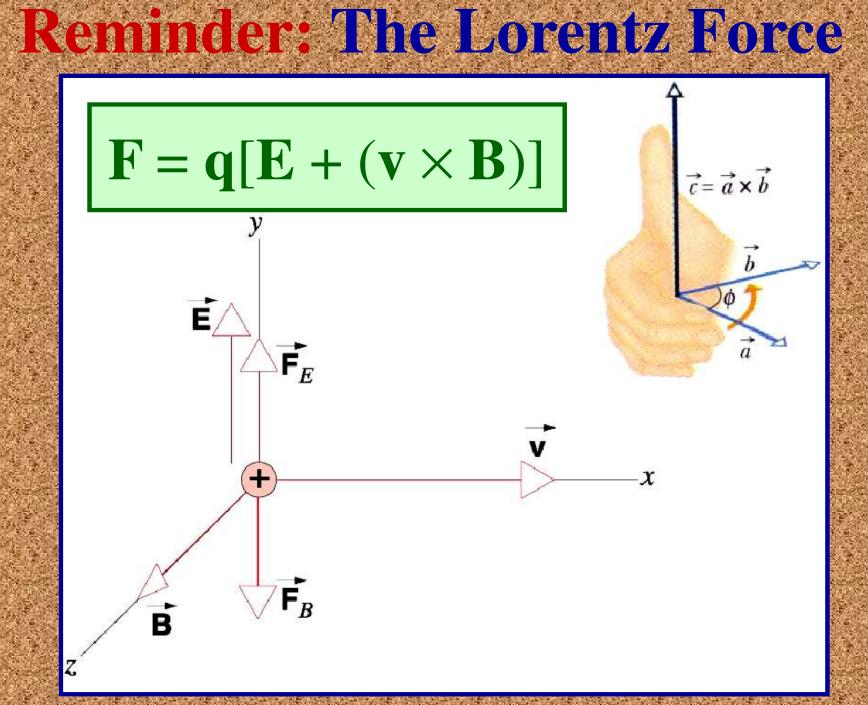
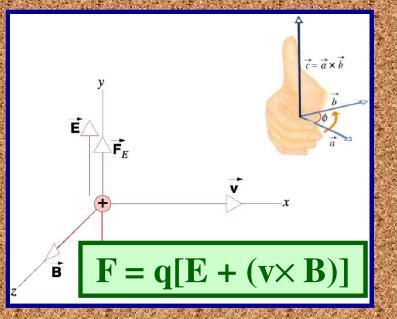
The Classical Hall effect



a state

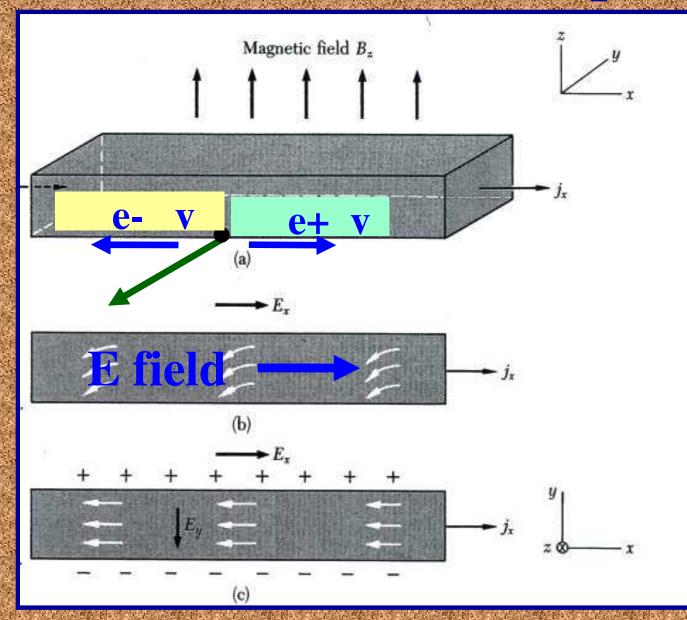
Shell Shell

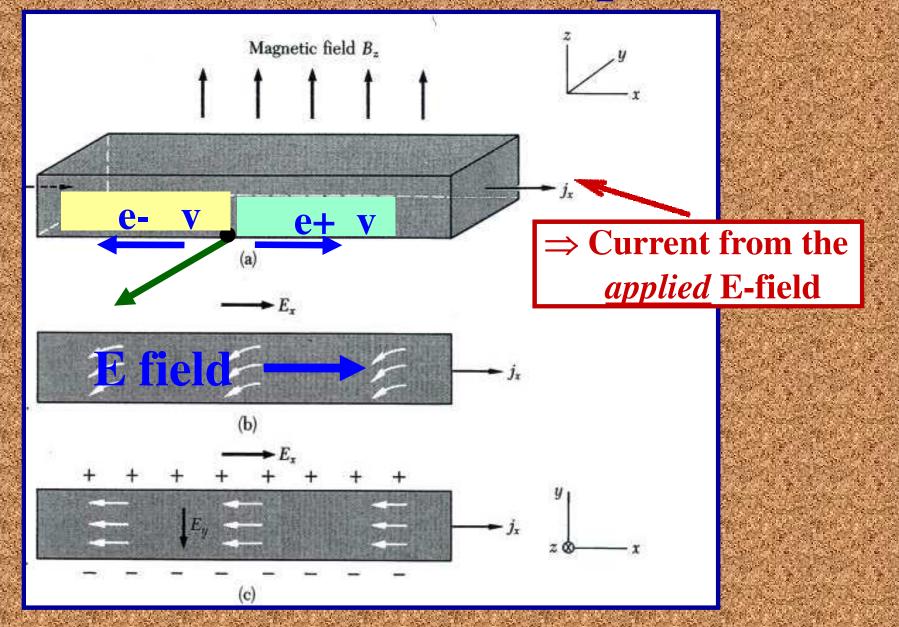
The Lorentz Force: Review Crossed E & B Fields • In the configuration shown here, can have several practical uses!

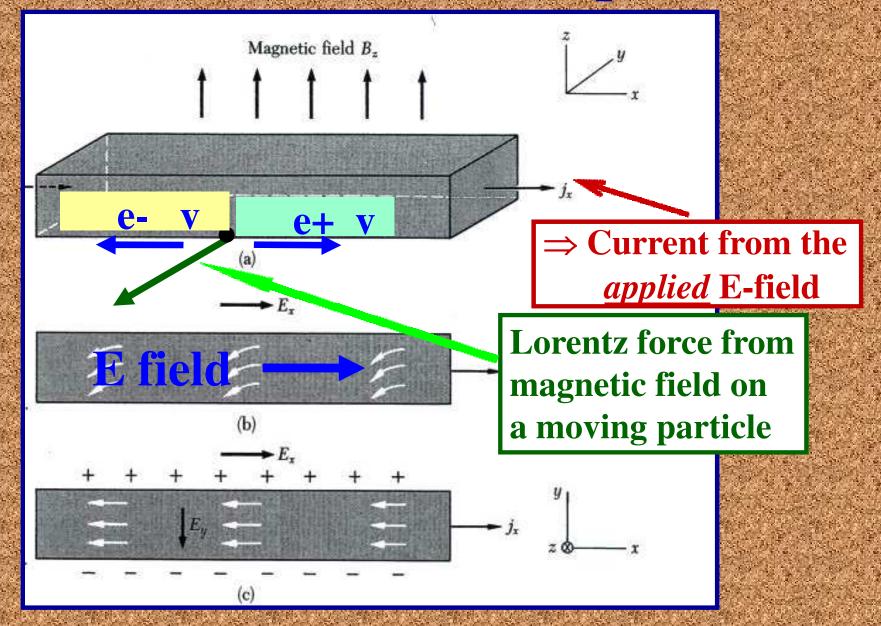


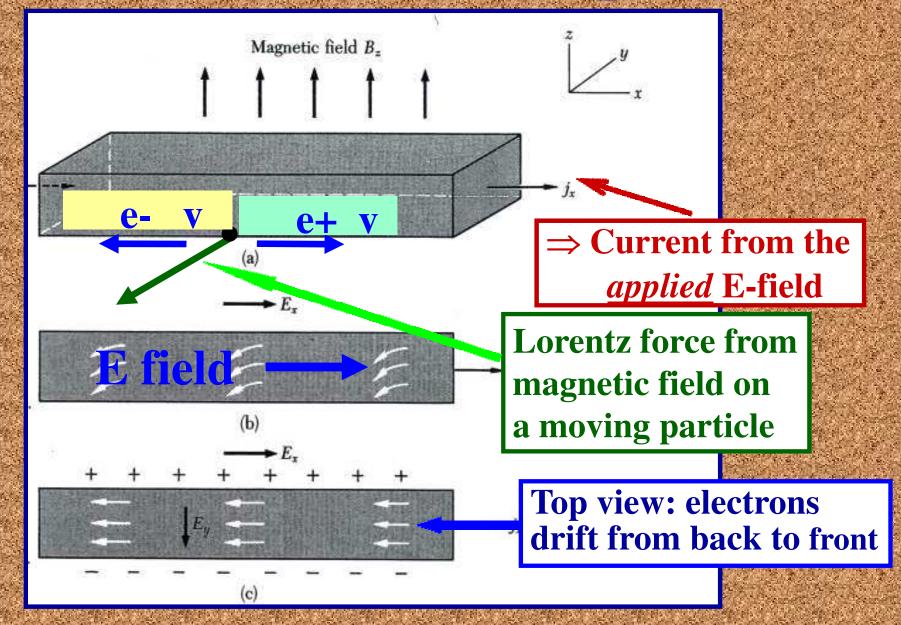
1. Velocity Filters: Undeflected trajectories of charged particles. Choose E & B so that the particles have a desired v = (E/B)**2.**Cyclotron Motion: $\mathbf{F}_{\mathbf{B}} = \mathbf{ma}_{\mathbf{r}} \Rightarrow \mathbf{qvB} = (\mathbf{mv}^{2}/\mathbf{r})$

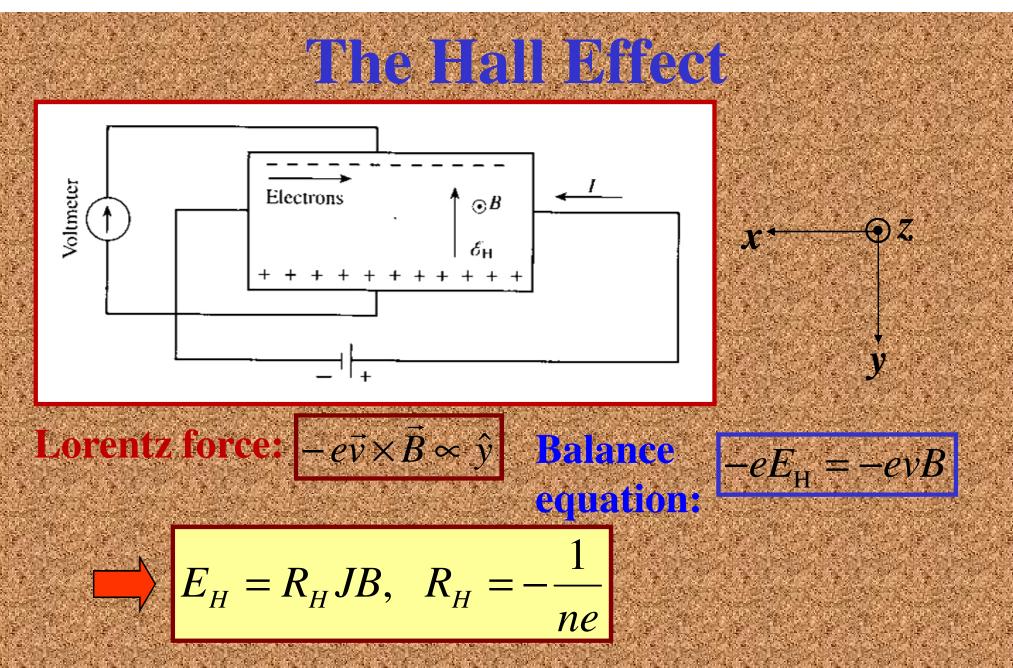
Crossed E & B Fields Cyclotron Motion: $F_{\rm B} = ma_r \Rightarrow qvB = (mv^2/r)$ \Rightarrow Orbit Radius: r = [(mv)/(|q|B)] = [p/(q|B|])⇒ A Momentum (p) Filter‼ **Orbit Frequency:** $\omega = 2\pi f = (|q|B)/m$ A Mass Measurement Method! \Rightarrow Orbit Energy: $K = (\frac{1}{2})mv^2 = (q^2B^2r^2)/2m$



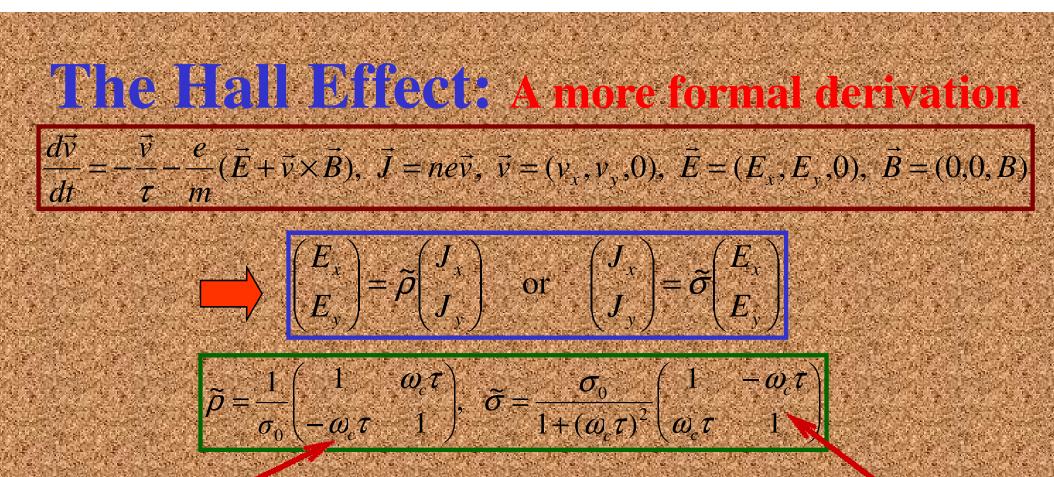








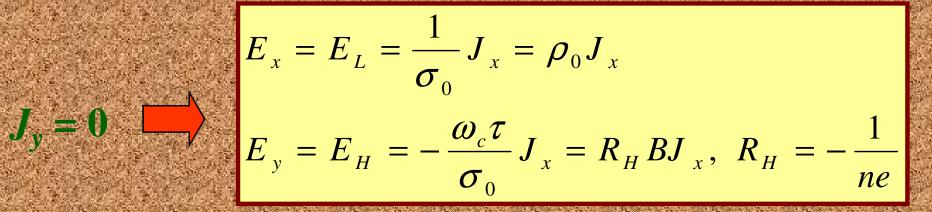
 $R_{\rm H}$ is independent of τ and m \rightarrow An excellent method for determining n



magneto-resistivity

magneto-conductivity tensor

tensor



Charge Density in the Drude Model

ρ_m [kg/m³]: mass density
A [kg]: atomic mass (mass of one mole)

 $\rho_{\rm m}/A$ moles atoms per m³

 $N_{A}\rho_{m}/A \text{ atoms per m}^{3}, N_{A} = 6.02 \times 10^{23}$ $n = N_{A}\rho_{m}Z/A \text{ electrons per m}^{3},$ Z: # of valence electrons

For Li, $\rho_{\rm m} = 0.542 \times 10^3$, $A = 6.941 \times 10^3$, Z = 1 $n = 4.70 \times 10^{28} \,{\rm m}^{-3}$

Comparison with Experiment

For Li, $\rho_{\rm m} = 0.542 \times 10^3$, $A = 6.941 \times 10^{-3}$, Z

 $n = 4.70 \times 10^{28} \text{ m}^{-3}$ $R_{\text{H}} = -1.33 \times 10^{-10} \text{ m}^{-3}/\text{C}$ $R_{\text{H}} = -1.7 \times 10^{-10} \text{ m}^{-3}/\text{C}$

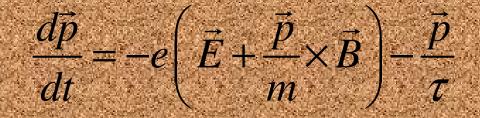
For Zn, $\rho_{\rm m} = 7.13 \times 10^3$, $A = 65.38 \times 10^{-3}$, Z

= 2

 $n = 1.31 \times 10^{29} \text{ m}^{-3}$ $R_{\text{H}} = -4.77 \times 10^{-11} \text{ m}^{3}/\text{C}$ $R_{\text{H}}(\exp) = +3 \times 10^{-11} \text{ m}^{3}/\text{C}$ $R_{\text{H}}(\exp) = +3 \times 10^{-11} \text{ m}^{3}/\text{C}$ $R_{\text{H}}(\exp) = +3 \times 10^{-11} \text{ m}^{3}/\text{C}$

Cyclotron Frequency and the Hall Angle

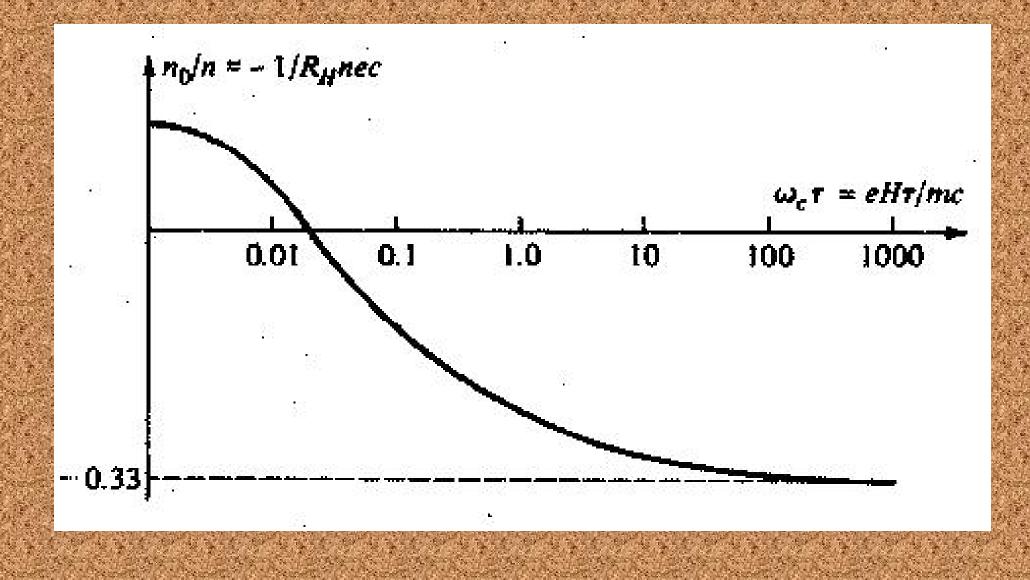
Newtonian equation of motion in E and B:



 $\begin{cases} \sigma_0 E_z = \omega_c \tau J_y + J_z \\ \sigma_0 E_y = -\omega_c \tau J_z + J_y \end{cases}$

 $\omega_c = \frac{eB}{m}, \quad \tan \phi = \omega_c \tau$

Deviation from the Classical Hall Effect



How Difficult is $\omega_{\tau} > 1$?

$\omega_c \tau = \frac{eB}{m^*} \tau = B\left(\frac{e\tau}{m^*}\right) = B\mu_e > 1$

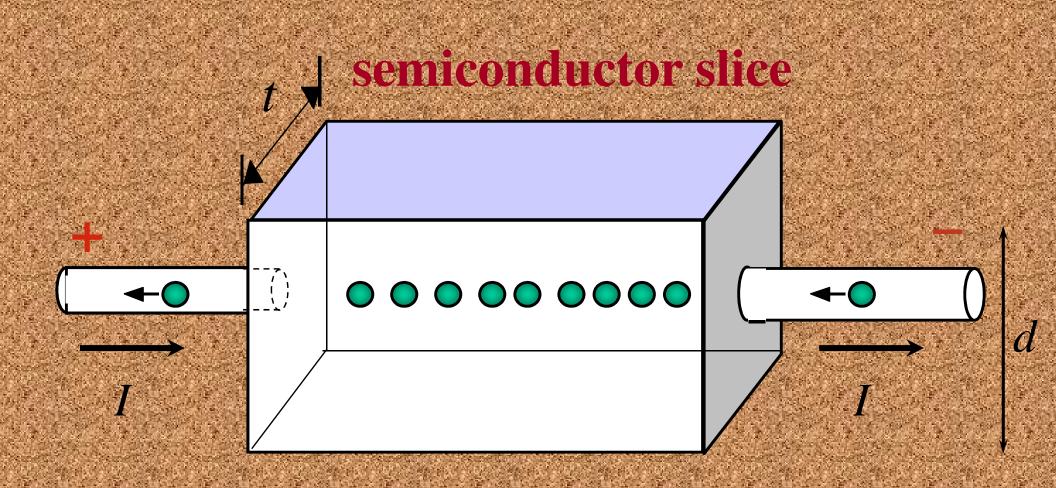
 $\mu_{\rm e} = 10000 \text{ cm}^2/\text{Vs} \rightarrow B > 1 \text{ Testa}$

 $\mu_c = 1000 \text{ cm}^2/\text{Vs} \rightarrow B > 10 \text{ Tesla}$

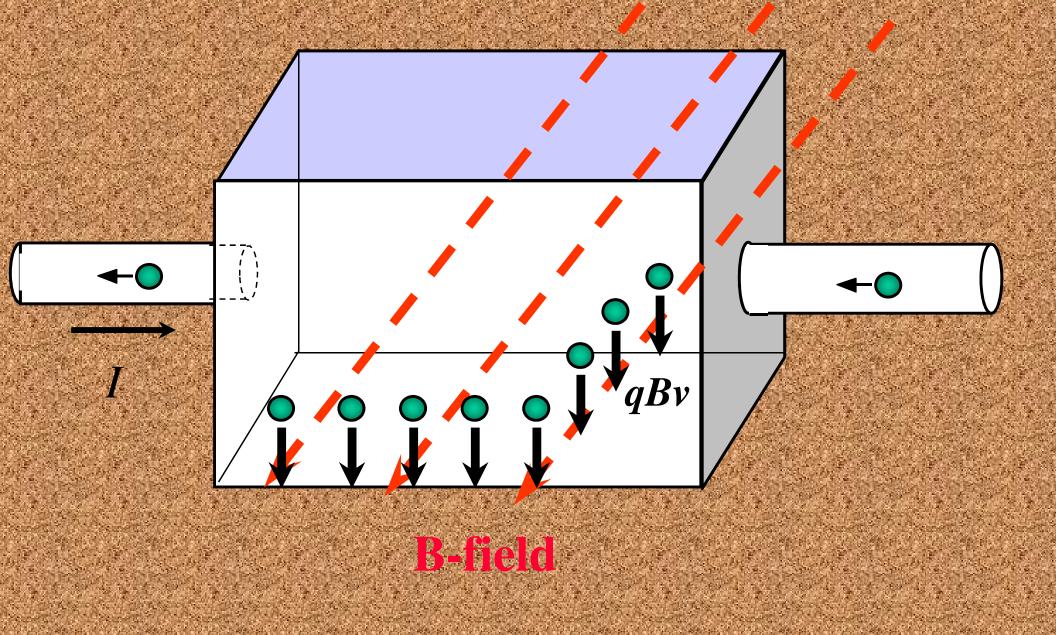
 $\mu = 100 \text{ cm}^2/\text{Vs} \rightarrow B > 100 \text{ Testa}$

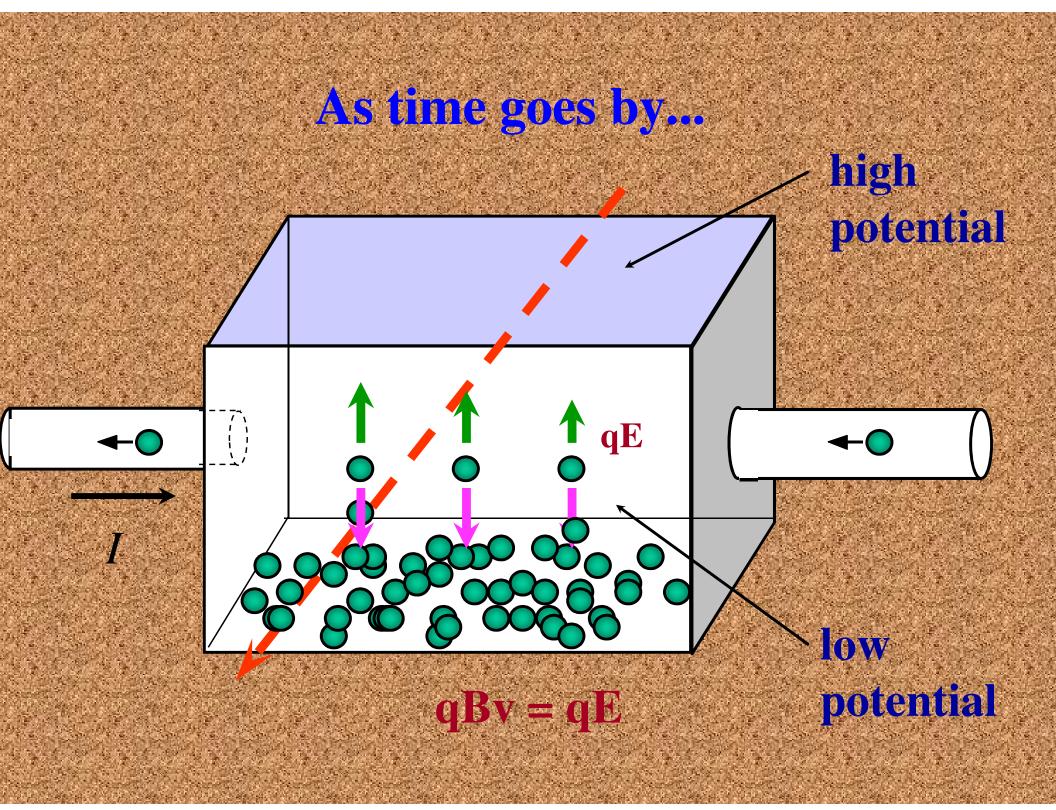
and the second second second second second second second

Electrons flowing without a magnetic field

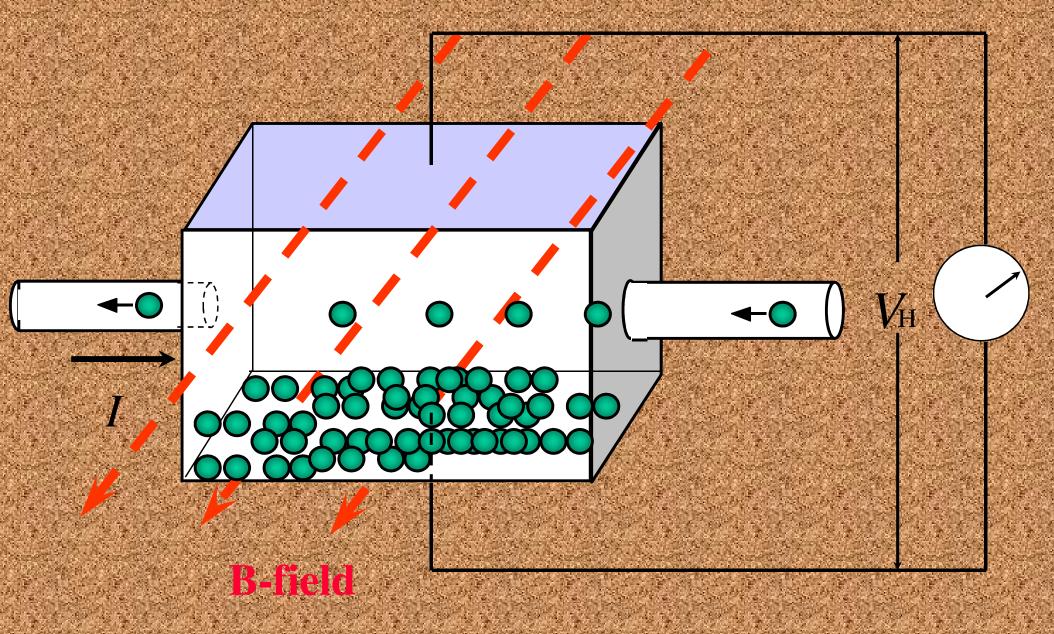


When the magnetic field is turned on ..





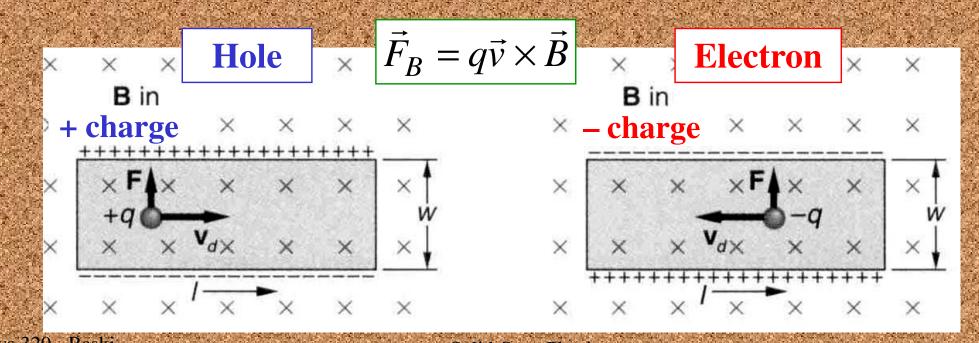
Finally...

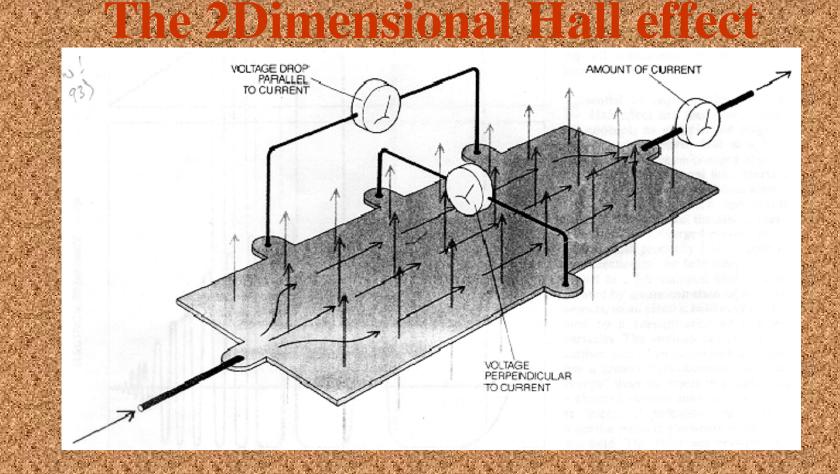


- Semiconductors: Charge Carrier Density via Hall Effect
 Why is the Hall Effect useful? It can determine the carrier type (electron vs. hole) & the carrier density n for a semiconductor.
 - **How?** Place the semiconductor into external **B** field, push current along one axis, & measure the induced Hall voltage V_{H} along the perpendicular axis. The following can be derived:

 $\mathbf{n} = [(\mathbf{IB})/(\mathbf{qw}\mathbf{V}_{\mathbf{H}})]$

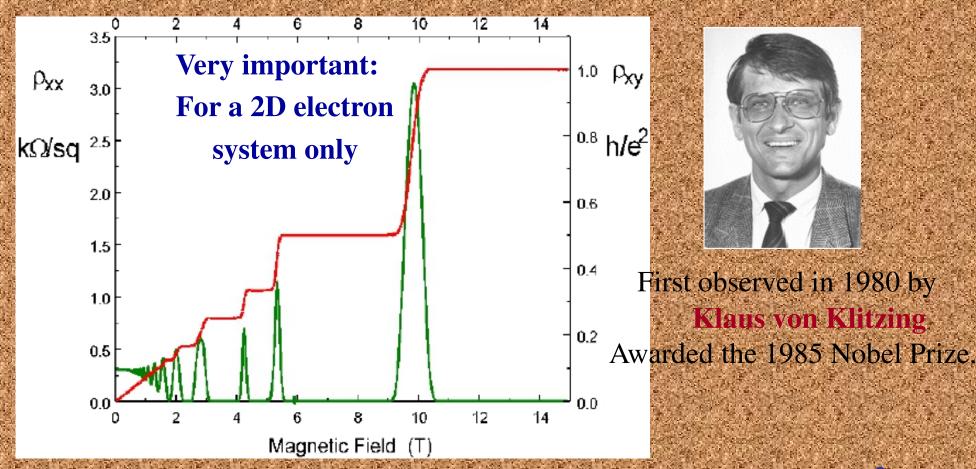
Derived from the Lorentz force $\mathbf{F}_{\mathbf{E}} = \mathbf{q}\mathbf{E} = \mathbf{F}_{\mathbf{B}} = (\mathbf{q}\mathbf{v}\mathbf{B})$.





The surface current density $\mathbf{s}_x = \mathbf{v}_x \mathbf{\sigma} \mathbf{q}$, ($\mathbf{\sigma} = \text{surface charge density}$) Again, $\mathbf{R}_{\mathbf{H}} = \mathbf{1}/\mathbf{\sigma} \mathbf{e}$. But, now: $\mathbf{R}_{xy} = \mathbf{V}_y / \mathbf{i}_x = \mathbf{R}_{\mathbf{H}} \mathbf{B}_z$ since $\mathbf{s}_x = \mathbf{i}_x / \mathbf{I}_y$. & $\mathbf{E}_y = \mathbf{V}_y / \mathbf{I}_y$. That is, \mathbf{R}_{xy} does <u>NOT</u> depend on the sample shape of the sample. This is a very important aspect of the **Quantum Hall Effect (QHE)**

Phe Integer Quantum Hall Difect



The Hall Conductance is *quantized* in units of **e**²/**h**, or **The Hall Resistance R**_{xy} = **h**/(**ie**²) where **i** is an integer. The *quantum of conductance* **h**/e² is now known as the *"Klitzing" !!* Has been measured to 1 part in 10⁸

AIR INTERNET

The Fractional Quantum Hall effect The Royal Swedish Academy of Sciences

awarded The 1998 Nobel Prize in Physics.

jointly to Robert B. Laughlin (Stanford), Horst L. Störmer (Columbia & Bell Labs) & Daniel C. Tsui, (Princeton) The 3 researchers were awarded <u>the Nobel Prize</u> for discovering that electrons acting together in strong magnetic fields can form new types of "particles", with charges that are fractions of an electron charge.

<u>Citation</u>: "For their discovery of a new form of quantum fluid with fractionally charged excitations."

Störmer & Tsui made the discovery in 1982 in an experiment using extremely high magnetic fields very low temperatures. Within a year Laughlin had succeeded in explaining their result. His theory showed that electrons in high magnetic fields & low temperatures can condense to form a quantum fluid similar to the quantum fluids that occur in superconductivity & liquid helium. Such fluids are important because events in a drop of quantum fluid can give deep insight into the inner structure & dynamics of matter. Their contributions were another breakthrough in the understanding of quantum physics & to development of new theoretical concepts of significance in many branches of modern physics.