
Brief Quantum Mechanics
(QM) Review

• QM results: Utilization of 

The Schrödinger Equation
(time independent; see next slide) (time independent; see next slide) 

describes electrons.

•Solutions to the Schrödinger 
Equation result in quantized

(discrete) energy levels for electrons.



Quantum Mechanics (QM)
•The Schrödinger Equation:

(time independent)

Hψ =  Eψ
(this is a differential operator eigenvalue equation)

H Hamiltonian operator for the systemH ≡ Hamiltonian operator for the system

E  ≡ Energy eigenvalues
(allowed energies)

ψ ≡ Wavefunction 

Particles are QM waves!



•The Schrödinger Equation:

Hψ =  Eψ
•Particles are QM waves!

|ψ|2  ≡ probability density

|ψ|2 d3r ≡ Probability that an electron |ψ| d r ≡ Probability that an electron 

is in differential volume d3r 
•ψ is a function of ALL coordinates 

of ALL particles in the problem!



Electrons in Periodic 
Crystalline Materials

Reduction to one
Electron Problem



Hamiltonian for a Perfect, Periodic Crystal
Ne electrons, Nn nuclei; Ne , Nn ~ 1023 (huge!)

Notation: i = electron; j = nucleus

• The general, the many-body Classical Hamiltonian:
(Gaussian units!)

H = He + Hn + He-n
He = Pure Electronic Energy = KE(e-)  +  PE(e- - e-)

He= ∑i(pi)
2/(2mi) + (½ )∑i∑i´[e

2/|ri - ri´|]   (i ≠ i´)
Hn = Pure Nuclear Energy  = KE(n)  +   PE(n- n)

Hn= ∑j(Pj)
2/(2Mj) + (½)∑j∑j´[ZjZj´ e2/|Rj - Rj´|] (j ≠ j´)

He-n = Electron-Nuclear Interaction Energy = PE(e- - n)
He-n= - ∑i∑j[Zje

2/|ri - Rj|]
Lower case r, p, m: Electron position, momentum, mass

Upper case R, P, M: Nuclear position, momentum, mass



•The Classical, Many-Body Hamiltonian:

H = He + Hn + He-n
• Three Approximations, rigorously justified 

in many advanced texts (QM & SS), after a 

lot of work, reduce the complexity of the 

problem significantly. This gives: problem significantly. This gives: 

⇒ For electronic properties 
calculations

(bandstructures, etc.) H is reduced to a

One Electron Hamiltonian!



One Electron Hamiltonian!

• This is the usual Starting Point (with no proof) for 

ALL elementary SS physics texts (including 

Kittel’s book) !

What follows is a brief outline of these • What follows is a brief outline of these 

approximations. Details left to the student! 



Approximation #1:
Separate electrons into 2 types:

Core Electrons &
Valence Electrons



• Core Electrons: Those in filled, inner shells 

of the atoms. Play NO role in determining 

the electronic properties of the solid!

Example:
The Si free atom electronic configuration:
Core Electrons = 1s22s22p6 (filled shells!)Core Electrons = 1s 2s 2p (filled shells!)
Localized around the nuclei & play NO role in the bonding.

⇒ Lump the core shells with the Nuclei ≡ Ions
(in ∑i , include only the valence electrons) 

Core Shells + Nucleus ≡ Ion Core

⇒He-n →→ He-i ,  Hn →→ Hi



Valence Electrons
• Those in the unfilled, outer shells of the free 

atoms. These determine the electronic properties 

of the solid and take part in the bonding!

Example:
The Si free atom electron configuration:free atom electron configuration:

1s22s22p63s23p2

Valence Electrons = 3s23p2

(unfilled shells!)

• In the solid, these hybridize with electrons on 

neighbor atoms. This forms strong covalent bonds 

with the 4 Si nearest-neighbors in the Si lattice. 



Approximation #2:
The Born-Oppenheimer

(Adiabatic) Approximation(Adiabatic) Approximation
Separates electron & ion motions.



•Separates the electron & ion motions.
•Rigorous proof needs many body QM.

Qualitative (semi-quantitative)

Justification: The ratio of the electron & 

ion masses is of the order:

(me/Mi) ~ 10-3 ( << 1)
(or smaller!)

⇒ Classically, the massive ions move 

much slower than the very small mass 

electrons!



Typical ionic vibrational frequencies: υi ~ 1013 s-1

⇒ The time scale of the ion motion is: ti ~ 10-13 s 
• Electronic motion occurs at energies of about a bandgap:

Eg= hυe = ħω ~ 1 eV ⇒ υe ~ 1015 s-1 ⇒ te ~ 10-15 s 
• So, classically, 

The electrons respond to the ion motion 

instantaneously!~ instantaneously!
⇒ As far as the electrons are concerned,

the ions are ~ stationary!

⇒ In the electron Hamiltonian, He, 
the ions can be treated as ≈ stationary!



The Large Mass Ions
cannot follow the rapid, detailed motion of 

The Small Mass Electrons.
⇒ The Ions ~ see an Average 

Electron Potential!Electron Potential!
⇒ In the ion Hamiltonian, Hi,
the electrons can be treated in 

an average way!
(As in Chs. 4 & 5 in Kittel on Lattice Vibrations)



• Write the vibrating ion coordinates as

Rj = Rjo + δRj,   Rjo = equilibrium ion positions

δRj = (small) deviation from the equilibrium positions

• The many body electron-ion Hamiltonian is (schematic!):

He i ~ = He i(ri,Rjo) + He i(ri,δRj)

Implementation: Born-Oppenheimer
(Adiabatic) Approximation

He-i ~ = He-i(ri,Rjo) + He-i(ri,δRj)
• The New many body Hamiltonian in this approximation :

H = He(ri) + He-i(ri,Rjo) + Hi(Rj) + He-i (ri,δRj)   (1)
(neglect the last 2 terms in the band calculations) or  
H = HE [1st 2 terms of (1)] + HI [2nd 2 terms of (1)]
Here, HE = Electron Part (gives the energy bands)

HI = Ion Part (gives the phonons in Chs. 4 & 5)



⇒ For electronic properties (bands), this 

allows us to focus on the electronic part of 

the many-body Hamiltonian:

HE = He(ri) + He-i(ri,Rjo)
(schematic):

Summary:Born-Oppenheimer Approx.

(schematic):

He(ri) = electron kinetic energy +

electron-electron (Coulomb) repulsion

He-i(ri,Rjo) = electron (Coulomb)

attraction to the  STATIONARY ions.



⇒ For calculations of electronic 

properties (bands), the vibrating 

Summary:
Born-Oppenheimer

Approximation:

properties (bands), the vibrating 

ion part, HI of the many-body 

Hamiltonian can be neglected.



Born-Oppenheimer Approximation

⇒ Focus on the electronic part of H:

HE = He(ri) + He-i(ri,Rjo)
HE = ∑i(pi)

2/(2mi) + (½)∑i∑i´[e
2/|ri-ri´|] 

- ∑i∑ j[Zje
2/|ri-Rjo|] (i ≠ i´)

• NOTE! So far, the Hamiltonian is still classical!• NOTE! So far, the Hamiltonian is still classical!
We want to do Quantum Mechanics!

⇒ Replace each electron momentum with its quantum 

operator: pi ≡ -iħ∇i    (everywhere in HE!)

To Calculate Electronic Properties:
Solve the Schrödinger Equation with HE

(this is still a many electron problem!)



Approximation #3: 
The Mean Field or

One Electron Approximation



Approximation #3: The Mean Field or One 

Electron Approximation

• For HE: Make the

Mean Field Approximation

⇒ Every electron experiences the

SAME average potentialSAME average potential
due to all other electrons (Coulomb repulsion)

plus all ions (Coulomb attraction).

• The N electron Hamiltonian HE is then replaced by

N IDENTICAL one-electron Hamiltonians:

H1e = (p)2/(2mo) + V(r)



One Electron Approximation:
⇒ The many electron Hamiltonian is replaced 

by a one electron Hamiltonian:

H1e = (p)2/(2mo) + V(r)
• Do Quantum Mechanics  ⇒ p  ≡ -iħ∇
• V(r) ≡ Effective Potential ≡ Average potential of V(r) Average potential of 

one electron interacting with all others + all the ions

V(r) is periodic & has the lattice symmetry! 
• Given V(r), solve the

One Electron Schrödinger Equation:

H1eψn = Enψn
n = eigenvalue label (band index), ψn = one electron wavefunction



• The Primary Justification of the one-

electron approximation is that 

It explains VOLUMES of data

on electronic properties of 

all types of solids

(metals, semiconductors & insulators!).

NOTE!
• There are some (specialized) data for which an 

explanation requires the many body H.

But, MOST data needs only the one electron H!



The One-electron Approximation:
• What about spin effects? These are neglected in HE.

Spin can be included! (Also, we need the Pauli 
Exclusion Principle: Requires quantum field theory!)

• Spin-orbit coupling? This is neglected in HE.

Spin-orbit coupling can be included. (Relativistic 

corrections are needed.)

• The One-electron Approximation: Is used 

without discussion or justification in ~ALL
elementary SS physics texts!

A Rigorous Justification: Is found in Hartree & 

Hartree-Fock theory of many electron QM. Also, in the

Local Density Approximation (LDA) to
Density Functional Theory. 



The Bandstructure Problem
• Begin with the one-electron Hamiltonian:

H1e = (p)2/(2mo) + V(r)
p  ≡ -iħ∇,  V(r) ≡ Periodic Effective Potential

• Solve the one-electron Schrödinger Equation:

H1eψn(r) = Enψn(r)

In general, this is still a very 

complicated, highly

computational problem!



The Bandstructure Problem
(Many people’s careers over many years!)

• Start with the 1 e- Hamiltonian:

H1e = -(iħ∇)2/(2mo) + V(r)
• Step 1: Determine the effective periodic potential V(r)

• Step 2: Solve the one-electron Schrödinger Equation:

H1eψn(r) = Enψn(r)
A complex, sophisticated, highly computational problem!

• There are many schemes, methods, & 

theories to do this!

• We’ll give a brief overview of only a few!



• The 1 e- Hamiltonian is:

H1e = -(iħ∇)2/(2mo) + V(r)
• Note!! Knowing the form of the effective periodic 

potential V(r) is itself a difficult problem!

• However, we can go a long way towards 

understanding the physics behind the nature of understanding the physics behind the nature of 

bandstructures without specifying V(r)!

We can USE SYMMETRY!

• Group Theory ≡ A math tool which does 

this in detail.



V(r) ≡ Periodic Crystal Potential.
• Has all of the symmetries of the crystal lattice!

Translational Symmetry
Rotational Symmetry
Reflection Symmetry

• The most important symmetry isThe most important symmetry is

Translational Symmetry.
• Using this considerably reduces the complexities 

of bandstructure calculations!

• We will illustrate bandstructure calculations with 

some model calculations first. Then, we will  

discuss real bandstructures.


