Brief Quantum Mechanics (QM) Review

- QM results: Utilization of The Schrödinger Equation
(time independent; see next slide) describes electrons.
- Solutions to the Schrödinger Equation result in quantized (discrete) energy levels for electrons.

Quantum Mechanics (QM)

 -The Schrödinger Equation: (time independent)$$
H \psi=E \psi
$$

(this is a differential operator eigenvalue equation) $\mathbf{H} \equiv$ Hamiltonian operator for the system $\mathbf{E} \equiv$ Energy eigenvalues (allowed energies) $\psi \equiv$ Wavefunction
Particles are OM waves!
-The Schrödinger Equation:

$$
H \psi=\mathbf{E} \psi
$$

-Particles are OM waves! $|\psi|^{2} \equiv$ probability density
$|\psi|^{2} \mathbf{d}^{3} \mathbf{r} \equiv$ Probability that an electron is in differential volume $\mathbf{d}^{3} \mathbf{r}$

- ψ is a function of $\underline{A L L}$ coordinates of $\underline{A L L}$ particles in the problem!

Electrons in Periodic Crystalline Materials

Reduction to one Electron Problem

Hamiltonian for a Perfect, Periodic Crystal \mathbf{N}_{e} electrons, \mathbf{N}_{n} nuclei; $\mathbf{N}_{\mathrm{e}}, \mathrm{N}_{\mathbf{n}} \sim \mathbf{1 0}^{23}$ (huge!) Notation: $\mathbf{i}=$ electron; $\mathbf{j}=$ nucleus

- The general, the many-body Classical Hamiltonian: (Gaussian units!)

$$
H=H_{e}+H_{n}+H_{e-n}
$$

$\mathbf{H}_{\mathrm{e}}=$ Pure Electronic Energy $=\mathbf{K E}\left(\mathbf{e}^{-}\right)+\mathbf{P E}\left(\mathbf{e}^{-}-\mathbf{e}^{-}\right)$ $H_{e}=\sum_{i}\left(p_{i}\right)^{2} /\left(2 m_{i}\right)+(1 / 2) \sum_{i} \sum_{i}\left[\mathbf{e}^{2} /\left|\mathbf{r}_{i}-r_{i}\right|\right]\left(\mathbf{i} \neq \mathbf{i}^{\prime}\right)$
$\mathbf{H}_{\mathbf{n}}=$ Pure Nuclear Energy $=K E(\mathbf{n})+\mathbf{P E}(\mathbf{n}-\mathbf{n})$
$\mathbf{H}_{\mathrm{n}}=\sum_{\mathrm{j}}\left(\mathrm{P}_{\mathrm{j}}\right)^{2} /\left(2 \mathrm{M}_{\mathrm{j}}\right)+(1 / 2) \sum_{\mathrm{j}} \sum_{\mathrm{j}}\left[\mathrm{Z}_{\mathrm{j}} \mathrm{Z}_{\mathrm{j}} \mathbf{e}^{2} /\left|\mathbf{R}_{\mathrm{j}}-\mathbf{R}_{\mathrm{j}}\right|\right]\left(\mathbf{j} \neq \mathbf{j}^{\prime}\right)$
$\mathbf{H}_{\mathrm{e}-\mathrm{n}}=$ Electron-Nuclear Interaction Energy $=\mathbf{P E}\left(\mathbf{e}^{-}-\mathbf{n}\right)$

$$
\mathbf{H}_{\mathrm{e}-\mathrm{n}}=-\sum_{\mathrm{i}} \sum_{\mathrm{j}}\left[\mathbf{Z}_{\mathrm{j}} \mathrm{e}^{2} /\left|\mathbf{r}_{\mathrm{i}}-\mathbf{R}_{\mathrm{j}}\right|\right]
$$

Lower case $\mathbf{r}, \mathbf{p , m}$: Electron position, momentum, mass Upper case R, P, M: Nuclear position, momentum, mass
-The Classical, Many-Body Hamiltonian:

$$
H=H_{e}+H_{n}+H_{e-n}
$$

- Three Approximations, rigorously justified in many advanced texts (QM \& SS), after a lot of work, reduce the complexity of the problem significantly. This gives:
\Rightarrow For electronic properties calculations
(bandstructures, etc.) H is reduced to a One Electron Hamiltonian!

One Electron Hamiltonian!

- This is the usual Starting Point (with no proof) for ALL elementary SS physics texts (including Kittel's book)!
- What follows is a brief outline of these approximations. Details left to the student!

Approximation \#1:

Separate electrons into 2 types:

 Core Electrons \& Valence Electrons- Core Electrons: Those in filled, inner shells of the atoms. Play NO role in determining the electronic properties of the solid!

Example:

The Si free atom electronic configuration: Core Electrons $=\mathbf{1} \mathbf{s}^{\mathbf{2}} \mathbf{s}^{\mathbf{2}} \mathbf{2} \mathbf{p}^{\mathbf{6}}$ (filled shells!) Localized around the nuclei \& play NO role in the bonding. \Rightarrow Lump the core shells with the Nuclei \equiv Ions (in \sum_{i}, include only the valence electrons)
Core Shells + Nucleus $=$ Ion Core
$\Rightarrow \mathrm{H}_{\mathrm{e}-\mathrm{n}} \rightarrow \rightarrow \mathrm{H}_{\mathrm{e}-\mathrm{i}}, \mathrm{H}_{\mathrm{n}} \rightarrow \longrightarrow \mathrm{H}_{\mathrm{i}}$

Valence Electrons

- Those in the unfilled, outer shells of the free atoms. These determine the electronic properties of the solid and take part in the bonding!

Example:

The Si free atom electron configuration: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}$
Valence Electrons $=3 s^{2} 3 p^{2}$
(unfilled shells!)

- In the solid, these hybridize with electrons on neighbor atoms. This forms strong covalent bonds with the 4 Si nearest-neighbors in the Si lattice.

Approximation \#2: The Born-Oppenheimer

 (Adiabatic) Approximation Separates electron \& ion motions.- Separates the electron \& ion motions.
- Rigorous proof needs many body QM. Qualitative (semi-quantitative)
Justification: The ratio of the electron \& ion masses is of the order: $\left(m_{e} / M_{i}\right)-10^{-3}(\ll 1)$ (or smaller!)
\Rightarrow Classically, the massive ions move much slower than the very small mass electrons!

Typical ionic vibrational frequencies: $v_{i} \sim 10^{13} s^{-1}$ \Rightarrow The time scale of the ion motion is: $t_{i} \sim 1^{-13} \mathrm{~s}$

- Electronic motion occurs at energies of about a bandgap: $\mathrm{E}_{\mathrm{g}}=h v_{\mathrm{e}}=\mathrm{h} \omega \sim 1 \mathrm{eV} \Rightarrow v_{\mathrm{e}} \sim 10^{15} \mathrm{~s}^{-1} \Rightarrow \mathrm{t}_{\mathrm{e}} \sim 10^{-15} \mathrm{~s}$
- So, classically,

The electrons respond to the ion motion ~ instantaneously!
\Rightarrow As far as the electrons are concerned, the ions are - stationary!
\Rightarrow In the electron Hamiltonian, H_{e}, the ions can be treated as \approx stationary!

The Large Mass Ions

cannot follow the rapid, detailed motion of The Small Mass Electrons. \Rightarrow The Ions ~ see an Average Electron Potential!
\Rightarrow In the ion Hamiltonian, $\boldsymbol{H}_{\boldsymbol{i}}$,
the electrons can be treated in
an average way!
(As in Chs. 4 \& 5 in Kittel on Lattice Vibrations)

Implementation: Born-Oppenheimer (Adiabatic) Approximation

- Write the vibrating ion coordinates as
$\mathbf{R}_{\mathrm{j}}=\mathbf{R}_{\mathrm{jo}}+\delta \mathbf{R}_{\mathrm{j}}, \quad \mathbf{R}_{\mathrm{jo}}=$ equilibrium ion positions $\delta \mathbf{R}_{\mathrm{j}}=$ (small) deviation from the equilibrium positions
- The many body electron-ion Hamiltonian is (schematic!):

$$
\mathbf{H}_{\mathrm{e}-\mathrm{i}} \sim=\mathbf{H}_{\mathrm{e}-\mathrm{i}}\left(\mathbf{r}_{\mathrm{i}}, \mathbf{R}_{\mathrm{j} j}\right)+\mathbf{H}_{\mathrm{ei}-\mathrm{i}}\left(\mathbf{r}_{\mathrm{i}}, \delta \mathbf{R}_{\mathrm{j}}\right)
$$

- The New many body Hamiltonian in this approximation: $H=H_{e}\left(r_{i}\right)+H_{e-i}\left(r_{i}, \mathbf{R}_{j 0}\right)+H_{i}\left(\mathbf{R}_{j}\right)+H_{e-i}\left(r_{i}, \delta R_{j}\right) \quad(\mathbf{1})$ (neglect the last 2 terms in the band calculations) or $H=H_{E}\left[1^{\text {st }} 2\right.$ terms of (1)] $+H_{I}\left[2^{\text {nd }} 2\right.$ terms of (1)] Here, $\mathbf{H}_{\mathrm{E}}=$ Electron Part (gives the energy bands) $\mathrm{H}_{\mathrm{I}}=$ Ion Part (gives the phonons in Chs. 4 \& 5)

Summary:Born-Oppenheimer Approx.

\Rightarrow For electronic properties (bands), this allows us to focus on the electronic part of the many-body Hamiltonian: $H_{E}=H_{e}\left(r_{i}\right)+H_{e-i}\left(r_{i}, R_{j 0}\right)$ (schematic):
$\mathbf{H}_{\mathrm{e}}\left(\mathbf{r}_{\mathrm{i}}\right)=$ electron kinetic energy + electron-electron (Coulomb) repulsion $\mathbf{H}_{\mathrm{e}-\mathrm{i}}\left(\mathrm{r}_{\mathrm{i}}, \mathbf{R}_{\mathrm{j} 0}\right)=$ electron (Coulomb) attraction to the STATIONARY ions.

Summary:

Born-Oppenheimer Approximation:

\Rightarrow For calculations of electronic properties (bands), the vibrating ion part, H_{I} of the many-body Hamiltonian can be neglected.

Born-Oppenheimer Approximation

\Rightarrow Focus on the electronic part of \mathbf{H} :

$$
\begin{aligned}
& H_{E}=H_{e}\left(\mathbf{r}_{\mathbf{i}}\right)+H_{e-i}\left(\mathbf{r}_{\mathbf{i}}, \mathbf{R}_{\mathbf{j o}}\right) \\
& H_{E}=\sum_{i}\left(p_{i}\right)^{2} /\left(2 m_{i}\right)+(1 / 2) \sum_{i} \sum_{i}\left[e^{2}| | r_{i}-r_{i} \mid\right] \\
& -\sum_{i} \sum_{j}\left[Z_{j} e^{2} /\left|r_{i}-R_{j o}\right|\right]\left(i \neq i^{\prime}\right)
\end{aligned}
$$

- NOTE! So far, the Hamiltonian is still classical! We want to do Quantum Mechanics!
\Rightarrow Replace each electron momentum with its quantum operator: $\mathbf{p}_{\mathbf{i}} \equiv-\mathbf{i} \hbar \nabla_{\mathbf{i}} \quad\left(\right.$ everywhere in $\mathbf{H}_{\mathbf{E}}!$)

To Calculate Electronic Properties:

Solve the Schrödinger Equation with $\mathbf{H}_{\mathbf{E}}$ (this is still a many electron problem!)

Approximation \#3: The Mean Field or One Electron Approximation

Approximation \#3: The Mean Field or One Electron Approximation

- For $\mathbf{H}_{\mathbf{E}}$: Make the Mean Field Approximation \Rightarrow Every electron experiences the SAME average potential due to all other electrons (Coulomb repulsion) plus all ions (Coulomb attraction).
- The \mathbf{N} electron Hamiltonian \mathbf{H}_{E} is then replaced by N IDENTICAL one-electron Hamiltonians:

$$
\mathbf{H}_{1 \mathrm{e}}=(\mathbf{p})^{2} /\left(2 \mathbf{m}_{\mathrm{o}}\right)+\mathbf{V}(\mathbf{r})
$$

One Electron Approximation:

\Rightarrow The many electron Hamiltonian is replaced by a one electron Hamiltonian:

$$
\mathbf{H}_{1 \mathrm{e}}=(\mathrm{p})^{2} /\left(2 \mathrm{~m}_{0}\right)+\mathbf{V}(\mathbf{r})
$$

- Do Quantum Mechanics $\Rightarrow \mathbf{p} \equiv-\mathrm{ih} \nabla$
- $\mathbf{V}(\mathbf{r}) \equiv$ Effective Potential \equiv Average potential of one electron interacting with all others + all the ions
$\mathbf{V}(\mathbf{r})$ is periodic \& has the lattice symmetry!
- Given V(r), solve the

One Electron Schrödinger Equation:

$$
H_{1 e} \Psi_{n}=E_{n} \Psi_{n}
$$

$\mathbf{n}=$ eigenvalue label (band index), $\Psi_{\mathbf{n}}=$ one electron wavefunction

- The Primary Justification of the oneelectron approximation is that

It explains VOLUMES of data

 on electronic properties of
all types of solids

(metals, semiconductors \& insulators!).
NOTE!

- There are some (specialized) data for which an explanation requires the many body \mathbf{H}.
But, MOST data needs only the one electron \mathbf{H} !

The One-electron Approximation:

- What about spin effects? These are neglected in \mathbf{H}_{E}. Spin can be included! (Also, we need the Pauli Exclusion Principle: Requires quantum field theory!)
- Spin-orbit coupling? This is neglected in $\mathbf{H}_{\mathbf{E}}$. Spin-orbit coupling can be included. (Relativistic corrections are needed.)
- The One-electron Approximation: Is used without discussion or justification in \sim ALL elementary SS physics texts!
A Rigorous Justification: Is found in Hartree \& Hartree-Fock theory of many electron QM. Also, in the Local Density Approximation (LDA) to Density Functional Theory.

The Bandstructure Problem

- Begin with the one-electron Hamiltonian:

$$
\mathbf{H}_{1 \mathrm{e}}=(\mathbf{p})^{2} /\left(2 \mathrm{~m}_{\mathbf{0}}\right)+\mathbf{V}(\mathbf{r})
$$

$\mathbf{p} \equiv \mathbf{- i \hbar} \nabla, \mathbf{V}(\mathbf{r}) \equiv$ Periodic Effective Potential

- Solve the one-electron Schrödinger Equation:

$$
\begin{gathered}
\mathrm{H}_{1 \mathrm{e}} \psi_{\mathrm{n}}(\mathrm{r})=\mathrm{E}_{\mathrm{n}} \Psi_{\mathrm{n}}(\mathrm{r}) \\
\text { In general, this is still a very } \\
\text { complicated, highly } \\
\text { computational problem! }
\end{gathered}
$$

The Bandstructure Problem

(Many people's careers over many years!)

- Start with the $1 \mathrm{e}^{-}$Hamiltonian:

$$
\mathrm{H}_{1 \mathrm{e}}=-(\mathrm{i} h \nabla)^{2} /\left(2 \mathrm{~m}_{\mathrm{o}}\right)+\mathrm{V}(\mathrm{r})
$$

- Step 1: Determine the effective periodic potential V(r)
- Step 2: Solve the one-electron Schrödinger Equation:

$$
H_{1 e} \Psi_{n}(r)=E_{n} \Psi_{n}(r)
$$

A complex, sophisticated, highly computational problem!

- There are many schemes, methods, \& theories to do this!
- We'll give a brief overview of only a few!
- The 1 e Hamiltonian is:

$$
\mathbf{H}_{1 \mathrm{e}}=-(\mathrm{ih} \nabla)^{2} /\left(2 \mathrm{~m}_{0}\right)+\mathbf{V}(\mathbf{r})
$$

- Note!! Knowing the form of the effective periodic potential $\mathbf{V}(\mathbf{r})$ is itself a difficult problem!
- However, we can go a long way towards understanding the physics behind the nature of bandstructures without specifying $\mathbf{V}(\mathbf{r})$!
We can USE SYMMETRY!
- Group Theory A math tool which does this in detail.

V(r) \equiv Periodic Crystal Potential.

- Has all of the symmetries of the crystal lattice!

Translational Symmetry
Rotational Symmetry
Reflection Symmetry

- The most important symmetry is
Translational Symmetry.
- Using this considerably reduces the complexities of bandstructure calculations!
- We will illustrate bandstructure calculations with some model calculations first. Then, we will discuss real bandstructures.

