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Bandstructure Problem:
A One Dimensional Model

• One e- Hamiltonian: H = (p)2/(2mo) + V(x)
p  ≡ -iħ(∂/∂x), V(x) ≡ V(x + a) ≡ Effective Potential.

• V has translational symmetry with repeat distance = a.

•GOAL: Solve the Schrödinger Equation:

H (x) = E (x),  k Eigenvalue LabelHψk(x) = Ekψk(x),  k ≡ Eigenvalue Label

Ek = Electronic Energy of the e- in state k
ψk(x) = Wavefunction of the e- in state k

• Define a Translation operator ≡ T.

T is defined, for any function f(x), as

T f(x) ≡ f(x + a)



•Now consider the Translation Operator T for 

this one dimensional solid:  T f(x) ≡ f(x + a)
•Take the special case for which f(x) = ψk(x)

– That is, for f(x) = an eigenfunction solution of the 

Schrödinger Equation

• Definition of T:  Tψk(x) = ψk(x + a)   (1)

• Look for the eigenvalues of T:• Look for the eigenvalues of T:

Tψk(x) ≡ λkψk(x)       (2)
λk ≡ Eigenvalue of T. It can be shown using (1) & (2) that:

λk ≡ eika and ψk(x) ≡ eikx uk(x)
With uk(x) ≡ uk(x + a)

(see Kittel’s book for proof)



• This Shows:: The translation operator applied to 

an eigenfunction of the Schrödinger Equation (or 

of Hamiltonian H, with a periodic potential) gives:

Tψk(x) = eika ψk(x) 
⇒ ψk(x) is also an eigenfunction of the

translation operator T!translation operator
• This also shows that the general form of ψk(x) is

ψk(x) = eikx uk(x), where uk(x) = uk(x+a) 

uk(x) = a periodic function with

the same period as the potential!



• In other words: For a periodic potential V(x), with 

period a, ψk(x) is a simultaneous eigenfunction of the 

translation operator T and the Hamiltonian H.
• The Commutator Theorem of QM tells us that 

this is equivalent to [T,H] = 0. The commutator 

of T & H vanishes; they commute!

⇒ They share a set of eigenfunctions⇒ They share a set of eigenfunctions.
• In other words: The eigenfunction (electron 

wavefunction!) in a periodic crystal has the form:

ψk(x) = eikx uk(x) with uk(x) = uk(x+a)

≡ “Bloch’s Theorem”



Bloch’s Theorem: 
From Translational Symmetry

• For a periodic potential V(x), the eigenfunctions

of H (wavefunctions of the e-) have the form:

ψk(x) = eikx uk(x) with uk(x) = uk(x+a) 

≡ “Bloch Functions”Bloch Functions
• Recall, for a free e-, the wavefunctions have the form:

ψf
k(x) = eikx (a plane wave)

⇒ A Bloch Function is the generalization of a 

plane wave for an e- in periodic potential. It is a 

plane wave modulated by a periodic function 

uk(x) (with the same period as V(x)). 



Bandstructure: A One Dimensional Model

•So, the wavefunctions of the e- in a 

perfect, periodic crystal MUST have the 

Bloch Function form:

ψk(x) = eikxuk(x),  uk(x) = uk(x + a) (1)
• This is easily generalized to & proven in 3 D!!• This is easily generalized to & proven in 3 D!!

•Label the eigenfunctions & eigenvalues 

(Ek) by the wavenumber k:

p = ħk ≡ the e- “Quasi-Momentum”
or “Crystal Momentum”.



•The e- wavefunctions in a perfect, 

periodic crystal are Bloch Functions:

ψk(x) = eikxuk(x), uk(x) = uk(x + a)  (1)

p = ħk ≡ e- “Quasi-Momentum”

Bandstructure: A One Dimensional Model

p = 

or “Crystal Momentum”.

p = ħk = Electron Momentum

for FREE e-s ONLY!



• Free e- wavefunctions are plane waves: ψf
k(x) = eikx

which are also eigenfunctions of the momentum 

operator p ≡ -iħ(∂/∂x) with eigenvalue ħk.

• By contrast, the wavefunctions for e- ‘s in bands 

are Bloch Functions (see (1) on previous slide!) which  

are NOT eigenfunctions of the momentum operator.

Bandstructure: A One Dimensional Model

are NOT eigenfunctions of the momentum operator.

• The e- momentum for a Bloch Electron state 

ψk(x) is the QM expectation value of the 

momentum operator in that state:

<p> = <ψk(x)|p|ψk(x)> ≡ Integral of

[{ψk(x)}* p{ψk(x)}] over all x ≠ ħk  



• The Schrödinger Equation for an 

electron in a periodic potential is:

Hψk(x) = Ekψk(x)

ψk(x) must have the Bloch Function form:

ψk(x) = eikxuk(x),  uk(x) = uk(x + a)ψk(x) = e uk(x),  uk(x) = uk(x + a)

Ek ≡ The Electronic “Bandstructure”.

• One way to plot Ek is in

The “Extended Zone Scheme”
≡ A plot of Ekwith no restriction on k



Ek ≡ The Electronic “Bandstructure”

• The wavefunctions ψk(x) must be

Bloch Functions:

ψk(x) = eikxuk(x),  uk(x) = uk(x + a) (1)

Another way to plot E is to first consider the • Another way to plot Ek is to first consider the 

Bloch Function in (1) & look at the identity: 

exp[i{k + (2πn/a)}a] ≡ exp[ika] (integer n)

⇒ The label k & the label [k + (2πn/a)]

give the same ψk(x) (& the same energy)!



Ek ≡ The Electronic “Bandstructure”

• In other words,

Translational symmetry in the lattice

⇒ Translational symmetry in

the Reciprocal Lattice!the Reciprocal Lattice
• So, we can plot Ek vs. k & restrict k to the range

-(π/a) <  k < (π/a) ≡
“The First Brillouin Zone” (BZ)
(k outside this range gives redundant information!)

≡ The “Reduced Zone Scheme”



Bandstructure: E versus k

Example Illustration
• The Extended & Reduced Zone

Schemes in 1d with the free electron energy:

Ek = (ħ2k2)/(2m )Ek = (ħ k )/(2mo)
• Note: Obviously, for free e-’s there 

are no bands! In what follows, the 

1d lattice symmetry (with period a) 

is imposed onto the free e- parabola. 



Free e- “bandstructure” in the 1d Extended 

Zone scheme: Ek = (ħ2k2)/(2mo)



• For k outside the 1st BZ, take

Ek & translate it into the 1st BZ

by adding a reciprocal lattice

Vector:

Free e- “bandstructure” in the 1d Reduced 

Zone scheme: Ek = (ħ2k2)/(2mo)

±(πn/a) to k
• That is, use the translational

symmetry  in k-space just

discussed.

±(πn/a) ≡ “Reciprocal 

Lattice Vector”



Bandstructure: Now, illustrate these concepts 

with an EXACT 1d model calculation (Kittel Ch. 7)

The Krönig-Penney Model
Developed in the 1930’s.

• Discussed in detail in MANY Solid State 

Physics & Quantum Mechanics books.Physics & Quantum Mechanics books.

Why do this simple model?
• It’s solution contains MANY features of real, 3d 

bandstructures! The results are “easily” 

understood. The math can be done exactly. We 

won’t do this in class. It is in many books, 

including Kittel!



The Krönig-Penney Model
Why do this simple model?

• It’s solution contains MANY features of real, 3d 

bandstructures! The results are “easily” understood. The 

math can be done exactly. We won’t do this in class. It is 

in many books, including Kittel!

21st Century Reason to do this simple model!21 Century Reason to do this simple model!

It can be used as a prototype for the 

understanding of artificial 

semiconductor structures called

Superlattices!



First, a QM Review: The 1d (finite) Rectangular 
Potential Well. Discussed in most QM texts!!

• We want to solve the Schrödinger Equation for:

We want  bound

states: ε < Vo

[-{ħ2/(2mo)}(d2/dx2) + V]ψ = εψ (ε ≡ E)
V = 0, -(b/2) < x < (b/2);  V = Vo otherwise

The Schrödinger 
Equation

↓



Solve the Schrödinger Equation:

[-{ħ2/(2mo)}(d2/dx2) + V]ψ = εψ

(ε ≡ E) V = 0, -(b/2) < x < (b/2)

V = Vo otherwise

Bound States in Region II

Region II: ψ(x) is oscillatory

Regions I & III (x) is decaying

x = (½)b

V = 0

x = - (½)b

=

Regions I & III: ψ(x) is decaying
-Vo

Region IIIRegion I Region II



The 1d (finite) Rectangular Potential Well
A brief math summary!

• Define: α2 ≡ (2moε)/(ħ
2); β2 ≡ [2mo(ε - Vo)]/(ħ

2)

•The Schrödinger Equation becomes:
(d2/dx2) ψ + α2ψ =  0,   -(½)b < x < (½)b
(d2/dx2) ψ - β2ψ = 0,        otherwise

• Solutions:• Solutions:
ψ = Cexp(iαx) + Dexp(-iαx), -(½)b < x < (½)b

ψ =  Aexp(βx),                  x < -(½)b

ψ = Aexp(-βx), x > (½)b 

Boundary Conditions:
⇒ ψ&  dψ/dx are continuous.  So:



•Algebra (2 pages!) leads to:

(ε/Vo) = (ħ2α2)/(2moVo)
•ε, α, β are related to each other by

transcendental equations.

•For Example:•For Example:
tan(αb) = (2αβ)/(α 2- β2)

• Solve graphically or numerically. 

• Get: Discrete energy levels in the well 

(a finite number of finite well levels!) 



Even Eigenfunction solutions (a finite number):

Circle, ξ2 + η2 = ρ2,     Crosses, η = ξ tan(ξ)

Vo

o

o

b



Odd Eigenfunction solutions (a finite number):

Circle, ξ2 + η2 = ρ2, Crosses, η = -ξ cot(ξ)

Vo

o

b

o



The Krönig-Penney Model
Repeat distance a = b + c.  Periodic potential V(x) = V(x + na), n = integer

Periodically Repeated
Wells & Barriers.

Schrödinger Equation:
[-{ħ2/(2mo)}(d2/dx2) 

+ V(x)]ψ = εψ
V(x) = Periodic Potential

⇒ The Wavefunctions must have the Bloch

Form: ψk(x) = eikx uk(x); uk(x) = uk(x+a)
• Boundary conditions at x = 0, b:  

ψ, (dψ/dx) are continuous ⇒



Quantum Wells & Superlattices

Bulk Semiconductors

A B A

Epitaxial Layers

In Energy Space

A B A
50 nm 5 nm 50 nm

Conduction Bands
Conduction Band

Valence Band

Discrete 

Energy 

Levels

In Energy Space

“Quantum Well”Valence Bands



• Algebra &Calculus give: A MESS!

• But doable EXACTLY! Instead of an explicit 

form for the bandstructure εk or ε(k), we get:

k = k(ε) = (1/a) cos-1[L(ε/Vo)] OR

L = L(ε/Vo) = cos(ka)  WHERE

L = L(ε/Vo) =



L = L(ε/Vo) = cos(ka) ⇒ -1< L< 1 
• The ε in this range are the allowed energies

(The Allowed BANDS!)
• But also, L(ε/Vo) = a messy function with no limit on L

• The k’s in the range where |L| >1 are imaginary.

⇒ These are regions of forbidden energy. These are regions of forbidden energy

(The Forbidden GAPS!)
• No solutions exist there for real k; math solutions exist,

but with imaginary k!

• The wavefunctions have the Bloch form for all k (& all L):

ψk(x) = eikx uk(x)
⇒ For imaginary k, ψk(x) decays instead of propagating!



Krönig-Penney Results: For particular a, b, c, Vo

•Each band has a finite

well level “parent”:

L(ε/Vo) = cos(ka)

⇒ -1< L< 1
• But also L(ε/Vo) = 

← Finite 
Well 
Levels

←

←
a messy function with  no 

limits. For ε in the range

←

←

-1 < L < 1 ⇒ Gives

Allowed Energies (Bands!)
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• Every band in the Krönig-Penney model has a finite 

well discrete level as its “parent”! ⇒ In its 

implementation, the Krönig-Penney model is similar to 

the “almost free” e- approach, but the results are 

similar to the tightbinding approach! (As we’ll see). 

Each band is associated with an “atomic” level from the well.

The figure is a schematic representation of the 

evolution from the finite well to the periodic potential.



L(ε/Vo) = cos(ka) ⇒ BANDS & GAPS!
• The Gap Size depends on the c/b ratio
• Within a band (previous Figure) a good approximation is that 

L ~ a linear function of ε. Use this to simplify the results:

• For (say) the lowest band, let ε ≡ ε1 (L = -1) & ε ≡ ε2 (L = 1) 
use the linear approximation for L(ε/Vo). Invert this & get:

More on the Krönig-Penney Solutions

ε-(k) = (½) (ε2+ ε1) - (½)(ε2 - ε1)cos(ka)
For the next lowest band,

ε+(k)  = (½) (ε4+ ε3) + (½)(ε4 – ε3)cos(ka)
• In this approximation, all bands are cosine 

functions!!! This is identical, as we’ll see, to 

some simple tightbinding results.  



• In the linear approximation 

for L(ε/Vo):
All Bands are cos(ka) 

Functions!
• The figure shows the bands in 

this approximation, plotted in 

the extended zone scheme. 

The Lowest Krönig-Penney Bands

ε = (ħ2k2)/(2m0) 

Note the discontinuities in the 

bands at the BZ edges:

k = ±(nπ/a)

• Because of the periodicity of ε(k), the reduced zone 
scheme (red) gives the same information as the 
extended zone scheme (as is true in general).


