Expressing Concentration of Solution

What is Concentration of Solution?

The Concentration of a Solution is defined as the relative amount of solute present in a solution.

It basically talks about how to find the amount of solute present in solvent which together forms solution. There are various methods used to find this,

Methods of Expressing Concentration of Solutions

- Percentage by weight (w / w %)
- Percentage by volume (V / V%)
- Weight by volume (w / v%)
- Mole fraction (x)
- Parts per million (ppm)
- Molarity (M)
- Molality (m)
- Normality (N)
- Formality (F)

All of them are briefed below:

Percentage by Weight (Mass Percent)

Symbol: (w / w %)

Definition: It is defined as the amount of solute present in 100 g of solution.

Unit: No unit

Percentage by Volume (Volume Percent

Symbol: (V / V %)

Definition: It is defined as the volume of solute present in 100 mL of solution. **Unit: No unit**

Weight by Volume (Mass-Volume Percent)

Symbol: (W / V %)

Definition: It is defined as the amount of solute present in 100 mL of solution.

Unit: mg/L or g/100cm³

Formula: <u>Percent Concentration</u>

a. Weight Percent
$$\left(\frac{W}{W}\right) = \frac{Weight Solute}{Weight Solution} \times 100\%$$

b. Volume Percent $\left(\frac{V}{V}\right) = \frac{Volume Solute}{Volume Solution} \times 100\%$
c. Weight /Volume Percent $\left(\frac{W}{V}\right) = \frac{Weight Solute, g}{Volume Soln, L} \times 100\%$

Example:

As an example consider 5 g sugar dissolved in 20 g of water. What is the w/w% concentration of sugar in this solution?

 $\frac{5 \text{ g sugar}}{25 \text{ g solution}} \times 100 = 20 \text{ w/w \%}$

How would you prepare the following solutions?

```
(a)6 % NaoH
(b)5 % C<sub>2</sub>H<sub>5</sub>OH
(c)200 cm<sup>3</sup> of 10% NaOH
soln:
100 cm<sup>3</sup> require salt=10 g
1 cm<sup>3</sup> of solution require salt=10/100
200 cm<sup>3</sup> -----=10/100x200=20g
```

Mole Fraction

 $\textbf{Symbol}: \ X \ (\ lower-case \ Greek \ letter \ chi, \chi)$

Definition: It is the ratio of the number of moles of solute and the total number of moles of solute and solvent.

Unit: No unit

Formula:

$$\begin{split} \text{Mole Fraction of Solute, X}_{\text{solute}} &= \frac{n_{\text{solute}}}{n_{\text{solute}} + n_{\text{solvent}}} \\ \text{Mole Fraction of Solute, X}_{\text{solute}} &= \frac{n_{\text{solvent}}}{n_{\text{solute}} + n_{\text{solvent}}} \end{split}$$

Where, $X_{solute} + X_{solute} = 1$

Mole Fraction (**X**): This is the number of moles of a compound divided by the total number of moles of all chemical species in the solution.

 $\mathbf{X}_{\texttt{solute}} = \frac{\texttt{Moles of Solute}}{\texttt{Total moles of all components}}$

Example:

What are the mole fraction of the components of the solution formed when 92 g glycerol is mixed with 90 g water? (molecular of weight water = 18; molecular weight of glycerol = 92)

Solution:

90 g water = 90 g x 1 mol / 18 g = 5 mol water

92 g glycerol = 92 g x 1 mol / 92 g = 1 mol glycerol

Total mol = 5 + 1 = 6 mol

X water = $5 \mod 6 \mod = 0.833$

X glycerol = $1 \mod / 6 \mod = 0.167$

It's a good idea to check your math by making sure the mole fractions add up to 1:

xwater + xglycerol = .833 + 0.167 = 1.000