Vectors in Three Dimensions:
Addition of vectors

$$
\begin{aligned}
& \vec{A}= A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k} \\
& \vec{B}= B_{x} \hat{i}+B_{y} j+B_{z} \hat{k} \\
& \vec{A}+\vec{B}=\left(A_{x}+B_{x}\right) \hat{i}+ \\
&\left(B_{y}+B_{y}\right) \hat{j}+ \\
& \quad\left(A_{z}+B_{z}\right) \hat{k}
\end{aligned}
$$

Multiplication of Vectors:
\rightarrow Dot Product/Scalar Product

$$
\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

\rightarrow Cross Product/Vector Product

$$
\Rightarrow \begin{aligned}
& \hat{i} \cdot \hat{k}=1 \\
& i \cdot 1=1 \\
& \hat{j} \cdot \hat{j}=1 \\
& \hat{k} \cdot \hat{k}=1
\end{aligned}
$$

$$
\begin{aligned}
\vec{A} \times \vec{B}= & \left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right| \\
= & \left(A_{y} B_{z}-B_{y} A_{z}\right) \hat{i}-\hat{j}\left(A_{x} B_{z}-B_{x} A_{z}\right) \\
& +k^{k}\left(A_{x} B_{y}-B_{x} A_{y}\right) .
\end{aligned}
$$

