
Chapter 1

Introduction

The pace at which computer systems change was, is, and continues to be
overwhelming. From 1945, when the modern computer era began, until about
1985, computers were large and expensive. Moreover, for lack of a way to
connect them, these computers operated independently from one another.

Starting in the mid-1980s, however, two advances in technology began to
change that situation. The first was the development of powerful microproces-
sors. Initially, these were 8-bit machines, but soon 16-, 32-, and 64-bit CPUs
became common. With multicore CPUs, we now are refacing the challenge
of adapting and developing programs to exploit parallelism. In any case, the
current generation of machines have the computing power of the mainframes
deployed 30 or 40 years ago, but for 1/1000th of the price or less.

The second development was the invention of high-speed computer net-
works. Local-area networks or LANs allow thousands of machines within a
building to be connected in such a way that small amounts of information
can be transferred in a few microseconds or so. Larger amounts of data
can be moved between machines at rates of billions of bits per second (bps).
Wide-area networks or WANs allow hundreds of millions of machines all
over the earth to be connected at speeds varying from tens of thousands to
hundreds of millions bps.

Parallel to the development of increasingly powerful and networked ma-
chines, we have also been able to witness miniaturization of computer systems
with perhaps the smartphone as the most impressive outcome. Packed with
sensors, lots of memory, and a powerful CPU, these devices are nothing less
than full-fledged computers. Of course, they also have networking capabilities.
Along the same lines, so-called plug computers are finding their way to the

A version of this chapter has been published as “A Brief Introduction to Distributed Systems,”
Computing, vol. 98(10):967-1009, 2016.

1

2 CHAPTER 1. INTRODUCTION

market. These small computers, often the size of a power adapter, can be
plugged directly into an outlet and offer near-desktop performance.

The result of these technologies is that it is now not only feasible, but
easy, to put together a computing system composed of a large numbers of
networked computers, be they large or small. These computers are generally
geographically dispersed, for which reason they are usually said to form a
distributed system. The size of a distributed system may vary from a handful
of devices, to millions of computers. The interconnection network may be
wired, wireless, or a combination of both. Moreover, distributed systems are
often highly dynamic, in the sense that computers can join and leave, with the
topology and performance of the underlying network almost continuously
changing.

In this chapter, we provide an initial exploration of distributed systems
and their design goals, and follow that up by discussing some well-known
types of systems.

1.1 What is a distributed system?

Various definitions of distributed systems have been given in the literature,
none of them satisfactory, and none of them in agreement with any of the
others. For our purposes it is sufficient to give a loose characterization:

A distributed system is a collection of autonomous computing elements
that appears to its users as a single coherent system.

This definition refers to two characteristic features of distributed systems.
The first one is that a distributed system is a collection of computing elements
each being able to behave independently of each other. A computing element,
which we will generally refer to as a node, can be either a hardware device
or a software process. A second feature is that users (be they people or
applications) believe they are dealing with a single system. This means
that one way or another the autonomous nodes need to collaborate. How
to establish this collaboration lies at the heart of developing distributed
systems. Note that we are not making any assumptions concerning the
type of nodes. In principle, even within a single system, they could range
from high-performance mainframe computers to small devices in sensor
networks. Likewise, we make no assumptions concerning the way that nodes
are interconnected.

Characteristic 1: Collection of autonomous computing elements

Modern distributed systems can, and often will, consist of all kinds of nodes,
ranging from very big high-performance computers to small plug computers
or even smaller devices. A fundamental principle is that nodes can act inde-
pendently from each other, although it should be obvious that if they ignore

DS 3.02 downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK

1.1. WHAT IS A DISTRIBUTED SYSTEM? 3

each other, then there is no use in putting them into the same distributed
system. In practice, nodes are programmed to achieve common goals, which
are realized by exchanging messages with each other. A node reacts to in-
coming messages, which are then processed and, in turn, leading to further
communication through message passing.

An important observation is that, as a consequence of dealing with inde-
pendent nodes, each one will have its own notion of time. In other words, we
cannot always assume that there is something like a global clock. This lack
of a common reference of time leads to fundamental questions regarding the
synchronization and coordination within a distributed system, which we will
come to discuss extensively in Chapter 6. The fact that we are dealing with a
collection of nodes implies that we may also need to manage the membership
and organization of that collection. In other words, we may need to register
which nodes may or may not belong to the system, and also provide each
member with a list of nodes it can directly communicate with.

Managing group membership can be exceedingly difficult, if only for
reasons of admission control. To explain, we make a distinction between
open and closed groups. In an open group, any node is allowed to join the
distributed system, effectively meaning that it can send messages to any other
node in the system. In contrast, with a closed group, only the members of
that group can communicate with each other and a separate mechanism is
needed to let a node join or leave the group.

It is not difficult to see that admission control can be difficult. First, a
mechanism is needed to authenticate a node, and as we shall see in Chap-
ter 9, if not properly designed, managing authentication can easily create
a scalability bottleneck. Second, each node must, in principle, check if it is
indeed communicating with another group member and not, for example,
with an intruder aiming to create havoc. Finally, considering that a member
can easily communicate with nonmembers, if confidentiality is an issue in the
communication within the distributed system, we may be facing trust issues.

Concerning the organization of the collection, practice shows that a dis-
tributed system is often organized as an overlay network [Tarkoma, 2010]. In
this case, a node is typically a software process equipped with a list of other
processes it can directly send messages to. It may also be the case that a neigh-
bor needs to be first looked up. Message passing is then done through TCP/IP
or UDP channels, but as we shall see in Chapter 4, higher-level facilities may
be available as well. There are roughly two types of overlay networks:

Structured overlay: In this case, each node has a well-defined set of neighbors
with whom it can communicate. For example, the nodes are organized
in a tree or logical ring.

Unstructured overlay: In these overlays, each node has a number of refer-
ences to randomly selected other nodes.

downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK DS 3.02

4 CHAPTER 1. INTRODUCTION

In any case, an overlay network should, in principle, always be connected,
meaning that between any two nodes there is always a communication path
allowing those nodes to route messages from one to the other. A well-known
class of overlays is formed by peer-to-peer (P2P) networks. Examples of
overlays will be discussed in detail in Chapter 2 and later chapters. It is
important to realize that the organization of nodes requires special effort and
that it is sometimes one of the more intricate parts of distributed-systems
management.

Characteristic 2: Single coherent system

As mentioned, a distributed system should appear as a single coherent system.
In some cases, researchers have even gone so far as to say that there should be
a single-system view, meaning that end users should not even notice that they
are dealing with the fact that processes, data, and control are dispersed across
a computer network. Achieving a single-system view is often asking too much,
for which reason, in our definition of a distributed system, we have opted for
something weaker, namely that it appears to be coherent. Roughly speaking, a
distributed system is coherent if it behaves according to the expectations of its
users. More specifically, in a single coherent system the collection of nodes
as a whole operates the same, no matter where, when, and how interaction
between a user and the system takes place.

Offering a single coherent view is often challenging enough. For example,
it requires that an end user would not be able to tell exactly on which computer
a process is currently executing, or even perhaps that part of a task has
been spawned off to another process executing somewhere else. Likewise,
where data is stored should be of no concern, and neither should it matter
that the system may be replicating data to enhance performance. This so-
called distribution transparency, which we will discuss more extensively in
Section 1.2, is an important design goal of distributed systems. In a sense, it
is akin to the approach taken in many Unix-like operating systems in which
resources are accessed through a unifying file-system interface, effectively
hiding the differences between files, storage devices, and main memory, but
also networks.

However, striving for a single coherent system introduces an important
trade-off. As we cannot ignore the fact that a distributed system consists of
multiple, networked nodes, it is inevitable that at any time only a part of the
system fails. This means that unexpected behavior in which, for example,
some applications may continue to execute successfully while others come
to a grinding halt, is a reality that needs to be dealt with. Although partial
failures are inherent to any complex system, in distributed systems they are
particularly difficult to hide. It lead Turing-Award winner Leslie Lamport, to
describe a distributed system as “[. . .] one in which the failure of a computer
you didn’t even know existed can render your own computer unusable.”

DS 3.02 downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK

1.1. WHAT IS A DISTRIBUTED SYSTEM? 5

Middleware and distributed systems

To assist the development of distributed applications, distributed systems are
often organized to have a separate layer of software that is logically placed on
top of the respective operating systems of the computers that are part of the
system. This organization is shown in Figure 1.1, leading to what is known as
middleware [Bernstein, 1996].

Figure 1.1: A distributed system organized in a middleware layer, which
extends over multiple machines, offering each application the same interface.

Figure 1.1 shows four networked computers and three applications, of
which application B is distributed across computers 2 and 3. Each application
is offered the same interface. The distributed system provides the means for
components of a single distributed application to communicate with each
other, but also to let different applications communicate. At the same time,
it hides, as best and reasonably as possible, the differences in hardware and
operating systems from each application.

In a sense, middleware is the same to a distributed system as what an
operating system is to a computer: a manager of resources offering its ap-
plications to efficiently share and deploy those resources across a network.
Next to resource management, it offers services that can also be found in most
operating systems, including:

• Facilities for interapplication communication.
• Security services.
• Accounting services.
• Masking of and recovery from failures.

The main difference with their operating-system equivalents, is that mid-
dleware services are offered in a networked environment. Note also that
most services are useful to many applications. In this sense, middleware can

downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK DS 3.02

6 CHAPTER 1. INTRODUCTION

also be viewed as a container of commonly used components and functions
that now no longer have to be implemented by applications separately. To
further illustrate these points, let us briefly consider a few examples of typical
middleware services.

Communication: A common communication service is the so-called Remote
Procedure Call (RPC). An RPC service, to which we return in Chapter 4,
allows an application to invoke a function that is implemented and
executed on a remote computer as if it was locally available. To this
end, a developer need merely specify the function header expressed in
a special programming language, from which the RPC subsystem can
then generate the necessary code that establishes remote invocations.

Transactions: Many applications make use of multiple services that are dis-
tributed among several computers. Middleware generally offers special
support for executing such services in an all-or-nothing fashion, com-
monly referred to as an atomic transaction. In this case, the application
developer need only specify the remote services involved, and by fol-
lowing a standardized protocol, the middleware makes sure that every
service is invoked, or none at all.

Service composition: It is becoming increasingly common to develop new
applications by taking existing programs and gluing them together. This
is notably the case for many Web-based applications, in particular those
known as Web services [Alonso et al., 2004]. Web-based middleware can
help by standardizing the way Web services are accessed and providing
the means to generate their functions in a specific order. A simple
example of how service composition is deployed is formed by mashups:
Web pages that combine and aggregate data from different sources.
Well-known mashups are those based on Google maps in which maps
are enhanced with extra information such as trip planners or real-time
weather forecasts.

Reliability: As a last example, there has been a wealth of research on pro-
viding enhanced functions for building reliable distributed applications.
The Horus toolkit [van Renesse et al., 1994] allows a developer to build
an application as a group of processes such that any message sent by
one process is guaranteed to be received by all or no other process. As it
turns out, such guarantees can greatly simplify developing distributed
applications and are typically implemented as part of the middleware.

Note 1.1 (Historical note: The term middleware)
Although the term middleware became popular in the mid 1990s, it was most
likely mentioned for the first time in a report on a NATO software engineering

DS 3.02 downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK

1.2. DESIGN GOALS 7

conference, edited by Peter Naur and Brian Randell in October 1968 [Naur and
Randell, 1968]. Indeed, middleware was placed precisely between applications
and service routines (the equivalent of operating systems).

1.2 Design goals

Just because it is possible to build distributed systems does not necessarily
mean that it is a good idea. In this section we discuss four important goals
that should be met to make building a distributed system worth the effort. A
distributed system should make resources easily accessible; it should hide the
fact that resources are distributed across a network; it should be open; and it
should be scalable.

Supporting resource sharing

An important goal of a distributed system is to make it easy for users (and
applications) to access and share remote resources. Resources can be virtually
anything, but typical examples include peripherals, storage facilities, data,
files, services, and networks, to name just a few. There are many reasons for
wanting to share resources. One obvious reason is that of economics. For
example, it is cheaper to have a single high-end reliable storage facility be
shared than having to buy and maintain storage for each user separately.

Connecting users and resources also makes it easier to collaborate and
exchange information, as is illustrated by the success of the Internet with
its simple protocols for exchanging files, mail, documents, audio, and video.
The connectivity of the Internet has allowed geographically widely dispersed
groups of people to work together by means of all kinds of groupware, that is,
software for collaborative editing, teleconferencing, and so on, as is illustrated
by multinational software-development companies that have outsourced much
of their code production to Asia.

However, resource sharing in distributed systems is perhaps best illustrated
by the success of file-sharing peer-to-peer networks like BitTorrent. These
distributed systems make it extremely simple for users to share files across
the Internet. Peer-to-peer networks are often associated with distribution of
media files such as audio and video. In other cases, the technology is used for
distributing large amounts of data, as in the case of software updates, backup
services, and data synchronization across multiple servers.

Note 1.2 (More information: Sharing folders worldwide)
To illustrate where we stand when it comes to seamless integration of resource-
sharing facilities in a networked environment, Web-based services are now de-
ployed that allow a group of users to place files into a special shared folder that is

downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK DS 3.02

8 CHAPTER 1. INTRODUCTION

maintained by a third party somewhere on the Internet. Using special software,
the shared folder is barely distinguishable from other folders on a user’s computer.
In effect, these services replace the use of a shared directory on a local distributed
file system, making data available to users independent of the organization they
belong to, and independent of where they are. The service is offered for different
operating systems. Where exactly data are stored is completely hidden from the
end user.

Making distribution transparent

An important goal of a distributed system is to hide the fact that its processes
and resources are physically distributed across multiple computers possibly
separated by large distances. In other words, it tries to make the distribution
of processes and resources transparent, that is, invisible, to end users and
applications.

Types of distribution transparency

The concept of transparency can be applied to several aspects of a distributed
system, of which the most important ones are listed in Figure 1.2. We use the
term object to mean either a process or a resource.

Transparency Description
Access Hide differences in data representation and how an object is

accessed
Location Hide where an object is located
Relocation Hide that an object may be moved to another location while

in use
Migration Hide that an object may move to another location
Replication Hide that an object is replicated
Concurrency Hide that an object may be shared by several independent

users
Failure Hide the failure and recovery of an object

Figure 1.2: Different forms of transparency in a distributed system (see ISO
[1995]). An object can be a resource or a process.

Access transparency deals with hiding differences in data representation
and the way that objects can be accessed. At a basic level, we want to hide
differences in machine architectures, but more important is that we reach
agreement on how data is to be represented by different machines and operat-
ing systems. For example, a distributed system may have computer systems

DS 3.02 downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK

1.2. DESIGN GOALS 9

that run different operating systems, each having their own file-naming con-
ventions. Differences in naming conventions, differences in file operations, or
differences in how low-level communication with other processes is to take
place, are examples of access issues that should preferably be hidden from
users and applications.

An important group of transparency types concerns the location of a pro-
cess or resource. Location transparency refers to the fact that users cannot
tell where an object is physically located in the system. Naming plays an
important role in achieving location transparency. In particular, location
transparency can often be achieved by assigning only logical names to re-
sources, that is, names in which the location of a resource is not secretly
encoded. An example of a such a name is the uniform resource locator (URL)
http://www.prenhall.com/index.html, which gives no clue about the actual
location of Prentice Hall’s main Web server. The URL also gives no clue as
to whether the file index.html has always been at its current location or was
recently moved there. For example, the entire site may have been moved from
one data center to another, yet users should not notice. The latter is an exam-
ple of relocation transparency, which is becoming increasingly important in
the context of cloud computing to which we return later in this chapter.

Where relocation transparency refers to being moved by the distributed
system, migration transparency is offered by a distributed system when it
supports the mobility of processes and resources initiated by users, with-
out affecting ongoing communication and operations. A typical example
is communication between mobile phones: regardless whether two people
are actually moving, mobile phones will allow them to continue their con-
versation. Other examples that come to mind include online tracking and
tracing of goods as they are being transported from one place to another,
and teleconferencing (partly) using devices that are equipped with mobile
Internet.

As we shall see, replication plays an important role in distributed systems.
For example, resources may be replicated to increase availability or to im-
prove performance by placing a copy close to the place where it is accessed.
Replication transparency deals with hiding the fact that several copies of a
resource exist, or that several processes are operating in some form of lockstep
mode so that one can take over when another fails. To hide replication from
users, it is necessary that all replicas have the same name. Consequently,
a system that supports replication transparency should generally support
location transparency as well, because it would otherwise be impossible to
refer to replicas at different locations.

We already mentioned that an important goal of distributed systems is
to allow sharing of resources. In many cases, sharing resources is done in a
cooperative way, as in the case of communication channels. However, there
are also many examples of competitive sharing of resources. For example,

downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK DS 3.02

http://www.prenhall.com/index.html
index.html

10 CHAPTER 1. INTRODUCTION

two independent users may each have stored their files on the same file server
or may be accessing the same tables in a shared database. In such cases, it
is important that each user does not notice that the other is making use of
the same resource. This phenomenon is called concurrency transparency.
An important issue is that concurrent access to a shared resource leaves that
resource in a consistent state. Consistency can be achieved through locking
mechanisms, by which users are, in turn, given exclusive access to the desired
resource. A more refined mechanism is to make use of transactions, but these
may be difficult to implement in a distributed system, notably when scalability
is an issue.

Last, but certainly not least, it is important that a distributed system
provides failure transparency. This means that a user or application does not
notice that some piece of the system fails to work properly, and that the system
subsequently (and automatically) recovers from that failure. Masking failures
is one of the hardest issues in distributed systems and is even impossible
when certain apparently realistic assumptions are made, as we will discuss
in Chapter 8. The main difficulty in masking and transparently recovering
from failures lies in the inability to distinguish between a dead process and a
painfully slowly responding one. For example, when contacting a busy Web
server, a browser will eventually time out and report that the Web page is
unavailable. At that point, the user cannot tell whether the server is actually
down or that the network is badly congested.

Degree of distribution transparency

Although distribution transparency is generally considered preferable for any
distributed system, there are situations in which attempting to blindly hide
all distribution aspects from users is not a good idea. A simple example is
requesting your electronic newspaper to appear in your mailbox before 7 AM
local time, as usual, while you are currently at the other end of the world
living in a different time zone. Your morning paper will not be the morning
paper you are used to.

Likewise, a wide-area distributed system that connects a process in San
Francisco to a process in Amsterdam cannot be expected to hide the fact
that Mother Nature will not allow it to send a message from one process to
the other in less than approximately 35 milliseconds. Practice shows that it
actually takes several hundred milliseconds using a computer network. Signal
transmission is not only limited by the speed of light, but also by limited
processing capacities and delays in the intermediate switches.

There is also a trade-off between a high degree of transparency and the
performance of a system. For example, many Internet applications repeatedly
try to contact a server before finally giving up. Consequently, attempting to
mask a transient server failure before trying another one may slow down the

DS 3.02 downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK

1.2. DESIGN GOALS 11

system as a whole. In such a case, it may have been better to give up earlier,
or at least let the user cancel the attempts to make contact.

Another example is where we need to guarantee that several replicas,
located on different continents, must be consistent all the time. In other words,
if one copy is changed, that change should be propagated to all copies before
allowing any other operation. It is clear that a single update operation may
now even take seconds to complete, something that cannot be hidden from
users.

Finally, there are situations in which it is not at all obvious that hiding
distribution is a good idea. As distributed systems are expanding to devices
that people carry around and where the very notion of location and context
awareness is becoming increasingly important, it may be best to actually expose
distribution rather than trying to hide it. An obvious example is making use
of location-based services, which can often be found on mobile phones, such
as finding the nearest Chinese take-away or checking whether any of your
friends are nearby.

There are also other arguments against distribution transparency. Recog-
nizing that full distribution transparency is simply impossible, we should ask
ourselves whether it is even wise to pretend that we can achieve it. It may
be much better to make distribution explicit so that the user and applica-
tion developer are never tricked into believing that there is such a thing as
transparency. The result will be that users will much better understand the
(sometimes unexpected) behavior of a distributed system, and are thus much
better prepared to deal with this behavior.

Note 1.3 (Discussion: Against distribution transparency)
Several researchers have argued that hiding distribution will only lead to further
complicating the development of distributed systems, exactly for the reason that
full distribution transparency can never be achieved. A popular technique for
achieving access transparency is to extend procedure calls to remote servers. How-
ever, Waldo et al. [1997] already pointed out that attempting to hide distribution
by means of such remote procedure calls can lead to poorly understood semantics,
for the simple reason that a procedure call does change when executed over a
faulty communication link.

As an alternative, various researchers and practitioners are now arguing for
less transparency, for example, by more explicitly using message-style commu-
nication, or more explicitly posting requests to, and getting results from remote
machines, as is done in the Web when fetching pages. Such solutions will be
discussed in detail in the next chapter.

A somewhat radical standpoint is taken by Wams [2011] by stating that partial
failures preclude relying on the successful execution of a remote service. If such
reliability cannot be guaranteed, it is then best to always perform only local
executions, leading to the copy-before-use principle. According to this principle,
data can be accessed only after they have been transferred to the machine of the

downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK DS 3.02

12 CHAPTER 1. INTRODUCTION

process wanting that data. Moreover, modifying a data item should not be done.
Instead, it can only be updated to a new version. It is not difficult to imagine
that many other problems will surface. However, Wams shows that many existing
applications can be retrofitted to this alternative approach without sacrificing
functionality.

The conclusion is that aiming for distribution transparency may be a
nice goal when designing and implementing distributed systems, but that
it should be considered together with other issues such as performance
and comprehensibility. The price for achieving full transparency may be
surprisingly high.

Being open

Another important goal of distributed systems is openness. An open dis-
tributed system is essentially a system that offers components that can easily
be used by, or integrated into other systems. At the same time, an open
distributed system itself will often consist of components that originate from
elsewhere.

Interoperability, composability, and extensibility

To be open means that components should adhere to standard rules that
describe the syntax and semantics of what those components have to offer (i.e.,
which service they provide). A general approach is to define services through
interfaces using an Interface Definition Language (IDL). Interface definitions
written in an IDL nearly always capture only the syntax of services. In other
words, they specify precisely the names of the functions that are available
together with types of the parameters, return values, possible exceptions that
can be raised, and so on. The hard part is specifying precisely what those
services do, that is, the semantics of interfaces. In practice, such specifications
are given in an informal way by means of natural language.

If properly specified, an interface definition allows an arbitrary process
that needs a certain interface, to talk to another process that provides that
interface. It also allows two independent parties to build completely different
implementations of those interfaces, leading to two separate components that
operate in exactly the same way.

Proper specifications are complete and neutral. Complete means that
everything that is necessary to make an implementation has indeed been
specified. However, many interface definitions are not at all complete, so
that it is necessary for a developer to add implementation-specific details.
Just as important is the fact that specifications do not prescribe what an
implementation should look like; they should be neutral.

DS 3.02 downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK

1.2. DESIGN GOALS 13

As pointed out in Blair and Stefani [1998], completeness and neutrality are
important for interoperability and portability. Interoperability characterizes
the extent by which two implementations of systems or components from
different manufacturers can co-exist and work together by merely relying
on each other’s services as specified by a common standard. Portability
characterizes to what extent an application developed for a distributed system
A can be executed, without modification, on a different distributed system B
that implements the same interfaces as A.

Another important goal for an open distributed system is that it should
be easy to configure the system out of different components (possibly from
different developers). Also, it should be easy to add new components or
replace existing ones without affecting those components that stay in place.
In other words, an open distributed system should also be extensible. For
example, in an extensible system, it should be relatively easy to add parts that
run on a different operating system, or even to replace an entire file system.

Note 1.4 (Discussion: Open systems in practice)
Of course, what we have just described is an ideal situation. Practice shows that
many distributed systems are not as open as we would like and that still a lot
of effort is needed to put various bits and pieces together to make a distributed
system. One way out of the lack of openness is to simply reveal all the gory
details of a component and to provide developers with the actual source code.
This approach is becoming increasingly popular, leading to so-called open source
projects where large groups of people contribute to improving and debugging
systems. Admittedly, this is as open as a system can get, but if it is the best way is
questionable.

Separating policy from mechanism

To achieve flexibility in open distributed systems, it is crucial that the system
be organized as a collection of relatively small and easily replaceable or
adaptable components. This implies that we should provide definitions of not
only the highest-level interfaces, that is, those seen by users and applications,
but also definitions for interfaces to internal parts of the system and describe
how those parts interact. This approach is relatively new. Many older and
even contemporary systems are constructed using a monolithic approach
in which components are only logically separated but implemented as one,
huge program. This approach makes it hard to replace or adapt a component
without affecting the entire system. Monolithic systems thus tend to be closed
instead of open.

The need for changing a distributed system is often caused by a component
that does not provide the optimal policy for a specific user or application.
As an example, consider caching in Web browsers. There are many different
parameters that need to be considered:

downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK DS 3.02

14 CHAPTER 1. INTRODUCTION

Storage: Where is data to be cached? Typically, there will be an in-memory
cache next to storage on disk. In the latter case, the exact position in the
local file system needs to be considered.

Exemption: When the cache fills up, which data is to be removed so that
newly fetched pages can be stored?

Sharing: Does each browser make use of a private cache, or is a cache to be
shared among browsers of different users?

Refreshing: When does a browser check if cached data is still up-to-date?
Caches are most effective when a browser can return pages without
having to contact the original Web site. However, this bears the risk of
returning stale data. Note also that refresh rates are highly dependent
on which data is actually cached: whereas timetables for trains hardly
change, this is not the case for Web pages showing current highway-
traffic conditions, or worse yet, stock prices.

What we need is a separation between policy and mechanism. In the case
of Web caching, for example, a browser should ideally provide facilities for
only storing documents and at the same time allow users to decide which
documents are stored and for how long. In practice, this can be implemented
by offering a rich set of parameters that the user can set (dynamically). When
taking this a step further, a browser may even offer facilities for plugging in
policies that a user has implemented as a separate component.

Note 1.5 (Discussion: Is a strict separation really what we need?)
In theory, strictly separating policies from mechanisms seems to be the way to go.
However, there is an important trade-off to consider: the stricter the separation, the
more we need to make sure that we offer the appropriate collection of mechanisms.
In practice this means that a rich set of features is offered, in turn leading to many
configuration parameters. As an example, the popular Firefox browser comes
with a few hundred configuration parameters. Just imagine how the configuration
space explodes when considering large distributed systems consisting of many
components. In other words, strict separation of policies and mechanisms may
lead to highly complex configuration problems.

One option to alleviate these problems is to provide reasonable defaults, and
this is what often happens in practice. An alternative approach is one in which
the system observes its own usage and dynamically changes parameter settings.
This leads to what are known as self-configurable systems. Nevertheless, the
fact alone that many mechanisms need to be offered in order to support a wide
range of policies often makes coding distributed systems very complicated. Hard
coding policies into a distributed system may reduce complexity considerably,
but at the price of less flexibility.

Finding the right balance in separating policies from mechanisms is one of the
reasons why designing a distributed system is often more an art than a science.

DS 3.02 downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK

1.2. DESIGN GOALS 15

Being scalable

For many of us, worldwide connectivity through the Internet is as common
as being able to send a postcard to anyone anywhere around the world.
Moreover, where until recently we were used to having relatively powerful
desktop computers for office applications and storage, we are now witnessing
that such applications and services are being placed in what has been coined
“the cloud,” in turn leading to an increase of much smaller networked devices
such as tablet computers. With this in mind, scalability has become one of the
most important design goals for developers of distributed systems.

Scalability dimensions

Scalability of a system can be measured along at least three different dimen-
sions (see [Neuman, 1994]):

Size scalability: A system can be scalable with respect to its size, meaning
that we can easily add more users and resources to the system without
any noticeable loss of performance.

Geographical scalability: A geographically scalable system is one in which
the users and resources may lie far apart, but the fact that communication
delays may be significant is hardly noticed.

Administrative scalability: An administratively scalable system is one that
can still be easily managed even if it spans many independent adminis-
trative organizations.

Let us take a closer look at each of these three scalability dimensions.

Size scalability. When a system needs to scale, very different types of prob-
lems need to be solved. Let us first consider scaling with respect to size.
If more users or resources need to be supported, we are often confronted
with the limitations of centralized services, although often for very different
reasons. For example, many services are centralized in the sense that they
are implemented by means of a single server running on a specific machine
in the distributed system. In a more modern setting, we may have a group
of collaborating servers co-located on a cluster of tightly coupled machines
physically placed at the same location. The problem with this scheme is
obvious: the server, or group of servers, can simply become a bottleneck when
it needs to process an increasing number of requests. To illustrate how this
can happen, let us assume that a service is implemented on a single machine.
In that case there are essentially three root causes for becoming a bottleneck:

• The computational capacity, limited by the CPUs
• The storage capacity, including the I/O transfer rate

downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK DS 3.02

16 CHAPTER 1. INTRODUCTION

• The network between the user and the centralized service

Let us first consider the computational capacity. Just imagine a service for
computing optimal routes taking real-time traffic information into account. It
is not difficult to imagine that this may be primarily a compute-bound service
requiring several (tens of) seconds to complete a request. If there is only a
single machine available, then even a modern high-end system will eventually
run into problems if the number of requests increases beyond a certain point.

Likewise, but for different reasons, we will run into problems when having
a service that is mainly I/O bound. A typical example is a poorly designed
centralized search engine. The problem with content-based search queries is
that we essentially need to match a query against an entire data set. Even
with advanced indexing techniques, we may still face the problem of having
to process a huge amount of data exceeding the main-memory capacity of
the machine running the service. As a consequence, much of the processing
time will be determined by the relatively slow disk accesses and transfer of
data between disk and main memory. Simply adding more or higher-speed
disks will prove not to be a sustainable solution as the number of requests
continues to increase.

Finally, the network between the user and the service may also be the cause
of poor scalability. Just imagine a video-on-demand service that needs to
stream high-quality video to multiple users. A video stream can easily require
a bandwidth of 8 to 10 Mbps, meaning that if a service sets up point-to-point
connections with its customers, it may soon hit the limits of the network
capacity of its own outgoing transmission lines.

There are several solutions to attack size scalability which we discuss
below after having looked into geographical and administrative scalability.

Note 1.6 (Advanced: Analyzing service capacity)
Size scalability problems for centralized services can be formally analyzed using
queuing theory and making a few simplifying assumptions. At a conceptual level,
a centralized service can be modeled as the simple queuing system shown in
Figure 1.3: requests are submitted to the service where they are queued until
further notice. As soon as the process can handle a next request, it fetches it from
the queue, does its work, and produces a response. We largely follow Menasce
and Almeida [2002] in explaining the performance of a centralized service.

Figure 1.3: A simple model of a service as a queuing system.

In many cases, we may assume that the queue has an infinite capacity, meaning
that there is no restriction on the number of requests that can be accepted for

DS 3.02 downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK

1.2. DESIGN GOALS 17

further processing. Strictly speaking, this means that the arrival rate of requests is
not influenced by what is currently in the queue or being processed. Assuming
that the arrival rate of requests is λ requests per second, and that the processing
capacity of the service is µ requests per second, one can compute that the fraction
of time pk that there are k requests in the system is equal to:

pk =
(
1− λ

µ

)(λ

µ

)k

If we define the utilization U of a service as the fraction of time that it is busy,
then clearly,

U = ∑
k>0

pk = 1− p0 =
λ

µ
⇒ pk = (1−U)Uk

We can then compute the average number N of requests in the system as

N = ∑
k≥0

k · pk = ∑
k≥0

k · (1−U)Uk = (1−U) ∑
k≥0

k ·Uk =
(1−U)U
(1−U)2 =

U
1−U

.

What we are really interested in, is the response time R: how long does it take
before the service to process a request, including the time spent in the queue.
To that end, we need the average throughput X. Considering that the service is
“busy” when at least one request is being processed, and that this then happens
with a throughput of µ requests per second, and during a fraction U of the total
time, we have:

X = U · µ︸ ︷︷ ︸
server at work

+ (1−U) · 0︸ ︷︷ ︸
server idle

=
λ

µ
· µ = λ

Using Little’s formula [Trivedi, 2002], we can then derive the response time as

R =
N
X

=
S

1−U
⇒ R

S
=

1
1−U

where S = 1
µ , the actual service time. Note that if U is very small, the response-

to-service time ratio is close to 1, meaning that a request is virtually instantly
processed, and at the maximum speed possible. However, as soon as the utilization
comes closer to 1, we see that the response-to-server time ratio quickly increases to
very high values, effectively meaning that the system is coming close to a grinding
halt. This is where we see scalability problems emerge. From this simple model,
we can see that the only solution is bringing down the service time S. We leave it
as an exercise to the reader to explore how S may be decreased.

Geographical scalability. Geographical scalability has its own problems.
One of the main reasons why it is still difficult to scale existing distributed
systems that were designed for local-area networks is that many of them are
based on synchronous communication. In this form of communication, a

downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK DS 3.02

18 CHAPTER 1. INTRODUCTION

party requesting service, generally referred to as a client, blocks until a reply is
sent back from the server implementing the service. More specifically, we often
see a communication pattern consisting of many client-server interactions as
may be the case with database transactions. This approach generally works
fine in LANs where communication between two machines is often at worst
a few hundred microseconds. However, in a wide-area system, we need
to take into account that interprocess communication may be hundreds of
milliseconds, three orders of magnitude slower. Building applications using
synchronous communication in wide-area systems requires a great deal of
care (and not just a little patience), notably with a rich interaction pattern
between client and server.

Another problem that hinders geographical scalability is that communica-
tion in wide-area networks is inherently much less reliable than in local-area
networks. In addition, we also need to deal with limited bandwidth. The
effect is that solutions developed for local-area networks cannot always be
easily ported to a wide-area system. A typical example is streaming video. In
a home network, even when having only wireless links, ensuring a stable, fast
stream of high-quality video frames from a media server to a display is quite
simple. Simply placing that same server far away and using a standard TCP
connection to the display will surely fail: bandwidth limitations will instantly
surface, but also maintaining the same level of reliability can easily cause
headaches.

Yet another issue that pops up when components lie far apart is the
fact that wide-area systems generally have only very limited facilities for
multipoint communication. In contrast, local-area networks often support
efficient broadcasting mechanisms. Such mechanisms have proven to be
extremely useful for discovering components and services, which is essential
from a management point of view. In wide-area systems, we need to develop
separate services, such as naming and directory services to which queries can
be sent. These support services, in turn, need to be scalable as well and in
many cases no obvious solutions exist as we will encounter in later chapters.

Administrative scalability. Finally, a difficult, and in many cases open, ques-
tion is how to scale a distributed system across multiple, independent adminis-
trative domains. A major problem that needs to be solved is that of conflicting
policies with respect to resource usage (and payment), management, and
security.

To illustrate, for many years scientists have been looking for solutions to
share their (often expensive) equipment in what is known as a computational
grid. In these grids, a global distributed system is constructed as a federation
of local distributed systems, allowing a program running on a computer at
organization A to directly access resources at organization B.

For example, many components of a distributed system that reside within

DS 3.02 downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK

1.2. DESIGN GOALS 19

a single domain can often be trusted by users that operate within that same
domain. In such cases, system administration may have tested and certified
applications, and may have taken special measures to ensure that such com-
ponents cannot be tampered with. In essence, the users trust their system
administrators. However, this trust does not expand naturally across domain
boundaries.

Note 1.7 (Example: A modern radio telescope)
As an example, consider developing a modern radio telescope, such as the Pierre
Auger Observatory [Abraham et al., 2004]. The final system can be considered as
a federated distributed system:

• The radio telescope itself may be a wireless distributed system developed
as a grid of a few thousand sensor nodes, each collecting radio signals
and collaborating with neighboring nodes to filter out relevant events. The
nodes dynamically maintain a sink tree by which selected events are routed
to a central point for further analysis.

• The central point needs to be a reasonably powerful system, capable of
storing and processing the events sent to it by the sensor nodes. This system
is necessarily placed in proximity of the sensor nodes, but is otherwise to
be considered to operate independently. Depending on its functionality, it
may operate as a small local distributed system. In particular, it stores all
recorded events and offers access to remote systems owned by partners in
the consortium.

• Most partners have local distributed systems (often in the form of a cluster
of computers) that they use to further process the data collected by the
telescope. In this case, the local systems directly access the central point at
the telescope using a standard communication protocol. Naturally, many
results produced within the consortium are made available to each partner.

It is thus seen that the complete system will cross boundaries of several adminis-
trative domains, and that special measures are needed to ensure that data that
is supposed to be accessible only to (specific) consortium partners cannot be
disclosed to unauthorized parties. How to achieve administrative scalability is
not obvious.

If a distributed system expands to another domain, two types of security
measures need to be taken. First, the distributed system has to protect
itself against malicious attacks from the new domain. For example, users
from the new domain may have only read access to the file system in its
original domain. Likewise, facilities such as expensive image setters or high-
performance computers may not be made available to unauthorized users.
Second, the new domain has to protect itself against malicious attacks from
the distributed system. A typical example is that of downloading programs
such as applets in Web browsers. Basically, the new domain does not know

downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK DS 3.02

20 CHAPTER 1. INTRODUCTION

what to expect from such foreign code. The problem, as we shall see in
Chapter 9, is how to enforce those limitations.

As a counterexample of distributed systems spanning multiple adminis-
trative domains that apparently do not suffer from administrative scalability
problems, consider modern file-sharing peer-to-peer networks. In these cases,
end users simply install a program implementing distributed search and
download functions and within minutes can start downloading files. Other ex-
amples include peer-to-peer applications for telephony over the Internet such
as Skype [Baset and Schulzrinne, 2006], and peer-assisted audio-streaming
applications such as Spotify [Kreitz and Niemelä, 2010]. What these dis-
tributed systems have in common is that end users, and not administrative
entities, collaborate to keep the system up and running. At best, underlying
administrative organizations such as Internet Service Providers (ISPs) can
police the network traffic that these peer-to-peer systems cause, but so far
such efforts have not been very effective.

Scaling techniques

Having discussed some of the scalability problems brings us to the question
of how those problems can generally be solved. In most cases, scalability
problems in distributed systems appear as performance problems caused by
limited capacity of servers and network. Simply improving their capacity (e.g.,
by increasing memory, upgrading CPUs, or replacing network modules) is
often a solution, referred to as scaling up. When it comes to scaling out, that
is, expanding the distributed system by essentially deploying more machines,
there are basically only three techniques we can apply: hiding communication
latencies, distribution of work, and replication (see also Neuman [1994]).

Hiding communication latencies. Hiding communication latencies is appli-
cable in the case of geographical scalability. The basic idea is simple: try to
avoid waiting for responses to remote-service requests as much as possible.
For example, when a service has been requested at a remote machine, an
alternative to waiting for a reply from the server is to do other useful work at
the requester’s side. Essentially, this means constructing the requesting appli-
cation in such a way that it uses only asynchronous communication. When
a reply comes in, the application is interrupted and a special handler is called
to complete the previously issued request. Asynchronous communication
can often be used in batch-processing systems and parallel applications in
which independent tasks can be scheduled for execution while another task is
waiting for communication to complete. Alternatively, a new thread of control
can be started to perform the request. Although it blocks waiting for the reply,
other threads in the process can continue.

However, there are many applications that cannot make effective use of
asynchronous communication. For example, in interactive applications when

DS 3.02 downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK

1.2. DESIGN GOALS 21

(a)

(b)

Figure 1.4: The difference between letting (a) a server or (b) a client check
forms as they are being filled.

a user sends a request he will generally have nothing better to do than to
wait for the answer. In such cases, a much better solution is to reduce the
overall communication, for example, by moving part of the computation that
is normally done at the server to the client process requesting the service. A
typical case where this approach works is accessing databases using forms.
Filling in forms can be done by sending a separate message for each field and
waiting for an acknowledgment from the server, as shown in Figure 1.4(a). For
example, the server may check for syntactic errors before accepting an entry.
A much better solution is to ship the code for filling in the form, and possibly
checking the entries, to the client, and have the client return a completed
form, as shown in Figure 1.4(b). This approach of shipping code is widely
supported by the Web by means of Java applets and Javascript.

Partitioning and distribution. Another important scaling technique is par-
titioning and distribution, which involves taking a component, splitting it
into smaller parts, and subsequently spreading those parts across the system.
A good example of partitioning and distribution is the Internet Domain Name
System (DNS). The DNS name space is hierarchically organized into a tree
of domains, which are divided into nonoverlapping zones, as shown for the
original DNS in Figure 1.5. The names in each zone are handled by a single
name server. Without going into too many details now (we return to DNS
extensively in Chapter 5), one can think of each path name being the name of
a host in the Internet, and is thus associated with a network address of that

downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK DS 3.02

22 CHAPTER 1. INTRODUCTION

host. Basically, resolving a name means returning the network address of the
associated host. Consider, for example, the name flits.cs.vu.nl. To resolve this
name, it is first passed to the server of zone Z1 (see Figure 1.5) which returns
the address of the server for zone Z2, to which the rest of name, flits.cs.vu, can
be handed. The server for Z2 will return the address of the server for zone
Z3, which is capable of handling the last part of the name and will return the
address of the associated host.

Figure 1.5: An example of dividing the (original) DNS name space into zones.

This examples illustrates how the naming service, as provided by DNS, is
distributed across several machines, thus avoiding that a single server has to
deal with all requests for name resolution.

As another example, consider the World Wide Web. To most users, the
Web appears to be an enormous document-based information system in which
each document has its own unique name in the form of a URL. Conceptually,
it may even appear as if there is only a single server. However, the Web is
physically partitioned and distributed across a few hundred million servers,
each handling a number of Web documents. The name of the server handling
a document is encoded into that document’s URL. It is only because of this
distribution of documents that the Web has been capable of scaling to its
current size.

Replication. Considering that scalability problems often appear in the form
of performance degradation, it is generally a good idea to actually repli-
cate components across a distributed system. Replication not only increases
availability, but also helps to balance the load between components leading
to better performance. Also, in geographically widely dispersed systems,
having a copy nearby can hide much of the communication latency problems
mentioned before.

Caching is a special form of replication, although the distinction between
the two is often hard to make or even artificial. As in the case of replication,

DS 3.02 downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK

1.2. DESIGN GOALS 23

caching results in making a copy of a resource, generally in the proximity of
the client accessing that resource. However, in contrast to replication, caching
is a decision made by the client of a resource and not by the owner of a
resource.

There is one serious drawback to caching and replication that may ad-
versely affect scalability. Because we now have multiple copies of a resource,
modifying one copy makes that copy different from the others. Consequently,
caching and replication leads to consistency problems.

To what extent inconsistencies can be tolerated depends highly on the
usage of a resource. For example, many Web users find it acceptable that
their browser returns a cached document of which the validity has not been
checked for the last few minutes. However, there are also many cases in which
strong consistency guarantees need to be met, such as in the case of electronic
stock exchanges and auctions. The problem with strong consistency is that
an update must be immediately propagated to all other copies. Moreover, if
two updates happen concurrently, it is often also required that updates are
processed in the same order everywhere, introducing an additional global
ordering problem. To further aggravate problems, combining consistency with
other desirable properties such as availability may simply be impossible, as
we discuss in Chapter 8.

Replication therefore often requires some global synchronization mecha-
nism. Unfortunately, such mechanisms are extremely hard or even impossible
to implement in a scalable way, if alone because network latencies have a nat-
ural lower bound. Consequently, scaling by replication may introduce other,
inherently nonscalable solutions. We return to replication and consistency
extensively in Chapter 7.

Discussion. When considering these scaling techniques, one could argue
that size scalability is the least problematic from a technical point of view. In
many cases, increasing the capacity of a machine will save the day, although
perhaps there is a high monetary cost to pay. Geographical scalability is a
much tougher problem as network latencies are naturally bound from below.
As a consequence, we may be forced to copy data to locations close to where
clients are, leading to problems of maintaining copies consistent. Practice
shows that combining distribution, replication, and caching techniques with
different forms of consistency generally leads to acceptable solutions. Finally,
administrative scalability seems to be the most difficult problem to solve,
partly because we need to deal with nontechnical issues, such as politics of or-
ganizations and human collaboration. The introduction and now widespread
use of peer-to-peer technology has successfully demonstrated what can be
achieved if end users are put in control [Lua et al., 2005; Oram, 2001]. How-
ever, peer-to-peer networks are obviously not the universal solution to all
administrative scalability problems.

downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK DS 3.02

24 CHAPTER 1. INTRODUCTION

Pitfalls

It should be clear by now that developing a distributed system is a formidable
task. As we will see many times throughout this book, there are so many
issues to consider at the same time that it seems that only complexity can
be the result. Nevertheless, by following a number of design principles,
distributed systems can be developed that strongly adhere to the goals we set
out in this chapter.

Distributed systems differ from traditional software because components
are dispersed across a network. Not taking this dispersion into account during
design time is what makes so many systems needlessly complex and results in
flaws that need to be patched later on. Peter Deutsch, at the time working at
Sun Microsystems, formulated these flaws as the following false assumptions
that everyone makes when developing a distributed application for the first
time:

• The network is reliable
• The network is secure
• The network is homogeneous
• The topology does not change
• Latency is zero
• Bandwidth is infinite
• Transport cost is zero
• There is one administrator

Note how these assumptions relate to properties that are unique to dis-
tributed systems: reliability, security, heterogeneity, and topology of the
network; latency and bandwidth; transport costs; and finally administrative
domains. When developing nondistributed applications, most of these issues
will most likely not show up.

Most of the principles we discuss in this book relate immediately to these
assumptions. In all cases, we will be discussing solutions to problems that
are caused by the fact that one or more assumptions are false. For example,
reliable networks simply do not exist and lead to the impossibility of achieving
failure transparency. We devote an entire chapter to deal with the fact that
networked communication is inherently insecure. We have already argued
that distributed systems need to be open and take heterogeneity into account.
Likewise, when discussing replication for solving scalability problems, we
are essentially tackling latency and bandwidth problems. We will also touch
upon management issues at various points throughout this book.

1.3 Types of distributed systems

Before starting to discuss the principles of distributed systems, let us first
take a closer look at the various types of distributed systems. We make a

DS 3.02 downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK

1.3. TYPES OF DISTRIBUTED SYSTEMS 25

distinction between distributed computing systems, distributed information
systems, and pervasive systems (which are naturally distributed).

High performance distributed computing

An important class of distributed systems is the one used for high-performance
computing tasks. Roughly speaking, one can make a distinction between two
subgroups. In cluster computing the underlying hardware consists of a
collection of similar workstations or PCs, closely connected by means of a
high-speed local-area network. In addition, each node runs the same operating
system.

The situation becomes very different in the case of grid computing. This
subgroup consists of distributed systems that are often constructed as a
federation of computer systems, where each system may fall under a different
administrative domain, and may be very different when it comes to hardware,
software, and deployed network technology.

From the perspective of grid computing, a next logical step is to simply
outsource the entire infrastructure that is needed for compute-intensive ap-
plications. In essence, this is what cloud computing is all about: providing
the facilities to dynamically construct an infrastructure and compose what
is needed from available services. Unlike grid computing, which is strongly
associated with high-performance computing, cloud computing is much more
than just providing lots of resources. We discuss it briefly here, but will return
to various aspects throughout the book.

Note 1.8 (More information: Parallel processing)
High-performance computing more or less started with the introduction of mul-
tiprocessor machines. In this case, multiple CPUs are organized in such a way
that they all have access to the same physical memory, as shown in Figure 1.6(a).
In contrast, in a multicomputer system several computers are connected through
a network and there is no sharing of main memory, as shown in Figure 1.6(b).
The shared-memory model proved to be highly convenient for improving the
performance of programs and it was relatively easy to program.

Its essence is that multiple threads of control are executing at the same time,
while all threads have access to shared data. Access to that data is controlled
through well-understood synchronization mechanisms like semaphores (see Ben-
Ari [2006] or Herlihy and Shavit [2008] for more information on developing
parallel programs). Unfortunately, the model does not easily scale: so far, ma-
chines have been developed in which only a few tens (and sometimes hundreds)
of CPUs have efficient access to shared memory. To a certain extent, we are seeing
the same limitations for multicore processors.

downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK DS 3.02

26 CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.6: A comparison between (a) multiprocessor and (b) multicom-
puter architectures.

To overcome the limitations of shared-memory systems, high-performance
computing moved to distributed-memory systems. This shift also meant that many
programs had to make use of message passing instead of modifying shared data as
a means of communication and synchronization between threads. Unfortunately,
message-passing models have proven to be much more difficult and error-prone
compared to the shared-memory programming models. For this reason, there
has been significant research in attempting to build so-called distributed shared-
memory multicomputers, or simply DSM system [Amza et al., 1996].

In essence, a DSM system allows a processor to address a memory location
at another computer as if it were local memory. This can be achieved using
existing techniques available to the operating system, for example, by mapping all
main-memory pages of the various processors into a single virtual address space.
Whenever a processor A addresses a page located at another processor B, a page
fault occurs at A allowing the operating system at A to fetch the content of the
referenced page at B in the same way that it would normally fetch it locally from
disk. At the same time, processor B would be informed that the page is currently
not accessible.

This elegant idea of mimicking shared-memory systems using multicomputers
eventually had to be abandoned for the simple reason that performance could
never meet the expectations of programmers, who would rather resort to far
more intricate, yet better (predictably) performing message-passing programming
models.

An important side-effect of exploring the hardware-software boundaries of
parallel processing is a thorough understanding of consistency models, to which
we return extensively in Chapter 7.

Cluster computing

Cluster computing systems became popular when the price/performance
ratio of personal computers and workstations improved. At a certain point, it
became financially and technically attractive to build a supercomputer using
off-the-shelf technology by simply hooking up a collection of relatively simple
computers in a high-speed network. In virtually all cases, cluster computing is

DS 3.02 downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK

1.3. TYPES OF DISTRIBUTED SYSTEMS 27

used for parallel programming in which a single (compute intensive) program
is run in parallel on multiple machines.

Figure 1.7: An example of a cluster computing system.

One widely applied example of a cluster computer is formed by Linux-
based Beowulf clusters, of which the general configuration is shown in Fig-
ure 1.7. Each cluster consists of a collection of compute nodes that are con-
trolled and accessed by means of a single master node. The master typically
handles the allocation of nodes to a particular parallel program, maintains
a batch queue of submitted jobs, and provides an interface for the users of
the system. As such, the master actually runs the middleware needed for the
execution of programs and management of the cluster, while the compute
nodes are equipped with a standard operating system extended with typical
middleware functions for communication, storage, fault tolerance, and so on.
Apart from the master node, the compute nodes are thus seen to be highly
identical.

An even more symmetric approach is followed in the MOSIX system [Amar
et al., 2004]. MOSIX attempts to provide a single-system image of a cluster,
meaning that to a process a cluster computer offers the ultimate distribution
transparency by appearing to be a single computer. As we mentioned, pro-
viding such an image under all circumstances is impossible. In the case of
MOSIX, the high degree of transparency is provided by allowing processes
to dynamically and preemptively migrate between the nodes that make up
the cluster. Process migration allows a user to start an application on any
node (referred to as the home node), after which it can transparently move to
other nodes, for example, to make efficient use of resources. We will return to
process migration in Chapter 3. Similar approaches at attempting to provide
a single-system image are compared by [Lottiaux et al., 2005].

However, several modern cluster computers have been moving away from
these symmetric architectures to more hybrid solutions in which the middle-
ware is functionally partitioned across different nodes, as explained by En-
gelmann et al. [2007]. The advantage of such a separation is obvious: having

downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK DS 3.02

28 CHAPTER 1. INTRODUCTION

compute nodes with dedicated, lightweight operating systems will most likely
provide optimal performance for compute-intensive applications. Likewise,
storage functionality can most likely be optimally handled by other specially
configured nodes such as file and directory servers. The same holds for other
dedicated middleware services, including job management, database services,
and perhaps general Internet access to external services.

Grid computing

A characteristic feature of traditional cluster computing is its homogeneity.
In most cases, the computers in a cluster are largely the same, have the
same operating system, and are all connected through the same network.
However, as we just discussed, there has been a trend towards more hybrid
architectures in which nodes are specifically configured for certain tasks. This
diversity is even more prevalent in grid computing systems: no assumptions
are made concerning similarity of hardware, operating systems, networks,
administrative domains, security policies, etc.

A key issue in a grid-computing system is that resources from different
organizations are brought together to allow the collaboration of a group of
people from different institutions, indeed forming a federation of systems.
Such a collaboration is realized in the form of a virtual organization. The
processes belonging to the same virtual organization have access rights to the
resources that are provided to that organization. Typically, resources consist of
compute servers (including supercomputers, possibly implemented as cluster
computers), storage facilities, and databases. In addition, special networked
devices such as telescopes, sensors, etc., can be provided as well.

Given its nature, much of the software for realizing grid computing evolves
around providing access to resources from different administrative domains,
and to only those users and applications that belong to a specific virtual
organization. For this reason, focus is often on architectural issues. An
architecture initially proposed by Foster et al. [2001] is shown in Figure 1.8,
which still forms the basis for many grid computing systems.

Figure 1.8: A layered architecture for grid computing systems.

DS 3.02 downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK

1.3. TYPES OF DISTRIBUTED SYSTEMS 29

The architecture consists of four layers. The lowest fabric layer provides
interfaces to local resources at a specific site. Note that these interfaces are
tailored to allow sharing of resources within a virtual organization. Typically,
they will provide functions for querying the state and capabilities of a resource,
along with functions for actual resource management (e.g., locking resources).

The connectivity layer consists of communication protocols for supporting
grid transactions that span the usage of multiple resources. For example,
protocols are needed to transfer data between resources, or to simply access
a resource from a remote location. In addition, the connectivity layer will
contain security protocols to authenticate users and resources. Note that in
many cases human users are not authenticated; instead, programs acting on
behalf of the users are authenticated. In this sense, delegating rights from
a user to programs is an important function that needs to be supported in
the connectivity layer. We return to delegation when discussing security in
distributed systems in Chapter 9.

The resource layer is responsible for managing a single resource. It uses the
functions provided by the connectivity layer and calls directly the interfaces
made available by the fabric layer. For example, this layer will offer functions
for obtaining configuration information on a specific resource, or, in general,
to perform specific operations such as creating a process or reading data. The
resource layer is thus seen to be responsible for access control, and hence will
rely on the authentication performed as part of the connectivity layer.

The next layer in the hierarchy is the collective layer. It deals with handling
access to multiple resources and typically consists of services for resource
discovery, allocation and scheduling of tasks onto multiple resources, data
replication, and so on. Unlike the connectivity and resource layer, each
consisting of a relatively small, standard collection of protocols, the collective
layer may consist of many different protocols reflecting the broad spectrum of
services it may offer to a virtual organization.

Finally, the application layer consists of the applications that operate within a
virtual organization and which make use of the grid computing environment.

Typically the collective, connectivity, and resource layer form the heart of
what could be called a grid middleware layer. These layers jointly provide
access to and management of resources that are potentially dispersed across
multiple sites.

An important observation from a middleware perspective is that in grid
computing the notion of a site (or administrative unit) is common. This
prevalence is emphasized by the gradual shift toward a service-oriented ar-
chitecture in which sites offer access to the various layers through a collection
of Web services [Joseph et al., 2004]. This, by now, has lead to the definition
of an alternative architecture known as the Open Grid Services Architecture
(OGSA) [Foster et al., 2006]. OGSA is based upon the original ideas as for-
mulated by Foster et al. [2001], yet having gone through a standardization

downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK DS 3.02

30 CHAPTER 1. INTRODUCTION

process makes it complex, to say the least. OGSA implementations generally
follow Web service standards.

Cloud computing

While researchers were pondering on how to organize computational grids
that were easily accessible, organizations in charge of running data centers
were facing the problem of opening up their resources to customers. Eventu-
ally, this lead to the concept of utility computing by which a customer could
upload tasks to a data center and be charged on a per-resource basis. Utility
computing formed the basis for what is now called cloud computing.

Following Vaquero et al. [2008], cloud computing is characterized by an
easily usable and accessible pool of virtualized resources. Which and how
resources are used can be configured dynamically, providing the basis for
scalability: if more work needs to be done, a customer can simply acquire
more resources. The link to utility computing is formed by the fact that cloud
computing is generally based on a pay-per-use model in which guarantees
are offered by means of customized service level agreements (SLAs).

Figure 1.9: The organization of clouds (adapted from Zhang et al. [2010]).

In practice, clouds are organized into four layers, as shown in Figure 1.9
(see also Zhang et al. [2010]):

Hardware: The lowest layer is formed by the means to manage the necessary
hardware: processors, routers, but also power and cooling systems. It is
generally implemented at data centers and contains the resources that
customers normally never get to see directly.

Infrastructure: This is an important layer forming the backbone for most
cloud computing platforms. It deploys virtualization techniques (dis-
cussed in Section 3.2) to provide customers an infrastructure consisting

DS 3.02 downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK

1.3. TYPES OF DISTRIBUTED SYSTEMS 31

of virtual storage and computing resources. Indeed, nothing is what
it seems: cloud computing evolves around allocating and managing
virtual storage devices and virtual servers.

Platform: One could argue that the platform layer provides to a cloud-
computing customer what an operating system provides to application
developers, namely the means to easily develop and deploy applications
that need to run in a cloud. In practice, an application developer is
offered a vendor-specific API, which includes calls to uploading and ex-
ecuting a program in that vendor’s cloud. In a sense, this is comparable
the Unix exec family of system calls, which take an executable file as
parameter and pass it to the operating system to be executed.

Also like operating systems, the platform layer provides higher-level
abstractions for storage and such. For example, as we discuss in more
detail later, the Amazon S3 storage system [Murty, 2008] is offered to the
application developer in the form of an API allowing (locally created)
files to be organized and stored in buckets. A bucket is somewhat
comparable to a directory. By storing a file in a bucket, that file is
automatically uploaded to the Amazon cloud.

Application: Actual applications run in this layer and are offered to users
for further customization. Well-known examples include those found
in office suites (text processors, spreadsheet applications, presentation
applications, and so on). It is important to realize that these applica-
tions are again executed in the vendor’s cloud. As before, they can be
compared to the traditional suite of applications that are shipped when
installing an operating system.

Cloud-computing providers offer these layers to their customers through
various interfaces (including command-line tools, programming interfaces,
and Web interfaces), leading to three different types of services:

• Infrastructure-as-a-Service (IaaS) covering the hardware and infrastructure
layer

• Platform-as-a-Service (PaaS) covering the platform layer
• Software-as-a-Service (SaaS) in which their applications are covered

As of now, making use of clouds is relatively easy, and we discuss in later
chapters more concrete examples of interfaces to cloud providers. As a
consequence, cloud computing as a means for outsourcing local computing
infrastructures has become a serious option for many enterprises. However,
there are still a number of serious obstacles including provider lock-in, security
and privacy issues, and dependency on the availability of services, to mention
a few (see also Armbrust et al. [2010]). Also, because the details on how
specific cloud computations are actually carried out are generally hidden, and

downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK DS 3.02

32 CHAPTER 1. INTRODUCTION

even perhaps unknown or unpredictable, meeting performance demands may
be impossible to arrange in advance. On top of this, Li et al. [2010] have shown
that different providers may easily show very different performance profiles.
Cloud computing is no longer a hype, and certainly a serious alternative
to maintaining huge local infrastructures, yet there is still a lot of room for
improvement.

Note 1.9 (Advanced: Is cloud computing cheaper?)
One of the important reasons to migrate to a cloud environment is that it may be
much cheaper compared to maintaining a local computing infrastructure. There
are many ways to compute the savings, but as it turns out, only for simple and
obvious cases will straightforward computations give a realistic perspective. Hajjat
et al. [2010] propose a more thorough approach, taking into account that part of
an application suite is migrated to a cloud, and the other part continues to be
operated on a local infrastructure. The crux of their method is providing the right
model of a suite of enterprise applications.

The core of their approach is formed by a potentially large set of software
components. Each enterprise application is assumed to consist of components.
Furthermore, each component Ci is considered to be run on Ni servers. A simple
example is a database component to be executed by a single server. A more
elaborate example is a Web application for computing bicycle routes, consisting
of a Web server front end for rendering HTML pages and accepting user input, a
component for computing shortest paths (perhaps under different constraints),
and a database component containing various maps.

Each application is modeled as a directed graph, in which a vertex represents
a component and an arc 〈−→i, j〉 the fact that data flows from component Ci to
component Cj. Each arc has two associated weights: Ti,j represents the number of
transactions per time unit leading to data flowing from Ci to Cj, and Si,j the average
size of those transactions (i.e., the average amount of data per transaction). They
assume that Ti,j and Si,j are known, typically obtained through straightforward
measurements.

Migrating a suite of applications from a local infrastructure to the cloud
then boils down to finding an optimal migration plan M: figuring out for each
component Ci, how many ni of its Ni servers should be moved to the cloud, such
that the monetary benefits resulting from M, reduced by the additional costs for
communicating over the Internet, are maximal. A plan M should also meet the
following constraints:

1. Policy constraints are met. For example, there may be data that is legally
required to be located at an organization’s local infrastructure.

2. Because communication is now partly across long-haul Internet links, it may
be that certain transactions between components become much slower. A
plan M is acceptable only if any additional latencies do not violate specific
delay constraints.

3. Flow balance equations should be respected: transactions continue to
operate correctly, and requests or data are not lost during a transaction.

DS 3.02 downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK

1.3. TYPES OF DISTRIBUTED SYSTEMS 33

Let us now look into the benefits and Internet costs of a migration plan.

Benefits For each migration plan M, one can expect to have monetary savings
expressed as Benefits(M), because fewer machines or network connections need to
be maintained. In many organizations, such costs are known so that it may be
relatively simple to compute the savings. On the other hand, there are costs to
be made for using the cloud. Hajjat et al. [2010] make a simplifying distinction
between the benefit Bc of migrating a compute-intensive component, and the
benefit Bs of migrating a storage-intensive component. If there are Mc compute-
intensive and Ms storage-intensive components, we have Benefits(M) = Bc ·Mc +
Bs ·Ms. Obviously, much more sophisticated models can be deployed as well.

Internet costs To compute the increased communication costs because com-
ponents are spread across the cloud as well as the local infrastructure, we need
to take user-initiated requests into account. To simplify matters, we make no
distinction between internal users (i.e., members of the enterprise), and external
users (as one would see in the case of Web applications). Traffic from users before
migration can be expressed as:

Trlocal,inet = ∑
Ci

(Tuser,iSuser,i + Ti,userSi,user)

where Tuser,i denotes the number of transactions per time unit leading to data
flowing from users to Ci. We have analogous interpretations for Ti,user, Suseri , and
Si,user.

For each component Ci, let Ci,local denote the servers that continue to operate
on the local infrastructure, and Ci,cloud its servers that are placed in the cloud. Note
that |Ci,cloud| = ni. For simplicity, assume that a server from Ci,local distributes
traffic in the same proportions as a server from Ci,cloud. We are interested in
the rate of transactions between local servers, cloud servers, and between local
and cloud servers, after migration. Let sk be the server for component Ck and
denote by fk the fraction nk/Nk. We then have for the rate of transactions T∗i,j after
migration:

T∗i,j =


(1− fi) · (1− f j) · Ti,j when si ∈ Ci,local and sj ∈ Cj,local

(1− fi) · f j · Ti,j when si ∈ Ci,local and sj ∈ Cj,cloud

fi · (1− f j) · Ti,j when si ∈ Ci,cloud and sj ∈ Cj,local

fi · f j · Ti,j when si ∈ Ci,cloud and sj ∈ Cj,cloud

S∗i,j is the amount of data associated with T∗i,j. Note that fk denotes the fraction of
servers of component Ck that are moved to the cloud. In other words, (1− fk) is
the fraction that stays in the local infrastructure. We leave it to the reader to give
an expression for T∗i,user.

Finally, let costlocal,inet and costcloud,inet denote the per-unit Internet costs for
traffic to and from the local infrastructure and cloud, respectively. Ignoring a few
subtleties explained in [Hajjat et al., 2010], we can then compute the local Internet
traffic after migration as:

Tr∗local,inet = ∑
Ci,local ,Cj,local

(T∗i,jS
∗
i,j + T∗j,iS

∗
j,i) + ∑

Cj,local

(T∗user,jS
∗
user,j + T∗j,userS∗j,user)

downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK DS 3.02

34 CHAPTER 1. INTRODUCTION

and, likewise, for the cloud Internet traffic after migration:

Tr∗cloud,inet = ∑
Ci,cloud ,Cj,cloud

(T∗i,jS
∗
i,j + T∗j,iS

∗
j,i) + ∑

Cj,cloud

(T∗user,jS
∗
user,j + T∗j,userS∗j,user)

Together, this leads to a model for the increase in Internet communication costs:

costlocal,inet(Tr∗local,inet − Trlocal,inet) + costcloud,inetTr∗cloud,inet

Clearly, answering the question whether moving to the cloud is cheaper requires a
lot of detailed information and careful planning of exactly what to migrate. Hajjat
et al. [2010] provide a first step toward making an informed decision. Their model
is more detailed than we are willing to explain here. An important aspect that
we have not touched upon is that migrating components also means that special
attention will have to be paid to migrating security components. The interested
reader is referred to their paper.

Distributed information systems

Another important class of distributed systems is found in organizations
that were confronted with a wealth of networked applications, but for which
interoperability turned out to be a painful experience. Many of the existing
middleware solutions are the result of working with an infrastructure in which
it was easier to integrate applications into an enterprise-wide information
system [Alonso et al., 2004; Bernstein, 1996; Hohpe and Woolf, 2004].

We can distinguish several levels at which integration can take place. In
many cases, a networked application simply consists of a server running that
application (often including a database) and making it available to remote
programs, called clients. Such clients send a request to the server for executing
a specific operation, after which a response is sent back. Integration at the
lowest level allows clients to wrap a number of requests, possibly for different
servers, into a single larger request and have it executed as a distributed
transaction. The key idea is that all, or none of the requests are executed.

As applications became more sophisticated and were gradually separated
into independent components (notably distinguishing database components
from processing components), it became clear that integration should also
take place by letting applications communicate directly with each other. This
has now lead to a huge industry that concentrates on Enterprise Application
Integration (EAI).

Distributed transaction processing

To clarify our discussion, we concentrate on database applications. In practice,
operations on a database are carried out in the form of transactions. Pro-
gramming using transactions requires special primitives that must either be

DS 3.02 downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK

1.3. TYPES OF DISTRIBUTED SYSTEMS 35

supplied by the underlying distributed system or by the language runtime
system. Typical examples of transaction primitives are shown in Figure 1.10.
The exact list of primitives depends on what kinds of objects are being used
in the transaction [Gray and Reuter, 1993; Bernstein and Newcomer, 2009]. In
a mail system, there might be primitives to send, receive, and forward mail.
In an accounting system, they might be quite different. READ and WRITE are
typical examples, however. Ordinary statements, procedure calls, and so on,
are also allowed inside a transaction. In particular, remote procedure calls
(RPCs), that is, procedure calls to remote servers, are often also encapsulated
in a transaction, leading to what is known as a transactional RPC. We discuss
RPCs extensively in Section 4.2.

Primitive Description
BEGIN_TRANSACTION Mark the start of a transaction
END_TRANSACTION Terminate the transaction and try to commit
ABORT_TRANSACTION Kill the transaction and restore the old values
READ Read data from a file, a table, or otherwise
WRITE Write data to a file, a table, or otherwise

Figure 1.10: Example primitives for transactions.

BEGIN_TRANSACTION and END_TRANSACTION are used to delimit the
scope of a transaction. The operations between them form the body of the
transaction. The characteristic feature of a transaction is either all of these
operations are executed or none are executed. These may be system calls,
library procedures, or bracketing statements in a language, depending on the
implementation.

This all-or-nothing property of transactions is one of the four characteristic
properties that transactions have. More specifically, transactions adhere to the
so-called ACID properties:

• Atomic: To the outside world, the transaction happens indivisibly
• Consistent: The transaction does not violate system invariants
• Isolated: Concurrent transactions do not interfere with each other
• Durable: Once a transaction commits, the changes are permanent

In distributed systems, transactions are often constructed as a number of
subtransactions, jointly forming a nested transaction as shown in Figure 1.11.
The top-level transaction may fork off children that run in parallel with one
another, on different machines, to gain performance or simplify programming.
Each of these children may also execute one or more subtransactions, or fork
off its own children.

Subtransactions give rise to a subtle, but important, problem. Imagine
that a transaction starts several subtransactions in parallel, and one of these

downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK DS 3.02

36 CHAPTER 1. INTRODUCTION

Figure 1.11: A nested transaction.

commits, making its results visible to the parent transaction. After further
computation, the parent aborts, restoring the entire system to the state it
had before the top-level transaction started. Consequently, the results of
the subtransaction that committed must nevertheless be undone. Thus the
permanence referred to above applies only to top-level transactions.

Since transactions can be nested arbitrarily deep, considerable administra-
tion is needed to get everything right. The semantics are clear, however. When
any transaction or subtransaction starts, it is conceptually given a private copy
of all data in the entire system for it to manipulate as it wishes. If it aborts,
its private universe just vanishes, as if it had never existed. If it commits,
its private universe replaces the parent’s universe. Thus if a subtransaction
commits and then later a new subtransaction is started, the second one sees
the results produced by the first one. Likewise, if an enclosing (higher level)
transaction aborts, all its underlying subtransactions have to be aborted as
well. And if several transactions are started concurrently, the result is as if
they ran sequentially in some unspecified order.

Nested transactions are important in distributed systems, for they provide
a natural way of distributing a transaction across multiple machines. They
follow a logical division of the work of the original transaction. For example,
a transaction for planning a trip by which three different flights need to be
reserved can be logically split up into three subtransactions. Each of these
subtransactions can be managed separately and independently of the other
two.

In the early days of enterprise middleware systems, the component that
handled distributed (or nested) transactions formed the core for integrating
applications at the server or database level. This component was called a
transaction processing monitor or TP monitor for short. Its main task was
to allow an application to access multiple server/databases by offering it a
transactional programming model, as shown in Figure 1.12. Essentially, the TP
monitor coordinated the commitment of subtransactions following a standard
protocol known as distributed commit, which we discuss in Section 8.5.

DS 3.02 downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK

1.3. TYPES OF DISTRIBUTED SYSTEMS 37

Figure 1.12: The role of a TP monitor in distributed systems.

An important observation is that applications wanting to coordinate sev-
eral subtransactions into a single transaction did not have to implement this
coordination themselves. By simply making use of a TP monitor, this coordi-
nation was done for them. This is exactly where middleware comes into play:
it implements services that are useful for many applications avoiding that
such services have to be reimplemented over and over again by application
developers.

Enterprise application integration

As mentioned, the more applications became decoupled from the databases
they were built upon, the more evident it became that facilities were needed
to integrate applications independently from their databases. In particular, ap-
plication components should be able to communicate directly with each other
and not merely by means of the request/reply behavior that was supported
by transaction processing systems.

This need for interapplication communication led to many different com-
munication models, The main idea was that existing applications could directly
exchange information, as shown in Figure 1.13.

Several types of communication middleware exist. With remote procedure
calls (RPC), an application component can effectively send a request to another
application component by doing a local procedure call, which results in the
request being packaged as a message and sent to the callee. Likewise, the
result will be sent back and returned to the application as the result of the
procedure call.

As the popularity of object technology increased, techniques were devel-
oped to allow calls to remote objects, leading to what is known as remote

downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK DS 3.02

38 CHAPTER 1. INTRODUCTION

Figure 1.13: Middleware as a communication facilitator in enterprise applica-
tion integration.

method invocations (RMI). An RMI is essentially the same as an RPC, except
that it operates on objects instead of functions.

RPC and RMI have the disadvantage that the caller and callee both need
to be up and running at the time of communication. In addition, they need
to know exactly how to refer to each other. This tight coupling is often expe-
rienced as a serious drawback, and has lead to what is known as message-
oriented middleware, or simply MOM. In this case, applications send mes-
sages to logical contact points, often described by means of a subject. Likewise,
applications can indicate their interest for a specific type of message, after
which the communication middleware will take care that those messages are
delivered to those applications. These so-called publish/subscribe systems
form an important and expanding class of distributed systems.

Note 1.10 (More information: On integrating applications)
Supporting enterprise application integration is an important goal for many mid-
dleware products. In general, there are four ways to integrate applications [Hohpe
and Woolf, 2004]:

File transfer: The essence of integration through file transfer, is that an appli-
cation produces a file containing shared data that is subsequently read
by other applications. The approach is technically very simple, making it
appealing. The drawback, however, is that there are a lot of things that
need to be agreed upon:

• File format and layout: text, binary, its structure, and so on. Nowadays,
XML has become popular as its files are, in principle, self-describing.

• File management: where are they stored, how are they named, who is
responsible for deleting files?

DS 3.02 downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK

1.3. TYPES OF DISTRIBUTED SYSTEMS 39

• Update propagation: When an application produces a file, there may
be several applications that need to read that file in order to provide
the view of a single coherent system, as we argued in Section 1.1. As a
consequence, sometimes separate programs need to be implemented
that notify applications of file updates.

Shared database: Many of the problems associated with integration through files
are alleviated when using a shared database. All applications will have ac-
cess to the same data, and often through a high-level language such as SQL.
Also, it is easy to notify applications when changes occur, as triggers are
often part of modern databases. There are, however, two major drawbacks.
First, there is still a need to design a common data schema, which may be
far from trivial if the set of applications that need to be integrated is not
completely known in advance. Second, when there are many reads and
updates, a shared database can easily become a performance bottleneck.

Remote procedure call: Integration through files or a database implicitly as-
sumes that changes by one application can easily trigger other applications
to take action. However, practice shows that sometimes small changes
should actually trigger many applications to take actions. In such cases,
it is not really the change of data that is important, but the execution of a
series of actions.
Series of actions are best captured through the execution of a procedure
(which may, in turn, lead to all kinds of changes in shared data). To
prevent that every application needs to know all the internals of those
actions (as implemented by another application), standard encapsulation
techniques should be used, as deployed with traditional procedure calls
or object invocations. For such situations, an application can best offer
a procedure to other applications in the form of a remote procedure call,
or RPC. In essence, an RPC allows an application A to make use of the
information available only to application B, without giving A direct access
to that information. There are many advantages and disadvantages to
remote procedure calls, which are discussed in depth in Chapter 4.

Messaging: A main drawback of RPCs is that caller and callee need to be up
and running at the same time in order for the call to succeed. However, in
many scenarios this simultaneous activity is often difficult or impossible
to guarantee. In such cases, offering a messaging system carrying requests
from application A to perform an action at application B, is what is needed.
The messaging system ensures that eventually the request is delivered,
and if needed, that a response is eventually returned as well. Obviously,
messaging is not the panacea for application integration: it also introduces
problems concerning data formatting and layout, it requires an application
to know where to send a message to, there need to be scenarios for dealing
with lost messages, and so on. Like RPCs, we will be discussing these
issues extensively in Chapter 4.

What these four approaches tell us, is that application integration will generally

downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK DS 3.02

40 CHAPTER 1. INTRODUCTION

not be simple. Middleware (in the form of a distributed system), however, can
significantly help in integration by providing the right facilities such as support
for RPCs or messaging. As said, enterprise application integration is an important
target field for many middleware products.

Pervasive systems

The distributed systems discussed so far are largely characterized by their
stability: nodes are fixed and have a more or less permanent and high-quality
connection to a network. To a certain extent, this stability is realized through
the various techniques for achieving distribution transparency. For example,
there are many ways how we can create the illusion that only occasionally
components may fail. Likewise, there are all kinds of means to hide the actual
network location of a node, effectively allowing users and applications to
believe that nodes stay put.

However, matters have changed since the introduction of mobile and
embedded computing devices, leading to what are generally referred to as
pervasive systems. As its name suggests, pervasive systems are intended to
naturally blend into our environment. They are naturally also distributed
systems, and certainly meet the characterization we gave in Section 1.1.

What makes them unique in comparison to the computing and information
systems described so far, is that the separation between users and system
components is much more blurred. There is often no single dedicated interface,
such as a screen/keyboard combination. Instead, a pervasive system is often
equipped with many sensors that pick up various aspects of a user’s behavior.
Likewise, it may have a myriad of actuators to provide information and
feedback, often even purposefully aiming to steer behavior.

Many devices in pervasive systems are characterized by being small,
battery-powered, mobile, and having only a wireless connection, although
not all these characteristics apply to all devices. These are not necessarily
restrictive characteristics, as is illustrated by smartphones [Roussos et al., 2005]
and their role in what is now coined as the Internet of Things [Mattern and
Floerkemeier, 2010; Stankovic, 2014]. Nevertheless, notably the fact that we
often need to deal with the intricacies of wireless and mobile communication,
will require special solutions to make a pervasive system as transparent or
unobtrusive as possible.

In the following, we make a distinction between three different types of
pervasive systems, although there is considerable overlap between the three
types: ubiquitous computing systems, mobile systems, and sensor networks.
This distinction allows us to focus on different aspects of pervasive systems.

DS 3.02 downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK

1.3. TYPES OF DISTRIBUTED SYSTEMS 41

Ubiquitous computing systems

So far, we have been talking about pervasive systems to emphasize that
its elements have spread through in many parts of our environment. In a
ubiquitous computing system we go one step further: the system is pervasive
and continuously present. The latter means that a user will be continuously
interacting with the system, often not even being aware that interaction is
taking place. Poslad [2009] describes the core requirements for a ubiquitous
computing system roughly as follows:

1. (Distribution) Devices are networked, distributed, and accessible in a
transparent manner

2. (Interaction) Interaction between users and devices is highly unobtru-
sive

3. (Context awareness) The system is aware of a user’s context in order to
optimize interaction

4. (Autonomy) Devices operate autonomously without human interven-
tion, and are thus highly self-managed

5. (Intelligence) The system as a whole can handle a wide range of dy-
namic actions and interactions

Let us briefly consider these requirements from a distributed-systems perspec-
tive.

Ad. 1: Distribution. As mentioned, a ubiquitous computing system is an
example of a distributed system: the devices and other computers forming
the nodes of a system are simply networked and work together to form
the illusion of a single coherent system. Distribution also comes naturally:
there will be devices close to users (such as sensors and actuators), connected
to computers hidden from view and perhaps even operating remotely in a
cloud. Most, if not all, of the requirements regarding distribution transparency
mentioned in Section 1.2, should therefore hold.

Ad. 2: Interaction. When it comes to interaction with users, ubiquitous
computing systems differ a lot in comparison to the systems we have been
discussing so far. End users play a prominent role in the design of ubiquitous
systems, meaning that special attention needs to be paid to how the interac-
tion between users and core system takes place. For ubiquitous computing
systems, much of the interaction by humans will be implicit, with an implicit
action being defined as one “that is not primarily aimed to interact with a com-
puterized system but which such a system understands as input” [Schmidt,
2000]. In other words, a user could be mostly unaware of the fact that input is
being provided to a computer system. From a certain perspective, ubiquitous
computing can be said to seemingly hide interfaces.

downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK DS 3.02

42 CHAPTER 1. INTRODUCTION

A simple example is where the settings of a car’s driver’s seat, steering
wheel, and mirrors is fully personalized. If Bob takes a seat, the system will
recognize that it is dealing with Bob and subsequently makes the appropriate
adjustments. The same happens when Alice uses the car, while an unknown
user will be steered toward making his or her own adjustments (to be remem-
bered for later). This example already illustrates an important role of sensors
in ubiquitous computing, namely as input devices that are used to identify a
situation (a specific person apparently wanting to drive), whose input analysis
leads to actions (making adjustments). In turn, the actions may lead to natural
reactions, for example that Bob slightly changes the seat settings. The system
will have to take all (implicit and explicit) actions by the user into account
and react accordingly.

Ad. 3: Context awareness. Reacting to the sensory input, but also the explicit
input from users is more easily said than done. What a ubiquitous computing
system needs to do, is to take the context in which interactions take place
into account. Context awareness also differentiates ubiquitous computing
systems from the more traditional systems we have been discussing before,
and is described by Dey and Abowd [2000] as “any information that can be
used to characterize the situation of entities (i.e., whether a person, place or
object) that are considered relevant to the interaction between a user and an
application, including the user and the application themselves.” In practice,
context is often characterized by location, identity, time, and activity: the where,
who, when, and what. A system will need to have the necessary (sensory) input
to determine one or several of these context types.

What is important from a distributed-systems perspective, is that raw data
as collected by various sensors is lifted to a level of abstraction that can be
used by applications. A concrete example is detecting where a person is,
for example in terms of GPS coordinates, and subsequently mapping that
information to an actual location, such as the corner of a street, or a specific
shop or other known facility. The question is where this processing of sensory
input takes place: is all data collected at a central server connected to a
database with detailed information on a city, or is it the user’s smartphone
where the mapping is done? Clearly, there are trade-offs to be considered.

Dey [2010] discusses more general approaches toward building context-
aware applications. When it comes to combining flexibility and potential
distribution, so-called shared data spaces in which processes are decoupled
in time and space are attractive, yet as we shall see in later chapters, suffer
from scalability problems. A survey on context-awareness and its relation to
middleware and distributed systems is provided by Baldauf et al. [2007].

Ad. 4: Autonomy. An important aspect of most ubiquitous computing sys-
tems is that explicit systems management has been reduced to a minimum. In

DS 3.02 downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK

1.3. TYPES OF DISTRIBUTED SYSTEMS 43

a ubiquitous computing environment there is simply no room for a systems
administrator to keep everything up and running. As a consequence, the
system as a whole should be able to act autonomously, and automatically
react to changes. This requires a myriad of techniques of which several will
be discussed throughout this book. To give a few simple examples, think of
the following:

Address allocation: In order for networked devices to communicate, they
need an IP address. Addresses can be allocated automatically using
protocols like the Dynamic Host Configuration Protocol (DHCP) [Droms,
1997] (which requires a server) or Zeroconf [Guttman, 2001].

Adding devices: It should be easy to add devices to an existing system. A
step towards automatic configuration is realized by the Universal Plug
and Play Protocol (UPnP) [UPnP Forum, 2008]. Using UPnP, devices can
discover each other and make sure that they can set up communication
channels between them.

Automatic updates: Many devices in a ubiquitous computing system should
be able to regularly check through the Internet if their software should
be updated. If so, they can download new versions of their components
and ideally continue where they left off.

Admittedly, these are very simple examples, but the picture should be clear
that manual intervention is to be kept to a minimum. We will be discussing
many techniques related to self-management in detail throughout the book.

Ad. 5: Intelligence. Finally, Poslad [2009] mentions that ubiquitous com-
puting systems often use methods and techniques from the field of artificial
intelligence. What this means, is that in many cases a wide range of ad-
vanced algorithms and models need to be deployed to handle incomplete
input, quickly react to a changing environment, handle unexpected events,
and so on. The extent to which this can or should be done in a distributed
fashion is crucial from the perspective of distributed systems. Unfortunately,
distributed solutions for many problems in the field of artificial intelligence
are yet to be found, meaning that there may be a natural tension between
the first requirement of networked and distributed devices, and advanced
distributed information processing.

Mobile computing systems

As mentioned, mobility often forms an important component of pervasive
systems, and many, if not all aspects that we have just discussed also apply to
mobile computing. There are several issues that set mobile computing aside

downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK DS 3.02

44 CHAPTER 1. INTRODUCTION

to pervasive systems in general (see also Adelstein et al. [2005] and Tarkoma
and Kangasharju [2009]).

First, the devices that form part of a (distributed) mobile system may
vary widely. Typically, mobile computing is now done with devices such
as smartphones and tablet computers. However, completely different types
of devices are now using the Internet Protocol (IP) to communicate, placing
mobile computing in a different perspective. Such devices include remote
controls, pagers, active badges, car equipment, various GPS-enabled devices,
and so on. A characteristic feature of all these devices is that they use wireless
communication. Mobile implies wireless so it seems (although there are
exceptions to the rules).

Second, in mobile computing the location of a device is assumed to change
over time. A changing location has its effects on many issues. For example, if
the location of a device changes regularly, so will perhaps the services that
are locally available. As a consequence, we may need to pay special attention
to dynamically discovering services, but also letting services announce their
presence. In a similar vein, we often also want to know where a device actually
is. This may mean that we need to know the actual geographical coordinates
of a device such as in tracking and tracing applications, but it may also require
that we are able to simply detect its network position (as in mobile IP [Perkins,
2010; Perkins et al., 2011].

Changing locations also has a profound effect on communication. To
illustrate, consider a (wireless) mobile ad hoc network, generally abbreviated
as a MANET. Suppose that two devices in a MANET have discovered each
other in the sense that they know each other’s network address. How do we
route messages between the two? Static routes are generally not sustainable
as nodes along the routing path can easily move out of their neighbor’s range,
invalidating the path. For large MANETs, using a priori set-up paths is not
a viable option. What we are dealing with here are so-called disruption-
tolerant networks: networks in which connectivity between two nodes can
simply not be guaranteed. Getting a message from one node to another may
then be problematic, to say the least.

The trick in such cases, is not to attempt to set up a communication path
from the source to the destination, but to rely on two principles. First, as we
will discuss in Section 4.4, using special flooding-based techniques will allow
a message to gradually spread through a part of the network, to eventually
reach the destination. Obviously, any type of flooding will impose redundant
communication, but this may be the price we have to pay. Second, in a
disruption-tolerant network, we let an intermediate node store a received
message until it encounters another node to which it can pass it on. In other
words, a node becomes a temporary carrier of a message, as sketched in
Figure 1.14. Eventually, the message should reach its destination.

It is not difficult to imagine that selectively passing messages to encoun-

DS 3.02 downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK

1.3. TYPES OF DISTRIBUTED SYSTEMS 45

Figure 1.14: Passing messages in a (mobile) disruption-tolerant network.

tered nodes may help to ensure efficient delivery. For example, if nodes are
known to belong to a certain class, and the source and destination belong to
the same class, we may decide to pass messages only among nodes in that
class. Likewise, it may prove efficient to pass messages only to well-connected
nodes, that is, nodes who have been in range of many other nodes in the
recent past. An overview is provided by Spyropoulos et al. [2010].

Note 1.11 (Advanced: Social networks and mobility patterns)
Not surprisingly, mobile computing is tightly coupled to the whereabouts of
human beings. With the increasing interest in complex social networks [Vega-
Redondo, 2007; Jackson, 2008] and the explosion of the use of smartphones,
several groups are seeking to combine analysis of social behavior and information
dissemination in so-called pocket-switched networks [Hui et al., 2005]. The latter
are networks in which nodes are formed by people (or actually, their mobile
devices), and links are formed when two people encounter each other, allowing
their devices to exchange data.

The basic idea is to let information be spread using the ad hoc communications
between people. In doing so, it becomes important to understand the structure of
a social group. One of the first to examine how social awareness can be exploited
in mobile networks were Miklas et al. [2007]. In their approach, based on traces
on encounters between people, two people are characterized as either friends or
strangers. Friends interact frequently, where the number of recurring encounters
between strangers is low. The goal is to make sure that a message from Alice to
Bob is eventually delivered.

As it turns out, when Alice adopts a strategy by which she hands out the
message to each of her friends, and that each of those friends passes the message
to Bob as soon as he is encountered, can ensure that the message reaches Bob
with a delay exceeding approximately 10% of the best-attainable delay. Any other
strategy, like forwarding the message to only 1 or 2 friends, performs much worse.
Passing a message to a stranger has no significant effect. In other words, it makes
a huge difference if nodes take friend relationships into account, but even then it
is still necessary to judiciously adopt a forwarding strategy.

downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK DS 3.02

46 CHAPTER 1. INTRODUCTION

For large groups of people, more sophisticated approaches are needed. In
the first place, it may happen that messages need to be sent between people in
different communities. What do we mean by a community? If we consider a
social network (where a vertex represents a person, and a link the fact that two
people have a social relation), then a community is roughly speaking a group of
vertices in which there are many links between its members and only few links
with vertices in other groups [Newman, 2010]. Unfortunately, many community-
detection algorithms require complete information on the social structure, making
them practically infeasible for optimizing communication in mobile networks.

Hui et al. [2007] propose a number of decentralized community detection
algorithms. In essence, these algorithms rely on letting a node i (1) detect the set
of nodes it regularly encounters, called its familiar set Fi, and (2) incrementally
expand its local community Ci, with Fi ⊆ Ci. Initially, Ci as well as Fi will be
empty, but gradually, Fi will grow, and with it, Ci. In the simplest case, a node j is
added to a community Ci as follows:

Node i adds j to Ci when
|Fj ∩ Ci|
|Fj|

> λ for some λ > 0

In other words, when the fraction of j’s familiar set substantially overlaps with
the community of i, then node i should add j to its community. Also, we have the
following for merging communities:

Merge two communities when |Ci ∩ Cj| > γ|Ci ∪ Cj| for some γ > 0

which means that two communities should be merged when they have a significant
number of members in common. (In their experiments, Hui et al. found that
setting λ = γ = 0.6 lead to good results.)

Knowing communities, in combination with the connectivity of a node in
either a community, or globally, can subsequently be used to efficiently forward
messages in a disruption-tolerant network, as explained by Hui et al. [2011].

Obviously, much of the performance of a mobile computing system depends
on how nodes move. In particular, in order to pre-assess the effectiveness of new
protocols or algorithms, having an idea on which mobility patterns are actually
realistic is important. For long, there was not much data on such patterns, but
recent experiments have changed that.

Various groups have started to collect statistics on human mobility, of which
the traces are used to drive simulations. In addition, traces have been used to
derive more realistic mobility models (see, e.g., Kim et al. [2006b]). However,
understanding human mobility patterns in general remains a difficult problem.
González et al. [2008] report on modeling efforts based on data collected from
100,000 cell-phone users during a six-month period. They observed that the
displacement behavior could be represented by the following, relatively simple
distribution:

P[∆r] = (∆r + ∆r0)
−β · e−∆r/κ

in which ∆r is the actual displacement and ∆r0 = 1.5km a constant initial dis-
placement. With β = 1.75 and κ = 400, this leads to the distribution shown in
Figure 1.15.

DS 3.02 downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK

1.3. TYPES OF DISTRIBUTED SYSTEMS 47

Figure 1.15: The distribution of displacement of (mobile) cell-phone users.

We can conclude that people tend to stay put. In fact, further analysis revealed
that people tend to return to the same place after 24, 48, or 72 hours, clearly
showing that people tend to go the same places. In a follow-up study, Song
et al. [2010] could indeed show that human mobility is actually remarkably well
predictable.

Sensor networks

Our last example of pervasive systems is sensor networks. These networks in
many cases form part of the enabling technology for pervasiveness and we
see that many solutions for sensor networks return in pervasive applications.
What makes sensor networks interesting from a distributed system’s perspec-
tive is that they are more than just a collection of input devices. Instead, as
we shall see, sensor nodes often collaborate to efficiently process the sensed
data in an application-specific manner, making them very different from, for
example, traditional computer networks. Akyildiz et al. [2002] and Akyildiz
et al. [2005] provide an overview from a networking perspective. A more
systems-oriented introduction to sensor networks is given by Zhao and Guibas
[2004], but also Karl and Willig [2005] will show to be useful.

A sensor network generally consists of tens to hundreds or thousands of
relatively small nodes, each equipped with one or more sensing devices. In
addition, nodes can often act as actuators [Akyildiz and Kasimoglu, 2004],
a typical example being the automatic activation of sprinklers when a fire
has been detected. Many sensor networks use wireless communication, and
the nodes are often battery powered. Their limited resources, restricted
communication capabilities, and constrained power consumption demand
that efficiency is high on the list of design criteria.

When zooming into an individual node, we see that, conceptually, they
do not differ a lot from “normal” computers: above the hardware there is a
software layer akin to what traditional operating systems offer, including low-

downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK DS 3.02

48 CHAPTER 1. INTRODUCTION

level network access, access to sensors and actuators, memory management,
and so on. Normally, support for specific services is included, such as
localization, local storage (think of additional flash devices), and convenient
communication facilities such as messaging and routing. However, similar to
other networked computer systems, additional support is needed to effectively
deploy sensor network applications. In distributed systems, this takes the form
of middleware. For sensor networks, instead of looking at middleware, it is
better to see what kind of programming support is provided, which has been
extensively surveyed by Mottola and Picco [2011].

One typical aspect in programming support is the scope provided by
communication primitives. This scope can vary between addressing the
physical neighborhood of a node, and providing primitives for systemwide
communication. In addition, it may also be possible to address a specific group
of nodes. Likewise, computations may be restricted to an individual node, a
group of nodes, or affect all nodes. To illustrate, Welsh and Mainland [2004]
use so-called abstract regions allowing a node to identify a neighborhood
from where it can, for example, gather information:

1 region = k_nearest_region.create(8);
2 reading = get_sensor_reading();
3 region.putvar(reading_key, reading);
4 max_id = region.reduce(OP_MAXID, reading_key);

In line 1, a node first creates a region of its eight nearest neighbors, after which
it fetches a value from its sensor(s). This reading is subsequently written to
the previously defined region to be defined using the key reading_key. In
line 4, the node checks whose sensor reading in the defined region was the
largest, which is returned in the variable max_id.

As another related example, consider a sensor network as implementing a
distributed database, which is, according to Mottola and Picco [2011], one of
four possible ways of accessing data. This database view is quite common and
easy to understand when realizing that many sensor networks are deployed
for measurement and surveillance applications [Bonnet et al., 2002]. In these
cases, an operator would like to extract information from (a part of) the
network by simply issuing queries such as “What is the northbound traffic
load on highway 1 as Santa Cruz?” Such queries resemble those of traditional
databases. In this case, the answer will probably need to be provided through
collaboration of many sensors along highway 1, while leaving other sensors
untouched.

To organize a sensor network as a distributed database, there are essentially
two extremes, as shown in Figure 1.16. First, sensors do not cooperate but
simply send their data to a centralized database located at the operator’s site.
The other extreme is to forward queries to relevant sensors and to let each
compute an answer, requiring the operator to aggregate the responses.

Neither of these solutions is very attractive. The first one requires that

DS 3.02 downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK

1.3. TYPES OF DISTRIBUTED SYSTEMS 49

(a)

(b)

Figure 1.16: Organizing a sensor network database, while storing and pro-
cessing data (a) only at the operator’s site or (b) only at the sensors.

sensors send all their measured data through the network, which may waste
network resources and energy. The second solution may also be wasteful as
it discards the aggregation capabilities of sensors which would allow much
less data to be returned to the operator. What is needed are facilities for in-
network data processing, similar to the previous example of abstract regions.

In-network processing can be done in numerous ways. One obvious one is
to forward a query to all sensor nodes along a tree encompassing all nodes
and to subsequently aggregate the results as they are propagated back to the
root, where the initiator is located. Aggregation will take place where two
or more branches of the tree come together. As simple as this scheme may
sound, it introduces difficult questions:

• How do we (dynamically) set up an efficient tree in a sensor network?
• How does aggregation of results take place? Can it be controlled?
• What happens when network links fail?

These questions have been partly addressed in TinyDB, which implements
a declarative (database) interface to wireless sensor networks [Madden et al.,
2005]. In essence, TinyDB can use any tree-based routing algorithm. An

downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK DS 3.02

50 CHAPTER 1. INTRODUCTION

intermediate node will collect and aggregate the results from its children,
along with its own findings, and send that toward the root. To make matters
efficient, queries span a period of time allowing for careful scheduling of
operations so that network resources and energy are optimally consumed.

However, when queries can be initiated from different points in the net-
work, using single-rooted trees such as in TinyDB may not be efficient enough.
As an alternative, sensor networks may be equipped with special nodes where
results are forwarded to, as well as the queries related to those results. To give
a simple example, queries and results related to temperature readings may
be collected at a different location than those related to humidity measure-
ments. This approach corresponds directly to the notion of publish/subscribe
systems.

Note 1.12 (Advanced: When energy starts to become critical)
As mentioned, many sensor networks need to operate on an energy budget
coming from the use of batteries or other limited power supplies. An approach to
reduce energy consumption, is to let nodes be active only part of the time. More
specifically, assume that a node is repeatedly active during Tactive time units, and
between these active periods, it is suspended for Tsuspended units. The fraction of
time that a node is active is known as its duty cycle τ, that is,

τ =
Tactive

Tactive + Tsuspended

Values for τ are typically in the order of 10− 30%, but when a network needs
to stay operational for periods exceeding many months, or even years, attaining
values as low as 1% are critical.

A problem with duty-cycled networks is that, in principle, nodes need to be
active at the same time for otherwise communication would simply not be possible.
Considering that while a node is suspended, only its local clock continues ticking,
and that these clocks are subject to drifts, waking up at the same time may be
problematic. This is particularly true for networks with very low duty cycles.

When a group of nodes are active at the same time, the nodes are said to
form a synchronized group. There are essentially two problems that need to be
addressed. First, we need to make sure that the nodes in a synchronized group
remain active at the same time. In practice, this turns out to be relatively simple
if each node communicates information on its current local time. Then, simple
local clock adjustments will do the trick. The second problem is more difficult,
namely how two different synchronized groups can be merged into one in which
all nodes are synchronized. Let us take a closer look at what we are facing. Most
of the following discussion is based on material by Voulgaris et al. [2016].

In order to have two groups be merged, we need to first ensure that one group
detects the other. Indeed, if their respective active periods are completely disjoint,
there is no hope that any node in one group can pick up a message from a node
in the other group. In an active detection method, a node will send a join message
during its suspended period. In other words, while it is suspended, it temporarily

DS 3.02 downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK

1.3. TYPES OF DISTRIBUTED SYSTEMS 51

wakes up to elicit nodes in other groups to join. How big is the chance that
another node will pick up this message? Realize that we need to consider only the
case when τ < 0.5, for otherwise two active periods will always overlap, meaning
that two groups can easily detect each other’s presence. The probability Pda that a
join message can be picked up during another node’s active period, is equal to

Pda =
Tactive

Tsuspended
=

τ

1− τ

This means that for low values of τ, Pda is also very small.
In a passive detection method, a node skips the suspended state with (a very

low) probability Pdp, that is, it simply stays active during the Tsuspended time
units following its active period. During this time, it will be able to pick up any
messages sent by its neighbors, who are, by definition, member of a different
synchronized group. Experiments show that passive detection is inferior to active
detection.

Simply stating that two synchronized groups need to merge is not enough:
if A and B have discovered each other, which group will adapt the duty-cycle
settings of the other? A simple solution is to use a notion of cluster IDs. Each
node starts with a randomly chosen ID and effectively also a synchronized group
having only itself as member. After detecting another group B, all nodes in group
A join B if and only if the cluster ID of B is larger than that of A.

Synchronization can be improved considerably using so-called targeted join
messages. Whenever a node N receives a join message from a group A with a
lower cluster ID, it should obviously not join A. However, as N now knows when
the active period of A is, it can send a join message exactly during that period.
Obviously, the chance that a node from A will receive that message is very high,
allowing the nodes from A to join N’s group. In addition, when a node decides to
join another group, it can send a special message to its group members, giving
the opportunity to quickly join as well.

Figure 1.17: The speed by which different synchronized groups can
merge.

Figure 1.17 shows how quickly synchronized groups can merge using two
different strategies. The experiments are based on a 4000-node mobile network
using realistic mobility patterns. Nodes have a duty cycle of less than 1%. These

downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK DS 3.02

52 CHAPTER 1. INTRODUCTION

experiments show that bringing even a large mobile, duty-cycled network to a
state in which all nodes are active at the same time is quite feasible. For further
information, see Voulgaris et al. [2016].

1.4 Summary

Distributed systems consist of autonomous computers that work together to
give the appearance of a single coherent system. This combination of inde-
pendent, yet coherent collective behavior is achieved by collecting application-
independent protocols into what is known as middleware: a software layer
logically placed between operating systems and distributed applications. Pro-
tocols include those for communication, transactions, service composition,
and perhaps most important, reliability.

Design goals for distributed systems include sharing resources and ensur-
ing openness. In addition, designers aim at hiding many of the intricacies
related to the distribution of processes, data, and control. However, this
distribution transparency not only comes at a performance price, in practical
situations it can never be fully achieved. The fact that trade-offs need to
be made between achieving various forms of distribution transparency is
inherent to the design of distributed systems, and can easily complicate their
understanding. One specific difficult design goal that does not always blend
well with achieving distribution transparency is scalability. This is particularly
true for geographical scalability, in which case hiding latencies and bandwidth
restrictions can turn out to be difficult. Likewise, administrative scalability
by which a system is designed to span multiple administrative domains, may
easily conflict goals for achieving distribution transparency.

Matters are further complicated by the fact that many developers initially
make assumptions about the underlying network that are fundamentally
wrong. Later, when assumptions are dropped, it may turn out to be difficult
to mask unwanted behavior. A typical example is assuming that network
latency is not significant. Other pitfalls include assuming that the network is
reliable, static, secure, and homogeneous.

Different types of distributed systems exist which can be classified as
being oriented toward supporting computations, information processing, and
pervasiveness. Distributed computing systems are typically deployed for
high-performance applications often originating from the field of parallel
computing. A field that emerged from parallel processing was initially grid
computing with a strong focus on worldwide sharing of resources, in turn
leading to what is now known as cloud computing. Cloud computing goes
beyond high-performance computing and also supports distributed systems
found in traditional office environments where we see databases playing an
important role. Typically, transaction processing systems are deployed in

DS 3.02 downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK

1.4. SUMMARY 53

these environments. Finally, an emerging class of distributed systems is where
components are small, the system is composed in an ad hoc fashion, but
most of all is no longer managed through a system administrator. This last
class is typically represented by pervasive computing environments, including
mobile-computing systems as well as sensor-rich environments.

downloaded by HUMAIRA.BILALRASUL@UOS.EDU.PK DS 3.02

