Vectors and their components
Vector \bar{A} is making an angle θ wt x-axis

$$
\theta \rightarrow \text { orientation }
$$

 To find its cartesian components: A_{x} components of \vec{A} along x and y-axis

$$
\begin{aligned}
& \sin \theta= \frac{\operatorname{Rorp}}{H_{y p}}, \cos \theta=\frac{\text { Base }}{\text { Hyp }} . \\
& H_{y p}=|\vec{A}|=A, \operatorname{Perp}=A_{y}, \text { Base }=A_{x} \\
& \operatorname{Sin} \theta=\frac{A_{y}}{A}, \cos \theta=\frac{A_{x}}{A} \\
& A_{y}=A \sin \theta \quad \text { and } A_{x}=A \cos \theta . \\
& \tan \theta=\frac{\operatorname{Resp}}{\operatorname{Bax}}=\frac{A_{y}}{A_{x}} \\
& \theta=\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right) .
\end{aligned}
$$

ADDINg Two Vectors by iTs Components.

$$
\begin{aligned}
\vec{A} & =A_{x} \hat{i}+A_{y} \hat{j} \quad \hat{i} \quad \hat{i} \quad \hat{j} \text { are } \\
\vec{B} & =B_{x} \hat{i}+B_{y} \hat{j} \quad \text { unit vectors } \Rightarrow(\hat{i})=(\hat{j})=1 \\
\vec{A}+\vec{B} & =\left(A_{x}+B_{x}\right) \hat{i}+\left(A_{y}+B_{y}\right) \hat{j} \\
\vec{A}-\vec{B} & =\left(A_{x}-B_{x}\right) \hat{i}+\left(A_{y}-B_{y}\right) \hat{j}
\end{aligned}
$$

Multiplication of Two vectors
\rightarrow Scalar Multiplication
\rightarrow Vector Multiplication
of two vecior ase muleipleyniy
\vec{A} multiplying $\vec{B} \longrightarrow \vec{A} \cdot \vec{B}$

$$
\begin{aligned}
& \vec{A}=A_{x} \hat{i}+A_{y} \hat{j} \quad \vec{B}=B_{x} \hat{i}+B_{y} \hat{j} \\
& \vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y} \\
& =\left(A_{x} i+A_{y} j\right) \cdot\left(B_{x} \hat{i}+B_{y} j\right) \\
& =\left(A_{x} \hat{+}+A_{y} j\right) \cdot\left(B_{x} \hat{i}+B_{y} \hat{i}\right) \hat{i} \cdot A_{x} \hat{i} \cdot B_{y} \hat{j}+A_{y} \hat{j} \cdot B_{x} \hat{i}+A_{y} \hat{j} \cdot B_{y} \hat{j} \\
& =A_{x} B_{x} \hat{i} \cdot \hat{i}+A_{x} B_{y} \hat{i} \cdot \hat{j}+A_{y} B_{x} \hat{j} \cdot \hat{i}+A_{y} B_{y} j \dot{j} \cdot \hat{j} \\
& =A_{x} B_{x}+A_{y} B_{y} . \\
& \vec{A} \times \vec{B}=\left(A_{x} \hat{i}+A_{y} \hat{j}\right) \times\left(B_{x} \hat{j}+B_{y} \hat{j}\right) \begin{array}{l}
\hat{j} \hat{j}=\begin{array}{l}
\hat{i} \cdot \hat{i}=1 \cdot 1 \cdot \cos 0^{\circ}=1 \\
\\
\\
j \cdot \hat{j}=0
\end{array}
\end{array} \\
& i \cdot j=0 \\
& \hat{j} \uparrow=A_{x} B_{x} \hat{i} \times \hat{i}+A_{x} B_{y} \hat{i} \times \hat{j}+A_{y} B_{x} \hat{j} \times \hat{i} \\
& +A_{y} B_{y} \hat{j} \times \hat{j} \\
& \begin{array}{c}
\hat{j} \times \hat{j}=|j| \cdot|j| \sin _{i} \theta=0=\hat{i} \times \hat{i} \\
i \times \hat{j}=1 \\
\hat{j} \times \hat{i}=-1
\end{array} \\
& \vec{A} \times \vec{B}=\left|\begin{array}{cc}
\hat{i} & \hat{j} \\
A_{x} & B_{x} \\
A_{y} & B_{y}
\end{array}\right| \\
& =A_{x} B_{y}-A_{y} B_{x} \text {. } \\
& \rightarrow \vec{A} \cdot \vec{B}=A B \cos \theta \\
& \rightarrow \vec{A} \times \vec{B}=A B \sin \theta
\end{aligned}
$$

