## Expressing Concentration of Solution

## What is Concentration of Solution?

The Concentration of a Solution is defined as the relative amount of solute present in a solution.
It basically talks about how to find the amount of solute present in solvent which together forms solution. There are various methods used to find this,

## Methods of Expressing Concentration of Solutions

## Percentage by weight (w / w \%)

- Percentage by volume (V/V\%)
- Weight by volume (w/v\%)
- Mole fraction (x)
- Parts per million (ppm)
- Molarity (M)
- Molality (m)
- Normality (N)
- Formality (F)

All of them are briefed below:

- Percentage by Weight (Mass Percent)

Symbol: (w/w \%)
Definition: It is defined as the amount of solute present in $100 \mathbf{g}$ of solution.
Unit: No unit

- Percentage by Volume (Volume Percent

Symbol: (V / V \%)
Definition: It is defined as the volume of solute present in $100 \mathbf{m L}$ of solution.
Unit: No unit

- Weight by Volume (Mass-Volume Percent)

Symbol: (W / V \%)
Definition: It is defined as the amount of solute present in 100 mL of solution.
Unit: $\mathrm{mg} / \mathrm{L}$ or $\mathrm{g} / 100 \mathrm{~cm}^{3}$
Formula:

## Percent Concentration

a. Weight Percent $\left(\frac{W}{W}\right)=\frac{\text { Weight Solute }}{\text { Weight Solution }} \times 100 \%$
b. Volume Percent $\left(\frac{V}{V}\right)=\frac{\text { Volume Solute }}{\text { Volume Solution }} \times 100 \%$
c. Weight/Volume Percent $\left(\frac{W}{V}\right)=\frac{\text { Weight Solute, } g}{\text { Volume Soln, } L} \times 100 \%$

Example:
As an example consider 5 g sugar dissolved in 20 g of water. What is the $\mathrm{w} / \mathrm{w} \%$ concentration of sugar in this solution?
$\frac{5 \text { g sugar }}{25 \text { g solution }} \times 100=20 \mathrm{w} / \mathrm{w} \%$

How would you prepare the following solutions?
(a)6 \% NaoH
(b)5 \% $\mathrm{C}_{2} \mathbf{H}_{5} \mathrm{OH}$
(c) $200 \mathrm{~cm}^{3}$ of $\mathbf{1 0} \% \mathrm{NaOH}$
soln:
$100 \mathrm{~cm}^{3}$ require salt $=10 \mathrm{~g}$
$1 \mathbf{c m}^{\mathbf{3}}$ of solution require salt=10/100


## - Mole Fraction

Symbol : X (lower-case Greek letter chi, $\chi$ )
Definition: It is the ratio of the number of moles of solute and the total number of moles of solute and solvent.

Unit: No unit
Formula:

Mole Fraction of Solute, $X_{\text {solute }}=\frac{n_{\text {solute }}}{n_{\text {solute }}+n_{\text {solvent }}}$
Mole Fraction of Solute, $\quad X_{\text {solute }}=\frac{n_{\text {solvent }}}{n_{\text {solute }}+n_{\text {solvent }}}$
Where, $X_{\text {solute }}+X_{\text {solute }}=1$

Mole Fraction (X): This is the number of moles of a compound divided by the total number of moles of all chemical species in the solution.

$$
\mathrm{X}_{\text {solute }}=\frac{\text { Moles of Solute }}{\text { Total moles of all components }}
$$

## Example:

What are the mole fraction of the components of the solution formed when 92 g glycerol is mixed with 90 g water? ( molecular of weight water $=18$; molecular weight of glycerol $=92$ )

## Solution:

90 g water $=90 \mathrm{~g} \times 1 \mathrm{~mol} / 18 \mathrm{~g}=5 \mathrm{~mol}$ water
92 g glycerol $=92 \mathrm{~g} \times 1 \mathrm{~mol} / 92 \mathrm{~g}=1 \mathrm{~mol}$ glycerol
Total mol $=5+1=6 \mathrm{~mol}$
X water $=5 \mathrm{~mol} / 6 \mathrm{~mol}=0.833$
X glycerol $=1 \mathrm{~mol} / 6 \mathrm{~mol}=0.167$
It's a good idea to check your math by making sure the mole fractions add up to 1 :
$\mathrm{xwater}+\mathrm{xglycerol}=.833+0.167=1.000$

