AC Electrical Conductivity in Metals (Brief discussion only, in the free & independent electron approximation) Application to the Propagation of Electromagnetic Radiation in a Metal

Consider a time dependent electric field E(t) acting on a metal. Take the case when the wavelength of the field is large compared to the electron mean free path between collisions:

 $\lambda >> \ell$

In this limit, the conduction electrons will "see" a \approx homogeneous field when moving between collisions. Write: $E(t) = E(\omega)e^{-i\omega t}$

That is, assume a harmonic dependence on frequency. Next is standard Junior-Senior physics major E&M! **Response to the electric field** both in metals and dielectrics

electric field leads to 3

electric current j

[▶]polarization **P**

mainly described by conductivity $\sigma = j/E$

polarizability $\chi = P/E$ dielectric function $\varepsilon = 1 + 4\pi\chi$

historically used mainly for metals

dielectrics

 $\mathbf{E}(\omega, t) = \mathbf{E}(\omega)e^{-i\omega t}$ $\mathbf{j}(\omega, t) \sim \mathbf{j}(\omega)e^{-i\omega t}$ $\mathbf{P}(\omega, t) \sim \mathbf{P}(\omega)e^{-i\omega t}$

 $\mathbf{j} = \sum_{i} q_{i} \frac{d\mathbf{r}_{i}}{dt} \longrightarrow j = \frac{dP}{dt} = -i\omega P$ $\mathbf{P} = \sum_{i} q_{i} \mathbf{r}_{i} \longrightarrow j = \frac{dP}{dt} = -i\omega P$ $\chi = \frac{P}{E} = \frac{1}{E} \frac{j}{-i\omega} = i\frac{\sigma}{\omega}$ $\varepsilon(\omega) = 1 + 4\pi \frac{P(\omega)}{E(\omega)} \longrightarrow \varepsilon(\omega) = 1 + i\frac{4\pi}{\omega}\sigma(\omega)$ $\mathbf{D} = \mathbf{E} + 4\pi \mathbf{P} = \varepsilon \mathbf{E}$

 $div \mathbf{D} = 4\pi \rho_{ext}$ $div \mathbf{E} = 4\pi \rho = 4\pi (\rho_{ext} + \rho_{ind})$

ε(ω,0) describes the collective excitations of the electron gas – the plasmons
 ε(0,k) describes the electrostatic screening

AC Electrical Conductivity of a Metal

Newton's 2nd Law Equation of Motion for the momentum of one electron in a time dependent electric field. Look for a steady state solution of the form:

$$\frac{d\mathbf{p}(\omega,t)}{dt} = -\frac{\mathbf{p}(\omega,t)}{\tau} - e\mathbf{E}(\omega,t)$$
$$\mathbf{E}(\omega,t) = \mathbf{E}(\omega)e^{-i\omega t}$$
$$\mathbf{p}(\omega,t) = \mathbf{p}(\omega)e^{-i\omega t}$$
$$\mathbf{p}(\omega) = \frac{e\mathbf{E}(\omega)}{1/\tau - i\omega}$$
$$\mathbf{j}(\omega) = -\frac{ne\mathbf{p}(\omega)}{m} = \frac{(ne^2/m)\mathbf{E}(\omega)}{1/\tau - i\omega}$$
$$\operatorname{Re}\sigma(\omega) = \frac{\sigma_0}{1 + \omega^2\tau^2}$$

Plasma Frequency A plasma is a medium with positive & negative charges & at least one charge type is mobile.

DC conductivity
$$\omega \tau >> 1$$

AC conductivity

$$\mathbf{j}(\omega) = \boldsymbol{\sigma}(\omega) \mathbf{E}(\omega)$$
$$\boldsymbol{\sigma}(\omega) = \frac{\boldsymbol{\sigma}_0}{1 - i\omega\tau}$$
$$\boldsymbol{\sigma}_0 = \frac{ne^2\tau}{m}$$

$$\sigma(\omega) = \frac{\sigma_0}{1 - i\omega\tau}$$

$$\varepsilon(\omega) = 1 + i\frac{4\pi}{\omega}\sigma(\omega)$$

$$\varepsilon(\omega) = 1 - \frac{4\pi ne^2}{m\omega^2}$$

$$\omega_p^2 = \frac{4\pi ne^2}{m}$$
$$\varepsilon(\omega) = 1 - \frac{\omega_p^2}{\omega^2}$$

Even more simplified: $\omega \tau >> 1$ No electron collisions (no frictional damping term)

 $d^2 r$

 $\mathcal{E}(\omega) = 1$

Equation of motion of a **Free Electron**:

If **x** & **E** have harmonic time dependences **e**^{-iωt}

The polarization **P** is the dipole moment per unit volume:

$$m\frac{d^{2}x}{dt^{2}} = -eE$$

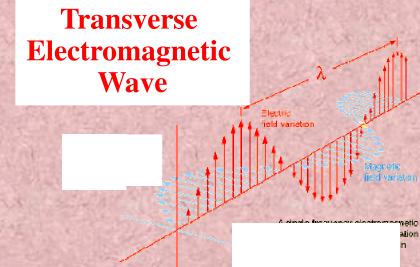
$$x = \frac{eE}{m\omega^{2}}$$

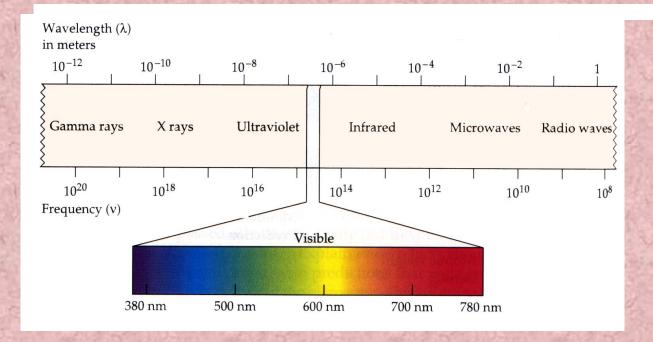
$$P = -exn = -\frac{ne^{2}}{m\omega^{2}}E$$

$$\varepsilon(\omega) = 1 + 4\pi \frac{P(\omega)}{E(\omega)} = 1 - \frac{4\pi ne^{2}}{m\omega^{2}}$$

$$\omega_{p}^{2} = \frac{4\pi ne^{2}}{m}$$

Application to the Propagation of Electromagnetic Radiation in a Metal





Application to the Propagation of Electromagnetic Radiation in a Metal

The electromagnetic wave equation in a nonmagnetic isotropic medium. Look for a solution with the <u>dispersion</u> <u>relation for electromagnetic waves</u>

 $\varepsilon(\omega, \mathbf{K})\partial^{2}\mathbf{E}/\partial t^{2} = c^{2}\nabla^{2}\mathbf{E}$ $\mathbf{E} \propto \exp(-i\omega t + i\mathbf{K} \cdot \mathbf{r})$ $\varepsilon(\omega, \mathbf{K})\omega^{2} = c^{2}K^{2}$

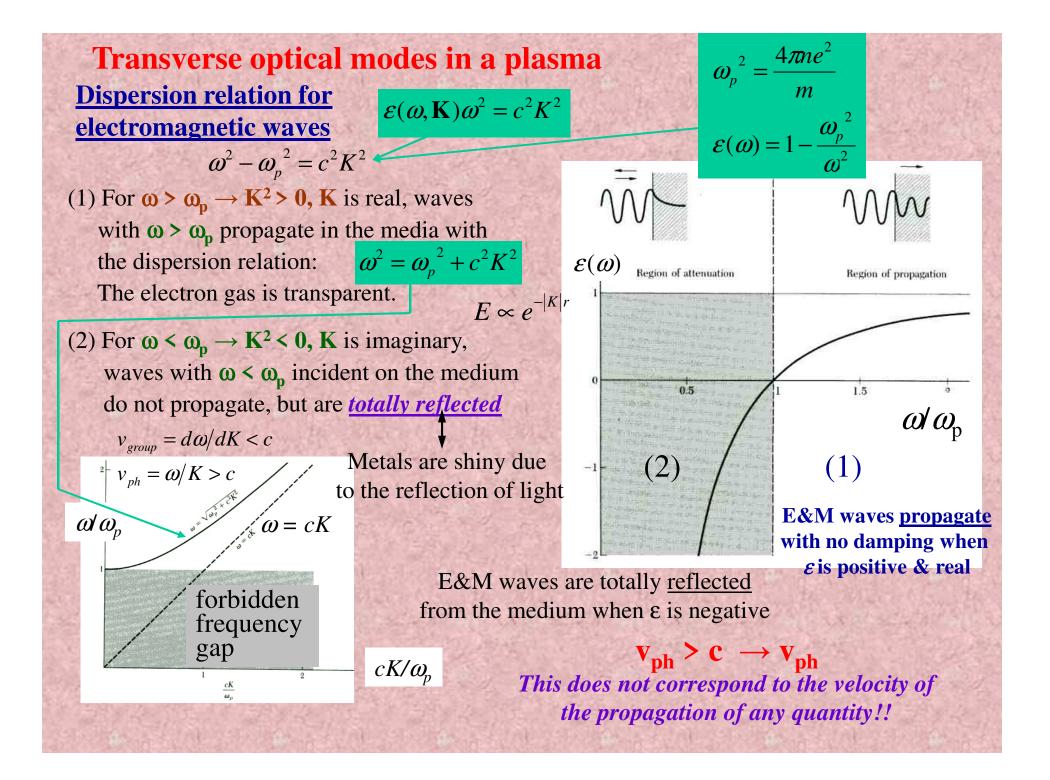
(1) ε real & > 0 \rightarrow for ω real, K is real & the transverse electromagnetic wave propagates with the phase velocity $v_{ph} = c/\epsilon^{1/2}$

(2) ε real & < 0 \rightarrow for ω real, K is imaginary & the wave is damped with a characteristic length 1/|K|:

(3) ε complex \rightarrow for ω real, **K** is complex & the wave is damped in space

(4) $\varepsilon = \rightarrow \infty \rightarrow$ The system has a final response in the absence of an applied force (at **E** = **0**); the poles of $\varepsilon(\omega, \mathbf{K})$ define the frequencies of the free oscillations of the medium

(5) $\varepsilon = 0$ longitudinally polarized waves are possible



Ultraviolet Transparency of Metals

Plasma Frequency ω_p & Free Space Wavelength $\lambda_p = 2\pi c/\omega_p$

Range	Metals	Semiconductors	Ionosphere
<i>n</i> , cm ⁻³	1022	10 ¹⁸	1010
ω_{p} Hz	5.7×10 ¹⁵	5.7×10 ¹³	5.7×10 ⁹
λ_p^{P} , cm	3.3×10 ⁻⁵	3.3×10 ⁻³	33
spectral range	UV	IF	radio

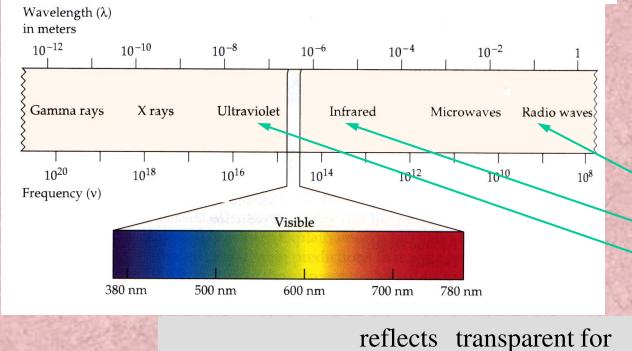
visible

radio

UV

visible⁻

The Electron Gas is Transparent when $\omega > \omega_n$ i.e. $\lambda < \lambda_n$



metal

ionosphere

The reflection of light from a metal is similar to the reflection of radio waves from the Ionosphere!

 $\mathcal{E}(\omega) = 1$

 $4\pi ne^2$

m

Plasma Frequency Ionosphere Semiconductors Metals

Skin Effect

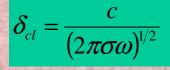
When $\omega < \omega_p$ the electromagnetic wave is reflected. It is damped with a characteristic length $\delta = 1/|\mathbf{K}|$:

The wave penetration – the <u>skin effect</u> The penetration depth δ – the <u>skin depth</u>

$$K^{2} = \frac{\omega^{2}}{c^{2}} \varepsilon = \frac{\omega^{2}}{c^{2}} \left(1 + i\frac{4\pi}{\omega}\sigma\right) \approx i\frac{\omega^{2}}{c^{2}}\frac{4\pi}{\omega}\sigma$$
$$K = \frac{\left(2\pi\sigma\omega\right)^{1/2}}{c}(1+i)$$

$$E \propto \exp(-i\omega t + iKr) \propto \exp\left(-\frac{(2\pi\sigma\omega)^{2}}{c}\right)$$

 $E \propto e^{-r/\delta} = e^{-|K|r}$

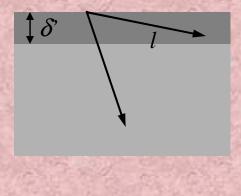


The classical skin depth

 $\delta >> \ell$ The <u>classical skin effect</u>

 $\delta << \ell$: The <u>anomalous skin effect</u> (pure metals at low temperatures) the usual theory of electrical conductivity is no longer valid; the electric field varies rapidly over ℓ . Further, not all electrons are participating in the wave absorption & reflection.

1/2



Only electrons moving inside the skin depth for most of the mean free path ℓ are capable of picking up much energy from the electric field. Only a fraction of the electrons δ'/ℓ contribute to the conductivity

$$= \frac{c}{\left(2\pi\sigma'\omega\right)^{1/2}} \approx \frac{c}{\left(2\pi\frac{\delta'}{l}\sigma\omega\right)^{1/2}} \longrightarrow \delta' = \left(\frac{lc^2}{2\pi\sigma\omega}\right)$$

Longitudinal Plasma Oscillations

