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Modern cognitive psychology has strictly adhered to the experimental meth-
odology of the natural sciences. Often, contributions in T&P have addressed 
shortcomings and possible remedies of this predominant approach and its em-
phasis on 'effects'. My comment will contrast this approach with the genera-
tive theories (cognitive simulation models) developed in cognitive science 
about thirty years ago and still not widely accepted in psychology. I'm going 
to characterize these generative theories, and discuss their weaknesses and 
their advantages over the usual way of theorizing in cognitive psychology. I 
hope to convince at least some readers that (i) in order to proceed in this man-
ner, you need not to buy a ready-made 'cognitive architecture', and (ii) that 
this approach results in a much more rigorous theorizing (although still well 
controllable as a scientific endeavor). 

A flourishing field of science 

Cognitive psychology has probably been the fastest growing sub-field of scientific 
psychology, and one that has almost exclusively opted for a natural science ap-
proach. Its standard methodology consists in experimentation and statistical tech-
niques for data analysis. Much has been written in Theory & Psychology and else-
where, concerning the pros and cons of that methodology, its relation and possible 
amalgamation with qualitative or even hermeneutic techniques, and on the draw-
backs of rigidly and sometimes even senselessly adhering to the usual methods of 
statistical hypothesis testing. My feeling (which I have sometimes shared with au-
thors when reviewing articles) is that, in spite of all this valuable work, the impact of 
these articles will remain minor because (i) most of these articles discuss negative 
examples without giving positive ones, (ii) a well-reflected application of statistical 
models is more difficult indeed than just repeating what has always been done, and 
(iii), even editors of prestigious journals are sometimes happier with a ‘standard’ 
analysis even when its underlying model (say, GLM) can be shown to be inadequate 
for the data under scrutiny. 
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However, my present topic is different, concerning theory. Acknowledging that 
experimental research in the information processing paradigm has been tremen-
dously successful during the past fifty years, I still have the uneasy feeling that 
much of cognitive psychology has remained below a level of theorizing that it could 
have easily attained. By this I do not mean the intended theory-abstinence occasion-
ally practised by editors of experimental journals (I once co-authored an article for 
Memory & Cognition which was accepted on the condition that practically the whole 
theoretical part – the most interesting one in our opinion – was cancelled), rather I 
mean that too much experimental research in psychology focuses on isolated effects. 

A psychology of effects? 

I remember an incident from my student years: One hour of lectures on ‘learning 
and memory’ I attended closed with a short treatment of the reminiscence effect, 
only to be followed two days later (at the start of the next lecture hour) by an equally 
short treatment of the warm-up effect – without ever bothering to discuss their dif-
ferent causes, nor even the conditions where each of these effects is to be expected.  

This is, of course, just anecdotal evidence. But consider the following example: 
If you have taught cognitive psychology for over two decades like me, you will be 
acquainted with experimental evidence for the usefulness of information like head-
lines or illustrations in text understanding. Almost every textbook cites Bransford 
and Johnson (1972, or 1973), where participants received an intentionally obtuse 
paragraph, which could only be understood with the help of a headline, or a drawing 
depicting the whole scene. These studies had been done within a research program 
that emphasized constructive aspects and the role of prior knowledge in cognition, 
and indeed the authors were able to show that the additional information had to be 
presented before the text in order to be helpful. Textbook authors, however, seem so 
keen to present the effect that they forget that this experiment is by no means evi-
dence for any general importance of advance information in text understanding: the 
effect could well be limited to intentionally cryptic texts. 

Let me follow this up with a last negative example. In their milestone textbook 
on psycholinguistics, Clark and Clark (1977) listed no less than fourteen syntactic or 
semantic strategies in text understanding for which there was solid experimental 
evidence. Each of these was discussed, with examples given, but there was abso-
lutely no integration – indeed, it would have turned out that no integration was pos-
sible, and the experimental materials and paradigms were not compatible at all. This 
truly reflected the state of the art at that time, when research had not yet tried to 
arrive at working models of parsing and interpretation.  

So, is it better now? It is, at least in the area of human parsing (see Mitchell, 
1994, for a more recent state-of-the-art review), but not universally as it should be. 
To the contrary, topics like priming or implicit memory have been researched by 
systematic experimental variation on about every dimension imaginable, largely 
without guidance from theories about the mental representations and processes in-
volved. Research has been effect-driven rather than theory-driven. 
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Reasons for effect-driven research 

A major historical reason for that may be the ideal of (a misconceived) physics so 
prominent in twentieth-century psychology. But it was Lewin (1927, p. 408) who 
cautioned that even the laws of physics have a context of permissible application. 

Another possible reason may be found in the more ‘Aristotelian’ objective to 
find accurate descriptions for the ‘facts’ that turned out to be so elusive that even 
here statistical models were needed to allow for relevant generalizations. A well-
known colleague and friend of mine, a respected experimenter in the area of mem-
ory, once told me that he intentionally refrains from any theorizing that is not strictly 
covered by experimental results. This opinion restricts theoretical sentences to care-
ful generalizations over a series of experimental results, i.e., a ‘robust’ effect. Any-
thing beyond that, e.g., a pair of hypotheses about mental representation in memory 
and processes of encoding and recall, is much too speculative for his taste. 

Such restraint looks odd when compared to the bold speculations in theoretical 
physics and the wealth of theoretical entities and their often indirect and complicated 
relation to experimental data. Yet I have found the ideal of physics and a certain 
reluctance to theorizing to co-exist peacefully in quite a few colleagues. 

An alternative: cognitive modeling 

So why not be bold and see what may be gained? Psychologists also active in artifi-
cial intelligence, most notably Herb Simon and Alan Newell from Carnegie-Mellon 
University, started on computer programs for solving problems in the same way as 
people do (more a decade of research has been summarized in Newell & Simon, 
1972). In particular, they pioneered production systems as a model of human cogni-
tion. Such systems employ knowledge in the form of if-then rules, a working mem-
ory, and an interpreter, i.e., a module organizing the flow of control. The current 
situation (represented in working memory) determines the subset of rules applicable, 
and the interpreter selects one according to certain heuristics. Taken all together, this 
type of program can be shown to do any computation. 

From these early steps emerged a number of more structured production systems 
as ‘cognitive architectures’, with SOAR (Newell, 1990) and ACT (see Anderson & 
Lebiere, 1998, for the most recent version ACT-R) the most widely known among 
these. Both are strong in problem-solving and learning, and ACT includes a declara-
tive memory along with the ‘procedural’ rule memory. All these systems claim to be 
models of human cognition at a functional level of description. 

In the meantime, a lot of psychological phenomena have been modeled, and the 
predictions of the model tested in psychological experiments, with remarkable suc-
cess, from adding numbers in pre-schoolers to list learning and the detection of 
analogies (for example, Anderson & Lebiere, 1998, contains a whole series of ACT-
R applications).  

Lots of other computational architectures have been developed as models of hu-
man cognition in general, or for some special cognitive task. Among those that are 
not, like the production systems, a kind of knowledge-based symbol-processing 
system, the artificial neural networks, both in their localist (Feldman & Ballard, 
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1982) and distributed varieties (Rumelhart & McClelland, 1986) have become the 
most popular. 

Generative theories 

What makes these computer simulations so interesting from a methodological per-
spective? I contend that it is their ability to generate the very phenomena they have 
been designed to explain, i.e., they are generative theories (Strube, in press).  

A theoretical result in mathematics may consist in a proof that a certain problem 
can be solved, but without indicating how it could really be solved. A natural law 
may state that the speed of light is an upper bound on speed in our universe, and let 
us compute how much energy is needed to attain some velocity for an object of 
given mass, but it won’t propel any object into space. But a generative grammar, for 
instance, is a theory of syntax that (combined with a very simple computer program) 
will actually generate grammatical sentences. 

Likewise cognitive modeling, if successful, enables us to generate data that have 
the same characteristics as the empirical data, i.e., the model produces the experi-
mental ‘effects’: error types as typically found in human problem solvers, computa-
tional complexity of tasks in good correlation with human reaction times, choice 
preferences like those of human deciders, etc. 

On the theoretical side, this means that we can say why and how these results are 
obtained because the model has been built according to certain principles of opera-
tion. (This holds for symbolic models, at least, but may be disputed for some types 
of connectionist models.) This kind of theories, then, is semantically richer: it tells 
us step by step how an effect is brought about, not only under which conditions it 
may be observed. And it gives the researcher an environment for as-if studies: how 
would performance be affected if certain resources were decreased, for instance? 
This method of ‘cognitive lesioning’ has already been explored by Carpenter and 
Just (1999). It is a special way of analyzing the interactions of specific structures 
and processes in a cognitive model, and their respective contributions to its overall 
performance, as advocated by Richman & Simon (1989), or Schneider (1988) for 
connectionist systems. 

Encouraging cognitive modeling 

So why does not everyone in psychology rush to make generative theories? Here is a 
short list of common objections and some answers to each of them. 

Deterministic models are inadequate 

Psychology has a well-established tradition of stochastic models. On the psycho-
logically interesting functional level, many phenomena seem to be quite naturally 
described by recourse to probability distributions. This poses the fundamental prob-
lem of whether to conceive of the world as a probabilistic universe, or of observa-
tions and measurements in a probabilistic relations to underlying, (mostly) determi-
nistic facts. Both ways have been followed up in psychology, especially the latter, 
which inspired theories of measurement and scaling, and is embodied in multivariate 
techniques like canonical analysis, LISREL, etc. 
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Computer programs, of course, are deterministic. (Still, there is room to include 
chance by means of pseudo-random algorithms, or true random values by online 
measurement of, e.g., thermic noise in a short wire.) But deterministic theories can 
be related to data by means of probabilistic models – the second way mentioned 
above. An example is the ‘knowledge tracking’ technique developed by Janetzko 
(1998), which relates conceptual networks, consisting of relations between concepts, 
to streams of behavioral data. 

Cognitive models are not testable 

This objection was heavily raised by Fridja (1967), and arguably was not quite un-
founded at that time, now more than thirty years ago. Recently, Simon and Wallach 
(1999) have summarized six criteria of empirical adequacy for cognitive models as 
correspondences between a computational model’s performance and the human 
behavior to be modeled: 
– product correspondence (overall performance), 

– correspondence of intermediate steps (processing in the model parallels separa-
ble stages in human processing), 

– temporal correspondence (computational expense paralles reaction time pat-
terns), 

– error correspondence (same error patterns in model and in experimental data), 

– correspondence of context dependency (comparable sensitivity to known exter-
nal influences), 

– learning correspondence (identical learning curves). 

This impressive list shows that generative theories can be tested in a number of 
ways. What remains is the problem that many cognitive models are so complex that 
they cannot be tested in full. There are two ways out of this dilemma: (i) build your 
model on one of the well-established (and hence, already well-tested) cognitive 
architectures, or (ii), build a small-scale model for a specific cognitive function or 
task so that it can be tested extensively. A particularly nice example of fine cogni-
tive modeling addresses the gaze control of readers (Reichle, Pollatsek, Fisher & 
Rayner, 1998). 

There are just too many possible models 

What still remains is the insight that indeed, by suitably choosing representational 
formats and computational processes, there may be many – infinitely many, in fact – 
combinations of representations and processes to produce some specific behavior. 

But I hasten to add that this is nothing special to generative theories. The history 
of science demonstrates that our theories may be the best up to date (or even fall 
short of that), but may be upset tomorrow by others. The present state of psycho-
logical theory is that we typically have dozens of competing theories even for rela-
tively small areas (think of emotion, for example). With generative theories, how-
ever, it becomes much easier to compare them and analyze how they bring about the 
phenomena. 
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Generative theories have two big assets, as compared to more traditional ap-
proaches: (i) they are sufficiently specified (or else the computer program would not 
run and generate the phenomena), whereas many traditional theories in psychology 
tend to become vague about uncertain details, or just ignore them. (ii) The very fact 
that a cognitive model has been implemented and is running on a computer testifies 
to its inherent logical consistency. Now go and try to prove consistency and com-
pleteness for a traditional theory! 

Cognitive modeling is too hard  

That is true, in a way. It is true that you must acquaint yourself with concepts of 
computation, architecture, representation and control, and techniques of computer 
programming – certainly not of greater difficulty or complexity than the statistical 
expertise quite usually acquired by psychologists, but, of course, an additional load. 
Again, it helps to build minimum models (for narrowly defined cognitive tasks), or 
have recourse to one of the ready-made architectures on the market: ACT-R, SOAR, 
EPIC, CAPS, or the recent tool-box for cognitive modeling, COGENT (Cooper & 
Fox, 1998). You may also be interested in connectionist models (McClelland, 1999). 

I don’t want to commit myself to a ‘cognitive architecture’ 

Due to the history of cognitive modeling shortly described above, many people 
identify generative theories in psychology with the descendants of the production 
systems, the so-called cognitive architectures. While I have already recommended 
those for their advantages of providing users with a head start on a basic, but already 
well-tested complex system, it is also true that in order to model a specific cognitive 
task, it might well be overkill to use them – especially if you happen to have doubts 
about the general adequacy of production rules as the basic building-blocks of hu-
man cognition. 

The alternative is small-scale models. In Gigerenzer and Goldstein (1996), the 
authors present a ‘cognitive algorithm’ to model how people decide, when con-
fronted with the names of two cities, which of these is bigger. As it turns out, their 
simple sequential process (if, for instance, you have heard about A, but not B, an-
swer “A” and you’re done) is superior to a fully rational decision under ecologically 
valid conditions. The process draws on knowledge about the relevance of cities’ 
characteristics (e.g., you know the name, or you know it has a subway system) for 
the task.  

Summing up 

Space prohibits me from giving more examples of just how intriguing and fruitful 
the construction of generative theories in cognitive psychology can be. And I hope 
to have you encouraged to try and test this interesting and still not widespread ap-
proach. You need not ‘buy’ a given cognitive architecture to do it. And the theoreti-
cal advantages are many: fully specified, consistent theories that are open to exten-
sive empirical testing and give insight into how behavior may actually be produced. 
What more could you want? 
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