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A. The Free Electron Gas Model 

Having studied the structural arrangements of atoms in solids, and the thermal 
and vibrational properties of the lattice, we now consider the electronic 
properties of solids in terms of a very simple model.

Plot U(x) for a 1-D 
crystal lattice:

Simple and 
crude finite-
square-well 
model:

Can we justify this model?  How can one replace the entire lattice by a 
constant (zero) potential?

U

U = 0



E. Heat Capacity of the FEG
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19th century puzzle: each monatomic gas molecule in sample at
temperature T has energy , so if the N free electrons in a
metal make up a classical “gas” they should behave similarly.
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So the electronic contribution to the molar heat capacity would be
expected to be

or expressed per mole: RTkTNkT
nn A 2

3
2
3

2
3 

R
n

E

dT

d
C el

el 2
3








This is half of the 3R we found for the lattice heat capacity at high T.
But experiments show that the total C for metals is only slightly
higher than for insulators—which conflicts with the classical theory!



Heat Capacity of the Quantum-Mechanical FEG
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where   = chemical potential  EF for kT << EF

Quantum mechanics showed that the occupation of electron
states is governed by the Pauli exclusion principle, and that the
probability of occupation of a state with energy E at
temperature T is:

where   = chemical potential  EF for kT << EF



Heat Capacity of the Quantum-Mechanical FEG

So at temperature T 
the total energy is:
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And the electronic 
heat capacity is:
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The exact answer to this complicated 
integral is derived in more advanced texts:
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A Rough and Ready Estimate

dE

# electrons that 
can absorb 
thermal energy

We can estimate Cel in just a few lines in order to confirm the linear dependence
on temperature:
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2Remarkably close 
to the exact result!

But this linear dependence is impossible to measure directly, since the heat capacity
of a metal has two contributions. Now for a metal at low temperatures we can
write the total heat capacity:
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Assuming we can measure C(T) for a metal, how can we test this relationship?



Heat Capacity of Metals:  Theory vs. Expt. at low T

Very low temperature 
measurements reveal:

Metal expt FEG
expt/ FEG = 

m*/m
Results for simple Metal expt FEG m*/m

Li 1.63 0.749 2.18

Na 1.38 1.094 1.26

K 2.08 1.668 1.25

Cu 0.695 0.505 1.38

Ag 0.646 0.645 1.00

Au 0.729 0.642 1.14

Al 1.35 0.912 1.48

Results for simple
metals (in units
mJ/mol K) show
that the FEG values
are in reasonable
agreement with
experiment, but are
always too high:

The discrepancy is
“accounted for” by
defining an effective
electron mass m* that is
due to the neglected
electron-ion interactions


