
What Is Physics?
One of the fundamental goals of physics is to investigate something that every-
one talks about: energy. The topic is obviously important. Indeed, our civilization
is based on acquiring and effectively using energy.

For example, everyone knows that any type of motion requires energy:
Flying across the Pacific Ocean requires it. Lifting material to the top floor of an
office building or to an orbiting space station requires it. Throwing a fastball
requires it. We spend a tremendous amount of money to acquire and use energy.
Wars have been started because of energy resources. Wars have been ended
because of a sudden, overpowering use of energy by one side. Everyone knows
many examples of energy and its use, but what does the term energy really mean?

What Is Energy?
The term energy is so broad that a clear definition is difficult to write.Technically,
energy is a scalar quantity associated with the state (or condition) of one or more
objects. However, this definition is too vague to be of help to us now.

A looser definition might at least get us started. Energy is a number that we
associate with a system of one or more objects. If a force changes one of the
objects by, say, making it move, then the energy number changes. After countless
experiments, scientists and engineers realized that if the scheme by which we
assign energy numbers is planned carefully, the numbers can be used to predict the
outcomes of experiments and, even more important, to build machines, such as fly-
ing machines. This success is based on a wonderful property of our universe:
Energy can be transformed from one type to another and transferred from one
object to another, but the total amount is always the same (energy is conserved).
No exception to this principle of energy conservation has ever been found.

Money. Think of the many types of energy as being numbers representing
money in many types of bank accounts. Rules have been made about what such
money numbers mean and how they can be changed. You can transfer money
numbers from one account to another or from one system to another, perhaps
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After reading this module, you should be able to . . .

7.01 Apply the relationship between a particle’s kinetic
energy, mass, and speed.

7.02 Identify that kinetic energy is a scalar quantity.
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● The kinetic energy K associated with the motion of a particle of mass m and speed v, where v is well below the speed of light, is

(kinetic energy).K � 1
2 mv2



electronically with nothing material actually moving. However, the total amount
(the total of all the money numbers) can always be accounted for: It is always
conserved. In this chapter we focus on only one type of energy (kinetic energy)
and on only one way in which energy can be transferred (work).

Kinetic Energy
Kinetic energy K is energy associated with the state of motion of an object. The
faster the object moves, the greater is its kinetic energy. When the object is
stationary, its kinetic energy is zero.

For an object of mass m whose speed v is well below the speed of light,

(kinetic energy). (7-1)

For example, a 3.0 kg duck flying past us at 2.0 m/s has a kinetic energy of 
6.0 kg �m2/s2; that is, we associate that number with the duck’s motion.

The SI unit of kinetic energy (and all types of energy) is the joule (J), named
for James Prescott Joule, an English scientist of the 1800s and defined as

1 joule � 1 J � 1 kg �m2/s2. (7-2)

Thus, the flying duck has a kinetic energy of 6.0 J.

K � 1
2mv2
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Sample Problem 7.01 Kinetic energy, train crash

In 1896 in Waco,Texas,William Crush parked two locomotives
at opposite ends of a 6.4-km-long track, fired them up, tied
their throttles open, and then allowed them to crash head-on at
full speed (Fig. 7-1) in front of 30,000 spectators. Hundreds of
people were hurt by flying debris; several were killed.
Assuming each locomotive weighed 1.2 � 106 N and its accel-
eration was a constant 0.26 m/s2, what was the total kinetic en-
ergy of the two locomotives just before the collision?

KEY IDEAS

(1) We need to find the kinetic energy of each locomotive
with Eq. 7-1, but that means we need each locomotive’s
speed just before the collision and its mass. (2) Because we
can assume each locomotive had constant acceleration, we
can use the equations in Table 2-1 to find its speed v just be-
fore the collision.

Calculations: We choose Eq. 2-16 because we know values
for all the variables except v:

With v0 � 0 and x � x0 � 3.2 � 103 m (half the initial sepa-
ration), this yields

v2 � 0 � 2(0.26 m/s2)(3.2 � 103 m),

or v � 40.8 m/s � 147 km/h.

v2 � v0
2 � 2a(x � x0).

Figure 7-1 The aftermath of an 1896 crash of two locomotives.

Courtesy Library of Congress

We can find the mass of each locomotive by dividing its
given weight by g:

Now, using Eq. 7-1, we find the total kinetic energy of
the two locomotives just before the collision as

(Answer)

This collision was like an exploding bomb.

� 2.0 � 108 J.

K � 2(1
2 mv2) � (1.22 � 105 kg)(40.8 m/s)2

m �
1.2 � 106 N

9.8 m/s2 � 1.22 � 105 kg.

Additional examples, video, and practice available at WileyPLUS



Work
If you accelerate an object to a greater speed by applying a force to the object,
you increase the kinetic energy of the object. Similarly, if you decel-
erate the object to a lesser speed by applying a force, you decrease the kinetic
energy of the object. We account for these changes in kinetic energy by saying
that your force has transferred energy to the object from yourself or from the
object to yourself. In such a transfer of energy via a force, work W is said to be
done on the object by the force. More formally, we define work as follows:

K (� 1
2 mv2)
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After reading this module, you should be able to . . .

7.03 Apply the relationship between a force (magnitude and
direction) and the work done on a particle by the force
when the particle undergoes a displacement.

7.04 Calculate work by taking a dot product of the force vec-
tor and the displacement vector, in either magnitude-angle
or unit-vector notation.

7.05 If multiple forces act on a particle, calculate the net work
done by them.

7.06 Apply the work–kinetic energy theorem to relate the
work done by a force (or the net work done by multiple
forces) and the resulting change in kinetic energy.

● Work W is energy transferred to or from an object via a
force acting on the object. Energy transferred to the object
is positive work, and from the object, negative work.

● The work done on a particle by a constant force during
displacement is

(work, constant force),

in which f is the constant angle between the directions of 
and .

● Only the component of that is along the displacement 
can do work on the object. 

d
:

F
:

d
:

F
:

W � Fd cos f � F
:

� d
:

d
:

F
:

● When two or more forces act on an object, their net work is
the sum of the individual works done by the forces, which is
also equal to the work that would be done on the object by
the net force of those forces.

● For a particle, a change �K in the kinetic energy equals the
net work W done on the particle:

�K � Kf � Ki � W (work–kinetic energy theorem),

in which Ki is the initial kinetic energy of the particle and Kf is
the kinetic energy after the work is done. The equation
rearranged gives us

Kf � Ki � W.

F
:

net

Learning Objectives

Key Ideas

Work W is energy transferred to or from an object by means of a force acting on
the object. Energy transferred to the object is positive work, and energy transferred
from the object is negative work.

“Work,” then, is transferred energy; “doing work” is the act of transferring the
energy. Work has the same units as energy and is a scalar quantity.

The term transfer can be misleading. It does not mean that anything material
flows into or out of the object; that is, the transfer is not like a flow of water.
Rather, it is like the electronic transfer of money between two bank accounts:
The number in one account goes up while the number in the other account goes
down, with nothing material passing between the two accounts.

Note that we are not concerned here with the common meaning of the word
“work,” which implies that any physical or mental labor is work. For example, if
you push hard against a wall, you tire because of the continuously repeated mus-
cle contractions that are required, and you are, in the common sense, working.
However, such effort does not cause an energy transfer to or from the wall and
thus is not work done on the wall as defined here.

To avoid confusion in this chapter, we shall use the symbol W only for work
and shall represent a weight with its equivalent mg.



Work and Kinetic Energy
Finding an Expression for Work
Let us find an expression for work by considering a bead that can slide along
a frictionless wire that is stretched along a horizontal x axis (Fig. 7-2). A constant
force , directed at an angle f to the wire, accelerates the bead along the wire.
We can relate the force and the acceleration with Newton’s second law, written
for components along the x axis:

Fx � max, (7-3)

where m is the bead’s mass. As the bead moves through a displacement , the
force changes the bead’s velocity from an initial value to some other value .
Because the force is constant, we know that the acceleration is also constant.
Thus, we can use Eq. 2-16 to write, for components along the x axis,

(7-4)

Solving this equation for ax, substituting into Eq. 7-3, and rearranging then give us

(7-5)

The first term is the kinetic energy Kf of the bead at the end of the displacement
d, and the second term is the kinetic energy Ki of the bead at the start. Thus, the
left side of Eq. 7-5 tells us the kinetic energy has been changed by the force, and
the right side tells us the change is equal to Fxd. Therefore, the work W done on
the bead by the force (the energy transfer due to the force) is

W � Fxd. (7-6)

If we know values for Fx and d, we can use this equation to calculate the work W.

1
2 mv2 �

1
2 mv0

2 � Fxd.

v2 � v0
2 � 2axd.

v:v:0

d
:

F
:
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To calculate the work a force does on an object as the object moves through some
displacement, we use only the force component along the object’s displacement.
The force component perpendicular to the displacement does zero work.

Figure 7-2 A constant force directed at
angle f to the displacement of a bead
on a wire accelerates the bead along the
wire, changing the velocity of the bead
from to . A “kinetic energy gauge”
indicates the resulting change in the kinet-
ic energy of the bead, from the value Ki to
the value Kf.
In WileyPLUS, this figure is available as
an animation with voiceover.

v:v:0

d
:

F
:

A

From Fig. 7-2, we see that we can write Fx as F cos f, where f is the angle
between the directions of the displacement and the force .Thus,

W � Fd cos f (work done by a constant force). (7-7)

F
:

d
:

xx
Bead

Wireφ

F

Ki

Kf

v

v0

This component
does no work.

Small initial
kinetic energy

Larger final
kinetic energy

This force does positive work
on the bead, increasing speed
and kinetic energy.

This component
does work.

φ

F

φ

F

φ

F

Displacement d



We can use the definition of the scaler (dot) product (Eq. 3-20) to write

(work done by a constant force), (7-8)

where F is the magnitude of (You may wish to review the discussion of scaler
products in Module 3-3.) Equation 7-8 is especially useful for calculating the
work when and are given in unit-vector notation.

Cautions. There are two restrictions to using Eqs. 7-6 through 7-8 to calculate
work done on an object by a force. First, the force must be a constant force; that
is, it must not change in magnitude or direction as the object moves. (Later, we
shall discuss what to do with a variable force that changes in magnitude.) Second,
the object must be particle-like. This means that the object must be rigid; all parts
of it must move together, in the same direction. In this chapter we consider only
particle-like objects, such as the bed and its occupant being pushed in Fig. 7-3.

Signs for Work. The work done on an object by a force can be either positive
work or negative work. For example, if angle f in Eq. 7-7 is less than 90�, then cos f is
positive and thus so is the work. However, if f is greater than 90� (up to 180�), then
cos f is negative and thus so is the work. (Can you see that the work is zero when
f � 90�?) These results lead to a simple rule. To find the sign of the work done by a
force,consider the force vector component that is parallel to the displacement:

d
:

F
:

F
:

.

W � F
:

� d
:
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Figure 7-3 A contestant in a bed race. We
can approximate the bed and its occupant
as being a particle for the purpose of cal-
culating the work done on them by the
force applied by the contestant.

F

A force does positive work when it has a vector component in the same direction
as the displacement, and it does negative work when it has a vector component in
the opposite direction. It does zero work when it has no such vector component.

Units for Work. Work has the SI unit of the joule, the same as kinetic energy.
However, from Eqs. 7-6 and 7-7 we can see that an equivalent unit is the newton-
meter (N �m). The corresponding unit in the British system is the foot-pound
(ft � lb). Extending Eq. 7-2, we have

1 J � 1 kg �m2/s2 � 1 N �m � 0.738 ft � lb. (7-9)

Net Work. When two or more forces act on an object, the net work done on
the object is the sum of the works done by the individual forces. We can
calculate the net work in two ways. (1) We can find the work done by each force
and then sum those works. (2) Alternatively, we can first find the net force 
of those forces. Then we can use Eq. 7-7, substituting the magnitude Fnet for F
and also the angle between the directions of and for f. Similarly, we can
use Eq. 7-8 with substituted for 

Work–Kinetic Energy Theorem
Equation 7-5 relates the change in kinetic energy of the bead (from an initial

to a later ) to the work W (� Fxd) done on the bead. ForKf � 1
2 mv2Ki � 1

2 mv2
0

F
:

.F
:

net

d
:

F
:

net

F
:

net

such particle-like objects, we can generalize that equation. Let �K be the change
in the kinetic energy of the object, and let W be the net work done on it.Then 

�K � Kf � Ki � W, (7-10)

which says that

We can also write

Kf � Ki � W, (7-11)

which says that

.� kinetic energy after
the net work is done� � � kinetic energy 

before the net work� � � the net
work done�

�change in the kinetic
energy of a particle � � �net work done on

the particle �.



done on the safe by the normal force from the floor?

KEY IDEA

Because these forces are constant in both magnitude and
direction, we can find the work they do with Eq. 7-7.

Calculations: Thus, with mg as the magnitude of the gravi-
tational force, we write

Wg � mgd cos 90� � mgd(0) � 0 (Answer)

and WN � FNd cos 90� � FNd(0) � 0. (Answer)

We should have known this result. Because these forces are
perpendicular to the displacement of the safe, they do zero
work on the safe and do not transfer any energy to or from it.

(c) The safe is initially stationary. What is its speed vf at the
end of the 8.50 m displacement?

KEY IDEA

The speed of the safe changes because its kinetic energy is
changed when energy is transferred to it by and .F

:

2F
:

1

F
:

N

These statements are known traditionally as the work–kinetic energy theorem
for particles. They hold for both positive and negative work: If the net work done
on a particle is positive, then the particle’s kinetic energy increases by the amount
of the work. If the net work done is negative, then the particle’s kinetic energy
decreases by the amount of the work.

For example, if the kinetic energy of a particle is initially 5 J and there is a
net transfer of 2 J to the particle (positive net work), the final kinetic energy is
7 J. If, instead, there is a net transfer of 2 J from the particle (negative net work),
the final kinetic energy is 3 J.
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Checkpoint 1
A particle moves along an x axis. Does the kinetic energy of the particle increase, de-
crease, or remain the same if the particle’s velocity changes (a) from �3 m/s to �2 m/s
and (b) from �2 m/s to 2 m/s? (c) In each situation, is the work done on the particle
positive, negative, or zero?

Sample Problem 7.02 Work done by two constant forces, industrial spies

8.50 m. The push of spy 001 is 12.0 N at an angle of 30.0�
downward from the horizontal; the pull of spy 002 isF

:

2

F
:

1

Figure 7-4 (a) Two spies move a floor safe through a displacement
. (b) A free-body diagram for the safe.d

:

(a)

Safe

(b)

40.0°
30.0°

Spy 001 
Spy 002 

Fg

FN

F1

F2

d

Only force components
parallel to the displacement
do work.

(b) During the displacement, what is the work Wg done on the
safe by the gravitational force and what is the work WNF

:

g

Figure 7-4a shows two industrial spies sliding an initially
stationary 225 kg floor safe a displacement of magnituded

:

10.0 N at 40.0� above the horizontal. The magnitudes and di-
rections of these forces do not change as the safe moves, and
the floor and safe make frictionless contact.

(a) What is the net work done on the safe by forces and 
during the displacement ?

KEY IDEAS

(1) The net work W done on the safe by the two forces is the
sum of the works they do individually. (2) Because we can
treat the safe as a particle and the forces are constant in
both magnitude and direction, we can use either Eq. 7-7 
(W � Fd cos f) or Eq. 7-8 to calculate those
works. Let’s choose Eq. 7-7.

Calculations: From Eq. 7-7 and the free-body diagram for
the safe in Fig. 7-4b, the work done by is

W1 � F1d cos f1 � (12.0 N)(8.50 m)(cos 30.0�)

� 88.33 J,

and the work done by is

W2 � F2d cos f2 � (10.0 N)(8.50 m)(cos 40.0�)

� 65.11 J.

Thus, the net work W is

W � W1 � W2 � 88.33 J � 65.11 J

� 153.4 J � 153 J. (Answer)

During the 8.50 m displacement, therefore, the spies transfer
153 J of energy to the kinetic energy of the safe.

F
:

2

F
:

1

(W � F
:

� d
:

)

d
:

F
:

2F
:

1
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Calculations: We relate the speed to the work done by
combining Eqs. 7-10 (the work–kinetic energy theorem) and
7-1 (the definition of kinetic energy):

The initial speed vi is zero, and we now know that the work

W � Kf � Ki � 1
2 mvf

2 � 1
2 mvi

2.

done is 153.4 J. Solving for vf and then substituting known
data, we find that

(Answer)� 1.17 m/s.

vf � A
2W
m

� A
2(153.4 J)

225 kg

Sample Problem 7.03 Work done by a constant force in unit-vector notation

During a storm, a crate of crepe is sliding across a slick,
oily parking lot through a displacement 
while a steady wind pushes against the crate with a force

. The situation and coordinate
axes are shown in Fig. 7-5.

(a) How much work does this force do on the crate during
the displacement?

KEY IDEA

Because we can treat the crate as a particle and because the
wind force is constant (“steady”) in both magnitude and direc-
tion during the displacement, we can use either Eq. 7-7 (W �
Fd cos f) or Eq. 7-8 to calculate the work. Since
we know and in unit-vector notation, we choose Eq. 7-8.

Calculations: We write

Of the possible unit-vector dot products, only î � î, ĵ � ĵ, and
k̂ �k̂ are nonzero (see Appendix E). Here we obtain

W � (2.0 N)(�3.0 m)î � î � (�6.0 N)(�3.0 m)ĵ � î

� (�6.0 J)(1) � 0 � �6.0 J. (Answer)

W � F
:

� d
:

� [(2.0 N)î � (�6.0 N)ĵ] � [(�3.0 m)î].

d
:

F
:

(W � F
:

� d
:

)

(2.0 N)î � (�6.0 N)ĵF
:

�

d
:

� (�3.0 m)î

Figure 7-5 Force slows a
crate during displacement .d

:
F
:

y

x
F

d

The parallel force component does
negative work, slowing the crate.

Thus, the force does a negative 6.0 J of work on the crate, trans-
ferring 6.0 J of energy from the kinetic energy of the crate.

(b) If the crate has a kinetic energy of 10 J at the beginning
of displacement , what is its kinetic energy at the end of ?

KEY IDEA

Because the force does negative work on the crate, it re-
duces the crate’s kinetic energy.

Calculation: Using the work–kinetic energy theorem in
the form of Eq. 7-11, we have

Kf � Ki � W � 10 J � (�6.0 J) � 4.0 J. (Answer)

Less kinetic energy means that the crate has been slowed.

d
:

d
:

Additional examples, video, and practice available at WileyPLUS
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Learning Objectives

7.08 Apply the work–kinetic energy theorem to situations
where an object is lifted or lowered.

● The work Wg done by the gravitational force on a
particle-like object of mass m as the object moves through a
displacement is given by

Wg � mgd cos f,

in which f is the angle between and .

● The work Wa done by an applied force as a particle-like
object is either lifted or lowered is related to the work Wg

d
:

F
:

g

d
:

F
:

g done by the gravitational force and the change �K in the
object’s kinetic energy by

�K � Kf � Ki � Wa � Wg.

If Kf � Ki, then the equation reduces to

Wa � �Wg,

which tells us that the applied force transfers as much energy
to the object as the gravitational force transfers from it.

After reading this module, you should be able to . . . 

7.07 Calculate the work done by the gravitational force
when an object is lifted or lowered.

Key Ideas



156 CHAPTER 7 KINETIC ENERGY AND WORK

Work Done by the Gravitational Force
We next examine the work done on an object by the gravitational force acting on
it. Figure 7-6 shows a particle-like tomato of mass m that is thrown upward with
initial speed v0 and thus with initial kinetic energy . As the tomatoKi � 1

2 mv2
0

Figure 7-6 Because the gravitational force 
acts on it, a particle-like tomato of mass m
thrown upward slows from velocity to
velocity during displacement . A kinetic
energy gauge indicates the resulting change
in the kinetic energy of the tomato, from

to .Kf (� 1
2 mv2)Ki (�

1
2 mv2

0)

d
:

v:
v:0

F
:

g

Kf

Ki

Fg

Fg

Fg

v0

v

d

The force does negative
work, decreasing speed
and kinetic energy.

rises, it is slowed by a gravitational force ; that is, the tomato’s kinetic energyF
:

g
decreases because does work on the tomato as it rises. Because we can treatF

:

g

Figure 7-7 (a) An applied force lifts an
object. The object’s displacement makes
an angle f � 180� with the gravitational
force on the object. The applied force
does positive work on the object. (b) An
applied force lowers an object. The dis-
placement of the object makes an angle
f with the gravitational force . The
applied force does negative work on the
object.

F
:

g� 0�
d
:

F
:

F
:

g

d
:

F
:

(Fig. 7-7a), then f � 180� and the work done by the applied force equals mgd.

the tomato as a particle, we can use Eq. 7-7 (W � Fd cos f) to express the work
done during a displacement . For the force magnitude F, we use mg as the mag-
nitude of F

:

g.Thus, the work Wg done by the gravitational force F
:

g is

Wg � mgd cos f (work done by gravitational force). (7-12)

For a rising object, force F
:

g is directed opposite the displacement , as indi-
cated in Fig. 7-6.Thus, f � 180� and

Wg � mgd cos 180� � mgd(�1) � �mgd. (7-13)

The minus sign tells us that during the object’s rise, the gravitational force acting
on the object transfers energy in the amount mgd from the kinetic energy of the
object.This is consistent with the slowing of the object as it rises.

After the object has reached its maximum height and is falling back down,
the angle f between force and displacement is zero.Thus,

Wg � mgd cos 0� � mgd(�1) � �mgd. (7-14)

The plus sign tells us that the gravitational force now transfers energy in the amount
mgd to the kinetic energy of the falling object (it speeds up, of course).

Work Done in Lifting and Lowering an Object
Now suppose we lift a particle-like object by applying a vertical force to it.
During the upward displacement, our applied force does positive work Wa on the
object while the gravitational force does negative work Wg on it. Our applied
force tends to transfer energy to the object while the gravitational force tends to
transfer energy from it. By Eq. 7-10, the change �K in the kinetic energy of the
object due to these two energy transfers is

�K � Kf � Ki � Wa � Wg, (7-15)

in which Kf is the kinetic energy at the end of the displacement and Ki is that at
the start of the displacement. This equation also applies if we lower the object,
but then the gravitational force tends to transfer energy to the object while our
force tends to transfer energy from it.

If an object is stationary before and after a lift (as when you lift a book from
the floor to a shelf), then Kf and Ki are both zero, and Eq. 7-15 reduces to

Wa � Wg � 0

or Wa � �Wg. (7-16)

Note that we get the same result if Kf and Ki are not zero but are still equal.
Either way, the result means that the work done by the applied force is the nega-
tive of the work done by the gravitational force; that is, the applied force transfers
the same amount of energy to the object as the gravitational force transfers from
the object. Using Eq. 7-12, we can rewrite Eq. 7-16 as

Wa � �mgd cos f (work done in lifting and lowering; Kf � Ki), (7-17)

with f being the angle between and . If the displacement is vertically upwardd
:

F
:

g

F
:

d
:

F
:

g

d
:

d
:

(a)

Fg

F

d

Object

Does
positive
work

Upward
displacement

Does
negative
work

(b)

Fg

F

d

Object

Does
positive
work

Downward
displacement

Does
negative
work
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If the displacement is vertically downward (Fig. 7-7b), then f � 0� and the work
done by the applied force equals �mgd.

Equations 7-16 and 7-17 apply to any situation in which an object is lifted or
lowered, with the object stationary before and after the lift.They are independent
of the magnitude of the force used. For example, if you lift a mug from the floor
to over your head, your force on the mug varies considerably during the lift. Still,
because the mug is stationary before and after the lift, the work your force does
on the mug is given by Eqs. 7-16 and 7-17, where, in Eq. 7-17, mg is the weight of
the mug and d is the distance you lift it.

The angle f between the displacement and this force com-
ponent is 180�. So we can apply Eq. 7-7 to write

Sample Problem 7.04 Work in pulling a sleigh up a snowy slope

In this problem an object is pulled along a ramp but the ob-
ject starts and ends at rest and thus has no overall change in
its kinetic energy (that is important). Figure 7-8a shows the
situation. A rope pulls a 200 kg sleigh (which you may know)
up a slope at incline angle u � 30�, through distance d � 20 m.
The sleigh and its contents have a total mass of 200 kg. The
snowy slope is so slippery that we take it to be frictionless.
How much work is done by each force acting on the sleigh?

KEY IDEAS

(1) During the motion, the forces are constant in magnitude
and direction and thus we can calculate the work done by
each with Eq. 7-7 (W � Fd cos f) in which f is the angle be-
tween the force and the displacement. We reach the same
result with Eq. 7-8 (W � � ) in which we take a dot prod-
uct of the force vector and displacement vector. (2) We can
relate the net work done by the forces to the change in
kinetic energy (or lack of a change, as here) with the
work–kinetic energy theorem of Eq. 7-10 (�K � W).

Calculations: The first thing to do with most physics prob-
lems involving forces is to draw a free-body diagram to organ-
ize our thoughts. For the sleigh, Fig.7-8b is our free-body dia-
gram, showing the gravitational force , the force from theT

:
F
:

g

d
:

F
:

rope, and the normal force from the slope.

Work WN by the normal force. Let’s start with this easy cal-
culation. The normal force is perpendicular to the slope and
thus also to the sleigh’s displacement.Thus the normal force
does not affect the sleigh’s motion and does zero work. To
be more formal, we can apply Eq. 7-7 to write

WN � FNd cos 90� � 0. (Answer)

Work Wg by the gravitational force. We can find the work
done by the gravitational force in either of two ways (you
pick the more appealing way). From an earlier discussion
about ramps (Sample Problem 5.04 and Fig. 5-15), we know
that the component of the gravitational force along the
slope has magnitude mg sin u and is directed down the
slope.Thus the magnitude is

Fgx � mg sin u � (200 kg)(9.8 m/s2) sin 30�

� 980 N.

FN
:

Wg � Fgxd cos 180� � (980 N)(20 m)(�1)

Figure 7-8 (a) A sleigh is pulled up a snowy slope. (b) The free-
body diagram for the sleigh.

θ

d

FN

T

Fg

mg cosu

mg sinu

(b)

(a)

u

Does
positive workDoes negative work

x

��1.96 � 104 J. (Answer)

The negative result means that the gravitational force re-
moves energy from the sleigh.

The second (equivalent) way to get this result is to use
the full gravitational force instead of a component. TheF

:

g

angle between and is 120� (add the incline angle 30�d
:

F
:

g

to 90�). So, Eq. 7-7 gives us

Wg � Fgd cos 120� � mgd cos 120�

� (200 kg)(9.8 m/s2)(20 m) cos 120�

��1.96 � 104 J. (Answer)

Work WT by the rope’s force. We have two ways of calculat-
ing this work. The quickest way is to use the work–kinetic en-
ergy theorem of Eq. 7-10 (�K � W), where the net work W
done by the forces is WN � Wg � WT and the change �K in the
kinetic energy is just zero (because the initial and final kinetic
energies are the same—namely, zero). So, Eq. 7-10 gives us

0 � WN � Wg � WT � 0 � 1.96 � 104 J � WT

and WT � 1.96 � l04 J. (Answer)



158 CHAPTER 7 KINETIC ENERGY AND WORK

Sample Problem 7.05 Work done on an accelerating elevator cab

An elevator cab of mass m � 500 kg is descending with speed
vi � 4.0 m/s when its supporting cable begins to slip, allowing
it to fall with constant acceleration (Fig. 7-9a).

(a) During the fall through a distance d � 12 m, what is the
work Wg done on the cab by the gravitational force ?

KEY IDEA

We can treat the cab as a particle and thus use Eq. 7-12 
(Wg � mgd cos f) to find the work Wg.

Calculation: From Fig. 7-9b, we see that the angle between
the directions of F

:

g and the cab’s displacement is 0�. So,

Wg � mgd cos 0� � (500 kg)(9.8 m/s2)(12 m)(1)

� 5.88 � 104 J � 59 kJ. (Answer)

(b) During the 12 m fall, what is the work WT done on the
cab by the upward pull of the elevator cable?

KEY IDEA

We can calculate work WT with Eq. 7-7 (W � Fd cos f)  by
first writing Fnet,y � may for the components in Fig. 7-9b.

Calculations: We get

T � Fg � ma. (7-18)

Solving for T, substituting mg for Fg, and then substituting
the result in Eq. 7-7, we obtain

WT � Td cos f � m(a � g)d cos f. (7-19)

Next, substituting �g/5 for the (downward) acceleration a
and then 180� for the angle f between the directions of
forces and , we find

(Answer)� �4.70 � 10 4 J � �47 kJ.

�
4
5

 (500 kg)(9.8 m/s2)(12 m) cos 180�

WT � m��
g
5

� g� d cos � �
4
5

mgd cos �

mg:T
:

T
:

d
:

F
:

g

a: � g:/5
Figure 7-9 An elevator
cab, descending with
speed vi, suddenly 
begins to accelerate
downward. (a) It
moves through a dis-
placement with
constant acceleration

(b) A free-
body diagram for the
cab, displacement
included.

a: � g:/5.

d
:

Caution: Note that WT is not simply the negative of Wg be-
cause the cab accelerates during the fall. Thus, Eq. 7-16
(which assumes that the initial and final kinetic energies are
equal) does not apply here.

(c) What is the net work W done on the cab during the fall?

Calculation: The net work is the sum of the works done by
the forces acting on the cab:

W � Wg � WT � 5.88 � 104 J � 4.70 � 104 J

� 1.18 � 104 J � 12 kJ. (Answer)

(d) What is the cab’s kinetic energy at the end of the 12 m fall?

KEY IDEA

The kinetic energy changes because of the net work done on
the cab, according to Eq. 7-11 (Kf � Ki � W).

Calculation: From Eq. 7-1, we write the initial kinetic
energy as .We then write Eq. 7-11 as

(Answer)� 1.58 � 104 J � 16 kJ.

� 1
2(500 kg)(4.0 m/s)2 � 1.18 � 104 J

Kf � Ki � W � 1
2 mvi

2 � W

Ki � 1
2mvi

2

Additional examples, video, and practice available at WileyPLUS

Instead of doing this, we can apply Newton’s second law for
motion along the x axis to find the magnitude FT of the rope’s
force. Assuming that the acceleration along the slope is zero
(except for the brief starting and stopping), we can write

Fnet,x � max,

FT � mg sin 30� � m(0),
to find

FT � mg sin 30�.

This is the magnitude. Because the force and the displace-
ment are both up the slope, the angle between those two
vectors is zero. So, we can now write Eq. 7-7 to find the work
done by the rope’s force:

WT � FTd cos 0� � (mg sin 30�)d cos 0�

� (200 kg)(9.8 m/s2)(sin 30�)(20 m) cos 0�

� 1.96 � 104 J. (Answer)

Elevator
cable

Cab

(b)(a)

a

d
Fg

T

y

Does
negative
work

Does
positive
work
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Work Done by a Spring Force
We next want to examine the work done on a particle-like object by a particular
type of variable force—namely, a spring force, the force from a spring. Many
forces in nature have the same mathematical form as the spring force. Thus, by
examining this one force, you can gain an understanding of many others.

The Spring Force
Figure 7-10a shows a spring in its relaxed state—that is, neither compressed nor
extended. One end is fixed, and a particle-like object—a block, say—is attached
to the other, free end. If we stretch the spring by pulling the block to the right as
in Fig. 7-10b, the spring pulls on the block toward the left. (Because a spring
force acts to restore the relaxed state, it is sometimes said to be a restoring force.)
If we compress the spring by pushing the block to the left as in Fig. 7-10c, the
spring now pushes on the block toward the right.

To a good approximation for many springs, the force from a spring is pro-
portional to the displacement of the free end from its position when the spring
is in the relaxed state.The spring force is given by

(Hooke’s law), (7-20)

which is known as Hooke’s law after Robert Hooke, an English scientist of the
late 1600s. The minus sign in Eq. 7-20 indicates that the direction of the spring
force is always opposite the direction of the displacement of the spring’s free end.
The constant k is called the spring constant (or force constant) and is a measure
of the stiffness of the spring.The larger k is, the stiffer the spring; that is, the larger
k is, the stronger the spring’s pull or push for a given displacement.The SI unit for
k is the newton per meter.

In Fig. 7-10 an x axis has been placed parallel to the length of the spring, with
the origin (x � 0) at the position of the free end when the spring is in its relaxed

F
:

s � �kd
:

d
:

F
:

s

7-4 WORK DONE BY A SPRING FORCE
Learning Objectives

position of the object or by using the known generic result
of that integration.

7.12 Calculate work by graphically integrating on a graph of
force versus position of the object.

7.13 Apply the work–kinetic energy theorem to situations in
which an object is moved by a spring force.

● The force from a spring is

(Hooke’s law),

where is the displacement of the spring’s free end from
its position when the spring is in its relaxed state (neither
compressed nor extended), and k is the spring constant 
(a measure of the spring’s stiffness). If an x axis lies along the
spring, with the origin at the location of the spring’s free end
when the spring is in its relaxed state, we can write

Fx � �kx (Hooke’s law).

d
:

F
:

s � �kd
:

F
:

s ● A spring force is thus a variable force: It varies with the
displacement of the spring’s free end.

● If an object is attached to the spring’s free end, the work Ws

done on the object by the spring force when the object is
moved from an initial position xi to a final position xf is

If xi � 0 and xf � x, then the equation becomes

Ws � �1
2 kx2.

Ws � 1
2 kxi

2 � 1
2 kxf

2.

After reading this module, you should be able to . . . 

7.09 Apply the relationship (Hooke’s law) between the force
on an object due to a spring, the stretch or compression
of the spring, and the spring constant of the spring.

7.10 Identify that a spring force is a variable force.
7.11 Calculate the work done on an object by a spring force

by integrating the force from the initial position to the final

Key Ideas

Figure 7-10 (a) A spring in its relaxed state.
The origin of an x axis has been placed at
the end of the spring that is attached to a
block. (b) The block is displaced by , and
the spring is stretched by a positive amount
x. Note the restoring force exerted by
the spring. (c) The spring is compressed by
a negative amount x. Again, note the
restoring force.

F
:

s

d
:

Block
attached
to spring 

x
0

x
0

x

x

0
x

x = 0
Fx = 0 

x positive
Fx negative

x negative
Fx positive

(a)

(b)

(c)

d

d

Fs

Fs



160 CHAPTER 7 KINETIC ENERGY AND WORK

state. For this common arrangement, we can write Eq. 7-20 as

Fx � �kx (Hooke’s law), (7-21)

where we have changed the subscript. If x is positive (the spring is stretched
toward the right on the x axis), then Fx is negative (it is a pull toward the left). If
x is negative (the spring is compressed toward the left), then Fx is positive (it is a
push toward the right). Note that a spring force is a variable force because it is a
function of x, the position of the free end.Thus Fx can be symbolized as F(x).Also
note that Hooke’s law is a linear relationship between Fx and x.

The Work Done by a Spring Force
To find the work done by the spring force as the block in Fig. 7-10a moves, let us
make two simplifying assumptions about the spring. (1) It is massless; that is, its
mass is negligible relative to the block’s mass. (2) It is an ideal spring; that is, it
obeys Hooke’s law exactly. Let us also assume that the contact between the block
and the floor is frictionless and that the block is particle-like.

We give the block a rightward jerk to get it moving and then leave it alone.
As the block moves rightward, the spring force Fx does work on the block,
decreasing the kinetic energy and slowing the block. However, we cannot find this
work by using Eq. 7-7 (W � Fd cos f) because there is no one value of F to plug
into that equation—the value of F increases as the block stretches the spring.

There is a neat way around this problem. (1) We break up the block’s dis-
placement into tiny segments that are so small that we can neglect the variation
in F in each segment. (2) Then in each segment, the force has (approximately) a
single value and thus we can use Eq. 7-7 to find the work in that segment. (3)
Then we add up the work results for all the segments to get the total work. Well,
that is our intent, but we don’t really want to spend the next several days adding
up a great many results and, besides, they would be only approximations. Instead,
let’s make the segments infinitesimal so that the error in each work result goes to
zero. And then let’s add up all the results by integration instead of by hand.
Through the ease of calculus, we can do all this in minutes instead of days.

Let the block’s initial position be xi and its later position be xf. Then divide
the distance between those two  positions into many segments, each of tiny length
�x. Label these segments, starting from xi, as segments 1, 2, and so on. As the
block moves through a segment, the spring force hardly varies because the seg-
ment is so short that x hardly varies. Thus, we can approximate the force magni-
tude as being constant within the segment. Label these magnitudes as Fx1 in
segment 1, Fx2 in segment 2, and so on.

With the force now constant in each segment, we can find the work done
within each segment by using Eq. 7-7. Here f � 180�, and so cos f � �1. Then
the work done is �Fx1 �x in segment 1, �Fx2 �x in segment 2, and so on. The net
work Ws done by the spring, from xi to xf, is the sum of all these works:

(7-22)

where j labels the segments. In the limit as �x goes to zero, Eq. 7-22 becomes

(7-23)

From Eq. 7-21, the force magnitude Fx is kx.Thus, substitution leads to

(7-24)� (�1
2k)[x2]xi

xf � (�1
2 k)(xf

2 � xi
2).

Ws � �xf

xi

�kx dx � �k �xf

xi

x dx

Ws � �xf

xi

�Fx dx.

Ws � � �Fxj �x,
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Caution: If the block is not stationary before and after the displacement, then this
statement is not true.

Work Ws is positive if the block ends up closer to the relaxed position (x � 0) than
it was initially. It is negative if the block ends up farther away from x � 0. It is zero
if the block ends up at the same distance from x � 0.

If xi � 0 and if we call the final position x, then Eq. 7-25 becomes

(work by a spring force). (7-26)

The Work Done by an Applied Force
Now suppose that we displace the block along the x axis while continuing to apply a
force to it. During the displacement, our applied force does work Wa on the blockF

:

a

Ws � �1
2 kx2

7-4 WORK DONE BY A SPRING FORCE

If a block that is attached to a spring is stationary before and after a displacement,
then the work done on it by the applied force displacing it is the negative of the
work done on it by the spring force.

Checkpoint 2
For three situations, the initial and final positions, respectively, along the x axis for the
block in Fig. 7-10 are (a) �3 cm, 2 cm; (b) 2 cm, 3 cm; and (c) �2 cm, 2 cm. In each sit-
uation, is the work done by the spring force on the block positive, negative, or zero?

Sample Problem 7.06 Work done by a spring to change kinetic energy

When a spring does work on an object, we cannot find the
work by simply multiplying the spring force by the object’s
displacement. The reason is that there is no one value for
the force—it changes. However, we can split the displace-
ment up into an infinite number of tiny parts and then ap-
proximate the force in each as being constant. Integration
sums the work done in all those parts. Here we use the
generic result of the integration.

In Fig. 7-11, a cumin canister of mass m � 0.40 kg slides
across a horizontal frictionless counter with speed v � 0.50 m/s.

Multiplied out, this yields

(work by a spring force). (7-25)

This work Ws done by the spring force can have a positive or negative value,
depending on whether the net transfer of energy is to or from the block as the
block moves from xi to xf. Caution: The final position xf appears in the second
term on the right side of Eq. 7-25.Therefore, Eq. 7-25 tells us:

Ws � 1
2 kxi

2 � 1
2 kxf

2

Figure 7-11 A canister moves toward a spring.

k
mFrictionless

First touchStop

v

d

The spring force does
negative work, decreasing
speed and kinetic energy.

while the spring force does work Ws. By Eq. 7-10, the change �K in the kinetic en-
ergy of the block due to these two energy transfers is

�K � Kf � Ki � Wa � Ws, (7-27)

in which Kf is the kinetic energy at the end of the displacement and Ki is that at
the start of the displacement. If the block is stationary before and after the dis-
placement, then Kf and Ki are both zero and Eq. 7-27 reduces to

Wa � �Ws. (7-28)
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Work Done by a General Variable Force
One-Dimensional Analysis
Let us return to the situation of Fig. 7-2 but now consider the force to be in the
positive direction of the x axis and the force magnitude to vary with position x.
Thus, as the bead (particle) moves, the magnitude F(x) of the force doing work on
it changes. Only the magnitude of this variable force changes, not its direction,
and the magnitude at any position does not change with time.

7-5 WORK DONE BY A GENERAL VARIABLE FORCE

After reading this module, you should be able to . . .

7.14 Given a variable force as a function of position, calculate
the work done by it on an object by integrating the function
from the initial to the final position of the object, in one or
more dimensions.

7.15 Given a graph of force versus position, calculate the
work done by graphically integrating from the initial
position to the final position of the object.

7.16 Convert a graph of acceleration versus position to a
graph of force versus position.

7.17 Apply the work–kinetic energy theorem to situations
where an object is moved by a variable force.

Learning Objectives

● When the force on a particle-like object depends on
the position of the object, the work done by on the ob-
ject while the object moves from an initial position ri with
coordinates (xi, yi, zi) to a final position rf with coordinates
(xf, yf, zf) must be found by integrating the force. If we as-
sume that component Fx may depend on x but not on y or
z, component Fy may depend on y but not on x or z, and
component Fz may depend on z but not on x or y, then the

F
:

F
: work is

● If has only an x component, then this reduces to

W � �xf

xi

F(x) dx.

F
:

W � �xf

xi

Fx dx � �yf

yi

Fy dy � �zf

zi

Fz dz.

Key Ideas

Additional examples, video, and practice available at WileyPLUS

It then runs into and compresses a spring of spring constant
k � 750 N/m. When the canister is momentarily stopped by
the spring, by what distance d is the spring compressed?

KEY IDEAS

1. The work Ws done on the canister by the spring force is
related to the requested distance d by Eq. 7-26 (Ws �

, with d replacing x.

2. The work Ws is also related to the kinetic energy of the
canister by Eq. 7-10 (Kf � Ki � W).

3. The canister’s kinetic energy has an initial value of K �
and a value of zero when the canister is momen-

tarily at rest.

1
2 mv2

�1
2 kx2)

Calculations: Putting the first two of these ideas together,
we write the work–kinetic energy theorem for the canister as

Substituting according to the third key idea gives us this
expression:

Simplifying, solving for d, and substituting known data then
give us

(Answer)� 1.2 � 10�2 m � 1.2 cm.

d � vA
m
k

� (0.50 m/s)A
0.40 kg

750 N/m

0 � 1
2 mv2 � �1

2 kd 2.

Kf � Ki � �1
2 kd 2.
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Figure 7-12 (a) A one-dimensional force
plotted against the displacement x of

a particle on which it acts. The particle
moves from xi to xf. (b) Same as (a) but
with the area under the curve divided into
narrow strips. (c) Same as (b) but with the
area divided into narrower strips. (d) The
limiting case. The work done by the force
is given by Eq. 7-32 and is represented by
the shaded area between the curve and
the x axis and between xi and xf.

F
:
(x)

Figure 7-12a shows a plot of such a one-dimensional variable force. We want
an expression for the work done on the particle by this force as the particle
moves from an initial point xi to a final point xf. However, we cannot use Eq. 7-7
(W � Fd cos f) because it applies only for a constant force . Here, again, we
shall use calculus. We divide the area under the curve of Fig. 7-12a into a number
of narrow strips of width �x (Fig. 7-12b).We choose �x small enough to permit us
to take the force F(x) as being reasonably constant over that interval.We let Fj,avg

be the average value of F(x) within the jth interval. Then in Fig. 7-12b, Fj,avg is the
height of the jth strip.

With Fj,avg considered constant, the increment (small amount) of work
�Wj done by the force in the jth interval is now approximately given by Eq.
7-7 and is

�Wj � Fj,avg �x. (7-29)

In Fig. 7-12b, �Wj is then equal to the area of the jth rectangular, shaded strip.
To approximate the total work W done by the force as the particle moves

from xi to xf, we add the areas of all the strips between xi and xf in Fig. 7-12b:

W � � �x. (7-30)

Equation 7-30 is an approximation because the broken “skyline” formed by the tops
of the rectangular strips in Fig. 7-12b only approximates the actual curve of F(x).

We can make the approximation better by reducing the strip width �x and
using more strips (Fig. 7-12c). In the limit, we let the strip width approach
zero; the number of strips then becomes infinitely large and we have, as an ex-
act result,

(7-31)

This limit is exactly what we mean by the integral of the function F(x) between
the limits xi and xf.Thus, Eq. 7-31 becomes

(work: variable force). (7-32)

If we know the function F(x), we can substitute it into Eq. 7-32, introduce the
proper limits of integration, carry out the integration, and thus find the work.
(Appendix E contains a list of common integrals.) Geometrically, the work is
equal to the area between the F(x) curve and the x axis, between the limits xi and
xf (shaded in Fig. 7-12d).

Three-Dimensional Analysis
Consider now a particle that is acted on by a three-dimensional force

� Fx � Fy � Fz , (7-33)

in which the components Fx, Fy, and Fz can depend on the position of the particle;
that is, they can be functions of that position. However, we make three simplifica-
tions: Fx may depend on x but not on y or z, Fy may depend on y but not on x or z,
and Fz may depend on z but not on x or y. Now let the particle move through an in-
cremental displacement

� dx � dy � dz . (7-34)

The increment of work dW done on the particle by during the displacement 
is, by Eq. 7-8,

(7-35)dW � F
:

� dr: � Fx dx � Fy dy � Fz dz.

dr:F
:

k̂ĵîdr:

k̂ĵîF
:

W � �xf

xi

F(x) dx

W � lim
�x : 0

�Fj,avg �x.

�Fj,avg��Wj

F
: F(x)

xxi xf0
(a)

Work is equal to the
area under the curve.

F(x)

xxi xf

Fj, avg

Δ   x
0

(b)

ΔWj

We can approximate that area 
with the area of these strips.

F(x)

xxi xf0
Δ   x(c)

We can do better with
more, narrower strips.

F(x)

xxi xf0

W

(d)

For the best, take the limit of 
strip widths going to zero.



164 CHAPTER 7 KINETIC ENERGY AND WORK

Sample Problem 7.07 Work calculated by graphical integration

In Fig. 7-13b, an 8.0 kg block slides along a frictionless floor
as a force acts on it, starting at x1 � 0 and ending at x3 � 6.5 m.
As the block moves, the magnitude and direction of the
force varies according to the graph shown in Fig. 7-13a. For

The work W done by while the particle moves from an initial position ri having
coordinates (xi, yi, zi) to a final position rf having coordinates (xf, yf, zf) is then

(7-36)

If has only an x component, then the y and z terms in Eq. 7-36 are zero and the
equation reduces to Eq. 7-32.

Work–Kinetic Energy Theorem with a Variable Force
Equation 7-32 gives the work done by a variable force on a particle in a one-
dimensional situation. Let us now make certain that the work is equal to the
change in kinetic energy, as the work–kinetic energy theorem states.

Consider a particle of mass m, moving along an x axis and acted on by a
net force F(x) that is directed along that axis. The work done on the particle
by this force as the particle moves from position xi to position xf is given by
Eq. 7-32 as

(7-37)

in which we use Newton’s second law to replace F(x) with ma. We can write the
quantity ma dx in Eq. 7-37 as

(7-38)

From the chain rule of calculus, we have

(7-39)

and Eq. 7-38 becomes

(7-40)

Substituting Eq. 7-40 into Eq. 7-37 yields

(7-41)

Note that when we change the variable from x to v we are required to express the
limits on the integral in terms of the new variable. Note also that because the
mass m is a constant, we are able to move it outside the integral.

Recognizing the terms on the right side of Eq. 7-41 as kinetic energies allows
us to write this equation as

W � Kf � Ki � �K,

which is the work–kinetic energy theorem.

� 1
2 mvf

2 � 1
2 mvi

2.

W � �vf

vi

mv dv � m �vf

vi

v dv

ma dx � m
dv
dx

v dx � mv dv.

dv
dt

�
dv
dx

dx
dt

�
dv
dx

v,

ma dx � m
dv
dt

dx.

W � �xf

xi

F(x) dx � �xf

xi

ma dx,

F
:

W � �rf

ri

dW � �xf

xi

Fx dx � �yf

yi

Fy dy � �zf

zi

Fz dz.

F
:

example, from x � 0 to x � 1 m, the force is positive (in
the positive direction of the x axis) and increases in mag-
nitude from 0 to 40 N. And from x � 4 m to x � 5 m, the
force is negative and increases in magnitude from 0 to 20 N.
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Additional examples, video, and practice available at WileyPLUS

2
0

�20

40

4 6

20 4 6

x (m)

x (m)

F (N)

(a)

(b)

v1 v2 v3
F F

Figure 7-13 (a) A graph indicating the magnitude and direction of a
variable force that acts on a block as it moves along an x axis on
a floor, (b) The location of the block at several times.

Again using the definition of kinetic energy, we find

and then

(Answer)

This is the block’s greatest speed because from x � 4.0 m to
x � 6.5 m the force is negative, meaning that it opposes the
block’s motion, doing negative work on the block and thus
decreasing the kinetic energy and speed. In that range, the
area between the plot and the x axis is

This means that the work done by the force in that range is
�35 J. At x � 4.0, the block has K � 400 J. At x � 6.5 m, the
work–kinetic energy theorem tells us that its kinetic energy is

Again using the definition of kinetic energy, we find

and then

(Answer)

The block is still moving in the positive direction of the
x axis, a bit faster than initially.

v3 � 9.55 m/s � 9.6 m/s.

365 J � 1
2(8.0 kg)v2

3,

K3 � 1
2mv2

3,

� 400 J � 35 J � 365 J.

K3 � K2 � W

� 35 J.

1
2(20 N)(1 m) � (20 N)(1 m) � 1

2(20 N)(0.5 m) � 35 N�m

v2 � 10 m/s.

 400 J � 1
2(8.0 kg)v2

2,

K2 � 1
2mv2

2,

(Note that this latter value is displayed as �20 N.) The
block’s kinetic energy at x1 is K1 � 280 J. What is the
block’s speed at x1 � 0, x2 � 4.0 m, and x3 � 6.5 m?

KEY IDEAS

(1) At any point, we can relate the speed of the block to its
kinetic energy with Eq. 7-1 (2) We can relate
the kinetic energy Kf at a later point to the initial kinetic Ki

and the work W done on the block by using the work–
kinetic energy theorem of Eq. 7-10 (Kf � Ki � W). (3) We
can calculate the work W done by a variable force F(x) by
integrating the force versus position x. Equation 7-32 tells
us that

We don’t have a function F(x) to carry out the integration,
but we do have a graph of F(x) where we can integrate by
finding the area between the plotted line and the x axis.
Where the plot is above the axis, the work (which is equal to
the area) is positive. Where it is below the axis, the work is
negative.

Calculations: The requested speed at x � 0 is easy because
we already know the kinetic energy. So, we just plug the 
kinetic energy into the formula for kinetic energy:

and then

(Answer)

As the block moves from x � 0 to x � 4.0 m, the plot in
Figure 7-13a is above the x axis, which means that positive
work is being done on the block. We split the area under the
plot into a triangle at the left, a rectangle in the center, and a
triangle at the right.Their total area is

This means that between x � 0 and x � 4.0 m, the force
does 120 J of work on the block, increasing the kinetic en-
ergy and speed of the block. So, when the block reaches
x � 4.0 m, the work–kinetic energy theorem tells us that
the kinetic energy is

� 280 J � 120 J � 400 J.

K2 � K1 � W

� 120 J.

1
2(40 N)(1 m) � (40 N)(2 m) � 1

2(40 N)(1 m) � 120 N�m

v1 � 8.37 m/s � 8.4 m/s.

 280 J � 1
2(8.0 kg)v2

1,

K1 � 1
2mv2

1,

W � �xf

xi

F(x) dx.

(K � 1
2mv2).



166 CHAPTER 7 KINETIC ENERGY AND WORK

KEY IDEA

The force is a variable force because its x component de-
pends on the value of x. Thus, we cannot use Eqs. 7-7 and 7-8
to find the work done. Instead, we must use Eq. 7-36 to inte-
grate the force.

Calculation: We set up two integrals, one along each axis:

(Answer)

The positive result means that energy is transferred to the
particle by force . Thus, the kinetic energy of the particle
increases and, because , its speed must also
increase. If the work had come out negative, the kinetic
energy and speed would have decreased.

K � 1
2mv2

F
:

� 7.0 J.

� 3[1
3x

3]2
3 � 4[y]3

0 � [33 � 23] � 4[0 � 3]

W � �3

2
3x2 dx � �0

3
 4 dy � 3 �3

2
x2 dx � 4 �0

3
dy

Sample Problem 7.08 Work, two-dimensional integration

When the force on an object depends on the position of the
object, we cannot find the work done by it on the object by
simply multiplying the force by the displacement. The rea-
son is that there is no one value for the force—it changes.
So, we must find the work in tiny little displacements and
then add up all the work results.We effectively say,“Yes, the
force varies over any given tiny little displacement, but the
variation is so small we can approximate the force as being
constant during the displacement.” Sure, it is not precise, but
if we make the displacements infinitesimal, then our error
becomes infinitesimal and the result becomes precise. But,
to add an infinite number of work contributions by hand
would take us forever, longer than a semester. So, we add
them up via an integration, which allows us to do all this in
minutes (much less than a semester).

Force � (3x2 N) � (4 N) , with x in meters, acts on a
particle, changing only the kinetic energy of the particle.
How much work is done on the particle as it moves from co-
ordinates (2 m, 3 m) to (3 m, 0 m)? Does the speed of the
particle increase, decrease, or remain the same?

ĵîF
:

Additional examples, video, and practice available at WileyPLUS

7-6 POWER
Learning Objectives

7.20 Determine the instantaneous power by taking a dot
product of the force vector and an object’s velocity vector,
in magnitude-angle and unit-vector notations.

● The power due to a force is the rate at which that force
does work on an object.

● If the force does work W during a time interval �t, the aver-
age power due to the force over that time interval is

Pavg �
W
�t

.

● Instantaneous power is the instantaneous rate of doing work:

● For a force at an angle f to the direction of travel of the
instantaneous velocity , the instantaneous power is

.P � Fv cos � � F
:

� v:
v:

F
:

P �
dW
dt

.

After reading this module, you should be able to . . . 

7.18 Apply the relationship between average power, the
work done by a force, and the time interval in which that
work is done.

7.19 Given the work as a function of time, find the instanta-
neous power.

Key Ideas

Power
The time rate at which work is done by a force is said to be the power due to the
force. If a force does an amount of work W in an amount of time �t, the average
power due to the force during that time interval is

(average power). (7-42)Pavg �
W
�t
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The instantaneous power P is the instantaneous time rate of doing work, which
we can write as

(instantaneous power). (7-43)

Suppose we know the work W(t) done by a force as a function of time. Then to
get the instantaneous power P at, say, time t � 3.0 s during the work, we would
first take the time derivative of W(t) and then evaluate the result for t � 3.0 s.

The SI unit of power is the joule per second.This unit is used so often that it
has a special name, the watt (W), after James Watt, who greatly improved the
rate at which steam engines could do work. In the British system, the unit of
power is the foot-pound per second. Often the horsepower is used. These are
related by

1 watt � 1 W � 1 J/s � 0.738 ft � lb/s (7-44)

and 1 horsepower � 1 hp � 550 ft � lb/s � 746 W. (7-45)

Inspection of Eq. 7-42 shows that work can be expressed as power multiplied
by time, as in the common unit kilowatt-hour.Thus,

1 kilowatt-hour � 1 kW �h � (103 W)(3600 s)

� 3.60 � 106 J � 3.60 MJ. (7-46)

Perhaps because they appear on our utility bills, the watt and the kilowatt-hour
have become identified as electrical units. They can be used equally well as units
for other examples of power and energy. Thus, if you pick up a book from the
floor and put it on a tabletop, you are free to report the work that you have done
as, say, 4 � 10�6 kW �h (or more conveniently as 4 mW �h).

We can also express the rate at which a force does work on a particle (or
particle-like object) in terms of that force and the particle’s velocity. For a par-
ticle that is moving along a straight line (say, an x axis) and is acted on by a
constant force directed at some angle f to that line, Eq. 7-43 becomes

or P � Fv cos f. (7-47)

Reorganizing the right side of Eq. 7-47 as the dot product we may also write
the equation as

(instantaneous power). (7-48)

For example, the truck in Fig. 7-14 exerts a force on the trailing load, which
has velocity at some instant. The instantaneous power due to is the rate at
which does work on the load at that instant and is given by Eqs. 7-47 and 7-48.
Saying that this power is “the power of the truck” is often acceptable, but keep in
mind what is meant: Power is the rate at which the applied force does work.

F
:

F
:

v:
F
:

P � F
:

� v:

F
:

� v:,

P �
dW
dt

�
F cos f dx

dt
� F cos f � dx

dt �,

F
:

P �
dW
dt

7-6 POWER

Figure 7-14 The power due to the truck’s
applied force on the trailing load is the
rate at which that force does work on the
load.

© Reglain/ZUMA

Checkpoint 3
A block moves with uniform circular motion because a cord tied to the block is an-
chored at the center of a circle. Is the power due to the force on the block from the
cord positive, negative, or zero?
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Calculation: We use Eq. 7-47 for each force. For force , at
angle f1 � 180	 to velocity , we have

P1 � F1v cos f1 � (2.0 N)(3.0 m/s) cos 180	

� �6.0 W. (Answer)

This negative result tells us that force is transferring en-
ergy from the box at the rate of 6.0 J/s.

For force , at angle f2 � 60	 to velocity , we have

P2 � F2v cos f2 � (4.0 N)(3.0 m/s) cos 60	

� 6.0 W. (Answer)

This positive result tells us that force is transferring en-
ergy to the box at the rate of 6.0 J/s.

The net power is the sum of the individual powers
(complete with their algebraic signs):

Pnet � P1 � P2

� �6.0 W � 6.0 W � 0, (Answer)

which tells us that the net rate of transfer of energy to
or from the box is zero.Thus, the kinetic energy 
of the box is not changing, and so the speed of the box will
remain at 3.0 m/s. With neither the forces and nor the
velocity changing, we see from Eq. 7-48 that P1 and P2 are
constant and thus so is Pnet.

v:
F
:

2F
:

1

(K � 1
2 mv2)

F
:

2

v:F
:

2

F
:

1

v:
F
:

1

Sample Problem 7.09 Power, force, and velocity

Here we calculate an instantaneous work—that is, the rate at
which work is being done at any given instant rather than av-
eraged over a time interval. Figure 7-15 shows constant forces

and acting on a box as the box slides rightward across a
frictionless floor. Force is horizontal, with magnitude 2.0 N;F

:

1

F
:

2F
:

1

Additional examples, video, and practice available at WileyPLUS

Figure 7-15 Two forces and act on a box that slides
rightward across a frictionless floor. The velocity of the box is .v:

F
:

2F
:

1

60°
Frictionless F1

F2

v

Negative power.
(This force is
removing energy.)

Positive power.
(This force is
supplying energy.)

Kinetic Energy The kinetic energy K associated with the mo-
tion of a particle of mass m and speed v, where v is well below the
speed of light, is

(kinetic energy). (7-1)

Work Work W is energy transferred to or from an object via a
force acting on the object. Energy transferred to the object is posi-
tive work, and from the object, negative work.

Work Done by a Constant Force The work done on a par-
ticle by a constant force during displacement is

(work, constant force), (7-7, 7-8)

in which f is the constant angle between the directions of and .
Only the component of that is along the displacement can do
work on the object. When two or more forces act on an object,
their net work is the sum of the individual works done by the
forces, which is also equal to the work that would be done on the
object by the net force of those forces.

Work and Kinetic Energy For a particle, a change �K in the
kinetic energy equals the net work W done on the particle:

�K � Kf � Ki � W (work–kinetic energy theorem), (7-10)

F
:

net

d
:

F
:

d
:

F
:

W � Fd cos � � F
:

� d
:

d
:

F
:

K � 1
2 mv2

Review & Summary

in which Ki is the initial kinetic energy of the particle and Kf is the ki-
netic energy after the work is done. Equation 7-10 rearranged gives us

Kf � Ki � W. (7-11)

Work Done by the Gravitational Force The work Wg

done by the gravitational force on a particle-like object of mass
m as the object moves through a displacement is given by

Wg � mgd cos f, (7-12)

in which f is the angle between and .

Work Done in Lifting and Lowering an Object The work
Wa done by an applied force as a particle-like object is either lifted
or lowered is related to the work Wg done by the gravitational
force and the change �K in the object’s kinetic energy by

�K � Kf � Ki � Wa � Wg. (7-15)

If Kf � Ki , then Eq. 7-15 reduces to

Wa � �Wg, (7-16)

which tells us that the applied force transfers as much energy to the
object as the gravitational force transfers from it.

d
:

F
:

g

d
:

F
:

g

force is angled upward by 60	 to the floor and has magni-
tude 4.0 N.The speed v of the box at a certain instant is 3.0 m/s.
What is the power due to each force acting on the box at that
instant, and what is the net power? Is the net power changing
at that instant?

KEY IDEA

We want an instantaneous power, not an average power
over a time period. Also, we know the box’s velocity (rather
than the work done on it).

F
:

2
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–F1

x1
x

(d)
Figure 7-18
Question 5.

Spring Force The force from a spring is

(Hooke’s law), (7-20)

where is the displacement of the spring’s free end from its posi-
tion when the spring is in its relaxed state (neither compressed nor
extended), and k is the spring constant (a measure of the spring’s
stiffness). If an x axis lies along the spring, with the origin at the lo-
cation of the spring’s free end when the spring is in its relaxed
state, Eq. 7-20 can be written as

Fx � �kx (Hooke’s law). (7-21)

A spring force is thus a variable force: It varies with the
displacement of the spring’s free end.

Work Done by a Spring Force If an object is attached to
the spring’s free end, the work Ws done on the object by the spring
force when the object is moved from an initial position xi to a final
position xf is

(7-25)

If xi � 0 and xf � x, then Eq. 7-25 becomes

(7-26)

Work Done by a Variable Force When the force on a particle-
like object depends on the position of the object, the work done by 
on the object while the object moves from an initial position ri with co-
ordinates (xi, yi, zi) to a final position rf with coordinates (xf, yf, zf)

F
:

F
:

Ws � �1
2 kx2.

Ws � 1
2 kxi

2 � 1
2 kxf

2.

d
:

F
:

s � �kd
:

F
:

s must be found by integrating the force. If we assume that component
Fx may depend on x but not on y or z, component Fy may depend on y
but not on x or z, and component Fz may depend on z but not on x or
y, then the work is

(7-36)

If has only an x component, then Eq. 7-36 reduces to

(7-32)

Power The power due to a force is the rate at which that force
does work on an object. If the force does work W during a time inter-
val �t, the average power due to the force over that time interval is

(7-42)

Instantaneous power is the instantaneous rate of doing work:

(7-43)

For a force at an angle f to the direction of travel of the instan-
taneous velocity , the instantaneous power is

. (7-47, 7-48)P � Fv cos � � F
:

� v:

v:
F
:

P �
dW
dt

.

Pavg �
W
�t

.

W � �xf

xi

F(x) dx.

F
:

W � �xf

xi

Fx dx � �yf

yi

Fy dy � �zf

zi

Fz dz.

Questions

1 Rank the following velocities according to the kinetic energy a
particle will have with each velocity, greatest first: (a) ,
(b) , (c) , (d) , (e) ,v: � 5î3î � 4ĵv: �v: � �3î � 4ĵv: � �4î � 3ĵ

v: � 4î � 3ĵ

F2F1

(a) (b)

3

2

1

K

t

Figure 7-16 Question 2.

3 Is positive or negative work done by a constant force on a par-
ticle during a straight-line displacement if (a) the angle between 
and is 30	; (b) the angle is 100	; (c) and ?

4 In three situations, a briefly applied horizontal force changes the
velocity of a hockey puck that slides over frictionless ice. The over-
head views of Fig. 7-17 indicate, for each situation, the puck’s initial
speed vi, its final speed vf, and the directions of the corresponding ve-
locity vectors. Rank the situations according to the work done on the
puck by the applied force, most positive first and most negative last.

d
:

� �4îF
:

� 2î � 3ĵd
:

F
:

d
:

F
:

Figure 7-17 Question 4.

and (f) v 5 m/s at 30	 to the horizontal.

2 Figure 7-16a shows two horizontal forces that act on a block
that is sliding to the right across a frictionless floor. Figure 7-16b
shows three plots of the block’s kinetic energy K versus time t.
Which of the plots best corresponds to the following three situ-
ations: (a) F1 � F2, (b) F1 
 F2, (c) F1 � F2?

�

5 The graphs in Fig. 7-18 give the x component Fx of a force act-
ing on a particle moving along an x axis. Rank them according to
the work done by the force on the particle from x � 0 to x � x1,
from most positive work first to most negative work last.

(a) (b) (c)

y
vf = 5 m/s

vi = 6 m/s
x

y

vf = 3 m/s

vi = 4 m/s
x

y vf = 4 m/s

vi = 2 m/s

x
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6 Figure 7-19 gives the x com-
ponent Fx of a force that can act
on a particle. If the particle be-
gins at rest at x � 0, what is its
coordinate when it has (a) its
greatest kinetic energy, (b) its
greatest speed, and (c) zero
speed? (d) What is the particle’s
direction of travel after it
reaches x � 6 m?

7 In Fig. 7-20, a greased pig has a choice of three frictionless slides
along which to slide to the ground. Rank the slides according to how
much work the gravitational force does on the pig during the descent,
greatest first.

8 Figure 7-21a shows four situations in which a horizontal force acts
on the same block, which is initially at rest. The force magnitudes are
F2 � F4 � 2F1 � 2F3. The horizontal component vx of the block’s ve-
locity is shown in Fig. 7-21b for the four situations. (a) Which plot in
Fig. 7-21b best corresponds to which force in Fig. 7-21a? (b) Which

1 2 3 4 5 6 7 8 
x (m) 

F2

F1

Fx

–F1

–F2

Figure 7-19 Question 6.

(a) (b) (c)
Figure 7-20
Question 7.

F1 F2 F4F3

x

(a)

(b)

vx

t

D
C

B
A

(c)

K

t

H
G

F
E

Figure 7-21 Question 8.

K

K

K

K

K

K

K

K

t

t

t

t

t

t

t

t

(a) (b) (c) (d)

(e) ( f ) (g) (h)

Figure 7-22 Question 10.

11 In three situations, a single force acts on a moving particle.
Here are the velocities (at that instant) and the forces:
(1) (2) 

(3) . Rank
the situations according to the rate at which energy is being trans-
ferred, greatest transfer to the particle ranked first, greatest trans-
fer from the particle ranked last.

12 Figure 7-23 shows three arrangements of a block attached to
identical springs that are in their relaxed state when the block is
centered as shown. Rank the arrangements according to the mag-
nitude of the net force on the block, largest first, when the block is
displaced by distance d (a) to the right and (b) to the left. Rank the
arrangements according to the work done on the block by the
spring forces, greatest first, when the block is displaced by d (c) to
the right and (d) to the left.

F
:

� (2î � 6ĵ) Nv: � (�3î � ĵ) m/s,F
:

� (�2ĵ � 7k̂) N;
v: � (2î � 3ĵ) m/s,F

:
� (6î � 20ĵ) N;v: � (�4î) m/s,

(1) (2) (3)
Figure 7-23 Question 12.

plot in Fig. 7-21c (for kinetic energy K versus time t) best corre-
sponds to which plot in Fig. 7-21b?

9 Spring A is stiffer than spring B (kA 
 kB). The spring force of
which spring does more work if the springs are compressed (a) the
same distance and (b) by the same applied force?

10 A glob of slime is launched or dropped from the edge of a
cliff. Which of the graphs in Fig. 7-22 could possibly show how the
kinetic energy of the glob changes during its flight?

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

Module 7-1 Kinetic Energy

•1 A proton (mass m � 1.67 � 10�27 kg) is being acceler-
ated along a straight line at 3.6 1015 m/s2 in a machine. If the pro-
ton has an initial speed of 2.4 � 107 m/s and travels 3.5 cm, what
then is (a) its speed and (b) the increase in its kinetic energy?

�

SSM

•2 If a Saturn V rocket with an Apollo spacecraft attached had a
combined mass of 2.9 � 105 kg and reached a speed of 11.2 km/s,
how much kinetic energy would it then have?

•3 On August 10, 1972, a large meteorite skipped across the
atmosphere above the western United States and western Canada,

http://www.wiley.com/college/halliday
www.flyingcircusofphysics.com
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much like a stone skipped across water. The accompanying fireball
was so bright that it could be seen in the daytime sky and was
brighter than the usual meteorite trail. The meteorite’s mass was
about 4 � 106 kg; its speed was about 15 km/s. Had it entered the
atmosphere vertically, it would have hit Earth’s surface with about
the same speed. (a) Calculate the meteorite’s loss of kinetic energy
(in joules) that would have been associated with the vertical impact.
(b) Express the energy as a multiple of the explosive energy of
1 megaton of TNT, which is 4.2 � 1015 J. (c) The energy associated
with the atomic bomb explosion over Hiroshima was equivalent to
13 kilotons of TNT. To how many Hiroshima bombs would the me-
teorite impact have been equivalent? 

•4 An explosion at ground level leaves a crater with a diam-
eter that is proportional to the energy of the explosion raised to
the power; an explosion of 1 megaton of TNT leaves a crater
with a 1 km diameter. Below Lake Huron in Michigan there ap-
pears to be an ancient impact crater with a 50 km diameter. What
was the kinetic energy associated with that impact, in terms of
(a) megatons of TNT (1 megaton yields 4.2 � 1015 J) and
(b) Hiroshima bomb equivalents (13 kilotons of TNT each)?
(Ancient meteorite or comet impacts may have significantly
altered the climate, killing off the dinosaurs and other life-forms.)

••5 A father racing his son has half the kinetic energy of the son,
who has half the mass of the father.The father speeds up by 1.0 m/s
and then has the same kinetic energy as the son.What are the origi-
nal speeds of (a) the father and (b) the son?

••6 A bead with mass 1.8 � 10�2 kg is moving along a wire in
the positive direction of an x axis. Beginning at time t � 0, when
the bead passes through x � 0 with speed 12 m/s, a constant force
acts on the bead. Figure 7-24 indicates the bead’s position at
these four times: t0 � 0, t1 � 1.0 s, t2 � 2.0 s, and t3 � 3.0 s. The
bead momentarily stops at t � 3.0 s. What is the kinetic energy of
the bead at t � 10 s?
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Figure 7-24 Problem 6.
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Figure 7-25 Problem 7.

ity of 4.0 m/s in the positive x direction and some time later has a
velocity of 6.0 m/s in the positive y direction. How much work is
done on the canister by the 5.0 N force during this time?

•10 A coin slides over a frictionless plane and across an xy
coordinate system from the origin to a point with xy coordinates
(3.0 m, 4.0 m) while a constant force acts on it. The force has mag-
nitude 2.0 N and is directed at a counterclockwise angle of 100	
from the positive direction of the x axis. How much work is done
by the force on the coin during the displacement?

••11 A 12.0 N force with a fixed orientation does work on a
particle as the particle moves through the three-dimensional dis-
placement m. What is the angle be-
tween the force and the displacement if the change in the particle’s
kinetic energy is (a) �30.0 J and (b) �30.0 J?

••12 A can of bolts and nuts is
pushed 2.00 m along an x axis by a
broom along the greasy (friction-
less) floor of a car repair shop in a
version of shuffleboard. Figure 7-26
gives the work W done on the can
by the constant horizontal force
from the broom, versus the can’s po-
sition x.The scale of the figure’s ver-
tical axis is set by Ws � 6.0 J. (a)
What is the magnitude of that
force? (b) If the can had an initial kinetic energy of 3.00 J, moving
in the positive direction of the x axis, what is its kinetic energy at
the end of the 2.00 m?

••13 A luge and its rider, with a total mass of 85 kg, emerge from a
downhill track onto a horizontal straight track with an initial speed
of 37 m/s. If a force slows them to a stop at a constant rate of 2.0
m/s2, (a) what magnitude F is required for the force, (b) what dis-
tance d do they travel while slowing, and (c) what work W is done
on them by the force? What are (d) F, (e) d, and (f) W if they, in-
stead, slow at 4.0 m/s2?

••14 Figure 7-27 shows an over-
head view of three horizontal forces
acting on a cargo canister that was
initially stationary but now moves
across a frictionless floor. The force
magnitudes are F1 � 3.00 N, F2 �
4.00 N, and F3 � 10.0 N, and the indi-
cated angles are u2 � 50.0	 and u3 �
35.0	. What is the net work done on
the canister by the three forces dur-
ing the first 4.00 m of displacement?

••15 Figure 7-28 shows three
forces applied to a trunk that moves
leftward by 3.00 m over a friction-
less floor. The force magnitudes are
F1 � 5.00 N, F2 � 9.00 N, and F3 �
3.00 N, and the indicated angle is u �
60.0	. During the displacement,
(a) what is the net work done on the
trunk by the three forces and (b)
does the kinetic energy of the trunk
increase or decrease?

••16 An 8.0 kg object is moving in the positive direction
of an x axis.When it passes through x 0, a constant force directed�
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Figure 7-26 Problem 12.

Module 7-2 Work and Kinetic Energy
•7 A 3.0 kg body is at rest on a frictionless horizontal air track
when a constant horizontal force acting in the positive direction of
an x axis along the track is applied to the body.A stroboscopic graph
of the position of the body as it slides to the right is shown in Fig. 7-
25.The force is applied to the body at t � 0, and the graph records
the position of the body at 0.50 s intervals. How much work is done
on the body by the applied force between t � 0 and t � 2.0 s?F

:

F
:

F
:

•8 A ice block floating in a river is pushed through a displacement
along a straight embankment by rushing wa-

ter, which exerts a force on the block. How
much work does the force do on the block during the displacement?

•9 The only force acting on a 2.0 kg canister that is moving in an
xy plane has a magnitude of 5.0 N.The canister initially has a veloc-
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of magnitude 20.0 N is applied to a
3.00 kg psychology book as the book
slides a distance d � 0.500 m up a fric-
tionless ramp at angle u � 30.0	. (a)
During the displacement, what is the net
work done on the book by , the gravi-
tational force on the book, and the nor-
mal force on the book? (b) If the book
has zero kinetic energy at the start of the
displacement, what is its speed at the end of the displacement?

•••25 In Fig. 7-34, a 0.250 kg block of cheese lies on
the floor of a 900 kg elevator cab that is being pulled
upward by a cable through distance d1 � 2.40 m and
then through distance d2 � 10.5 m. (a) Through d1, if
the normal force on the block from the floor has con-
stant magnitude FN � 3.00 N, how much work is done
on the cab by the force from the cable? (b) Through d2,
if the work done on the cab by the (constant) force
from the cable is 92.61 kJ, what is the magnitude of FN?

Module 7-4 Work Done by a Spring Force
•26 In Fig. 7-10, we must apply a force of magnitude 80 N to hold the
block stationary at x � �2.0 cm. From that position, we then slowly
move the block so that our force does �4.0 J of work on the
spring–block system; the block is then again stationary. What is the
block’s position? (Hint:There are two answers.)

•27 A spring and block are in the arrangement of Fig. 7-10.When the
block is pulled out to x � �4.0 cm, we must apply a force of magnitude
360 N to hold it there.We pull the block to x � 11 cm and then release
it. How much work does the spring do on the block as the block
moves from xi � �5.0 cm to (a) x � �3.0 cm, (b) x � �3.0 cm,
(c) x � �5.0 cm,and (d) x � �9.0 cm?

•28 During spring semester at MIT, residents of the parallel build-
ings of the East Campus dorms battle one another with large cata-
pults that are made with surgical hose mounted on a window frame.
A balloon filled with dyed water is placed in a pouch attached to the
hose, which is then stretched through the width of the room.Assume
that the stretching of the hose obeys Hooke’s law with a spring con-
stant of 100 N/m. If the hose is stretched by 5.00 m and then released,
how much work does the force from the hose do on the balloon in
the pouch by the time the hose reaches its relaxed length?

••29 In the arrangement of Fig. 7-10, we gradually pull the block
from x � 0 to x � �3.0 cm, where it is stationary. Figure 7-35 gives

F
:

a

F
:

a

through vertical distance h � 0.150 m?

••24 In Fig. 7-33, a horizontal force

along the axis begins to act on it.
Figure 7-29 gives its kinetic energy
K versus position x as it moves
from x � 0 to x � 5.0 m; K0 � 30.0
J. The force continues to act. What
is v when the object moves back
through x � �3.0 m?

Module 7-3 Work Done by
the Gravitational Force
•17 A helicopter lifts a 72 kg astronaut 15 m verti-
cally from the ocean by means of a cable. The acceleration of the
astronaut is g/10. How much work is done on the astronaut by
(a) the force from the helicopter and (b) the gravitational force on
her? Just before she reaches the helicopter, what are her (c) kinetic
energy and (d) speed?

•18 (a) In 1975 the roof of Montreal’s Velodrome, with
a weight of 360 kN, was lifted by 10 cm so that it could be centered.
How much work was done on the roof by the forces making the
lift? (b) In 1960 a Tampa, Florida, mother reportedly raised one
end of a car that had fallen onto her son when a jack failed. If her
panic lift effectively raised 4000 N (about of the car’s weight) by
5.0 cm, how much work did her force do on the car?

••19 In Fig. 7-30, a block of ice
slides down a frictionless ramp at angle

50	 while an ice worker pulls on
the block (via a rope) with a force 
that has a magnitude of 50 N and is di-
rected up the ramp. As the block slides
through distance d 0.50 m along the
ramp, its kinetic energy increases by 80
J. How much greater would its kinetic
energy have been if the rope had not
been attached to the block?

••20 A block is sent up a frictionless
ramp along which an x axis extends up-
ward. Figure 7-31 gives the kinetic en-
ergy of the block as a function of posi-
tion x; the scale of the figure’s vertical
axis is set by Ks � 40.0 J. If the block’s
initial speed is 4.00 m/s, what is the nor-
mal force on the block?

••21 A cord is used to vertically
lower an initially stationary block of
mass M at a constant downward acceleration of g/4.When the block
has fallen a distance d, find (a) the work done by the cord’s force on
the block, (b) the work done by the gravitational force on the block,
(c) the kinetic energy of the block, and (d) the speed of the block.

••22 A cave rescue team lifts an injured spelunker directly upward
and out of a sinkhole by means of a motor-driven cable. The lift is
performed in three stages, each requiring a vertical distance of 10.0
m: (a) the initially stationary spelunker is accelerated to a speed of
5.00 m/s; (b) he is then lifted at the con-
stant speed of 5.00 m/s; (c) finally he is
decelerated to zero speed. How much
work is done on the 80.0 kg rescuee by
the force lifting him during each stage?

••23 In Fig. 7-32, a constant force of
magnitude 82.0 N is applied to a 3.00
kg shoe box at angle 53.0	, causing� �
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the work that our force does on the block. The scale of the figure’s
vertical axis is set by Ws � 1.0 J. We then pull the block out to x �
�5.0 cm and release it from rest. How much work does the spring
do on the block when the block moves from xi � �5.0 cm to
(a) x � �4.0 cm, (b) x � �2.0 cm, and (c) x � �5.0 cm?

••30 In Fig. 7-10a, a block of mass
m lies on a horizontal frictionless
surface and is attached to one end
of a horizontal spring (spring con-
stant k) whose other end is fixed.
The block is initially at rest at the
position where the spring is
unstretched (x � 0) when a con-
stant horizontal force in the positive direction of the x axis is ap-
plied to it.A plot of the resulting kinetic energy of the block versus
its position x is shown in Fig. 7-36. The scale of the figure’s vertical
axis is set by Ks � 4.0 J. (a) What is the magnitude of ? (b) What
is the value of k?

••31 The only force acting on a 2.0 kg body as it
moves along a positive x axis has an x component Fx 6x N,
with x in meters.The velocity at x � 3.0 m is 8.0 m/s. (a) What is the
velocity of the body at x � 4.0 m? (b) At what positive value of x
will the body have a velocity of 5.0 m/s?

••32 Figure 7-37 gives spring force
Fx versus position x for the
spring–block arrangement of Fig. 7-
10. The scale is set by Fs 160.0 N.
We release the block at x 12 cm.
How much work does the spring do
on the block when the block moves
from xi �8.0 cm to (a) x �5.0
cm, (b) x 5.0 cm, (c) x 8.0
cm, and (d) x 10.0 cm?

•••33 The block in Fig. 7-10a lies on a horizontal frictionless
surface, and the spring constant is 50 N/m. Initially, the spring is at
its relaxed length and the block is stationary at position x � 0.
Then an applied force with a constant magnitude of 3.0 N pulls the
block in the positive direction of the x axis, stretching the spring
until the block stops.When that stopping point is reached, what are
(a) the position of the block, (b) the work that has been done on
the block by the applied force, and (c) the work that has been done
on the block by the spring force? During the block’s displacement,
what are (d) the block’s position when its kinetic energy is maxi-
mum and (e) the value of that maximum kinetic energy?

Module 7-5 Work Done by a General Variable Force
•34 A 10 kg brick moves along an x axis. Its acceleration as a
function of its position is shown in Fig. 7-38.The scale of the figure’s
vertical axis is set by as � 20.0 m/s2. What is the net work per-
formed on the brick by the force causing the acceleration as the
brick moves from x � 0 to x � 8.0 m?
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•35 The force on a particle is directed along an x axis
and given by F F0(x/x0 1). Find the work done by the force in
moving the particle from x � 0 to x � 2x0 by (a) plotting F(x) and
measuring the work from the graph and (b) integrating F(x).

•36 A 5.0 kg block moves in a
straight line on a horizontal friction-
less surface under the influence of a
force that varies with position as
shown in Fig. 7-39.The scale of the fig-
ure’s vertical axis is set by Fs 10.0 N.
How much work is done by the force
as the block moves from the origin
to x � 8.0 m?

••37 Figure 7-40 gives the accel-
eration of a 2.00 kg particle as an applied force moves it from restF
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••38 A 1.5 kg block is initially at rest on a horizontal frictionless
surface when a horizontal force along an x axis is applied to the block.
The force is given by , where x is in meters and
the initial position of the block is x 0. (a) What is the kinetic energy
of the block as it passes through x � 2.0 m? (b) What is the maximum
kinetic energy of the block between x � 0 and x � 2.0 m?

••39 A force acts on a particle as the parti-
cle moves along an x axis, with in newtons, x in meters, and c a
constant.At x � 0, the particle’s kinetic energy is 20.0 J; at x � 3.00 m,
it is 11.0 J. Find c.

••40 A can of sardines is made to move along an x axis from
x � 0.25 m to x � 1.25 m by a force with a magnitude given by
F � exp(�4x2), with x in meters and F in newtons. (Here exp is the ex-
ponential function.) How much work is done on the can by the force?

••41 A single force acts on a 3.0 kg particle-like object whose posi-
tion is given by x � 3.0t � 4.0t2 � 1.0t3, with x in meters and t in
seconds. Find the work done by the force from t � 0 to t � 4.0 s.

•••42 Figure 7-41 shows a cord attached to a cart that can slide
along a frictionless horizontal rail aligned along an x axis. The left

F
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�
(2.5 � x2)î NF

:
(x) �

along an x axis from x � 0 to x 9.0 m.The scale of the figure’s verti-
cal axis is set by as 6.0 m/s2. How much work has the force done on
the particle when the particle reaches (a) x � 4.0 m, (b) x � 7.0 m,
and (c) x � 9.0 m? What is the particle’s speed and direction of travel
when it reaches (d) x � 4.0 m, (e) x � 7.0 m, and (f) x � 9.0 m?
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end of the cord is pulled over a pulley, of negligible mass and friction
and at cord height h � 1.20 m, so the cart slides from x1 � 3.00 m to
x2 � 1.00 m. During the move, the tension in the cord is a constant
25.0 N. What is the change in the kinetic energy of the cart during
the move?

Module 7-6 Power
•43 A force of 5.0 N acts on a 15 kg body initially at rest.
Compute the work done by the force in (a) the first, (b) the second,
and (c) the third seconds and (d) the instantaneous power due to
the force at the end of the third second.

•44 A skier is pulled by a towrope up a frictionless ski slope
that makes an angle of 12	 with the horizontal. The rope moves
parallel to the slope with a constant speed of 1.0 m/s. The force
of the rope does 900 J of work on the skier as the skier moves a
distance of 8.0 m up the incline. (a) If the rope moved with a
constant speed of 2.0 m/s, how much work would the force of the
rope do on the skier as the skier moved a distance of 8.0 m up
the incline? At what rate is the force of the rope doing work on
the skier when the rope moves with a speed of (b) 1.0 m/s and
(c) 2.0 m/s?

•45 A 100 kg block is pulled at a constant speed of
5.0 m/s across a horizontal floor by an applied force of 122 N di-
rected 37	 above the horizontal. What is the rate at which the force
does work on the block?

•46 The loaded cab of an elevator has a mass of 3.0 � 103 kg and
moves 210 m up the shaft in 23 s at constant speed. At what aver-
age rate does the force from the cable do work on the cab?

••47 A machine carries a 4.0 kg package from an initial position
of at t � 0 to a final posi-
tion of at t 12 s. The
constant force applied by the machine on the package is

. For that displacement,
find (a) the work done on the package by the machine’s force and
(b) the average power of the machine’s force on the package.

••48 A 0.30 kg ladle sliding on a horizontal frictionless surface is
attached to one end of a horizontal spring (k � 500 N/m) whose
other end is fixed. The ladle has a kinetic energy of 10 J as it
passes through its equilibrium position (the point at which the
spring force is zero). (a) At what rate is the spring doing work on
the ladle as the ladle passes through its equilibrium position?
(b) At what rate is the spring doing work on the ladle when the
spring is compressed 0.10 m and the ladle is moving away from the
equilibrium position?

••49 A fully loaded, slow-moving freight elevator has a cab
with a total mass of 1200 kg, which is required to travel upward
54 m in 3.0 min, starting and ending at rest. The elevator’s counter-
weight has a mass of only 950 kg, and so the elevator motor must
help. What average power is required of the force the motor exerts
on the cab via the cable?

••50 (a) At a certain instant, a particle-like object is acted on by a
force while the object’s veloc-
ity is . What is the instantaneous rate
at which the force does work on the object? (b) At some other
time, the velocity consists of only a y component. If the force is un-
changed and the instantaneous power is �12 W, what is the veloc-
ity of the object?

••51 A force acts on a
2.00 kg mobile object that moves from an initial position of

F
:
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d
:
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to a final position of
in 4.00 s. Find (a) the

work done on the object by the force in the 4.00 s interval, (b) the
average power due to the force during that interval, and (c) the an-
gle between vectors and .

•••52 A funny car accelerates from rest through a measured track
distance in time T with the engine operating at a constant power P.
If the track crew can increase the engine power by a differential
amount dP, what is the change in the time required for the run?

Additional Problems
53 Figure 7-42 shows a cold package of hot dogs sliding right-
ward across a frictionless floor through a distance d � 20.0 cm
while three forces act on the package. Two of them are horizontal
and have the magnitudes F1 � 5.00 N and F2 � 1.00 N; the third is
angled down by u � 60.0	 and has the magnitude F3 � 4.00 N.
(a) For the 20.0 cm displacement, what is the net work done on the
package by the three applied forces, the gravitational force on the
package, and the normal force on the package? (b) If the package
has a mass of 2.0 kg and an initial kinetic energy of 0, what is its
speed at the end of the displacement?
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Figure 7-42 Problem 53.
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54 The only force acting on a
2.0 kg body as the body moves along
an x axis varies as shown in Fig. 7-43.
The scale of the figure’s vertical axis
is set by Fs � 4.0 N. The velocity of
the body at x � 0 is 4.0 m/s. (a) What
is the kinetic energy of the body at
x � 3.0 m? (b) At what value of x will
the body have a kinetic energy of
8.0 J? (c) What is the maximum kinetic energy of the body between 
x � 0 and x � 5.0 m?

55 A horse pulls a cart with a force of 40 lb at an angle of 30	
above the horizontal and moves along at a speed of 6.0 mi/h. (a) How
much work does the force do in 10 min? (b) What is the average
power (in horsepower) of the force?

56 An initially stationary 2.0 kg object accelerates horizontally and
uniformly to a speed of 10 m/s in 3.0 s. (a) In that 3.0 s interval, how
much work is done on the object by the
force accelerating it? What is the instan-
taneous power due to that force (b) at
the end of the interval and (c) at the end
of the first half of the interval?

57 A 230 kg crate hangs from the end
of a rope of length L � 12.0 m.You push
horizontally on the crate with a
varying force to move it distance d �
4.00 m to the side (Fig. 7-44). (a) What is
the magnitude of when the crate is
in this final position? During the crate’s
displacement, what are (b) the total
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bead for a range of f values; W0 � 25 J.
How much work is done by if f is (a)
64	 and (b) 147	?

60 A frightened child is restrained by her mother as the child slides
down a frictionless playground slide. If the force on the child from the
mother is 100 N up the slide, the child’s kinetic energy increases by 30 J
as she moves down the slide a distance of 1.8 m. (a) How much work is
done on the child by the gravitational force during the 1.8 m descent?
(b) If the child is not restrained by her mother, how much will the
child’s kinetic energy increase as she comes down the slide that same
distance of 1.8 m?

61 How much work is done by a force ,
with x in meters, that moves a particle from a position 

to a position ?

62 A 250 g block is dropped onto a relaxed ver-
tical spring that has a spring constant of k �
2.5 N/cm (Fig. 7-46).The block becomes attached to
the spring and compresses the spring 12 cm before
momentarily stopping. While the spring is being
compressed, what work is done on the block by
(a) the gravitational force on it and (b) the spring
force? (c) What is the speed of the block just before
it hits the spring? (Assume that friction is negligi-
ble.) (d) If the speed at impact is doubled, what is
the maximum compression of the spring?

63 To push a 25.0 kg crate up a frictionlessSSM
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work done on it, (c) the work done by the gravitational force on the
crate, and (d) the work done by the pull on the crate from the rope?
(e) Knowing that the crate is motionless before and after its displace-
ment, use the answers to (b), (c), and (d) to find the work your force

does on the crate. (f) Why is the work of your force not equal to
the product of the horizontal displacement and the answer to (a)?

58 To pull a 50 kg crate across a horizontal frictionless floor, a
worker applies a force of 210 N, directed 20	 above the horizontal.
As the crate moves 3.0 m, what work is done on the crate by (a) the
worker’s force, (b) the gravitational force, and (c) the normal force?
(d) What is the total work?

59 A force is applied to a bead as
the bead is moved along a straight wire
through displacement 5.0 cm. The mag-
nitude of is set at a certain value, but
the angle f between and the bead’s
displacement can be chosen. Figure 7-45
gives the work W done by on theF
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65 In Fig. 7-47, a cord runs around
two massless, frictionless pulleys. A
canister with mass m � 20 kg hangs
from one pulley, and you exert a
force on the free end of the cord.
(a) What must be the magnitude of 
if you are to lift the canister at a con-
stant speed? (b) To lift the canister
by 2.0 cm, how far must you pull the
free end of the cord? During that lift,
what is the work done on the canister
by (c) your force (via the cord) and
(d) the gravitational force? (Hint:
When a cord loops around a pulley
as shown, it pulls on the pulley with a
net force that is twice the tension in the cord.)

66 If a car of mass 1200 kg is moving along a highway at
120 km/h, what is the car’s kinetic energy as determined by some-
one standing alongside the highway?

67 A spring with a pointer attached is hanging next to a
scale marked in millimeters. Three different packages are hung
from the spring, in turn, as shown in Fig. 7-48. (a) Which mark on
the scale will the pointer indicate when no package is hung from
the spring? (b) What is the weight W of the third package?
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Figure 7-47 Problem 65.

mm
0

30

W

mm
0

40

110 N 

mm
0

60

240 N 

Figure 7-48 Problem 67.

68 An iceboat is at rest on a frictionless frozen lake when a sud-
den wind exerts a constant force of 200 N, toward the east, on the
boat. Due to the angle of the sail, the wind causes the boat to
slide in a straight line for a distance of 8.0 m in a direction 20	
north of east. What is the kinetic energy of the iceboat at the end
of that 8.0 m?

69 If a ski lift raises 100 passengers averaging 660 N in weight to
a height of 150 m in 60.0 s, at constant speed, what average power
is required of the force making the lift?

70 A force acts on a particle as the particle
goes through displacement . (Other forces
also act on the particle.) What is c if the work done on the particle
by force is (a) 0, (b) 17 J, and (c) �18 J?

71 A constant force of magnitude 10 N makes an angle of 150	
(measured counterclockwise) with the positive x direction as it acts
on a 2.0 kg object moving in an xy plane. How much work is done
on the object by the force as the object moves from the origin to
the point having position vector (2.0 m) � (4.0 m) ?ĵî

F
:

d
:

� (3.0 m)î � (2.0 m)ĵ
F
:

� (4.0 N)î � cĵ

incline, angled at 25.0	 to the horizontal, a worker exerts a force of
209 N parallel to the incline. As the crate slides 1.50 m, how much
work is done on the crate by (a) the worker’s applied force, (b) the
gravitational force on the crate, and (c) the normal force exerted
by the incline on the crate? (d) What is the total work done on the
crate?

64 Boxes are transported from one location to another in a ware-
house by means of a conveyor belt that moves with a constant
speed of 0.50 m/s. At a certain location the conveyor belt moves for
2.0 m up an incline that makes an angle of 10	 with the horizontal,
then for 2.0 m horizontally, and finally for 2.0 m down an incline
that makes an angle of 10	 with the horizontal.Assume that a 2.0 kg
box rides on the belt without slipping. At what rate is the force of
the conveyor belt doing work on the box as the box moves (a) up
the 10	 incline, (b) horizontally, and (c) down the 10	 incline?
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72 In Fig. 7-49a, a 2.0 N force is applied to a 4.0 kg block at a
downward angle u as the block moves rightward through 1.0 m
across a frictionless floor. Find an expression for the speed vf of the
block at the end of that distance if the block’s initial velocity is
(a) 0 and (b) 1.0 m/s to the right. (c) The situation in Fig. 7-49b is
similar in that the block is initially moving at 1.0 m/s to the right,
but now the 2.0 N force is directed downward to the left. Find an
expression for the speed vf of the block at the end of the 1.0 m dis-
tance. (d) Graph all three expressions for vf versus downward
angle u for u � 0	 to u � 90	. Interpret the graphs.

rected along the x axis and has the x component Fax 9x 3x2,
with x in meters and Fax in newtons. The case starts at rest at the
position x � 0, and it moves until it is again at rest. (a) Plot the
work does on the case as a function of x. (b) At what position is
the work maximum, and (c) what is that maximum value? (d) At
what position has the work decreased to zero? (e) At what position
is the case again at rest?

79 A 2.0 kg lunchbox is sent sliding over a frictionless
surface, in the positive direction of an x axis along the surface.
Beginning at time t � 0, a steady wind pushes on the lunchbox in the
negative direction of the x axis. Figure 7-51 shows the position x of
the lunchbox as a function of time t as the wind pushes on the lunch-
box. From the graph, estimate the kinetic energy of the lunchbox at
(a) t � 1.0 s and (b) t � 5.0 s. (c) How much work does the force
from the wind do on the lunchbox from t � 1.0 s to t � 5.0 s?
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Figure 7-49 Problem 72.

73 A force in the positive direction of an x axis acts on an object
moving along the axis. If the magnitude of the force is F � 10e�x/2.0

N, with x in meters, find the work done by as the object moves
from x � 0 to x � 2.0 m by (a) plotting F(x) and estimating the area
under the curve and (b) integrating to find the work analytically.

74 A particle moves along a straight path through displacement
while force acts on it. (Other

forces also act on the particle.) What is the value of c if the work
done by on the particle is (a) zero, (b) positive, and (c) negative?

75 What is the power of the force required to move a 4500
kg elevator cab with a load of 1800 kg upward at constant speed
3.80 m/s?

76 A 45 kg block of ice slides down a frictionless incline 1.5 m
long and 0.91 m high. A worker pushes up against the ice, parallel
to the incline, so that the block slides down at constant speed.
(a) Find the magnitude of the worker’s force. How much work is
done on the block by (b) the worker’s force, (c) the gravitational
force on the block, (d) the normal force on the block from the sur-
face of the incline, and (e) the net force on the block?

77 As a particle moves along an x axis, a force in the positive direc-
tion of the axis acts on it. Figure 7-50 shows the magnitude F of the
force versus position x of the particle.The curve is given by F � a/x2,
with a � 9.0 N �m2. Find the work done on the particle by the force
as the particle moves from x � 1.0 m to x � 3.0 m by (a) estimating
the work from the graph and (b) integrating the force function.
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80 Numerical integration. A breadbox is made to move along an
x axis from x � 0.15 m to x � 1.20 m by a force with a magnitude
given by F � exp(�2x2), with x in meters and F in newtons. (Here
exp is the exponential function.) How much work is done on the
breadbox by the force?

81 In the block–spring arrangement of Fig. 7-10, the block’s mass
is 4.00 kg and the spring constant is 500 N/m. The block is released
from position xi � 0.300 m.What are (a) the block’s speed at x � 0,
(b) the work done by the spring when the block reaches x � 0, (c)
the instantaneous power due to the spring at the release point xi ,
(d) the instantaneous power at x � 0, and (e) the block’s position
when the power is maximum?

82 A 4.00 kg block is pulled up a frictionless inclined plane by a
50.0 N force that is parallel to the plane, starting from rest.The nor-
mal force on the block from the plane has magnitude 13.41 N.What
is the block’s speed when its displacement up the ramp is 3.00 m?

83 A spring with a spring constant of 18.0 N/cm has a cage at-
tached to its free end. (a) How much work does the spring force do
on the cage when the spring is stretched from its relaxed length by
7.60 mm? (b) How much additional work is done by the spring force
when the spring is stretched by an additional 7.60 mm?

84 A force N acts on a 2.90 kg
object that moves in time interval 2.10 s from an initial posi-
tion m to a final position r:2 �r:1 � (2.70î � 2.90ĵ � 5.50k̂)

F
:

� (2.00î � 9.00ĵ � 5.30k̂)

78 A CD case slides along a floor in the positive direction of an
x axis while an applied force acts on the case. The force is di-F

:

a

m. Find (a) the work done on the object
by the force in that time interval, (b) the average power due to the
force during that time interval, and (c) the angle between vectors

and .

85 At t � 0, force N begins to act
on a 2.00 kg particle with an initial speed of 4.00 m/s. What is the
particle’s speed when its displacement from the initial point is

m?d
:

� (2.00î � 2.00ĵ � 7.00k̂)

F
:

� (�5.00î � 5.00ĵ � 4.00k̂)

r:2r:1

(�4.10î � 3.30ĵ � 5.40k̂)


