Vectors in Three Dimensions:
Addition of vectors

$$
\begin{aligned}
& \vec{A}= A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k} \\
& \vec{B}= B_{x} \hat{i}+B_{y} j+B_{z} \hat{k} \\
& \vec{A}+\vec{B}=\left(A_{x}+B_{x}\right) \hat{i}+ \\
&\left(B_{y}+B_{y}\right) \hat{j}+ \\
& \quad\left(A_{z}+B_{z}\right) \hat{k}
\end{aligned}
$$

Multiplication of Vectors:
\rightarrow Dot Product/Scalar Product

$$
\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

\rightarrow Cross Product/Vector Product

$$
\Rightarrow \begin{aligned}
& \hat{i} \hat{\hat{k}}=1 \\
& i \cdot 1=1 \\
& \hat{j} \cdot \hat{j}=1 \\
& \hat{k} \cdot \hat{k}=1
\end{aligned}
$$

$$
\begin{aligned}
\vec{A} \times \vec{B}= & \left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right| \\
= & \left(A_{y} B_{z}-B_{y} A_{z}\right) \hat{i}-\hat{j}\left(A_{x} B_{z}-B_{x} A_{z}\right) \\
& +k^{k}\left(A_{x} B_{y}-B_{x} A_{y}\right) .
\end{aligned}
$$

Components of vector in three dimensions:

$$
\begin{align*}
\rightarrow \quad \cos \theta & =\frac{A_{x}}{a} \\
\sin \theta & =\frac{A_{y}}{a} \\
\cos \varphi & =\frac{A_{z}}{A} \tag{3}\\
\sin \varphi=\frac{a}{A} & =(4) \tag{4}\\
\Rightarrow A \operatorname{Ars} \varphi & =A
\end{align*}
$$

from eq (4) $a=A \sin \varphi$

$$
\begin{aligned}
& \Rightarrow \quad A_{x}=a \cos \theta=A \cos \theta \sin \varphi \\
& \Rightarrow \quad A_{y}=a \sin \theta=A \sin \theta \sin \varphi
\end{aligned}
$$

$$
\frac{\stackrel{\rightharpoonup}{A} \cdot \vec{B}}{\vec{A} \times \vec{B}}
$$

Scalar Triple Product:
\vec{A}, \vec{B} and \vec{C}

$$
\left.\begin{array}{rl}
\vec{A}=(\vec{B} \cdot \vec{C}) \Rightarrow & \vec{A} \cdot(\vec{B} \times \vec{C}) \\
& \vec{A} \cdot(\vec{C} \times \vec{B}) \\
& \vec{B} \cdot(\vec{A} \times \vec{C}) \\
& \vec{B} \cdot(\vec{C} \times \vec{A}) \\
& \vec{C} \cdot(\vec{A} \times \vec{B})
\end{array}\right\} \begin{aligned}
& \text { Scalar } \\
& \\
& \\
& \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \vec{A}=A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k} \\
& \vec{B}=B_{x} \dot{i}+B_{y} \hat{j}+B_{z} \hat{k} \\
& \vec{C}=C_{x} \hat{i}+C_{y} \hat{j}+C_{y} \hat{k} \\
& \vec{A} \cdot(\vec{B} \times \vec{C})=? \\
& =\left(A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k}\right) \cdot\left(\left(B_{y} C_{y}-B_{z} C_{y}\right) \hat{i}-\hat{\psi}\left(B_{x} C_{z}-C_{x} \hat{y}\right)\right. \\
& \left.+\hat{k}\left(B_{x} C_{y}-C_{x} B_{y}\right)\right) \\
& =A_{x}\left(B_{y} C_{z}-B_{z} C_{y}\right)-A_{y}\left(B_{x} C_{z}-C_{x} B_{z}\right) \\
& +A_{z}\left(B_{x} C_{y}-C_{x} B_{y}\right) \text {. } \\
& \vec{A} \cdot(\vec{B} \times \vec{C})=\left|\begin{array}{lll}
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{y} \\
C_{x} & C_{y} & C_{z}
\end{array}\right| \Longrightarrow \text { ? } \\
& \Rightarrow \quad \vec{A} \cdot(\vec{B} \times \vec{C}) \\
& \vec{A} \cdot(B C \sin \theta) \\
& A(B C \sin \theta)
\end{aligned}
$$ volure of paraltel piped. area of parall.

Vector triple Product:

$$
\begin{array}{lll}
\vec{A} \times(\vec{B} \times \vec{C}) & \text { OR } & \vec{A} \times(\vec{C} \times \vec{B}) \\
\vec{B} \times(\vec{A} \times \vec{C}) & \text { OR } \vec{B} \times(\vec{C} \times \vec{A}) \\
\vec{C} \times(\vec{A} \times \vec{B}) & \text { OR } & \vec{C} \times(\vec{B} \times \vec{A})
\end{array}
$$

