
CHAPTER
FOUR

Utility Maximization
and Choice

In this chapter we examine the basic model of choice that economists use to explain indi-
viduals’ behavior. That model assumes that individuals who are constrained by limited
incomes will behave as though they are using their purchasing power in such a way as to
achieve the highest utility possible. That is, individuals are assumed to behave as though
they maximize utility subject to a budget constraint. Although the specific applications of
this model are varied, as we will show, all are based on the same fundamental mathemati-
cal model, and all arrive at the same general conclusion: To maximize utility, individuals
will choose bundles of commodities for which the rate of trade-off between any two
goods (the MRS) is equal to the ratio of the goods’ market prices. Market prices convey
information about opportunity costs to individuals, and this information plays an impor-
tant role in affecting the choices actually made.

Utility maximization and lightning calculations
Before starting a formal study of the theory of choice, it may be appropriate to dispose
of two complaints noneconomists often make about the approach we will take. First is
the charge that no real person can make the kinds of ‘‘lightning calculations’’ required
for utility maximization. According to this complaint, when moving down a supermar-
ket aisle, people just grab what is available with no real pattern or purpose to their
actions. Economists are not persuaded by this complaint. They doubt that people
behave randomly (everyone, after all, is bound by some sort of budget constraint), and
they view the lightning calculation charge as misplaced. Recall, again, Friedman’s pool
player from Chapter 1. The pool player also cannot make the lightning calculations
required to plan a shot according to the laws of physics, but those laws still predict the
player’s behavior. So too, as we shall see, the utility-maximization model predicts many
aspects of behavior even though no one carries around a computer with his or her util-
ity function programmed into it. To be precise, economists assume that people behave
as if they made such calculations; thus, the complaint that the calculations cannot pos-
sibly be made is largely irrelevant. Still, in recent times economists have increasingly
tried to model some of the behavioral complications that arise in the actual decisions
people make. We look at some of these complications in a variety of problems through-
out this book.

Altruism and selfishness
A second complaint against our model of choice is that it appears to be extremely selfish;
no one, according to this complaint, has such solely self-centered goals. Although econo-
mists are probably more ready to accept self-interest as a motivating force than are other,
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more Utopian thinkers (Adam Smith observed, ‘‘We are not ready to suspect any person
of being deficient in selfishness’’1), this charge is also misplaced. Nothing in the utility-
maximization model prevents individuals from deriving satisfaction from philanthropy
or generally ‘‘doing good.’’ These activities also can be assumed to provide utility. Indeed,
economists have used the utility-maximization model extensively to study such issues as
donating time and money to charity, leaving bequests to children, or even giving blood.
One need not take a position on whether such activities are selfish or selfless because
economists doubt people would undertake them if they were against their own best inter-
ests, broadly conceived.

An Initial Survey
The general results of our examination of utility maximization can be stated succinctly as
follows.

That spending all one’s income is required for utility maximization is obvious. Because
extra goods provide extra utility (there is no satiation) and because there is no other use
for income, to leave any unspent would be to fail to maximize utility. Throwing money
away is not a utility-maximizing activity.

The condition specifying equality of trade-off rates requires a bit more explanation.
Because the rate at which one good can be traded for another in the market is given by
the ratio of their prices, this result can be restated to say that the individual will equate
the MRS (of x for y) to the ratio of the price of x to the price of y (px / py). This equating
of a personal trade-off rate to a market-determined trade-off rate is a result common to
all individual utility-maximization problems (and to many other types of maximization
problems). It will occur again and again throughout this text.

A numerical illustration
To see the intuitive reasoning behind this result, assume that it were not true that an indi-
vidual had equated the MRS to the ratio of the prices of goods. Specifically, suppose that
the individual’s MRS is equal to 1 and that he or she is willing to trade 1 unit of x for 1
unit of y and remain equally well off. Assume also that the price of x is $2 per unit and of
y is $1 per unit. It is easy to show that this person can be made better off. Suppose this
person reduces x consumption by 1 unit and trades it in the market for 2 units of y. Only
1 extra unit of y was needed to keep this person as happy as before the trade—the second
unit of y is a net addition to well-being. Therefore, the individual’s spending could not
have been allocated optimally in the first place. A similar method of reasoning can be
used whenever the MRS and the price ratio px / py differ. The condition for maximum
utility must be the equality of these two magnitudes.

O P T I M I Z A T I O N
P R I N C I P L E

Utility maximization. To maximize utility, given a fixed amount of income to spend, an individual
will buy those quantities of goods that exhaust his or her total income and for which the psychic
rate of trade-off between any two goods (the MRS) is equal to the rate at which the goods can be
traded one for the other in the marketplace.

1Adam Smith, The Theory of Moral Sentiments (1759; reprint, New Rochelle, NY: Arlington House, 1969), p. 446.
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The Two-Good Case: A Graphical
Analysis
This discussion seems eminently reasonable, but it can hardly be called a proof. Rather,
we must now show the result in a rigorous manner and, at the same time, illustrate sev-
eral other important attributes of the maximization process. First we take a graphic analy-
sis; then we take a more mathematical approach.

Budget constraint
Assume that the individual has I dollars to allocate between good x and good y. If px is
the price of good x and py is the price of good y, then the individual is constrained by

pxx þ pyy " I: (4:1)

That is, no more than I can be spent on the two goods in question. This budget con-
straint is shown graphically in Figure 4.1. This person can afford to choose only
combinations of x and y in the shaded triangle of the figure. If all of I is spent on
good x, it will buy I/px units of x. Similarly, if all is spent on y, it will buy I / py
units of y. The slope of the constraint is easily seen to be #px / py. This slope shows
how y can be traded for x in the market. If px ¼ 2 and py ¼ 1, then 2 units of y
will trade for 1 unit of x.

Those combinations of x and y that the individual can afford are shown in the shaded triangle. If, as we
usually assume, the individual prefers more rather than less of every good, the outer boundary of this
triangle is the relevant constraint where all the available funds are spent either on x or on y. The slope of
this straight-line boundary is given by –px / py.
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I = pxx + pyy

FIGURE 4.1

The Individual’s Budget
Constraint for Two
Goods
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First-order conditions for a maximum
This budget constraint can be imposed on this person’s indifference curve map to show
the utility-maximization process. Figure 4.2 illustrates this procedure. The individual
would be irrational to choose a point such as A; he or she can get to a higher utility level
just by spending more of his or her income. The assumption of nonsatiation implies that
a person should spend all his or her income to receive maximum utility. Similarly, by
reallocating expenditures, the individual can do better than point B. Point D is out of the
question because income is not large enough to purchase D. It is clear that the position of
maximum utility is at point C, where the combination x%, y% is chosen. This is the only
point on indifference curve U2 that can be bought with I dollars; no higher utility level
can be bought. C is a point of tangency between the budget constraint and the indiffer-
ence curve. Therefore, at C we have

slope of budget constraint ¼
#px
p
y
¼ slope of indifference curve

¼ dy
dx

!!!!
U ¼ constant

(4:2)

or

px
p
y
¼ # dy

dx

!!!!
U ¼ constant

¼ MRSðof x for yÞ: (4:3)

Point C represents the highest utility level that can be reached by the individual, given the budget
constraint. Therefore, the combination x%, y% is the rational way for the individual to allocate purchasing
power. Only for this combination of goods will two conditions hold: All available funds will be spent, and
the individual’s psychic rate of trade-off (MRS) will be equal to the rate at which the goods can be traded
in the market (px/py).
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FIGURE 4.2

A Graphical
Demonstration of Utility
Maximization
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Our intuitive result is proved: For a utility maximum, all income should be spent, and the
MRS should equal the ratio of the prices of the goods. It is obvious from the diagram that
if this condition is not fulfilled, the individual could be made better off by reallocating
expenditures.

Second-order conditions for a maximum
The tangency rule is only a necessary condition for a maximum. To see that it is not a
sufficient condition, consider the indifference curve map shown in Figure 4.3. Here, a
point of tangency (C) is inferior to a point of nontangency (B). Indeed, the true maxi-
mum is at another point of tangency (A). The failure of the tangency condition to pro-
duce an unambiguous maximum can be attributed to the shape of the indifference curves
in Figure 4.3. If the indifference curves are shaped like those in Figure 4.2, no such prob-
lem can arise. But we have already shown that ‘‘normally’’ shaped indifference curves
result from the assumption of a diminishing MRS. Therefore, if the MRS is assumed to be
always diminishing, the condition of tangency is both a necessary and sufficient condition
for a maximum.2 Without this assumption, one would have to be careful in applying the
tangency rule.

If indifference curves do not obey the assumption of a diminishing MRS, not all points of tangency
(points for which MRS # px/py) may truly be points of maximum utility. In this example, tangency point
C is inferior to many other points that can also be purchased with the available funds. In order that the
necessary conditions for a maximum (i.e., the tangency conditions) also be sufficient, one usually
assumes that the MRS is diminishing; that is, the utility function is strictly quasi-concave.
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2As we saw in Chapters 2 and 3, this is equivalent to assuming that the utility function is quasi-concave. Because we will usually
assume quasi-concavity, the necessary conditions for a constrained utility maximum will also be sufficient.

FIGURE 4.3

Example of an
Indifference Curve Map
for Which the Tangency
Condition Does Not
Ensure a Maximum
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Corner solutions
The utility-maximization problem illustrated in Figure 4.2 resulted in an ‘‘interior’’ maxi-
mum, in which positive amounts of both goods were consumed. In some situations indi-
viduals’ preferences may be such that they can obtain maximum utility by choosing to
consume no amount of one of the goods. If someone does not like hamburgers, there is
no reason to allocate any income to their purchase. This possibility is reflected in Figure 4.4.
There, utility is maximized at E, where x¼ x% and y¼ 0; thus, any point on the budget con-
straint where positive amounts of y are consumed yields a lower utility than does point E.
Notice that at E the budget constraint is not precisely tangent to the indifference curve U2.
Instead, at the optimal point the budget constraint is flatter than U2, indicating that the rate
at which x can be traded for y in the market is lower than the individual’s psychic trade-off
rate (theMRS). At prevailing market prices the individual is more than willing to trade away
y to get extra x. Because it is impossible in this problem to consume negative amounts of y,
however, the physical limit for this process is the X-axis, along which purchases of y are 0.
Hence as this discussion makes clear, it is necessary to amend the first-order conditions for
a utility maximum a bit to allow for corner solutions of the type shown in Figure 4.4.
Following our discussion of the general n-good case, we will use the mathematics from
Chapter 2 to show how this can be accomplished.

The n-Good Case
The results derived graphically in the case of two goods carry over directly to the case of
n goods. Again it can be shown that for an interior utility maximum, the MRS between
any two goods must equal the ratio of the prices of these goods. To study this more gen-
eral case, however, it is best to use some mathematics.

With the preferences represented by this set of indifference curves, utility maximization occurs at E,
where 0 amounts of good y are consumed. The first-order conditions for a maximum must be modified
somewhat to accommodate this possibility.
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FIGURE 4.4

Corner Solution for
Utility Maximization
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First-order conditions
With n goods, the individual’s objective is to maximize utility from these n goods:

utility ¼ Uðx1, x2, . . . , xnÞ, (4:4)

subject to the budget constraint3

I ¼ p1x1 þ p2x2 þ ( ( ( þ pnxn (4:5)

or

I # p1x1 # p2x2 # ( ( ( # pnxn ¼ 0: (4:6)

Following the techniques developed in Chapter 2 for maximizing a function subject to a
constraint, we set up the Lagrangian expression

+ ¼ Uðx1, x2, . . . , xnÞ þ k(I # p1x1 # p2x2 # ( ( ( # pnxn). (4:7)

Setting the partial derivatives of + (with respect to x1, x2, . . . , xn and l) equal to 0 yields
n þ 1 equations representing the necessary conditions for an interior maximum:

@+
@x1
¼ @U
@x1
# kp1 ¼ 0,

@+
@x2
¼ @U
@x2
# kp2 ¼ 0,

..

.

@+
@xn
¼ @U
@xn
# kpn ¼ 0,

@+
@k
¼ I # p1x1 # p2x2 # ( ( ( # pnxn ¼ 0:

(4:8)

These n þ 1 equations can, in principle, be solved for the optimal x1, x2, . . . , xn and for l
(see Examples 4.1 and 4.2 to be convinced that such a solution is possible).

Equations 4.8 are necessary but not sufficient for a maximum. The second-order con-
ditions that ensure a maximum are relatively complex and must be stated in matrix terms
(see the Extensions to Chapter 2). However, the assumption of strict quasi-concavity (a
diminishing MRS in the two-good case) is sufficient to ensure that any point obeying
Equation 4.8 is in fact a true maximum.

Implications of first-order conditions
The first-order conditions represented by Equation 4.8 can be rewritten in a variety of in-
structive ways. For example, for any two goods, xi and xj, we have

@U=@xi
@U=@xj

¼ pi
pj
: (4:9)

In Chapter 3 we showed that the ratio of the marginal utilities of two goods is equal to
the marginal rate of substitution between them. Therefore, the conditions for an optimal
allocation of income become

MRSðxi for xjÞ ¼
pi
pj
: (4:10)

3Again, the budget constraint has been written as an equality because, given the assumption of nonsatiation, it is clear that the
individual will spend all available income.
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This is exactly the result derived graphically earlier in this chapter; to maximize util-
ity, the individual should equate the psychic rate of trade-off to the market trade-off
rate.

Interpreting the Lagrange multiplier
Another result can be derived by solving Equations 4.8 for l:

k ¼ @U=@x1
p1

¼ @U=@x2
p2

¼ ( ( ( ¼ @U=@xn
pn

(4:11)

These equations state that, at the utility-maximizing point, each good purchased should
yield the same marginal utility per dollar spent on that good. Therefore, each good should
have an identical (marginal) benefit-to-(marginal)-cost ratio. If this were not true, one
good would promise more ‘‘marginal enjoyment per dollar’’ than some other good, and
funds would not be optimally allocated.

Although the reader is again warned against talking confidently about marginal utility,
what Equation 4.11 says is that an extra dollar should yield the same ‘‘additional utility’’
no matter which good it is spent on. The common value for this extra utility is given by
the Lagrange multiplier for the consumer’s budget constraint (i.e., by l). Consequently, l
can be regarded as the marginal utility of an extra dollar of consumption expenditure
(the marginal utility of ‘‘income’’).

One final way to rewrite the necessary conditions for a maximum is

pi ¼
@U=@xi

k
(4:12)

for every good i that is bought. To interpret this expression, remember (from Equation
4.11) that the Lagrange multiplier, l, represents the marginal utility value of an extra dol-
lar of income, no matter where it is spent. Therefore, the ratio in Equation 4.12 compares
the extra utility value of one more unit of good i to this common value of a marginal dol-
lar in spending. To be purchased, the utility value of an extra unit of a good must be
worth, in dollar terms, the price the person must pay for it. For example, a high price for
good i can only be justified if it also provides a great deal of extra utility. At the margin,
therefore, the price of a good reflects an individual’s willingness to pay for one more unit.
This is a result of considerable importance in applied welfare economics because willing-
ness to pay can be inferred from market reactions to prices. In Chapter 5 we will see how
this insight can be used to evaluate the welfare effects of price changes, and in later chap-
ters we will use this idea to discuss a variety of questions about the efficiency of resource
allocation.

Corner solutions
The first-order conditions of Equations 4.8 hold exactly only for interior maxima for
which some positive amount of each good is purchased. As discussed in Chapter 2, when
corner solutions (such as those illustrated in Figure 4.4) arise, the conditions must be
modified slightly.4 In this case, Equations 4.8 become

@+
@xi
¼ @U
@xi
# kpi " 0 ði ¼ 1, . . . , n) (4:13)

4Formally, these conditions are called the Kuhn–Tucker conditions for nonlinear programming.
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and, if

@+
@xi
¼ @U
@xi
# kpi < 0, (4:14)

then

xi ¼ 0: (4:15)

To interpret these conditions, we can rewrite Equation 4.14 as

pi >
@U=@xi

k
: (4:16)

Hence the optimal conditions are as before, except that any good whose price (pi) exceeds its
marginal value to the consumer will not be purchased (xi¼ 0). Thus, the mathematical results
conform to the commonsense idea that individuals will not purchase goods that they believe
are not worth the money. Although corner solutions do not provide a major focus for our
analysis in this book, the reader should keep inmind the possibilities for such solutions arising
and the economic interpretation that can be attached to the optimal conditions in such cases.

EXAMPLE 4.1 Cobb–Douglas Demand Functions

As we showed in Chapter 3, the Cobb–Douglas utility function is given by

Uðx, yÞ ¼ xayb, (4:17)

where, for convenience,5 we assume a þ b ¼ 1. We can now solve for the utility-maximizing
values of x and y for any prices (px, py) and income (I). Setting up the Lagrangian expression

+ ¼ xayb + kðI # pxx # pyy) (4:18)

yields the first-order conditions

@+
@x
¼ axa#1yb # kpx ¼ 0,

@+
@y
¼ bxayb#1 # kpy ¼ 0,

@+
@k
¼ I # pxx # pyy ¼ 0:

(4:19)

Taking the ratio of the first two terms shows that

ay
bx
¼

px
py

, (4:20)

or

pyy ¼
b
a
pxx ¼

1# a
a

pxx, (4:21)

where the final equation follows because a þ b ¼ 1. Substitution of this first-order condition in
Equation 4.21 into the budget constraint gives

I ¼ pxx þ pyy ¼ pxx þ
1# a

a
pxx ¼ pxx 1þ 1# a

a

" #
¼ 1

a
pxx; (4:22)

5As we discussed in Chapter 3, the exponents in the Cobb–Douglas utility function can always be normalized to sum to 1
because U1/(aþb) is a monotonic transformation.
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solving for x yields

x% ¼ aI
px

, (4:23)

and a similar set of manipulations would give

y% ¼ bI
py

. (4:24)

These results show that an individual whose utility function is given by Equation 4.17 will
always choose to allocate a proportion of his or her income to buying good x (i.e., px x/I ¼ a)
and b proportion to buying good y (pyy/I ¼ b). Although this feature of the Cobb–Douglas
function often makes it easy to work out simple problems, it does suggest that the function has
limits in its ability to explain actual consumption behavior. Because the share of income devoted
to particular goods often changes significantly in response to changing economic conditions, a
more general functional form may provide insights not provided by the Cobb–Douglas function.
We illustrate a few possibilities in Example 4.2, and the general topic of budget shares is taken
up in more detail in the Extensions to this chapter.

Numerical example. First, however, let’s look at a specific numerical example for the Cobb–
Douglas case. Suppose that x sells for $1 and y sells for $4 and that total income is $8. Succinctly
then, assume that px ¼ 1, py ¼ 4, I ¼ 8. Suppose also that a ¼ b ¼ 0.5, so that this individual
splits his or her income equally between these two goods. Now the demand Equations 4.23 and
4.24 imply

x% ¼ aI=px ¼ 0:5I=px ¼ 0:5ð8Þ=1 ¼ 4,

y% ¼ bI=py ¼ 0:5I=py ¼ 0:5ð8Þ=4 ¼ 1,
(4:25)

and, at these optimal choices,

utility ¼ x0:5y0:5 ¼ ð4Þ0:5ð1Þ0:5 ¼ 2: (4:26)

Notice also that we can compute the value for the Lagrange multiplier associated with this
income allocation by using Equation 4.19:

k ¼ axa#1yb=px ¼ 0:5ð4Þ#0:5ð1Þ0:5=1 ¼ 0:25: (4:27)

This value implies that each small change in income will increase utility by approximately one
fourth of that amount. Suppose, for example, that this person had 1 percent more income
($8.08). In this case he or she would choose x ¼ 4.04 and y ¼ 1.01, and utility would be
4.040.5 Æ 1.010.5 ¼ 2.02. Hence a $0.08 increase in income increased utility by 0.02, as
predicted by the fact that l ¼ 0.25.

QUERY: Would a change in py affect the quantity of x demanded in Equation 4.23? Explain
your answer mathematically. Also develop an intuitive explanation based on the notion that the
share of income devoted to good y is given by the parameter of the utility function, b.

EXAMPLE 4.2 CES Demand

To illustrate cases in which budget shares are responsive to economic circumstances, let’s look
at three specific examples of the CES function.

Case 1: d ¼ 0.5. In this case, utility is

Uðx, yÞ ¼ x0:5 þ y0:5. (4:28)
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Setting up the Lagrangian expression

+ ¼ x0:5 þ y0:5 þ kðI # pxx # pyyÞ (4:29)

yields the following first-order conditions for a maximum:

@+/@x ¼ 0:5x#0:5 # kpx ¼ 0,

@+/@y ¼ 0:5y#0:5 # kpy ¼ 0,

@+/@k ¼ I # pxx # pyy ¼ 0:

(4:30)

Division of the first two of these shows that

ð y=xÞ0:5 ¼ px=py: (4:31)

By substituting this into the budget constraint and doing some messy algebraic manipulation,
we can derive the demand functions associated with this utility function:

x% ¼ I=px½1þ ð px=pyÞ*, (4:32)

y% ¼ I=py½1þ ð py=pxÞ*: (4:33)

Price responsiveness. In these demand functions notice that the share of income spent on,
say, good x—that is, px x / I ¼ 1/[1 þ (px/py)]—is not a constant; it depends on the price ratio
px/py. The higher the relative price of x, the smaller the share of income spent on that good. In
other words, the demand for x is so responsive to its own price that an increase in the price
reduces total spending on x. That the demand for x is price responsive can also be illustrated by
comparing the implied exponent on px in the demand function given by Equation 4.32 (#2) to
that from Equation 4.23 (#1). In Chapter 5 we will discuss this observation more fully when we
examine the elasticity concept in detail.

Case 2: d 5 21. Alternatively, let’s look at a demand function with less substitutability6 than
the Cobb–Douglas. If d ¼ #1, the utility function is given by

Uðx, yÞ ¼ #x#1 # y#1, (4:34)

and it is easy to show that the first-order conditions for a maximum require

y=x ¼ ð px=pyÞ0:5: (4:35)

Again, substitution of this condition into the budget constraint, together with some messy
algebra, yields the demand functions

x% ¼ I=px½1þ ð py=pxÞ0:5*,
y% ¼ I=py½1þ ð px=pyÞ0:5*.

(4:36)

That these demand functions are less price responsive can be seen in two ways. First, now the
share of income spent on good x—that is, px x /I ¼ 1/[1 þ (py/px)

0.5]—responds positively to
increases in px. As the price of x increases, this individual cuts back only modestly on good x;
thus, total spending on that good increases. That the demand functions in Equation 4.36 are less
price responsive than the Cobb–Douglas is also illustrated by the relatively small implied
exponents of each good’s own price (#0.5).

6One way to measure substitutability is by the elasticity of substitution, which for the CES function is given by s ¼ 1/(1 # d).
Here d ¼ 0.5 implies s ¼ 2, d ¼ 0 (the Cobb–Douglas) implies s ¼ 1, and d ¼ #1 implies s ¼ 0.5. See also the discussion of
the CES function in connection with the theory of production in Chapter 9.
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Indirect Utility Function
Examples 4.1 and 4.2 illustrate the principle that it is often possible to manipulate the
first-order conditions for a constrained utility-maximization problem to solve for the
optimal values of x1, x2, . . . , xn. These optimal values in general will depend on the prices
of all the goods and on the individual’s income. That is,

x%1 ¼ x1ð p1, p2, . . . , pn, IÞ,
x%2 ¼ x2ð p1, p2, . . . , pn, IÞ,

..

.

x%n ¼ xnð p1, p2, . . . , pn, IÞ:

(4:41)

In the next chapter we will analyze in more detail this set of demand functions, which
show the dependence of the quantity of each xi demanded on p1, p2, . . . , pn and I. Here

Case 3: d 5 2‘. This is the important case in which x and y must be consumed in fixed
proportions. Suppose, for example, that each unit of y must be consumed together with exactly
4 units of x. The utility function that represents this situation is

Uðx, yÞ ¼ minðx, 4yÞ: (4:37)

In this situation, a utility-maximizing person will choose only combinations of the two goods
for which x ¼ 4y; that is, utility maximization implies that this person will choose to be at a
vertex of his or her L-shaped indifference curves. Because of the shape of these indifference
curves, calculus cannot be used to solve this problem. Instead, one can adopt the simple
procedure of substituting the utility-maximizing condition directly into the budget constraint:

I ¼ pxx þ pyy ¼ pxx þ py
x
4
¼ ð px þ 0:25pyÞx: (4:38)

Hence

x% ¼ I
px þ 0:25py

, (4:39)

and similar substitutions yield

y% ¼ I
4px þ py

: (4:40)

In this case, the share of a person’s budget devoted to, say, good x rises rapidly as the price of x
increases because x and y must be consumed in fixed proportions. For example, if we use the
values assumed in Example 4.1 (px ¼ 1, py ¼ 4, I ¼ 8), Equations 4.39 and 4.40 would predict
x% ¼ 4, y% ¼ 1, and, as before, half of the individual’s income would be spent on each good. If
we instead use px ¼ 2, py ¼ 4, and I ¼ 8, then x% ¼ 8/3, y% ¼ 2/3, and this person spends two
thirds [px x / I ¼ (2 Æ 8/3)/8 ¼ 2/3] of his or her income on good x. Trying a few other numbers
suggests that the share of income devoted to good x approaches 1 as the price of x increases.7

QUERY: Do changes in income affect expenditure shares in any of the CES functions discussed
here? How is the behavior of expenditure shares related to the homothetic nature of this
function?

7These relationships for the CES function are pursued in more detail in Problem 4.9 and in Extension E4.3.
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we use the optimal values of the x’s from Equation 4.42 to substitute in the original utility
function to yield

maximum utility ¼ U ½x%1ð p1, . . . pn, IÞ, x%2ð p1, . . . pn, IÞ, . . . , x%nð p1, . . . pn, IÞ* (4:42)

¼ Vð p1, p2, . . . , pn, IÞ: (4:43)

In words, because of the individual’s desire to maximize utility given a budget constraint,
the optimal level of utility obtainable will depend indirectly on the prices of the goods
being bought and the individual’s income. This dependence is reflected by the indirect
utility function V. If either prices or income were to change, the level of utility that could
be attained would also be affected. Sometimes, in both consumer theory and many other
contexts, it is possible to use this indirect approach to study how changes in economic
circumstances affect various kinds of outcomes, such as utility or (later in this book)
firms’ costs.

The Lump Sum Principle
Many economic insights stem from the recognition that utility ultimately depends on the
income of individuals and on the prices they face. One of the most important of these is
the so-called lump sum principle that illustrates the superiority of taxes on a person’s
general purchasing power to taxes on specific goods. A related insight is that general
income grants to low-income people will raise utility more than will a similar amount of
money spent subsidizing specific goods. The intuition behind these results derives directly
from the utility-maximization hypothesis; an income tax or subsidy leaves the individual
free to decide how to allocate whatever final income he or she has. On the other hand,
taxes or subsidies on specific goods both change a person’s purchasing power and distort
his or her choices because of the artificial prices incorporated in such schemes. Hence
general income taxes and subsidies are to be preferred if efficiency is an important crite-
rion in social policy.

The lump sum principle as it applies to taxation is illustrated in Figure 4.5. Initially
this person has an income of I and is choosing to consume the combination x%, y%. A tax
on good x would raise its price, and the utility-maximizing choice would shift to combi-
nation x1, y1. Tax collections would be t Æ x1 (where t is the tax rate imposed on good x).
Alternatively, an income tax that shifted the budget constraint inward to I0 would also
collect this same amount of revenue.8 But the utility provided by the income tax (U2)
exceeds that provided by the tax on x alone (U1). Hence we have shown that the utility
burden of the income tax is smaller. A similar argument can be used to illustrate the
superiority of income grants to subsidies on specific goods.

EXAMPLE 4.3 Indirect Utility and the Lump Sum Principle

In this example we use the notion of an indirect utility function to illustrate the lump sum
principle as it applies to taxation. First we have to derive indirect utility functions for two
illustrative cases.

Case 1: Cobb–Douglas. In Example 4.1 we showed that for the Cobb–Douglas utility
function with a ¼ b ¼ 0.5, optimal purchases are

8Because I ¼ ( px þ t)x1 þ pyy1, we have I 0 ¼ I – tx1 ¼ pxx1 þ pyy1, which shows that the budget constraint with an equal-size
income tax also passes through the point x1, y1.
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x% ¼ I
2px

,

y% ¼ I
2py

:
(4:44)

Thus, the indirect utility function in this case is

Vð px , py , IÞ ¼ Uðx%, y%Þ ¼ ðx%Þ0:5ð y%Þ0:5 ¼ I
2p0:5x p0:5y

: (4:45)

Notice that when px ¼ 1, py ¼ 4, and I ¼ 8 we have V ¼ 8/(2 Æ 1 Æ 2) ¼ 2, which is the utility
that we calculated before for this situation.

Case 2: Fixed proportions. In the third case of Example 4.2 we found that

x% ¼ I
px þ 0:25py

,

y% ¼ I
4px þ py

:
(4:46)

Thus, in this case indirect utility is given by

Vð px; py; IÞ ¼ minðx%; 4y%Þ ¼ x% ¼ I
px þ 0:25py

¼ 4y% ¼ 4
4px þ py

¼ I
px þ 0:25py

;
(4:47)

with px ¼ 1, py ¼ 4, and I ¼ 8, indirect utility is given by V ¼ 4, which is what we calculated
before.

The lump sum principle. Consider first using the Cobb–Douglas case to illustrate the lump
sum principle. Suppose that a tax of $1 were imposed on good x. Equation 4.45 shows that indirect
utility in this case would fall from 2 to 1.41 [¼ 8/(2 Æ 20.5 Æ 2)]. Because this person chooses x% ¼ 2
with the tax, total tax collections will be $2. Therefore, an equal-revenue income tax would reduce
net income to $6, and indirect utility would be 1.5 [¼ 6/(2 Æ 1 Æ 2)]. Thus, the income tax is a clear
improvement in utility over the case where x alone is taxed. The tax on good x reduces utility for
two reasons: It reduces a person’s purchasing power, and it biases his or her choices away from
good x. With income taxation, only the first effect is felt and so the tax is more efficient.9

The fixed-proportions case supports this intuition. In that case, a $1 tax on good x would
reduce indirect utility from 4 to 8/3 [¼ 8/(2 þ 1)]. In this case x% ¼ 8/3 and tax collections
would be $8/3. An income tax that collected $8/3 would leave this consumer with $16/3 in net
income, and that income would yield an indirect utility of V ¼ 8/3 [¼ (16/3)/(1 þ 1)]. Hence
after-tax utility is the same under both the excise and income taxes. The reason the lump sum
principle does not hold in this case is that with fixed-proportions utility, the excise tax does not
distort choices because preferences are so rigid.

QUERY: Both indirect utility functions illustrated here show that a doubling of income and all
prices would leave indirect utility unchanged. Explain why you would expect this to be a
property of all indirect utility functions. That is, explain why the indirect utility function is
homogeneous of degree zero in all prices and income.

9This discussion assumes that there are no incentive effects of income taxation—probably not a good assumption.
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Expenditure Minimization
In Chapter 2 we pointed out that many constrained maximum problems have associ-
ated ‘‘dual’’ constrained minimum problems. For the case of utility maximization, the
associated dual minimization problem concerns allocating income in such a way as to
achieve a given utility level with the minimal expenditure. This problem is clearly
analogous to the primary utility-maximization problem, but the goals and constraints
of the problems have been reversed. Figure 4.6 illustrates this dual expenditure-
minimization problem. There, the individual must attain utility level U2; this is now the
constraint in the problem. Three possible expenditure amounts (E1, E2, and E3) are shown
as three ‘‘budget constraint’’ lines in the figure. Expenditure level E1 is clearly too small to
achieve U2; hence it cannot solve the dual problem. With expenditures given by E3, the
individual can reach U2 (at either of the two points B or C), but this is not the minimal ex-
penditure level required. Rather, E2 clearly provides just enough total expenditures to
reach U2 (at point A), and this is in fact the solution to the dual problem. By comparing
Figures 4.2 and 4.6, it is obvious that both the primary utility-maximization approach and
the dual expenditure-minimization approach yield the same solution (x%, y%); they are sim-
ply alternative ways of viewing the same process. Often the expenditure-minimization
approach is more useful, however, because expenditures are directly observable, whereas
utility is not.

A tax on good x would shift the utility-maximizing choice from x%, y% to x1, y1. An income tax that
collected the same amount would shift the budget constraint to I 0. Utility would be higher (U2) with the
income tax than with the tax on x alone (U1).

Quantity of x

Quantity
of y

y1

U1

U2
U3

I′

I

x1 x2 x*

y2

y*

FIGURE 4.5

The Lump Sum Principle
of Taxation
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A mathematical statement
More formally, the individual’s dual expenditure-minimization problem is to choose
x1, x2, . . . , xn to minimize

total expenditures ¼ E ¼ p1x1 þ p2x2 þ ( ( ( þ pnxn, (4:48)

subject to the constraint

utility ¼ !U ¼ Uðx1, x2, . . . , xnÞ: (4:49)

The optimal amounts of x1, x2, . . . , xn chosen in this problem will depend on the prices
of the various goods (p1, p2, . . . , pn) and on the required utility level !U . If any of the pri-
ces were to change or if the individual had a different utility ‘‘target,’’ then another com-
modity bundle would be optimal. This dependence can be summarized by an expenditure
function.

The dual of the utility-maximization problem is to attain a given utility level (U2) with minimal
expenditures. An expenditure level of E1 does not permit U2 to be reached, whereas E3 provides more
spending power than is strictly necessary. With expenditure E2, this person can just reach U2 by
consuming x% and y%.

Quantity of x

Quantity
of y

B

E3

E2

U2

E1

C

A

x*

y*

D E F I N I T I O N Expenditure function. The individual’s expenditure function shows the minimal expenditures
necessary to achieve a given utility level for a particular set of prices. That is,

minimal expenditures ¼ Eð p1, p2, . . . , pn, U). (4:50)

FIGURE 4.6

The Dual Expenditure-
Minimization Problem
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This definition shows that the expenditure function and the indirect utility function are
inverse functions of one another (compare Equations 4.43 and 4.50). Both depend on
market prices but involve different constraints (income or utility). In the next chapter we
will see how this relationship is useful in allowing us to examine the theory of how indi-
viduals respond to price changes. First, however, let’s look at two expenditure functions.

EXAMPLE 4.4 Two Expenditure Functions

There are two ways one might compute an expenditure function. The first, most straightforward
method would be to state the expenditure-minimization problem directly and apply the
Lagrangian technique. Some of the problems at the end of this chapter ask you to do precisely
that. Here, however, we will adopt a more streamlined procedure by taking advantage of the
relationship between expenditure functions and indirect utility functions. Because these two
functions are inverses of each other, calculation of one greatly facilitates the calculation of the
other. We have already calculated indirect utility functions for two important cases in Example 4.3.
Retrieving the related expenditure functions is simple algebra.

Case 1: Cobb–Douglas utility. Equation 4.45 shows that the indirect utility function in the
two-good, Cobb–Douglas case is

Vð px , py , IÞ ¼
I

2p0:5x p0:5y
: (4:51)

If we now interchange the role of utility (which we will now treat as the utility ‘‘target’’ denoted
by U) and income (which we will now term ‘‘expenditures,’’ E, and treat as a function of the
parameters of this problem), then we have the expenditure function

Eð px , py , UÞ ¼ 2p0:5x p0:5y U: (4:52)

Checking this against our former results, now we use a utility target of U ¼ 2 with, again, px ¼ 1
and py ¼ 4. With these parameters, Equation 4.52 shows that the required minimal expenditures
are $8 (¼ 2 Æ 10.5 Æ 40.5 Æ 2). Not surprisingly, both the primal utility-maximization problem and
the dual expenditure-minimization problem are formally identical.

Case 2: Fixed proportions. For the fixed-proportions case, Equation 4.47 gave the indirect
utility function as

Vð px , py , IÞ ¼
I

px þ 0:25py
: (4:53)

If we again switch the role of utility and expenditures, we quickly derive the expenditure
function:

Eð px , py , UÞ ¼ ð px þ 0:25pyÞU : (4:54)

A check of the hypothetical values used in Example 4.3 (px ¼ 1, py ¼ 4, U ¼ 4) again shows that
it would cost $8 [¼ (1 þ 0.25 Æ 4) Æ 4] to reach the utility target of 4.

Compensating for a price change. These expenditure functions allow us to investigate how
a person might be compensated for a price change. Specifically, suppose that the price of good y
were to increase from $4 to $5. This would clearly reduce a person’s utility, so we might ask
what amount of monetary compensation would mitigate the harm. Because the expenditure
function allows utility to be held constant, it provides a direct estimate of this amount.
Specifically, in the Cobb–Douglas case, expenditures would have to be increased from $8 to
$8.94 (¼ 2 Æ 1 Æ 50.5 Æ 2) to provide enough extra purchasing power to precisely compensate for
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Properties of Expenditure
Functions
Because expenditure functions are widely used in applied economics, it is important to
understand a few of the properties shared by all such functions. Here we look at three
properties. All these follow directly from the fact that expenditure functions are based on
individual utility maximization.

1. Homogeneity. For both of the functions illustrated in Example 4.4, a doubling of all
prices will precisely double the value of required expenditures. Technically, these ex-
penditure functions are ‘‘homogeneous of degree one’’ in all prices.10 This is a general
property of expenditure functions. Because the individual’s budget constraint is linear
in prices, any proportional increase in both prices and purchasing power will permit
the person to buy the same utility-maximizing commodity bundle that was chosen
before the price increase. In Chapter 5 we will see that, for this reason, demand func-
tions are homogeneous of degree zero in all prices and income.

2. Expenditure functions are nondecreasing in prices. This property can be succinctly
summarized by the mathematical statement

@E
@pi
+ 0 for every good i: (4:55)

This seems intuitively obvious. Because the expenditure function reports the mini-
mum expenditure necessary to reach a given utility level, an increase in any price
must increase this minimum. More formally, suppose the price of one good increases
and that all other prices stay the same. Let A represent the bundle of goods purchased
before the price increase and B the bundle purchased after the price increase. Clearly
bundle B costs more after the price increase than it did previously. The only change
between the two situations is an increase in one of the prices; therefore, spending on
that good increases and all other spending stays the same. However, we also know
that, before the price increase, bundle A cost less than bundle B because A was the
expenditure-minimizing bundle. Hence actual expenditures when B is chosen after

this price increase. With fixed proportions, expenditures would have to be increased from $8 to
$9 to compensate for the price increase. Hence the compensations are about the same in these
simple cases.

There is one important difference between the two examples, however. In the fixed-
proportions case, the $1 of extra compensation simply permits this person to return to his or her
previous consumption bundle (x¼ 4, y¼ 1). That is the only way to restore utility toU¼ 4 for this
rigid person. In the Cobb–Douglas case, however, this person will not use the extra compensation
to revert to his or her previous consumption bundle. Instead, utility maximization will require that
the $8.94 be allocated so that x¼ 4.47 and y¼ 0.894. This will still provide a utility level of U¼ 2,
but this person will economize on the now more expensive good y. In the next chapter we will
pursue this analysis of the welfare effects of price changes in much greater detail.

QUERY: How should a person be compensated for a price decrease? What sort of
compensation would be required if the price of good y fell from $4 to $3?

10As described in Chapter 2, the function f (x1, x2, . . . , xn) is said to be homogeneous of degree k if f (tx1, tx2, . . . , txn) ¼
tkf (x1, x2, . . . , xn). In this case, k ¼ 1.
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the price increase must exceed those on A before the price increase. A similar chain
of logic could be used to show that a decrease in price should cause expenditures to
decrease (or possibly stay the same).

3. Expenditure functions are concave in prices. In Chapter 2 we discussed concave func-
tions, which are defined as functions that always lie below tangents to them.
Although the technical mathematical conditions that describe such functions are
complicated, it is relatively simple to show how the concept applies to expenditure
functions by considering the variation in a single price. Figure 4.7 shows an individ-
ual’s expenditures as a function of the single price, p1. At the initial price, p%1, this
person’s expenditures are given by Eð p%1, . . .Þ. Now consider prices higher or lower
than p%1. If this person continued to buy the same bundle of goods, expenditures
would increase or decrease linearly as this price changed. This would give rise to
the pseudo-expenditure function Epseudo in the figure. This line shows a level of
expenditures that would allow this person to buy the original bundle of goods de-
spite the changing value of p1. If, as seems more likely, this person adjusted his or
her purchases as p1 changed, we know (because of expenditure minimization) that
actual expenditures would be less than these pseudo-amounts. Hence the actual ex-
penditure function, E, will lie everywhere below Epseudo and the function will be
concave.11 The concavity of the expenditure function is a useful property for a
number of applications, especially those related to the substitution effect from price
changes (see Chapter 5).

At p%1 this person spends Eð p%1, . . .Þ. If he or she continues to buy the same set of goods as p1 changes,
then expenditures would be given by Epseudo. Because his or her consumption patterns will likely change
as p1 changes, actual expenditures will be less than this.

E( p1, . . .)

E( p1, . . .)

p1

E( p1*, . . .)

E 
pseudo

E( p1*, . . .)

11One result of concavity is that fii ¼ @ 2E=@p 2
i " 0. This is precisely what Figure 4.7 shows.

FIGURE 4.7

Expenditure Functions
Are Concave in Prices
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SUMMARY

In this chapter we explored the basic economic model of
utility maximization subject to a budget constraint. Although
we approached this problem in a variety of ways, all these
approaches led to the same basic result.

• To reach a constrained maximum, an individual should
spend all available income and should choose a com-
modity bundle such that the MRS between any two
goods is equal to the ratio of those goods’ market
prices. This basic tangency will result in the individual
equating the ratios of the marginal utility to market
price for every good that is actually consumed. Such a
result is common to most constrained optimization
problems.

• The tangency conditions are only the first-order condi-
tions for a unique constrained maximum, however. To
ensure that these conditions are also sufficient, the
individual’s indifference curve map must exhibit a
diminishing MRS. In formal terms, the utility function
must be strictly quasi-concave.

• The tangency conditions must also be modified to
allow for corner solutions in which the optimal level of

consumption of some goods is zero. In this case, the ra-
tio of marginal utility to price for such a good will be
below the common marginal benefit–marginal cost ra-
tio for goods actually bought.

• A consequence of the assumption of constrained utility
maximization is that the individual’s optimal choices
will depend implicitly on the parameters of his or her
budget constraint. That is, the choices observed will be
implicit functions of all prices and income. There-
fore, utility will also be an indirect function of these
parameters.

• The dual to the constrained utility-maximization prob-
lem is to minimize the expenditure required to reach a
given utility target. Although this dual approach yields
the same optimal solution as the primal constrained
maximum problem, it also yields additional insight into
the theory of choice. Specifically, this approach leads to
expenditure functions in which the spending required
to reach a given utility target depends on goods’ market
prices. Therefore, expenditure functions are, in princi-
ple, measurable.

PROBLEMS

4.1
Each day Paul, who is in third grade, eats lunch at school. He likes only Twinkies (t) and soda (s), and these provide him a
utility of

utility ¼ Uðt, sÞ ¼
ffiffiffiffi
ts
p

:

a. If Twinkies cost $0.10 each and soda costs $0.25 per cup, how should Paul spend the $1 his mother gives him to maximize
his utility?

b. If the school tries to discourage Twinkie consumption by increasing the price to $0.40, by how much will Paul’s mother
have to increase his lunch allowance to provide him with the same level of utility he received in part (a)?

4.2
a. A young connoisseur has $600 to spend to build a small wine cellar. She enjoys two vintages in particular: a 2001 French

Bordeaux (wF) at $40 per bottle and a less expensive 2005 California varietal wine (wC) priced at $8. If her utility is

UðwF , wCÞ ¼ w2=3
F w1=3

C ,

then how much of each wine should she purchase?
b. When she arrived at the wine store, our young oenologist discovered that the price of the French Bordeaux had fallen to

$20 a bottle because of a decrease in the value of the euro. If the price of the California wine remains stable at $8 per bottle,
how much of each wine should our friend purchase to maximize utility under these altered conditions?

c. Explain why this wine fancier is better off in part (b) than in part (a). How would you put a monetary value on this utility
increase?
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4.3
a. On a given evening, J. P. enjoys the consumption of cigars (c) and brandy (b) according to the function

Uðc, bÞ ¼ 20c# c2 þ 18b# 3b2:

How many cigars and glasses of brandy does he consume during an evening? (Cost is no object to J. P.)
b. Lately, however, J. P. has been advised by his doctors that he should limit the sum of glasses of brandy and cigars

consumed to 5. How many glasses of brandy and cigars will he consume under these circumstances?

4.4
a. Mr. Odde Ball enjoys commodities x and y according to the utility function

Uðx, yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
:

Maximize Mr. Ball’s utility if px ¼ $3, py ¼ $4, and he has $50 to spend. Hint: It may be easier here to maximize U2 rather
than U. Why will this not alter your results?

b. Graph Mr. Ball’s indifference curve and its point of tangency with his budget constraint. What does the graph say about
Mr. Ball’s behavior? Have you found a true maximum?

4.5
Mr. A derives utility from martinis (m) in proportion to the number he drinks:

UðmÞ ¼ m:

Mr. A is particular about his martinis, however: He only enjoys them made in the exact proportion of two parts gin (g) to one
part vermouth (v). Hence we can rewrite Mr. A’s utility function as

UðmÞ ¼ Uð g, vÞ ¼ min
g
2
, v

% &
:

a. Graph Mr. A’s indifference curve in terms of g and v for various levels of utility. Show that, regardless of the prices of the
two ingredients, Mr. A will never alter the way he mixes martinis.

b. Calculate the demand functions for g and v.
c. Using the results from part (b), what is Mr. A’s indirect utility function?
d. Calculate Mr. A’s expenditure function; for each level of utility, show spending as a function of pg and pv. Hint: Because this

problem involves a fixed-proportions utility function, you cannot solve for utility-maximizing decisions by using calculus.

4.6
Suppose that a fast-food junkie derives utility from three goods—soft drinks (x), hamburgers (y), and ice cream sundaes (z)—
according to the Cobb–Douglas utility function

Uðx, y, zÞ ¼ x0:5y0:5ð1þ zÞ0:5:

Suppose also that the prices for these goods are given by px ¼ 1, py ¼ 4, and pz ¼ 8 and that this consumer’s income is given by
I ¼ 8.

a. Show that, for z ¼ 0, maximization of utility results in the same optimal choices as in Example 4.1. Show also that any
choice that results in z > 0 (even for a fractional z) reduces utility from this optimum.

b. How do you explain the fact that z ¼ 0 is optimal here?
c. How high would this individual’s income have to be for any z to be purchased?

4.7
The lump sum principle illustrated in Figure 4.5 applies to transfer policy and taxation. This problem examines this application
of the principle.
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a. Use a graph similar to Figure 4.5 to show that an income grant to a person provides more utility than does a subsidy on
good x that costs the same amount to the government.

b. Use the Cobb–Douglas expenditure function presented in Equation 4.52 to calculate the extra purchasing power needed to
increase this person’s utility from U ¼ 2 to U ¼ 3.

c. Use Equation 4.52 again to estimate the degree to which good x must be subsidized to increase this person’s utility from
U ¼ 2 to U ¼ 3. How much would this subsidy cost the government? How would this cost compare with the cost calcu-
lated in part (b)?

d. Problem 4.10 asks you to compute an expenditure function for a more general Cobb–Douglas utility function than the one
used in Example 4.4. Use that expenditure function to re-solve parts (b) and (c) here for the case a ¼ 0.3, a figure close to
the fraction of income that low-income people spend on food.

e. How would your calculations in this problem have changed if we had used the expenditure function for the fixed-
proportions case (Equation 4.54) instead?

4.8
Two of the simplest utility functions are:
1. Fixed proportions: Uðx, yÞ ¼ min½x, y*.
2. Perfect substitutes: Uðx, yÞ ¼ x þ y

a. For each of these utility functions, compute the following:
• Demand functions for x and y
• Indirect utility function
• Expenditure function

b. Discuss the particular forms of these functions you calculated—why do they take the specific forms they do?

4.9
Suppose that we have a utility function involving two goods that is linear of the form U(x, y) ¼ ax þ by. Calculate the
expenditure function for this utility function. Hint: The expenditure function will have kinks at various price ratios.

Analytical Problems

4.10 Cobb–Douglas utility
In Example 4.1 we looked at the Cobb–Douglas utility function U(x, y) ¼ xay1#a, where 0 " a " 1. This problem illustrates a
few more attributes of that function.

a. Calculate the indirect utility function for this Cobb–Douglas case.
b. Calculate the expenditure function for this case.
c. Show explicitly how the compensation required to offset the effect of an increase in the price of x is related to the size of

the exponent a.

4.11 CES utility
The CES utility function we have used in this chapter is given by

Uðx, yÞ ¼ xd

d
þ yd

d
:

a. Show that the first-order conditions for a constrained utility maximum with this function require individuals to choose
goods in the proportion

x
y
¼ px

py

 !1=ðd#1Þ

:

b. Show that the result in part (a) implies that individuals will allocate their funds equally between x and y for the Cobb–
Douglas case (d ¼ 0), as we have shown before in several problems.
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c. How does the ratio pxx/pyy depend on the value of d? Explain your results intuitively. (For further details on this function,
see Extension E4.3.)

d. Derive the indirect utility and expenditure functions for this case and check your results by describing the homogeneity
properties of the functions you calculated.

4.12 Stone–Geary utility
Suppose individuals require a certain level of food (x) to remain alive. Let this amount be given by x0. Once x0 is purchased,
individuals obtain utility from food and other goods (y) of the form

Uðx, yÞ ¼ ðx # x0Þayb,

where a þ b ¼ 1.

a. Show that if I > pxx0 then the individual will maximize utility by spending a(I – pxx0) þ pxx0 on good x and b(I – pxx0)
on good y. Interpret this result.

b. How do the ratios pxx/I and pyy/I change as income increases in this problem? (See also Extension E4.2 for more on this
utility function.)

4.13 CES indirect utility and expenditure functions
In this problem, we will use a more standard form of the CES utility function to derive indirect utility and expenditure
functions. Suppose utility is given by

Uðx, yÞ ¼ ðxd þ ydÞ1=d

[in this function the elasticity of substitution s ¼ 1/(1 – d)].

a. Show that the indirect utility function for the utility function just given is

V ¼ Ið prx þ pryÞ
#1=r ,

where r ¼ d/(d – 1) ¼ 1 – s.
b. Show that the function derived in part (a) is homogeneous of degree zero in prices and income.
c. Show that this function is strictly increasing in income.
d. Show that this function is strictly decreasing in any price.
e. Show that the expenditure function for this case of CES utility is given by

E ¼ Vð prx þ pryÞ
1=r :

f. Show that the function derived in part (e) is homogeneous of degree one in the goods’ prices.
g. Show that this expenditure function is increasing in each of the prices.
h. Show that the function is concave in each price.

4.14 Altruism
Michele, who has a relatively high income I, has altruistic feelings toward Sofia, who lives in such poverty that she essentially
has no income. Suppose Michele’s preferences are represented by the utility function

U1 c1, c2ð Þ ¼ c1#a1 ca2,

where c1 and c2 are Michele and Sofia’s consumption levels, appearing as goods in a standard Cobb–Douglas utility function.
Assume that Michele can spend her income either on her own or Sofia’s consumption (through charitable donations) and that
$1 buys a unit of consumption for either (thus, the ‘‘prices’’ of consumption are p1 ¼ p2 ¼ 1).

a. Argue that the exponent a can be taken as a measure of the degree of Michele’s altruism by providing an interpretation of
extremes values a ¼ 0 and a ¼ 1. What value would make her a perfect altruist (regarding others the same as oneself )?

b. Solve for Michele’s optimal choices and demonstrate how they change with a.
c. Solve for Michele’s optimal choices under an income tax at rate t. How do her choices change if there is a charitable deduc-

tion (so income spent on charitable deductions is not taxed)? Does the charitable deduction have a bigger incentive effect
on more or less altruistic people?
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d. Return to the case without taxes for simplicity. Now suppose that Michele’s altruism is represented by the utility function

U1ðc1, U2Þ ¼ c1#a1 Ua
2 ,

which is similar to the representation of altruism in Extension E3.4 to the previous chapter. According to this specification,
Michele cares directly about Sofia’s utility level and only indirectly about Sofia’s consumption level.
1. Solve for Michele’s optimal choices if Sofia’s utility function is symmetric to Michele’s: U2ðc2, U1Þ ¼ c1#a2 Ua

1 . Compare
your answer with part (b). Is Michele more or less charitable under the new specification? Explain.

2. Repeat the previous analysis assuming Sofia’s utility function is U2(c2) ¼ c2.
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EXTENSIONSBUDGET SHARES

The nineteenth-century economist Ernst Engel was one of the
first social scientists to intensively study people’s actual spend-
ing patterns. He focused specifically on food consumption. His
finding that the fraction of income spent on food decreases as
income increases has come to be known as Engel’s law and has
been confirmed in many studies. Engel’s law is such an empiri-
cal regularity that some economists have suggested measuring
poverty by the fraction of income spent on food. Two other
interesting applications are: (1) the study by Hayashi (1995)
showing that the share of income devoted to foods favored by
the elderly is much higher in two-generation households than
in one-generation households; and (2) findings by Behrman
(1989) from less-developed countries showing that people’s
desires for a more varied diet as their incomes increase may in
fact result in reducing the fraction of income spent on particu-
lar nutrients. In the remainder of this extension we look at
some evidence on budget shares (denoted by si ¼ pi xi /I ) to-
gether with a bit more theory on the topic.

E4.1 The variability of budget shares
Table E4.1 shows some recent budget share data from the
United States. Engel’s law is clearly visible in the table: As
income increases families spend a smaller proportion of their

funds on food. Other important variations in the table include
the declining share of income spent on health-care needs and
the much larger share of income devoted to retirement plans
by higher-income people. Interestingly, the shares of income
devoted to shelter and transportation are relatively constant
over the range of income shown in the table; apparently,
high-income people buy bigger houses and cars.

The variable income shares in Table E4.1 illustrate why
the Cobb–Douglas utility function is not useful for detailed
empirical studies of household behavior. When utility is given
by U (x, y) ¼ xayb (where a þ b ¼ 1), the implied demand
equations are x ¼ aI/px and y ¼ bI/py. Therefore,

sx ¼ pxx=I ¼ a and

sy ¼ pyy=I ¼ b,
(i)

and budget shares are constant for all observed income levels
and relative prices. Because of this shortcoming, economists
have investigated a number of other possible forms for the
utility function that permit more flexibility.

E4.2 Linear expenditure system
A generalization of the Cobb–Douglas function that incorpo-
rates the idea that certain minimal amounts of each good

TABLE E4.1 BUDGET SHARES OF U.S. HOUSEHOLDS, 2008

Annual Income

$10,000–$14,999 $40,000–$49,999 Over $70,000

Expenditure Item

Food 15.7 13.4 11.8

Shelter 23.1 21.2 19.3

Utilities, fuel, and public services 11.2 8.6 5.8

Transportation 14.1 17.8 16.8

Health insurance 5.3 4.0 2.6

Other health-care expenses 2.6 2.8 2.3

Entertainment (including alcohol) 4.6 5.2 5.8

Education 2.3 1.2 2.6

Insurance and pensions 2.2 8.5 14.6

Other (apparel, personal care, other housing
expenses, and misc.)

18.9 17.3 18.4

Consumer Expenditure Report, 2008, Bureau of Labor Statistics website: http://www.bls.gov.

http://www.bls.gov


must be bought by an individual (x0, y0) is the utility function

Uðx, yÞ ¼ ðx # x0Þaðy # y0Þb (ii)

for x + x0 and y + y0, where again a þ b ¼ 1.
Demand functions can be derived from this utility func-

tion in a way analogous to the Cobb–Douglas case by intro-
ducing the concept of supernumerary income (I%), which
represents the amount of purchasing power remaining after
purchasing the minimum bundle

I% ¼ I # pxx0 # pyy0: (iii)

Using this notation, the demand functions are

x ¼ ð pxx0 þ aI%Þ=px ,
y ¼ ð pyy0 þ bI%Þ=py:

(iv)

In this case, the individual then spends a constant fraction of
supernumerary income on each good once the minimum bun-
dle has been purchased. Manipulation of Equation iv yields
the share equations

sx ¼ aþ ðbpxx0 # apyy0Þ=I,
sy ¼ bþ ðapyy0 # bpxx0Þ=I,

(v)

which show that this demand system is not homothetic.
Inspection of Equation v shows the unsurprising result that
the budget share of a good is positively related to the minimal
amount of that good needed and negatively related to the
minimal amount of the other good required. Because the
notion of necessary purchases seems to accord well with real-
world observation, this linear expenditure system (LES),
which was first developed by Stone (1954), is widely used in
empirical studies. The utility function in Equation ii is also
called a Stone–Geary utility function.

Traditional purchases
One of the most interesting uses of the LES is to examine how
its notion of necessary purchases changes as conditions
change. For example, Oczkowski and Philip (1994) study how
access to modern consumer goods may affect the share of
income that individuals in transitional economies devote to
traditional local items. They show that villagers of Papua,
New Guinea reduce such shares significantly as outside goods
become increasingly accessible. Hence such improvements as
better roads for moving goods provide one of the primary
routes by which traditional cultural practices are undermined.

E4.3 CES utility
In Chapter 3 we introduced the CES utility function

Uðx, yÞ ¼ x d

d
þ y d

d
(vi)

for d " 1, d 6¼ 0. The primary use of this function is to illus-
trate alternative substitution possibilities (as reflected in the
value of the parameter d). Budget shares implied by this utility

function provide a number of such insights. Manipulation of
the first-order conditions for a constrained utility maximum
with the CES function yields the share equations

sx ¼ 1=½1þ ð py=pxÞK *,
sy ¼ 1=½1þ ð px=pyÞK *,

(vii)

where K ¼ d/(d – 1).
The homothetic nature of the CES function is shown by

the fact that these share expressions depend only on the price
ratio, px/py. Behavior of the shares in response to changes in
relative prices depends on the value of the parameter K. For
the Cobb–Douglas case, d ¼ 0 and so K ¼ 0 and sx ¼ sy ¼
1/2. When d > 0, substitution possibilities are great and K < 0.
In this case, Equation vii shows that sx and px/py move in op-
posite directions. If px/py increases, the individual substitutes
y for x to such an extent that sx decreases. Alternatively, if d
< 0, then substitution possibilities are limited, K > 0, and sx
and px/py move in the same direction. In this case, an
increase in px/py causes only minor substitution of y for x,
and sx actually increases because of the relatively higher price
of good x.

North American free trade
CES demand functions are most often used in large-scale
computer models of general equilibrium (see Chapter 13) that
economists use to evaluate the impact of major economic
changes. Because the CES model stresses that shares respond
to changes in relative prices, it is particularly appropriate for
looking at innovations such as changes in tax policy or in
international trade restrictions, where changes in relative
prices are likely. One important area of such research has
been on the impact of the North American Free Trade Agree-
ment for Canada, Mexico, and the United States. In general,
these models find that all the countries involved might be
expected to gain from the agreement, but that Mexico’s gains
may be the greatest because it is experiencing the greatest
change in relative prices. Kehoe and Kehoe (1995) present a
number of computable equilibrium models that economists
have used in these examinations.1

E4.4 The almost ideal demand system
An alternative way to study budget shares is to start from a spe-
cific expenditure function. This approach is especially conven-
ient because the envelope theorem shows that budget shares
can be derived directly from expenditure functions through log-
arithmic differentiation (for more details, see Chapter 5):

@ ln Eðpx , py , VÞ
@ ln px

¼ 1
Eðpx , py , VÞ

( @E
@px
( @px
@ ln px

¼ xpx
E
¼ sx:

(viii)

1The research on the North American Free Trade Agreement is discussed in
more detail in the Extensions to Chapter 13.
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Deaton and Muellbauer (1980) make extensive use of this
relationship to study the characteristics of a particular class of
expenditure functions that they term an almost ideal demand
system (AIDS). Their expenditure function takes the form

ln Eð px , py , VÞ ¼ a0 þ a1 ln px þ a2 ln py

þ 0:5b1ðln pxÞ
2 þ b2 ln px ln py

þ 0:5b3ðln pyÞ
2 þ Vc 0 pc 1x pc 2y :

(ix)

This form approximates any expenditure function. For the
function to be homogeneous of degree one in the prices, the pa-
rameters of the function must obey the constraints a1þ a2¼ 1,
b1 þ b2 ¼ 0, b2 þ b3 ¼ 0, and c1 þ c2 ¼ 0. Using the results of
Equation viii shows that, for this function,

sx ¼ a1 þ b1 ln px þ b2 ln py þ c1Vc0 pc 1x pc 2y ,

sy ¼ a2 þ b2 ln px þ b3 ln py þ c2Vc0 pc 1x pc 2y :
(x)

Notice that, given the parameter restrictions, sx þ sy ¼ 1.
Making use of the inverse relationship between indirect utility
and expenditure functions and some additional algebraic
manipulation will put these budget share equations into a
simple form suitable for econometric estimation:

sx ¼ a1 þ b1 ln px þ b2 ln py þ c1ðE=pÞ,
sy ¼ a2 þ b2 ln px þ b3 ln py þ c2ðE=pÞ,

(xi)

where p is an index of prices defined by

ln p ¼ a0 þ a1 ln px þ a2 ln py þ 0:5b1ðln pxÞ
2

þ b2 ln px ln py þ 0:5b3ðln pyÞ
2:

(xii)

In other words, the AIDS share equations state that budget
shares are linear in the logarithms of prices and in total real
expenditures. In practice, simpler price indices are often sub-
stituted for the rather complex index given by Equation xii,
although there is some controversy about this practice (see
the Extensions to Chapter 5).

British expenditure patterns
Deaton and Muellbauer apply this demand system to the
study of British expenditure patterns between 1954 and 1974.
They find that food and housing have negative coefficients of
real expenditures, implying that the share of income devoted
to these items decreases (at least in Britain) as people get
richer. The authors also find significant relative price effects
in many of their share equations, and prices have especially
large effects in explaining the share of expenditures devoted
to transportation and communication. In applying the AIDS
model to real-world data, the authors also encounter a variety
of econometric difficulties, the most important of which is
that many of the equations do not appear to obey the restric-
tions necessary for homogeneity. Addressing such issues has
been a major topic for further research on this demand
system.
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