Logarithmic Function

Logarithms

The exponential function of the form

 $y = a^x$

for all positive values of a, where a not equal to 1.

The equation defining the inverse of a function is found by interchanging x and y in the equation that defines the function. Starting with $y = a^x$ and interchanging x and y yields

$$x = a^y$$
.

Here y is the exponent to which a must be raised in order to obtain x. We call this exponent a logarithm, symbolized by the abbreviation "log." The expression $\log_a x$ represents the logarithm in this discussion. The number a is the base of the logarithm, and x is the argument of the expression. It is read "logarithm with base a of x," or "logarithm of x with base a," or "base a logarithm of x."

If a > 0, $a \neq 1$, and x > 0, then the logarithmic function with base a is

 $f(x) = \log_a x.$

Logarithm

For all real numbers y and all positive numbers a and x, where $a \neq 1$,

 $y = \log_a x$ is equivalent to $x = a^y$.

The expression $\log_a x$ represents the exponent to which the base a must be raised in order to obtain x.

Exponential and logarithmic functions are inverses of each other. To show this, we use the three steps for finding the inverse of a function.

	$f(x)=2^x$	Exponential function with base 2	
	$y = 2^x$	Let $y = f(x)$.	
Step 1	$x = 2^{y}$	Interchange \boldsymbol{x} and \boldsymbol{y} .	
Step 2	$y = \log_2 x$	Solve for <i>y</i> by writing in equivalent logarithmic form.	
Step 3	$f^{-1}(x) = \log_2 x$	Replace y with $f^{-1}(x)$.	

The graph of f1x2 = 2x has the x-axis as horizontal asymptote and is shown in red in Figure 25. Its inverse, $f_{-1}1x2 = \log_2 x$, has the y-axis as vertical asymptote and is shown in blue. The graphs are reflections of each other across the line y = x. As a result, their domains and ranges are interchanged.

The domain of an exponential function is the set of all real numbers, so the range of a logarithmic function also will be the set of all real numbers. In the same way, both the range of an exponential function and the domain of a logarithmic function are the set of all positive real numbers.

Thus, logarithms can be found for positive numbers only.

Graphing Logarithmic Functions

Graph each function.

(b) $f(x) = \log_3 x$ (a) $f(x) = \log_{1/2} x$

SOLUTION

(a) One approach is to first graph $y = \left(\frac{1}{2}\right)^x$, which defines the inverse function of f, by plotting points. Some ordered pairs are given in the table with the graph shown in red in Figure 28.

The graph of $f(x) = \log_{1/2} x$ is the reflection of the graph of $y = \left(\frac{1}{2}\right)^x$ across the line y = x. The ordered pairs for $y = \log_{1/2} x$ are found by interchanging the x- and y-values in the ordered pairs for $y = \left(\frac{1}{2}\right)^x$. See the graph in blue in Figure 28.

x	$y = \left(\frac{1}{2}\right)^x$	x	$f(x) = \log_{1/2} x$
-2	4	4	$^{-2}$
-1	2	2	-1
0	1	1	0
1	$\frac{1}{2}$	$\frac{1}{2}$	1
2	$\frac{1}{4}$	$\frac{1}{4}$	2
4	1	$\frac{1}{16}$	4

16

(b) Another way to graph a logarithmic function is to write $f(x) = y = \log_3 x$ in exponential form as $x = 3^y$, and then select y-values and calculate corresponding x-values. Several selected ordered pairs are shown in the table for the graph in Figure 29.