
Structured programming
summary & intro modularity

Recap flow of control (Ch. 2&3)
Introduce functions (Ch. 4&5)

Notation for
algorithms
l Example

pseudocode
notation (not
a “standard”),
and flowchart
symbols
(relatively
standard)

C++’s 7 basic control structures

l  1st is trivial: sequence structure
l  3 choices of selection structures:

–  if
–  if/else

–  switch

l  3 choices of repetition structures:
–  while

–  for
–  do/while

Sequence (it really is a structure)

if Selection Structure

? T

F

if/else Selection Structure

? TF

switch Selection Structure

? T

F

break

? T

F

break

 .
 .
 .

while Iteration Structure

? T

F

for Iteration Structure

?
T

F

increment

initialize

do/while Iteration Structure

?
T

F

Notice rectangles in every one

? T

F

? TF? T

F

?
T

F

increment

initialize

? T

F

break

? T

F

break

 .
 .
 .

?
T

F

Iteration

Selection Sequence

Structure “rule” #1: start with the
simplest flowchart

l  One rectangle
l  A good (and widely

applicable) example:
 get some data, calculate
and show some results

l  Really just a way to start;
clarifies the “big picture”

Very
general;
top-level
algorithm

Rule #2: replace any rectangle by two
rectangles in sequence

l  This “stacking rule” can apply
repeatedly: oneàtwo, twoàthree, …
For example:

1.  Get data
2.  Process
3.  Show results

Rule 2

Rule #3: replace any rectangle by any
control structure

l This “nesting rule” also applies repeatedly,
as each control structure has rectangles

l  e.g., nest a while loop in an if structure:
if (n > 0)
 while (i < n)

 cout << i++;

Rule 3 Any one of 7
choices in C++

Rule #4: apply rules #2 and #3
repeatedly, and in any order

l  Stack, nest, stack, nest, nest, stack, … gets
more and more detailed as one proceeds
– Think of control structures as building blocks

that can be combined in two ways only.
– Captures the essence of stepwise refinement:

keep adding details as they arise
l  And keep adding control structures as long as more

are needed

Modularity – another structured
programming idea
l  Function = the simplest type of C++ module
l  Idea: let modules solve problem parts – then

combine the parts to solve whole problems
–  Abstraction benefits – details are hidden in a

module to reduce complexity of overall solution
–  Reusability benefits – maybe use it many times
–  Benefits of unit tests – be confident each of the

parts work properly

Using functions to solve problems

l  Think: you might be able to directly translate an
algorithm into a series of function calls
 mydata = getData();
 results = process(mydata);

 showResults(results);
l  In turn, the function process() might do:

 intermediateResult = calculate(x, y);

 where calculate is another function, to perform a
difficult calculation involving x and y.

–  … “top-down programming by stepwise refinement”

