Vectors in Three Dimensions:

→ →	•	A	۸
A xB =	1	J	k
	Ax	Ay	Az,
	Bx	By	B-z-
	•	0	

$$= (A_y B_y - B_y A_z) \cdot (A_x B_y - B_x A_y)$$

$$+ K (A_x B_y - B_x A_y).$$

Components of vector in three dimensions:

$$\cos \varphi = \frac{A_3}{A} \qquad \qquad (3)$$

$$Sh \varphi = \frac{\alpha}{\Delta} \qquad \qquad (4)$$

$$\Rightarrow$$
 Az = A cos φ
from eq (\hat{y}) a

$$\Rightarrow$$
 $A_x = a \cos \theta = A \cos \theta \sin \phi$

$$\overrightarrow{A} \cdot \overrightarrow{B}$$

Scalar Triple Product:

$$\overrightarrow{A} \cdot (\overrightarrow{B} \cdot \overrightarrow{C}) \Rightarrow \overrightarrow{A} \cdot (\overrightarrow{B} \times \overrightarrow{C})$$
 $\overrightarrow{A} \cdot (\overrightarrow{C} \times \overrightarrow{B})$
 $\overrightarrow{B} \cdot (\overrightarrow{A} \times \overrightarrow{C})$
 $\overrightarrow{B} \cdot (\overrightarrow{C} \times \overrightarrow{A})$
 $\overrightarrow{C} \cdot (\overrightarrow{A} \times \overrightarrow{B})$
 $\overrightarrow{C} \cdot (\overrightarrow{B} \times \overrightarrow{P})$

$$\overrightarrow{A} = A_{x}\widehat{i} + A_{y}\widehat{j} + A_{z}\widehat{k}$$

$$\overrightarrow{B} = B_{x}\widehat{i} + B_{y}\widehat{j} + B_{z}\widehat{k}$$

$$\overrightarrow{C} = C_{x}\widehat{i} + C_{y}\widehat{j} + C_{z}\widehat{k}$$

$$\overrightarrow{A} \cdot (\overrightarrow{B}_{x}\overrightarrow{C}) = 7$$

$$= (A_{x}\widehat{i} + A_{y}\widehat{j} + A_{z}\widehat{k}) \cdot (B_{y}C_{z} - B_{z}C_{y})\widehat{i} - B_{x}C_{z} - C_{x}B_{y}$$

$$+ \widehat{k} (B_{x}C_{y} - C_{x}B_{y})$$

$$= A_{x}(B_{y}C_{z} - B_{z}C_{y}) - A_{y}(B_{x}C_{z} - C_{x}B_{z})$$

$$+ A_{z}(B_{x}C_{y} - C_{x}B_{y}).$$

- /-				
$\vec{A} \cdot (\vec{B} \times \vec{c}) =$	I A.	Ay	A_{2}	
	χ	0	J	
	Β.,	Bu	B	
	7.	J	1	(
	C~	Cy	Cz	$\implies \delta$.
	- 7	d	7	•

Vector triple Product:

$$\overrightarrow{A} \times (\overrightarrow{B} \times \overrightarrow{C})$$
 or $\overrightarrow{A} \times (\overrightarrow{C} \times \overrightarrow{B})$
 $\overrightarrow{B} \times (\overrightarrow{A} \times \overrightarrow{C})$ or $\overrightarrow{B} \times (\overrightarrow{C} \times \overrightarrow{A})$
 $\overrightarrow{C} \times (\overrightarrow{A} \times \overrightarrow{B})$ or $\overrightarrow{C} \times (\overrightarrow{B} \times \overrightarrow{A})$.