
Chapter 6: 
Free Electron Fermi Gas



Free Electron Theory
•Conductors fall into 2 main
classes; metals & semiconductors.

•Here, we focus on metals.
•A metal is loosely defined as a solid•A metal is loosely defined as a solid
with valence electrons that are not
tightly bound to the atoms but are
relatively easily able to move
through the whole crystal.



•The room temperature resistivity of
metals is in the range:
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•Experiments show that  increases with
the addition of small amounts ofthe addition of small amounts of
impurities. The resistivity normally
decreases monotonically with decreasing
temperature & it can be reduced by the
addition of small amounts of impurity.



Question! 
• Why do mobile (conducting) electrons

occur in some solids & not in others?
•When the interactions between electrons
are considered, this becomes a

Very Difficult Question to
Answer.



Some Common Properties of Metals:
1. Great Physical Strength
2. High Density
3. Good Electrical Conductivity 
4. Good Thermal Conductivity
5. …….etc. 5. …….etc. 
• In this chapter, we outline a surprisingly simple

theory which does a very good job of explaining

many of these common properties of metals.

• In fact, the theory is so simple (too simple to be

realistic!) that we may wonder why it works so well!



“The Free Electron Model”
• We begin with the assumption that conduction

electrons exist & that they consist of the
valence electrons from the metal atoms.

• Thus, metallic Na, Mg & Al are assumed to have
1, 2 & 3 mobile electrons per atom, respectively.

•This model seems at first as if it is•This model seems at first as if it is

Way Too Simple!
•But, this simple model works remarkably
well for many metals & it can be used to
help to explain many properties of metals.



• According to this
Free Electron Model (FEM),

the valence electrons are responsible for the
conduction of electricity, & for this reason these
electrons are called

“Conduction Electrons”.
• As an example, consider Sodium (Na). The electron• As an example, consider Sodium (Na). The electron

configuration of the Free Na Atom is:

1s2 2s2 2p6 3s1

• The outer electron in the third atomic shell 
(n = 3, ℓ = 0) is the electron which is responsible 

for the physical & chemical properties of Na.

Valence Electrons
(loosely bound)

Core Electrons
(tightly bound)



Consider Fermions & Bosons
in a 1-D Potential Well



Consider Fermions & Bosons
in a 1-D Potential Well

Note! 
Electrons are Electrons are 
Fermions!!



• When Na atoms are put together to form a 
Na metal:

Na metal

• Na has a BCC structure & the distance
between nearest neighbours is 3.7 A˚

• The radius of the third shell in Na is 1.9 A˚• The radius of the third shell in Na is 1.9 A˚
• In the solid, the electron wavefunctions of the Na

atoms overlap slightly. From this observation it
follows that a valence electron is no longer
attached to a particular ion, but belongs to both
neighbouring ions at the same time.



• Therefore, these conduction electrons can be
considered as moving independently in a square
well of finite depth & the edges of the well
correspond to the edges of the sample.

• Consider a metal with a cubic shape with edge length L:
Ψ & E can be found by solving the Schrödinger equation:
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• Use periodic boundary conditions 
& get Ψ’s as travelling plane waves.
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• The solutions to the Schrödinger equation 
are plane waves,
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V = volume of the cube, V=L3

• So the wave vector must be of the form:

where p, q, r take any + or - integer values or zero.
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• The wave function ψ(x,y,z) corresponds to 
the energy

• The corresponding momentum is:
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• The energy is completely kinetic:
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• We know that number of allowed k values in 
a spherical shell of k-space of radius k is:

2

2
( ) ,

2

Vk
g k dk dk




• g(k) is called the
density of states per
unit magnitude of k. 



Number of Allowed States 
per Unit Energy Range?

• Each k state represents two possible electron
states, one for spin up, the other for spin down.
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Ground State of the Free 
Electron Gas (T = 0)

•Electrons are Fermions (s = ± ½) &
obey the Pauli exclusion principle;
each state can accommodate onlyeach state can accommodate only
one electron.

•The lowest-energy state of N free
electrons is therefore obtained by
filling the N states of lowest energy.



• Thus all states are filled up to an energy EF,
known as The Fermi energy, obtained by 
integrating the density of states between 0 and EF, 

The result should equal N. Remember that
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• Solving for EF (Fermi energy);
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• The occupied states are inside the Fermi sphere 
in k-space as shown below; the radius is Fermi 
wave number kF. 2 2
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Fermi Surface
E = EF

From these two equations,
kF can be found as,
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• The surface of the Fermi sphere
represents the boundary between
occupied & unoccupied  k states 
at T = 0 for the free electron gas.



• Typical values may be obtained by using
monovalant potassium metal (K) as an example;
for potassium, the atomic density & hence the
valence electron density n = N/V = 1.402x1028

m-3 so that
193.40 10 2.12FE J eV  

• The Fermi (degeneracy) Temperature TF is 
given by
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It is only at a temperature of this order that the
particles in a classical gas can attain (gain)
kinetic energies as high as EF .
• Only at temperatures above TF will the free

electron gas behave like a classical gas.
• Fermi momentum

F FP k  F e FP mV

• These are the momentum & velocity values of the
electrons at the states on the Fermi surface of the
Fermi sphere. So, the Fermi Sphere plays an
important role in the behaviour of metals.
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Free Electron Gas at Non-Zero 
Temperature

• From Statistical Mechanics, at a temperature T,
the probability of occupation of an electron state
of energy E is given by the Fermi distribution
function

1

• The Fermi distribution function fFD(E)
ddetermines, at temperature T, the probability of
finding an electron at energy E.
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Fermi-Dirac Distribution & The Fermi-Level:
Main Application: Electrons in a Conductor 

• The Density of States g(E) specifies
how many states exist at a given energy E. 

• The Fermi Function f(E) specifies how many of the
existing states at energy E will be filled with electrons.

EF = Fermi Energy or Fermi Level

23

• The Fermi Function f(E) specifies, under
equilibrium conditions, the probability that an
available state at an energy E will be occupied by an
electron. It is a probability distribution function.

EF = Fermi Energy or Fermi Level

k = Boltzmann Constant

T = Absolute Temperature in K 



Fermi-Dirac Statistics

EF is called The Fermi Energy.
Note the following:

• When E = E , the exponential term = 1 & F = (½).

• The Fermi Energy EF is
essentially the same as the
Chemical Potential μ. β  (1/kT)

• When E = EF, the exponential term = 1 & FFD = (½).
• In the limit as T → 0:

• At T = 0, Fermions occupy the lowest energy levels.

• Near T = 0, there is little chance that thermal agitation 
will kick a Fermion to an energy greater than EF.



Fermi-Dirac Distribution
Consider T  0 K
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fFD(E,T)
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Fermi Function at T = 0  & at 
a Finite Temperature

fFD=?  At 0°K
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Fermi-Dirac Distribution
Temperature Dependence



FD Distribution

l

• If E = EF then f(EF) = ½ .  
• If                                  then:
• So, the following approximation is valid:
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• So, the following approximation is valid:
T

• That is, most states at energies 3kT above
EF are empty.
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FD Distribution

l

• If                      then                          

• So, the following approximation is valid:
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Fermi-Dirac Distribution: T > 0 K
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• So, the following approximation is valid:
L

• That is, most states at energies 3kT below
EF are occupied.
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FD Distribution

l

• So, the following is always true at room
temperature: Only states within  3kT of EF

will contribute to temperature dependent

Fermi-Dirac Distribution: Summary for T > 0 K
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will contribute to temperature dependent
properties of the conduction electrons. 

kT (at 300 K) = 0.025eV, 
Eg(Si) = 1.1eV, 

• So 3kT is very small in comparison to other
energies relelevant to the electrons.



Fermi-Dirac Distribution
Temperature Dependence

T = 0

T > 0



T = 0

The Fermi “Temperature” is defined as
TF ≡ (EF)/(kB).

T > 0

As the temperature increases from T = 0,
The Fermi-Dirac Distribution “smears out”.



T = TF

As the temperature increases from T = 0,

T >> TF

• As the temperature increases from T = 0,
The Fermi-Dirac Distribution “smears out”.

• When T >> TF, FFD approaches a decaying 
exponential.



At T = 0 the Fermi Energy EF is the energy
of  the highest occupied energy level.

• If there are a total of N electrons, then is easy to 
show that EF has the form:
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FermiFermi--Dirac Distribution FunctionDirac Distribution Function
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FermiFermi--Dirac Distribution FunctionDirac Distribution Function
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Examples of Fermi SystemsExamples of Fermi Systems

Electrons in metals (dense system)



• What is the number of electrons per unit energy 
range according to the free electron model?

• This shows the change in distribution between 
absolute zero and a finite temperature.

• n(E,T) = number of 
free electrons per unit 
energy range = area 

n(E,T)
g(E)

energy range = area 
under n(E,T) graph.
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T=0
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• The FD distribution function is a symmetric 
function; at finite  temperatures, the same number 
of levels below EF are emptied and same number 
of levels above EF are filled by electrons.

n(E,T) g(E)

T>0

T=0
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Equilibrium Distribution of Electrons
• Distribution of Electrons at energy E  =  
• Density of States  Probability of
• Occupancy

 g(E)f(E)
• Total number of conduction electrons
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• Total number of conduction electrons
at energy E & temperature T:
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T>0

T=0

n(E,T)

E

g(E)

Total Energy of a Gas of N Electrons 

Note: 
E 
Sorry!
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• At T = 0, U = (3/5)NεF , this energy is large 
because all the electrons must occupy the lowest 
energy states up to the Fermi level.
<> for a free electron in silver at T = 0:

• The mean kinetic energy of an electron, 
even at T = 0, is 2 orders of magnitude 
greater than the mean kinetic energy of an 
ordinary gas molecule at room temperature.



Heat Capacity at Low T

• The electronic heat capacity Ce can be found by taking 
the temperature derivative of U:

• The Total Energy at Temperature T: 

• For temperatures T small compared with TF (true for any 
metal at room temperature), neglect the 2nd term in the 
expansion & get



• So, the electronic specific heat = 2.2 x 10-2 R. This small
value explains why metals have a specific heat capacity
of about 3R, the same as for other solids. 

• It was originally believed that their free electrons should

• For silver at room temperature:

• It was originally believed that their free electrons should
contribute an additional (3/2) R associated with their
three translational degrees of freedom. The calculation
shows  that this contribution is negligible.

• The energy of the electrons changes only slightly with
temperature (dU/dT is small) because only those
electrons near the Fermi level can increase their energies
as the temperature is raised, & there are very few of them.



• S = 0 at T = 0, as it must be.
• The Helmholtz function F = U -TS is

• The Fermion equation of state is:



• Silver:  N/V = 5.9 1028 m-3 so TF = 65,000K . 

• So,
P = (2/5) (5.91028)(1.38 10-23) (6.5 104)

= 2.11010 Pa = 2.1105 atm
= Pressure inside the electron gas! = Pressure inside the electron gas! 

• Given this tremendous pressure, it is clear 
that the surface potential barrier needs to 
be huge in order to keep the electrons 
from evaporating from the metal.



Fermi energy for Aluminum assuming 
three electrons per Aluminum atom:



LowLow--Temperature Heat CapacityTemperature Heat Capacity
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