
http://www.tutorialspoint.com/data_structures_algorithms/linked_lists_algorithm.htm Copyright © tutorialspoint.com

DATA STRUCTURE - LINKED LISTDATA STRUCTURE - LINKED LIST

Linked List Basics
A linked-list is a sequence of data structures which are connected together via links.

Linked List is a sequence of links which contains items. Each link contains a connection to another
link. Linked list the second most used data structure after array. Following are important terms to
understand the concepts of Linked List.

Link − Each Link of a linked list can store a data called an element.

Next − Each Link of a linked list contain a link to next link called Next.

LinkedList − A LinkedList contains the connection link to the first Link called First.

Linked List Representation

As per above shown illustration, following are the important points to be considered.

LinkedList contains an link element called first.
Each Link carries a data fields and a Link Field called next.
Each Link is linked with its next link using its next link.
Last Link carries a Link as null to mark the end of the list.

Types of Linked List
Following are the various flavours of linked list.

Simple Linked List − Item Navigation is forward only.

Doubly Linked List − Items can be navigated forward and backward way.

Circular Linked List − Last item contains link of the first element as next and and first
element has link to last element as prev.

Basic Operations
Following are the basic operations supported by a list.

Insertion − add an element at the beginning of the list.

Deletion − delete an element at the beginning of the list.

Display − displaying complete list.

Search − search an element using given key.

Delete − delete an element using given key.

Insertion Operation

http://www.tutorialspoint.com/data_structures_algorithms/linked_lists_algorithm.htm

Insertion is a three step process −

Create a new Link with provided data.
Point New Link to old First Link.
Point First Link to this New Link.

//insert link at the first location
void insertFirst(int key, int data){
 //create a link
 struct node *link = (struct node*) malloc(sizeof(struct node));
 link->key = key;
 link->data = data;

 //point it to old first node
 link->next = head;

 //point first to new first node
 head = link;
}

Deletion Operation
Deletion is a two step process −

Get the Link pointed by First Link as Temp Link.
Point First Link to Temp Link's Next Link.

//delete first item
struct node* deleteFirst(){
 //save reference to first link
 struct node *tempLink = head;

 //mark next to first link as first
 head = head->next;

 //return the deleted link
 return tempLink;
}

Navigation Operation
Navigation is a recursive step process and is basis of many operations like search, delete etc. −

Get the Link pointed by First Link as Current Link.
Check if Current Link is not null and display it.
Point Current Link to Next Link of Current Link and move to above step.

Note −

//display the list
void printList(){
 struct node *ptr = head;
 printf("\n[");

 //start from the beginning
 while(ptr != NULL){
 printf("(%d,%d) ",ptr->key,ptr->data);
 ptr = ptr->next;
 }

 printf("]");
}

Advanced Operations
Following are the advanced operations specified for a list.

Sort − sorting a list based on a particular order.

Reverse − reversing a linked list.

Sort Operation
We've used bubble sort to sort a list.

void sort(){

 int i, j, k, tempKey, tempData ;
 struct node *current;
 struct node *next;
 int size = length();
 k = size ;

 for (i = 0 ; i < size - 1 ; i++, k--) {
 current = head ;
 next = head->next ;

 for (j = 1 ; j < k ; j++) {

 if (current->data > next->data) {
 tempData = current->data ;
 current->data = next->data;
 next->data = tempData ;

 tempKey = current->key;
 current->key = next->key;
 next->key = tempKey;
 }

 current = current->next;
 next = next->next;
 }
 }
}

Reverse Operation
Following code demonstrate reversing a single linked list.

void reverse(struct node** head_ref) {
 struct node* prev = NULL;

 struct node* current = *head_ref;
 struct node* next;

 while (current != NULL) {
 next = current->next;
 current->next = prev;
 prev = current;
 current = next;
 }
 *head_ref = prev;
}

To see linked-list implementation in C programming language, please click here.
Loading [MathJax]/jax/output/HTML-CSS/jax.js

/data_structures_algorithms/linked_list_program_in_c.htm

