DATA STRUCTURE - LINKED LIST

Linked List Basics

A linked-list is a sequence of data structures which are connected together via links.
Linked List is a sequence of links which contains items. Each link contains a connection to another
link. Linked list the second most used data structure after array. Following are important terms to
understand the concepts of Linked List.

e Link — Each Link of a linked list can store a data called an element.

¢ Next — Each Link of a linked list contain a link to next link called Next.

e LinkedList — A LinkedList contains the connection link to the first Link called First.

Linked List Representation

node node node

LinkedList Data Data Data

head Next //"" Next Fﬂ_,_ff") %——pmm

As per above shown illustration, following are the important points to be considered.

LinkedList contains an link element called first.

Each Link carries a data fields and a Link Field called next.

Each Link is linked with its next link using its next link.

Last Link carries a Link as null to mark the end of the list.

Types of Linked List
Following are the various flavours of linked list.
¢ Simple Linked List — Item Navigation is forward only.
e Doubly Linked List — Items can be navigated forward and backward way.

e Circular Linked List — Last item contains link of the first element as next and and first
element has link to last element as prev.

Basic Operations
Following are the basic operations supported by a list.
e Insertion — add an element at the beginning of the list.
¢ Deletion — delete an element at the beginning of the list.
o Display — displaying complete list.
e Search — search an element using given key.

e Delete — delete an element using given key.

Insertion Operation

http://www.tutorialspoint.com/data_structures_algorithms/linked_lists_algorithm.htm

Insertion is a three step process —

e Create a new Link with provided data.
e Point New Link to old First Link.
e Point First Link to this New Link.

13 14

head Next | —] Next
- -

Before Insertion

13

head Next /.,f”' Next
/4:/ L

Afterinserion

//insert link at the first location
void insertFirst(int key, int data){
//create a link

node

15

Next

—=Null

14

node

12

Next

—=Nuill

struct node *1link = (struct node*) malloc(sizeof(struct node));

link->key = key;
link->data = data;

//point it to old first node
link->next = head;

//point first to new first node

head = 1link;
}

Deletion Operation
Deletion is a two step process —

¢ Getthe Link pointed by First Link as Temp Link
e Point First Link to Temp Link's Next Link.

node

node

—— 1]

Before Deletion

14 15

First Next | MNext
D//M Ef/’/d [—

After Deletion

//delete first item

struct node* deleteFirst(){
//save reference to first link
struct node *tempLink = head;

//mark next to first link as first
head = head->next;

//return the deleted link
return templLink;

}

Navigation Operation

Navigation is a recursive step process and is basis of many operations like search, delete etc. —
e Getthe Link pointed by First Link as Current Link.
e Check if Current Link is not null and display it.

e Point Current Link to Next Link of Current Link and move to above step.

Data Data Data

|

current
node node node
Data Data Data

I%I”/J Next | — | MNext | — ﬁ__.uun

current

Note -

//display the list

void printList(){
struct node *ptr = head;
printf("\n[");

//start from the beginning

while(ptr != NULL){
printf("(%d,%d) ",ptr->key, ptr->data);
ptr = ptr->next;

}

printf(" 1");
}

Advanced Operations
Following are the advanced operations specified for a list.
e Sort — sorting a list based on a particular order.

¢ Reverse — reversing a linked list.
Sort Operation

We've used bubble sort to sort a list.

void sort(){

int i, j, k, tempKey, tempData ;
struct node *current;

struct node *next;

int size = length();

k = size ;

for (1 =0 ; 1< size - 1 ; i++, k--) {
current = head ;
next = head->next ;

for (j=1; 3J<k; j++) {

if (current->data > next->data) {
tempData = current->data ;

current->data = next->data;
next->data = tempData ;

tempKey = current->key;
current->key = next->key;

next->key = tempKey;
}

current = current->next;
next = next->next,;

}

Reverse Operation
Following code demonstrate reversing a single linked list.

void reverse(struct node** head_ref) {
struct node* prev = NULL;

struct node* current = *head_ref;
struct node* next;

while (current !'= NULL) {
next = current->next;
current->next = prev;
prev = current;
current = next;

}

*head_ref = prev;

Ta coa linkad. lict imnlamantation in € programming language, please click here.
Loading [Math)Jax]/jax/output/HTML-CSS/jax.js

/data_structures_algorithms/linked_list_program_in_c.htm

