Linear Programming:
: A Graphic Approach

| ;31 GRAPHIC SOLUTIONS

! TR ﬂ;ﬁ: programming is to d,'“’f“"-i“‘ the optimal allocation of scarce resources
pr or activities. Economic situations frequently call for optimizing a function

subject to several inequality constraints. For optimization subject to a single inequality constraint, the

ml (see 5‘_’“““,“ 5-7]_' is relatively simple. When more than one inequality constraint is
Lt programming 1s easier. If the constraints, however numerous, are limited to two vari-

il _-F- 'Imu“‘ is the graphic approach. The graphic approach lor maximization and mini-
lemonstrated in Examples | and 2, respectively.

AMacturer produces tables x, and desks x,. Each table requires 2.5 hours for assembling A, 3
1 1 hou for crating C. Each desk requires | hour for assembling, 3 hours for buffing, and 2
An use no more than 20 hours for assembling, 30 hours for bufling, and 16 hours for
. rgin is $3 per table and $4 per desk.
II' ‘18 used below to find the output mix that will maximize the firm's weekly profits. It is

equations or inequalities. The lunction to be optimized, the objective function, becomes
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determined by the state of technology and the avail-

& mical constraints
are tech posed on every problem to preclude negative

.HI is a mommegativity constrainl im
g from the solution.

ity constraints as equations,

Xy = 20 = :.5'!:

solve each one for x, in terms of x,, and graph. Thus,

Xy = 10 - x,
X; = 8- D.SII

" ality will include all the points on the line and o the
- wn::::im:x,, x, = 0 are represented by the vertical and

i< called the ible region. It contains all the points that
- mﬁﬁngﬂ;ﬂ variables x, and x, are called decision
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1. To find the optimal solution within the feasible region, if it exists, graph the objective function as a sene
isoprofit lines. From ([3.1),

n 3
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Thus, the isoprofit line has a slope of —§. Drawing a series of (dashed) isoprofit lines allowing for larger
and larger profits, we find the isoprofit line representing the largest possible profit touches the feasibie
region at E, where %, = 4 and %, = 6. See Fig. 13-1(h). Substituting in (/3.7). T1 = 34} + 46) = 35,

4. Profit is maximized at the intersection of iwo constrainls, called an exrreme poini

132 THE EXTREME POINT THEOREM

The extreme point theorem states that if an optimal feasible value of the objective function exists, it
will be found at one of the extreme {or corner) points of the boundary. Notice that there are 10 extreme
poinis: (0, 20), (0, 10), (6, 5), (10, 0}, (16, 0), (0, B), (4. 6), (64, 34), (8, 0), and (0, 0) in Fig. 13-1{a), the last
being the intersection of the nonnegativity constraints. All are called basic solutions. but only the lasi
five are basic feasible solutions since they violate none of the constraints. Ordinanly only one of the
basic feasible solutions will be optimal. At (64, 31). for instance. 1T = 3(63) + 4(34) = 334, which i

 lower than IT = 36 above.

PLE 2. A farmer wants to see that her herd gets the minimum daily requirement of three basic nutrients 4
C. Daily requirements arc 14 for 4, 12 for B, and 18 for ¢ Product v, hax 2 units of A and | unit each of 8
m_y, has 1 unit each of A and B and 3 units of C. The cost ﬁf v, is $2, and the cost of y, is . The
‘method is Hﬁ‘ below to determine the least-cost combination of r.l and y, that will fulfill all minimum
ents. Following the procedure used in Example |, :

The objective function to be minimized is

¢ =12y, + 4y, (139
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Yy, 20
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mﬁ' the inequalities as eguatio
B original “greater than m::qua] o & m.].:-m- °n€ for y; in terms of v, and graph. The graph of the
o ﬁ 13.-2(s). The shaded ares is lhcm::;sib:? :m include .aIJI, the points on the line and 1o the right of il. See
> wents plus the nonnegativity fealian El0on containing all the points that satisfy all three require-
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Fig. 13-2

|+ n, mp.]‘ [hﬂ ﬂbjﬂ:ti\'c rur“;-[“]“ as a Erjﬂ. I,'Ir [_dashﬁﬂ ISG'CO‘SI Iinfs. Frﬂ!‘l‘t [Ijﬁ"]’l

c
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d . . L - S - : i 5]
; h the feasible region is tangent at j, =9 and y; = 3 in Fig. 13-2(

that "’!I W:m., a cost lower than at any other feasible extreme point. For
; + 410) = 44. [For minimization problems, (0, 0) is not in the feasible region.]




Linear PrOQramming: The Dual

151 THE DUAL

Every maximization (minimizatio
= S n) problem in |
mization (maximization) probl Inear programmin : :
is called the dual. Th }p| em. The original problem is called the prim. 1as a corresponding mini-
is ca ; e re almnshlp between the Iwo can primal, the corresponding problem

ters they share in common [F : best be expressed throu
: ar ; , gh the use of the
Ilmc]m llmc]_] [ similar properties in Lﬂ.gfﬂﬂ.gjan ru“‘;tiﬂﬂs, see Problems

| EXAMPLE 1. Given an original or primal problem
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ES OF TRANSFORMATION TO OBTAIN THE DUAL

sulation of a dual from a primal problem,
réction of optimization is reversed. Maximization in the primal becomes minimization in

T ts are reversed, bul the nonnégativily restraint on

ty.signs of the technical constrain
bies i alw intained.
i straints in the primal are transposed Lo columns for

he coeflicient maltrix of the con
-1 ints in the dual .
matri. nfdf!ui:::’ﬂ:;; objective function in the primal is transposed to a column

STk Wnstra:intsa , _

]F r the Pﬂmal constraints 1§ transposed (0 a row vector of
' in the dual. .
function in t decision variables ;.

replaced by dual
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EXAMPLE 3. The dual of the linear programming problem ’
¢ = 20z, + 30z, + 6z,

Minimize
2-51 +h;+ :JEJ
Slilhu‘.'tln i
I|+Jl|+h;2‘ II?’-"E’EG
is
Maximuze Mm=3x, +4x,
subject to 25x, + ;30 x, + 2x, < 16

Ix, + M, <30 K3 X3 20

Note that if the dual of the dual were taken here or in the examples above, the cortesponding
Sained. e

primal would 4,

153 THE DUAL THEOREMS
’___ ‘Two dual theorems are of extreme importance for linear programming. They state:

. ’_. 1. The optimal value of the primal objective function always equals the optimal value of the dual
~ objective function, provided an optimal feasible solution exists.
- 2 Ifin the optimal feasible solution
. i A decision variablc in the primal program has a
e surplus) variable in the dual program must have
B A AH{nrsurplulluri:hI:inlhuprimrhua
e variable in the dual program must have an opti

nonzero value, the corresponding slack (or
an optimal value of zero.

nonzero value, the corresponding decision
mal value of zero,

b

I . ﬂiﬂll'h:l'nlnw.inl linear Programming problem

= 14x, + 12x, + 18x,
; h!l : - 't] + Xy X L
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. used as follows : .
ables. The dual ml‘,:‘ the optimal value of (1) the primal objective function and (2) Ihe

fﬂhl-l-hl
i J.#.Lr._au
h+ 312
['I+J':EI. _'tl:llll‘n

. Iy in Chapter 13 Exam f=Sh=2
vk ) ple2:2, =% 2,
% 1o 30, it is clear from the first dual theorem thal f

'.. iein

\equality constraints to ﬂﬂ“a'j;’:f
id SUrplus variabjes from the dual (IT). To ¢
lus variables of the dual, s, is used for the prim
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it 3~y = 18 (152)
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With the surplus variables i, [, | +IN-tym18 im0
second dual theorem 1+ Iy lor the second and thi
the corresponding primal deci ::::::l.l-ll constraints equal to zero, according lo the

 corresponding decision vari ' i
f variable & iables ,, & PR
x, must equal zero. Therefore 3, z:;lx: must be nonzero. With t, # 0, the

ol The second dual theorem al ;
e 0 states that if the optimal dual decision variables 3, 7, d
1 23 do not equal

ero in the dual, the corres '

i = . ponding primal slack vari A

[y 3, = 0 in (15.7), and recalling that &, = 0 ??;?;t;;" 1 'I“ the primary must equal zero. Substitut-
" " ¥ uces o

N

simultancously by Cramer e :
B et = 1 whi:]: s.;_-::]i;:l = | and xy = 1. Thus the optimal decision vanables arc
. easily checked by substitution into the objective function:

D)+ 12(1) + 18(1) = 30.

‘dual in Example 4 was solved imal i
3 #M B rend as a primal in Chapter 14, Example 3. Converting x, to 2, and 5,

%2 - I A, A; Ay Constant
Ee e -3 3 0 i -4 9
E: -§ + 1§ - :
g9 -4 o - 3 3
e |0 ! Zi] -M —M+1 =M+ 30
#—M can be used to determine the optimal values of (1) the primal objective funclion

of the primal ohjective function, just as

by the last element of the last row: 30

.5 for the primal decision variables can also be read directly from the dual tableau. They

ab values of the indicators in the columns under the corresponding dual-surplus
the primal,

i surplus variable for the first dual constraint and it corresponds to x, in
the ccond constraint and it corresponds Lo x, 10 the

dusal surplus variable for the s | .
- The dual indicators whose absolute values gIVE the optimal values of the
o are boxed. The indicators in the artificial variable columns haye no eCONOMIC
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the optimal value for the dual objective func-




