The Bandstructure Problem

A One-Dimensional Model ("easily generalized" to 3D!)

Bandstructure Problem: A One Dimensional Model

- One e- Hamiltonian: $\mathbf{H}=(\mathbf{p})^{2} /\left(\mathbf{2 m}_{0}\right)+\mathbf{V}(\mathbf{x})$
$\mathbf{p} \equiv-\mathbf{i} h(\partial / \partial \mathbf{x}), \mathbf{V}(\mathbf{x}) \equiv \mathbf{V}(\mathbf{x}+\mathbf{a}) \equiv$ Effective Potential.
- \mathbf{V} has translational symmetry with repeat distance $=\mathbf{a}$.
- GOAL: Solve the Schrödinger Equation: $\mathbf{H} \psi_{\mathbf{k}}(\mathbf{x})=\mathbf{E}_{\mathbf{k}} \Psi_{\mathbf{k}}(\mathbf{x}), \mathbf{k} \equiv$ Eigenvalue Label $\mathbf{E}_{\mathbf{k}}=$ Electronic Energy of the \mathbf{e}^{-}in state \mathbf{k} $\Psi_{\mathbf{k}}(\mathbf{x})=$ Wavefunction of the \mathbf{e}^{-}in state \mathbf{k}
- Define a Translation operator $\equiv \mathbf{T}$.

T is defined, for any function $\mathbf{f}(\mathbf{x})$, as

$$
T f(x) \equiv f(x+a)
$$

- Now consider the Translation Operator \mathbf{T} for this one dimensional solid: $\mathbf{T} \mathbf{f}(\mathbf{x}) \equiv \mathbf{f}(\mathbf{x}+\mathbf{a})$
-Take the special case for which $f(\mathbf{x})=\psi_{\mathbf{k}}(\mathbf{x})$
- That is, for $\mathbf{f}(\mathbf{x})=$ an eigenfunction solution of the Schrödinger Equation
- Definition of $\mathbf{T}: \mathbf{T} \psi_{\mathbf{k}}(\mathbf{x})=\psi_{k}(\mathbf{x}+\mathbf{a})$
- Look for the eigenvalues of T:

$$
\begin{equation*}
T \psi_{k}(\mathbf{x}) \equiv \lambda_{k} \psi_{k}(\mathbf{x}) \tag{2}
\end{equation*}
$$

$\lambda_{k} \equiv$ Eigenvalue of \mathbf{T}. It can be shown using (1) \& (2) that:

$$
\begin{gathered}
\lambda_{k} \equiv \mathbf{e}^{i k a} \text { and } \boldsymbol{\psi}_{k}(\mathbf{x}) \equiv \mathbf{e}^{i k x} \mathbf{u}_{k}(\mathbf{x}) \\
\text { With } \mathbf{u}_{k}(\mathbf{x}) \equiv \mathbf{u}_{\mathbf{k}}(\mathbf{x}+\mathbf{a}) \\
\text { (see Kittel's book for proof) }
\end{gathered}
$$

- This Shows: The translation operator applied to an eigenfunction of the Schrödinger Equation (or of Hamiltonian H, with a periodic potential) gives:

$$
T \psi_{k}(x)=e^{i k a} \psi_{k}(x)
$$

$\Rightarrow \psi_{k}(x)$ is also an eigenfunction of the translation operator T!

- This also shows that the general form of $\psi_{k}(x)$ is $\psi_{k}(x)=e^{i k x} u_{k}(x)$, where $u_{k}(x)=u_{k}(x+a)$ $\mathbf{u}_{\mathrm{k}}(\mathbf{x})=$ a periodic function with
the same period as the potential!
- In other words: For a periodic potential $\mathbf{V}(\mathbf{x})$, with period $a, \psi_{k}(x)$ is a simultaneous eigenfunction of the translation operator \mathbf{T} and the Hamiltonian \mathbf{H}.
- The Commutator Theorem of QM tells us that this is equivalent to $[\mathbf{T}, \mathbf{H}]=\mathbf{0}$. The commutator of T \& H vanishes; they commute!
\Rightarrow They share a set of eigenfunctions.
- In other words: The eigenfunction (electron wavefunction!) in a periodic crystal has the form:

$$
\begin{gathered}
\psi_{k}(x)=e^{i k x} u_{k}(x) \text { with } u_{k}(x)=u_{k}(x+a) \\
\equiv \text { 'Bloch's Theorem" }
\end{gathered}
$$

Bloch's Theorem:

From Translational Symmetry

- For a periodic potential $\mathbf{V}(\mathbf{x})$, the eigenfunctions of \mathbf{H} (wavefunctions of the e^{-}) have the form:

$$
\begin{aligned}
\Psi_{k}(x) & =e^{i k x} \mathbf{u}_{k}(x) \text { with } \mathbf{u}_{k}(x)=\mathbf{u}_{k}(x+a) \\
& \equiv{ }^{6} \text { Bloch Functions } "
\end{aligned}
$$

- Recall, for a free e-, the wavefunctions have the form:

$$
\psi_{k}^{f}(x)=e^{i k x} \quad \text { (a plane wave) }
$$

\Rightarrow A Bloch Function is the generalization of a plane wave for an e^{-}in periodic potential. It is a plane wave modulated by a periodic function $\mathbf{u}_{\mathbf{k}}(\mathbf{x})$ (with the same period as $\mathrm{V}(\mathbf{x})$).

Bandstructure: A One Dimensional Model

 - So, the wavefunctions of the e^{-}in a perfect, periodic crystal MUST have the Bloch Function form: $\psi_{k}(x)=e^{i k x} u_{k}(x), u_{k}(x)=u_{k}(x+a)$ (1)- This is easily generalized to \& proven in $3 \mathrm{D}!$!
-Label the eigenfunctions \& eigenvalues $\left(\mathbf{E}_{\mathbf{k}}\right)$ by the wavenumber \mathbf{k} :
$\mathrm{p}=\hbar \mathrm{k} \equiv$ the e^{-6} Quasi-Momentum"
or ${ }^{66}$ Crystal Momentum".

Bandstructure: A One Dimensional Model -The e wavefunctions in a perfect, periodic crystal are Bloch Functions: $\psi_{k}(x)=e^{i k x} u_{k}(x), u_{k}(x)=u_{k}(x+a)$ (1) $p=\hbar k \equiv \mathrm{e}^{-66}$ Ouasi-Momentum"

or ${ }^{66}$ Crystal Momentum".

$p=\hbar k=$ Electron Momentum
for FREE e-s ONLY!

Bandstructure: A One Dimensional Model

- Free e^{-}wavefunctions are plane waves: $\psi_{k}^{\mathrm{f}}(\mathrm{x})=\mathrm{e}^{\mathrm{ikx}}$ which are also eigenfunctions of the momentum operator $\mathbf{p} \equiv-i \hbar(\partial / \partial \mathbf{x})$ with eigenvalue $\mathbf{h k}$.
- By contrast, the wavefunctions for e^{-}'s in bands are Bloch Functions (see (1) on previous slide!) which are NOT eigenfunctions of the momentum operator.
- The e momentum for a Bloch Electron state $\psi_{k}(\mathbf{x})$ is the QM expectation value of the momentum operator in that state:
$\langle p\rangle=\left\langle\psi_{k}(x)\right| p\left|\psi_{k}(x)\right\rangle \equiv$ Integral of
$\left[\left\{\psi_{k}(x)\right\}^{*} p\left\{\psi_{k}(x)\right\}\right]$ over all $x \neq \hbar k$
- The Schrödinger Equation for an electron in a periodic potential is:

$$
H \psi_{k}(x)=E_{k} \psi_{k}(x)
$$

$\Psi_{k}(x)$ must have the Bloch Function form:

$$
\Psi_{k}(x)=e^{i k x} \mathbf{u}_{k}(x), \mathbf{u}_{k}(x)=\mathbf{u}_{k}(x+\mathbf{a})
$$

$$
\mathrm{E}_{\mathrm{k}} \equiv \text { The Electronic "Bandstructure". }
$$

- One way to plot E_{k} is in The "Extended Zone Scheme"
\equiv A plot of $\mathbf{E}_{\mathbf{k}}$ with no restriction on \mathbf{k}

$\mathrm{E}_{\mathrm{k}} \equiv$ The Electronic "Bandstructure"

- The wavefunctions $\psi_{k}(\mathbf{x})$ must be

Bloch Functions:

$$
\begin{equation*}
\Psi_{k}(x)=e^{i k x} u_{k}(x), \quad u_{k}(x)=u_{k}(x+a) \tag{1}
\end{equation*}
$$

- Another way to plot \mathbf{E}_{k} is to first consider the Bloch Function in (1) \& look at the identity: $\exp [i\{k+(2 \pi n / a)\} a] \equiv \exp [i k a]$ (integer n) \Rightarrow The label k \& the label $[k+(2 \pi n / a)]$ give the same $\psi_{k}(\mathrm{x})$ (\& the same energy)!

$\mathrm{E}_{\mathrm{k}} \equiv$ The Electronic "Bandstructure"

- In other words,

Translational symmetry in the lattice
\Rightarrow Translational symmetry in
the Reciprocal Lattice!

- So, we can plot $\mathbf{E}_{\mathbf{k}}$ vs. \mathbf{k} \& restrict \mathbf{k} to the range

$$
-(\pi / \mathbf{a})<\mathbf{k}<(\pi / \mathbf{a}) \equiv
$$

"The First Brillouin Zone" (BZ)
(k outside this range gives redundant information!)
三 The "Reduced Zone Scheme"

Bandstructure: E versus k

Example Illustration

- The Extended \& Reduced Zone

Schemes in $1 d$ with the free electron energy:

$$
E_{k}=\left(\hbar^{2} k^{2}\right) /\left(2 m_{0}\right)
$$

- Note: Obviously, for free e^{-9} s there are no bands! In what follows, the 1d lattice symmetry (with period a) is imposed onto the free e^{-}parabola.

Free e-"bandstructure" in the 1d Extended Zone scheme: $\mathbf{E}_{\mathrm{k}}=\left(\mathbf{h}^{2} \mathbf{k}^{2}\right) /\left(\mathbf{2 m}_{0}\right)$

Free e- "bandstructure" in the 1d Reduced

 Zone scheme: $\mathrm{E}_{\mathrm{k}}=\left(\mathbf{h}^{2} \mathbf{k}^{2}\right) /\left(2 \mathrm{~m}_{0}\right)$- For k outside the $1^{\text {st }} \mathrm{BZ}$, take E_{k} \& translate it into the $1^{\text {st }} \mathrm{BZ}$ by adding a reciprocal lattice Vector:

$\pm(\pi n / a)$ to k

- That is, use the translational symmetry in k-space just discussed.

$$
\begin{gathered}
\pm(\pi n / a) \equiv " \text { Reciprocal } \\
\text { Lattice Vector" }
\end{gathered}
$$

Bandstructure: Now, illustrate these concepts

 with an EXACT id model calculation (Kittel Ch. 7)$$
\begin{aligned}
& \text { The Krönig-Penney Model } \\
& \text { Developed in the } 1930 \text { 's. }
\end{aligned}
$$

- Discussed in detail in MANY Solid State Physics \& Quantum Mechanics books. Why do this simple model?
- It's solution contains MANY features of real, 3d bandstructures! The results are "easily" understood. The math can be done exactly. We won't do this in class. It is in many books, including Kittel!

The Krönig-Penney Model Why do this simple model?

- It's solution contains MANY features of real, 3 d bandstructures! The results are "easily" understood. The math can be done exactly. We won't do this in class. It is in many books, including Kittel!
$21^{\text {st }}$ Century Reason to do this simple model!
It can be used as a prototype for the understanding of artificial semiconductor structures called
Superlattices!

First, a OM Review: The 1d (finite) Rectangular

 Potential Well. Discussed in most QM texts!!-We want to solve the Schrödinger Equation for:

We want bound
states: $\varepsilon<V_{0}$
The Schrödinger

Equation

$$
\begin{gathered}
{\left[-\left\{\mathbf{\hbar}^{2} /\left(2 \mathrm{~m}_{0}\right)\right\}\left(\mathrm{d}^{2} / \mathrm{dx} \mathbf{x}^{2}+\mathbf{V}\right] \psi=\varepsilon \psi(\varepsilon \equiv \mathbf{E})\right.} \\
\mathbf{V}=\mathbf{0},-(\mathrm{b} / 2)<\mathrm{x}<(\mathrm{b} / 2) ; \mathbf{V}=\mathbf{V}_{0} \text { otherwise }
\end{gathered}
$$

Solve the Schrödinger Equation:

$$
\begin{aligned}
& {\left[-\left\{\hbar^{2} /\left(2 \mathrm{~m}_{0}\right)\right\}\left(\mathrm{d}^{2} / \mathrm{dx} \mathrm{x}^{2}+\mathrm{V}\right] \psi=\varepsilon \psi\right.} \\
& (\varepsilon \equiv \mathrm{E}) \mathrm{V}=0,-(\mathrm{b} / 2)<\mathrm{x}<(\mathrm{b} / 2)
\end{aligned}
$$

$$
V=V_{0} \text { otherwise }
$$

Bound States in Region II

 Region II: $\psi(\mathbf{x})$ is oscillatory Regions I \& III: $\psi(\mathbf{x})$ is decayingFinite rectangular potential well. (a) The potential function $V(x)$ and energy spectrum. (b) Typical structure of a bound eigenstate. Function oscillates in region II where kinetic energy is positive and decays in regions I and III, where kinetic energy is negative.

The 1d (finite) Rectangular Potential Well A brief math summary!

- Define: $\alpha^{2} \equiv\left(2 m_{0} \varepsilon\right) /\left(\hbar^{2}\right) ; \boldsymbol{\beta}^{2} \equiv\left[2 m_{0}\left(\varepsilon-V_{0}\right)\right] /\left(\hbar^{2}\right)$
- The Schrödinger Equation becomes:
$\left(d^{2} / d x^{2}\right) \psi+\alpha^{2} \psi=0, \quad-(1 / 2) b<x<(1 / 2) b$
$\left(d^{2} / d x^{2}\right) \psi-\beta^{2} \psi=0, \quad$ otherwise
- Solutions:

$$
\begin{array}{ll}
\psi=\operatorname{Cexp}(\mathbf{i} \alpha \mathbf{x})+\operatorname{Dexp}(-i \alpha x),-(1 / 2) \mathbf{b}<x<(1 / 2) \mathbf{b} \\
\psi=A \exp (\beta \mathbf{x}), & x<-(1 / 2) \mathbf{b} \\
\psi=A \exp (-\beta \mathbf{x}), & x>(1 / 2) \mathbf{b}
\end{array}
$$

Boundary Conditions:

$\Rightarrow \psi \& d \psi / d x$ are continuous. So:

- Algebra (2 pages!) leads to:

$$
\left(\varepsilon / \mathbf{V}_{0}\right)=\left(\hbar^{2} \alpha^{2}\right) /\left(2 m_{0} V_{0}\right)
$$

$-\varepsilon, \alpha, \beta$ are related to each other by transcendental equations.

- For Example:

$$
\tan (\alpha b)=(2 \alpha \beta) /\left(\alpha^{2}-\beta^{2}\right)
$$

- Solve graphically or numerically.
- Get: Discrete energy levels in the well (a finite number of finite well levels!)

Even Eigenfunction solutions (a finite number):

 Circle, $\xi^{2}+\eta^{2}=\rho^{2}, \quad$ Crosses, $\eta=\xi \tan (\xi)$

Odd Eigenfunction solutions (a finite number): Circle, $\xi^{2}+\eta^{2}=\rho^{2}$, Crosses, $\eta=-\xi \cot (\xi)$

The Krönig-Penney Model

Repeat distance $\mathbf{a}=\mathbf{b}+\mathbf{c}$. Periodic potential $\mathbf{V}(\mathbf{x})=\mathbf{V}(\mathbf{x}+\mathbf{n a}), \mathbf{n}=$ integer

Periodically Repeated

 Wells \& Barriers.Schrödinger Equation:
$\left[-\left\{\mathbf{h}^{2} /\left(2 \mathrm{~m}_{0}\right)\right\}\left(\mathrm{d}^{2} / \mathrm{dx}^{2}\right)\right.$ $+\mathbf{V}(\mathbf{x})] \psi=\varepsilon \psi$
$\mathbf{V}(\mathrm{x})=$ Periodic Potential

\Rightarrow The Wavefunctions must have the Bloch
Form: $\psi_{k}(x)=e^{i k x} u_{k}(x) ; u_{k}(x)=u_{k}(x+a)$

- Boundary conditions at $\mathbf{x}=\mathbf{0}, \mathbf{b}$: $\psi,(d \psi / d x)$ are continuous \Rightarrow

Quantum Wells \& Superlattices

Bulk Semiconductors Epitaxial Layers

Valence Bands

- Algebra \& Calculus give: A MESS!
- But doable EXACTLY! Instead of an explicit form for the bandstructure $\varepsilon_{\mathbf{k}}$ or $\boldsymbol{\varepsilon}(\mathbf{k})$, we get:

$$
\begin{gathered}
\mathrm{k}=\mathrm{k}(\varepsilon)=(1 / \mathrm{a}) \cos ^{-1}\left[\mathrm{~L}\left(\varepsilon / \mathrm{V}_{0}\right)\right] \underline{O R} \\
\mathrm{~L}=\mathrm{L}\left(\varepsilon / \mathrm{V}_{0}\right)=\cos (\mathrm{ka}) \text { WHERE} \\
\mathrm{L}=\mathrm{L}\left(\varepsilon / \mathrm{V}_{0}\right)=
\end{gathered}
$$

$$
\begin{gathered}
L=\frac{1-2 \varepsilon / V_{0}}{2 \sqrt{\left(\varepsilon / V_{0}\right)-\left(\varepsilon / V_{0}\right)^{2}}} \sinh \left[\sqrt{\frac{2 m V_{0}}{\hbar^{2}}\left(1-\frac{\varepsilon}{V_{0}}\right)} c\right] \sin \left(\sqrt{\frac{2 m V_{0}}{\hbar^{2}} \frac{\varepsilon}{V_{0}}}\right) \\
+\cosh \left[\sqrt{\frac{2 m V_{0}}{\hbar^{2}}\left(1-\frac{\varepsilon}{V_{0}}\right)} c \cos \left(\sqrt{\frac{2 m V_{0}}{\hbar^{2}} \frac{\varepsilon}{V_{0}}} b\right)\right.
\end{gathered}
$$

$$
\mathbf{L}=\mathbf{L}\left(\varepsilon / \mathbf{V}_{0}\right)=\cos (k a) \Rightarrow-1<L<1
$$

-The ε in this range are the allowed energies
(The Allowed BANDS!)

- But also, $\mathbf{L}\left(\varepsilon / \mathbf{V}_{0}\right)=$ a messy function with no limit on \mathbf{L}
- The k's in the range where $|\mathbf{L}|>1$ are imaginary. \Rightarrow These are regions of forbidden energy.
(The Forbidden GAPS!)
- No solutions exist there for real \mathbf{k}; math solutions exist, but with imaginary \mathbf{k} !
- The wavefunctions have the Bloch form for all $\mathbf{k}(\&$ all $\mathbf{L})$:

$$
\psi_{k}(x)=e^{i k x} u_{k}(x)
$$

\Rightarrow For imaginary $\mathbf{k}, \Psi_{\mathbf{k}}(\mathbf{x})$ decays instead of propagating!

Krönig-Penney Results: For particular a, b, c, $\mathbf{V}_{\text {ol }}$

- Each band has a finite well level "parent":

$$
\begin{gathered}
L\left(\varepsilon / \mathbf{V}_{0}\right)=\cos (k a) \\
\Rightarrow-1<L<1
\end{gathered}
$$

- But also $\mathrm{L}\left(\varepsilon / \mathrm{V}_{\mathrm{o}}\right)=$ a messy function with no limits. For ε in the range
(sond

$$
-1<\mathrm{L}<1 \Rightarrow \text { Gives }
$$

Allowed Energies (Bands!)

Krönig-Penney Results: For particular a, b, c, $\mathbf{V}_{\text {ol }}$

- Each band has a finite well level "parent":

$$
\begin{gathered}
L\left(\varepsilon / \mathbf{V}_{0}\right)=\cos (k a) \\
\Rightarrow-1<L<1
\end{gathered}
$$

- But also $\mathrm{L}\left(\varepsilon / \mathrm{V}_{\mathrm{o}}\right)=$ a messy function with no limits. For ε in the range
(sond

$|\mathbf{L}|>1 \Rightarrow$ Gives
 Forbidden Energies (Gaps!)

- Every band in the Krönig-Penney model has a finite well discrete level as its "parent"' \Rightarrow In its implementation, the Krönig-Penney model is similar to the "almost free" e - approach, but the results are similar to the tightbinding approach! (As we'll see).
Each band is associated with an "atomic" level from the well.
(b)
(a)
(a) Single isolated finite potential well with two bound states. (b) Corresponding perioner
potential with two energy bands. For N wells each band contains N states.

The figure is a schematic representation of the evolution from the finite well to the periodic potential.

More on the Krönig-Penney Solutions

 $\mathrm{L}\left(\varepsilon / \mathrm{V}_{0}\right)=\cos (\mathrm{ka}) \Rightarrow$ BANDS \& GAPS! - The Gap Size depends on the c / b ratio- Within a band (previous Figure) a good approximation is that $\mathbf{L} \sim$ a linear function of ε. Use this to simplify the results:
- For (say) the lowest band, let $\varepsilon \equiv \varepsilon_{1}(\mathbf{L}=-1) \& \varepsilon \equiv \varepsilon_{2}(\mathbf{L}=1)$ use the linear approximation for $\mathbf{L}\left(\boldsymbol{\varepsilon} / \mathbf{V}_{0}\right)$. Invert this \& get: $\varepsilon(k)=(1 / 2)\left(\varepsilon_{2}+\varepsilon_{1}\right)-(1 / 2)\left(\varepsilon_{2}-\varepsilon_{1}\right) \cos (k a)$ For the next lowest band,
$\varepsilon_{+}(k)=(1 / 2)\left(\varepsilon_{4}+\varepsilon_{3}\right)+(1 / 2)\left(\varepsilon_{4}-\varepsilon_{3}\right) \cos (k a)$
- In this approximation, all bands are cosine functions!!! This is identical, as we'll see, to some simple tightbinding results.

The Lowest Krönig-Penney Bands

- In the linear approximation for $L\left(\varepsilon / V_{0}\right)$:

All Bands are cos(ka)

Functions!

- The figure shows the bands in this approximation, plotted in the extended zone scheme.
Note the discontinuities in the bands at the BZ edges:

$$
k= \pm(n \pi / a)
$$

- Because of the periodicity of $\varepsilon(\mathbf{k})$, the reduced zone scheme (red) gives the same information as the extended zone scheme (as is true in general).

