec{A}\) is a vector of magnitude \(d A\) that is perpendicular to a differential area \(d A\). As with electric flux, we want the component of the field that pierces the surface (not skims along it). The dot product of the field and the area vector automatically gives us that piercing component.

Special Case. As a special case of Eq. 30-1, suppose that the loop lies in a plane and that the magnetic field is perpendicular to the plane of the loop. Then we can write the dot product in Eq. 30-1 as \(B d A \cos 0^{\circ}=B d A\). If the magnetic field is also uniform, then \(B\) can be brought out in front of the integral sign. The remaining \(\int d A\) then gives just the area \(A\) of the loop. Thus, Eq. \(30-1\) reduces to
\[
\begin{equation*}
\Phi_{B}=B A \quad(\vec{B} \perp \text { area } A, \vec{B} \text { uniform }) . \tag{30-2}
\end{equation*}
\]

Unit. From Eqs. 30-1 and 30-2, we see that the SI unit for magnetic flux is the tesla-square meter, which is called the weber (abbreviated Wb ):
\[
\begin{equation*}
1 \text { weber }=1 \mathrm{~Wb}=1 \mathrm{~T} \cdot \mathrm{~m}^{2} \tag{30-3}
\end{equation*}
\]

Faraday's Law. With the notion of magnetic flux, we can state Faraday's law in a more quantitative and useful way:

The magnitude of the \(\mathrm{emf}_{\mathscr{E}} \mathscr{E}\) induced in a conducting loop is equal to the rate at which the magnetic flux \(\Phi_{B}\) through that loop changes with time.

As you will see below, the induced emf \(\mathscr{E}\) tends to oppose the flux change, so

Faraday's law is formally written as
\[
\begin{equation*}
\mathscr{E}=-\frac{d \Phi_{B}}{d t} \quad \text { (Faraday's law) } \tag{30-4}
\end{equation*}
\]
with the minus sign indicating that opposition. We often neglect the minus sign in Eq. 30-4, seeking only the magnitude of the induced emf.

If we change the magnetic flux through a coil of \(N\) turns, an induced emf appears in every turn and the total emf induced in the coil is the sum of these individual induced emfs. If the coil is tightly wound (closely packed), so that the same magnetic flux \(\Phi_{B}\) passes through all the turns, the total emf induced in the coil is
\[
\begin{equation*}
\left.\mathscr{E}=-N \frac{d \Phi_{B}}{d t} \quad \text { (coil of } N \text { turns }\right) \tag{30-5}
\end{equation*}
\]

Here are the general means by which we can change the magnetic flux through a coil:
1. Change the magnitude \(B\) of the magnetic field within the coil.
2. Change either the total area of the coil or the portion of that area that lies within the magnetic field (for example, by expanding the coil or sliding it into or out of the field).
3. Change the angle between the direction of the magnetic field \(\vec{B}\) and the plane of the coil (for example, by rotating the coil so that field \(\vec{B}\) is first perpendicular to the plane of the coil and then is along that plane).

\section*{Checkpoint 1}

The graph gives the magnitude \(B(t)\) of a uniform magnetic field that exists throughout a conducting loop, with the direction of the field perpendicular to the plane of the loop. Rank the five regions of the graph according to the magnitude of the emf induced in the loop, greatest first.


\section*{Sample Problem 30.01 Induced emf in coil due to a solenoid}

The long solenoid S shown (in cross section) in Fig. 30-3 has 220 turns/cm and carries a current \(i=1.5 \mathrm{~A}\); its diameter \(D\) is 3.2 cm . At its center we place a 130 -turn closely packed coil C of diameter \(d=2.1 \mathrm{~cm}\). The current in the solenoid is reduced to zero at a steady rate in 25 ms . What is the magnitude of the emf that is induced in coil C while the current in the solenoid is changing?


Figure 30-3 A coil C is located inside a solenoid S , which carries current \(i\).

\section*{KEY IDEAS}
1. Because it is located in the interior of the solenoid, coil C lies within the magnetic field produced by current \(i\) in the solenoid; thus, there is a magnetic flux \(\Phi_{B}\) through coil C.
2. Because current \(i\) decreases, flux \(\Phi_{B}\) also decreases.
3. As \(\Phi_{B}\) decreases, emf \(\mathscr{E}\) is induced in coil C .
4. The flux through each turn of coil C depends on the area \(A\) and orientation of that turn in the solenoid's magnetic field \(\vec{B}\). Because \(\vec{B}\) is uniform and directed perpendicular to area \(A\), the flux is given by Eq. \(30-2\left(\Phi_{B}=B A\right)\).
5. The magnitude \(B\) of the magnetic field in the interior of a solenoid depends on the solenoid's current \(i\) and its number \(n\) of turns per unit length, according to Eq. 29-23 ( \(B=\mu_{0} i n\) ).

Calculations: Because coil C consists of more than one turn, we apply Faraday's law in the form of Eq. 30-5 \(\left(\mathscr{E}=-N d \Phi_{B} / d t\right)\), where the number of turns \(N\) is 130 and \(d \Phi_{B} / d t\) is the rate at which the flux changes.

Because the current in the solenoid decreases at a steady rate, flux \(\Phi_{B}\) also decreases at a steady rate, and so we can write \(d \Phi_{B} / d t\) as \(\Delta \Phi_{B} / \Delta t\). Then, to evaluate \(\Delta \Phi_{B}\), we need the final and initial flux values. The final flux \(\Phi_{B, f}\) is zero because the final current in the solenoid is zero. To find the initial flux \(\Phi_{B, i}\), we note that area \(A\) is \(\frac{1}{4} \pi d^{2}\left(=3.464 \times 10^{-4} \mathrm{~m}^{2}\right)\) and the number \(n\) is 220 turns \(/ \mathrm{cm}\), or 22000 turns \(/ \mathrm{m}\). Substituting Eq. 29-23 into Eq. 30-2 then leads to
\[
\begin{aligned}
\Phi_{B, i}= & B A=\left(\mu_{0} i n\right) A \\
= & \left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)(1.5 \mathrm{~A})(22000 \text { turns } / \mathrm{m}) \\
& \times\left(3.464 \times 10^{-4} \mathrm{~m}^{2}\right) \\
= & 1.44 \times 10^{-5} \mathrm{~Wb}
\end{aligned}
\]

Now we can write
\[
\begin{aligned}
\frac{d \Phi_{B}}{d t} & =\frac{\Delta \Phi_{B}}{\Delta t}=\frac{\Phi_{B, f}-\Phi_{B, i}}{\Delta t} \\
& =\frac{\left(0-1.44 \times 10^{-5} \mathrm{~Wb}\right)}{25 \times 10^{-3} \mathrm{~s}} \\
& =-5.76 \times 10^{-4} \mathrm{~Wb} / \mathrm{s} \\
& =-5.76 \times 10^{-4} \mathrm{~V}
\end{aligned}
\]

We are interested only in magnitudes; so we ignore the minus signs here and in Eq. 30-5, writing
\[
\begin{aligned}
\mathscr{E} & =N \frac{d \Phi_{B}}{d t}=(130 \text { turns })\left(5.76 \times 10^{-4} \mathrm{~V}\right) \\
& =7.5 \times 10^{-2} \mathrm{~V} \\
& =75 \mathrm{mV}
\end{aligned}
\]
(Answer)


Figure 30-4 Lenz's law at work. As the magnet is moved toward the loop, a current is induced in the loop. The current produces its own magnetic field, with magnetic dipole moment \(\vec{\mu}\) oriented so as to oppose the motion of the magnet. Thus, the induced current must be counterclockwise as shown.

\section*{Lenz's Law}

Soon after Faraday proposed his law of induction, Heinrich Friedrich Lenz devised a rule for determining the direction of an induced current in a loop:

An induced current has a direction such that the magnetic field due to the current opposes the change in the magnetic flux that induces the current.

Furthermore, the direction of an induced emf is that of the induced current. The key word in Lenz's law is "opposition." Let's apply the law to the motion of the north pole toward the conducting loop in Fig. 30-4.
1. Opposition to Pole Movement. The approach of the magnet's north pole in Fig. 30-4 increases the magnetic flux through the loop and thereby induces a current in the loop. From Fig. 29-22, we know that the loop then acts as a magnetic dipole with a south pole and a north pole, and that its magnetic dipole moment \(\vec{\mu}\) is directed from south to north. To oppose the magnetic flux increase being caused by the approaching magnet, the loop's north pole (and thus \(\vec{\mu}\) ) must face toward the approaching north pole so as to repel it (Fig. 30-4). Then the curled-straight right-hand rule for \(\vec{\mu}\) (Fig. 29-22) tells us that the current induced in the loop must be counterclockwise in Fig. 30-4.

If we next pull the magnet away from the loop, a current will again be induced in the loop. Now, however, the loop will have a south pole facing the retreating north pole of the magnet, so as to oppose the retreat. Thus, the induced current will be clockwise.
2. Opposition to Flux Change. In Fig. 30-4, with the magnet initially distant, no magnetic flux passes through the loop. As the north pole of the magnet then nears the loop with its magnetic field \(\vec{B}\) directed downward, the flux through the loop increases. To oppose this increase in flux, the induced current \(i\) must set up its own field \(\vec{B}_{\text {ind }}\) directed upward inside the loop, as shown in Fig. 30-5a; then the upward flux of field \(\vec{B}_{\text {ind }}\) opposes the increasing downward flux of field \(\vec{B}\). The curled-straight right-hand rule of Fig. 29-22 then tells us that \(i\) must be counterclockwise in Fig. 30-5a.

Heads Up. The flux of \(\vec{B}_{\text {ind }}\) always opposes the change in the flux of \(\vec{B}\), but \(\vec{B}_{\text {ind }}\) is not always opposite \(\vec{B}\). For example, if we next pull the magnet away from the loop in Fig. 30-4, the magnet's flux \(\Phi_{B}\) is still downward through the loop, but it is now decreasing. The flux of \(\vec{B}_{\text {ind }}\) must now be downward inside the loop, to oppose that decrease (Fig. 30-5b). Thus, \(\vec{B}_{\text {ind }}\) and \(\vec{B}\) are now in the same direction. In Figs. \(30-5 c\) and \(d\), the south pole of the magnet approaches and retreats from the loop, again with opposition to change.
Increasing the external
field \(\vec{B}\) induces a current
with a field \(\overrightarrow{B_{i n d}}\) that
opposes the change.

(a)

Decreasing the external field \(\vec{B}\) induces a current with a field \(\overrightarrow{B_{\text {ind }}}\) that opposes the change.

Increasing the external field \(\vec{B}\) induces a current with a field \(\overrightarrow{B_{\text {ind }}}\) that opposes the change.

Decreasing the external field \(\vec{B}\) induces a current with a field \(\overrightarrow{B_{\text {ind }}}\) that opposes the change.

(d)

Figure 30-5 The direction of the current \(i\) induced in a loop is such that the current's magnetic field \(\vec{B}_{\text {ind }}\) opposes the change in the magnetic field \(\vec{B}\) inducing \(i\). The field \(\vec{B}_{\text {ind }}\) is always directed opposite an increasing field \(\vec{B}(a, c)\) and in the same direction as a decreasing field \(\vec{B}(b, d)\). The curled-straight right-hand rule gives the direction of the induced current based on the direction of the induced field.

\section*{Checkpoint 2}

The figure shows three situations in which identical circular conducting loops are in uniform magnetic fields that are either increasing (Inc) or decreasing (Dec) in magnitude at identical rates. In each, the dashed line coincides with a diameter. Rank the situations according to the magnitude of the current induced in the loops, greatest first.

(a)

\section*{Sample Problem 30.02 Induced emf and current due to a changing uniform \(B\) field}

Figure 30-6 shows a conducting loop consisting of a half-circle of radius \(r=0.20 \mathrm{~m}\) and three straight sections. The halfcircle lies in a uniform magnetic field \(\vec{B}\) that is directed out of the page; the field magnitude is given by \(B=4.0 t^{2}+\) \(2.0 t+3.0\), with \(B\) in teslas and \(t\) in seconds. An ideal battery with emf \(\mathscr{E}_{\text {bat }}=2.0 \mathrm{~V}\) is connected to the loop. The resistance of the loop is \(2.0 \Omega\).
(a) What are the magnitude and direction of the emf \(\mathscr{E}_{\text {ind }}\) induced around the loop by field \(\vec{B}\) at \(t=10 \mathrm{~s}\) ?

\section*{KEY IDEAS}
1. According to Faraday's law, the magnitude of \(\mathscr{E}_{\text {ind }}\) is equal to the rate \(d \Phi_{B} / d t\) at which the magnetic flux through the loop changes.
2. The flux through the loop depends on how much of the loop's area lies within the flux and how the area is oriented in the magnetic field \(\vec{B}\).
3. Because \(\vec{B}\) is uniform and is perpendicular to the plane of the loop, the flux is given by Eq. 30-2 \(\left(\Phi_{B}=B A\right)\). (We don't need to integrate \(B\) over the area to get the flux.)
4. The induced field \(B_{\text {ind }}\) (due to the induced current) must always oppose the change in the magnetic flux.

Magnitude: Using Eq. 30-2 and realizing that only the field magnitude \(B\) changes in time (not the area \(A\) ), we rewrite Faraday's law, Eq. 30-4, as
\[
\mathscr{E}_{\text {ind }}=\frac{d \Phi_{B}}{d t}=\frac{d(B A)}{d t}=A \frac{d B}{d t} .
\]

Because the flux penetrates the loop only within the halfcircle, the area \(A\) in this equation is \(\frac{1}{2} \pi r^{2}\). Substituting this and the given expression for \(B\) yields
\[
\begin{aligned}
\mathscr{E}_{\text {ind }} & =A \frac{d B}{d t}=\frac{\pi r^{2}}{2} \frac{d}{d t}\left(4.0 t^{2}+2.0 t+3.0\right) \\
& =\frac{\pi r^{2}}{2}(8.0 t+2.0) .
\end{aligned}
\]


Figure 30-6 A battery is connected to a conducting loop that includes a half-circle of radius \(r\) lying in a uniform magnetic field. The field is directed out of the page; its magnitude is changing.

At \(t=10 \mathrm{~s}\), then,
\[
\begin{aligned}
\mathscr{E}_{\text {ind }} & =\frac{\pi(0.20 \mathrm{~m})^{2}}{2}[8.0(10)+2.0] \\
& =5.152 \mathrm{~V} \approx 5.2 \mathrm{~V}
\end{aligned}
\]
(Answer)
Direction: To find the direction of \(\mathscr{E}_{\text {ind }}\), we first note that in Fig. 30-6 the flux through the loop is out of the page and increasing. Because the induced field \(B_{\text {ind }}\) (due to the induced current) must oppose that increase, it must be into the page. Using the curled-straight right-hand rule (Fig. 30-5c), we find that the induced current is clockwise around the loop, and thus so is the induced emf \(\mathscr{E}_{\text {ind }}\).
(b) What is the current in the loop at \(t=10 \mathrm{~s}\) ?

\section*{KEY IDEA}

The point here is that two emfs tend to move charges around the loop.
Calculation: The induced emf \(\mathscr{E}_{\text {ind }}\) tends to drive a current clockwise around the loop; the battery's emf \(\mathscr{E}_{\text {bat }}\) tends to drive a current counterclockwise. Because \(\mathscr{E}_{\text {ind }}\) is greater than \(\mathscr{E}_{\text {bat }}\), the net emf \(\mathscr{E}_{\text {net }}\) is clockwise, and thus so is the current. To find the current at \(t=10 \mathrm{~s}\), we use Eq. 27-2 \((i=\mathscr{E} / R)\) :
\[
\begin{aligned}
i & =\frac{\mathscr{C}_{\text {net }}}{R}=\frac{\mathscr{C}_{\text {ind }}-\mathscr{E}_{\text {bat }}}{R} \\
& =\frac{5.152 \mathrm{~V}-2.0 \mathrm{~V}}{2.0 \Omega}=1.58 \mathrm{~A} \approx 1.6 \mathrm{~A} .
\end{aligned}
\]
(Answer)

\section*{Sample Problem 30.03 Induced emf due to a changing nonuniform \(B\) field}

Figure 30-7 shows a rectangular loop of wire immersed in a nonuniform and varying magnetic field \(\vec{B}\) that is perpendicular to and directed into the page. The field's magnitude is given by \(B=4 t^{2} x^{2}\), with \(B\) in teslas, \(t\) in seconds, and \(x\) in meters. (Note that the function depends on both time and position.) The loop has width \(W=3.0 \mathrm{~m}\) and height \(H=\) 2.0 m . What are the magnitude and direction of the induced \(\mathrm{emf} \mathscr{E}\) around the loop at \(t=0.10 \mathrm{~s}\) ?

\section*{KEY IDEAS}
1. Because the magnitude of the magnetic field \(\vec{B}\) is changing with time, the magnetic flux \(\Phi_{B}\) through the loop is also changing.
2. The changing flux induces an \(\mathrm{emf}_{\mathscr{E}}\) in the loop according to Faraday's law, which we can write as \(\mathscr{E}=d \Phi_{B} / d t\).
3. To use that law, we need an expression for the flux \(\Phi_{B}\) at

If the field varies with position, we must integrate to get the flux through the loop.


Figure 30-7 A closed conducting loop, of width \(W\) and height \(H\), lies in a nonuniform, varying magnetic field that points directly into the page. To apply Faraday's law, we use the vertical strip of height \(H\), width \(d x\), and area \(d A\).
any time \(t\). However, because \(B\) is not uniform over the area enclosed by the loop, we cannot use Eq. 30-2 ( \(\Phi_{B}=\) \(B A\) ) to find that expression; instead we must use Eq. 30-1 \(\left(\Phi_{B}=\int \vec{B} \cdot d \vec{A}\right)\).

Calculations: In Fig. 30-7, \(\vec{B}\) is perpendicular to the plane of the loop (and hence parallel to the differential area vector \(d \vec{A}\) ); so the dot product in Eq. 30-1 gives \(B d A\). Because the magnetic field varies with the coordinate \(x\) but not with the coordinate \(y\), we can take the differential area
\(d A\) to be the area of a vertical strip of height \(H\) and width \(d x\) (as shown in Fig. 30-7). Then \(d A=H d x\), and the flux through the loop is
\[
\Phi_{B}=\int \vec{B} \cdot d \vec{A}=\int B d A=\int B H d x=\int 4 t^{2} x^{2} H d x
\]

Treating \(t\) as a constant for this integration and inserting the integration limits \(x=0\) and \(x=3.0 \mathrm{~m}\), we obtain
\[
\Phi_{B}=4 t^{2} H \int_{0}^{3.0} x^{2} d x=4 t^{2} H\left[\frac{x^{3}}{3}\right]_{0}^{3.0}=72 t^{2}
\]
where we have substituted \(H=2.0 \mathrm{~m}\) and \(\Phi_{B}\) is in webers. Now we can use Faraday's law to find the magnitude of \(\mathscr{E}\) at any time \(t\) :
\[
\mathscr{E}=\frac{d \Phi_{B}}{d t}=\frac{d\left(72 t^{2}\right)}{d t}=144 t
\]
in which \(\mathscr{E}\) is in volts. At \(t=0.10 \mathrm{~s}\),
\[
\mathscr{E}=(144 \mathrm{~V} / \mathrm{s})(0.10 \mathrm{~s}) \approx 14 \mathrm{~V}
\]
(Answer)
The flux of \(\vec{B}\) through the loop is into the page in Fig. 30-7 and is increasing in magnitude because \(B\) is increasing in magnitude with time. By Lenz's law, the field \(B_{\text {ind }}\) of the induced current opposes this increase and so is directed out of the page. The curled-straight right-hand rule in Fig. 30-5a then tells us that the induced current is counterclockwise around the loop, and thus so is the induced emf \(\mathscr{E}\).

PLUS Additional examples, video, and practice available at WileyPLUS

\section*{30-2 induction and energy transfers}

\section*{Learning Objectives}

After reading this module, you should be able to ...
30.13 For a conducting loop pulled into or out of a magnetic field, calculate the rate at which energy is transferred to thermal energy.
30.14 Apply the relationship between an induced current and the rate at which it produces thermal energy.
30.15 Describe eddy currents.

\section*{Key Idea}
- The induction of a current by a changing flux means that energy is being transferred to that current. The energy can then be transferred to other forms, such as thermal energy.

\section*{Induction and Energy Transfers}

By Lenz's law, whether you move the magnet toward or away from the loop in Fig. 30-1, a magnetic force resists the motion, requiring your applied force to do positive work. At the same time, thermal energy is produced in the material of the loop because of the material's electrical resistance to the current that is induced by the motion. The energy you transfer to the closed loop + magnet system via your applied force ends up in this thermal energy. (For now, we neglect energy that is radiated away from the loop as electromagnetic waves during the
induction.) The faster you move the magnet, the more rapidly your applied force does work and the greater the rate at which your energy is transferred to thermal energy in the loop; that is, the power of the transfer is greater.

Regardless of how current is induced in a loop, energy is always transferred to thermal energy during the process because of the electrical resistance of the loop (unless the loop is superconducting). For example, in Fig. 30-2, when switch S is closed and a current is briefly induced in the left-hand loop, energy is transferred from the battery to thermal energy in that loop.

Figure 30-8 shows another situation involving induced current. A rectangular loop of wire of width \(L\) has one end in a uniform external magnetic field that is directed perpendicularly into the plane of the loop. This field may be produced, for example, by a large electromagnet. The dashed lines in Fig. 30-8 show the assumed limits of the magnetic field; the fringing of the field at its edges is neglected. You are to pull this loop to the right at a constant velocity \(\vec{v}\).

Flux Change. The situation of Fig. 30-8 does not differ in any essential way from that of Fig. 30-1. In each case a magnetic field and a conducting loop are in relative motion; in each case the flux of the field through the loop is changing with time. It is true that in Fig. 30-1 the flux is changing because \(\vec{B}\) is changing and in Fig. 30-8 the flux is changing because the area of the loop still in the magnetic field is changing, but that difference is not important. The important difference between the two arrangements is that the arrangement of Fig. 30-8 makes calculations easier. Let us now calculate the rate at which you do mechanical work as you pull steadily on the loop in Fig. 30-8.

Rate of Work. As you will see, to pull the loop at a constant velocity \(\vec{v}\), you must apply a constant force \(\vec{F}\) to the loop because a magnetic force of equal magnitude but opposite direction acts on the loop to oppose you. From Eq. 7-48, the rate at which you do work - that is, the power - is then
\[
\begin{equation*}
P=F v, \tag{30-6}
\end{equation*}
\]
where \(F\) is the magnitude of your force. We wish to find an expression for \(P\) in terms of the magnitude \(B\) of the magnetic field and the characteristics of the loop-namely, its resistance \(R\) to current and its dimension \(L\).

As you move the loop to the right in Fig. 30-8, the portion of its area within the magnetic field decreases. Thus, the flux through the loop also decreases and, according to Faraday's law, a current is produced in the loop. It is the presence of this current that causes the force that opposes your pull.

Induced emf. To find the current, we first apply Faraday's law. When \(x\) is the length of the loop still in the magnetic field, the area of the loop still in the field is \(L x\). Then from Eq. 30-2, the magnitude of the flux through the loop is
\[
\begin{equation*}
\Phi_{B}=B A=B L x . \tag{30-7}
\end{equation*}
\]

Figure 30-8 You pull a closed conducting loop out of a magnetic field at constant velocity \(\vec{v}\). While the loop is moving, a clockwise current \(i\) is induced in the loop, and the loop segments still within the magnetic field experience forces \(\vec{F}_{1}, \vec{F}_{2}\), and \(\vec{F}_{3}\).


As \(x\) decreases, the flux decreases. Faraday's law tells us that with this flux decrease, an emf is induced in the loop. Dropping the minus sign in Eq. 30-4 and using Eq. 30-7, we can write the magnitude of this emf as
\[
\begin{equation*}
\mathscr{E}=\frac{d \Phi_{B}}{d t}=\frac{d}{d t} B L x=B L \frac{d x}{d t}=B L v \tag{30-8}
\end{equation*}
\]
in which we have replaced \(d x / d t\) with \(v\), the speed at which the loop moves.
Figure 30-9 shows the loop as a circuit: induced emf \(\mathscr{E}\) is represented on the left, and the collective resistance \(R\) of the loop is represented on the right. The direction of the induced current \(i\) is obtained with a right-hand rule as in Fig. 30-5 \(b\) for decreasing flux; applying the rule tells us that the current must be clockwise, and \(\mathscr{E}\) must have the same direction.

Induced Current. To find the magnitude of the induced current, we cannot apply the loop rule for potential differences in a circuit because, as you will see in Module 30-3, we cannot define a potential difference for an induced emf. However, we can apply the equation \(i=\mathscr{E} / R\). With Eq. 30-8, this becomes
\[
\begin{equation*}
i=\frac{B L v}{R} \tag{30-9}
\end{equation*}
\]

Because three segments of the loop in Fig. 30-8 carry this current through the magnetic field, sideways deflecting forces act on those segments. From Eq. 28-26 we know that such a deflecting force is, in general notation,
\[
\begin{equation*}
\vec{F}_{d}=i \vec{L} \times \vec{B} \tag{30-10}
\end{equation*}
\]

In Fig. 30-8, the deflecting forces acting on the three segments of the loop are marked \(\vec{F}_{1}, \vec{F}_{2}\), and \(\vec{F}_{3}\). Note, however, that from the symmetry, forces \(\vec{F}_{2}\) and \(\vec{F}_{3}\) are equal in magnitude and cancel. This leaves only force \(\vec{F}_{1}\), which is directed opposite your force \(\vec{F}\) on the loop and thus is the force opposing you. So, \(\vec{F}=-\vec{F}_{1}\).

Using Eq. \(30-10\) to obtain the magnitude of \(\vec{F}_{1}\) and noting that the angle between \(\vec{B}\) and the length vector \(\vec{L}\) for the left segment is \(90^{\circ}\), we write
\[
\begin{equation*}
F=F_{1}=i L B \sin 90^{\circ}=i L B \tag{30-11}
\end{equation*}
\]

Substituting Eq. 30-9 for \(i\) in Eq. 30-11 then gives us
\[
\begin{equation*}
F=\frac{B^{2} L^{2} v}{R} \tag{30-12}
\end{equation*}
\]

Because \(B, L\), and \(R\) are constants, the speed \(v\) at which you move the loop is constant if the magnitude \(F\) of the force you apply to the loop is also constant.

Rate of Work. By substituting Eq. 30-12 into Eq. 30-6, we find the rate at which you do work on the loop as you pull it from the magnetic field:
\[
\begin{equation*}
P=F v=\frac{B^{2} L^{2} v^{2}}{R} \quad \text { (rate of doing work). } \tag{30-13}
\end{equation*}
\]

Thermal Energy. To complete our analysis, let us find the rate at which thermal energy appears in the loop as you pull it along at constant speed. We calculate it from Eq. 26-27,
\[
\begin{equation*}
P=i^{2} R . \tag{30-14}
\end{equation*}
\]

Substituting for \(i\) from Eq. 30-9, we find
\[
\begin{equation*}
P=\left(\frac{B L v}{R}\right)^{2} R=\frac{B^{2} L^{2} v^{2}}{R} \quad \text { (thermal energy rate), } \tag{30-15}
\end{equation*}
\]
which is exactly equal to the rate at which you are doing work on the loop (Eq. 30-13). Thus, the work that you do in pulling the loop through the magnetic field appears as thermal energy in the loop.


Figure 30-9 A circuit diagram for the loop of Fig. \(30-8\) while the loop is moving.


Figure 30-10 (a) As you pull a solid conducting plate out of a magnetic field, eddy currents are induced in the plate. A typical loop of eddy current is shown. (b) A conducting plate is allowed to swing like a pendulum about a pivot and into a region of magnetic field. As it enters and leaves the field, eddy currents are induced in the plate.

\section*{Eddy Currents}

Suppose we replace the conducting loop of Fig. 30-8 with a solid conducting plate. If we then move the plate out of the magnetic field as we did the loop (Fig. 30-10a), the relative motion of the field and the conductor again induces a current in the conductor. Thus, we again encounter an opposing force and must do work because of the induced current. With the plate, however, the conduction electrons making up the induced current do not follow one path as they do with the loop. Instead, the electrons swirl about within the plate as if they were caught in an eddy (whirlpool) of water. Such a current is called an eddy current and can be represented, as it is in Fig. 30-10a, as if it followed a single path.

As with the conducting loop of Fig. 30-8, the current induced in the plate results in mechanical energy being dissipated as thermal energy. The dissipation is more apparent in the arrangement of Fig. 30-10b; a conducting plate, free to rotate about a pivot, is allowed to swing down through a magnetic field like a pendulum. Each time the plate enters and leaves the field, a portion of its mechanical energy is transferred to its thermal energy. After several swings, no mechanical energy remains and the warmed-up plate just hangs from its pivot.

\section*{Checkpoint 3}

The figure shows four wire loops, with edge lengths of either \(L\) or \(2 L\). All four loops will move through a region of uniform magnetic field \(\vec{B}\) (directed out of the page) at the same constant velocity. Rank the four loops according to the maximum magnitude of the emf induced as they move through the field, greatest first.


\section*{30-3 induced electric fields}

\section*{Learning Objectives}

After reading this module, you should be able to ...
30.16 Identify that a changing magnetic field induces an electric field, regardless of whether there is a conducting loop.
30.17 Apply Faraday's law to relate the electric field \(\vec{E}\) induced along a closed path (whether it has conducting
material or not) to the rate of change \(d \Phi / d t\) of the magnetic flux encircled by the path.
30.18 Identify that an electric potential cannot be associated with an induced electric field.

\section*{Key Ideas}
- An emf is induced by a changing magnetic flux even if the loop through which the flux is changing is not a physical conductor but an imaginary line. The changing magnetic field induces an electric field \(\vec{E}\) at every point of such a loop; the induced emf is related to \(\vec{E}\) by
\[
\mathscr{E}=\oint \vec{E} \cdot d \vec{s}
\]
- Using the induced electric field, we can write Faraday's law in its most general form as
\[
\oint \vec{E} \cdot d \vec{s}=-\frac{d \Phi_{B}}{d t} \quad \text { (Faraday's law). }
\]

A changing magnetic field induces an electric field \(\vec{E}\).

\section*{Induced Electric Fields}

Let us place a copper ring of radius \(r\) in a uniform external magnetic field, as in Fig. 30-11a. The field-neglecting fringing-fills a cylindrical volume of radius \(R\). Suppose that we increase the strength of this field at a steady rate, perhaps by increasing - in an appropriate way - the current in the windings of the electromagnet that produces the field. The magnetic flux through the ring will then change at a steady rate and - by Faraday's law-an induced emf and thus an induced current will appear in the ring. From Lenz's law we can deduce that the direction of the induced current is counterclockwise in Fig. 30-11a.

If there is a current in the copper ring, an electric field must be present along the ring because an electric field is needed to do the work of moving the conduction electrons. Moreover, the electric field must have been produced by the changing magnetic flux. This induced electric field \(\vec{E}\) is just as real as an electric field produced by static charges; either field will exert a force \(q_{0} \vec{E}\) on a particle of charge \(q_{0}\).

By this line of reasoning, we are led to a useful and informative restatement of Faraday's law of induction:

> A changing magnetic field produces an electric field.

The striking feature of this statement is that the electric field is induced even if there is no copper ring. Thus, the electric field would appear even if the changing magnetic field were in a vacuum.

To fix these ideas, consider Fig. 30-11b, which is just like Fig. 30-11a except the copper ring has been replaced by a hypothetical circular path of radius \(r\). We assume, as previously, that the magnetic field \(\vec{B}\) is increasing in magnitude at a constant rate \(d B / d t\). The electric field induced at various points around the


Figure 30-11 (a) If the magnetic field increases at a steady rate, a constant induced current appears, as shown, in the copper ring of radius \(r\). (b) An induced electric field exists even when the ring is removed; the electric field is shown at four points. (c) The complete picture of the induced electric field, displayed as field lines. (d) Four similar closed paths that enclose identical areas. Equal emfs are induced around paths 1 and 2, which lie entirely within the region of changing magnetic field. A smaller emf is induced around path 3, which only partially lies in that region. No net emf is induced around path 4, which lies entirely outside the magnetic field.
circular path must -from the symmetry - be tangent to the circle, as Fig. 30-11b shows.* Hence, the circular path is an electric field line. There is nothing special about the circle of radius \(r\), so the electric field lines produced by the changing magnetic field must be a set of concentric circles, as in Fig. 30-11c.

As long as the magnetic field is increasing with time, the electric field represented by the circular field lines in Fig. 30-11c will be present. If the magnetic field remains constant with time, there will be no induced electric field and thus no electric field lines. If the magnetic field is decreasing with time (at a constant rate), the electric field lines will still be concentric circles as in Fig. 30-11c, but they will now have the opposite direction. All this is what we have in mind when we say "A changing magnetic field produces an electric field."

\section*{A Reformulation of Faraday's Law}

Consider a particle of charge \(q_{0}\) moving around the circular path of Fig. 30-11b. The work \(W\) done on it in one revolution by the induced electric field is \(W=\mathscr{E} q_{0}\), where \(\mathscr{E}\) is the induced emf - that is, the work done per unit charge in moving the test charge around the path. From another point of view, the work is
\[
\begin{equation*}
W=\int \vec{F} \cdot d \vec{s}=\left(q_{0} E\right)(2 \pi r) \tag{30-16}
\end{equation*}
\]
where \(q_{0} E\) is the magnitude of the force acting on the test charge and \(2 \pi r\) is the distance over which that force acts. Setting these two expressions for \(W\) equal to each other and canceling \(q_{0}\), we find that
\[
\begin{equation*}
\mathscr{E}=2 \pi r E . \tag{30-17}
\end{equation*}
\]

Next we rewrite Eq. 30-16 to give a more general expression for the work done on a particle of charge \(q_{0}\) moving along any closed path:
\[
\begin{equation*}
W=\oint \vec{F} \cdot d \vec{s}=q_{0} \oint \vec{E} \cdot d \vec{s} \tag{30-18}
\end{equation*}
\]
(The loop on each integral sign indicates that the integral is to be taken around the closed path.) Substituting \(\mathscr{E} q_{0}\) for \(W\), we find that
\[
\begin{equation*}
\mathscr{E}=\oint \vec{E} \cdot d \vec{s} \tag{30-19}
\end{equation*}
\]

This integral reduces at once to Eq. 30-17 if we evaluate it for the special case of Fig. 30-11b.

Meaning of emf. With Eq. 30-19, we can expand the meaning of induced emf. Up to this point, induced emf has meant the work per unit charge done in maintaining current due to a changing magnetic flux, or it has meant the work done per unit charge on a charged particle that moves around a closed path in a changing magnetic flux. However, with Fig. 30-11b and Eq. 30-19, an induced emf can exist without the need of a current or particle: An induced emf is the sum - via integration - of quantities \(\vec{E} \cdot d \vec{s}\) around a closed path, where \(\vec{E}\) is the electric field induced by a changing magnetic flux and \(d \vec{s}\) is a differential length vector along the path.

If we combine Eq. 30-19 with Faraday's law in Eq. 30-4 ( \(\mathscr{E}=-d \Phi_{B} / d t\) ), we can rewrite Faraday's law as
\[
\begin{equation*}
\oint \vec{E} \cdot d \vec{s}=-\frac{d \Phi_{B}}{d t} \quad \text { (Faraday's law). } \tag{30-20}
\end{equation*}
\]

\footnotetext{
*Arguments of symmetry would also permit the lines of \(\vec{E}\) around the circular path to be radial, rather than tangential. However, such radial lines would imply that there are free charges, distributed symmetrically about the axis of symmetry, on which the electric field lines could begin or end; there are no such charges.
}

This equation says simply that a changing magnetic field induces an electric field.
The changing magnetic field appears on the right side of this equation, the electric field on the left.

Faraday's law in the form of Eq. 30-20 can be applied to any closed path that can be drawn in a changing magnetic field. Figure 30-11d, for example, shows four such paths, all having the same shape and area but located in different positions in the changing field. The induced emfs \(\mathscr{E}(=\oint \vec{E} \cdot d \vec{s})\) for paths 1 and 2 are equal because these paths lie entirely in the magnetic field and thus have the same value of \(d \Phi_{B} / d t\). This is true even though the electric field vectors at points along these paths are different, as indicated by the patterns of electric field lines in the figure. For path 3 the induced emf is smaller because the enclosed flux \(\Phi_{B}\) (hence \(\left.d \Phi_{B} / d t\right)\) is smaller, and for path 4 the induced emf is zero even though the electric field is not zero at any point on the path.

\section*{A New Look at Electric Potential}

Induced electric fields are produced not by static charges but by a changing magnetic flux. Although electric fields produced in either way exert forces on charged particles, there is an important difference between them. The simplest evidence of this difference is that the field lines of induced electric fields form closed loops, as in Fig. 30-11c. Field lines produced by static charges never do so but must start on positive charges and end on negative charges. Thus, a field line from a charge can never loop around and back onto itself as we see for each of the field lines in Fig. 30-11c.

In a more formal sense, we can state the difference between electric fields produced by induction and those produced by static charges in these words:

Electric potential has meaning only for electric fields that are produced by static charges; it has no meaning for electric fields that are produced by induction.

You can understand this statement qualitatively by considering what happens to a charged particle that makes a single journey around the circular path in Fig. 30-11b. It starts at a certain point and, on its return to that same point, has experienced an emf \(\mathscr{E}\) of, let us say, 5 V ; that is, work of \(5 \mathrm{~J} / \mathrm{C}\) has been done on the particle by the electric field, and thus the particle should then be at a point that is 5 V greater in potential. However, that is impossible because the particle is back at the same point, which cannot have two different values of potential. Thus, potential has no meaning for electric fields that are set up by changing magnetic fields.

We can take a more formal look by recalling Eq. 24-18, which defines the potential difference between two points \(i\) and \(f\) in an electric field \(\vec{E}\) in terms of an integration between those points:
\[
\begin{equation*}
V_{f}-V_{i}=-\int_{i}^{f} \vec{E} \cdot d \vec{s} \tag{30-21}
\end{equation*}
\]

In Chapter 24 we had not yet encountered Faraday's law of induction; so the electric fields involved in the derivation of Eq. 24-18 were those due to static charges. If \(i\) and \(f\) in Eq. 30-21 are the same point, the path connecting them is a closed loop, \(V_{i}\) and \(V_{f}\) are identical, and Eq. 30-21 reduces to
\[
\begin{equation*}
\oint \vec{E} \cdot d \vec{s}=0 \tag{30-22}
\end{equation*}
\]

However, when a changing magnetic flux is present, this integral is not zero but is \(-d \Phi_{B} / d t\), as Eq. 30-20 asserts. Thus, assigning electric potential to an induced electric field leads us to a contradiction. We must conclude that electric potential has no meaning for electric fields associated with induction.

\section*{Checkpoint 4}

The figure shows five lettered regions in which a uniform magnetic field extends either directly out of the page or into the page, with the direction indicated only for region \(a\). The field is increasing in magnitude at the same steady rate in all five regions; the regions are identical in area. Also shown are four numbered paths along which \(\oint \vec{E} \cdot d \vec{s}\) has the magnitudes given below in terms of a quantity "mag." Determine whether the magnetic field is directed into or out of the page for regions \(b\) through \(e\).


\section*{Sample Problem 30.04 Induced electric field due to changing \(B\) field, inside and outside}

In Fig. 30-11b, take \(R=8.5 \mathrm{~cm}\) and \(d B / d t=0.13 \mathrm{~T} / \mathrm{s}\).
(a) Find an expression for the magnitude \(E\) of the induced electric field at points within the magnetic field, at radius \(r\) from the center of the magnetic field. Evaluate the expression for \(r=5.2 \mathrm{~cm}\).

\section*{KEY IDEA}

An electric field is induced by the changing magnetic field, according to Faraday's law.

Calculations: To calculate the field magnitude \(E\), we apply Faraday's law in the form of Eq. 30-20. We use a circular path of integration with radius \(r \leq R\) because we want \(E\) for points within the magnetic field. We assume from the symmetry that \(\vec{E}\) in Fig. 30-11b is tangent to the circular path at all points. The path vector \(d \vec{s}\) is also always tangent to the circular path; so the dot product \(\vec{E} \cdot d \vec{s}\) in Eq. 30-20 must have the magnitude \(E d s\) at all points on the path. We can also assume from the symmetry that \(E\) has the same value at all points along the circular path. Then the left side of Eq. 30-20 becomes
\[
\begin{equation*}
\oint \vec{E} \cdot d \vec{s}=\oint E d s=E \oint d s=E(2 \pi r) \tag{30-23}
\end{equation*}
\]
(The integral \(\oint d s\) is the circumference \(2 \pi r\) of the circular path.)

Next, we need to evaluate the right side of Eq. 30-20. Because \(\vec{B}\) is uniform over the area \(A\) encircled by the path of integration and is directed perpendicular to that area, the magnetic flux is given by Eq. 30-2:
\[
\begin{equation*}
\Phi_{B}=B A=B\left(\pi r^{2}\right) \tag{30-24}
\end{equation*}
\]

Substituting this and Eq. 30-23 into Eq. 30-20 and dropping
the minus sign, we find that
or
\[
\begin{align*}
E(2 \pi r) & =\left(\pi r^{2}\right) \frac{d B}{d t} \\
E & =\frac{r}{2} \frac{d B}{d t} \tag{30-25}
\end{align*}
\]
(Answer)
Equation 30-25 gives the magnitude of the electric field at any point for which \(r \leq R\) (that is, within the magnetic field). Substituting given values yields, for the magnitude of \(\vec{E}\) at \(r=5.2 \mathrm{~cm}\),
\[
\begin{aligned}
E & =\frac{\left(5.2 \times 10^{-2} \mathrm{~m}\right)}{2}(0.13 \mathrm{~T} / \mathrm{s}) \\
& =0.0034 \mathrm{~V} / \mathrm{m}=3.4 \mathrm{mV} / \mathrm{m}
\end{aligned}
\]
(Answer)
(b) Find an expression for the magnitude \(E\) of the induced electric field at points that are outside the magnetic field, at radius \(r\) from the center of the magnetic field. Evaluate the expression for \(r=12.5 \mathrm{~cm}\).

\section*{KEY IDEAS}

Here again an electric field is induced by the changing magnetic field, according to Faraday's law, except that now we use a circular path of integration with radius \(r \geq R\) because we want to evaluate \(E\) for points outside the magnetic field. Proceeding as in (a), we again obtain Eq. 30-23. However, we do not then obtain Eq. 30-24 because the new path of integration is now outside the magnetic field, and so the magnetic flux encircled by the new path is only that in the area \(\pi R^{2}\) of the magnetic field region.

Calculations: We can now write
\[
\begin{equation*}
\Phi_{B}=B A=B\left(\pi R^{2}\right) \tag{30-26}
\end{equation*}
\]

Substituting this and Eq. 30-23 into Eq. 30-20 (without the minus sign) and solving for \(E\) yield
\[
\begin{equation*}
E=\frac{R^{2}}{2 r} \frac{d B}{d t} \tag{30-27}
\end{equation*}
\]
(Answer)
Because \(E\) is not zero here, we know that an electric field is induced even at points that are outside the changing magnetic field, an important result that (as you will see in Module 31-6) makes transformers possible.

With the given data, Eq. 30-27 yields the magnitude of \(\vec{E}\) at \(r=12.5 \mathrm{~cm}\) :
\[
\begin{aligned}
E & =\frac{\left(8.5 \times 10^{-2} \mathrm{~m}\right)^{2}}{(2)\left(12.5 \times 10^{-2} \mathrm{~m}\right)}(0.13 \mathrm{~T} / \mathrm{s}) \\
& =3.8 \times 10^{-3} \mathrm{~V} / \mathrm{m}=3.8 \mathrm{mV} / \mathrm{m}
\end{aligned}
\]
(Answer)

Equations 30-25 and 30-27 give the same result for \(r=R\). Figure 30-12 shows a plot of \(E(r)\). Note that the inside and outside plots meet at \(r=R\).


Figure 30-12 A plot of the induced electric field \(E(r)\).

PLUS
Additional examples, video, and practice available at WileyPLUS

\section*{30-4 inductors and inductance}

\section*{Learning Objectives}

After reading this module, you should be able to ...
30.19 Identify an inductor.
30.20 For an inductor, apply the relationship between inductance \(L\), total flux \(N \Phi\), and current \(i\).
30.21 For a solenoid, apply the relationship between the inductance per unit length \(L / l\), the area \(A\) of each turn, and the number of turns per unit length \(n\).

\section*{Key Ideas}
- An inductor is a device that can be used to produce a known magnetic field in a specified region. If a current \(i\) is established through each of the \(N\) windings of an inductor, a magnetic flux \(\Phi_{B}\) links those windings. The inductance \(L\) of the inductor is
\[
L=\frac{N \Phi_{B}}{i} \quad \text { (inductance defined). }
\]
- The SI unit of inductance is the henry \((\mathrm{H})\), where 1 henry \(=\) \(1 \mathrm{H}=1 \mathrm{~T} \cdot \mathrm{~m}^{2} / \mathrm{A}\).
- The inductance per unit length near the middle of a long solenoid of cross-sectional area \(A\) and \(n\) turns per unit length is
\[
\frac{L}{l}=\mu_{0} n^{2} A \quad \text { (solenoid) }
\]

\section*{Inductors and Inductance}

We found in Chapter 25 that a capacitor can be used to produce a desired electric field. We considered the parallel-plate arrangement as a basic type of capacitor. Similarly, an inductor (symbol ell) can be used to produce a desired magnetic field. We shall consider a long solenoid (more specifically, a short length near the middle of a long solenoid, to avoid any fringing effects) as our basic type of inductor.

If we establish a current \(i\) in the windings (turns) of the solenoid we are taking as our inductor, the current produces a magnetic flux \(\Phi_{B}\) through the central region of the inductor. The inductance of the inductor is then defined in terms of that flux as
\[
\begin{equation*}
L=\frac{N \Phi_{B}}{i} \quad \text { (inductance defined) } \tag{30-28}
\end{equation*}
\]


The Royal Institution/Bridgeman Art Library/NY
The crude inductors with which Michael Faraday discovered the law of induction. In those days amenities such as insulated wire were not commercially available. It is said that Faraday insulated his wires by wrapping them with strips cut from one of his wife's petticoats.
in which \(N\) is the number of turns. The windings of the inductor are said to be linked by the shared flux, and the product \(N \Phi_{B}\) is called the magnetic flux linkage. The inductance \(L\) is thus a measure of the flux linkage produced by the inductor per unit of current.

Because the SI unit of magnetic flux is the tesla-square meter, the SI unit of inductance is the tesla-square meter per ampere \(\left(T \cdot \mathrm{~m}^{2} / \mathrm{A}\right)\). We call this the henry (H), after American physicist Joseph Henry, the codiscoverer of the law of induction and a contemporary of Faraday. Thus,
\[
\begin{equation*}
1 \text { henry }=1 \mathrm{H}=1 \mathrm{~T} \cdot \mathrm{~m}^{2} / \mathrm{A} . \tag{30-29}
\end{equation*}
\]

Through the rest of this chapter we assume that all inductors, no matter what their geometric arrangement, have no magnetic materials such as iron in their vicinity. Such materials would distort the magnetic field of an inductor.

\section*{Inductance of a Solenoid}

Consider a long solenoid of cross-sectional area \(A\). What is the inductance per unit length near its middle? To use the defining equation for inductance (Eq. 30-28), we must calculate the flux linkage set up by a given current in the solenoid windings. Consider a length \(l\) near the middle of this solenoid. The flux linkage there is
\[
N \Phi_{B}=(n l)(B A),
\]
in which \(n\) is the number of turns per unit length of the solenoid and \(B\) is the magnitude of the magnetic field within the solenoid.

The magnitude \(B\) is given by Eq. 29-23,
\[
B=\mu_{0} i n,
\]
and so from Eq. 30-28,
\[
\begin{align*}
L & =\frac{N \Phi_{B}}{i}=\frac{(n l)(B A)}{i}=\frac{(n l)\left(\mu_{0} i n\right)(A)}{i} \\
& =\mu_{0} n^{2} l A . \tag{30-30}
\end{align*}
\]

Thus, the inductance per unit length near the center of a long solenoid is
\[
\begin{equation*}
\frac{L}{l}=\mu_{0} n^{2} A \quad \text { (solenoid). } \tag{30-31}
\end{equation*}
\]

Inductance-like capacitance-depends only on the geometry of the device. The dependence on the square of the number of turns per unit length is to be expected. If you, say, triple \(n\), you not only triple the number of turns \((N)\) but you also triple the flux \(\left(\Phi_{B}=B A=\mu_{0} i n A\right)\) through each turn, multiplying the flux linkage \(N \Phi_{B}\) and thus the inductance \(L\) by a factor of 9 .

If the solenoid is very much longer than its radius, then Eq. 30-30 gives its inductance to a good approximation. This approximation neglects the spreading of the magnetic field lines near the ends of the solenoid, just as the parallel-plate capacitor formula ( \(C=\varepsilon_{0} A / d\) ) neglects the fringing of the electric field lines near the edges of the capacitor plates.

From Eq. 30-30, and recalling that \(n\) is a number per unit length, we can see that an inductance can be written as a product of the permeability constant \(\mu_{0}\) and a quantity with the dimensions of a length. This means that \(\mu_{0}\) can be expressed in the unit henry per meter:
\[
\begin{align*}
\mu_{0} & =4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A} \\
& =4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m} . \tag{30-32}
\end{align*}
\]

The latter is the more common unit for the permeability constant.

\section*{30-5 self-1nouction}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
30.22 Identify that an induced emf appears in a coil when the current through the coil is changing.
30.23 Apply the relationship between the induced emf in a coil, the coil's inductance \(L\), and the rate \(d i / d t\) at which the current is changing.
30.24 When an emf is induced in a coil because the current in the coil is changing, determine the direction of the emf by using Lenz's law to show that the emf always opposes the change in the current, attempting to maintain the initial current.

\section*{Key Ideas}
- If a current \(i\) in a coil changes with time, an emf is induced in the coil. This self-induced emf is
\[
\mathscr{E}_{L}=-L \frac{d i}{d t}
\]
- The direction of \(\mathscr{E}_{L}\) is found from Lenz's law: The self-induced emf acts to oppose the change that produces it.

\section*{Self-Induction}

If two coils - which we can now call inductors - are near each other, a current \(i\) in one coil produces a magnetic flux \(\Phi_{B}\) through the second coil. We have seen that if we change this flux by changing the current, an induced emf appears in the second coil according to Faraday's law. An induced emf appears in the first coil as well.

An induced emf \(\mathscr{E}_{L}\) appears in any coil in which the current is changing.
This process (see Fig. 30-13) is called self-induction, and the emf that appears is called a self-induced emf. It obeys Faraday's law of induction just as other induced emfs do.

For any inductor, Eq. 30-28 tells us that
\[
\begin{equation*}
N \Phi_{B}=L i . \tag{30-33}
\end{equation*}
\]

Faraday's law tells us that
\[
\begin{equation*}
\mathscr{E}_{L}=-\frac{d\left(N \Phi_{B}\right)}{d t} \tag{30-34}
\end{equation*}
\]

By combining Eqs. 30-33 and 30-34 we can write
\[
\begin{equation*}
\mathscr{E}_{L}=-L \frac{d i}{d t} \quad(\text { self-induced emf }) \tag{30-35}
\end{equation*}
\]

Thus, in any inductor (such as a coil, a solenoid, or a toroid) a self-induced emf appears whenever the current changes with time. The magnitude of the current has no influence on the magnitude of the induced emf; only the rate of change of the current counts.

Direction. You can find the direction of a self-induced emf from Lenz's law. The minus sign in Eq. 30-35 indicates that - as the law states - the self-induced emf \(\mathscr{E}_{L}\) has the orientation such that it opposes the change in current \(i\). We can drop the minus sign when we want only the magnitude of \(\mathscr{E}_{L}\).

Suppose that you set up a current \(i\) in a coil and arrange to have the current increase with time at a rate \(d i / d t\). In the language of Lenz's law, this increase in the current in the coil is the "change" that the self-induction must oppose. Thus, a self-induced emf must appear in the coil, pointing so as to oppose the increase in the current, trying (but failing) to maintain the initial condition, as


Figure 30-13 If the current in a coil is changed by varying the contact position on a variable resistor, a self-induced emf \(\mathscr{E}_{L}\) will appear in the coil while the current is changing.


Figure 30-14 (a) The current \(i\) is increasing, and the self-induced \(\operatorname{emf} \mathscr{E}_{L}\) appears along the coil in a direction such that it opposes the increase. The arrow representing \(\mathscr{E}_{L}\) can be drawn along a turn of the coil or alongside the coil. Both are shown. (b) The current \(i\) is decreasing, and the self-induced emf appears in a direction such that it opposes the decrease.
shown in Fig. 30-14a. If, instead, the current decreases with time, the self-induced emf must point in a direction that tends to oppose the decrease (Fig. 30-14b), again trying to maintain the initial condition.

Electric Potential. In Module 30-3 we saw that we cannot define an electric potential for an electric field (and thus for an emf) that is induced by a changing magnetic flux. This means that when a self-induced emf is produced in the inductor of Fig. 30-13, we cannot define an electric potential within the inductor itself, where the flux is changing. However, potentials can still be defined at points of the circuit that are not within the inductor-points where the electric fields are due to charge distributions and their associated electric potentials.

Moreover, we can define a self-induced potential difference \(V_{L}\) across an inductor (between its terminals, which we assume to be outside the region of changing flux). For an ideal inductor (its wire has negligible resistance), the magnitude of \(V_{L}\) is equal to the magnitude of the self-induced emf \(\mathscr{E}_{L}\).

If, instead, the wire in the inductor has resistance \(r\), we mentally separate the inductor into a resistance \(r\) (which we take to be outside the region of changing flux) and an ideal inductor of self-induced emf \(\mathscr{E}_{L}\). As with a real battery of emf \(\mathscr{E}\) and internal resistance \(r\), the potential difference across the terminals of a real inductor then differs from the emf. Unless otherwise indicated, we assume here that inductors are ideal.

\section*{Checkpoint 5}

The figure shows an \(\operatorname{emf} \mathscr{E}_{L}\) induced in a coil. Which of the following can describe the current through the coil:
(a) constant and rightward, (b) constant and leftward,

(c) increasing and rightward, (d) decreasing and rightward, (e) increasing and leftward, (f) decreasing and leftward?

\section*{30-6 rl clircuits}

\section*{Learning Objectives}

After reading this module, you should be able to ...
30.25 Sketch a schematic diagram of an \(R L\) circuit in which the current is rising.
30.26 Write a loop equation (a differential equation) for an \(R L\) circuit in which the current is rising.
30.27 For an \(R L\) circuit in which the current is rising, apply the equation \(i(t)\) for the current as a function of time.
30.28 For an \(R L\) circuit in which the current is rising, find equations for the potential difference \(V\) across the resistor, the rate \(d i / d t\) at which the current changes, and the emf of the inductor, as functions of time.
30.29 Calculate an inductive time constant \(\tau_{L}\).
30.30 Sketch a schematic diagram of an \(R L\) circuit in which the current is decaying.
30.31 Write a loop equation (a differential equation) for an \(R L\) circuit in which the current is decaying.
30.32 For an \(R L\) circuit in which the current is decaying, apply the equation \(i(t)\) for the current as a function of time.
30.33 From an equation for decaying current in an \(R L\) circuit, find equations for the potential difference \(V\) across the resistor, the rate \(d i / d t\) at which current is changing, and the emf of the inductor, as functions of time.
30.34 For an \(R L\) circuit, identify the current through the inductor and the emf across it just as current in the circuit begins to change (the initial condition) and a long time later when equilibrium is reached (the final condition).

\section*{Key Ideas}
- If a constant emf \(\mathscr{E}\) is introduced into a single-loop circuit containing a resistance \(R\) and an inductance \(L\), the current rises to an equilibrium value of \(\mathscr{E} / R\) according to
\[
i=\frac{\mathscr{E}}{R}\left(1-e^{-t / \tau_{L}}\right) \quad \text { (rise of current) } .
\]

Here \(\tau_{L}(=L / R)\) governs the rate of rise of the current and is called the inductive time constant of the circuit.
- When the source of constant emf is removed, the current decays from a value \(i_{0}\) according to
\[
i=i_{0} e^{-t / \tau_{L}} \quad \text { (decay of current) }
\]

\section*{RL Circuits}

In Module 27-4 we saw that if we suddenly introduce an emf \(\mathscr{E}\) into a single-loop circuit containing a resistor \(R\) and a capacitor \(C\), the charge on the capacitor does not build up immediately to its final equilibrium value \(C_{\mathscr{E}}^{\mathscr{E}}\) but approaches it in an exponential fashion:
\[
\begin{equation*}
q=C \mathscr{E}\left(1-e^{-t / \tau_{C}}\right) \tag{30-36}
\end{equation*}
\]

The rate at which the charge builds up is determined by the capacitive time constant \(\tau_{C}\), defined in Eq. 27-36 as
\[
\begin{equation*}
\tau_{C}=R C \tag{30-37}
\end{equation*}
\]

If we suddenly remove the emf from this same circuit, the charge does not immediately fall to zero but approaches zero in an exponential fashion:
\[
\begin{equation*}
q=q_{0} e^{-t / \tau_{C}} \tag{30-38}
\end{equation*}
\]

The time constant \(\tau_{C}\) describes the fall of the charge as well as its rise.
An analogous slowing of the rise (or fall) of the current occurs if we introduce an emf \(\mathscr{E}\) into (or remove it from) a single-loop circuit containing a resistor \(R\) and an inductor \(L\). When the switch S in Fig. 30-15 is closed on \(a\), for example, the current in the resistor starts to rise. If the inductor were not present, the current would rise rapidly to a steady value \(\mathscr{E} / R\). Because of the inductor, however, a self-induced emf \(\mathscr{E}_{L}\) appears in the circuit; from Lenz's law, this emf opposes the rise of the current, which means that it opposes the battery emf \(\mathscr{E}\) in polarity. Thus, the current in the resistor responds to the difference between two emfs, a constant \(\mathscr{E}\) due to the battery and a variable \(\mathscr{E}_{L}(=-L d i / d t)\) due to self-induction. As long as this \(\mathscr{E}_{L}\) is present, the current will be less than \(\mathscr{E} / R\).

As time goes on, the rate at which the current increases becomes less rapid and the magnitude of the self-induced emf, which is proportional to \(d i / d t\), becomes smaller. Thus, the current in the circuit approaches \(\mathscr{E} / R\) asymptotically.

We can generalize these results as follows:

Initially, an inductor acts to oppose changes in the current through it. A long time later, it acts like ordinary connecting wire.

Now let us analyze the situation quantitatively. With the switch S in Fig. 30-15 thrown to \(a\), the circuit is equivalent to that of Fig. 30-16. Let us apply the loop rule, starting at point \(x\) in this figure and moving clockwise around the loop along with current \(i\).
1. Resistor. Because we move through the resistor in the direction of current \(i\), the electric potential decreases by \(i R\). Thus, as we move from point \(x\) to point \(y\), we encounter a potential change of \(-i R\).
2. Inductor. Because current \(i\) is changing, there is a self-induced emf \(\mathscr{E}_{L}\) in the inductor. The magnitude of \(\mathscr{E}_{L}\) is given by Eq. 30-35 as \(L\) di/dt. The direction of \(\mathscr{E}_{L}\) is upward in Fig. 30-16 because current \(i\) is downward through the inductor and increasing. Thus, as we move from point \(y\) to point \(z\), opposite the direction of \(\mathscr{E}_{L}\), we encounter a potential change of \(-L d i / d t\).
3. Battery. As we move from point \(z\) back to starting point \(x\), we encounter a potential change of \(+\mathscr{E}\) due to the battery's emf.
Thus, the loop rule gives us
\[
-i R-L \frac{d i}{d t}+\mathscr{E}=0
\]


Figure 30-15 An \(R L\) circuit. When switch S is closed on \(a\), the current rises and approaches a limiting value \(\mathscr{E} / R\).


Figure 30-16 The circuit of Fig. 30-15 with the switch closed on \(a\). We apply the loop rule for the circuit clockwise, starting at \(x\).
or
\[
\begin{equation*}
L \frac{d i}{d t}+R i=\mathscr{E} \quad(R L \text { circuit }) \tag{30-39}
\end{equation*}
\]

Equation \(30-39\) is a differential equation involving the variable \(i\) and its first derivative \(d i / d t\). To solve it, we seek the function \(i(t)\) such that when \(i(t)\) and its first derivative are substituted in Eq. 30-39, the equation is satisfied and the initial condition \(i(0)=0\) is satisfied.

Equation 30-39 and its initial condition are of exactly the form of Eq. 27-32 for an \(R C\) circuit, with \(i\) replacing \(q, L\) replacing \(R\), and \(R\) replacing \(1 / C\). The solution of Eq. 30-39 must then be of exactly the form of Eq. 27-33 with the same replacements. That solution is
\[
\begin{equation*}
i=\frac{\mathscr{E}}{R}\left(1-e^{-R t / L}\right), \tag{30-40}
\end{equation*}
\]
which we can rewrite as
\[
\begin{equation*}
i=\frac{\mathscr{E}}{R}\left(1-e^{-t / \tau_{L}}\right) \quad \text { (rise of current). } \tag{30-41}
\end{equation*}
\]

Here \(\tau_{L}\), the inductive time constant, is given by
\[
\begin{equation*}
\tau_{L}=\frac{L}{R} \quad \text { (time constant). } \tag{30-42}
\end{equation*}
\]

Let's examine Eq. 30-41 for just after the switch is closed (at time \(t=0\) ) and for a time long after the switch is closed \((t \rightarrow \infty)\). If we substitute \(t=0\) into Eq. 30-41, the exponential becomes \(e^{-0}=1\). Thus, Eq. 30-41 tells us that the current is initially \(i=0\), as we expected. Next, if we let \(t\) go to \(\infty\), then the exponential goes to \(e^{-\infty}=0\). Thus, Eq. 30-41 tells us that the current goes to its equilibrium value of \(\mathscr{E} / R\).

We can also examine the potential differences in the circuit. For example, Fig. 30-17 shows how the potential differences \(V_{R}(=i R)\) across the resistor and \(V_{L}(=L d i / d t)\) across the inductor vary with time for particular values of \(\mathscr{E}, L\), and \(R\). Compare this figure carefully with the corresponding figure for an \(R C\) circuit (Fig. 27-16).

The resistor's potential difference turns on. The inductor's potential difference turns off.


Figure 30-17 The variation with time of \((a) V_{R}\), the potential difference across the resistor in the circuit of Fig. 30-16, and (b) \(V_{L}\), the potential difference across the inductor in that circuit. The small triangles represent successive intervals of one inductive time constant \(\tau_{L}=\) \(L / R\). The figure is plotted for \(R=2000 \Omega, L=4.0 \mathrm{H}\), and \(\mathscr{E}=10 \mathrm{~V}\).

To show that the quantity \(\tau_{L}(=L / R)\) has the dimension of time (as it must, because the argument of the exponential function in Eq. 30-41 must be dimensionless), we convert from henries per ohm as follows:
\[
1 \frac{\mathrm{H}}{\Omega}=1 \frac{\mathrm{H}}{\Omega}\left(\frac{1 \mathrm{~V} \cdot \mathrm{~s}}{1 \mathrm{H} \cdot \mathrm{~A}}\right)\left(\frac{1 \Omega \cdot \mathrm{~A}}{1 \mathrm{~V}}\right)=1 \mathrm{~s} .
\]

The first quantity in parentheses is a conversion factor based on Eq. 30-35, and the second one is a conversion factor based on the relation \(V=i R\).

Time Constant. The physical significance of the time constant follows from Eq. 30-41. If we put \(t=\tau_{L}=L / R\) in this equation, it reduces to
\[
\begin{equation*}
i=\frac{\mathscr{E}}{R}\left(1-e^{-1}\right)=0.63 \frac{\mathscr{E}}{R} . \tag{30-43}
\end{equation*}
\]

Thus, the time constant \(\tau_{L}\) is the time it takes the current in the circuit to reach about \(63 \%\) of its final equilibrium value \(\mathscr{E} / R\). Since the potential difference \(V_{R}\) across the resistor is proportional to the current \(i\), a graph of the increasing current versus time has the same shape as that of \(V_{R}\) in Fig. 30-17a.

Current Decay. If the switch S in Fig. 30-15 is closed on \(a\) long enough for the equilibrium current \(\mathscr{E} / R\) to be established and then is thrown to \(b\), the effect will be to remove the battery from the circuit. (The connection to \(b\) must actually be made an instant before the connection to \(a\) is broken. A switch that does this is called a make-before-break switch.) With the battery gone, the current through the resistor will decrease. However, it cannot drop immediately to zero but must decay to zero over time. The differential equation that governs the decay can be found by putting \(\mathscr{E}=0\) in Eq. 30-39:
\[
\begin{equation*}
L \frac{d i}{d t}+i R=0 \tag{30-44}
\end{equation*}
\]

By analogy with Eqs. 27-38 and 27-39, the solution of this differential equation that satisfies the initial condition \(i(0)=i_{0}=\mathscr{E} / R\) is
\[
\begin{equation*}
i=\frac{\mathscr{E}}{R} e^{-t / \tau_{L}}=i_{0} e^{-t / \tau_{L}} \quad \text { (decay of current). } \tag{30-45}
\end{equation*}
\]

We see that both current rise (Eq. 30-41) and current decay (Eq. 30-45) in an \(R L\) circuit are governed by the same inductive time constant, \(\tau_{L}\).

We have used \(i_{0}\) in Eq. 30-45 to represent the current at time \(t=0\). In our case that happened to be \(\mathscr{E} / R\), but it could be any other initial value.

\section*{Checkpoint 6}

The figure shows three circuits with identical batteries, inductors, and resistors. Rank the circuits according to the current through the battery (a) just after the switch is closed and (b) a long time later, greatest first. (If you have trouble here, work through the next sample problem and then try again.)

(1)

(2)

(3)

\section*{Sample Problem 30.05 RL circuit, immediately after switching and after a long time}

Figure 30-18a shows a circuit that contains three identical resistors with resistance \(R=9.0 \Omega\), two identical inductors with inductance \(L=2.0 \mathrm{mH}\), and an ideal battery with emf \(\mathscr{E}=18 \mathrm{~V}\).
(a) What is the current \(i\) through the battery just after the switch is closed?

\section*{KEY IDEA}

Just after the switch is closed, the inductor acts to oppose a change in the current through it.

Calculations: Because the current through each inductor is zero before the switch is closed, it will also be zero just afterward. Thus, immediately after the switch is closed, the inductors act as broken wires, as indicated in Fig. 30-18b. We then have a single-loop circuit for which the loop rule gives us
\[
\mathscr{E}-i R=0
\]

Substituting given data, we find that
\[
i=\frac{\mathscr{E}}{R}=\frac{18 \mathrm{~V}}{9.0 \Omega}=2.0 \mathrm{~A} .
\]
(Answer)
(b) What is the current \(i\) through the battery long after the switch has been closed?

\section*{KEY IDEA}

Long after the switch has been closed, the currents in the circuit have reached their equilibrium values, and the inductors act as simple connecting wires, as indicated in Fig. 30-18c.

(d)

Figure 30-18 (a) A multiloop \(R L\) circuit with an open switch. (b) The equivalent circuit just after the switch has been closed. (c) The equivalent circuit a long time later. (d) The single-loop circuit that is equivalent to circuit (c).

Calculations: We now have a circuit with three identical resistors in parallel; from Eq. 27-23, their equivalent resistance is \(R_{\text {eq }}=R / 3=(9.0 \Omega) / 3=3.0 \Omega\). The equivalent circuit shown in Fig. 30-18d then yields the loop equation \(\mathscr{E}-i R_{\text {eq }}=0\), or
\[
i=\frac{\mathscr{E}}{R_{\mathrm{eq}}}=\frac{18 \mathrm{~V}}{3.0 \Omega}=6.0 \mathrm{~A}
\]
(Answer)

\section*{Sample Problem 30.06 RL circuit, current during the transition}

A solenoid has an inductance of 53 mH and a resistance of \(0.37 \Omega\). If the solenoid is connected to a battery, how long will the current take to reach half its final equilibrium value? (This is a real solenoid because we are considering its small, but nonzero, internal resistance.)

\section*{KEY IDEA}

We can mentally separate the solenoid into a resistance and an inductance that are wired in series with a battery, as in Fig. 30-16. Then application of the loop rule leads to Eq. 30-39, which has the solution of Eq. 30-41 for the current \(i\) in the circuit.

Calculations: According to that solution, current \(i\) increases exponentially from zero to its final equilibrium value of \(\mathscr{E} / R\). Let \(t_{0}\) be the time that current \(i\) takes to reach half its equilibrium value. Then Eq. 30-41 gives us
\[
\frac{1}{2} \frac{\mathscr{E}}{R}=\frac{\mathscr{E}}{R}\left(1-e^{-t_{0} / \tau_{L}}\right)
\]

We solve for \(t_{0}\) by canceling \(\mathscr{E} / R\), isolating the exponential, and taking the natural logarithm of each side. We find
\[
\begin{aligned}
t_{0} & =\tau_{L} \ln 2=\frac{L}{R} \ln 2=\frac{53 \times 10^{-3} \mathrm{H}}{0.37 \Omega} \ln 2 \\
& =0.10 \mathrm{~s} .
\end{aligned}
\]
(Answer)

\section*{30-7 energy stored in a magnetic field}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
30.35 Describe the derivation of the equation for the magnetic field energy of an inductor in an \(R L\) circuit with a constant emf source.
30.36 For an inductor in an \(R L\) circuit, apply the relationship between the magnetic field energy \(U\), the inductance \(L\), and the current \(i\).

\section*{Key Idea}
- If an inductor \(L\) carries a current \(i\), the inductor's magnetic field stores an energy given by
\[
U_{B}=\frac{1}{2} L i^{2} \quad \text { (magnetic energy). }
\]

\section*{Energy Stored in a Magnetic Field}

When we pull two charged particles of opposite signs away from each other, we say that the resulting electric potential energy is stored in the electric field of the particles. We get it back from the field by letting the particles move closer together again. In the same way we say energy is stored in a magnetic field, but now we deal with current instead of electric charges.

To derive a quantitative expression for that stored energy, consider again Fig. 30-16, which shows a source of emf \(\mathscr{E}\) connected to a resistor \(R\) and an inductor \(L\). Equation 30-39, restated here for convenience,
\[
\begin{equation*}
\mathscr{E}=L \frac{d i}{d t}+i R \tag{30-46}
\end{equation*}
\]
is the differential equation that describes the growth of current in this circuit. Recall that this equation follows immediately from the loop rule and that the loop rule in turn is an expression of the principle of conservation of energy for single-loop circuits. If we multiply each side of Eq. 30-46 by \(i\), we obtain
\[
\begin{equation*}
\mathscr{E} i=L i \frac{d i}{d t}+i^{2} R, \tag{30-47}
\end{equation*}
\]
which has the following physical interpretation in terms of the work done by the battery and the resulting energy transfers:
1. If a differential amount of charge \(d q\) passes through the battery of emf \(\mathscr{E}\) in Fig. 30-16 in time \(d t\), the battery does work on it in the amount \(\mathscr{E} d q\). The rate at which the battery does work is ( \(\mathscr{E} d q) / d t\), or \(\mathscr{E} i\). Thus, the left side of Eq. 30-47 represents the rate at which the emf device delivers energy to the rest of the circuit.
2. The rightmost term in Eq. 30-47 represents the rate at which energy appears as thermal energy in the resistor.
3. Energy that is delivered to the circuit but does not appear as thermal energy must, by the conservation-of-energy hypothesis, be stored in the magnetic field of the inductor. Because Eq. 30-47 represents the principle of conservation of energy for \(R L\) circuits, the middle term must represent the rate \(d U_{B} / d t\) at which magnetic potential energy \(U_{B}\) is stored in the magnetic field.

Thus
\[
\begin{equation*}
\frac{d U_{B}}{d t}=L i \frac{d i}{d t} \tag{30-48}
\end{equation*}
\]

We can write this as
\[
d U_{B}=L i d i .
\]

Integrating yields
\[
\int_{0}^{U_{B}} d U_{B}=\int_{0}^{i} L i d i
\]
\[
\begin{equation*}
\text { or } \quad U_{B}=\frac{1}{2} L i^{2} \quad \text { (magnetic energy), } \tag{30-49}
\end{equation*}
\]
which represents the total energy stored by an inductor \(L\) carrying a current \(i\). Note the similarity in form between this expression for the energy stored in a magnetic field and the expression for the energy stored in an electric field by a capacitor with capacitance \(C\) and charge \(q\); namely,
\[
\begin{equation*}
U_{E}=\frac{q^{2}}{2 C} . \tag{30-50}
\end{equation*}
\]
(The variable \(i^{2}\) corresponds to \(q^{2}\), and the constant \(L\) corresponds to \(1 / C\).)

\section*{Sample Problem 30.07 Energy stored in a magnetic field}

A coil has an inductance of 53 mH and a resistance of \(0.35 \Omega\).
(a) If a 12 V emf is applied across the coil, how much energy is stored in the magnetic field after the current has built up to its equilibrium value?

\section*{KEY IDEA}

The energy stored in the magnetic field of a coil at any time depends on the current through the coil at that time, according to Eq. 30-49 \(\left(U_{B}=\frac{1}{2} L i^{2}\right)\).
Calculations: Thus, to find the energy \(U_{B \infty}\) stored at equilibrium, we must first find the equilibrium current. From Eq. 30-41, the equilibrium current is
\[
\begin{equation*}
i_{\infty}=\frac{\mathscr{E}}{R}=\frac{12 \mathrm{~V}}{0.35 \Omega}=34.3 \mathrm{~A} . \tag{30-51}
\end{equation*}
\]

Then substitution yields
\[
\begin{aligned}
U_{B \infty} & =\frac{1}{2} L i_{\infty}^{2}=\left(\frac{1}{2}\right)\left(53 \times 10^{-3} \mathrm{H}\right)(34.3 \mathrm{~A})^{2} \\
& =31 \mathrm{~J} .
\end{aligned}
\]
(Answer)
(b) After how many time constants will half this equilibrium energy be stored in the magnetic field?

Calculations: Now we are being asked: At what time \(t\) will the relation
\[
U_{B}=\frac{1}{2} U_{B \infty}
\]
be satisfied? Using Eq. 30-49 twice allows us to rewrite this energy condition as
or
\[
\begin{gather*}
\frac{1}{2} L i^{2}=\left(\frac{1}{2}\right) \frac{1}{2} L i_{\infty}^{2} \\
i=\left(\frac{1}{\sqrt{2}}\right) i_{\infty} \tag{30-52}
\end{gather*}
\]

This equation tells us that, as the current increases from its initial value of 0 to its final value of \(i_{\infty}\), the magnetic field will have half its final stored energy when the current has increased to this value. In general, we know that \(i\) is given by Eq. \(30-41\), and here \(i_{\infty}\) (see Eq. \(30-51\) ) is \(\mathscr{E} / R\); so Eq. \(30-52\) becomes
\[
\frac{\mathscr{E}}{R}\left(1-e^{-t / \tau_{L}}\right)=\frac{\mathscr{E}}{\sqrt{2} R} .
\]

By canceling \(\mathscr{E} / R\) and rearranging, we can write this as
\[
e^{-t / \tau_{L}}=1-\frac{1}{\sqrt{2}}=0.293
\]
which yields
or
\[
\frac{t}{\tau_{L}}=-\ln 0.293=1.23
\]
\[
t \approx 1.2 \tau_{L} .
\]
(Answer)
Thus, the energy stored in the magnetic field of the coil by the current will reach half its equilibrium value 1.2 time constants after the emf is applied.

\section*{30-8 energy density of a magnetic field}

\section*{Learning Objectives}

After reading this module, you should be able to . . .
30.37 Identify that energy is associated with any magnetic field.
30.38 Apply the relationship between energy density \(u_{B}\) of a magnetic field and the magnetic field magnitude \(B\).

\section*{Key Idea}
- If \(B\) is the magnitude of a magnetic field at any point (in an inductor or anywhere else), the density of stored magnetic energy at that point is
\[
u_{B}=\frac{B^{2}}{2 \mu_{0}} \quad \text { (magnetic energy density) }
\]

\section*{Energy Density of a Magnetic Field}

Consider a length \(l\) near the middle of a long solenoid of cross-sectional area \(A\) carrying current \(i\); the volume associated with this length is \(A l\). The energy \(U_{B}\) stored by the length \(l\) of the solenoid must lie entirely within this volume because the magnetic field outside such a solenoid is approximately zero. Moreover, the stored energy must be uniformly distributed within the solenoid because the magnetic field is (approximately) uniform everywhere inside.

Thus, the energy stored per unit volume of the field is
\[
u_{B}=\frac{U_{B}}{A l}
\]
or, since
\[
U_{B}=\frac{1}{2} L i^{2},
\]
we have
\[
\begin{equation*}
u_{B}=\frac{L i^{2}}{2 A l}=\frac{L}{l} \frac{i^{2}}{2 A} . \tag{30-53}
\end{equation*}
\]

Here \(L\) is the inductance of length \(l\) of the solenoid.
Substituting for \(L / /\) from Eq. 30-31, we find
\[
\begin{equation*}
u_{B}=\frac{1}{2} \mu_{0} n^{2} i^{2} \tag{30-54}
\end{equation*}
\]
where \(n\) is the number of turns per unit length. From Eq. 29-23 ( \(\left.B=\mu_{0} i n\right)\) we can write this energy density as
\[
\begin{equation*}
u_{B}=\frac{B^{2}}{2 \mu_{0}} \quad \text { (magnetic energy density). } \tag{30-55}
\end{equation*}
\]

This equation gives the density of stored energy at any point where the magnitude of the magnetic field is \(B\). Even though we derived it by considering the special case of a solenoid, Eq. \(30-55\) holds for all magnetic fields, no matter how they are generated. The equation is comparable to Eq. 25-25,
\[
\begin{equation*}
u_{E}=\frac{1}{2} \varepsilon_{0} E^{2} \tag{30-56}
\end{equation*}
\]
which gives the energy density (in a vacuum) at any point in an electric field. Note that both \(u_{B}\) and \(u_{E}\) are proportional to the square of the appropriate field magnitude, \(B\) or \(E\).

\section*{Checkpoint 7}

The table lists the number of turns per unit length, current, and cross-sectional area for three solenoids. Rank the solenoids according to the magnetic energy density within them, greatest first.
\begin{tabular}{cccr}
\hline Solenoid & \begin{tabular}{c} 
Turns per \\
Unit Length
\end{tabular} & Current & Area \\
\hline\(a\) & \(2 n_{1}\) & \(i_{1}\) & \(2 A_{1}\) \\
\(b\) & \(n_{1}\) & \(2 i_{1}\) & \(A_{1}\) \\
\(c\) & \(n_{1}\) & \(i_{1}\) & \(6 A_{1}\) \\
\hline
\end{tabular}

\section*{30-9 mutual induction}

\section*{Learning Objectives}

After reading this module, you should be able to ...
30.39 Describe the mutual induction of two coils and sketch the arrangement.
30.40 Calculate the mutual inductance of one coil with respect to a second coil (or some second current that is changing).
30.41 Calculate the emf induced in one coil by a second coil in terms of the mutual inductance and the rate of change of the current in the second coil.

\section*{Key Idea}
- If coils 1 and 2 are near each other, a changing current in either coil can induce an emf in the other. This mutual induction is described by
and
\[
\begin{aligned}
& \mathscr{E}_{2}=-M \frac{d i_{1}}{d t} \\
& \mathscr{E}_{1}=-M \frac{d i_{2}}{d t}
\end{aligned}
\]
where \(M\) (measured in henries) is the mutual inductance.

\section*{Mutual Induction}

In this section we return to the case of two interacting coils, which we first discussed in Module 30-1, and we treat it in a somewhat more formal manner. We saw earlier that if two coils are close together as in Fig. 30-2, a steady current \(i\) in one coil will set up a magnetic flux \(\Phi\) through the other coil (linking the other coil). If we change \(i\) with time, an emf \(\mathscr{E}\) given by Faraday's law appears in the second coil; we called this process induction. We could better have called it mutual induction, to suggest the mutual interaction of the two coils and to distinguish it from self-induction, in which only one coil is involved.

Let us look a little more quantitatively at mutual induction. Figure 30-19a shows two circular close-packed coils near each other and sharing a common central axis. With the variable resistor set at a particular resistance \(R\), the battery produces a steady current \(i_{1}\) in coil 1 . This current creates a magnetic field represented by the lines of \(\vec{B}_{1}\) in the figure. Coil 2 is connected to a sensitive meter but contains no battery; a magnetic flux \(\Phi_{21}\) (the flux through coil 2 associated with the current in coil 1) links the \(N_{2}\) turns of coil 2 .

We define the mutual inductance \(M_{21}\) of coil 2 with respect to coil 1 as
\[
\begin{equation*}
M_{21}=\frac{N_{2} \Phi_{21}}{i_{1}} \tag{30-57}
\end{equation*}
\]

which has the same form as Eq. 30-28,
\[
\begin{equation*}
L=N \Phi / i \tag{30-58}
\end{equation*}
\]
the definition of inductance. We can recast Eq. 30-57 as
\[
\begin{equation*}
M_{21} i_{1}=N_{2} \Phi_{21} . \tag{30-59}
\end{equation*}
\]

If we cause \(i_{1}\) to vary with time by varying \(R\), we have
\[
\begin{equation*}
M_{21} \frac{d i_{1}}{d t}=N_{2} \frac{d \Phi_{21}}{d t} \tag{30-60}
\end{equation*}
\]

The right side of this equation is, according to Faraday's law, just the magnitude of the \(\mathrm{emf} \mathscr{E}_{2}\) appearing in coil 2 due to the changing current in coil 1 . Thus, with a minus sign to indicate direction,
\[
\begin{equation*}
\mathscr{E}_{2}=-M_{21} \frac{d i_{1}}{d t} \tag{30-61}
\end{equation*}
\]
which you should compare with Eq. \(30-35\) for self-induction ( \(\mathscr{E}=-L d i / d t\) ).
Interchange. Let us now interchange the roles of coils 1 and 2, as in Fig. 30-19b; that is, we set up a current \(i_{2}\) in coil 2 by means of a battery, and this produces a magnetic flux \(\Phi_{12}\) that links coil 1. If we change \(i_{2}\) with time by varying \(R\), we then have, by the argument given above,
\[
\begin{equation*}
\mathscr{E}_{1}=-M_{12} \frac{d i_{2}}{d t} \tag{30-62}
\end{equation*}
\]

Thus, we see that the emf induced in either coil is proportional to the rate of change of current in the other coil. The proportionality constants \(M_{21}\) and \(M_{12}\) seem to be different. However, they turn out to be the same, although we cannot prove that fact here. Thus, we have
\[
\begin{equation*}
M_{21}=M_{12}=M \tag{30-63}
\end{equation*}
\]
and we can rewrite Eqs. 30-61 and 30-62 as
\[
\begin{equation*}
\mathscr{E}_{2}=-M \frac{d i_{1}}{d t} \tag{30-64}
\end{equation*}
\]
and
\[
\begin{equation*}
\mathscr{E}_{1}=-M \frac{d i_{2}}{d t} \tag{30-65}
\end{equation*}
\]

Figure 30-19 Mutual induction. (a) The magnetic field \(\vec{B}_{1}\) produced by current \(i_{1}\) in coil 1 extends through coil 2 . If \(i_{1}\) is varied (by varying resistance \(R\) ), an emf is induced in coil 2 and current registers on the meter connected to coil 2. (b) The roles of the coils interchanged.

\section*{Sample Problem 30.08 Mutual inductance of two parallel coils}

Figure \(30-20\) shows two circular close-packed coils, the smaller (radius \(R_{2}\), with \(N_{2}\) turns) being coaxial with the larger (radius \(R_{1}\), with \(N_{1}\) turns) and in the same plane.
(a) Derive an expression for the mutual inductance \(M\) for this arrangement of these two coils, assuming that \(R_{1} \gg R_{2}\).

\section*{KEY IDEA}

The mutual inductance \(M\) for these coils is the ratio of the flux linkage ( \(N \Phi\) ) through one coil to the current \(i\) in the other coil, which produces that flux linkage. Thus, we need to assume that currents exist in the coils; then we need to calculate the flux linkage in one of the coils.

Calculations: The magnetic field through the larger coil due to the smaller coil is nonuniform in both magnitude and direction; so the flux through the larger coil due to the smaller coil is nonuniform and difficult to calculate. However, the smaller coil is small enough for us to assume that the magnetic field through it due to the larger coil is approximately uniform. Thus, the flux through it due to the larger coil is also approximately uniform. Hence, to find \(M\) we shall assume a current \(i_{1}\) in the larger coil and calculate the flux linkage \(N_{2} \Phi_{21}\) in the smaller coil:
\[
\begin{equation*}
M=\frac{N_{2} \Phi_{21}}{i_{1}} \tag{30-66}
\end{equation*}
\]

The flux \(\Phi_{21}\) through each turn of the smaller coil is, from Eq. 30-2,
\[
\Phi_{21}=B_{1} A_{2}
\]
where \(B_{1}\) is the magnitude of the magnetic field at points within the small coil due to the larger coil and \(A_{2}\left(=\pi R_{2}^{2}\right)\) is the area enclosed by the turn. Thus, the flux linkage in the smaller coil (with its \(N_{2}\) turns) is
\[
\begin{equation*}
N_{2} \Phi_{21}=N_{2} B_{1} A_{2} \tag{30-67}
\end{equation*}
\]

To find \(B_{1}\) at points within the smaller coil, we can use Eq. 29-26,
\[
B(z)=\frac{\mu_{0} i R^{2}}{2\left(R^{2}+z^{2}\right)^{3 / 2}}
\]
with \(z\) set to 0 because the smaller coil is in the plane of the larger coil. That equation tells us that each turn of the larger coil produces a magnetic field of magnitude \(\mu_{0} i_{1} / 2 R_{1}\) at points within the smaller coil. Thus, the larger coil (with its \(N_{1}\) turns) produces a total magnetic field of magnitude
\[
\begin{equation*}
B_{1}=N_{1} \frac{\mu_{0} i_{1}}{2 R_{1}} \tag{30-68}
\end{equation*}
\]
at points within the smaller coil.


Figure 30-20 A small coil is located at the center of a large coil. The mutual inductance of the coils can be determined by sending current \(i_{1}\) through the large coil.

Substituting Eq. 30-68 for \(B_{1}\) and \(\pi R_{2}^{2}\) for \(A_{2}\) in Eq. 30-67 yields
\[
N_{2} \Phi_{21}=\frac{\pi \mu_{0} N_{1} N_{2} R_{2}^{2} i_{1}}{2 R_{1}}
\]

Substituting this result into Eq. 30-66, we find
\[
\begin{equation*}
M=\frac{N_{2} \Phi_{21}}{i_{1}}=\frac{\pi \mu_{0} N_{1} N_{2} R_{2}^{2}}{2 R_{1}} . \quad \text { (Answer) } \tag{30-69}
\end{equation*}
\]
(b) What is the value of \(M\) for \(N_{1}=N_{2}=1200\) turns, \(R_{2}=1.1 \mathrm{~cm}\), and \(R_{1}=15 \mathrm{~cm}\) ?
Calculations: Equation \(30-69\) yields
\[
M=\frac{(\pi)\left(4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}\right)(1200)(1200)(0.011 \mathrm{~m})^{2}}{(2)(0.15 \mathrm{~m})}
\]
\[
=2.29 \times 10^{-3} \mathrm{H} \approx 2.3 \mathrm{mH}
\]
(Answer)
Consider the situation if we reverse the roles of the two coils-that is, if we produce a current \(i_{2}\) in the smaller coil and try to calculate \(M\) from Eq. 30-57 in the form
\[
M=\frac{N_{1} \Phi_{12}}{i_{2}}
\]

The calculation of \(\Phi_{12}\) (the nonuniform flux of the smaller coil's magnetic field encompassed by the larger coil) is not simple. If we were to do the calculation numerically using a computer, we would find \(M\) to be 2.3 mH , as above! This emphasizes that Eq. 30-63 \(\left(M_{21}=M_{12}=M\right)\) is not obvious.

\section*{Peview \& Summary}

Magnetic Flux The magnetic flux \(\Phi_{B}\) through an area \(A\) in a magnetic field \(\vec{B}\) is defined as
\[
\begin{equation*}
\Phi_{B}=\int \vec{B} \cdot d \vec{A}, \tag{30-1}
\end{equation*}
\]
where the integral is taken over the area. The SI unit of magnetic flux is the weber, where \(1 \mathrm{~Wb}=1 \mathrm{~T} \cdot \mathrm{~m}^{2}\). If \(\vec{B}\) is perpendicular to the area and uniform over it, Eq. \(30-1\) becomes
\[
\begin{equation*}
\Phi_{B}=B A \quad(\vec{B} \perp A, \vec{B} \text { uniform }) . \tag{30-2}
\end{equation*}
\]

Faraday's Law of Induction If the magnetic flux \(\Phi_{B}\) through an area bounded by a closed conducting loop changes with time, a current and an emf are produced in the loop; this process is called induction. The induced emf is
\[
\begin{equation*}
\mathscr{E}=-\frac{d \Phi_{B}}{d t} \quad \text { (Faraday's law). } \tag{30-4}
\end{equation*}
\]

If the loop is replaced by a closely packed coil of \(N\) turns, the induced emf is
\[
\begin{equation*}
\mathscr{E}=-N \frac{d \Phi_{B}}{d t} \tag{30-5}
\end{equation*}
\]

Lenz's Law An induced current has a direction such that the magnetic field due to the current opposes the change in the magnetic flux that induces the current. The induced emf has the same direction as the induced current.

Emf and the Induced Electric Field An emf is induced by a changing magnetic flux even if the loop through which the flux is changing is not a physical conductor but an imaginary line. The changing magnetic field induces an electric field \(\vec{E}\) at every point of such a loop; the induced emf is related to \(\vec{E}\) by
\[
\begin{equation*}
\mathscr{E}=\oint \vec{E} \cdot d \vec{s} \tag{30-19}
\end{equation*}
\]
where the integration is taken around the loop. From Eq. 30-19 we can write Faraday's law in its most general form,
\[
\begin{equation*}
\oint \vec{E} \cdot d \vec{s}=-\frac{d \Phi_{B}}{d t} \quad \text { (Faraday's law). } \tag{30-20}
\end{equation*}
\]

A changing magnetic field induces an electric field \(\vec{E}\).
Inductors An inductor is a device that can be used to produce a known magnetic field in a specified region. If a current \(i\) is established through each of the \(N\) windings of an inductor, a magnetic flux \(\Phi_{B}\) links those windings. The inductance \(L\) of the inductor is
\[
\begin{equation*}
L=\frac{N \Phi_{B}}{i} \quad \text { (inductance defined). } \tag{30-28}
\end{equation*}
\]

\section*{Questions}

1 If the circular conductor in Fig. 30-21 undergoes thermal expansion while it is in a uniform magnetic field, a current is induced clockwise around it. Is the magnetic field directed into or out of the page?
2 The wire loop in Fig. 30-22a is subjected, in turn, to six uniform magnetic
fields, each directed parallel to the \(z\)

The SI unit of inductance is the henry (H), where 1 henry \(=1 \mathrm{H}=\) \(1 \mathrm{~T} \cdot \mathrm{~m}^{2} / \mathrm{A}\). The inductance per unit length near the middle of a long solenoid of cross-sectional area \(A\) and \(n\) turns per unit length is
\[
\begin{equation*}
\frac{L}{l}=\mu_{0} n^{2} A \quad \text { (solenoid). } \tag{30-31}
\end{equation*}
\]

Self-Induction If a current \(i\) in a coil changes with time, an emf is induced in the coil. This self-induced emf is
\[
\begin{equation*}
\mathscr{E}_{L}=-L \frac{d i}{d t} \tag{30-35}
\end{equation*}
\]

The direction of \(\mathscr{E}_{L}\) is found from Lenz's law: The self-induced emf acts to oppose the change that produces it.
Series RL Circuits If a constant emf \(\mathscr{E}\) is introduced into a sin-gle-loop circuit containing a resistance \(R\) and an inductance \(L\), the current rises to an equilibrium value of \(\mathscr{E} / R\) :
\[
\begin{equation*}
i=\frac{\mathscr{E}}{R}\left(1-e^{-t / \tau_{L}}\right) \quad \text { (rise of current). } \tag{30-41}
\end{equation*}
\]

Here \(\tau_{L}(=L / R)\) is the inductive time constant. When the source of constant emf is removed, the current decays from a value \(i_{0}\) according to
\[
\begin{equation*}
i=i_{0} e^{-t / \tau_{L}} \quad \text { (decay of current). } \tag{30-45}
\end{equation*}
\]

Magnetic Energy If an inductor \(L\) carries a current \(i\), the inductor's magnetic field stores an energy given by
\[
\begin{equation*}
U_{B}=\frac{1}{2} L i^{2} \quad \text { (magnetic energy). } \tag{30-49}
\end{equation*}
\]

If \(B\) is the magnitude of a magnetic field at any point (in an inductor or anywhere else), the density of stored magnetic energy at that point is
\[
\begin{equation*}
u_{B}=\frac{B^{2}}{2 \mu_{0}} \quad \text { (magnetic energy density). } \tag{30-55}
\end{equation*}
\]

Mutual Induction If coils 1 and 2 are near each other, a changing current in either coil can induce an emf in the other. This mutual induction is described by
and
\[
\begin{equation*}
\mathscr{E}_{2}=-M \frac{d i_{1}}{d t} \tag{30-64}
\end{equation*}
\]
\(\mathscr{C}_{1}=-M \frac{d i_{2}}{d t}\),
where \(M\) (measured in henries) is the mutual inductance.


Figure 30-22 Question 2.
axis, which is directed out of the plane of the figure. Figure 30\(22 b\) gives the \(z\) components \(B_{z}\) of the fields versus time \(t\). (Plots 1 and 3 are parallel; so are plots 4 and 6. Plots 2 and 5 are parallel to the time axis.) Rank the six plots according to the emf induced in the loop, greatest clockwise emf first, greatest counterclockwise emf last.
3 In Fig. 30-23, a long straight wire with current \(i\) passes (without touching) three rectangular wire loops with edge lengths \(L, 1.5 L\), and \(2 L\). The loops are widely spaced (so as not to affect one another). Loops 1 and 3 are symmetric about the long wire. Rank the loops according to the size of the current induced in them if current \(i\) is (a) constant and (b) increasing, greatest first.


Figure 30-23 Question 3.
4 Figure 30-24 shows two circuits in which a conducting bar is slid at the same speed \(v\) through the same uniform magnetic field and along a U -shaped wire. The parallel lengths of the wire are separated by \(2 L\) in circuit 1 and by \(L\) in circuit 2 . The current induced in circuit 1 is counterclockwise. (a) Is the magnetic field into or out of the page? (b) Is the current induced in circuit 2 clockwise or counterclockwise? (c) Is the emf induced in circuit 1 larger than, smaller than, or the same as that in circuit 2?
(1)

(2)

Figure 30-24 Question 4.

5 Figure 30-25 shows a circular region in which a decreasing uniform magnetic field is directed out of the page, as well as four concentric circular paths. Rank the paths according to the magnitude of \(\oint \vec{E} \cdot d \vec{s}\) evaluated along them, greatest first.


Figure 30-25 Question 5.
6 In Fig. 30-26, a wire loop has been bent so that it has three segments: segment \(b c\) (a quarter-circle), \(a c\) (a square corner), and \(a b\) (straight). Here are three choices for a magnetic field through the loop:
(1) \(\vec{B}_{1}=3 \hat{\mathrm{i}}+7 \hat{\mathrm{j}}-5 t \hat{\mathrm{k}}\),
(2) \(\vec{B}_{2}=5 t \hat{\mathrm{i}}-4 \hat{\mathrm{j}}-15 \hat{\mathrm{k}}\),
(3) \(\vec{B}_{3}=2 \hat{\mathrm{i}}-5 t \hat{\mathrm{j}}-12 \hat{\mathrm{k}}\),
where \(\vec{B}\) is in milliteslas and \(t\) is in seconds. Without written calcula-
tion, rank the choices according to (a) the work done per unit charge in setting up the induced current and (b) that induced current, greatest first. (c) For each choice, what is the direction of the induced current in the figure?
7 Figure 30-27 shows a circuit with two identical resistors and an ideal inductor. Is the current through the cen-


Figure 30-26 Question 6. tral resistor more than, less than, or the same as that through the other resistor (a) just after the closing of switch S, (b) a long time after that, (c) just after S is reopened a long time later, and (d) a long time after that?


Figure 30-27 Question 7.

8 The switch in the circuit of Fig. 30-15 has been closed on \(a\) for a very long time when it is then thrown to \(b\). The resulting current through the inductor is indicated in Fig. 30-28 for four sets of values for the resistance \(R\) and inductance \(L\) : (1) \(R_{0}\) and \(L_{0}\), (2) \(2 R_{0}\) and \(L_{0}\), (3) \(R_{0}\) and \(2 L_{0}\), (4) \(2 R_{0}\) and \(2 L_{0}\). Which set goes with which curve?
9 Figure 30-29 shows three circuits with identical batteries, inductors,


Figure 30-28 Question 8. and resistors. Rank the circuits, greatest first, according to the current through the resistor labeled \(R\) (a) long after the switch is closed, (b) just after the switch is reopened a long time later, and (c) long after it is reopened.


Figure 30-29 Question 9.

10 Figure 30-30 gives the variation with time of the potential difference \(V_{R}\) across a resistor in three circuits wired as shown in Fig. 30-16. The circuits contain the same resistance \(R\) and emf \(\mathscr{E}\) but differ in the inductance \(L\). Rank the circuits according to the value of \(L\), greatest first.


Figure 30-30 Question 10.

11 Figure 30-31 shows three situations in which a wire loop lies partially in a magnetic field. The magnitude of the field is either increasing or decreasing, as indicated. In each situation, a battery is part of the loop. In which situations are the induced emf and the battery emf in the same direction along the loop?


Figure 30-31 Question 11.

12 Figure 30-32 gives four situations in which we pull rectangular wire loops out of identical magnetic fields (directed into the
page) at the same constant speed. The loops have edge lengths of either \(L\) or \(2 L\), as drawn. Rank the situations according to (a) the magnitude of the force required of us and (b) the rate at which energy is transferred from us to thermal energy of the loop, greatest first.


Figure 30-32 Question 12.

\section*{Problems}
 rate \(100 \mathrm{rev} / \mathrm{min}\); angle \(\theta\) remains unchanged during the process. What is the emf induced in tates in a cone about the field direction at the the loop?
-2 A certain elastic conducting material is stretched into a circular loop of 12.0 cm radius. It is placed with its plane perpendicular to a uniform 0.800 T magnetic field. When released, the radius of the loop starts to shrink at an instantaneous rate of \(75.0 \mathrm{~cm} / \mathrm{s}\). What emf is induced in the loop at that instant?
-3 ssm www In Fig. 30-34, a 120turn coil of radius 1.8 cm and resistance \(5.3 \Omega\) is coaxial with a solenoid of 220 turns \(/ \mathrm{cm}\) and diameter 3.2 cm . The solenoid current drops from 1.5 A to zero in time interval \(\Delta t=\) 25 ms . What current is induced in the coil during \(\Delta t\) ?
-4 A wire loop of radius 12 cm and resistance \(8.5 \Omega\) is located in a uniform magnetic field \(\vec{B}\) that changes in magnitude as given in Fig. 30-35. The vertical axis scale is set by \(B_{s}=0.50 \mathrm{~T}\), and the


Figure 30-34 Problem 3.

\(t(\mathrm{~s})\)
Figure 30-35 Problem 4. horizontal axis scale is set by \(t_{s}=6.00 \mathrm{~s}\). The loop's plane is perpendicular to \(\vec{B}\).
What emf is induced in the loop during time intervals (a) 0 to 2.0 s , (b) 2.0 s to 4.0 s , and (c) 4.0 s to 6.0 s ?
\({ }^{-5}\) In Fig. 30-36, a wire forms a closed circular loop, of radius \(R=2.0 \mathrm{~m}\) and resistance \(4.0 \Omega\). The circle is centered on a long straight wire; at time \(t=0\), the current in the long straight wire is 5.0 A rightward. Thereafter, the current changes according to \(i=5.0 \mathrm{~A}-\left(2.0 \mathrm{~A} / \mathrm{s}^{2}\right) t^{2}\). (The straight wire is insulated; so there is no electrical contact between it and the wire of the loop.) What is the magnitude of the current induced in the loop at times \(t>0\) ?


Figure 30-36 Problem 5.
-6 Figure 30-37a shows a circuit consisting of an ideal battery with emf \(\mathscr{E}=6.00 \mu \mathrm{~V}\), a resistance \(R\), and a small wire loop of area \(5.0 \mathrm{~cm}^{2}\). For the time interval \(t=10 \mathrm{~s}\) to \(t=20 \mathrm{~s}\), an external magnetic field is set up throughout the loop. The field is uniform, its direction is into the page in Fig. 30-37a, and the field magnitude is given by \(B=a t\), where \(B\) is in teslas, \(a\) is a constant, and \(t\) is in seconds. Figure \(30-37 b\) gives the current \(i\) in the circuit before, during, and after the external field is set up. The vertical axis scale is set by \(i_{s}=2.0 \mathrm{~mA}\). Find the constant \(a\) in the equation for the field magnitude.
(a)


(b)
\(t\) (s)

Figure 30-37 Problem 6.
\({ }^{-} 7\) In Fig. 30-38, the magnetic flux through the loop increases according to the relation \(\Phi_{B}=6.0 t^{2}+7.0 t\), where \(\Phi_{B}\) is in milliwebers and \(t\) is in seconds. (a) What is the magnitude of the emf induced in the loop when \(t=2.0 \mathrm{~s}\) ? (b) Is the direction of the current through \(R\) to the right or left? -8 A uniform magnetic field \(\vec{B}\) is perpendicular to the plane of a circular loop of diameter 10 cm formed from wire of diameter 2.5 mm and resistivity \(1.69 \times\) \(10^{-8} \Omega \cdot \mathrm{~m}\). At what rate must the magnitude of \(\vec{B}\) change to induce a 10 A current in the loop?
-9 A small loop of area \(6.8 \mathrm{~mm}^{2}\) is placed inside a long solenoid that has 854 turns \(/ \mathrm{cm}\) and carries a sinusoidally varying current \(i\) of amplitude 1.28 A and angular frequency \(212 \mathrm{rad} / \mathrm{s}\). The central axes of the loop and solenoid coincide. What is the amplitude of the emf induced in the loop?
-•10 Figure 30-39 shows a closed loop of wire that consists of a pair of equal semicircles, of radius 3.7 cm , lying in mutually perpendicular planes. The loop was formed by folding a flat circular loop along a diameter until the two halves became perpendicular to each other. A uniform magnetic field \(\vec{B}\) of magnitude 76 mT is directed perpendicular to the fold diameter and makes equal angles (of \(45^{\circ}\) ) with the planes of the


Figure 30-39 Problem 10. semicircles. The magnetic field is reduced to zero at a uniform rate during a time interval of 4.5 ms . During this interval, what are the (a) magnitude and (b) direction (clockwise or counterclockwise when viewed along the direction of \(\vec{B}\) ) of the emf induced in the loop?
-.11 A rectangular coil of \(N\) turns and of length \(a\) and width \(b\) is rotated at frequency \(f\) in a uniform magnetic field \(\vec{B}\), as indicated in Fig. 30-40. The coil is connected to co-rotating cylinders, against which metal brushes slide to make contact. (a) Show that the emf induced in the coil is given (as a function of time \(t\) ) by
\[
\mathscr{E}=2 \pi f N a b B \sin (2 \pi f t)=\mathscr{E}_{0} \sin (2 \pi f t) .
\]

This is the principle of the commercial alternating-current generator. (b) What value of Nab gives an emf with \(\mathscr{E}_{0}=150 \mathrm{~V}\) when the loop is rotated at \(60.0 \mathrm{rev} / \mathrm{s}\) in a uniform magnetic field of 0.500 T ?


Figure 30-40 Problem 11.
-•12 In Fig. 30-41, a wire loop of lengths \(L=40.0 \mathrm{~cm}\) and \(W=\) 25.0 cm lies in a magnetic field \(\vec{B}\). What are the (a) magnitude \(\mathscr{E}\) and (b) direction (clockwise or counterclockwise-or "none" if \(\mathscr{E}=0\) )
of the emf induced in the loop if \(\vec{B}=(4.00 \times\) \(\left.10^{-2} \mathrm{~T} / \mathrm{m}\right) y \hat{\mathrm{k}}\) ? What are (c) \(\mathscr{E}\) and (d) the direction if \(\vec{B}=\left(6.00 \times 10^{-2} \mathrm{~T} / \mathrm{s}\right) t \hat{\mathrm{k}}\) ? What are (e) \(\mathscr{E}\) and (f) the direction if \(\vec{B}=(8.00 \times\) \(\left.10^{-2} \mathrm{~T} / \mathrm{m} \cdot \mathrm{s}\right) y t \hat{\mathrm{k}}\) ? What are ( g ) \(\mathscr{E}\) and (h) the direction if \(\vec{B}=\left(3.00 \times 10^{-2} \mathrm{~T} / \mathrm{m} \cdot \mathrm{s}\right) x t \hat{j}\) ? What are (i) \(\mathscr{E}\) and (j) the direction if \(\vec{B}=(5.00 \times\) \(\left.10^{-2} \mathrm{~T} / \mathrm{m} \cdot \mathrm{s}\right) y t \hat{i}\) ?
\(\bullet 13\) ILW One hundred turns of (insulated) copper wire are wrapped around a wooden cylindrical core of cross-sectional area \(1.20 \times 10^{-3} \mathrm{~m}^{2}\). The two ends of the wire are connected to a resistor. The total resistance in the circuit is \(13.0 \Omega\). If an externally applied uniform longitudinal magnetic field in the core changes from 1.60 T in one direction to 1.60 T in the opposite direction, how much charge flows through a point in the circuit during the change?
-14 60 In Fig. 30-42a, a uniform magnetic field \(\vec{B}\) increases in magnitude with time \(t\) as given by Fig. 30-42b, where the vertical axis scale is set by \(B_{s}=9.0 \mathrm{mT}\) and the horizontal scale is set by \(t_{s}=3.0 \mathrm{~s}\). A circular conducting loop of area \(8.0 \times 10^{-4} \mathrm{~m}^{2}\) lies in the field, in the plane of the page. The amount of charge \(q\) passing point \(A\) on the loop is given in Fig. 30-42c as a function of \(t\), with the vertical axis scale set by \(q_{s}=6.0 \mathrm{mC}\) and the horizontal axis scale again set by \(t_{s}=3.0 \mathrm{~s}\). What is the loop's resistance?

(a)

\(t\) (s)
(b)

\(t\) (s)
(c)

Figure 30-42 Problem 14.
- 15 (6) A square wire loop with 2.00 m sides is perpendicular to a uniform magnetic field, with half the area of the loop in the field as shown in Fig. 30-43. The loop contains an ideal battery with emf \(\mathscr{E}=\) 20.0 V . If the magnitude of the field varies with time according to \(B=\) \(0.0420-0.870 t\), with \(B\) in teslas and \(t\) in seconds, what are (a) the net emf in the circuit and (b) the direction of


Figure 30-43 Problem 15. the (net) current around the loop?
- 16 (6) Figure 30-44a shows a wire that forms a rectangle ( \(W=20 \mathrm{~cm}, H=30 \mathrm{~cm}\) ) and has a resistance of \(5.0 \mathrm{~m} \Omega\). Its

(a)

\(t\) (s)
(b)

Figure 30-44 Problem 16.
interior is split into three equal areas, with magnetic fields \(\vec{B}_{1}, \vec{B}_{2}\), and \(\vec{B}_{3}\). The fields are uniform within each region and directly out of or into the page as indicated. Figure \(30-44 b\) gives the change in the \(z\) components \(B_{z}\) of the three fields with time \(t\); the vertical axis scale is set by \(B_{s}=4.0 \mu \mathrm{~T}\) and \(B_{b}=-2.5 B_{s}\), and the horizontal axis scale is set by \(t_{s}=2.0 \mathrm{~s}\). What are the (a) magnitude and (b) direction of the current induced in the wire?
\(\bullet 17\) A small circular loop of area \(2.00 \mathrm{~cm}^{2}\) is placed in the plane of, and concentric with, a large circular loop of radius 1.00 m . The current in the large loop is changed at a constant rate from 200 A to -200 A (a change in direction) in a time of 1.00 s , starting at \(t=0\). What is the magnitude of the magnetic field \(\vec{B}\) at the center of the small loop due to the current in the large loop at (a) \(t=0\), (b) \(t=0.500 \mathrm{~s}\), and (c) \(t=1.00 \mathrm{~s}\) ? (d) From \(t=0\) to \(t=1.00 \mathrm{~s}\), is \(\vec{B}\) reversed? Because the inner loop is small, assume \(\vec{B}\) is uniform over its area. (e) What emf is induced in the small loop at \(t=0.500 \mathrm{~s}\) ?
- 18 In Fig. 30-45, two straight conducting rails form a right angle. A conducting bar in contact with the rails starts at the vertex at time \(t=0\) and moves with a constant velocity of \(5.20 \mathrm{~m} / \mathrm{s}\) along them. A magnetic field with \(B=0.350 \mathrm{~T}\) is directed


Figure 30-45 Problem 18. out of the page. Calculate (a) the flux through the triangle formed by the rails and bar at \(t=3.00 \mathrm{~s}\) and (b) the emf around the triangle at that time. (c) If the emf is \(\mathscr{E}=a t^{n}\), where \(a\) and \(n\) are constants, what is the value of \(n\) ?
-19 ILW An electric generator contains a coil of 100 turns of wire, each forming a rectangular loop 50.0 cm by 30.0 cm . The coil is placed entirely in a uniform magnetic field with magnitude \(B=\) 3.50 T and with \(\vec{B}\) initially perpendicular to the coil's plane. What is the maximum value of the emf produced when the coil is spun at \(1000 \mathrm{rev} / \mathrm{min}\) about an axis perpendicular to \(\vec{B}\) ?
-20 At a certain place, Earth's magnetic field has magnitude \(B=0.590\) gauss and is inclined downward at an angle of \(70.0^{\circ}\) to the horizontal. A flat horizontal circular coil of wire with a radius of 10.0 cm has 1000 turns and a total resistance of \(85.0 \Omega\). It is connected in series to a meter with \(140 \Omega\) resistance. The coil is flipped through a half-revolution about a diameter, so that it is again horizontal. How much charge flows through the meter during the flip?
\(\because 21\) In Fig. 30-46, a stiff wire bent into a semicircle of radius \(a=2.0\) cm is rotated at constant angular speed \(40 \mathrm{rev} / \mathrm{s}\) in a uniform 20 mT magnetic field. What are the (a) frequency and (b) amplitude of the emf induced in the loop?
\(\because 022\) A rectangular loop (area \(=\) \(0.15 \mathrm{~m}^{2}\) ) turns in a uniform magnetic field, \(B=0.20 \mathrm{~T}\). When the angle between the field and the normal to the plane of the loop is \(\pi / 2 \mathrm{rad}\) and increasing at \(0.60 \mathrm{rad} / \mathrm{s}\), what emf is induced in the loop?
\(\because 23\) SSM Figure \(30-47\) shows two parallel loops of wire having a common axis. The smaller loop (radius \(r\) ) is above the larger loop (radius \(R\) )


Figure 30-46 Problem 21.


Figure 30-47 Problem 23.
by a distance \(x \gg R\). Consequently, the magnetic field due to the counterclockwise current \(i\) in the larger loop is nearly uniform throughout the smaller loop. Suppose that \(x\) is increasing at the constant rate \(d x / d t=v\). (a) Find an expression for the magnetic flux through the area of the smaller loop as a function of \(x\). (Hint: See Eq. 29-27.) In the smaller loop, find (b) an expression for the induced emf and (c) the direction of the induced current.
\(\because 24\) A wire is bent into three circular segments, each of radius \(r=\) 10 cm , as shown in Fig. 30-48. Each segment is a quadrant of a circle, \(a b\) lying in the \(x y\) plane, \(b c\) lying in the \(y z\) plane, and \(c a\) lying in the \(z x\) plane. (a) If a uniform magnetic field \(\vec{B}\) points in the positive \(x\) direction, what is the magnitude of the emf developed in the wire when \(B\) increases at the rate of \(3.0 \mathrm{mT} / \mathrm{s}\) ? (b) What is the direction of the


Figure 30-48 Problem 24. current in segment \(b c\) ?
-•025 © Two long, parallel copper wires of diameter 2.5 mm carry currents of 10 A in opposite directions. (a) Assuming that their central axes are 20 mm apart, calculate the magnetic flux per meter of wire that exists in the space between those axes. (b) What percentage of this flux lies inside the wires? (c) Repeat part (a) for parallel currents.
\(\because 026\) For the wire arrangement in Fig. 30-49, \(a=12.0 \mathrm{~cm}\) and \(b=\) 16.0 cm . The current in the long straight wire is \(i=4.50 t^{2}-10.0 t\), where \(i\) is in amperes and \(t\) is in seconds. (a) Find the emf in the square loop at \(t=3.00 \mathrm{~s}\). (b) What is the direction of the induced current in the loop?
-•027 ILW As seen in Fig. 30-50, a square loop of wire has sides of length 2.0 cm . A magnetic field is directed out of the page; its magnitude is given by \(B=4.0 t^{2} y\), where \(B\) is in teslas, \(t\) is in seconds, and \(y\) is in meters. At \(t=2.5 \mathrm{~s}\), what are the (a) magnitude and (b) direction of the emf induced in the loop?


Figure 30-49 Problem 26.

Figure 30-50 Problem 27. -0028 ©0 In Fig. 30-51, a rectangular loop of wire with length \(a=2.2 \mathrm{~cm}\), width \(b=0.80 \mathrm{~cm}\), and resistance \(R=0.40 \mathrm{~m} \Omega\) is placed near an infinitely long wire carrying current \(i=4.7 \mathrm{~A}\). The loop is then moved away from the wire at constant speed \(v=3.2 \mathrm{~mm} / \mathrm{s}\). When the center of the loop is at distance \(r=1.5 b\), what are (a) the magnitude of the magnetic flux through the loop and (b) the current induced in the loop?


Figure 30-51 Problem 28.

\section*{Module 30-2 Induction and Energy Transfers}
-29 In Fig. 30-52, a metal rod is forced to move with constant velocity \(\vec{v}\) along two parallel metal rails, connected with a strip of metal at one end. A magnetic field of magnitude \(B=0.350 \mathrm{~T}\) points out of the page. (a) If the rails are separated by \(L=25.0 \mathrm{~cm}\) and the speed of the rod is \(55.0 \mathrm{~cm} / \mathrm{s}\), what emf is generated? (b) If the rod has a resistance of \(18.0 \Omega\) and the rails and connector have negligible resistance, what is the current in the rod? (c) At what rate is energy being transferred to thermal energy?
-30 In Fig. 30-53a, a circular loop of wire is concentric with a solenoid and lies in a plane perpendicular to the solenoid's central axis. The loop has radius 6.00 cm . The solenoid has radius 2.00 cm , consists of 8000 turns \(/ \mathrm{m}\), and has a current \(i_{\text {sol }}\) varying with time \(t\) as given in Fig. 30-53b, where the vertical axis scale is set by \(i_{s}=1.00\) A and the horizontal axis scale is set by \(t_{s}=2.0 \mathrm{~s}\). Figure \(30-53 \mathrm{c}\) shows, as a function of time, the energy \(E_{\mathrm{th}}\) that is transferred to thermal energy of the loop; the vertical axis scale is set by \(E_{s}=\) 100.0 nJ . What is the loop's resistance?


Figure 30-53 Problem 30.
-31 SSM ILW If 50.0 cm of copper wire (diameter \(=1.00 \mathrm{~mm}\) ) is formed into a circular loop and placed perpendicular to a uniform magnetic field that is increasing at the constant rate of \(10.0 \mathrm{mT} / \mathrm{s}\), at what rate is thermal energy generated in the loop?
-32 A loop antenna of area \(2.00 \mathrm{~cm}^{2}\) and resistance \(5.21 \mu \Omega\) is perpendicular to a uniform magnetic field of magnitude \(17.0 \mu \mathrm{~T}\). The field magnitude drops to zero in 2.96 ms . How much thermal energy is produced in the loop by the change in field?
-•33 © Figure 30-54 shows a rod of length \(L=10.0 \mathrm{~cm}\) that is forced to move at constant speed \(v=5.00 \mathrm{~m} / \mathrm{s}\) along horizontal rails. The rod, rails, and connecting strip at the right form a conducting loop. The rod has resistance \(0.400 \Omega\); the rest of the loop has negligible resistance. A current \(i=100 \mathrm{~A}\) through the long straight wire at distance \(a=10.0 \mathrm{~mm}\) from the loop sets up a (nonuniform) magnetic field through the loop. Find


Figure 30-54 Problem 33. the (a) emf and (b) current induced in the loop. (c) At what rate is thermal energy generated in the rod? (d) What is the magnitude of the force that must be applied to the rod to make it move at constant speed? (e) At what rate does this force do work on the rod?
-034 In Fig. 30-55, a long rectangular conducting loop, of width \(L\), resistance \(R\), and mass \(m\), is hung in a horizontal, uniform magnetic
field \(\vec{B}\) that is directed into the page and that exists only above line \(a a\). The loop is then dropped; during its fall, it accelerates until it reaches a certain terminal speed \(v_{t}\). Ignoring air drag, find an expression for \(v_{t}\).
-035 The conducting rod shown in Fig. 30-52 has length \(L\) and is being pulled along horizontal, frictionless conducting rails at a constant velocity \(\vec{v}\). The rails are connected at one end with a metal strip. A uniform


Figure 30-55 Problem 34. magnetic field \(\vec{B}\), directed out of the page, fills the region in which the rod moves. Assume that \(L=\) \(10 \mathrm{~cm}, v=5.0 \mathrm{~m} / \mathrm{s}\), and \(B=1.2 \mathrm{~T}\). What are the (a) magnitude and (b) direction (up or down the page) of the emf induced in the rod? What are the (c) size and (d) direction of the current in the conducting loop? Assume that the resistance of the rod is \(0.40 \Omega\) and that the resistance of the rails and metal strip is negligibly small.
(e) At what rate is thermal energy being generated in the rod? (f) What external force on the rod is needed to maintain \(\vec{v}\) ? (g) At what rate does this force do work on the rod?

\section*{Module 30-3 Induced Electric Fields}
-36 Figure 30-56 shows two circular regions \(R_{1}\) and \(R_{2}\) with radii \(r_{1}=\) 20.0 cm and \(r_{2}=30.0 \mathrm{~cm}\). In \(R_{1}\) there is a uniform magnetic field of magnitude \(B_{1}=50.0 \mathrm{mT}\) directed into the page, and in \(R_{2}\) there is a uniform magnetic field of magnitude \(B_{2}=75.0 \mathrm{mT}\) directed out of the page (ignore fringing). Both fields are decreasing at the rate of \(8.50 \mathrm{mT} / \mathrm{s}\). Calculate \(\oint \vec{E} \cdot d \vec{s}\) for


Figure 30-56 Problem 36. (a) path 1, (b) path 2 , and (c) path 3.
-37 SSM ILW A long solenoid has a diameter of 12.0 cm . When a current \(i\) exists in its windings, a uniform magnetic field of magnitude \(B=30.0 \mathrm{mT}\) is produced in its interior. By decreasing \(i\), the field is caused to decrease at the rate of \(6.50 \mathrm{mT} / \mathrm{s}\). Calculate the magnitude of the induced electric field (a) 2.20 cm and (b) 8.20 cm from the axis of the solenoid.
\(\bullet 38\) (so A circular region in an \(x y\) plane is penetrated by a uniform magnetic field in the positive direction of the \(z\) axis. The field's magnitude \(B\) (in teslas) increases with time \(t\) (in seconds) according to \(B=\) \(a t\), where \(a\) is a constant. The magnitude \(E\) of the electric field set up by that increase in the magnetic field is


Figure 30-57 Problem 38. given by Fig. 30-57 versus radial distance \(r\); the vertical axis scale is set by \(E_{s}=300 \mu \mathrm{~N} / \mathrm{C}\), and the horizontal axis scale is set by \(r_{s}=4.00 \mathrm{~cm}\). Find \(a\).
-039 The magnetic field of a cylindrical magnet that has a pole-face diameter of 3.3 cm can be varied sinusoidally between 29.6 T and 30.0 T at a frequency of 15 Hz . (The current in a wire wrapped around a permanent magnet is varied to give this variation in the net field.) At a radial distance of 1.6 cm , what is the amplitude of the electric field induced by the variation?

\section*{Module 30-4 Inductors and Inductance}
-40 The inductance of a closely packed coil of 400 turns is 8.0 mH . Calculate the magnetic flux through the coil when the current is 5.0 mA .
-41 A circular coil has a 10.0 cm radius and consists of 30.0 closely wound turns of wire. An externally produced magnetic field of magnitude 2.60 mT is perpendicular to the coil. (a) If no current is in the coil, what magnetic flux links its turns? (b) When the current in the coil is 3.80 A in a certain direction, the net flux through the coil is found to vanish. What is the inductance of the coil?
\(\bullet 42\) Figure 30-58 shows a copper strip of width \(W=16.0 \mathrm{~cm}\) that has been bent to form a shape that consists of a tube of radius \(R=1.8 \mathrm{~cm}\) plus two parallel flat extensions. Current \(i=35 \mathrm{~mA}\) is distributed uniformly across the width so that the tube is effectively a one-turn solenoid. Assume that the magnetic field outside the tube is negligible and the field inside the tube is uniform. What are (a) the magnetic field magnitude inside the tube and (b) the inductance of the tube (excluding the flat extensions)?
\(\bullet 43\) ©o Two identical long wires of radius \(a=1.53 \mathrm{~mm}\) are parallel and carry identical


Figure 30-58 Problem 42. currents in opposite directions. Their center-to-center separation is \(d=14.2 \mathrm{~cm}\). Neglect the flux within the wires but consider the flux in the region between the wires. What is the inductance per unit length of the wires?

\section*{Module 30-5 Self-Induction}
-44 A 12 H inductor carries a current of 2.0 A. At what rate must the current be changed to produce a 60 V emf in the inductor?
-45 At a given instant the current and self-induced emf in an inductor are directed as indicated in Fig. 30-59.
(a) Is the current increasing or decreasing? (b) The induced emf is


Figure 30-59 Problem 45. 17 V , and the rate of change of the current is \(25 \mathrm{kA} / \mathrm{s}\); find the inductance.
-•46 The current \(i\) through a 4.6 H inductor varies with time \(t\) as shown by the graph of Fig. 30-60, where the vertical axis scale is set by \(i_{s}=8.0 \mathrm{~A}\) and the horizontal axis scale is set by \(t_{s}=6.0 \mathrm{~ms}\). The inductor has a resistance of \(12 \Omega\). Find the magnitude of the induced emf \(\mathscr{E}\) during time intervals (a) 0 to 2 ms , (b) 2 ms to 5 ms , and


Figure 30-60 Problem 46. (c) 5 ms to 6 ms . (Ignore the behavior at the ends of the intervals.)
\(\bullet \bullet 47\) Inductors in series. Two inductors \(L_{1}\) and \(L_{2}\) are connected in series and are separated by a large distance so that the magnetic field of one cannot affect the other. (a) Show that the equivalent inductance is given by
\[
L_{\mathrm{eq}}=L_{1}+L_{2}
\]
(Hint: Review the derivations for resistors in series and capacitors in series. Which is similar here?) (b) What is the generalization of (a) for \(N\) inductors in series?
-•48 Inductors in parallel. Two inductors \(L_{1}\) and \(L_{2}\) are connected in parallel and separated by a large distance so that the magnetic field of one cannot affect the other. (a) Show that the equivalent inductance is given by
\[
\frac{1}{L_{\mathrm{eq}}}=\frac{1}{L_{1}}+\frac{1}{L_{2}}
\]
(Hint: Review the derivations for resistors in parallel and capacitors in parallel. Which is similar here?) (b) What is the generalization of (a) for \(N\) inductors in parallel?
-•49 The inductor arrangement of Fig. 30-61, with \(L_{1}=30.0 \mathrm{mH}, L_{2}=\) \(50.0 \mathrm{mH}, L_{3}=20.0 \mathrm{mH}\), and \(L_{4}=\) 15.0 mH , is to be connected to a varying current source. What is the equivalent inductance of the arrangement? (First see Problems
 47 and 48.)

\section*{Module 30-6 RL Circuits}
-50 The current in an \(R L\) circuit builds up to one-third of its steady-state value in 5.00 s . Find the inductive time constant.
-51 ILW The current in an \(R L\) circuit drops from 1.0 A to 10 mA in the first second following removal of the battery from the circuit. If \(L\) is 10 H , find the resistance \(R\) in the circuit.
-52 The switch in Fig. 30-15 is closed on \(a\) at time \(t=0\). What is the ratio \(\mathscr{E}_{L} / \mathscr{E}\) of the inductor's self-induced emf to the battery's emf (a) just after \(t=0\) and (b) at \(t=2.00 \tau_{L}\) ? (c) At what multiple of \(\tau_{L}\) will \(\mathscr{E}_{L} / \mathscr{E}=0.500\) ?
-53 SSIM A solenoid having an inductance of \(6.30 \mu \mathrm{H}\) is connected in series with a \(1.20 \mathrm{k} \Omega\) resistor. (a) If a 14.0 V battery is connected across the pair, how long will it take for the current through the resistor to reach \(80.0 \%\) of its final value? (b) What is the current through the resistor at time \(t=1.0 \tau_{L}\) ?
-54 In Fig. 30-62, \(\mathscr{E}=100 \mathrm{~V}, R_{1}=\) \(10.0 \Omega, R_{2}=20.0 \Omega, R_{3}=30.0 \Omega\), and \(L=2.00 \mathrm{H}\). Immediately after switch S is closed, what are (a) \(i_{1}\) and (b) \(i_{2}\) ? (Let currents in the indicated directions have positive values and currents in the opposite directions have negative values.) A long time later, what are (c) \(i_{1}\) and (d) \(i_{2}\) ? The


Figure 30-62 Problem 54. switch is then reopened. Just then, what are (e) \(i_{1}\) and (f) \(i_{2}\) ? A long time later, what are \((\mathrm{g}) i_{1}\) and (h) \(i_{2}\) ? -55 SSM A battery is connected to a series \(R L\) circuit at time \(t=0\). At what multiple of \(\tau_{L}\) will the current be \(0.100 \%\) less than its equilibrium value?
\(\cdot 56\) In Fig. 30-63, the inductor has 25 turns and the ideal battery has an emf of 16 V . Figure 30-64 gives the magnetic flux \(\Phi\) through each turn versus the current \(i\) through the inductor. The vertical


Figure 30-63 Problems 56, 80,83 , and 93 .


Figure 30-64 Problem 56.
axis scale is set by \(\Phi_{s}=4.0 \times 10^{-4} \mathrm{~T} \cdot \mathrm{~m}^{2}\), and the horizontal axis scale is set by \(i_{s}=2.00 \mathrm{~A}\). If switch S is closed at time \(t=0\), at what rate \(d i / d t\) will the current be changing at \(t=1.5 \tau_{L}\) ?
\(\because 057\) © In Fig. \(30-65, R=15 \Omega\), \(L=5.0 \mathrm{H}\), the ideal battery has \(\mathscr{E}=10 \mathrm{~V}\), and the fuse in the upper branch is an ideal 3.0 A fuse. It has zero resistance as long as the current through it remains less than 3.0 A . If the current reaches 3.0 A , the fuse "blows" and thereafter has infinite resistance. Switch S is closed


Figure 30-65 Problem 57. at time \(t=0\). (a) When does the fuse blow? (Hint: Equation 30-41 does not apply. Rethink Eq. 30-39.) (b) Sketch a graph of the current \(i\) through the inductor as a function of time. Mark the time at which the fuse blows.
-058 ©0 Suppose the emf of the battery in the circuit shown in Fig. 30-16 varies with time \(t\) so that the current is given by \(i(t)=\) \(3.0+5.0 t\), where \(i\) is in amperes and \(t\) is in seconds. Take \(R=4.0 \Omega\) and \(L=6.0 \mathrm{H}\), and find an expression for the battery emf as a function of \(t\). (Hint: Apply the loop rule.)
-0059 ssim www In Fig. 30-66, after switch S is closed at time \(t=0\), the emf of the source is automatically adjusted to maintain a constant current \(i\) through S. (a) Find the current through the inductor as a function of time. (b) At what time is the current through the resistor equal to


Figure 30-66 Problem 59. the current through the inductor?
\({ }^{\bullet 0} 60\) A wooden toroidal core with a square cross section has an inner radius of 10 cm and an outer radius of 12 cm . It is wound with one layer of wire (of diameter 1.0 mm and resistance per meter \(0.020 \Omega / \mathrm{m}\) ). What are (a) the inductance and (b) the inductive time constant of the resulting toroid? Ignore the thickness of the insulation on the wire.

\section*{Module 30-7 Energy Stored in a Magnetic Field}
\(\bullet 61\) SSM A coil is connected in series with a \(10.0 \mathrm{k} \Omega\) resistor. An ideal 50.0 V battery is applied across the two devices, and the current reaches a value of 2.00 mA after 5.00 ms . (a) Find the inductance of the coil. (b) How much energy is stored in the coil at this same moment?
-62 A coil with an inductance of 2.0 H and a resistance of \(10 \Omega\) is suddenly connected to an ideal battery with \(\mathscr{E}=100 \mathrm{~V}\). At 0.10 s after the connection is made, what is the rate at which (a) energy is being stored in the magnetic field, (b) thermal energy is appearing in the resistance, and (c) energy is being delivered by the battery?
-63 ILW At \(t=0\), a battery is connected to a series arrangement of a resistor and an inductor. If the inductive time constant is 37.0 ms , at what time is the rate at which energy is dissipated in the resistor equal to the rate at which energy is stored in the inductor's magnetic field?
-64 At \(t=0\), a battery is connected to a series arrangement of a resistor and an inductor. At what multiple of the inductive time constant will the energy stored in the inductor's magnetic field be 0.500 its steady-state value?
-•65 © For the circuit of Fig. 30-16, assume that \(\mathscr{E}=10.0 \mathrm{~V}, R=\) \(6.70 \Omega\), and \(L=5.50 \mathrm{H}\). The ideal battery is connected at time \(t=0\).
(a) How much energy is delivered by the battery during the first 2.00 s ? (b) How much of this energy is stored in the magnetic field of the inductor? (c) How much of this energy is dissipated in the resistor?

\section*{Module 30-8 Energy Density of a Magnetic Field}
-66 A circular loop of wire 50 mm in radius carries a current of 100 A . Find the (a) magnetic field strength and (b) energy density at the center of the loop.
\({ }^{-67}\) SSM A solenoid that is 85.0 cm long has a cross-sectional area of \(17.0 \mathrm{~cm}^{2}\). There are 950 turns of wire carrying a current of 6.60 A. (a) Calculate the energy density of the magnetic field inside the solenoid. (b) Find the total energy stored in the magnetic field there (neglect end effects).
-68 A toroidal inductor with an inductance of 90.0 mH encloses a volume of \(0.0200 \mathrm{~m}^{3}\). If the average energy density in the toroid is \(70.0 \mathrm{~J} / \mathrm{m}^{3}\), what is the current through the inductor?
-69 ILw What must be the magnitude of a uniform electric field if it is to have the same energy density as that possessed by a 0.50 T magnetic field?
-•70 ©0 Figure 30-67a shows, in cross section, two wires that are straight, parallel, and very long. The ratio \(i_{1} / i_{2}\) of the current carried by wire 1 to that carried by wire 2 is \(1 / 3\). Wire 1 is fixed in place. Wire 2 can be moved along the positive side of the \(x\) axis so as to change the magnetic energy density \(u_{B}\) set up by the two currents at the origin. Figure \(30-67 \mathrm{~b}\) gives \(u_{B}\) as a function of the position \(x\) of wire 2 . The curve has an asymptote of \(u_{B}=1.96 \mathrm{~nJ} / \mathrm{m}^{3}\) as \(x \rightarrow \infty\), and the horizontal axis scale is set by \(x_{s}=60.0 \mathrm{~cm}\). What is

(b)
\[
x(\mathrm{~cm})
\]

Figure 30-67 Problem 70. the value of (a) \(i_{1}\) and (b) \(i_{2}\) ?
-071 A length of copper wire carries a current of 10 A uniformly distributed through its cross section. Calculate the energy density of (a) the magnetic field and (b) the electric field at the surface of the wire. The wire diameter is 2.5 mm , and its resistance per unit length is \(3.3 \Omega / \mathrm{km}\).

\section*{Module 30-9 Mutual Induction}
-72 Coil 1 has \(L_{1}=25 \mathrm{mH}\) and \(N_{1}=100\) turns. Coil 2 has \(L_{2}=\) 40 mH and \(N_{2}=200\) turns. The coils are fixed in place; their mutual inductance \(M\) is 3.0 mH . A 6.0 mA current in coil 1 is changing at the rate of \(4.0 \mathrm{~A} / \mathrm{s}\). (a) What magnetic flux \(\Phi_{12}\) links coil 1, and (b) what self-induced emf appears in that coil? (c) What magnetic flux \(\Phi_{21}\) links coil 2, and (d) what mutually induced emf appears in that coil?
\(\cdot 73\) SSm Two coils are at fixed locations. When coil 1 has no current and the current in coil 2 increases at the rate \(15.0 \mathrm{~A} / \mathrm{s}\), the emf in coil 1 is 25.0 mV . (a) What is their mutual inductance? (b) When coil 2 has no current and coil 1 has a current of 3.60 A , what is the flux linkage in coil 2 ?
-74 Two solenoids are part of the spark coil of an automobile. When the current in one solenoid falls from 6.0 A to zero in 2.5 ms , an emf of 30 kV is induced in the other solenoid. What is the mutual inductance \(M\) of the solenoids?
-•75 ILW A rectangular loop of \(N\) closely packed turns is positioned near a long straight wire as shown in Fig. 30-68. What is the mutual inductance \(M\) for the loop-wire combination if \(N=100, a=1.0 \mathrm{~cm}, b=\) 8.0 cm , and \(l=30 \mathrm{~cm}\) ?
-076 A coil C of \(N\) turns is placed around a long solenoid S of radius \(R\) and \(n\) turns per unit length, as in Fig. 30-69. (a) Show that the mutual inductance for the coil-solenoid combination is given by \(M=\) \(\mu_{0} \pi R^{2} n N\). (b) Explain why \(M\) does not depend on the shape, size, or possible lack of close packing of the coil.


Figure 30-68 Problem 75.


Figure 30-69 Problem 76. -•77 SSM Two coils connected as shown in Fig. 30-70 separately have inductances \(L_{1}\) and \(L_{2}\). Their mutual inductance is \(M\). (a) Show that this combination can be replaced by a single coil of equivalent inductance given by
\[
L_{\mathrm{eq}}=L_{1}+L_{2}+2 M
\]
(b) How could the coils in Fig. 30-70 be reconnected to yield an equivalent inductance of
\[
L_{\mathrm{eq}}=L_{1}+L_{2}-2 M ?
\]
(This problem is an extension of Problem 47, but the requirement that the coils be far apart has been removed.)


Figure 30-70 Problem 77.

\section*{Additional Problems}

78 At time \(t=0\), a 12.0 V potential difference is suddenly applied to the leads of a coil of inductance 23.0 mH and a certain resistance \(R\). At time \(t=0.150 \mathrm{~ms}\), the current through the inductor is changing at the rate of \(280 \mathrm{~A} / \mathrm{s}\). Evaluate \(R\).
79 Ssm In Fig. 30-71, the battery is ideal and \(\mathscr{E}=10 \mathrm{~V}, R_{1}=5.0 \Omega\), \(R_{2}=10 \Omega\), and \(L=5.0 \mathrm{H}\). Switch S is closed at time \(t=0\). Just afterwards, what are (a) \(i_{1}\), (b) \(i_{2}\), (c) the current \(i_{\mathrm{S}}\) through the switch, (d) the potential difference \(V_{2}\) across resistor 2, (e) the potential difference \(V_{L}\) across the inductor, and (f) the rate of change \(d i_{2} / d t\) ? A


Figure 30-71 Problem 79. long time later, what are \((\mathrm{g}) i_{1},(\mathrm{~h}) i_{2}\), (i) \(i_{\mathrm{S}},(\mathrm{j}) V_{2},(\mathrm{k}) V_{L}\), and (1) \(d i_{2} / d t\) ?

80 In Fig. 30-63, \(R=4.0 \mathrm{k} \Omega, L=8.0 \mu \mathrm{H}\), and the ideal battery has \(\mathscr{E}=20 \mathrm{~V}\). How long after switch S is closed is the current 2.0 mA ?

81 SSM Figure \(30-72 a\) shows a rectangular conducting loop of resistance \(R=0.020 \quad \Omega\), height \(H=1.5 \mathrm{~cm}\), and length \(D=2.5\) cm being pulled at constant speed \(v=40 \mathrm{~cm} / \mathrm{s}\) through two regions of uniform magnetic field. Figure \(30-72 b\) gives the current \(i\) induced in the loop as a function of the position \(x\) of the right side of the loop. The vertical axis scale is set by \(i_{s}=3.0 \mu \mathrm{~A}\). For example, a current equal to \(i_{s}\) is induced clockwise as the loop enters region 1 .


Figure 30-72 Problem 81. What are the (a) magnitude and (b) direction (into or out of the page) of the magnetic field in region 1 ? What are the (c) magnitude and (d) direction of the magnetic field in region 2?
82 A uniform magnetic field \(\vec{B}\) is perpendicular to the plane of a circular wire loop of radius \(r\). The magnitude of the field varies with time according to \(B=B_{0} e^{-t / \tau}\), where \(B_{0}\) and \(\tau\) are constants. Find an expression for the emf in the loop as a function of time.
83 Switch S in Fig. 30-63 is closed at time \(t=0\), initiating the buildup of current in the 15.0 mH inductor and the \(20.0 \Omega\) resistor. At what time is the emf across the inductor equal to the potential difference across the resistor?
84 © Figure 30-73a shows two concentric circular regions in which uniform magnetic fields can change. Region 1, with radius \(r_{1}=\) 1.0 cm , has an outward magnetic field \(\vec{B}_{1}\) that is increasing in magnitude. Region 2, with radius \(r_{2}=\) 2.0 cm , has an outward magnetic field \(\vec{B}_{2}\) that may also be changing. Imagine that a conducting ring of radius \(R\) is centered on the two regions and then the emf \(\mathscr{E}\) around the ring is determined. Figure \(30-73 b\) gives emf \(\mathscr{E}\) as a function of the square \(R^{2}\) of the ring's radius, to the outer edge of region 2 . The vertical axis scale is set by \(\mathscr{C}_{s}=\) 20.0 nV . What are the rates (a) \(d B_{1} / d t\) and (b) \(d B_{2} / d t\) ? (c) Is the magnitude of \(\vec{B}_{2}\) increasing, decreasing, or remaining constant?
85 ssm Figure \(30-74\) shows a uniform magnetic field \(\vec{B}\) confined to a cylindrical volume of radius \(R\). The magnitude of \(\vec{B}\) is decreasing at a constant rate of \(10 \mathrm{mT} / \mathrm{s}\). In unit-vector notation, what is the initial acceleration of an electron released at (a) point \(a\) (radial distance \(r=5.0 \mathrm{~cm})\), (b) point \(b(r=\) \(0)\), and (c) point \(c(r=5.0 \mathrm{~cm})\) ?
86 © In Fig. 30-75a, switch S


Figure 30-73 Problem 84.


Figure 30-74 Problem 85. has been closed on \(A\) long enough to establish a steady current in the inductor of inductance
\(L_{1}=5.00 \mathrm{mH}\) and the resistor of resistance \(R_{1}=25.0 \Omega\). Similarly, in Fig. 30-75b, switch S has been closed on \(A\) long enough to establish a steady current in the inductor of inductance \(L_{2}=3.00 \mathrm{mH}\) and the resistor of resistance \(R_{2}=30.0 \Omega\). The ratio \(\Phi_{02} / \Phi_{01}\) of the magnetic flux through a turn in inductor 2 to that in inductor 1 is 1.50 . At time \(t=0\), the two switches are closed on \(B\). At what time \(t\) is the flux through a turn in the two inductors equal?


Figure 30-75 Problem 86.

87 SSM A square wire loop 20 cm on a side, with resistance \(20 \mathrm{~m} \Omega\), has its plane normal to a uniform magnetic field of magnitude \(B=2.0 \mathrm{~T}\). If you pull two opposite sides of the loop away from each other, the other two sides automatically draw toward each other, reducing the area enclosed by the loop. If the area is reduced to zero in time \(\Delta t=0.20 \mathrm{~s}\), what are (a) the average emf and (b) the average current induced in the loop during \(\Delta t\) ?

88 A coil with 150 turns has a magnetic flux of \(50.0 \mathrm{nT} \cdot \mathrm{m}^{2}\) through each turn when the current is 2.00 mA . (a) What is the inductance of the coil? What are the (b) inductance and (c) flux through each turn when the current is increased to 4.00 mA ? (d) What is the maximum emf \(\mathscr{E}\) across the coil when the current through it is given by \(i=(3.00 \mathrm{~mA}) \cos (377 t)\), with \(t\) in seconds?

89 A coil with an inductance of 2.0 H and a resistance of \(10 \Omega\) is suddenly connected to an ideal battery with \(\mathscr{E}=100 \mathrm{~V}\). (a) What is the equilibrium current? (b) How much energy is stored in the magnetic field when this current exists in the coil?

90 How long would it take, following the removal of the battery, for the potential difference across the resistor in an \(R L\) circuit (with \(L=2.00 \mathrm{H}, R=3.00 \Omega\) ) to decay to \(10.0 \%\) of its initial value?
91 SSM In the circuit of Fig. 30-76, \(R_{1}=20 \mathrm{k} \Omega, R_{2}=20 \Omega, L=50 \mathrm{mH}\), and the ideal battery has \(\mathscr{E}=40 \mathrm{~V}\). Switch S has been open for a long time when it is closed at time \(t=0\). Just after the switch is closed, what are (a) the current \(i_{\text {bat }}\) through the battery and (b) the rate \(d i_{\text {bat }} / d t\) ?


Figure 30-76 Problem 91. At \(t=3.0 \mu \mathrm{~s}\), what are (c) \(i_{\text {bat }}\) and (d) \(d i_{\text {bat }} / d t\) ? A long time later, what are (e) \(i_{\text {bat }}\) and (f) \(d i_{\text {bat }} / d t\) ?

92 The flux linkage through a certain coil of \(0.75 \Omega\) resistance would be 26 mWb if there were a current of 5.5 A in it. (a) Calculate the inductance of the coil. (b) If a 6.0 V ideal battery were suddenly connected across the coil, how long would it take for the current to rise from 0 to 2.5 A ?
93 In Fig. 30-63, a 12.0 V ideal battery, a \(20.0 \Omega\) resistor, and an inductor are connected by a switch at time \(t=0\). At what rate is the battery transferring energy to the inductor's field at \(t=1.61 \tau_{L}\) ?
94 A long cylindrical solenoid with 100 turns \(/ \mathrm{cm}\) has a radius of 1.6 cm . Assume that the magnetic field it produces is parallel to its axis and is uniform in its interior. (a) What is its inductance per
meter of length? (b) If the current changes at the rate of \(13 \mathrm{~A} / \mathrm{s}\), what emf is induced per meter?
95 In Fig. 30-77, \(R_{1}=8.0 \Omega, R_{2}=10 \Omega, L_{1}=0.30 \mathrm{H}, L_{2}=0.20 \mathrm{H}\), and the ideal battery has \(\mathscr{E}=6.0 \mathrm{~V}\). (a) Just after switch S is closed, at what rate is the current in inductor 1 changing? (b) When the circuit is in the steady state, what is the current in inductor 1 ?


Figure 30-77 Problem 95.

96 A square loop of wire is held in a uniform 0.24 T magnetic field directed perpendicular to the plane of the loop. The length of each side of the square is decreasing at a constant rate of \(5.0 \mathrm{~cm} / \mathrm{s}\). What emf is induced in the loop when the length is 12 cm ?
97 At time \(t=0\), a 45 V potential difference is suddenly applied to the leads of a coil with inductance \(L=50 \mathrm{mH}\) and resistance \(R=180 \Omega\). At what rate is the current through the coil increasing at \(t=1.2 \mathrm{~ms}\) ?
98 The inductance of a closely wound coil is such that an emf of 3.00 mV is induced when the current changes at the rate of 5.00 \(\mathrm{A} / \mathrm{s}\). A steady current of 8.00 A produces a magnetic flux of 40.0 \(\mu \mathrm{Wb}\) through each turn. (a) Calculate the inductance of the coil. (b) How many turns does the coil have?

99 The magnetic field in the interstellar space of our galaxy has a magnitude of about \(10^{-10} \mathrm{~T}\). How much energy is stored in this field in a cube 10 light-years on edge? (For scale, note that the nearest star is 4.3 light-years distant and the radius of the galaxy is about \(8 \times 10^{4}\) light-years.)
100 Figure \(30-78\) shows a wire that has been bent into a circular arc of radius \(r=24.0 \mathrm{~cm}\), centered at \(O\). A straight wire \(O P\) can be rotated about \(O\) and makes sliding contact with the arc at \(P\). Another straight wire \(O Q\) completes the conducting loop. The three wires have cross-sectional area \(1.20 \mathrm{~mm}^{2}\) and resistivity \(1.70 \times 10^{-8} \Omega \cdot \mathrm{~m}\), and the apparatus lies in a uniform magnetic field of magnitude \(B=0.150 \mathrm{~T}\) directed out of the figure. Wire \(O P\) begins from rest at angle \(\theta=0\) and has constant angular acceleration of \(12 \mathrm{rad} / \mathrm{s}^{2}\). As functions of \(\theta\) (in rad), find (a) the loop's resistance and (b) the magnetic flux through the loop. (c) For what \(\theta\) is the induced current maximum and (d) what is that maximum?


Figure 30-78 Problem 100.

101 A toroid has a 5.00 cm square cross section, an inside radius of \(15.0 \mathrm{~cm}, 500\) turns of wire, and a current of 0.800 A . What is the magnetic flux through the cross section?```


[^0]:    *In all cases, the first syllable is accented, as in ná-no-mé-ter

