Logarithmic Function

Logarithms

The exponential function of the form

$$
y=a^{x}
$$

for all positive values of a , where a not equal to 1 .
The equation defining the inverse of a function is found by interchanging x and y in the equation that defines the function. Starting with $y=a^{x}$ and interchanging x and y yields

$$
x=a^{y} .
$$

Here y is the exponent to which a must be raised in order to obtain x. We call this exponent a logarithm, symbolized by the abbreviation "log." The expression $\log _{a} x$ represents the logarithm in this discussion. The number a is the base of the logarithm, and x is the argument of the expression. It is read "logarithm with base a of x," or "logarithm of x with base a," or "base a logarithm of x."

If $a>0, a \neq 1$, and $x>0$, then the logarithmic function with base a is

$$
f(x)=\log _{a} x .
$$

Logarithm

For all real numbers y and all positive numbers a and x, where $a \neq 1$,

$$
y=\log _{a} x \text { is equivalent to } x=a^{y} .
$$

The expression $\log _{a} x$ represents the exponent to which the base a must be raised in order to obtain x.

Exponential and logarithmic functions are inverses of each other. To show this, we use the three steps for finding the inverse of a function.

$$
\begin{array}{rlrlrl}
f(x) & =2^{x} & & \text { Exponential function with base 2 } \\
y & =2^{x} & & \text { Let } y=f(x) . \\
\text { Step 1 } & x & =2^{y} & & \text { Interchange } x \text { and } y . \\
\text { Step } 2 & y & =\log _{2} x & & \text { Solve for } y \text { by writing in equivalent logarithmic form. } \\
\text { Step 3 } f^{-1}(x) & =\log _{2} x & & \text { Replace } y \text { with } f^{-1}(x) .
\end{array}
$$

The graph of $f 1 x 2=2 x$ has the x-axis as horizontal asymptote and is shown in red in Figure 25. Its inverse, $f-11 x 2=\log _{2} x$, has the y-axis as vertical asymptote and is shown in blue. The graphs are reflections of each other across the line $y=x$. As a result, their domains and ranges are interchanged.

x	$f(x)=2^{x}$		x	$f^{-1}(x)=\log _{2} x$
-2	$\frac{1}{4}$		$\frac{1}{4}$	-2
-1	$\frac{1}{2}$		$\frac{1}{2}$	-1
0	1	1	0	
1	2	2	1	
2	4	4	2	

Figure 25

The domain of an exponential function is the set of all real numbers, so the range of a logarithmic function also will be the set of all real numbers. In the same way, both the range of an exponential function and the domain of a logarithmic function are the set of all positive real numbers.
Thus, logarithms can be found for positive numbers only.

Logarithmic Function $f(x)=\log _{a} x$

$$
\text { Domain: }(0, \infty) \quad \text { Range: }(-\infty, \infty)
$$

For $f(x)=\log _{2} x$:

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
$\frac{1}{4}$	-2
$\frac{1}{2}$	-1
1	0
2	1
4	2
8	3

$f(x)=\log _{a} x, a>1$

This is the general behavior seen on a calculator graph for any base a, for $a>1$.

Figure 26

- $f(x)=\log _{a} x$, for $a>1$, is increasing and continuous on its entire domain, $(0, \infty)$.
- The y-axis is a vertical asymptote as $x \rightarrow 0$ from the right.
- The graph passes through the points $\left(\frac{1}{a},-1\right),(1,0)$, and $(a, 1)$.

For $f(x)=\log _{1 / 2} x$:

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
$\frac{1}{4}$	2
$\frac{1}{2}$	1
1	0
2	-1
4	-2
8	-3

This is the general behavior seen on a calculator graph for any base a, for $0<a<1$.

Figure 27

- $f(x)=\log _{a} x$, for $0<a<1$, is decreasing and continuous on its entire domain, $(0, \infty)$.
- The y-axis is a vertical asymptote as $x \rightarrow 0$ from the right.
- The oranh nasses through the noints $\left(\frac{1}{}-1\right)(1,0)$ and $(a, 1)$

Graphing Logarithmic Functions

Graph each function.
(a) $f(x)=\log _{1 / 2} x$
(b) $f(x)=\log _{3} x$

SOLUTION

(a) One approach is to first graph $y=\left(\frac{1}{2}\right)^{x}$, which defines the inverse function of f, by plotting points. Some ordered pairs are given in the table with the graph shown in red in Figure 28.

The graph of $f(x)=\log _{1 / 2} x$ is the reflection of the graph of $y=\left(\frac{1}{2}\right)^{x}$ across the line $y=x$. The ordered pairs for $y=\log _{1 / 2} x$ are found by interchanging the x-and y-values in the ordered pairs for $y=\left(\frac{1}{2}\right)^{x}$. See the graph in blue in Figure 28.

x	$y=\left(\frac{1}{2}\right)^{x}$		x	$f(x)=\log _{1 / 2} x$
-2	4		4	-2
-1	2		2	-1
0	1		1	0
1	$\frac{1}{2}$		$\frac{1}{2}$	1
2	$\frac{1}{4}$		$\frac{1}{4}$	2
4	$\frac{1}{16}$		$\frac{1}{16}$	4

Figure 28

Figure 29
(b) Another way to graph a logarithmic function is to write $f(x)=y=\log _{3} x$ in exponential form as $x=3^{y}$, and then select y-values and calculate corresponding x-values. Several selected ordered pairs are shown in the table for the graph in Figure 29.

