The Bandstructure Problem

A One-Dimensional Model ¢ ‘easily generahzed to 3D!)



Bandstructure Problem:
A One Dimensional Model
* One e Hamiltonian: H = (p)%/(2m,) + V(x)
p = -ih(d/0x), V(x) = V(x + a) = Effective Potential.
* V has translational symmetry with repeat distance = a.

cGOAL: Solve the Schrodinger Equation:
Hy, (x) = E y,.(x), Kk =Eigenvalue Label
E, = Electronic Energy of the e in state K
V,.(x) = Wavefunction of the e in state k
e Define a Translation operator =T.
T 1s defined, for any function f(x), as
' T f(x) =f(x + a) |




Now consider the Translation Operator T for

this one dimensional solid: T f(x) =1(x + a)
e Take the special case for which 1(x) = vy, (X)

— That 1s, for f(x) = an eigenfunction solution of the
Schrodinger Equation

e Definttion of T: Ty, (X) =y (X +a) (1)
e Look for the eigenvalues of T:

Ty (X) = My (x) (2)
A = Eigenvalue of T. It can be shown using (1) & (2) that:

M = €% and y,(x) = e™ uy(x)
With u (x) =Eu(x + a)
(see Kittel’s book for proot)




» This Shows: The translation operator applied to
" an eigenfunction of the Schrodinger Equation (or
of Hamiltonian H, with a periodic potential) gives:

Ty, (x) = e* y, (x)
= W,(X) is also an eigenfunction of the
translation operator T'

» This also shows that the general form of y, (x) is
W, (x) = e¥* u, (x), where 1, (X) = U, (x+a)
u,(x) = a periodic function with

the same p eriod as the_ Qoten_tial !




* In other words: For aperiodic potential V(x), with

© period a,y,(x) is a simultaneous eigenfunction of the
translation operator T and the Hamiltonian H.

e The Commutator Theorem of QM tells us that.

- this 1s equivalent to ['T,H] = 0. The commutator

of T & H vanishes; they commute!

—> . They share a set of eigenfunctions.

o In other words: The eigenfunction (electron
wavetunction!) 1in a periodic crystal has the form:

W, (X) = e** u, (X) with up(X) = ug(x+a)
= “Bloch’s Theorem’




Bloch’s Theorem:

From Translational Symmetry
e For a periodic potential V(x), the eigenfunctions
of H (wavefunctions of the ¢) have the form:
Wi (X) = e'™ u, (x) with u (X) = u,(x+a)

= “Bloch Functions”
° Recall for a free B the wavefunctions have the form:

<oyt (x) = e® (aplane wave)
= A Bloch Function 1s the generalization of a
plane wave for an e in periodic potential. Itisa
plane wave modulated by a periodic function
uk(x) (Wlth the same perlod as V(X))




Bandstructure: A One Dimensional Model

*So, the wavefunctions of the e 1n a
perfect per1odlc erystal M UST have the
Bloch Function form:

v, (X) = ey (x), u (x) =u, (x+a) (1)
e This 1s easily generalized to & proven in 3 D!!

] .abel the eigenfunctions & eigenvalues
(Ek) by the wavenumber K:

p = hK = the ¢ *“Quasi-Momentum”
r “Crystal Momentum”.




_Bandstructure: A One Dimensional Model
*The e” wavetunctions in a perfect,
. periodic crystal are Bloch Functions:

Y(x) = elkxuk(x)a u,.(X) =u.(x +a) (1)
p = hk =e¢ “Quasi-Momentum’
“Crystal Momentum’’.

P hk = Electron Mome_ntum '
for FREE es ONLY!



Bandstructure: A One Dimensional Model

* Free e~ wavefunctions are plane waves: ', (X) = e
which are also eigenfunctions of the momentum
operator p = -ih(d/0x) with eigenvalue hk.

* By contrast, the wavefunctions for ¢ ‘s in ‘bands
are Bloch Functions (see (1) on previous slide!) which
are NOT eigenfunctions of the momentum operator.

* The e momentum for a Bloch Electron state
Y.(x) 1s the QM expectation value of the
momentum operator in that state:

<p> = <y . (X)|ply (x)> = Integral of
[_{\I’k(X)} P{\I’k(X)}] over all X 7 hk _




* The Schrodinger Equation for an
~ electron 1n a periodic potential 1s:
Hy, (x) = Ey (x)

,.(X) must have the Bloch Function form:
Y (x) = e (x), u(x)=u(x+a)
E, = The Electronic “‘Bandstructure’.

* One way to plot K, 1S 1n '
- 'The “Extended Zone Scheme”

= A plot of E, with no restriction on k



E, = The Electronic “Bandstructure’
* The wavefunctions y, (x) must be
Bloch Functions:

g (x) = e (x), u(x) = u(x + a) @)

* Another way to plot E, 1s to first consider the
- Bloch Function in (1) & look at the 1dentity:

exp[i{k + (2ntn/a) }a] = explika] (ntegern)
= The label k & the label [k + (2zn/a)]

w e Vi(X) (& the same energy)!



E, = The Electronic “Bandstructure '
* In other words, ' '

Translational symmetry in the lattzce.
= Translational symmetry in
- the Reciprocal Lattice!

* So, we can plot E, vs. k & restrict K to the range
- =(mla) < k< (mfa) = .
“The First Brillouin Zone” (BZ.)

“(k outside this range gives redundant information!)

= The “_Reduc_ed Zone Sch_eme”



Bandstructure: E versus k

~Example Hllustration
 The Extended & Reduced Zone
Schemes in 1d with the free electron energy:

E, = (h*k*)/2m )
* Note: Obviously, for free e’s there
are no bands' In what follows, the

~ 1d lattice symmetry (with period a)

1s imposed onto the free e parabola.



Free e “bandstructure in the 1d Extended

" Zone scheme: E, = (h’k?)/(2m,)
_. —
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Free e “bandstructure” in the 1d Reduced

Zone scheme: K, = (hzkz)/(Zm )

e For k outside the 15t BZ, take

E, & translate 1t into the 15 BZ-

by adding a recnprocal lattlce
Vector:

+(7tn/a) to k-

* That 15, use the translational
symmetry 1n K-space just
discussed.

- +(mn/a) = “Reciprocal

Lattice Vector’
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Bandstructure: Now, illustrate these concepts
with an EXACT 1d model calculation (Kittel Ch. 7)

The Kronig-Penney Model
Developed in the 1930’s.
e Discussed in detail in MANY Solid State
Physics & Quantum Mechanics books.

Why do this simple model?

e It’s solution contains MANY features of real, 3d
bandstructures! The results are ““easily”
understood. The math can be done exactly. We
won’t do this 1n class. It 1s 1n many books,
including Kittel!




The Kronig-Penney Model
- Why do this simple model?

e [t’s solution contains MANY features of real, 3d
bandstructures! The results are “easily” understood. The
math can be done exactly. We won’t do this in class It s

~in many books, including Kittel! |

21 Century Reason to do thls simple model'
It can be used as a prototype for the
understanding of artificial

semiconductor structures called

S ugerlattwes /



“First, a OM Review: The 1d (finite) Rectangular
Potential Well. Discussed 1in most QM texts!!
+ We want to solve the Schrodinger Equation for:

V
- We want bound l
stdates: ¢ <V
The Schrodinger
Equation
! , | Rectangular PDtEI’ltldl well

[ {h2/(2m )}(d2/dX2) + Vv =¢y (¢=E)
0,-(b/2) <x<(b/2); V=V_otherwise




Solve the Schrb’dinger' EquatiOn"
I- {h2/(2m )}(dZ/dxz) + V]\|1 = gy
&=E)V=0, -(b/2) < x < (b/2)
| ST = V 0therw1se

Bound States i m Region II

Reglon II \|I(X) 1s osallatory 4

Reglons | & III \y(x) 1S decaymg gf! Vv
h ) o
: Finite rcc‘tangu[nr pﬂ!Eﬂhﬂ[ - Region I Region II | Region III
|well. (a) The potential function V(x) and| Px)
lenergy spectrum. (b) Typical structure of a / \ /\ [\ :
bound eigenstate. Function oscillates in region '- .
II where kinetic energy is positive and decays| x
fin regions I and III, where kinetic energy is|°

. Inepative.
F E (b)




~ The 1d (finite) Rectangular Potential Well.
| | A brief math summary!
e Define: o2 = (2m £)/(h2); B’=[2m (s-V )]/(hz)
* The Schrodinger Equation becomes:
(ddx?) y+ o’y = 0, -(2)b<x < (¥2)b.
(d?/dx?) v - [32\|1 0, otherwise

‘eSolutions: .. .
y = Cexp(iox) +Dexp(-iax), -(V2)b < x < (1/2)b
Wy = Aexp(px), | | x < =(*2)b
v = Aexp(-px), ,_ | _ x> ()b

~ - Boundary Conditions:
e \|1 & dy/dx are continuous. So



*Algebra (2 pages!) leads to:
(e/V,) = (h*e?)/2m V)
°g, 0, P are related to each other by
transcendental equations.
e For Example: _ |
tan(ab) = Qap)/(a *- %)
* Solve graphically or numerically.
e Get: Discrete energy levels in the well
(a finite number of finite well levels!)



: Even E1 enfunction éolﬁtioﬁs (a finité hﬁmber) o
Clrcle, §2 + n = P 5 Crosses, 'l ﬁtan(g)
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Odd Elgenfunctlon Solutlons (a f1n1te number)
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The Kronig-Penney Model

Repeat distance a = b + ¢. Periodic potential V(x) = V(x + na), n = integer

Perlodlcally Repeated
Wells & Barriers——
Schrodinger Equation:
|- {h2/(2m )} (d?/dx?)

4 V)l = 2y
V(x) = Periodic Potential

'\Y

Vs

le—— D —o

- C —— Q —=

|

= The Wavefunctions must have the Bloch
~Form: y,.(X) = e 1, (X); u(X) = uk(X+a)
* Boundary conditions at x = 0, b: |
v, (d\|l/dX) are contmuous e




Quantum Wells & Superlattlces
Bulk Semlconductors Egztaxlal Layer ' .

o

R e

" 50nm 5 nm 50 nm -

- In Energy Space

Conduction Bands o) o |
/ l K Conductwn Band

Discrete )
Energy
Levels

\ [ / o Valence Band

Valence Bands = " “Quantum Well’’




‘e Algebra &Calculus glve A MESS’
¢ But doable EXACTLY! Instead of an exphc1t'
. form for the bandstructure g, or &(k), we get '

k=k(e) = (1/a) cos'[L(e/V )| OR
L= L(s/V )= cos(ka) WHERE

Gt Wl B e N

o Sk ik sinh \/ 2::0 (1 —;) c| sin (\/ ZI;VO; b) '
2\/(3/ o) — (e/Vo)* L o/ 0

- [2m Vo € 2mVy &
+ cosh \/ P (1 —ﬁ;) c] cOS (\/ 2 Vub)




L =L(g/V,) =cos(ka) = -1< L< 1
e The ¢ 1n this range are the allowed energies
- (The Allowed BANDS!)
e But also, L(¢/V ) = a messy function with no limit on L
* The k’s in the range where |L| >1 are imaginary.

= These are regions of forbidden energy.
(The Forbidden GAPS!) '

e No solutions exist there for real k; math solutions exist,
but with imaginary k!
e The wavefunctions have the Bloch form for all K (& all L):
Y, (x) = e*Xu, (x)
= For 1mag1nary K, \|1k(x) decays 1nstead of propagatmg'



Kronlg Penney Results For partlcular a, b ¢, V,
e Each band has a finite
well level “parent”: |

L(S/V ) = cos(ka) . | //////// ' Well

0 Leveld
CSLakLRL _,
| 777
e But also L(g/V A A / / /// // / / \
a messy function with no ) /% / (/L[] / e,
limits. For & in the range EN T

- -1<L<1 :>lees
Allowed Energles (Bands ’)



Kronlg Penney Results For partlcular a, b ¢, V,
e Each band has a finite i

£,

well level “parent”: |
| -.. Finite

L(g/V,) = cos(ka) - | //////// < wenk_

_ _ o - Levelq
M Lo X D )
| | |1 777
e But also L(e/V,)) =« © [ / / /)] / / =,
a messy function with no ) & 7777 [// / BT
limits. For £ in the range EN T

o B dl St lees |
F orbldden Energles (Gaps ’)



o Every band in the Kronig-Penney model has a finite
well discrete level as its “parent™! = In its
implementation, the Kronig-Penney model is similar to
the *‘almost free’’ e approach, but the results are
similar to.the tightbinding approach! (As we’ll see).
Each band is associated with an “atomic’ level from the well.

(a) (b)

(a) Single isolated finite potential well with two bound states. (b) Corresponding perioang
potential with two energy bands. For N wells each band contains N states.

‘The figure is a schematic representation of the
-evolution from the finite well fg the periodic potential.




More on the Kronig-Penney Solutions

L(e/V,) = cos(ka) = BANDS & GAPS!
» The Gap Size depends on the ¢/b ratio

* Within a band (previous Figure) a good approximation is that
L. ~ a linear function of €. Use this to simplity the results:

e For (say) the lowest band, lete=¢, (L=:1) & e=¢,(L = 1)
use the linear approximation for L(e/V ). Invert this & get:

a_'(k) (Y2) (&,+ €¢) - (2)(¢, - sl)cos(ka)
For the next lowest band, .

£ (k) = (%) (g4+ 83) + (Va)(g,— 83)cos(ka)
e In this approximation, all bands are cosine

functions!!! This 1s identical, as we'll see, to
some snnple tlghtblndlng results




The Lowest Kronig-Penney Bands

* In the linear approx1mat10n ‘
for L(e/V, ) ' S— \ /
£ = (h2k2)/(2m,)

All Bands are cos( ka) >/R" ,.,C,Lm
1

Functions!
 The figure shows the bands in
this approximation, plotted in foroi
. the extended zone scheme.
Note the discontinuities in the
‘bands at the BZ edges:

» Koz +(n7t/a)

. Because of the periodicity of £(k), the reduced zone
~ scheme (red) gives the same information as the
extended zone scheme (as is true in general).

f=— reduced zone —e




