See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/335866693

Fundamentals of Reservoir Rock Properties

Book · September 2019

CITATIONS	5	READS		
0		3,457		
1 autho	r:			
	Nayef Alyafei			
	Texas A&M University at Qatar			
	32 PUBLICATIONS 174 CITATIONS			
	SEE PROFILE			
Some of	f the authors of this publication are also working on these related projects:			

Experimental Studies of Multiphase Flow in Porous Media Using In-Situ Imaging View project

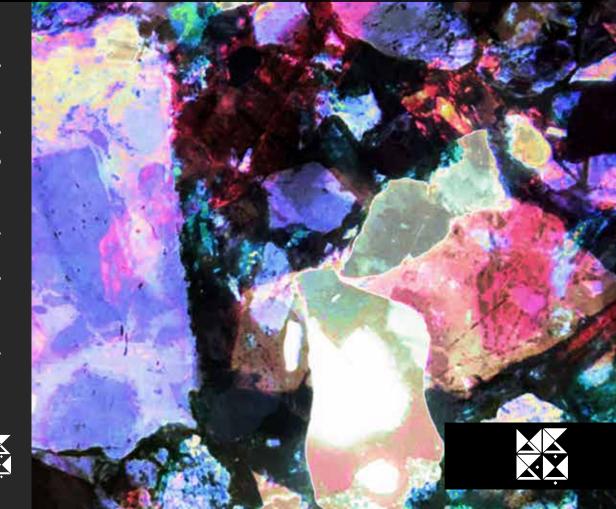
Development of Virtual Field Trips Using the Augmented and Virtual Reality Tools to Enhance the Student Learning Experience in PETE Courses View project

"This excellent text book provides much-needed reference on reservoir rock properties. Prof. Nayef Alyafei has based this work on his own popular lecture courses and his extensive research in multiphase flow in porous media. A wide range of topics is presented clearly with excellent illustrations and explanations throughout. The approach follows an easy-to-follow coherent progression of ideas and is pedagogical in its presentation, making this work ideal as a textbook for undergraduate or post-graduate studies in petroleum engineering, hydrology or related disciplines. The book provides a much needed reference on petrophysics which is also valuable for researchers and professionals working in the oil industry. It is also of interest to the growing body of students, researchers, scientists and engineers working on flow in porous media with a variety of applications from hydrocarbon recovery to carbon dioxide storage. I will certainly recommend this work to my own students and colleagues, and use it in my teaching."

Martin Blunt, Professor of Reservoir Engineering, Imperial College London

This book covers the essential concepts of rock properties aiding students, petroleum geoscientists, and engineers to understand petroleum reservoirs.

Key Features:


- Explains the fundamental concepts with great clarity and a step-by-step approach.
- Provides numerous examples and problems on each covered topic.
- Written in clear English language to appeal to global students.
- Summary highlighting the main points of each chapter.
- Numerous illustrative figures to solidify the understanding of the concepts.

Nayef Alyafei

Nayef Alyafei

Fundamentals of Reservoir Rock Properties

Nayef Alyafei

First Edition 2019

Hamad Bin Khalifa University Press P O Box 5825 Doha, Qatar

> www.hbkupress.com www.gscience.com

Copyright © Nayef Alyafei, 2019 Cover image © Nayef Alyafei

All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage or retrieval system, without prior permission in writing from the publishers.

All figures and images by author

ISBN: 9789927137273 Printed and bound in Doha, Qatar

Fundamentals of Reservoir Rock Properties

Nayef Alyafei

Qatar National Library Cataloging-in-Publication (CIP)

Alyafei, Nayef, author.

Fundamentals of reservoir rock properties / Nayef Alyafei. First English edition. – Doha : Hamad Bin Khalifa University Press, 2019.

pages ; cm

ISBN 978-992-713-727-3

1. Oil reservoir engineering. 2. Petroleum reserves -- Mechanical properties. 3. Geophysics. I. Title.

TN870.57 .A42 2019 622.3382- dc 23

201927338009

Conversion of Units

Length:

1 ft = 0.3048 m = 12 in 1 m = 3.281 ft = 39.37 in = 100 cm

Mass: 1 lbm = 0.45359 kg

1 kg = 2.2046 lbm = 1000 g

Interfacial Tension: 1 N/m = 1000 mN/m = 1000 dyne/cm

Volume: 1 ft³ = 0.02831 m³ = 28.3168 L = 0.178 bbl = 0.178 RB 1 m³ = 35.29 ft³ = 1000 L

Pressure:

1 atm = 101.3 kPa = 1.013 bar = 14.696 lbf/in² (psia)

1 psia = 6.89 kPa = atm/14.696

1 Pa = 1 N/m² = 1 kg/m.s² = 10⁻⁵ bar = 1.450 x 10⁻⁴ lbf/in² = 10 dyne/cm² psia = psig +14.7

Density:

1 g/cc = 1000 kg/m³ = 62.427 lb/ft³ = 8.345 lb/gal = 0.03361 lb/in³

Viscosity:

1 cP = 0.01 poise = 0.01 g/cm.s = 0.001 kg/m.s = 0.001 n.s/m² = 0.001 Pa.s = 0.01 dyne.s/cm² = 6.72 x 10⁻⁴ lbm/ft.s = 2.09 x 10⁻⁵ lbf.s/ft²

Metric Prefixes:

Prefix	Symbol	Multiplication Factor
giga	G	10 ⁹
mega	М	10 ⁶
kilo	k	10 ³
centi	с	10 ⁻²
milli	m	10 ⁻³
micro	μ	10 ⁻⁶
nano	n	10 ⁻⁹

Oilfield Prefixes:

Prefix	Symbol	Multiplication Factor
Thousand	М	10 ³
Million	ММ	10 ⁶
Billion	MMM or B	10 ⁹
Trillion	Т	10 ¹²

Area: 1 ft² = 0.092903 m² = 144 in² 1 m² = 10.7649 ft² = 10000 cm²

Force: 1 lbf = 4.44822 N = 32.2 lbm.ft/s² 1 N = 0.2248 lbf = 1 kg.m/s²

Permeability: 1 D = 1000 mD = 9.869233 x 10⁻¹³ m²

Index

Chapter 1

Introduction

Introduction	11
1.1 What is Petroleum?	11
1.2 Origin of Petroleum	11
1.3 Petroleum System	12
1.4 What is a Reservoir?	12
1.5 Lithology of Petroleum Reservoirs	13
1.6 What is Petrophysics?1.6.1 Routine Core Analysis (RCAL)1.6.2 Special Core Analysis (SCAL)	14
1.7 Why Do We Need to Understand Petrophysics?	15

17

43

Chapter 2 Porosity

2.1 Classification of Porosity2.1.1 Geological Classification of Porosity2.1.2 Engineering Classification of Porosity	20
2.2 Calculation of Porosity	21
2.3 Factors Affecting Porosity 2.3.1 Primary Factors 2.3.2 Secondary Factors	22
2.4 Measuring Porosity 2.4.1 Laboratory Measurements 2.4.2 Wireline Logging	24
2.5 Grain/Matrix Density	34
2.6 Summary	37
End of Chapter Questions	38

Chapter 3

Rock Compressibility	
----------------------	--

3.1 Types of Rock Compressibility3.1.1 Matrix Compressibility3.1.2 Bulk Compressibility3.1.3 Pore Compressibility	44
3.2 Laboratory Determination of Rock Compressibility	49
3.3 Summary	51
End of Chapter Questions	52

Chapter 4 Permeability

Permeability	55
4.1 Applications of Permeability	56
4.2 Validity of Darcy's Law for Single-Phase Permeability	56
 4.3 Darcy's Law Under Different Boundary Conditions 4.3.1 Case 1: Linear Solution of Darcy's Law for Incompressible Fluid 4.3.2 Case 2: Radial Solution of Darcy's Law for Incompressible Fluid 	57
4.4 Laboratory Measurements of Absolute Permeability4.4.1 Liquid Permeability4.4.2 Gas Permeability	64
4.5 Pressure Profile 4.5.1 Pressure Profile: Liquid Flow 4.5.2 Pressure Profile: Gas Flow	71
 4.6 Flow in Layered Systems 4.6.1 Case 1: Linear Flow in Parallel 4.6.2 Case 2: Linear Flow in Series 4.6.3 Case 3: Radial Flow in Parallel 4.6.4 Case 4: Radial Flow in Series 	75
4.7 Flow in Channels and Fractures4.7.1 Flow in Channels4.7.2 Flow in Fractures4.7.3 Average Permeability with Channels and Fractures	82
4.8 Summary	87
End of Chapter Questions	88

Chapter 5

Fluid Saturation

5.1 Measuring Fluid Saturation
5.1.2 Extraction Method: Dean-Stark
5.2 Limitations of Using Extraction Methods
to Evaluate Reservoir's Saturation
5.2.1 Drilling Muds
5.2.2 Fluid Properties
5.3 Summary107
End of Chapter Questions108

97

Chapter 6

Electrical Properties

 6.1 Understanding Archie's Law	
6.2 Factors Affecting Resistivity of Reservoir Rocks125	
6.3 Measuring Electrical Properties of Reservoir Rocks	
6.4 Applications of Electrical Properties of Reservoir Rocks128	
6.5 Summary129	
End of Chapter Questions131	

113

Chapter 7

Wettability 13	35
7.1 Understanding Wettability 13 7.1.1 Surface and Interfacial Tension 7.1.2 Adhesion Tension	35
7.2 Classification of Wettability13	38
7.3 Flow Sequence/cycle14	40
7.4 Measuring Wettability	40
7.5 Applications of Wettability14	45
7.6 Summary14	45

Chapter 8

Capillary Pressure 149	
8.1 Capillary Rise	
8.2 Capillary Pressure Curves154 8.2.1 Drainage 8.2.2 Water Re-saturation	
 8.3 Laboratory Measurements of Capillary Pressure	
8.4 Capillary Pressure Conversion and Throat Radius Distribution 164	
8.5 Leverett J-Function170	
8.6 Water Saturation Distribution in a Layered System	

8.7 Hydrostatic Pressure and Repeat Formation Tester (RFT)17	3
8.8 Applications of Capillary Pressure17	6
8.9 Summary17	7
End of Chapter Questions17	8

Chapter 9

Relative Permeability

Relative Permeability	183
9.1 Relative permeability Curves	184
9.2 Recovery Factor Estimation 9.2.1 Displacement Efficiency (E_{o}) 9.2.2 Volumetric Sweep Efficiency (E_{v}) 9.2.3 Recovery Factor (<i>RF</i>)	188
9.3 Laboratory Measurement of Relative Permeability9.3.1 Steady State (SS)9.3.2 Unsteady State (USS)	192
9.4 Three-Phase Relative Permeability	198
9.5 Summary	202
End of Chapter Questions	203

Chapter 10

Data Integration and Volumetric Estimation of Hydrocarbons

10.1 Estimation of Hydrocarbons in Place
10.1.1 Net to Gross
10.1.2 Fluid Properties
10.1.3 Layered Systems
10.1.4 Unit Systems
10.2 Data Integration and Uncertainty218
10.3 Summary222
End of Chapter Questions

References

232

Chapter 1 Introduction

Prior to the discovery of petroleum, mankind used coal as the main source of energy to operate their machines. Since the first commercial well drilled in the United States in 1859, the dependence on petroleum as a source of energy has increased tremendously. From that point onwards, **petroleum has been and will continue to be the main source of energy for decades ahead** due to its availability, efficiency, and low price. In addition, hydrocarbons are not only used as fuel for our machines, but also as lubricants and raw materials for many modern industrial products such as plastics, paints, and rubber.

1.1 What is Petroleum?

Petroleum is a naturally occurring hydrocarbon (composed of hydrogen and carbon atoms) that can exist as a solid, liquid, or gas. The physical state of the hydrocarbon is a function of the pressure and temperature to which it is exposed as well as the structure (chain length/molecular weight). However, most of the hydrocarbons found within the ground are either liquid or gas, and are referred to as crude oil and natural gas, respectively.

1.2 Origin of Petroleum

There are two theories for the origin of petroleum. They are the **organic** and **inorganic** theories, as stated in **Table 1.1**.

Table 1.1: Theories for the origin of petroleum.		
Organic (derived from living matter, usually carbon atoms)	Inorganic (not derived from living matter)	
States that petroleum evolved from the decomposition of animals and plants that lived during previous geological times.	States that petroleum was formed through chemical reactions between water, carbon dioxide, and several inorganic substances such as carbonates in the earth.	

The organic theory is the commonly accepted theory.

1.3 Petroleum System

A petroleum system consists of different geological components needed to generate and store hydrocarbons. These components are source rock, migration path, reservoir rock, trap, and seal. **Source rock** is the rock containing organic matter in sufficient quantity, and is under suitable conditions for the formation of hydrocarbons. Migration path is the pathway that the hydrocarbons take to move away from the source rock to the point where they can find a suitable trap. The forces driving the movement of hydrocarbons out of the source rock come from tectonic stresses, which are coupled with capillarity (this topic is explained further in Chapter 8) and buoyancy (density difference); since hydrocarbons are lighter than water, they move upward. Reservoir rock is the rock that is able to store hydrocarbons in its pores. The hydrocarbons will continue migrating upward until they reach a **seal**. This is an impermeable layer of rock that blocks the hydrocarbons from further migration. Finally, a **trap** is a configuration of rocks, ensuring that the hydrocarbons are stored in it. Traps can be structural, stratigraphic, or a combination of both. Figure 1.1 shows the components and processes in a petroleum system.

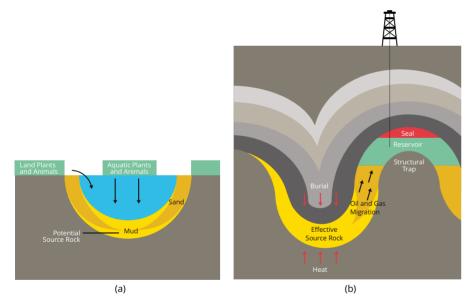


Figure 1.1: Schematic showing (a) the process of hydrocarbon formation and (b) the migration of matured hydrocarbon until it reaches an impermeable seal and attains static equilibrium.

1.4 What is a Reservoir?

In petroleum engineering, a reservoir is the place where the hydrocarbons reside. Our job as petroleum engineers is to access reservoirs and extract the hydrocarbons (natural gas and/or crude oil) in an economical and environmentally safe manner. Reservoirs can be classified into three types: oil, gas, and gas-oil

reservoirs, as shown in **Figure 1.2**. Natural gas, if present in a reservoir, is always on top because it has the lowest density, while water is always at the bottom because it has the highest density among the three reservoir fluids (gas, oil, and water).

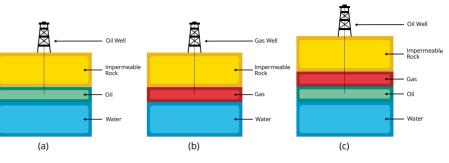


Figure 1.2: Schematic showing typical hydrocarbon distributions in (a) an oil reservoir, (b) a gas reservoir and (c) a gas-oil reservoir.

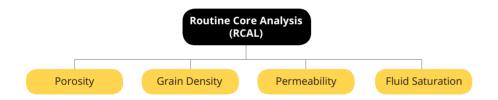
1.5 Lithology of Petroleum Reservoirs

Lithology is the general physical characteristics of a rock. Reservoir rocks can be divided into two types: **sandstone** and **carbonates**. Sandstones are formed from grains that have undergone sedimentation, compaction, and cementation. Carbonates are principally formed on carbonate platforms by a combination of biogenic and abiogenic processes.

The major characteristics of both sandstone and carbonate rocks are shown in **Table 1.2.**

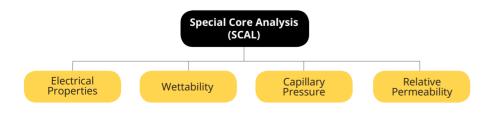
Table 1.2: Geological comparison between sandstone and carbonate rocks.

Sandstone	Carbonate
 Usually composed of silica grains (mainly quartz and some feldspar). Consolidated (the rock is 	• Two major types are limestone (CaCO ₃) and dolomite (CaMg(CO ₃) ₂).
combined as one unit) or loosely consolidated.	 Pore space consists of inter- or intragranular porosity as well as areas of dissolution (vugs) and
 May contain swelling clays (clays have negative impact on reservoir quality). 	fractures.


1.6 What is Petrophysics?

Petrophysics is the study of rock properties and rock-fluid properties. These properties, which we will study extensively in the following chapters, include: **porosity, rock compressibility, single-phase permeability, fluid saturation, electrical properties of reservoir rocks, wettability, capillary pressure,** and **relative permeability.** Petrophysics can be divided into core and wireline petrophysics. In this book, we will mainly cover **core petrophysics** that requires conducting laboratory experiments on core samples brought from the reservoir to the surface. **Wireline petrophysics**, which involves using logs to determine properties, will also be briefly covered in this book.

Rock samples are extracted from the reservoir through coring and can be subjected to two categories of laboratory analysis: **routine core analysis** and **special core analysis**.


1.6.1 Routine Core Analysis (RCAL)

Routine core analysis attempts to find the basic properties of the reservoir rock such as porosity, grain density, permeability, and fluid saturation, as shown below:

1.6.2 Special Core Analysis (SCAL)

Special core analysis is an extension of RCAL, and attempts to measure data that is more representative of the reservoir conditions. These measurements include electrical properties of reservoir rocks, wettability, capillary pressure, and relative permeability, as shown below:

1.7 Why Do We Need to Understand Petrophysics?

Petrophysics is a fundamental science for petroleum engineers. Most of the petroleum engineering topics branch out from petrophysical concepts. An understanding of petrophysical properties helps us in:

- Estimating the quantity of hydrocarbons present in the reservoirs (e.g. porosity and fluid saturation).
- Understanding how the hydrocarbons will flow from the reservoir to the well during production (e.g. permeability, wettability, and relative permeability).

In this book, we will study each petrophysical property extensively.

Chapter 2 Porosity

Porosity is the ratio of void volume in a porous medium to the total volume of that medium. Let us assume that we have an empty 350 ml glass, and we fill the glass to the brim with water to cover the entire volume. Now consider another identical glass with four ice cubes in it, with each ice cube having a volume of 50 ml. The total volume of ice in the glass will be 200 ml, given that it is not melting. If we now want to pour water to the glass, we know that there will be room for just 150 ml of water, since the rest of the volume is occupied by ice. Hence, the porosity of the glass with the ice cubes will be 150 ml (pore volume, the volume of water filling the pore space) divided by 350 ml (total volume) and the resulting porosity will be 0.43. This scenario is shown in **Figure 2.1**. Basically, porosity means storage capacity that can indicate the amount of fluid that the porous medium can store. Porosity can be calculated using the following equation:

$$=\frac{V_p}{V_t}$$
 (2.1)

where ϕ is the porosity [dimensionless since we are dividing two volumes], V_p is the pore volume [cm³], and V_t is the total volume [cm³].

 ϕ

Alternatively, we can subtract the matrix volume (in this case, the ice cubes) from the total volume and divide it by the total volume to obtain the porosity, as shown in the following equation:

$$\phi = \frac{V_t - V_m}{V_t} \tag{2.2}$$

where V_m is the matrix volume [cm³].

Overall, we can say that:

$$\phi = \frac{V_p}{V_t} = \frac{V_t - V_m}{V_t} \tag{2.3}$$

$$V_t = V_p + V_m \tag{2.4}$$

Therefore, if we know any two of the volumes, we can calculate the porosity.

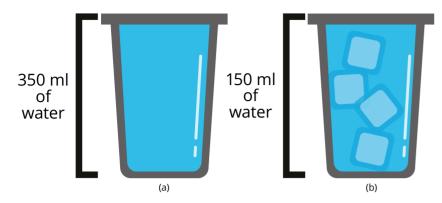


Figure 2.1: Schematic showing (a) a glass filled with 350 ml of water and (b) a glass filled with water and four ice cubes. As shown, the volume of water in the glass with ice cubes is less since a matrix volume is present.

Example 2.1

A core sample has a total volume of 24.5 cm³ and a matrix volume of 18.9 cm³.

(a) What is the pore volume of this sample?(b) What is the porosity of this sample?

Solution

(a) **Equation 2.4** can be used to find the pore volume:

 $V_t = V_p + V_m$ 24.5 = $V_p + 18.9$ $V_p = 5.6 \text{ cm}^3$

(b) **Equation 2.1** can be used to find the porosity:

$$\phi = rac{V_p}{V_t} = rac{5.6}{24.5} = \mathbf{0.229} ext{ or } \mathbf{22.9\%}$$

Reservoir rocks are porous and contain fluids in their pores, as shown in **Figure 2.2**. Porosity measurement from a core is part of RCAL. When we use the term "core," we usually refer to a cylindrical rock sample with a width and length of a few centimeters.

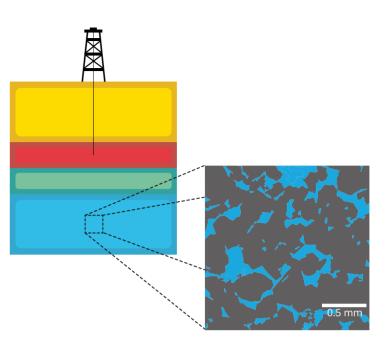


Figure 2.2: Schematic showing the pore spaces in a reservoir rock at a micro-scale from a giant reservoir field. The blue color in the figure represents the water while the black color represents the matrix.

In addition, when dealing with rocks, we often refer to the matrix volume as the grain volume (V_g) and the total volume as the bulk volume (V_b). Note that the fractional porosity value is often multiplied by 100 to make it a percentage; however, it should always be a fraction when used in calculations. The porosity of reservoir rocks usually ranges from 5% to 40%. Table 2.1 shows typical porosity values for different reservoir rocks. The porosity of rocks within a reservoir indicates how much oil and/or gas is stored in that reservoir. Therefore, finding the porosity of the reservoir beforehand is important for engineers because it helps them estimate how economically viable that reservoir is and how many resources should be invested in it.

Table 2.1: Typical porosity values in reservoir rocks.Rock TypeRangeLoosely consolidated sands35-40%Sandstones20-35%Well-cemented sandstones15-20%Limestones5-20%