
©D.J.Dunn 1 

COMPLEX STRESS 
 

TUTORIAL 5 
  

STRAIN ENERGY 
 

 
This tutorial covers parts of the Engineering Council Exam D210 Structural 
Analysis and further material useful students of structural engineering.  
 
You should judge your progress by completing the self assessment exercises.  
 
These may be sent for marking or you may request copies of the solutions at a 
cost (see home page). 
 
On completion of this tutorial you should be able to do the following. 

 
 

 Define strain energy due to a direct stress. 
 
 Define strain energy due to pure shear stress. 

 
 Define strain energy due to pure torsion. 

 
 Define strain energy due to pure bending. 

 
 Use strain energy to determine the deflection of simple 

rectangular and circular structures. 
 

 Explain the affect of impact loading on the deflection of 
structures. 

 
 Explain the affect of a suddenly applied load. 

 
 Explain the theorem of Castigliano. 

 
 Calculate the deflection of simple structures by applying 

Castigliano’s theorem. 
 
It is assumed that students doing this tutorial are already familiar with the 
following. 

• Basic stress and strain, 
• The elastic properties of materials 
• Basic bending theory. 
• Basic torsion theory. 
• Calculus including partial differentiation. 



 
STRAIN ENERGY 

 
1. INTRODUCTION 
 
When an elastic body is deformed, work is done. The energy used up is stored in the body as 
strain energy and it may be regained by allowing the body to relax. The best example of this 
is a clockwork device which stores strain energy and then gives it up. 
 
We will examine strain energy associated with the most common forms of stress encountered 
in structures and use it to calculate the deflection of structures. Strain energy is usually given 
the symbol U. 
 
2.  STRAIN ENERGY DUE TO DIRECT STRESS. 
 
Consider a bar of length L and cross sectional area A. If a tensile force is applied it stretches 
and the graph of force v extension is usually a straight line as shown. When the force reaches 
a value of F and corresponding extension x, the work done (W) is the area under the graph. 
Hence W = Fx/2. (The same as the average force x extension). 

 
Figure 1 

 
Since the work done is the energy used up, this is now stored in the material as strain energy 
hence U = Fx/2 
The stress in the bar is σ = F/A  hence F = σA 
The strain in the bar is ε = x/L hence x = εL 
For an elastic material up to the limit of proportionality, σ /ε  = E (The modulus of elasticity) 
hence ε = σ /E 
Substituting we find  U = σAεL/2 = σ2AL/2E 
The volume of the bar is A L so 
  U = (σ2/2E ) x volume of the bar 
 
 
 WORKED EXAMPLE No.1 
 
 A steel rod has a square cross section 10 mm x 10 mm and a length of 2 m. Calculate the 

strain energy when a stress of 400 MPa is produced by stretching it. Take E = 200 GPa 
 
 SOLUTION 
 
 A = 10 x 10 = 100 mm2  or 100 x 10-6 m2. V = AL = 100 x 10-6 x 2 = 200 x 10-6 m3. 
 σ = 400 x 106 N/m2 and E = 200 x 109 N/m2

 ( ) Joules 80 x200x10
10 x 200 x 2

10 x 400 Volume x 
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3. STRAIN ENERGY DUE TO PURE SHEAR STRESS 
 
Consider a rectangular element subjected to pure shear so that it deforms as shown. The 
height is h and plan area A. It is distorted a distance x by a shear force F. The graph of Force 
plotted against x is normally a straight line so long as the material remains elastic. The work 
done is the area under the F - x graph so W = Fx/2 

 
Figure 2 

 
The work done is the strain energy stored hence  U = Fx/2 
The shear stress is τ = F/A  hence F = τA 
The shear strain is γ = x/h hence x = γh 
Note that since x is very small it is the same length as an arc of radius h and angle γ. It 
follows that the shear strain is the angle through which the element is distorted. 
 
For an elastic material τ/γ  = G (The modulus of Rigidity) hence   γ= τ/G  
Substituting we find  U = τAγh/2 = τ2Ah/2G 
The volume of the element is A h so U = (τ2/2G ) x volume 
 
Pure shear does not often occur in structures and the numerical values are very small 
compared to that due to other forms of loading so it is often (but not always) ignored. 
 
 
 WORKED EXAMPLE No.2 
 
 Calculate the strain energy due to the shear strain in the structure shown. 
 Take G = 90GPa 
 
 SOLUTION 
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 A = πd2/4 = π x 0.122/4 = 11.31 x 10-3 m2

 τ = F/A = 5000/ 11.31 x 10-3 = 56.55 N/m2

 Volume = A h = 11.31 x 10-3 x 0.5  
 Volume =5.65 x 10-3 m3  
 U = (τ2/2G ) x volume 
 U = {(56.55)2/(2 x 90 x 109)} x 5.65 x 10-3

 U = 100.5 x 10-12 Joules 
 
 Note that the structure is also subject to  
 bending. The strain energy due to bending 
  is covered later. 
 
     Figure 3 
 
 



  
4.  STRAIN ENERGY DUE TO TORSION 
 
Consider a round bar being twisted by a torque T. A line along the length rotates through 
angle γ and the corresponding radial line on the face rotates angle θ. γ is the shear strain on 
the surface at radius R. 

 
Figure 4 

 
The relationship between torque T and angle of twist θ is normally a straight line. The work 
done is the area under the torque-angle graph. For a given pair of values W = Tθ/2 
The strain energy stored is equal to the work done hence U = Tθ/2 
From the theory of torsion (not covered here)  θ = TL/GJ  
G is the modulus of rigidity and J is the polar second moment of area. J = πR4/2 for a solid 
circle. 
Substitute θ = TL/GJ and we get U = T2L/2GJ 
Also from torsion theory    T = τJ/R   where τ is maximum shear stress on the surface. 
Substituting for T we get the following. 
U = (τJ/R)2/2GJ  = τ2JL/2GR2 Substitute J = πR4/2 
U =  τ2πR4L/4GR2 =  τ2πR2L/4G 
The volume of the bar is AL = πR2L so it follows that: 
 
U = (τ2/4G) x volume of the bar.  (τ is the maximum shear stress on the surface) 
 
 
 
 WORKED EXAMPLE No.3 
 
 A solid bar is 20 mm diameter and 0.8 m long. It is subjected to a torque of 30 Nm. 

Calculate the maximum shear stress and the strain energy stored. Take G = 90GPa 
 
 SOLUTION 
 
 R = 10 mm = 0.01 m  L = 0.8 m 
 A = πR2 = π x 0.012 = 314.16 x 10-6 m2

 Volume of bar = AL = 314.16 x 10-6 x 0.8 = 251.3 x 10-6 m3

  
 J = πR4/2 = π (0.01)4/2 = 15.7 x 10-9 m4

 τ = TR/J = 30 x 0.01/15.7 x 10-9 = 19.1 x 106 N/m2  
  
 U = (τ2/4G) x volume of the bar = {(19.1 x 106)2/(4 x 90 x 109)} x 251.3 x 10-6

 U = 0.255 Joules 
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 WORKED EXAMPLE No.4 
 
 A helical spring is constructed by taking a wire of diameter d and length L and coiling it 

into a helix of mean diameter D with n coils. Show that the stiffness of the helical spring 
shown below is given by the formula  F/y = Gd/8nD3 

 
Figure 5 

 SOLUTION 
 
 When a force F is applied to the end it deflects down by a distance y. Looking at the 

bottom coil, it can be seen that a torque T = FD/2 is twisting the cross section of the wire. 
This torsion is transmitted throughout the entire length of the wire. 

 
 Starting with the strain energy due to torsion we have: 
 U = (τ2/4G) x volume of the bar 
 And substituting V = AL and τ = Td/2J 
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 The work done by a force F is ½ Fy. Equating to U we get: 
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 This is the well known equation for the stiffness of a helical spring and the same formula 
may be derived by other methods. 
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5. STRAIN ENERGY DUE TO BENDING. 
 
The strain energy produced by bending is usually large in comparison to the other forms. 
When a beam bends, layers on one side of the neutral axis are stretched and on the other side 
they are compressed. In both cases, this represents stored strain energy. Consider a point on a 
beam where the bending moment is M. 

 
Figure 6 

 
Now consider an elementary layer within the material of length ∆x and thickness dy at 
distance y from the neutral axis. The cross sectional area of the strip is dA. 
 
The bending stress is zero on the neutral axis and increases with distance y. This is tensile on 
one side and compressive on the other. If the beam has a uniform section the stress 
distribution is as shown. 

 
Figure 7 

 
Each elementary layer has a direct stress (σ) on it and the strain energy stored has been 
shown to be   U  = (σ2/2E ) x volume (in section 2) 
 
The volume of the strip is ∆x dA 
 
The strain energy in the strip is part of the total so du = (σ2/2E )∆x dA 
 
From bending theory (not covered here) we have σ = My/I where I is the second moment of 
area.  
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Substituting for σ we get 
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 du = {(My/I)2/2E }∆x dA 
 
The strain energy stored in an element of length dx is then 
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In order to solve the strain energy stored in a finite length, we must integrate with respect to 
x.  

For a length of beam the total strain energy is ∫= dxM
2EI
1U 2  

The problem however, is that M varies with x and M as a function of x has to be substituted. 
 
  
 WORKED EXAMPLE No.5 
 
 Determine the strain energy in the cantilever beam shown. The flexural stiffness EI is 

200 kNm2. 

 
Figure 8 

 SOLUTION 

 This is a bending problem so     ∫= dxM
2EI
1U 2  

 The beam is a simple cantilever so the bending moment at any distance x from the end is 
simply M = -800 x (The minus sign for hogging makes no difference since it will be 
squared) 
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The example was a simple one because the bending moment was easily integrated. 
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6. DEFLECTION 
 
The deflection of simple structures may be found by equating the strain energy to the work 
done. This is covered in detail later but for the simple cantilever beam it can be demonstrated 
easily as follows. 
 
 
 WORKED EXAMPLE No.6 
 
 Calculate the deflection for the cantilever beam in W.E. No.4. 
 
 SOLUTION 
 
 The deflection of the beam y is directly proportional to the force F so the work done by 

the force is W = Fy/2 (the aea under the F – y graph). 
  
 Equate the strain energy to the work done and   Fy/2 = 34.13 
       y = 34.13 x 2/F 
       y = 34.13 x 2 /800 = 0.085 m 
 
 We can check the answer with the standard formula for the deflection of a cantilever 

(covered in the beams tutorials). 
 

 m 0.085  
10 x 200 x 3

4 x 800  
3EI
FLy 3

33
===  

 
 
 
 
 
The most severe forms of stress are bending and torsion. If bending or torsion occurs in a 
structure, they will normally be much larger than that due to direct stress or shear and these 
are usually neglected  
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 SELF ASSESSMENT EXERCISE No.1 
 
1.  A metal rod is 15 mm diameter and 1.5 m long. It is stretched with a force of 3000 N. 

Calculate the stress level and the strain energy stored in it assuming it has not reached the 
limit of proportionality. Take E = 180 GPa 

  
 (Answers 16.98 MPa and 0.212 Joules 
 
2. A bar of metal is 200 mm diameter and 0.5 m long. It has a shear stress of 4 MPa 

throughout its entire length. Calculate the strain energy stored. 
 
 (Answer 1.4 J) 
 
3. A hollow bar is 60 mm outer diameter, 40 mm inner diameter and 0.6 m long. It is 

subjected to a torque of 500 Nm. Calculate the maximum shear stress and the strain 
energy stored. Take G = 90GPa 

 
 (Answers 14.7 MPa and 0.565 J) 
 
4. A cantilever beam is 4 m long and has a point load of 100 KN at the free end. The 

flexural stiffness is 300 MNm2. Determine the strain energy stored and the deflection. 
 
 (Answers 355.5 J and 7.11 mm) 
 



 
7. HARDER BEAM PROBLEMS 
 
When the bending moment function is more complex, integrating becomes more difficult and 
a maths package is advisable for solving them outside of an examination. In an examination 
you will need to do it the hard way. For example, the bending moment function changes at 
every load on a simply supported beam so it should be divided up into sections and the strain 
energy solved for each section. The next example is typical of a solvable problem. 
 
 
 
 WORKED EXAMPLE No.7 
 
 Calculate the strain energy in the beam shown and determine the deflection under the 

load. The flexural stiffness is 25 MNm2. 

 
Figure 9 

 SOLUTION 
 
 First calculate the reactions by taking moments about the ends. 
 
 RB x 4 = 50 x 3    RB = 37.5 kN 
 RA x 4 = 50 x 1    RA = 12.5 kN 
 Check that they add up to 50 kN. 
 
 The bending moment equation is different for section AB and section BC so the solution 

must be done in 2 parts. The origin for x is the left end. First section AB 
 
 M = RA x = 12 500 x 
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 Next solve for section BC. To make this easier, let the origin for x be the right hand end. 

 
Figure 10 

 M = RB x = 37 500 x 
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 The total strain energy is  U = 37.5 J 
 The work done by the application of the load is Fy/2 = 50 000y/2 
 
 Equating  y = 0.0015 m or 1.5 mm. 
 
 
 
 
 
 SELF ASSESSMENT EXERCISE No.2 
 
 Determine the strain energy and for the beam shown and determine the deflection under 

the load. The flexural stiffness is 200 kNm2. 

 
Figure 11 

 (Answers  0.221 J and 18.4 mm) 
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Now consider a problem involving torsion and bending. The force F will produce a torque on 
the bar and so F will deflect due to Torsion. In addition, F will deflect because both the bar 
and lever bends. Remember that distances are usually best measured from the free ends and 
that this can be changed at will. I order that we may fin the deflection at the force, we must 
evaluate all strain energies in terms of F. 
 
 
 WORKED EXAMPLE No.8 
 
 The diagram shows a torsion bar held rigidly at one end and with a lever arm on the 

other end. Solve the strain energy in the system and determine the deflection at the end 
of the lever arm. The force is 5000 N applied vertically. The following are the relevant 
stiffnesses. 

 
 Lever  EI = 5 Nm2. 
 Bar  EI = 60  kNm2. 
 Bar  GJ = 50  kNm2. 

 
Figure 12 

 SOLUTION 
 
 The stresses to be considered are Bending in the lever. 
   Bending in the bar. 
   Torsion in the bar. 
 LEVER 
 Make the origin for x as shown. 
 The bending moment is M = Fx 

 
Figure 13 
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 BAR 
 Viewed as shown we can see that the force F acts at the end of the bar as it is transmitted 

all along the length of the lever to the bar. 
 

 
Figure 14 
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 TORSION OF BAR 

 
Figure 15 

 The torque in the bar is T = F x 0.2 
 
 For torsion 

 J) 4  value(numeric F 10 x 160
50000 x 2

0.4x 0.04F  
2GJ

0.04F  
2GJ

LTU 29
222

−====  

  
 The total strain energy is then (266.7F2 + 177.7 F2 + 160 F2) x 10-9

 U = 605 x 10-9 F2  
 
 The work done is Fy/2 so equating 
 
 y = 2 x 6.05 F x 10-7 
 y  = 12.1 x 5000 x 10 -7 = 0.00605 m or 6.05 mm 
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 WORKED EXAMPLE No.9 
 
 Solve the deflection of the curved structure shown. The radius is 0.2 m and the force is 

30 N. Take EI = 500 Nm2. 
 

 
Figure 16 

 SOLUTION 
 
 Consider the point shown. The horizontal distance is x. the bending moment is Fx. 
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 If the final deflection is y, the work done is Fy/2. Equate this to the strain energy and we 

get 
 
 2.67 x 10-6 F2 = Fy/2 
 
 y = 2 x 2.67 x 10-6 F = 2 x 2.67 x 10-6 x 30 = 160 x 10-6 m 
 
 y = 0.16 mm 
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 SELF ASSESSMENT EXERCISE No.3 
 
1. Solve the deflection at the handle on the cranked lever shown. The crank is 90o. The 

crank is made from bar 20 mm diameter.  
 Take E = 210 GPa and G = 81 GPa. 

 
Figure 17 

 (Answer 1.04 mm) 
 
2. Calculate the deflection of the curved member shown. EI = 600 N m2. 

 
Figure 18 

 
 (Answer 0.864 mm) 
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8. APPLICATION TO IMPACT LOADS 
 
When a load is suddenly applied to a structure (e.g. by dropping a weight on it), the stress and 
deflection resulting is larger than when a static load is applied. 
 
Consider a mass falling onto a collar at the end of a bar as shown. The bar has a length L and 

mass falls a distance z.  a cross sectional area A. The 
 
At the moment the bar is stretched to its maximum the force in 
the bar is F and the extension is x. 
The corresponding stress is σ = F/A 
The strain is ε = x/L. 
The relationship between stress and strain is 
E = σ /ε hence x = σL/E 
 
The strain energy in the bar is U = σ2AL/2E 
 
The potential energy given up by the falling mass is 
P.E. = mg(z + x) 
 
 

 Figure 19 
 
8.1 SIMPLIFIED SOLUTION 
 
If the extension x is small compared to the distance z then we may say  P.E. = mgz 
 
Equating the energy lost to the strain energy gained we have mgz = σ2AL/2E 

Hence   
AL

2mgzEσ =  

 
8.2 EXACT SOLUTION 
 
Equating P.E and Strain energy we have 
 mg{z + x) = σ2(AL/2E) 
Substitute x = σL/E 
 mg{z + (σL/E)} = σ2(AL/2E) 
 mgz + mgσL/E= σ2(AL/2E) 
 
Rearrange into a quadratic equation 
 
 σ2(AL/2E) - (mgL/E)σ - mgz =0 
 
Solving with the quadratic equation we find 
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8.3 SOLVING DEFLECTION 
 
 
The static deflection (xs) is the extension due to the weight mg when resting on the collar. 
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Equating strain and potential energy again we have mg{z + x) = σ2(AL/2E) 
Substituting σ = Ex/L 
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Rearrange into a quadratic equation x2 -2xsx - 2xsz = 0 

Applying the quadratic formula x = xs + {xs2 + 2xs z}½ 

 x = xs{1 + (1 + 2z/xs)½} 
8.4 SUDDENLY APPLIED LOADS 
 
A suddenly applied load occur when z =0. This is not the same as a static load. Putting z = 0 
yields the result: 
  x = 2 xs  
 
It also follows that the instantaneous stress is double the static stress. 
 
This theory also applies to loads dropped on beams where the appropriate solution for the 
static deflection must be used. 
 
 
 WORKED EXAMPLE No.10 
 
 A mass of 5 kg is dropped from a height of 0.3 m onto a collar at the end of a bar 20 mm 

diameter and 1.5 m long. Determine the extension and the maximum stress induced. 
 E = 205 GPa. 
 
 SOLUTION 
 
 A = π x 0.022/4 = 314.159 x 10-6 m2.  
 xs =  MgL/AE = 5 x 9.81 x 1.5 /(205 x 109 x 314.159 x 10-6) = 1.142x 10-6 

 x = xs + xs{1 + 2z/xs}½ 

 x = 1.142 x 10-6 + 1.142 x 10 -6{1 + 2 x 0.3/1.142 x 10-6}½ 

 x = 828.9 x 10- 6m 
 σ = x E/L = 828.9 x 10- 6 x  205 x 109/1.5 = 113.28 MPa 
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 SELF ASSESSMENT EXERCISE No.4 
 
1. Calculate the stress and extension produced in a wire 2 mm diameter and 5 m long if a 

load of 50 g is suddenly applied. E = 200 GPa. Show that this is twice the static values. 
 
 (Answers xs = 0.0039   σs = 156.1 kPa,  x = 0.078 mm and σ = 312.3 kPa) 
 
  
 
2. A rod is 25 mm diameter and 2.6 m long and is suspended vertically from a rigid support. 

A mass of 10 kg falls vertically 3 mm onto a collar at the end.  
 
 Calculate the following. 
 
 i.  The static deflection (0.00253 mm) 
 ii. The static stress (199.8 kPa) 
 iii. The maximum deflection (0.12 mm) 
 iv. The maximum stress. (9.925 MPa) 
 
  
 Take E = 200 GPa. 
 



9. CASTIGLIANO'S THEOREM 
 
Castigliano takes the work so far covered and extends it to more complex structures. This 
enables us to solve the deflection of structures which are subjected to several loads. Consider 
the structure shown. 

 
 
The structure has three loads applied to it. 
 
Consider the first point load. If the force was 
gradually increased from zero to F1, the 
deflection would increase from zero to y1 and 
the relationship would be linear as shown. The 
same would be true for the other two points as 
well. 
 
 
 
 
Figure 20 
 
 

 
Figure 21 

 
The work done by each load is the area under the graph. The total work is the sum of the 
three and this is equal to the strain energy hence: 
 
 W = U = ½ F1y1 + ½ F2y2 + ½ F3y3 ............................ (A) 
 
Next consider that F1 is further increased by δF1 but F2 and F3 remain unchanged. The 
deflection at all three points will change and for simplicity let us suppose that they increase as 
shown by δy1, δy2 and δy3 respectively. 

 
Figure 22 
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The increase in the work done and hence the strain energy δU is represented by the shaded 
areas (the increase in the areas) under the graphs. Note the first one is a tall rectangle with a 
small triangle on top and the other two are just tall rectangles. 
 
 δU = F1δy1 + δF1δy1/2+ F2δy2 + F3δy3 
 
The second term (the area of the small triangle) is very small and is ignored. 
 
 δU = F1δy1 + F2δy2 + F3δy3     ............................(B) 
 
Now suppose that the same final points were arrived at by the gradual application of all three 
loads as shown. 

 
Figure 23 

 
The work done and hence the strain energy is the area under the graphs. 
 
U =  ½ (F1 + δF1)(y1 + δy1) + ½ (F2)(y2 + δy2) + ½ (F3)(y3 + δy3)  .........(C) 
 
The change in strain energy is found this time by subtracting (A) from (C). This may be 
equated to (B). This is a major piece of algebra that you might attempt yourself. Neglecting 
small terms and simplifying we get the simple result  y1 =δU/δF1 
Since this was found by keeping the other forces constant, we may express the equation in the 
form of partial differentiation since this is the definition of partial differentiation. 
 
 y1 =∂U/∂F1 
 
If we repeated the process making F2 change and keeping F1 and F3 constant we get: 
 
 y2 =∂U/∂F2 
 
If we repeated the process making F3 change and keeping F1 and F2 constant we get: 
 
 y3 =∂U/∂F3 
 
This is Castigiano’s theorem – the deflection at a point load is the partial differentiation of the 
rain energy with respect to that load. 
 
Applying this is not so easy as you must determine the complete equation for the strain 
energy in the structure with all the forces left as unknowns until the end. 
 
If the deflection is required at a point where there is no load, an imaginary force is placed 
there and then made zero at the last stage. 
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 WORKED EXAMPLE No.11 
 
 The diagram shows a simple frame with two loads. Determine the deflection at both. The 

flexural stiffness of both sections is 2 MNm2. 

 
Figure 24 

 SOLUTION 
 
 It is important to note from the start that section AB bends and the bending moment at B 

turns the corner and section BC bends along its length due to both forces. Also, section 
BC is stretched but we will ignore this as the strain energy will be tiny compared to that 
produced by bending. Consider each section separately.  

 
 SECTION AB Measure the moment arm x from the free end. 
  

 
Figure 25 

 
 M = F1 x   (x measured from the free end) 
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 SECTION BC 
 
 The bending moment at point B is 0.3 F1. This is carried along the section BC as a 

constant value. The moment am x is measured from point B. The second force produces 
additional bending moment of F2 x. Both bending moments are in the same direction so 
they add. It is important to decide in these cases whether they add or subtract as deciding 
whether they are hogging (minus) or sagging (plus) is no longer relevant. 

 
Figure 26 

 M = 0.3 F1 + F2 x 
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 U = 11.25F12 x 10-9 + 10.417F22 x 10-9+ 18.75 F1F2x 10-9 
 
 The total strain energy is 
 
 U = 11.25F12 x10-9 + 10.417F22 x10-9+ 18.75 F1F2x10-9 + 2.25 x10 -9 F12  
 
 U = 13.5F12 x10-9 + 10.417F22 x 10-9+ 18.75 F1F2 x 10-9   
 
 
 To find y1 carry out partial differentiation with respect to F1. 
 
 y1 =δU/δF1 = 27F1 x 10-9 + 0 + 18.75 F2 x 10-9  
 
 Insert the values of F1 and F2 and  y1 = 7.8 x 10-6 m 
 
 To find y2 carry out partial differentiation with respect to F2. 
 
 y2 =δU/δF2 = 0 + 20.834F2 x 10-9  + 18.75 F1 x 10-9  

 Insert the values of F1 and F2 and  y2 = 7 x 10-6 m 
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 SELF ASSESSMENT EXERCISE No.5 
 
 Find the vertical deflection at the corner of the frame shown (point B).  
 EI = 1.8 x 106 Nm2 for both sections. 

 
Figure 27 

 (Answer 533 x 10-9 m) 
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