Brief Quantum Mechanics
(QM) Review

QM results: Utilization of

- The Schrodinger Eguatlon

(tlme independent; see next slide)

. descrlbes electrons.

e Solutions to the Schrodlnger
Equation result in quantized

(discrete) energy levels for electrons.



Quantum Mechanics (QM)
-The Schrodinger Equation:

(tlme 1ndependent)
Hy = Ey _
(this 1s a dlfferentlal operator elgenvalue equation)
H = Hamiltonian operator for the system

- E = Energy eigenvalues
(allowed energies)

\|1 = Wavetunction
' Particles are OM waves!



*The Schrodinger Equation:
Hy = Ly
e Particles are OM waves!
lw|* =probability density
lw|? d°r = Probability that an electron
is in differential volume d°r

*\y 18 a function of ALL coordinates

of ALL particles in the problem!



~ Electrons in Periodic
- Crystalline Materials

o RedllCthn t.O'IOn.e_ S
.. Electron Problem



Hamiltonian for a Perfect, Periodic Crystal
N. electrons, N, nuclei; N, , N, ~10% (huge!)
Notation: i = electron; j = nucleus

* The general, the many-body Classical Hamiltonian: -
(Gaussian units!)

H=H_ +H +H
H, = Pure Electronic Energy = KE(e) + PE(e - e’)
H=)i(p)*(2my) + (2)Y 3 i €r;- rif] “(i # 1)
H_= Pure Nuclear Energy = KE(n) + PE(n- n)
H. = Zj(Pj)Z/(ZMj) -+ (l/z)zj'zj,[Zij, 62/|Rj - Rj,|] E20
H,_, = Electron-Nuclear Interaction Energy = PE(e” - n)
He,= - ZiZj[ZjeZ/ Ir; - Rj‘]
Lower case r, p, m: Electron position, momentum, mass
Upper case R, P, M: Nuclear position, momentum, mass




e The Classical, Many-Body Hamiltonian:

"H=H , +H +H,

oI hree Aggroxzmatwns, rlgorously Justlfled |
- 1n many advanced texts (QM & SS), after a

lot of work, reduce the complexity of the
problem significantly. This gives:

= For electronic propertle
| - ~calculations

(bandstructures, etc.) H 1s reduced to a -
One Electron Hamiltonian!



- One Electmn Hamiltonian !

e This 1s the usual Starting Point (with no proot) for
ALL elementary SS physws texts (1nclud1ng
Kittel’s book) !

e What follows is a brief outline of these
approximations. Details left to the student!




. Approximation #1:
~ Separate electrons nto 2 types:
Core Electrons &

- Valence Electrons “



* Core Electrons: Those 1n filled, inner shells
of the atoms. Play NO role in determining
the electronic properties of the solid!

' Example: '
The Si free atom electronic configuration:
Core Electrons = 1s*2s*2p°® (filled shells!)

Localized around the nuclei & play NO role 1n the bonding.
— Lump the core shells with the Nuclei = Ions

(in Y, include only the valence electrons)
Core Shells + Nucleus = Ion Core

:>'He-n e ] | | Hn > —> Hi

e-1?



‘Valence Electrons
e Those 1n the unfilled, outer shells of the free
atoms. These determine the electronic properties
of the solid and take part in the bonding!

Example:
T he Si free atom electron conflguratlon:
- 18%2s%2p%3s%3p?
“Valence Electrons = 3s?3p*
(unfilled shells!)
e In the solid, these hybridize with electrons on

neighbor atoms. This forms strong covalent bonds
with the 4 Si nearest- ne1ghb0rs in the Si lattice.



Approximation #2:
" The Born-Oppenheimer

" (Adiabatic) Approximation
. Segamtes electron & ion motions.




* Separates the electron & ion motions.
e Rigorous proot needs many body QM.

-~ QOualitative (semi-quantitative)
Justification: The ratio of the electron &

10on masses 18 of the order:
(m /M) ~ 107 ( << 1)
(or smaller!)
—> Classically, the massive 10ns move
much slower than the very small mass
electrons!



Typical ionic vibrational frequencies: v, ~ 107 s7!.
- = The time scale of the ion motion is: t. ~ 10-3 s
* Electronic motion occurs at energies of about a bandgap:
"E=hy,=ho~1eV v ~100s! =t ~10s
- So classwally,

The electrons respond. to the ion motwn

~ nstantaneously /

= As far as the electrons are concerned,
2. the 1ons-are ~ stationary! =

—> In the electron Hamiltonian, H
~ theions can be treated as = stationary .’ .



The Large Mass Ions

~cannot follow the rapid, detailed motion of
- The Small Mass Electrons.

—> The lons ~ see an Average

Electron Potential!
:> In the ion Hamiltonian, H.,
the electrons can be treated in

an average way!
- (As 1 Chs. 4 & 5 in Kittel on Lattice Vibrations)



Implementation: Born-Oppenheimer

(Adiabatic) Approximation
» Write the vibrating 10on coordinates as
R =R, + oR,, R, =equilibrium ion positions
oR; = (small) deviation from the equilibrium positions
e The many body electron-ton Hamiltonian is (schematic!):

H,; ~= H (r,;R.) + H (r;;,0R)
e The New manv body Hamlltonlan in this approx1mat10n
H =H_(r,) + H_.(r;, JO) + HI(RJ) +H, . (rl,ﬁRJ) (1)
(neglect the last 2 terms in the band calculations) or
H = Hj, [1% 2 terms of (1)] + H, [2"? 2 terms of (1)]
Here, H, = Electron Part (gives the energy bands)
H, = Ion Part (gives the phonons in Chs. 4 & 5)




Summary:Born-Oppenheimer Approx.

—> For electronic properties (bands), this
allows us to focus on the electronic part of -
the many-body Hamiltonian:

H, =H_(r,) + He_i(ri,RjO) -
(schematic): |
H_ (r;) = electron kinetic energy +
electron-electron (Coulomb) repulsion
He_i(ri,RjO) = electron (Coulomb)
attraction to the STATIONARY 10ons.



Summary:
- Born-Oppenheimer
Approximation:

— For calculations of electronic
properties (bands), the vibrating
ton part, H, ot the many-body
Hamiltonian can be neglected.



Born-Oppenheimer Approximation -
= Focus on the electronic part of H:
Hi = (p)*/2m,) + (2)2 ) [e?|ryr |l

o NOTE! So far, the Hamiltonian is still classical!
We want to do Quantum Mechanics!

= Replace each electron momentum with its quantum
operator: p; = -ihLl (everywhere in Hg!)

To Calculate Electronic Progertze

Solve the Schrodinger Equation with Hy
(this 1s st111 4 many electron problem')




i Apprommatlon #3
"~ The Mean Field or
One Electron Approx1mat10n



~ Approximation #3: The Mean Field or One
| -« Electron Approximation
~» For Hg: Make the |

Mean Field AQQI’OleatIOH
—> Every electron experiences the
“SAME ayverage potential .

due to all other electrons (Coulomb repulsmn)
plus all ions (Coulomb attraction).
~* The N electron Hamiltonian Hy, is then r_placed bv

N IDEN TICAL one-electron Hamlltomans
H. = (p)2/(2m ) + V(r)




One Electron Approximation:
— The many electron Hamiltonian 1s replaced
by a one electron Hamiltonian:

= (p)¥(2m,) + V(r)
e Do Quantum Mechanics = p = -ih

. V(r) Effective Potential = Average potentlal of
one electron interacting with all others + all the ions

V(r) 1s periodic & has the lattlce symmetry'
e Given V(r), solve the |

‘One Electron Schrodinger Equation:
Hle"’n_= En"’n

n = eigenvalue label (band index), Wy, = one electron wavefunction




» The Primary Justification of the one-

electron approximation 1s that

It explains VOLUMES of data

on electronic properties of

all types of solids

(metals, semiconductors & insulators!).

NOTLE!

e There are some (specialized) data for which an
explanation requires the many body H.

But, MOST data needs only the one electron H!




The One-electron Approximation:

+ What about spin effects? These are neglected in Hy.
Spin. can_be included! (Also, we need the Pauli
Exclusion Principle: Requires quantum field theory!)

-+ Spin-orbit coupling? This is neglected in Hy.
Spin-orbit coupling can be included. Reaivistic

corrections are needed.)

* The One-electron Approximation: Is used
without discussion or justification in ~ALL
elementary SS physics texts!
A Rigorous Justification: 1s found in Hartree &
Hartree-Fock theory of many electron QM. Also, 1n the
Local Density Approximation (LDA) to
Density Functional Theory.




- The Bandstructure Problem
. Begin‘ with _the one-electron Hamiltonian:

‘H

p = -ih

= (P2m,) + V(r)

," Y(r) = Periodic Effective Potential

~* Solye the one-electron Schrodinger Equation:

Hle"’n(r) = En"’n(r) .

In general, this is still a very

complicated, highly

“computational problem!



. The Bandstructure Problem

(Many people’s careers over many years!)

e Start with the 1 e Hamiltonian:
Hlé = -(ih | )2/(2m0) + V(l‘)
* Step 1: Determine the effective periodic potential V(r)

e ‘Step 2: Solve the one-electron Schrodinger Equation:
Hle‘l’n(r) = En\l’n(r)
A complex, sophisticated, highly computational problem!
» There are many schemes, methods, &
theories to do this!

e We’ll give a brief overview of only a few!



e The 1 e Hamiltonian is:
H,. =-(ih )2/(2m0) + V(r)

» Note!! Knowing the form of the effective periodic

potential V(r) is itself a difficult problem!

 However, we can go a long way towards
understanding the physics behind the nature of
bandstructures without specitying V(r)!

Wecan USE SYMMETRY!

e Group Theory = A math tool which does
this 1n detail.




¥ (r) = Periodic Crystal Potential.

Has all of the symmetries of the crystal lattice!

Translational Symmetry
Rotational Symmetry
Reflection Symmetry

The most important symmetry 1s

Translational S ymmetry

Using this considerably reduces the complexities
of bandstructure calculations!

We will illustrate bandstructure calculations with
some model calculations first. Then, we will
dlSCllSS real bandstructures



