
1

Dr.shaimaa H.Shaker

System Software

There are two broad categories of software:

System Software
Application Software

System Software is a set of programs that manage the
resources of a compute system. System Software is a collection of
system programs that perform a variety of functions.
File Editing
Resource Accounting
I/O Management
Storage, Memory Management access management.

System Software can be broadly classified into three types as:

System control programs controls the execution of programs,
manage the storage & processing resources of the computer &
perform other management & monitoring function. The most
important of these programs is the operating system. Other
examples are database management systems (DBMS) &
communication monitors.
System support programs provide routine service functions to
the other computer programs & computer users: E.g. Utilities,
libraries, performance monitors & job accounting.
System development programs assists in the creation of application
programs. E.g., language translators such as BASIC interpreter &
application generators.

Application Software:
It performs specific tasks for the computer user. Application
software is a program which program written for, or, by, a user to
perform a particular job.
Languages already available for microcomputers include Clout, Q &
A and Savvy ret rival (for use with Lotus 1-2-3).
The use of natural language touches on expert systems,
computerized collections of the knowledge of many human experts
in a given field, and artificial intelligence, independently smart
computer systems – two topics that are receiving much attention
and development and will continue to do so in the future.

2

Dr.shaimaa H.Shaker

1.Operating System Software
Storage Manager
Process Manager
File – System Manager
I/O Control System
Communication Manager

2. Standard System Software
Language Processor
Loaders
Software Tools

3. Application Software
Sort/Merge Package
Payroll/Accounting Package
DBMS

General-purpose application software such as electronic
spreadsheet has a wide variety of applications. Specific – purpose
application s/w such as payroll & sales analysis is used for the
application for which it is designed
Application programmer writes these programs. Application
programmer writes these programs.

Generally computer users interact with application software. Application and
system software act as interface between users & computer hardware. An
application & system software become more capable, people find computer
easier to use.

The Interaction between Users, Application
Software, System Software & Computer Hardware:

System Software controls the execution of the application software
& provides other support functions such as data storage. E.g. when
you use an electronic spreadsheet on the computer, MS-DOS, the
computer’s Operating System, handles the storage of the worksheet
files on disk.
The language translators and the operating system are themselves
programs. Their function is to get the users program, which is

3

Dr.shaimaa H.Shaker

written, in a programming language to run-on the computer
system.
All sucl. Programs, which help in the execution of user programs,
are called system programs (SPs). The collection of such SPs is the
“System Software” of a particular computer system.
Mast computer systems have support software, called Utility
Programs, which perform routine tasks. These programs sort data,
copy data from one storage medium to another, o/p data from a
storage medium to printer & perform other tasks.

the execution at a specified starting address.

4

Dr.shaimaa H.Shaker

5

Dr.shaimaa H.Shaker

6

Dr.shaimaa H.Shaker

7

Dr.shaimaa H.Shaker

System Development Software:
System Development Software assists a programmer of user in
developing & using an application program.
E.g. Language Translators
Linkage Editors
Application generators

Language Translators:
A language translator is a computer program that converts a
program written in a procedural language such as BASIC into
machine language that can be directly executed by the computer.
Computers can execute only machine language programs. Programs
written in any other language must be translated into a machine
language load module, which is suitable for loading directly into
primary storage.
Subroutine or subprograms, which are stored on the system
residence device to perform a specific standard function. E.g. if a
program required the calculation of a square root,
Programmer would not write a special program. He would simply
call a square root, subroutine to be used in the program.
Translators for a low-level programming language were assemblers

Language processors
Language Processing Activities
Language Processing activities arise due to the differences between
the manner in which a software designer describes the ideas
concerning the behaviour of a software and the manner in which
these ideas are implemented in a computer system.
the interpreter is a language translator. This leads to many
similarities between are

Translators and interpreters. From a practical viewpoint many
differences also exist

between translators and interpreters.

The absence of a target program implies the absence of an output
interface the interpreter. Thus the language processing activities of
an interpreter cannot be separated from its program execution
activities. Hence we say that an interpreter 'executes' a program
written in a PL.

8

Dr.shaimaa H.Shaker

Problem Oriented and Procedure Oriented
Languages:

The three consequences of the semantic gap mentioned at the

start of this section are in fact the consequences of a

specification gap. Software systems are poor in quality and

require large amounts of time and effort to develop due to

difficulties in bridging the specification gap. A classical solution is

to develop a PL such that the PL domain is very close or identical

to the application domain.

Such PLs can only be used for specific applications; hence they are
called problem-oriented languages. They have large execution gaps,
however this is acceptable because the gap is bridged by the
translator or interpreter and does not concern the software
designer.

A procedure-oriented language provides general purpose facilities
required in most application domains. Such a language is
independent of specific application domains.

The fundamental language processing activities can be divided into
those that bridge the specification gap and those that bridge the
execution gap. We name these activities as
1. Program generation activities
2. Program execution activities.

A program generation activity aims at automatic generation of a
program. The source languages specification language of an
application domain and the target language is typically a procedure
oriented PL. A Program execution activity organizes the execution of
a program written in a PL on computer system. Its source language
could be a procedure-oriented language or a problem oriented
language.

Program Generation
The program generator is a software system which accepts the
specification of a program to be generated, and generates a
program in the target PL. In effect, the program generator

9

Dr.shaimaa H.Shaker

introduces a new domain between the application and PL domains
we call this the program generator domain. The specification gap is
now the gap between the application domain and the program
generator domain. This gap is smaller than the gap between the
application domain and the target PL domain.
Reduction in the specification gap increases the reliability of the
generated program. Since the generator domain is close to the
application domain, it is easy for the designer or programmer to
write the specification of the program to be generated.
The harder task of bridging the gap to the PL domain is performed
by the generator.
This arrangement also reduces the testing effort. Proving the
correctness of the pro-
gram generator amounts to proving the correctness of the
transformation .
This would be performed while implementing the generator. To test
an application generated by using the generator, it is necessary to
only verify the correctness of the specification input to the program
generator. This is a much simpler task than verifying correctness of
the generated program. This task can be further simplified by
providing a good diagnostic (i.e. error indication) capability in the
program generator, which would detect inconsistencies in the
specification.
It is more economical to develop a program generator than to
develop a problem-oriented language. This is because a problem-
oriented language suffers a very large execution gap between the
PL domain and the execution domain whereas the program
generator has a smaller semantic gap to the target PL domain,
which is the domain of a standard procedure oriented language. The
execution gap between the target PL domain and the execution
domain is bridged by the compiler or interpreter for the PL.

Program Execution
Two popular models for program execution are translation and
interpretation.

Program translation
The program translation model bridges the execution gap by
translating a program written in a PL, called the source program
(SP), into an equivalent program in the machine or assembly
language of the computer system, called the target program (TP)
Characteristics of the program translation model are:

A program must be translated before it can be executed.
• The translated program may be saved in a file. The saved
program may be executed repeatedly.
• A program must be retranslated following modifications.

10

Dr.shaimaa H.Shaker

Program interpretation

The interpreter reads the source program and stores it in its
memory. During interpretation it takes a source statement,
determines its meaning and performs actions which implement it.
This includes computational and input-output actions.
The CPU uses a program counter (PC) to note the address of the
next instruction to be executed. This instruction is subjected to the
instruction execution cycle consisting of the following steps:

1. Fetch the instruction.
2. Decode the instruction to determine the operation to be
performed, and also its operands.
3. Execute the instruction.
At the end of the cycle, the instruction address in PC is updated and
the cycle is repeated for the next instruction. Program interpretation
can proceed in an analogous manner. Thus, the PC can indicate
which statement of the source program is to be interpreted next.
This statement would be subjected to the interpretation cycle, which
could consist of the following steps:

Fetch the statement.

Analyze the statement and determine its meaning, viz. the
computation to be performed and its operands.

Execute the meaning of the statement.
From this analogy, we can identify the following characteristics of
interpretation:
The source program is retained in the source form itself, i.e. no
target program form exists, A statement is analyzed during its
interpretation.

Comparison
A fixed cost (the translation overhead) is incurred in the use of the program
translation model. If the source program is modified, the translation cost must
be incurred again irrespective of the size of the modification. However,
execution of the target program is efficient since the target program is in the
machine language. Use of the interpretation model does not incur the
translation overheads. This is advantageous if a program is modified between
executions, as in program testing and debugging.

11

Dr.shaimaa H.Shaker

FUNDAMENTALS OF LANGUAGE PROCESSING
Definition
Language Processing = Analysis of SP + Synthesis of TP.
Definition motivates a generic model of language processing
activities.
We refer to the collection of language processor components
engaged in analyzing a source program as the analysis phase of the
language processor. Components engaged in synthesizing a target
program constitute the synthesis phase.
A specification of the source language forms the basis of source
program analysis. The specification consists of three components:
1. Lexical rules, which govern the formation of valid lexical units in
the source language.
2. Syntax rules which govern the formation of valid statements in
the source language.
3. Semantic rules which associate meaning with valid statements of
the language.
The analysis phase uses each component of the source language
specification to determine relevant information concerning a
statement in the source program. Thus, analysis of a source
statement consists of lexical, syntax and semantic analysis.
The synthesis phase is concerned with the construction of target
language statement(s) which have the same meaning as a source
statement. Typically, this consist of two main activities:
• Creation of data structures in the target program
• Generation of target code.
We refer to these activities as memory allocation and code
generation, respectively

Lexical Analysis (Scanning)
Lexical analysis identifies the lexical units in a source statement. It
then classifies the units into different lexical classes e.g. id’s,
constants etc. and enters them into different tables. This
classification may be based on the nature ofstring or on the
specification of the source language. (For example, while an integer
constant is a string of digits with an optional sign, a reserved id is
an id whose name matches one of the reserved names mentioned in
the language specification.) Lexical analysis builds a descriptor,
called a token, for each lexical unit. A token contain two fields—
class code, and number in class, class code identifies the class to
which a lexical unit belongs, number in class is the entry number of
the lexical unit in the relevant table.
Syntax Analysis (Parsing)
Syntax analysis processes the string of tokens built by lexical
analysis to determine the statement class, e.g. assignment
statement, if statement, etc. It then builds an IC which represents

12

Dr.shaimaa H.Shaker

the structure of the statement. The IC is passed to semantic
analysis to determine the meaning of the statement.
Semantic analysis
Semantic analysis of declaration statements differs from the
semantic analysis of imperative statements. The former results in
addition of information to the symbol table, e.g. type, length and
dimensionality of variables. The latter identifies the sequence of
actions necessary to implement the meaning of a source statement.
In both cases the structure of a source statement guides the
application of the semantic rules. When semantic analysis
determines the meaning of a sub tree in the IC. It adds information
a table or adds an action to the sequence. It then modifies the IC to
enable further semantic analysis. The analysis ends when the tree
has been completely processed.

“FUNDAMENTALS OF LANGUAGE SPECIFICATION

A specification of the source language forms the basis of source
program analysis. In this section, we shall discuss important lexical,
syntactic and semantic features of a programming language.
Programming Language Grammars
The lexical and syntactic features of a programming language are
specified by its grammar. This section discusses key concepts and
notions from formal language grammars. A language L can be
considered to be a collection of valid sentences.
Each sentence can be looked upon as a sequence of words, and
each word as a sequence of letters or graphic symbols acceptable in
L. A language specified in this manner is known as a. formal
language. A formal language grammar is a set of rules which
precisely specify the sentences of L. It is clear that natural
languages are not formal languages due to their rich vocabulary.
However, PLs are formal languages.

Terminal symbols, alphabet and strings
The alphabet of L, denoted by the Greek symbol Z, is the collection
of symbols in its character set. We will use lower case letters a, b,
c, etc. to denote symbols in Z.
A symbol in the alphabet is known as a terminal symbol (T) of L.
The alphabet can be represented using the mathematical notation of
a set, e.g. Σ ≅ {a, b, ….z, 0,1....9}
Here the symbols {, ',' and} are part of the notation. We call them
met symbols to differentiate them from terminal symbols.
Throughout this discussion we assume that met symbols are distinct
from the terminal symbols. If this is not the case, i.e. if a terminal
symbol and a met symbol are identical, we enclose the terminal
symbol in quotes to differentiate it from the metasymbol. For

13

Dr.shaimaa H.Shaker

example, the set of punctuation symbols of English can be defined
as {:,;’,’-,...} Where ',' denotes the terminal symbol 'comma'.
A string is a finite sequence of symbols. We will represent strings by
Greek symbols-α β γ, etc. Thus α = axy is a string over Σ . The
length of a string is the Number of symbols in it. Note that the
absence of any symbol is also a string, the null string . The
concatenation operation combines two strings into a single string.
“

To evaluate an HLL program it should be converted into the Machine
language. A compiler performs another very important function.
This is in terms of the diagnostics.
I.e. error – detection capability.
The important tasks of a compiler are:
Translating the HLL program input to it.
Providing diagnostic messages whenever specifications of the HLL

Compilers

14

Dr.shaimaa H.Shaker

• A compiler is a program that translates a sentence

a. from a source language (e.g. Java, Scheme, LATEX)
b. into a target language (e.g. JVM, Intel x86, PDF)
c. while preserving its meaning in the process

• Compiler design has a long history (FORTRAN 1958)

a. lots of experience on how to structure compilers
b. lots of existing designs to study (many freely available)
c. take CS 152: Compiler Design for some of the details. . .

15

Dr.shaimaa H.Shaker

16

Dr.shaimaa H.Shaker

17

Dr.shaimaa H.Shaker

18

Dr.shaimaa H.Shaker

19

Dr.shaimaa H.Shaker

20

Dr.shaimaa H.Shaker

21

Dr.shaimaa H.Shaker

22

Dr.shaimaa H.Shaker

23

Dr.shaimaa H.Shaker

24

Dr.shaimaa H.Shaker

25

Dr.shaimaa H.Shaker

26

Dr.shaimaa H.Shaker

27

Dr.shaimaa H.Shaker

Assemblers & compilers
Assembler is a translator for the lower level assembly language of computer,
while compilers are translators for HLLs.

An assembly language is mostly peculated to a certain computer, while an
HLL is generally machined independent & thus portable.

Overview of the compilation process:
The process of compilation is:

Analysis of + Synthesis of = Translation of Source Text Target Text Program

Source text analysis is based on the grimmer of the source of the source
language.

The component sub – tasks of analysis phase are:
Syntax analysis, which determine the syntactic structure of the source
statement.
Semantic analysis, which determines the meaning of a statement,
once its grammatical structures become known.

The analysis phase
The analysis phase of a compiler performs the following functions.
Lexical analysis
Syntax analysis
Semantic analysis
Syntax analysis determines the grammatical or syntactic structure
or the input statement & represents it in an intermediate form from
which semantic analysis can be performed.
A compiler must perform two major tasks:
The Analysis of a source program & the synthesis of its corresponding object
program.

The analysis task deals with the decomposition of the source program into its
basic parts using these basic parts the synthesis task builds their equivalent
object program modules. A source program is a string of symbols each of
which is generally a letter, a digit or a certain special constants, keywords &
operators. It is therefore desirable for the compiler to identify these various
types as classes.

28

Dr.shaimaa H.Shaker

The source program is input to a lexical analyzer or scanner whose
purpose is to separate the incoming text into pieces or tokens such as
constants, variable name, keywords & operators.
In essence, the lexical analyzer performs low- level syntax analysis
performs low-level syntax analysis.
For efficiency reasons, each of tokens is given a unique internal
representation number.
TEST: If A > B then X=Y;

The lexical analyzer supplies tokens to the syntax analyzer.
The syntax analyzer is much more complex then the lexical analyzer its
function is to take the source program from the lexical analyzer &
determines the manner in which it is to be decomposed into its
constituent parts. That is, the syntax analyzer determines the overall
structure of the source program.
The semantic analyzer uses syntax analyzer.
The function of the semantic analyzer is to determine the meaning the
meaning (or semantics) of the source program.
The semantic analyzer is passed on to the code generators.
At this point the intermediate form of the source language programs
usually translated to either assembly language or machine language.
The output of the code generator is passed on to a code optimizer. It’s purpose to produce
more program.

29

Dr.shaimaa H.Shaker

Introduction to Assemblers and

Assembly Language

Encoding instructions as binary numbers is natural and efficient for
computers. Humans, however, have a great deal of difficulty
understanding and manipulating these numbers. People read and
write symbols (words) much better than long sequences of digits.
This lecture describes the process by which a human-readable
program is translated into a form that a computer can execute,
provides a few hints about writing assembly programs, and explains
how to run these programs on SPIM,

What is an assembler ?

A tool called an assembler translates assembly language into
binary instructions. Assemblers provide a friendlier representation than
a computer’s 0s and 1s that simplifies writing and reading programs.
Symbolic names for operations and locations are one facet of this
representation. Another facet is programming facilities that increase a
program’s clarity.

An assembler reads a single assembly language source file and
produces an object file containing machine instructions and
bookkeeping information that helps combine several object files into a
program. Figure (1) illustrates how a program is built. Most programs
consist of several files—also called modules— that are written,
compiled, and assembled independently. A program may also use
prewritten routines supplied in a program library . A module typically
contains References to subroutines and data defined in other modules
and in libraries. The code in a module cannot be executed when it
contains unresolved References to labels in other object files or libraries.
Another tool, called a linker, combines a collection of object and library
files into an executable file , which a computer can run.

30

Dr.shaimaa H.Shaker

FIGURE 1: The process that produces an executable file. An assembler
translates a file of assembly language into an object file, which is linked
with other files and libraries into an executable file.

1) Assembler = a program to handle all the tedious mechanical
translations

2) Allows you to use:
· symbolic opcodes
· symbolic operand values
· symbolic addresses

3) The Assembler
· keeps track of the numerical values of all symbols
· translates symbolic values into numerical values

 4)Time Periods of the Various Processes in Program Development

31

Dr.shaimaa H.Shaker

 5) The Assembler Provides:

a. Access to all the machine’s resources by the assembled program.
This includes access to the entire instruction set of the machine.

b. A means for specifying run-time locations of program and data in
memory.

c. Provide symbolic labels for the representation of constants and
addresses.

d. Perform assemble-time arithmetic.

32

Dr.shaimaa H.Shaker

e. Provide for the use of any synthetic instructions.
f. Emit machine code in a form that can be loaded and executed.
g. Report syntax errors and provide program listings
h. Provide an interface to the module linkers and program loader.
i. Expand programmer defined macro routines.

Assembler Syntax and Directives

Syntax: Label OPCODE Op1, Op2, ... ;Comment field

Pseudo-operations (sometimes called “pseudos,” or directives) are
“opcodes” that are actually instructions to the assembler and that do
not result in code being generated.

Assembler maintains several data structures

• Table that maps text of opcodes to op number and instruction
format(s)

• “Symbol table” that maps defined symbols to their value

33

Dr.shaimaa H.Shaker

Disadvantages of Assembly
• programmer must manage movement of data items between memory
locations

 and the ALU.

• programmer must take a “microscopic” view of a task, breaking it
down to manipulate individual memory locations.

• assembly language is machine-specific.

• statements are not English-like (Pseudo-code)

Directives Assembler

1. Directives are commands to the Assembler
2. They tell the assembler what you want it to do, e.g.

a. Where in memory to store the code
b. Where in memory to store data
c. Where to store a constant and what its value is
d. The values of user-defined symbols

Object File Format
Assemblers produce object files. An object file on Unix contains six
distinct sections (see Figure 3):

· The object file header describes the size and position of the other
pieces of the file.

· The text segment contains the machine language code for
routines in the source file. These routines may be unexecutable
because of unresolved references.

34

Dr.shaimaa H.Shaker

· The data segment contains a binary representation of the data in
the source file. The data also may be incomplete because of
unresolved references to labels in other files.

· The relocation information identifies instructions and data words
that depend on absolute addresses. These references must
change if portions of the program are moved in memory.

· The symbol table associates addresses with external labels in the
source file and lists unresolved references.

· The debugging information contains a concise description of the
way in which the program was compiled, so a debugger can find
which instruction addresses correspond to lines in a source file
and print the data structures in readable form.

The assembler produces an object file that contains a binary
representation of the program and data and additional information to
help link pieces of a program. This relocation information is necessary
because the assembler does not know which memory locations a
procedure or piece of data will occupy after it is linked with the rest of
the program. Procedures and data from a file are stored in a contiguous
piece of memory, but the assembler does not know where this memory
will be located. The assembler also passes some symbol table entries to
the linker. In particular, the assembler must record which external
symbols are defined in a file and what unresolved references occur in a
file.

Macros
Macros are a pattern-matching and replacement facility that provide a
simple mechanism to name a frequently used sequence of instructions.

35

Dr.shaimaa H.Shaker

Instead of repeatedly typing the same instructions every time they are
used, a programmer invokes the macro and the assembler replaces the
macro call with the corresponding sequence of instructions. Macros, like
subroutines, permit a programmer to create and name a new
abstraction for a common operation. Unlike subroutines, however,
macros do not cause a subroutine call and return when the program
runs since a macro call is replaced by the macro’s body when the
program is assembled. After this replacement, the resulting assembly is
indistinguishable from the equivalent program written without macros.

36

Dr.shaimaa H.Shaker

The 2-Pass Assembly Process
• Pass 1:

1. Initialize location counter (assemble-time “PC”) to 0
2. Pass over program text: enter all symbols into symbol table

a. May not be able to map all symbols on first pass
b. Definition before use is usually allowed

 3. Determine size of each instruction, map to a location

a. Uses pattern matching to relate opcode to pattern
b. Increment location counter by size
c. Change location counter in response to ORG pseudos

• Pass 2:

1. Insert binary code for each opcode and value
2. “Fix up” forward references and variable-sizes instructions

· Examples include variable-sized branch offsets and
constant fields

Linker & Loader
A software processor, which performs some low level
processing of the programs input to it, produces a ready
to execute program form.
The basic loading function is that of locating a program in
an appropriate area of the main store of a computer when
it is to be executed.

37

Dr.shaimaa H.Shaker

A loader often performs the two other important
functions.
The loader, which accepts the program form, produced by
a translator & certain other program forms from a library
to produce one ready – to – execute machine language
program.
A unit of input to the loader is known as an object
program or an object module.
The process of merging many object modules to from a
single machine language program is known as linking.
The function to be performed by:
Assigning of loads the storage area to a program.
Loading of a program into the assigned area.
Relocations of a program to execute properly from its
load-time storage area.
Linking of programs with one another.
Loader, linking loaders, linkage editors are used in
software literature

LOADER:
The loader is program, which accepts the object program decks,
prepares this program for execution by the computer and initializes
the execution.
In particular the loader must perform four functions:
Allocate space in memory for the program (allocation).
Resolve symbolic references between objects decks (linking).
Adjust all address dependent locations, such as address constants,
to correspond to the allocated space (relocation).
Physically place the machine instructions and data into memory
(loading).

(Loaders and Linkers)
Introduction:

38

Dr.shaimaa H.Shaker

In this chapter we will understand the concept of linking and loading. As
discussed earlier the source program is converted to object program by
assembler. The loader is a program which takes this object program,
prepares it for execution, and loads this executable code of the source into
memory for execution.
Definition of Loader:
Loader is utility program which takes object code as input prepares it for
execution and loads the executable code into the memory. Thus loader is
actually responsible for initiating the execution process.
Functions of Loader:
The loader is responsible for the activities such as allocation, linking,
relocation and loading
1) It allocates the space for program in the memory, by calculating the
size of the program. This activity is called allocation.
2) It resolves the symbolic references (code/data) between the object
modules by assigning all the user subroutine and library subroutine
addresses. This activity is called linking.
3) There are some address dependent locations in the program, such
address constants must be adjusted according to allocated space, such
activity done by loader is called relocation.
4) Finally it places all the machine instructions and data of corresponding
programs and subroutines into the memory. Thus program now becomes
ready for execution, this activity is called loading.
Loader Schemes:
Based on the various functionalities of loader, there are various types of
loaders:
1) “compile and go” loader: in this type of loader, the instruction is read
line by line, its machine code is obtained and it is directly put in the main
memory at some known address. That means the assembler runs in one
part of memory and the assembled machine instructions and data
isdirectly put into their assigned memory locations. After completion of
assembly process, assign starting address of the program to the location
counter. The typical example is WATFOR-77, it’s a FORTRAN compiler
which uses such “load and go” scheme. This loading scheme is also
called as “assemble and go”.
Advantages:
• This scheme is simple to implement. Because assembler is placed at one
part of the memory and loader simply loads assembled machine
instructions into the memory.
Disadvantages:
• In this scheme some portion of memory is occupied by assembler which
is simply a wastage of memory. As this scheme is combination of

39

Dr.shaimaa H.Shaker

assembler and loader activities, this combination program occupies large
block of memory.
• There is no production of .obj file, the source code is directly converted
to executable form. Hence even though there is no modification in the
source program it needs to be assembled and executed each time, which
then becomes a time consuming activity.
• It cannot handle multiple source programs or multiple programs written
in different languages. This is because assembler can translate one source
language to other target language.
• For a programmer it is very difficult to make an orderly modulator
program and also it becomes difficult to maintain such program, and the
“compile and go” loader cannot handle such programs.
• The execution time will be more in this scheme as every time program
is assembled and then executed.
2) General Loader Scheme: in this loader scheme, the source program is
converted to object program by some translator (assembler). The loader
accepts these object modules and puts machine instruction and data in an
executable form at their assigned memory. The loader occupies some
portion of main memory.
Advantages:
• The program need not be retranslated each time while running it. This is
because initially when source program gets executed an object program
gets generated. Of program is not modified, then loader can make use of
this object program to convert it to executable form.
• There is no wastage of memory, because assembler is not placed in the
memory, instead of it, loader occupies some portion of the memory. And
size of loader is smaller than assembler, so more memory is available to
the user.
• It is possible to write source program with multiple programs and
multiple languages, because the source programs are first converted to
object programs always, and loader accepts these object modules to
convert it to executable form.
3) Absolute Loader: Absolute loader is a kind of loader in which
relocated object files are created, loader accepts these files and places
them at specified locations in the memory. This type of loader is called
absolute because no relocation information is needed; rather it is
obtained from the programmer or assembler. The starting address of
every module is known to the programmer, this corresponding starting
address is stored in the object file, then task of loader becomes very
simple and that is to simply place the executable form of the machine
instructions at the locations mentioned in the object file. In this
scheme, the programmer orassembler should have knowledge of

40

Dr.shaimaa H.Shaker

memory management. The resolution of external references or linking
of different subroutines are the issues which need to be handled by the
programmer. The programmer should take care of two things: first
thing is : specification of starting address of each module to be used. If
some modification is done in some module then the length of that
module may vary. This causes a change in the starting address of
immediate next . modules, its then the programmer's duty to make
necessary changes in the starting addresses of respective modules.
Second thing is ,while branching from one segment to another the
absolute starting address of respective module is to be known by the
programmer so that such address can be specified at respective JMP
instruction. For example
Line number
1 MAIN START 1000
. .
. .
. .
15 JMP 5000
16 STORE ;instruction at location 2000
END
1 SUM START 5000
2
20 JMP 2000
21 END
In this example there are two segments, which are interdependent. At line
number 1 the assembler directive START specifies the physical starting
address that can be used during the execution of the first segment MAIN.
Then at line number 15 the JMP instruction is given which specifies the
physical starting address that can be used by the second segment. The
assembler creates the object codes for these two segments by considering
the stating addresses of these two segments. During the execution, the
first segment will be loaded at address 1000 and second segment will be
loaded at address 5000 as specified by the programmer. Thus the problem
of linking is manually solved by the programmer itself by taking care of
the mutually dependant dresses. As you can notice that the control is
correctly transferred to the address 5000 for invoking the other segment,
and after that at line number 20 the JMP instruction transfers the control
to the location 2000, necessarily at location 2000 the instruction STORE
of line number 16 is present. Thus resolution of mutual references and
linking is done by the programmer. The task of assembler is to create the
object codes

41

Dr.shaimaa H.Shaker

for the above segments and along with the information such as starting
address of the memory where actually the object code can be placed at
the time of execution. The absolute loader accepts these object modules
from assembler and by reading the information about their starting
addresses, it will actually place (load) them in the memory at specified
addresses.
The entire process is modeled in the following figure.
Thus the absolute loader is simple to implement in this scheme-
l) Allocation is done by either programmer or assembler
2)Linking is done by the programmer or assembler
3)Resolution is done by assembler
4)Simply loading is done by the loader
As the name suggests, no relocation information is needed, if at all it is
required then that task can be done by either a programmer or assembler
Advantages:
1. It is simple to implement
2. This scheme allows multiple programs or the source programs written
different languages. If there are multiple programs written in different
languages then the respective language assembler will convert it to the
language and a common object file can be prepared with all the ad
resolution.
3. The task of loader becomes simpler as it simply obeys the instruction
regarding where to place the object code in the main memory.
4. The process of execution is efficient

Disadvantages:
1. In this scheme it is the programmer's duty to adjust all the inter
segment addresses and manually do the linking activity. For that, it is
necessary for a programmer to know the memory management.
If at all any modification is done the some segments, the starting
addresses of immediate next segments may get changed, the programmer
has to take care of this issue and he needs to update the corresponding
starting addresses on any modification in the source.
Algorithm for absolute Loader
Input: Object codes and starting address of program segments.
Output: An executable code for corresponding source program. This
executable code is to be placed in the main memory
Method: Begin
For each program segment do Begin
Read the first line from object module to obtain
information about memory location. The starting address
say S in corresponding object module is the memory
location where executale code is to be placed.

42

Dr.shaimaa H.Shaker

Hence
Memory_location = S
Line counter = 1; as it is first line While (! end of
file)
For the curent object code do Begin
1. Read next line
2. Write line into location S
3. S = S + 1
4. Line counter Line counter + 1
Subroutine Linkage: To understand the concept of subroutine
linkages, first consider the following scenario:
"In Program A a call to subroutine B is made. The subroutine B is not
written in the program segment of A, rather B is defined in some another
program segment C"
Nothing is wrong in it. But from assembler's point of view while
generating the code for B, as B is not defined in the segment A, the
assembler can not find the value of this symbolic reference and hence it
will declare it as an error. To overcome problem, there should be some
mechanism by which the assembler should be explicitly informed that
segment B is really defined in some other segment C. Therefore
whenever segment B is used in segment A and if at all B is defined in C,
then B must -be declared as an external routine in A. To declare such
subroutine asexternal, we can use the assembler directive EXT. Thus the
statement such as EXT B should be added at the beginning of the
segment A. This actually helps to inform assembler that B is defined
somewhere else. Similarly, if one subroutine or a variable is defined in
the current segment and can be referred by other segments then those
should be declared by using pseudo-ops INT. Thereby the assembler
could inform loader that these are the subroutines or variables used by
other segments. This overall process of establishing the relations between
the subroutines can be conceptually called a_ subroutine linkage.
For example
MAIN START
EXT B
.
.
.
CALL B
.
.
END
B START
.
.

43

Dr.shaimaa H.Shaker

RET
END
At the beginning of the MAIN the subroutine B is declared as external.
When a call to subroutine B is made, before making the unconditional
jump, the current content of the program counter should be stored in the
system stack maintained internally. Similarly while returning from the
subroutine B (at RET) the pop is performed to restore the program
counter of caller routine with the address of next instruction to be
executed.
Concept of relocations:
Relocation is the process of updating the addresses used in the address
sensitive instructions of a program. It is necessary that such a
modification should help to execute the program from designated area of
the memory.
The assembler generates the object code. This object code gets executed
after loading at storage locations. The addresses of such object code will
get specified only after the assembly process is over. Therefore, after
loading, Address of object code = Mere address of object code +
relocation constant.
There are two types of addresses being generated: Absolute address and,
relative address. The absolute address can be directly used to map the
object code in the main memory. Whereas the relative address is only
after the addition of relocation constant to the object code address. This
kind of adjustment needs to be done in case of relative address before
actual execution of the code. The typical example of relative reference is :
addresses of the symbols defined in the Label field, addresses of the data
which is defined by the assembler directive, literals, redefinable symbols.
Similarly, the typical example of absolute address is the constants which
are generated by assembler are absolute.
The assembler calculates which addresses are absolute and which
addresses are relative during the assembly process. During the assembly
process the assembler calculates the address with the help of simple
expressions.
For example
LOADA(X)+5
The expression A(X) means the address of variable X. The meaning of
the above instruction is that loading of the contents of memory location
which is 5 more than the address of variable X. Suppose if the address of
X is 50 then by above command we try to get the memory location
50+5=55. Therefore as the address of variable X is relative A(X) + 5 is
also relative. To calculate the relative addresses the simple expressions
are allowed. It is expected that the expression should possess at the most

44

Dr.shaimaa H.Shaker

addition and multiplication operations. A simple exercise can be carried
out to determine whether the given address is absolute or relative. In the
expression if the address is absolute then put 0 over there and if address is
relative then put lover there. The expression then gets transformed to sum
of O's and l's. If the resultant value of the expression is 0 then expression
is absolute. And if the resultant value of the expression is 1 then the
expression is relative. If the resultant is other than 0 or 1then the
expression is illegal. For example:

In the above expression the A, Band C are the variable names. The
assembler is to c0l1sider the relocation attribute and adjust the object
code by relocation constant. Assembler is then responsible to convey the
information loading of object code to the loader. Let us now see how
assembler generates code using relocation information.
Direct Linking Loaders
The direct linking loader is the most common type of loader. This type of
loader is a relocatable loader. The loader can not have the direct access to
the source code. And to place the object code in the memory there are
two situations: either the address of the object code could be absolute
which then can be directly placed at the specified location or the address
can be relative. If at all the address is relative then it is the assembler who
informs the loader about the relative addresses.
The assembler should give the following information to the loader
1)The length of the object code segment
2) The list of all the symbols which are not defined 111 the current
segment but can be used in the current segment.
3) The list of all the symbols which are defined in the current segment but
can be referred by the other segments.
The list of symbols which are not defined in the current segment but can
be used in the current segment are stored in a data structure called USE
table. The USE table holds the information such as name of the symbol,
address, address relativity.
The list of symbols which are defined in the current segment and can be
referred by the other segments are stored in a data structure called
DEFINITION table. The definition table holds the information such as
symbol, address.
Overlay Structures and Dynamic Loading:
Sometimes a program may require more storage space than the available
one Execution of such program can be possible if all the segments are not
required simultaneously to be present in the main memory. In such

45

Dr.shaimaa H.Shaker

situations only those segments are resident in the memory that are
actually needed at the time of execution But the question arises what will
happen if the required segment is not present in the memory? Naturally
the execution process will be delayed until the required segment gets
loaded in the memory. The overall effect of this is efficiency of execution
process gets degraded. The efficiency can then be improved by carefully
selecting all the interdependent segments. Of course the assembler can
not do this task. Only the user can specify such dependencies. The inter
dependency of thesegments can be specified by a tree like structure called
static overlay structures. The overlay structure contain multiple
root/nodes and edges. Each node represents the segment. The
specification of required amount of memory is also essential in this
structure. The two segments can lie simultaneously in the main memory if
they are on the same path. Let us take an example to understand the
concept. Various segments along with their memory requirements is as
shown below.

Automatic Library Search:
Previously, the library routines were available in absolute code but now
the library routines are provided in relocated form that ultimately reduces
their size on the disk, which in turn increases the memory utilization. At
execution time certain library routines may be needed. Keeping track of
which library routines are required and how much storage is required by
these routines, if at all is done by an assembler itself then the activity of
automatic library search becomes simpler and effective. The library
routines can also make an external call to other routines. The idea is to
make a list of such calls made by the routines. And if such list is made
available to the linker then linker can efficiently find the set of required
routines and can link the references accordingly.
For an efficient search of library routines it desirable to store all the
calling routines first and then the called routines. This avoids wastage of
time due to winding and rewinding. For efficient automated search of
library routines even the dictionary of such routines can be maintained. A
table containing the names of library routines and the addresses where
they are actually located in relocatable form is prepared with the help of
translator and such table is submitted to the linker. Such a table is called
subroutine directory. Even if these routines have made any external calls
the -information about it is also given in subroutine directory. The linker
searches the subroutine directory, finds the address of desired library

46

Dr.shaimaa H.Shaker

routine (the address where the routine is stored in relocated form).Then
linker prepares aload module appending the user program and necessary
library routines by doing the necessary relocation. If the library routine
contains the external calls then the linker searches the subroutine
directory finds the address of such external calls, prepares the load
module by resolving the external references. Linkage Editor: The
execution of any program needs four basic functionalities and those are
allocation, relocation, linking and loading. As we have also seen in direct
linking loader for execution of any program each time these four
functionalities need to be performed. But performing all these
functionalities each time is time and space consuming task. Moreover if
the program contains many subroutines or functions and the program
needs to be executed repeatedly then this activity becomes annoyingly
complex .Each time for execution of a program, the allocation, relocation
linking and -loading needs to be done. Now doing these activities each
time increases the time and space complexity. Actually, there is no need
to redo all these four activities each time. Instead, if the results of some of
these activities are stored in a file then that file can be used by other
activities. And performing allocation, relocation, linking and loading can
be avoided each time. The idea is to separate out these activities in
separate groups. Thus dividing the essential four functions in groups
reduces the overall time complexity of loading process. The program
which performs allocation, relocation and linking is called binder. The
binder performs relocation, creates linked executable text and stores this
text in a file in some systematic manner. Such kind of module prepared
by the binder execution is called load module. This load module can then
be actually loaded in the main memory by the loader. This loader is also
called as module loader. If the binder can produce the exact replica of
executable code in the load module then the module loader simply loads
this file into the main memory which ultimately reduces the overall time
complexity. But in this process the binder should knew the current
positions of the main memory. Even though the binder knew the main
memory locations this is not the only thing which is sufficient. In
multiprogramming environment, the region of main memory available for
loading the program is decided by the host operating system. The binder
should also know which memory area is allocated to the loading program
and it should modify the relocation information accordingly. The binder

47

Dr.shaimaa H.Shaker

which performs the linking function and produces adequate information
about allocation and relocation and writes this information along with the
program code in the file is called linkage editor. The module loader then
accepts this rile as input, reads the information stored in and based on this
information about allocation and relocation it performs the task of loading
in the main memory. Even though the program is repeatedly executed the
linking is done only once. Moreover, the flexibility of allocation and
relocation helps efficient utilization of the main memory.

Direct linking: As we have seen in overlay structure certain selective
subroutines can be resident in the memory. That means it is not necessary
to resident all the subroutines in the memory for all the time. Only
necessary routines can be present in the main memory and during
execution the required subroutines can be loaded in the memory. This
process of postponing linking and loading of external reference until
execution is called dynamic linking. For example suppose the subroutine
main calls A,B,C,D then it is not desirable to load A,B,C and D along
with the main in the memory. Whether A, B, C or D is called by the main
or not will be known only at the time of execution. Hence keeping these
routines already before is really not needed. As the subroutines get
executed when the program runs. Also the linking of all the subroutines
has to be performed. And the code of all the subroutines remains resident
in the main memory. As a result of all this is that memory gets occupied
unnecessarily. Typically 'error routines' are such routines which can be
invoked rarely. Then one can postpone the loading of these routines
during the execution. If linking and loading of such rarely invoked
external references could be postponed until the execution time when it
was found to be absolutely necessary, then it increases the efficiency of
overhead of the loader. In dynamic linking, the binder first prepares a
load module in which along with program code the allocation and
relocation information is stored. The loader simply loads the main
module in the main memory. If any external ·reference to a subroutine
comes, then the execution is suspended for a while, the loader brings the
required subroutine in the main memory and then the execution process is
resumed. Thus dynamic linking both the loading and linking is done
dynamically. Advantages
1. The overhead on the loader is reduced. The required subroutine will be
load in the main memory only at the time of execution.
2. The system can be dynamically reconfigured.
Disadvantages The linking and loading need to be postponed until the
execution. During the execution if at all any subroutine is needed then the

48

Dr.shaimaa H.Shaker

process of execution needs to be suspended until the required subroutine
gets loaded in the main memory

Bootstrap Loader: As we turn on the computer there is nothing
meaningful in the main memory (RAM). A small program is written and
stored in the ROM. This program initially loads the operating system
from secondary storage to main memory. The operating system then takes
the overall control. This program which is responsible for booting up the
system is called bootstrap loader. This is the program which must be
executed first when the system is first powered on. If the program starts
from the location x then to execute this program the program counter of
this machine should be loaded with the value x. Thus the task of setting
the initial value of the program counter is to be done by machine
hardware. The bootstrap loader is a very small program which is to be
fitted in the ROM. The task of bootstrap loader is to load the necessary
portion of the operating system in the main memory .The initial address
at which the bootstrap loader is to be loaded is generally the lowest (may
be at 0th location) or the highest location. . Concept of Linking: As
we have discussed earlier, the execution of program can be done with the
help of following steps
1. Translation of the program(done by assembler or compiler)
2. Linking of the program with all other programs which are needed for
execution. This also involves preparation of a program called load
module.
3. Loading of the load module prepared by linker to some specified
memory location.
The output of translator is a program called object module. The linker
processes these object modules binds with necessary library routines and
prepares a ready to execute program. Such a program is called binary
program. The "binary program also contains some necessary information
about allocation and relocation. The loader then load s this program into
memory for execution purpose.

Various tasks of linker are -
1. Prepare a single load module and adjust all the addresses and
subroutine references with respect to the offset location.
2. To prepare a load module concatenate all the object modules and adjust
all the operand address references as well as external references to the
offset location.
3. At correct locations in the load module, copy the binary machine
instructions and constant data in order to prepare ready to execute
module.

49

Dr.shaimaa H.Shaker

The linking process is performed in two passes. Two passes are necessary
because the linker may encounter a forward reference before knowing its
address. So it is necessary to scan all the DEFINITION and USE table at
least once. Linker then builds the Global symbol table with the help of
USE and DEFINITION table. In Global symbol table name of each
externally referenced symbol is included along with its address relative to
beginning of the load module. And during pass 2, the addresses of
external references are replaced by obtaining the addresses from global
symbol table.

Operating System
Evolution of OS Functions
Functions of OS:
Operating System: “An operating system provides interface
between the user & the hardware.”
It can be basically classified into:

• Resource Allocation & Related Functions.

• User Interface Functions.

The Resource Allocation function implements resources sharing by
the users of a computer system. Basically it performs binding of a
set of resources with the requesting program-that is it associates
resources with a program. The related functions implement
protection of users sharing a set of resources against mutual
interference.

Resource Allocation & Related Functions:
The resource allocation function allocates resources for use by a
user’s computation. Resources can be divided into two types:

1. System Provided Resources – like CPU, memory and IO
devices

User created Resources – like files etc.

Resource allocation depends on whether a resource is a system
resource or a user created resource.

50

Dr.shaimaa H.Shaker

There are two popular strategies for resource allocation:

Partitioning of resources

Allocation from a pool.

Using resource partition approach, OS decides priori what
resources should be allocated to a user computation. This is
known as static allocation as the allocation is made before the
execution of the program starts.

Using pool allocation approach, OS maintains a common pool &
allocates resources from this pool on a need basis. This is called
dynamic allocation because it takes place during the execution of
program. It can lead to better utilization of resources because
the allocation is made when a program request a resource.

An OS can use a resource table as a central data structure for
resource allocation. The table contains an entry for each resource
unit in the system. The entry contains the name or address of the
resource unit and its present system i.e whether it is free or
allocated to some program. When a program raises a request for a
resource ,the resource should be allocated to it if it is presently free.

In the partition resource allocation approach ,the OS decides on the resources to
be allocated to a program based on the number of the program in the system.

For Example, an OS may decide that a program can be allocated 1 MB of
memory, 200 disk blocks and a monitor. Such a collection of resources is referred
to as a partition. The resource table can have an entry for each resource
partition. When a new program is to be started, an available partition is allocated
to it.

User Interface Functions:
Its purpose is to provide the use of OS resources for processing a user’s
computational requirements. OS user interfaces use command languages. For
this, the user uses Command to set up an appropriate computational structure to
fulfill his computational requirements.

An OS can define a variety of computational structures. A sample list of
computational structures is as follows:

1. A single program

2. A sequence of single program

51

Dr.shaimaa H.Shaker

3. A collection of programs

The single program consist the execution of a program on a given set of data. The
user initiates execution of the program through a command. Two kinds of
program can exist – Sequential and concurrent. A sequential program is the
simplest computational structure. In concurrent program the OS has to be aware
of the identities of the different parts, which can execute concurrently.

Evolution of OS Functions:
Operating System functions have evolved in response to the following
considerations and issues.

1. Efficient utilization of computing resources

2. New features in computer Architecture

3. New user requirements.

Different operating systems address these issues in different manner, however
most operating system contains components, which have similar functionalities.
For example, all operating systems contain components for functions of memory
management, process management and protection of users from one another.
The techniques used to implement these functions may vary from one OS to
another, but the fundamental concept is same.

Process:

A process is execution of a program or a part of a program.

Job:

A job is computational structure, which is a sequence of program.

Types of Operating Systems:

1. Batch Processing system

2. Multiprogramming system

3. Time sharing system

4. Real time operating system

5. Distributed systems

Batch Processing Systems:

When Punch cards were used to record user jobs, processing of a
job involved physical actions by the system operator e.g. loading
a deck of cards into the card reader, pressing switches on the

52

Dr.shaimaa H.Shaker

computer’s console to initiate the job. These actions wasted a lot
of CPU time. BP was introduced to avoid this wastage.

A batch is a sequence of user jobs. A computer operator forms a
batch by arranging user jobs in a sequence and inserting special
marker cards to indicate the start and end of the batch. After
forming a batch, the operator submits it to the batch processing
operating system. The primary function of the BP system is to
implement the processing of the jobs in a batch.

Batch processing is implemented by locating a component of the BP
system called the batch monitor or supervisor, permanently in one
part of the computer’s memory. The remaining memory is used to
process a user job the current job in the batch. The batch monitor is
responsible for implementing the various function of the batch
processing system. It accepts a command from the system operator
for initiating the processing of a batch and sets up the processing of
the first job of the batch. At the end of the job, it performs job
termination processing and initiates execution of the batch; it
performs batch termination processing system and awaits initiation
of the next batch by the operator.

The part of memory occupied by the batch monitor is called the
system area and the part occupied by the user job is called the
user area.

User Service:

A user evaluates the performance of an os on the basis of the
service accorded to his or her job. The notion of turn-around time is
used to quantity user service in a batch processing system.
Note: The turn around time of a user job is the time since its

submission to the time its results become available to the user

Batch processing does not guarantee improvements in the turn
around time of jobs. Batch processing does not aim at improving
user services-it aims at improving CPU utilization.

Batch Monitor Functions:

The basic task of the batch monitor is to exercise effective control
Over the BP environment. This task can be classified into the
following three functions.
Scheduling

53

Dr.shaimaa H.Shaker

Memory Management

Sharing and Protection

The batch monitor performs two functions before initiating the
execution of a job. The third function is performed during the
execution of a job.
In Batch Processing System, The CPU Of The Computer System Is
The Server And The User Jobs Are The Service Requests. The
Nature Of Batch Processing Dictates The Use Of The First Come First
Serve(FCFS) Scheduling. The Batch Monitor Performs Scheduling By
Always Selecting The Next Job In The Batch For Execution.
Scheduling Does Not Influence The User Services In The BP System
Because The Turn Around Time Of Each Job In A Batch Is Subject
To Some Other Factors.
At any time during a BP system’s operation, the memory is divided
into the system area and the user area. The user area of the
memory is sequentially shared by the jobs in the batch.

Multiprogramming System:
Early computer systems implemented IO operation as CPU
instructions. It sent a signal to the card reader to read a card and
waited for the operation to complete before initiating the next
operation. However the speeds of operation of IO devices were
much lower than the speed of the CPU. Programs took long to
complete their execution. A new feature was introduced in the
machine architecture when this weakness was realized. This feature
permitted the CPU to delink itself from an IO operation so that it
could execute instructions while an IO operation was in progress.
Thus the CPU and the IO device could now operate concurrently.
If many user programs exist in the memory, the CPU can execute
instructions of one program while the IO subsystem is busy with an
IO operation for another program. The term multiprogramming is
used to describe this arrangement. At any moment the program
corresponding to the current job step of each job is in execution.
The IO device and memory are allocated using the partitioned
resource allocation approach. At any time, the CPU and IO
subsystem are busy with programs belonging to different jobs. Thus
they access different areas of memory. In principle the CPU and IO
subsystem could operate on the same program. Each job in the
memory could be current job of a batch of jobs. Thus one could
have both batch processing and multiprogramming supervisor.
Analogous to a BP supervisor, the MP supervisor also consists of a
permanently resident part and a transient part.
The multiprogramming arrangement ensures concurrent operation
of the CPU and the IO subsystem without requiring a program to
use the special buffering techniques. It simply ensures that the CPU

54

Dr.shaimaa H.Shaker

is allocated to a program only when it is not performing an IO
operation.

Functions of the Multiprogramming Supervisor:
Scheduling
Memory Management
IO management
The MP supervisor uses simple techniques to implement its
functions. Function like scheduling implies sharing of the CPU
between the jobs existing in the MP system. This function is
performed after servicing every interrupt using a simple priority
based scheme described in the next section. The allocation of
memory and IO devices is performed by static partitioning of
resources. Thus a part of memory and some IO devices are
allocated to each job. It is necessary to protect the data and IO
operations of one program from interference by another program.
This is achieved by using memory protection hardware and putting
CPU in non-privileged mode while executing a user program. Any
effort by a user program to access memory locations situated
outside its memory area now leads to an interrupt. The interrupting
processing routines for these interrupts simply terminates the
program causing the interrupt.

Scheduling:
The goal of multiprogramming is to exploit the concurrency of
operation between the CPU and IO subsystem to achieve high levels
of system utilization. A useful characterization of system utilization
is offered by throughput of a system .
Throughput: The throughput of a system is the number of programs
processed by it per unit time.
Throughput = Number of programs completed
Total time taken
To optimize the throughput, a MP system uses the following
concepts:
A proper mix of programs:
For good throughput it is important to keep both the CPU and IO
subsystems busy.
A CPU bound program is a program involving a lot of computation
and very little IO. It uses the CPU for a long time.
An IO bound program is a program involving very little computation
and a lot of IO.
2.Preemptive and priority based scheduling:
Scheduling is priority based that is the CPU is always allocated to
the highest priority programs. The Scheduling is preemptive the is a

55

Dr.shaimaa H.Shaker

low priority program executing on the CPU is preempted if a higher
priority program wishes to use the CPU.

3.Degree of multiprogramming:
Degree of multiprogramming is the number of programs existing
simultaneously in the system’s memory.

Deadlocks
Deadlocks
Processes compete for physical and logical resources in the system (e.g.
disks or files). Deadlocks affect the progress of processes by causing
indefinite delays in resource allocation. Such delays have serious
consequences for the response times of processes, idling and wastage of
resources allocated to processes, and the performance of the system.
Hence an OS must use resource allocation policies, which ensure an
absence of deadlocks. This chapter characterizes the deadlock problem
and describes the policies an OS can employ to ensure an absence of
deadlocks.
DEFINITIONS
We define three events concerning resource allocation:
1. Resource request: A user process requests a resource prior to its use.
This is done through an OS call. The OS analyses the request and
determines whether the requested resource can be allocated to the
process immediately. If not. The process remains blocked on the request
till the resource is allocated.
2. Resource allocation: The OS allocates are source to a requesting
process. The resource status information is updated and the state of the
process is changed to ready. The process now becomes the holder of the
resource.
3. Resource release: After completing resource usage, a user process
releases the resource through an OS call. If another process is blocked on
the resource, OS allocates the resource to it. If several processes are
blocked on the resource, the
OS uses some tie-breaking rule, e.g. FCFS allocation or allocation
according to process priority, to perform the allocation.
Deadlock: A deadlock involving a set of processes D is a situation in
which
1.Every process pi in D is blocked on some event ei
Event ei can only be caused by some process (es) in D.
If the event awaited by each process in D is the granting of some
resource, it results in a resource deadlock. A communication deadlock
occurs when the awaited events pertain to the receipt of interprocess
messages, and synchronization deadlock when the awaited events
concern the exchange of signals between processes. An
OS is primarily concerned with resource deadlocks because allocation of
resources is an OS responsibility. The other two forms of deadlock are
seldom tackled by an OS.

HANDLING DEADLOCKS
Two fundamental approaches used for handling deadlocks are:

56

Dr.shaimaa H.Shaker

1. Detection and resolution of deadlocks
2. Avoidance of deadlocks.
In the former approach, the OS detects deadlock situations as and when
they arise. It then performs some actions aimed at ensuring progress for
some of the deadlocked processes. These actions constitute deadlock
resolution. The latter approach focuses on avoiding the occurrence of
deadlocks. This approach involves checking each resource request to
ensure that it does not lead to a deadlock. The detection and resolution approach
does not perform any such checks. The choice of the deadlock handling approach would
depend on the relative costs of the approach, and its consequences for user processes.

DEADLOCK DETECTION AND RESOLUTION
The deadlock characterization developed in the previous section is not
very useful in practice for two reasons. First, it involves the overheads of
building and maintaining an RRAG. Second, it restricts each resource
request to a single resource unit of one or more resource classes. Due to
these limitations, deadlock detection cannot be implemented merely as
the determination of a graph property. For a practical implementation, the
definition can be interpreted as follows: A set of blocked processes
D is deadlocked if there does not exist any sequence of resource
allocations and resource releases in the system whereby each process in D
can complete. The OS must determine this fact through exhaustive
analysis.
Deadlock analysis is performed by simulating the completion of a running
process. In the simulation it is assumed that a running process completes
without making additional resource requests. On completion, the process
releases all resources allocated to it. These resources are allocated to a
blocked process only if the process can enter the running state. The
simulation terminates in one of two situations—either all blocked
processes become running and complete, or some set B of blocked
processes cannot be allocated their requested resources. In the former
case no deadlock exists in the system at the time when deadlock analysis
is performed, while in the latter case processes in B are deadlocked.
Deadlock Resolution
Given a set of deadlocked processes D, deadlock resolution implies
breaking the deadlock to ensure progress for some processes {pi} £ D.
This can be achieved by satisfying the resource request of a process pi in
one of two ways:
1. Terminate some processes {pj} e D to free the resources required by
pi. (We call each pj a victim of deadlock resolution.)
2. Add a new unit of the resource requested by pi.
Note that deadlock resolution only ensures some progress for pi. It does
not guarantee that a pi would run to completion. That would depend on
the behaviour of processes after resolution.

CP/M
Control Program/Microcomputer. An operating system created by Gary
Kildall, the founder of Digital Research. Created for the old 8-bit
microcomputers that used the 8080, 8085, and Z-80 microprocessors. Was
the dominant operating system in the late

57

Dr.shaimaa H.Shaker

1970s and early 1980s for small computers used in a business environment.

DOS

Disk Operating System. A collection of programs stored on the DOS disk that contain
routines enabling the system and user to manage information and the hardware
resources of the computer. DOS must be loaded into the computer before other

programs can be started.

operating system (OS)

 A collection of programs for operating the computer. Operating systems
perform housekeeping tasks such as input and output between the computer
and peripherals as well as accepting and interpreting information from the
keyboard. DOS and OS/2 are examples of popular 0S’s.

0S/2

A universal operating system developed through a joint effort by IBM and
Microsoft Corporation. The latest operating system from IBM for
microcomputers using the Intel 386 or better microprocessors. OS/2 uses the
protected mode operation of the processor to expand memory from 1M to 4G
and to support fast, efficient multitasking. The 0512 Workplace Shell, an
integral part of the system, is a graphical interface similar to Microsoft
Windows and the Apple Macintosh system. The latest version runs DOS,
Windows, and OS/2-specific software.

1
 (Introduction to Operating System)
Definition: An operating system is a program that control the
execution of application programs and acts as an interface between the
user of a computer and the computer hardware.
Introduction:
• Operating system performs three functions:
1. Convenience: An as makes a computer more. convenient to use.
2. Efficiency: An as allows the computer system resources to be used in
an efficient manner.
3. Ability to evolve : An as should be constructed in such a way as to
permit the effective development, testing and introduction of new system
functions without at the same time interfaring with service .
Operating System as a User Interface:

58

Dr.shaimaa H.Shaker

• Every general purpose computer consists of the hardware, operating
system, system programs, application programs. The hardware consists of
memory, CPU, ALU, I/O devices, peripheral device and storage device.
System program consists of compilers, loaders, editors, as etc. The
application program consists of business program, database program.
• The Figure below shows the conceptual view of a computer system.
Every computer must have an operating system to run other programs.
The operating system controls and co-ordinates the use of the hardware
among the various system programs and application program for a
various users. It simply provides an environment within which other
programs can do useful work.

• The operating system is a set of special programs that run on a computer
system that allow it to work properly. It performs basic tasks such as
recognizing input from the keyboard, keeping track of files and
directories on the disk, sending output to the display screen and
controlling a peripheral devices.
• OS is designed to serve two basic purposes :
1. It controls the allocation and use of the computing system's resources
among the various users and tasks.
2. It provides an interface between the computer hardware and the
programmer that simplifies and makes feasible for coding, creation,
debugging of application programs.
• The operating system must support the following tasks. The tasks are:
1. Provides the facilities to create, modification of program and data files
using an editor.
2. Access to the compiler for translating the user program from high level
language to machine language.
3. Provide a loader program to move the compiled program code to the
computer's memory for execution.
4. Provide routines that handle the details of I/O programming.
Editor
Loade
Compiler
Application and utilities
Operating system
Computer hardware
Operating System Services:
• An operating system provides services to programs and to the users of
those programs. It provides an environment for the execution of
programs. The services provided by one operating system is different
than other operating system.
• Operating system makes the programming task easier. The common
services

59

Dr.shaimaa H.Shaker

Provided by the operating system is listed below.
1. Program execution
2. I/O operation
3. File system manipulation
4. Communications
5. Error detection.
1. Program execution: Operating system loads a program into memory
and executes the program. The program must be able to end its execution,
either normally or abnormally.
2. I/O operation: I/O means any file or any specific I/O device. Program
may require any I/O device while running. So operating system must
provide the required I/O.
3. File system manipulation: Program needs to read a file or write a file.
The operating system gives the permission to the program for operation
on file.
4. Communication: Data transfer between two processes is required for
some time. The both processes are on the one computer or on different
computer but connected through computer network. Communication may
be implemented by two methods: shared memory and message passing.
5. Error detection: Error may occur in CPU, in I/O devices or in the
memory hardware. The operating system constantly needs to be aware of
possible errors. It should take the appropriate action to ensure correct and
consistent computing.
Operating system with multiple users provides following services. 1.
Resource allocation 2. Accounting 3. Protection •

• An operating system is a lower level of software that user programs run
on.
OS is built directly on the hardware interface and provides an interface
between the hardware and the user program. It shares characteristics 'with
both software and hardware.
• We can view an operating system as a resource allocator. OS keeps
track of the status of each resource and decides who gets a resource, for
how long, and when. as makes sure that different programs and users
running at the same time but do not interfere with each other. It is also
responsible for security, ensuring that unauthorized users do not access
the system.
• The primary objective of operating systems is to increase productivity
of a processing resource, such as computer hardware or users.
• The operating system is the first program nm on a computer when the
computer boots up. The services of the as are invoked with a system call
instruction that is used just like any other hardware instruction.

60

Dr.shaimaa H.Shaker

• Name of the operating systems are: DOS, Windows 95, Windows
NT/2000, Unix, Linux etc.
Operating System as Resource Manager
• A computer is a set of resources for the movement, storage and
processing of data and for the control of these functions. The as is
responsible for managing these resources.
 • Main resources that are managed by the operating system. A portion of
the operating system is in main memory. This includes the Kernel, which
contains the most frequently used functions in the operating system and at
a given time, other portions of the OS currently in use.
• The remainder of main memory contains other user programs and data.
The allocation of main memory is controlled jointly by the OS and
memory management hardware in the processor.
• The operating system decides when an I/O device can be used by a
program in execution and controls access to and use of files. The
processor itself is a resource, and the operating system must determine
how much processor time is to be devoted to the execution of a particular
user program.
History of Operating System
• Operating systems have been evolving through the years. Following
table shows the history of OS.

Mainframe System: An operating system may process its workload
serially or concurrently. That is resources of the computer system may be
dedicated to a single program until its completion, or they may be
dynamically reassigned among a collection of active programs in
different stages of execution.
• Several variations of both serial and multiprogrammed operating
systems exist.
Characteristics of mainframe systems
1. The first computers used to tackle various applications and still found
today in corporate data centers.
2. Room-sized, high I/O capacity, reliability, security, technical support.
3. Mainframes focus on I/O bound business data applications.
Mainframes provide three main functions:
a. Batch processing: insurance claims, store sales reporting, etc.
b. Transaction processing: credit card, bank account, etc. c. Time-sharing:
multiple users querying a database. Batch Systems
• Some computer systems only did one thing at a time. They had a list of
instructions to carry out and these would be carried out one after the

61

Dr.shaimaa H.Shaker

other. This is called a serial system. The mechanics of development and
preparation of programs in such environments are quite slow and
numerous manual operations involved in the process.
• Batch operating system is one where programs and data are collected
together in a batch before processing starts. A job is predefined sequence
of commands, programs and data that are combined into a single unit
called job.
• Memory management in batch system is very simple. Memory is
usually divided into two areas: Operating system and user program area.
Resident portion
• Scheduling is also simple in batch system. Jobs are processed in the
order of submission i.e. first come first served fashion.
• When a job completes execution, its memory is released and the output
for the job gets copied into an output spool for later printing.
• Spooling an acronym for simultaneous peripheral operation on line.
Spooling uses the disk as a large buffer for outputting data to printers and
other devices. It can also be used for input, but is generally used for
output. Its main use is to prevent two users from alternating printing lines
to the line printer on the same page, getting their output completely
mixed together. It also helps in reducing idle time and overlapped I/O and
CPU.
• Batch system often provides simple forms of file management. Access
·to file is serial. Batch systems do not require any time critical device
management.
• Batch systems are inconvenient for users because users can not interact
with their jobs to fix problems. There may also be long turnaround times.
Example of this system is generating monthly bank statement.

Spooling:
• Acronym for simultaneous peripheral operations on line. Spooling
refers to putting jobs in a buffer, a special area in memory or on a disk
where a device can access them when it is ready.
• Spooling is useful because device access data at different rates. The
buffer provides a waiting station where data can rest while the slower
device catches up.
• Computer can perform I/O in parallel with computation, it becomes
possible to have the computer read a deck of cards to a tape, drum or disk
and to write out to a tape printer while it was computing. This process is
called spooling.
• The most common spooling application is print spooling. In print
spooling, documents are loaded into a buffer and then the printer pulls
them off the buffer at its own rate.

62

Dr.shaimaa H.Shaker

• Spooling is also used for processing data at remote sites. The CPU
sends the data via communications path to a remote printer. Spooling
overlaps the I/O of one job with the computation of other jobs.
• One difficulty with simple batch systems is that the computer still needs
to read the deck of cards before it can begin to execute the job. This
means that the CPU is idle during these relatively slow operations.
• Spooling batch systems were the first and are the simplest of the
multiprogramming systems.
Advantages of Spooling:
1. The spooling operation uses a disk as a very large buffer.
2. Spooling is however capable of overlapping I/O operation for one job
with processor operations for another job.
Advantages of Batch System:
1. Move much of the work of the operator to the computer.
2. Increased performance since it was possible for job to start as soon as
the previous job finished.
Disadvantages of Bach System:
1. Turn around time can be large from user standpoint.
2. Difficult to debug program.
3. A job could enter an infinite loop.
4. A job could corrupt the monitor, thus affecting pending jobs.
5. Due to lack of protection scheme, one batch job can affect pending
jobs.

Multiprogramming Operating System: When two or more programs
are in memory at the same time, sharing the processor is referred to the
multiprogramming operating system. Multiprogramming assumes a
single processor that is being shared. It increases CPU utilization by
organizing jobs so that the CPU always has one to execute.
• The operating system keeps several jobs 111 memory at a time. This set
of jobs is a subset of the jobs kept in the job pool. The operating system
picks and begins to execute one of the job in the memory.
• Multiprogrammed systems provide an environment in which the various
system resources are utilized effectively, but they do not provide for user
interaction with the computer system.
• Jobs entering into the system are kept into the memory. Operating
system picks the job and begins to execute one of the jobs in the memory.
Having several programs in memory at the same time requires some form
of memory management.
• Multiprogramming operating system monitors the state of all active
programs and system resources. This ensures that the CPU is never idle
unless there are no jobs.
Advantages

63

Dr.shaimaa H.Shaker

1. High CPU utilization.
2. It appears that many programs are allotted CPU almost simultaneously.
Disadvantages
1. CPU scheduling is required.
2. To accommodate many jobs in memory, memory management is
required.

Time Sharing Systems:
• Time sharing system supports interactive users. Time sharing is also
called multitasking. It is logical extension of multiprogramming. Time
sharing system uses CPU scheduling and multiprogramming to provide
an economical interactive system of two or more users.
• In time sharing, each user is given a time-slice for executing his job in
round-robin fashion. Job continues until the time-slice ends.
• Time sharing systems are more complex than multiprogramming
operating system. Memory management in time sharing system provides
for isolation and protection of co-resident programs.
• Time sharing uses medium-term scheduling such as round-robin for the
foreground. Background can use a different scheduling technique.
• Time sharing system can run several programs at the same time, so it is
also a multiprogramming system. But multiprogramming operating
system is not a time sharing system.
• Difference between both the systems is that, time sharing system allows
more frequent context switches. This gives each user the impression that
the entire computer is dedicated to his use. In multiprogramming system a
context switch occurs only when the currently executing process stalls for
some reason.
Desktop System: During the late 1970, computers had faster CPU, thus
creating an even greater disparity between their rapid processing speed
and slower I/O access time. Multiprogramming schemes to increase CPU
use were limited by the physical capacity of the main memory, which was
a limited resource and very expensive. These system includes PC running
MS window and the Apple Macintosh. The Apple Macintosh OS support
new advance hardware i.e. virtual memory and multitasking with virtual
memory, the entire program did not need to reside in memory before
execution could begin.
• Linux, a unix like OS available for PC, has also become popular
recently. The microcomputer was developed for single users in the late
1970. Physical size was smaller than the minicomputers of that time,
though larger than the microcomputers of today.
• Microcomputer grew to accommodate software with large capacity and
greater speeds. The distinguishing characteristics of a microcomputer is

64

Dr.shaimaa H.Shaker

its single user status. MS-DOS is an example of a microcomputer
operating system.
• The most powerful microcomputers used by commercial; educational,
government enterprises. Hardware cost for microcomputers are
sufficiently low that a single user (individuals) have sole use of a
computer. Networking capability has been integrated into almost every
system.
Multiprocessor System:
• Multiprocessor system have more than one processor in close
communication. They share the computer bus, system clock and input-
output devices and sometimes memory. In multiprocessing system, it is
possible for two processes to run in parallel.
• Multiprocessor systems are of two types: symmetric multiprocessing
and asymmetric multiprocessing.
• In symmetric multiprocessing, each processor runs an identical copy of
the operating system and they communicate with one another as needed.
All the CPU shared the common memory. Figure below shows the
symmetric multiprocessing system.
Symmetric multiprocessing system (shared memory)
• In asymmetric multiprocessing, each processor is assigned a specific
task. It uses master-slave relationship. A master processor controls the
system. The master processor schedules and allocates work to the slave
processors. Figure below shows the asymmetric multiprocessor.
Asymmetric multiprocessors (NO shared memory)
Features of multiprocessor systems
1. If one processor fails, then another processors should retrive the
interrupted process state so that executation of the process can continue.
2. The processors should support efficient context switching operation.
3. Multiprocessor system supports large physical address space & large
virtual address sapce.
4. The IPC mechanism should be provided & implemented in hardware as
it becomes efficient & easy.
Distributed System: Distributed operating systems depend on
networking for their operation. Distributed as runs on and controls the
resources of multiple machines. It provides resource sharing across the
boundaries of a single computer system. It looks to users like a single
machine as. Distributing as owns the whole network and makes it look
like a virtual uniprocessor or may be a virtual multiprocessor.
• Definition: A distributed operating system is one that looks to its users
like an ordinary operating system but runs on multiple, independent CPU.
Advantages of distributed OS:
1. Resource sharing: Sharing of software resources such as software
libraries, database and hardware resources such as hard disks, printers and

65

Dr.shaimaa H.Shaker

CDROM can also be done in a very effective way among all the
computers and the users.
2. Higher reliability: Reliability refers to the degree of tolerance against
errors and component failures. Availability is one of the important aspect
of reliability. Availability refers to the fraction of time for which a system
is available for use. Availability of a hard disk can be increased by having
multiple hard disks located at different sites. If one hard disk fails or is
unavailable, the program can use some other hard disk.
3. Better price performance ratio. Reduction in the price of
microprocessor and increasing computing power gives good price-
performance ratio.
4. Shorter responses times and higher throughput.
5. Incremental growth: To extend power and functionality of a system by
simply adding additional resources to the system.
Difficulties in distributed OS are:
1. There are no current commercially successful examples.
2. Protocol overhead can dominate computation costs.
3. Hard to build well.
4. Probably impossible to build at the scale of the Internet.
Cluster System:
• It is a group of computer system connected with a high speed
communication link. Each computer system has its own memory and
peripheral devices. Clustering is usually performed to provide high
availability. Clustered systems are integrated with hardware cluster and
software cluster. Hardware cluster means sharing of high performance
disks. Software cluster is in the form of unified control of the computer
system in a cluster.
• A layer of software cluster runs on the cluster nodes. Each node can
monitor one or more of the others. If the monitoring machine fails, the
monitoring machine can take ownership of its storage and restart the
application that were running on the failed machine.
• Clustered system can be categorized into two groups: asymmetric
clustering and symmetric clustering.
• In asymmetric clustering, one machine is in hot standy mode while the
other is running the applications. Hot standy mode monitors the active
server and sometimes becomes the active server when the original server
fails.
• In symmetric clustering mode, two or more than two hosts are running
applications and they are monitoring each other.
• Parallel clusters and clustering over a WAN is also available in
clustering.
Parallel clusters allow multiple hosts to access the same data on the
shared storage. A cluster provides all the key advantages of distributed

66

Dr.shaimaa H.Shaker

systems. A cluster provides better reliability than the symmetrical
multiprocessor system.
• Cluster technology is rapidly changing. Clustered system use and
features should expand greatly as storage area networks. Storage area
network allows easy attachment of multiple hosts to multiple storage
units.

Real Time System:
• Real time systems which were originally used to control autonomous
systems such as satellites, robots and hydroelectric dams. A real time
operating system is one that must react to inputs and responds to them
quickly. A real time system can not afford to be late with a response to an
event.
• A real time system has well defined, fixed time constraints.
Deterministic scheduling algorithms are used in real time systems. Real
time systems are divided into two groups : Hard real time system and
soft real time system.
• A hard real time system guarantees that the critical tasks be completed
on time. This goal requires that all delay in the system be bounded. Soft
real time system is a less restrictive type. In this, a critical r.eal time task
gets priority over other tasks, and retains that priority until it completes.
• Real time operating system uses priority scheduling algorithm to meet
the response requirement of a real time application.
• Memory management in real time system is comparatively less
demanding than in other types of multiprogramming systems. Time-
critical device management is one of the main characteristics of real time
systems. The primary objective of file management in real time system is
usually speed of access, rather than efficient utilization of secondary
storage.
Comparison between Hard and Soft Real Time System
• Hard real time system guarantees that critical tasks complete on time.
To achieve this, all delays in the system must be bounded i.e. the retrieval
of stored data to the time that it takes the operating system to finish any
request made of it. Soft real time system are less restrictive than the hard
real time system. In soft real time, a critical real time task gets priority
over other tasks and retains that priority until it complete.
• Time constraints are the main properties for the hard real time systems.
Since none of the operating system support hard real time system, Kernal
delays need to be bounded in soft real time system. Soft real time systems
are useful in the area of multimedia, virtual reality and advance scientific
projects. Soft real time systems can not be used in -robotics and industrial
control because of their lack of deadline support. Soft real time system

67

Dr.shaimaa H.Shaker

requires two conditions to implement. CPU scheduling must be priority
based and dispatch latency must be small. Handheld System:
• Personal Digital Assistants (PDA) is one type of handheld systems.
Developing such device is the complex job and many challenges will face
by developers. Size of these system is small i.e. height is 5 inches and
width is 3 inches.
• Due to the limited size, most handheld devices have a small amount of
memory, include slow processors and small display screen. Memory of
handheld system is in the range of 512 kB to 8 MB. Operating system and
applications must manage memory efficiently. This includes returning all
allocated memory back to the memory manager once the memory is no
longer needed. Developers are working only on confines of limited
physical memory because any handheld devices not using virtual
memory.
• Speed of the handheld system is major factor. Faster processors require
for handheld systems. Processors for most handheld devices often run at a
fraction of the speed of a processor in a Pc. Faster processors require
more power. Larger battery requires for faster processors.
• For mimimum size of handheld devices, smaller, slower processors
which consumes less power are used. Typically small display screen is
available in these devices. Display size of handheld device is not more
than 3 inches square.
• At the same time, display size of monitor is up to 21 inches. But these
handheld device provides the facility for reading email, browsing web
pages on smaller display. Web clipping is used for displaying web page
on the handheld devices.
• Wireless technology is also used in handheld devices. Bluetooth
protocol is used for remote access to email and web browsing. Cellular
telephones with connectivity to the Internet fall into this category.
Computing Environments:
• Different types of computing environments are:
a.Traditional computing
b.Web based computing
c. Embedded computing
• Typical office environment uses traditional computing. Normal PC is
used in traditional computing.
• Web technology also uses traditional computing environment. Network
computers are essentially terminals that understand web based
computing. In domastic application, most of user had a single computer
with Internet connection. Cost of the accessing Internet is high.
• Web based computing has increased the emphasis on networking. Web
based computing uses PC, handheld PDA and cell phones. One of the

68

Dr.shaimaa H.Shaker

features of this type is load balancing. In load balancing, network
connection is distributed among a pool of similar servers.
• Embedded computing uses realtime operating systems. Application of
embedded computing is car engines, manufacturing robots to VCR and
microwave ovens. This type of system provides limited features.
Essential Properties of the Operating System
1. Batch: Jobs with similar needs are batched together and run through
the computer as a group by an operator or automatic job sequencer.
Performance is increased by attempting to keep CPU and I/O devices
busy at all times through buffering, off line operation, spooling and
multiprogramming. A Batch system is good for executing large jobs that
need little interaction, it can be submitted and picked up latter.
2. Time sharing: Uses CPU scheduling and multiprogramming to
provide economical interactive use of a system. The CPU switches
rapidly from one user to another i.e. the CPU is shared between a number
of interactive users. Instead of having a job defined by spooled card
images, each program reads its next control instructions from the terminal
and output is normally printed immediately on the screen.
3. Interactive: User is on line with computer system and interacts with it
via an interface. It is typically composed of many short transactions
where the result of the next transaction may be unpredictable. Response
time needs to be short since the user submits and waits for the result.
4.Real time system: Real time systems are usually dedicated, embedded
systems. They typically read from and react to sensor
data. The system must guarantee response to events within fixed periods
of time to ensure correct performance.
5. Distributed: Distributes computation among several physical
processors. The processors do not share memory or a clock. Instead, each
processor has its own local memory. They communicate with each other
through various communication lines.
System Components: Modern operating systems share the goal of
supporting the system components. The system components are:
1. Process management
2. Main memory management
3. File management
4. Secondary storage management
5. I/O system management
6. Networking
7. Protection system
8. Command interpreter system.
Process Management

69

Dr.shaimaa H.Shaker

• Process refers to a program in execution. The process abstraction is a
fundamental operating system mechanism for management of concurrent
program execution. The operating system responds by creating a process.
• A process needs certain resources, such as CPU time, memory, files and
I/O devices. These resources are either given to the process when it is
created or allocated to it while it is running.
• When the process terminates, the operating system will reclaim any
reusable resources.
• The term process refers to an executing set of machine instructions.
Program by itself is not a process. A program is a passive entity.
• The operating system is responsible for the following activities of the
process
management.
1. Creating and destroying the user and system processes.
2. Allocating hardware resources among the processes.
3. Controlling the progress of processes.
4. Providing mechanisms for process communications.
5. Also provides mechanisms for deadlock handling.
Main Memory Management
• The memory management modules of an operating system are
concerned with the management of the primary (main memory) memory.
Memory management is concerned with following functions:
1. Keeping track of the status of each location of main memory. i.e. each
memory location is either free or allocated.
2. Determining allocation policy for memory.
3. Allocation technique i.e. the specific. location must be selected and
allocation information updated.
4. Deallocation technique and policy. After deallocation, status
information must be updated.
• Memory management is primarily concerned with allocation of physical
memory of finite capacity to requesting processes. The overall resource
utilization and other performance criteria of a computer system are
affected by performance of the memory management module. Many
memory management schemes are available and the effectiveness of the
different algorithms depends on the particular situation.
File Management
• Logically related data items on the secondary storage are usually
organized into named collections called files. In short, file is a logical
collection of information. Computer uses physical media for storing the
different information.
• A file may contain a report, an executable program or a set of
commands to the operating system. A file consists of a sequence of bits,

70

Dr.shaimaa H.Shaker

bytes, lines or records whose meanings are defined by their creators. For
storing the files, physical media (secondary storage device) is used.
• Physical media are of different types. These are magnetic disk,
magnetic tape and optical disk. All the media has its own characteristics
and physical organization. Each medium is controlled by a device.
• The operating system is responsible for the following in connection
with file management.
1. Creating and deleting of files.
2. Mapping files onto secondary storage.
3. Creating and deleting directories.
4. Backing up files on stable storage media.
5. Supporting primitives for manipulating files and directories.
6. Transmission of file elements between main and secondary storage.
• The file management subsystem can be implemented as one or more
layers of the operating system.
Secondary Storage Management
• A storage device is a mechanism by which the computer may store
information in such a way that this information may be retrieved at a later
time. Secondary storage device is used for storing all the data and
programs. These programs and data access by computer system must be
kept in main memory. Size of main memory is small to accommodate all
data and programs. It also lost the data when power is lost. For this reason
secondary storage device is used. Therefore the proper management of
disk storage is of central importance to a computer system.
• The operating system is responsible for the following activities in
connection with the· disk management.
1. Free space management 2. Storage allocation 3. Disk scheduling
• The entire speed and performance of a computer may hinge on the
speed of the disk subsystem.
I/O System Management : II The module that keeps track of the status of
devices is called the I/O traffic controller. Each I/O device has a device handler that
resides in a separate process associated with that device.
• The I/O subsystem consists of
1. A memory management component that includes buffering, caching
and spooling.
2. A general device driver interface.
3. Drivers for specific hardware devices.
Networking: Networking enables computer users to share resources and
speed up computations. the processors communicate with one another
through various communication lines. For example, a distributed system.
A distributed system is a collection of processors. Each processor has its
own local memory and clock. The processors in the system are connected

71

Dr.shaimaa H.Shaker

through a communication network, which can be configured in a number
of different ways.
• Following parameter are considered while designing the networks.
1. Topology of network
2. Type of network
3. Physical media
4. Communication protocols
5. Routing algorithm.
Protection System:
• Modern computer systems support many users and allow the concurrent
execution of multiple processes. Organizations rely on computers to store
information. It is necessary that the information and devices must be
protected from unauthorised users or processors. The protoction is any
mechanism for controlling the access of programs, processes or users to
the resources defined by a computer system.
• Protection mechanisms are implemented in operating systems to support
various security policies. The goal of the security system is to
authenticate subjects and to authorise their access to any object.
• Protection can improve reliability by detecting latent errors at the
interfaces between compoent subsystems. Protection domains are
extensions of the hardware supervisor mode ability
Command Interpreter System:
• Command interpreter is the interface between user and the operating
system.
It is system programs for an operating system. Command interpreter is a
special program in Unix and MS-DOS operating system.
• When users login first time or when a job is initiated, the command
interpreter is initially some operating system is included in the Kernel. A
control statement is processed by the command interpreter. Command
interpreter reads the control statement, analyses it and carries out the
required action.
Operating System Services:
• An operating system provides services to programs and to the users of
those programs. It provides an environment for the execution of
programs. The services provided by one operating system is different
than other operating system. Operating system makes the programming
task easier.
• The common services provided by the operating system is listed below.
1. Program execution
2. I/O operation
3. File system manipulation
4. Communications
5. Error detection.

72

Dr.shaimaa H.Shaker

1. Program execution: Operating system loads a program into memory
and executes the program. The program must be able to end its execution,
either normally or abnormally.
2. I/O Operation: I/O means any file or any specific I/O device. Program
may require any I/O device while running. So operating system must
provide the required I/O.
3. File system manipulation: Program needs to read a file or write a file.
The operating system gives the permission to the program for operation
on file.
4. Communication: Data transfer between two processes is required for
some time. The both processes are on the one computer or on different
computer but connected through computer network. Communication may
be implemented by two methods : shared memory and message passing.
5. Error detection: Error may occur in CPU, in I/O devices or in the
memory hardware. The operating system constantly needs to be aware of
possible errors. It should take the appropriate action to ensure correct and
consistent computing.
• Operating system with multiple users provides following services.
1. Resource allocation
2. Accounting
3. Protection
A) Resource allocation:
If there are more than one user or jobs running at the same time, then
resources must be allocated to each of them. Operating system manages
different types of resources. Some resources require special allocation
code, i.e., main memory, CPU cycles and file storage.
• There are some resources which require only general request and
release code. For allocating CPU, CPU scheduling algorithms are used
for better utilization of CPU. CPU scheduling routines consider the speed
of the CPU, number of available registers and other required factors.
B) Accounting:
• Logs of each user must be kept. It is also necessary to keep record of
which user uses how much and what kinds of computer resources. This
log is used for accounting purposes.
• The accounting data may be used for statistics or for the billing. It also
used to improve system efficiency.
C) System Calls:
• Protection involves ensuring that all access to system resources is
controlled.
Security starts with each user having to authenticate to the system,
usually by means of a password. External I/O devices must be also
protected from invalid access attempts.

73

Dr.shaimaa H.Shaker

• In protection, all the access to the resources is controlled. In
multiprocess environment, it is possible that, one process to interface with
the other, or with the operating system, so protection is required.
System Calls:
• Modern processors provide instructions that can be used as system calls.
System calls provide the interface between a process and the operating
system. A system call instruction is an instruction that generates an
interrupt that cause the operating system to gain control of the processor.
• System call works in following ways :
1. First the program executes the system call instructions.
2. The hardware saves the current (instruction) and PSW register in the ii
and iPSW register.
3. 0 value is loaded into PSW register by hardware. It keeps the machine
in system mode with interrupt disabled.
4. The hardware loads the i register from the system call interrupt vector
location. This completes the execution of the system call instruction by
the hardware.
5. Instruction execution continues at the beginning of the system call
interrupt handler.
6.The system call handler completes and executes a return from interrupt
(rti) instructions. This restores the i and PSW from the ii and iPSW.
7. The process that executed the system call instruction continues at the
instruction after the system call.
Types of System Call: A system call is made using the system call
machine language instruction. System calls can be grouped into five
major categories.
1. File management
2. Interprocess communication
3. Process management
4. I/O device management
5. Information maintenance.
Hardware Protection:
• For single-user programmer operating systems, programmer has the
complete control over the system. They operate the system from the
console. When new operating systems developed with some additional
features, the system control transfers from programmer to the operating
system.
•Early operating systems were called resident monitors, and starting with
the resident monitor, the operating system began to perform many of the
functions, like input-output operation.
•Before the operating system, programmer is responsible for the controls
of input-output device operations. As the requirements of programmers

74

Dr.shaimaa H.Shaker

from computer systems go on increasing and development in the field of
communication helps to the operating system.
•Sharing of resource among different programmers is possible without
increasing cost. It improves the system utilization but problems increase.
If single system was used without share, an error occurs, that could cause
problems for only the one program which was running on that machine.
•In sharing, other programs also affected by single program. For example,
batch operating system faces the problem of infinite loop. This loop could
prevent the correct operation of many jobs. In multiprogramming system,
one erroreous program affects the other program or data of that program.
• For proper operation and error free result, protection of error is required.
Without protection, only single process will execute one at a time
otherwise the output of each program is separated. While designing the
operating system, this type of care must be taken into consideration.
• Many programming errors are detected by the computer hardware.
Operating system handled this type of errors. Execution of illegal
instruction or access of memory that is not in the user's address space,
this type of operation found by the hardware and will trap to the operating
system.

• The trap transfers control through the interrupt vector to the operating
system. Operating system must abnormally terminate the program when
program error occurs. To handle this type of situation, different types of

hardware protection is used

75

Dr.shaimaa H.Shaker

76

Dr.shaimaa H.Shaker

Resources

77

Dr.shaimaa H.Shaker

• Process: An executing program

• Resource: Anything that is needed for a process to run

· Memory
· Space on a disk
· The CPU

• An OS creates resource abstractions

• An OS manages resource sharing

The First OS

78

Dr.shaimaa H.Shaker

• Resident monitors were the first, rudimentary, operating
systems

– monitor is similar to OS kernel that must be resident in
memory

– control-card interpreters eventually become command
processors or shells

• There were still problems with computer utilization. Most of
these problems revolved around I/O operations

Operating System Classification

Single-tasking system: only one process can be run simultaneously

Multi-tasking system: can run arbitrary number of processes
simultaneously (yes, limited by the size of memory, etc.)

More precise classification:

• multiprogrammed systems - several tasks can be started and left un-
finished; the CPU is assigned to the individual tasks by rotation, task
waiting to the completion of the I/O operation (or other event) are
blocked to save CPU time

79

Dr.shaimaa H.Shaker

• time-sharing systems - the CPU switching is so frequent that several
users can interact with the computer simultaneously - interactive
processing

D. Bertrand 2 First Year University Studies in Science. ULB . Computer Principles. Chapter 8

Classification
From the hardware point of view :

 • software = set of instructions

o either always in memory (resident)
o either loaded on request (non-resident or transient)

From the user point of view : Classification from the functionality

• System software :

o Operating systems (including monitor, supervisor, …)
o Loaders
o Libraries and utility programs

• Support software (developpers) :

o Assemblers
o Compilers and interpreters
o Editors
o Debuggers

• Application software

The supervisor (monitor or kernel)

Memory Resident

• The utility programs are stored on the secondary storage device

80

Dr.shaimaa H.Shaker

• Loaded into memory at power-on (bootstrapping)

• On request (user or automatically) : tasks execution

• User interface : Job Control Language task(JCL)

81

Dr.shaimaa H.Shaker

1
 (Introduction to Operating System)
Definition: An operating system is a program that control the
execution of application programs and acts as an interface between the
user of a computer and the computer hardware.
Introduction:
• Operating system performs three functions:
1. Convenience: An as makes a computer more. convenient to use.
2. Efficiency: An as allows the computer system resources to be used in
an efficient manner.
3. Ability to evolve : An as should be constructed in such a way as to
permit the effective development, testing and introduction of new system
functions without at the same time interfaring with service .
Operating System as a User Interface:
• Every general purpose computer consists of the hardware, operating
system, system programs, application programs. The hardware consists of
memory, CPU, ALU, I/O devices, peripheral device and storage device.
System program consists of compilers, loaders, editors, as etc. The
application program consists of business program, database program.
• The Figure below shows the conceptual view of a computer system.
Every computer must have an operating system to run other programs.
The operating system controls and co-ordinates the use of the hardware
among the various system programs and application program for a
various users. It simply provides an environment within which other
programs can do useful work.

• The operating system is a set of special programs that run on a computer
system that allow it to work properly. It performs basic tasks such as
recognizing input from the keyboard, keeping track of files and
directories on the disk, sending output to the display screen and
controlling a peripheral devices.
• OS is designed to serve two basic purposes :
1. It controls the allocation and use of the computing system's resources
among the various users and tasks.
2. It provides an interface between the computer hardware and the
programmer that simplifies and makes feasible for coding, creation,
debugging of application programs.

82

Dr.shaimaa H.Shaker

• The operating system must support the following tasks. The tasks are:
1. Provides the facilities to create, modification of program and data files
using an editor.
2. Access to the compiler for translating the user program from high level
language to machine language.
3. Provide a loader program to move the compiled program code to the
computer's memory for execution.
4. Provide routines that handle the details of I/O programming.
Editor
Loade
Compiler
Application and utilities
Operating system
Computer hardware
Operating System Services:
• An operating system provides services to programs and to the users of
those programs. It provides an environment for the execution of
programs. The services provided by one operating system is different
than other operating system.
• Operating system makes the programming task easier. The common
services
Provided by the operating system is listed below.
1. Program execution
2. I/O operation
3. File system manipulation
4. Communications
5. Error detection.
1. Program execution: Operating system loads a program into memory
and executes the program. The program must be able to end its execution,
either normally or abnormally.
2. I/O operation: I/O means any file or any specific I/O device. Program
may require any I/O device while running. So operating system must
provide the required I/O.
3. File system manipulation: Program needs to read a file or write a file.
The operating system gives the permission to the program for operation
on file.
4. Communication: Data transfer between two processes is required for
some time. The both processes are on the one computer or on different
computer but connected through computer network. Communication may
be implemented by two methods: shared memory and message passing.
5. Error detection: Error may occur in CPU, in I/O devices or in the
memory hardware. The operating system constantly needs to be aware of
possible errors. It should take the appropriate action to ensure correct and
consistent computing.

83

Dr.shaimaa H.Shaker

Operating system with multiple users provides following services. 1.
Resource allocation 2. Accounting 3. Protection •

• An operating system is a lower level of software that user programs run
on.
OS is built directly on the hardware interface and provides an interface
between the hardware and the user program. It shares characteristics 'with
both software and hardware.
• We can view an operating system as a resource allocator. OS keeps
track of the status of each resource and decides who gets a resource, for
how long, and when. as makes sure that different programs and users
running at the same time but do not interfere with each other. It is also
responsible for security, ensuring that unauthorized users do not access
the system.
• The primary objective of operating systems is to increase productivity
of a processing resource, such as computer hardware or users.
• The operating system is the first program nm on a computer when the
computer boots up. The services of the as are invoked with a system call
instruction that is used just like any other hardware instruction.
• Name of the operating systems are: DOS, Windows 95, Windows
NT/2000, Unix, Linux etc.
Operating System as Resource Manager
• A computer is a set of resources for the movement, storage and
processing of data and for the control of these functions. The as is
responsible for managing these resources.
 • Main resources that are managed by the operating system. A portion of
the operating system is in main memory. This includes the Kernel, which
contains the most frequently used functions in the operating system and at
a given time, other portions of the OS currently in use.
• The remainder of main memory contains other user programs and data.
The allocation of main memory is controlled jointly by the OS and
memory management hardware in the processor.
• The operating system decides when an I/O device can be used by a
program in execution and controls access to and use of files. The
processor itself is a resource, and the operating system must determine
how much processor time is to be devoted to the execution of a particular
user program.
History of Operating System
• Operating systems have been evolving through the years. Following
table shows the history of OS.

84

Dr.shaimaa H.Shaker

Mainframe System: An operating system may process its workload
serially or concurrently. That is resources of the computer system may be
dedicated to a single program until its completion, or they may be
dynamically reassigned among a collection of active programs in
different stages of execution.
• Several variations of both serial and multiprogrammed operating
systems exist.
Characteristics of mainframe systems
1. The first computers used to tackle various applications and still found
today in corporate data centers.
2. Room-sized, high I/O capacity, reliability, security, technical support.
3. Mainframes focus on I/O bound business data applications.
Mainframes provide three main functions:
a. Batch processing: insurance claims, store sales reporting, etc.
b. Transaction processing: credit card, bank account, etc. c. Time-sharing:
multiple users querying a database. Batch Systems
• Some computer systems only did one thing at a time. They had a list of
instructions to carry out and these would be carried out one after the
other. This is called a serial system. The mechanics of development and
preparation of programs in such environments are quite slow and
numerous manual operations involved in the process.
• Batch operating system is one where programs and data are collected
together in a batch before processing starts. A job is predefined sequence
of commands, programs and data that are combined into a single unit
called job.
• Memory management in batch system is very simple. Memory is
usually divided into two areas: Operating system and user program area.
Resident portion
• Scheduling is also simple in batch system. Jobs are processed in the
order of submission i.e. first come first served fashion.
• When a job completes execution, its memory is released and the output
for the job gets copied into an output spool for later printing.
• Spooling an acronym for simultaneous peripheral operation on line.
Spooling uses the disk as a large buffer for outputting data to printers and
other devices. It can also be used for input, but is generally used for
output. Its main use is to prevent two users from alternating printing lines
to the line printer on the same page, getting their output completely
mixed together. It also helps in reducing idle time and overlapped I/O and
CPU.
• Batch system often provides simple forms of file management. Access
·to file is serial. Batch systems do not require any time critical device
management.

85

Dr.shaimaa H.Shaker

• Batch systems are inconvenient for users because users can not interact
with their jobs to fix problems. There may also be long turnaround times.
Example of this system is generating monthly bank statement.

Spooling:
• Acronym for simultaneous peripheral operations on line. Spooling
refers to putting jobs in a buffer, a special area in memory or on a disk
where a device can access them when it is ready.
• Spooling is useful because device access data at different rates. The
buffer provides a waiting station where data can rest while the slower
device catches up.
• Computer can perform I/O in parallel with computation, it becomes
possible to have the computer read a deck of cards to a tape, drum or disk
and to write out to a tape printer while it was computing. This process is
called spooling.
• The most common spooling application is print spooling. In print
spooling, documents are loaded into a buffer and then the printer pulls
them off the buffer at its own rate.
• Spooling is also used for processing data at remote sites. The CPU
sends the data via communications path to a remote printer. Spooling
overlaps the I/O of one job with the computation of other jobs.
• One difficulty with simple batch systems is that the computer still needs
to read the deck of cards before it can begin to execute the job. This
means that the CPU is idle during these relatively slow operations.
• Spooling batch systems were the first and are the simplest of the
multiprogramming systems.
Advantages of Spooling:
1. The spooling operation uses a disk as a very large buffer.
2. Spooling is however capable of overlapping I/O operation for one job
with processor operations for another job.
Advantages of Batch System:
1. Move much of the work of the operator to the computer.
2. Increased performance since it was possible for job to start as soon as
the previous job finished.
Disadvantages of Bach System:
1. Turn around time can be large from user standpoint.
2. Difficult to debug program.
3. A job could enter an infinite loop.
4. A job could corrupt the monitor, thus affecting pending jobs.
5. Due to lack of protection scheme, one batch job can affect pending
jobs.

86

Dr.shaimaa H.Shaker

Multiprogramming Operating System: When two or more programs
are in memory at the same time, sharing the processor is referred to the
multiprogramming operating system. Multiprogramming assumes a
single processor that is being shared. It increases CPU utilization by
organizing jobs so that the CPU always has one to execute.
• The operating system keeps several jobs 111 memory at a time. This set
of jobs is a subset of the jobs kept in the job pool. The operating system
picks and begins to execute one of the job in the memory.
• Multiprogrammed systems provide an environment in which the various
system resources are utilized effectively, but they do not provide for user
interaction with the computer system.
• Jobs entering into the system are kept into the memory. Operating
system picks the job and begins to execute one of the jobs in the memory.
Having several programs in memory at the same time requires some form
of memory management.
• Multiprogramming operating system monitors the state of all active
programs and system resources. This ensures that the CPU is never idle
unless there are no jobs.
Advantages
1. High CPU utilization.
2. It appears that many programs are allotted CPU almost simultaneously.
Disadvantages
1. CPU scheduling is required.
2. To accommodate many jobs in memory, memory management is
required.

Time Sharing Systems:
• Time sharing system supports interactive users. Time sharing is also
called multitasking. It is logical extension of multiprogramming. Time
sharing system uses CPU scheduling and multiprogramming to provide
an economical interactive system of two or more users.
• In time sharing, each user is given a time-slice for executing his job in
round-robin fashion. Job continues until the time-slice ends.
• Time sharing systems are more complex than multiprogramming
operating system. Memory management in time sharing system provides
for isolation and protection of co-resident programs.
• Time sharing uses medium-term scheduling such as round-robin for the
foreground. Background can use a different scheduling technique.
• Time sharing system can run several programs at the same time, so it is
also a multiprogramming system. But multiprogramming operating
system is not a time sharing system.
• Difference between both the systems is that, time sharing system allows
more frequent context switches. This gives each user the impression that

87

Dr.shaimaa H.Shaker

the entire computer is dedicated to his use. In multiprogramming system a
context switch occurs only when the currently executing process stalls for
some reason.
Desktop System: During the late 1970, computers had faster CPU, thus
creating an even greater disparity between their rapid processing speed
and slower I/O access time. Multiprogramming schemes to increase CPU
use were limited by the physical capacity of the main memory, which was
a limited resource and very expensive. These system includes PC running
MS window and the Apple Macintosh. The Apple Macintosh OS support
new advance hardware i.e. virtual memory and multitasking with virtual
memory, the entire program did not need to reside in memory before
execution could begin.
• Linux, a unix like OS available for PC, has also become popular
recently. The microcomputer was developed for single users in the late
1970. Physical size was smaller than the minicomputers of that time,
though larger than the microcomputers of today.
• Microcomputer grew to accommodate software with large capacity and
greater speeds. The distinguishing characteristics of a microcomputer is
its single user status. MS-DOS is an example of a microcomputer
operating system.
• The most powerful microcomputers used by commercial; educational,
government enterprises. Hardware cost for microcomputers are
sufficiently low that a single user (individuals) have sole use of a
computer. Networking capability has been integrated into almost every
system.
Multiprocessor System:
• Multiprocessor system have more than one processor in close
communication. They share the computer bus, system clock and input-
output devices and sometimes memory. In multiprocessing system, it is
possible for two processes to run in parallel.
• Multiprocessor systems are of two types: symmetric multiprocessing
and asymmetric multiprocessing.
• In symmetric multiprocessing, each processor runs an identical copy of
the operating system and they communicate with one another as needed.
All the CPU shared the common memory. Figure below shows the
symmetric multiprocessing system.
Symmetric multiprocessing system (shared memory)
• In asymmetric multiprocessing, each processor is assigned a specific
task. It uses master-slave relationship. A master processor controls the
system. The master processor schedules and allocates work to the slave
processors. Figure below shows the asymmetric multiprocessor.
Asymmetric multiprocessors (NO shared memory)
Features of multiprocessor systems

88

Dr.shaimaa H.Shaker

1. If one processor fails, then another processors should retrive the
interrupted process state so that executation of the process can continue.
2. The processors should support efficient context switching operation.
3. Multiprocessor system supports large physical address space & large
virtual address sapce.
4. The IPC mechanism should be provided & implemented in hardware as
it becomes efficient & easy.
Distributed System: Distributed operating systems depend on
networking for their operation. Distributed as runs on and controls the
resources of multiple machines. It provides resource sharing across the
boundaries of a single computer system. It looks to users like a single
machine as. Distributing as owns the whole network and makes it look
like a virtual uniprocessor or may be a virtual multiprocessor.
• Definition: A distributed operating system is one that looks to its users
like an ordinary operating system but runs on multiple, independent CPU.
Advantages of distributed OS:
1. Resource sharing: Sharing of software resources such as software
libraries, database and hardware resources such as hard disks, printers and
CDROM can also be done in a very effective way among all the
computers and the users.
2. Higher reliability: Reliability refers to the degree of tolerance against
errors and component failures. Availability is one of the important aspect
of reliability. Availability refers to the fraction of time for which a system
is available for use. Availability of a hard disk can be increased by having
multiple hard disks located at different sites. If one hard disk fails or is
unavailable, the program can use some other hard disk.
3. Better price performance ratio. Reduction in the price of
microprocessor and increasing computing power gives good price-
performance ratio.
4. Shorter responses times and higher throughput.
5. Incremental growth: To extend power and functionality of a system by
simply adding additional resources to the system.
Difficulties in distributed OS are:
1. There are no current commercially successful examples.
2. Protocol overhead can dominate computation costs.
3. Hard to build well.
4. Probably impossible to build at the scale of the Internet.
Cluster System:
• It is a group of computer system connected with a high speed
communication link. Each computer system has its own memory and
peripheral devices. Clustering is usually performed to provide high
availability. Clustered systems are integrated with hardware cluster and
software cluster. Hardware cluster means sharing of high performance

89

Dr.shaimaa H.Shaker

disks. Software cluster is in the form of unified control of the computer
system in a cluster.
• A layer of software cluster runs on the cluster nodes. Each node can
monitor one or more of the others. If the monitoring machine fails, the
monitoring machine can take ownership of its storage and restart the
application that were running on the failed machine.
• Clustered system can be categorized into two groups: asymmetric
clustering and symmetric clustering.
• In asymmetric clustering, one machine is in hot standy mode while the
other is running the applications. Hot standy mode monitors the active
server and sometimes becomes the active server when the original server
fails.
• In symmetric clustering mode, two or more than two hosts are running
applications and they are monitoring each other.
• Parallel clusters and clustering over a WAN is also available in
clustering.
Parallel clusters allow multiple hosts to access the same data on the
shared storage. A cluster provides all the key advantages of distributed
systems. A cluster provides better reliability than the symmetrical
multiprocessor system.
• Cluster technology is rapidly changing. Clustered system use and
features should expand greatly as storage area networks. Storage area
network allows easy attachment of multiple hosts to multiple storage
units.

Real Time System:
• Real time systems which were originally used to control autonomous
systems such as satellites, robots and hydroelectric dams. A real time
operating system is one that must react to inputs and responds to them
quickly. A real time system can not afford to be late with a response to an
event.
• A real time system has well defined, fixed time constraints.
Deterministic scheduling algorithms are used in real time systems. Real
time systems are divided into two groups : Hard real time system and
soft real time system.
• A hard real time system guarantees that the critical tasks be completed
on time. This goal requires that all delay in the system be bounded. Soft
real time system is a less restrictive type. In this, a critical r.eal time task
gets priority over other tasks, and retains that priority until it completes.
• Real time operating system uses priority scheduling algorithm to meet
the response requirement of a real time application.
• Memory management in real time system is comparatively less
demanding than in other types of multiprogramming systems. Time-

90

Dr.shaimaa H.Shaker

critical device management is one of the main characteristics of real time
systems. The primary objective of file management in real time system is
usually speed of access, rather than efficient utilization of secondary
storage.
Comparison between Hard and Soft Real Time System
• Hard real time system guarantees that critical tasks complete on time.
To achieve this, all delays in the system must be bounded i.e. the retrieval
of stored data to the time that it takes the operating system to finish any
request made of it. Soft real time system are less restrictive than the hard
real time system. In soft real time, a critical real time task gets priority
over other tasks and retains that priority until it complete.
• Time constraints are the main properties for the hard real time systems.
Since none of the operating system support hard real time system, Kernal
delays need to be bounded in soft real time system. Soft real time systems
are useful in the area of multimedia, virtual reality and advance scientific
projects. Soft real time systems can not be used in -robotics and industrial
control because of their lack of deadline support. Soft real time system
requires two conditions to implement. CPU scheduling must be priority
based and dispatch latency must be small. Handheld System:
• Personal Digital Assistants (PDA) is one type of handheld systems.
Developing such device is the complex job and many challenges will face
by developers. Size of these system is small i.e. height is 5 inches and
width is 3 inches.
• Due to the limited size, most handheld devices have a small amount of
memory, include slow processors and small display screen. Memory of
handheld system is in the range of 512 kB to 8 MB. Operating system and
applications must manage memory efficiently. This includes returning all
allocated memory back to the memory manager once the memory is no
longer needed. Developers are working only on confines of limited
physical memory because any handheld devices not using virtual
memory.
• Speed of the handheld system is major factor. Faster processors require
for handheld systems. Processors for most handheld devices often run at a
fraction of the speed of a processor in a Pc. Faster processors require
more power. Larger battery requires for faster processors.
• For mimimum size of handheld devices, smaller, slower processors
which consumes less power are used. Typically small display screen is
available in these devices. Display size of handheld device is not more
than 3 inches square.
• At the same time, display size of monitor is up to 21 inches. But these
handheld device provides the facility for reading email, browsing web
pages on smaller display. Web clipping is used for displaying web page
on the handheld devices.

91

Dr.shaimaa H.Shaker

• Wireless technology is also used in handheld devices. Bluetooth
protocol is used for remote access to email and web browsing. Cellular
telephones with connectivity to the Internet fall into this category.
Computing Environments:
• Different types of computing environments are:
a.Traditional computing
b.Web based computing
c. Embedded computing
• Typical office environment uses traditional computing. Normal PC is
used in traditional computing.
• Web technology also uses traditional computing environment. Network
computers are essentially terminals that understand web based
computing. In domastic application, most of user had a single computer
with Internet connection. Cost of the accessing Internet is high.
• Web based computing has increased the emphasis on networking. Web
based computing uses PC, handheld PDA and cell phones. One of the
features of this type is load balancing. In load balancing, network
connection is distributed among a pool of similar servers.
• Embedded computing uses realtime operating systems. Application of
embedded computing is car engines, manufacturing robots to VCR and
microwave ovens. This type of system provides limited features.
Essential Properties of the Operating System
1. Batch: Jobs with similar needs are batched together and run through
the computer as a group by an operator or automatic job sequencer.
Performance is increased by attempting to keep CPU and I/O devices
busy at all times through buffering, off line operation, spooling and
multiprogramming. A Batch system is good for executing large jobs that
need little interaction, it can be submitted and picked up latter.
2. Time sharing: Uses CPU scheduling and multiprogramming to
provide economical interactive use of a system. The CPU switches
rapidly from one user to another i.e. the CPU is shared between a number
of interactive users. Instead of having a job defined by spooled card
images, each program reads its next control instructions from the terminal
and output is normally printed immediately on the screen.
3. Interactive: User is on line with computer system and interacts with it
via an interface. It is typically composed of many short transactions
where the result of the next transaction may be unpredictable. Response
time needs to be short since the user submits and waits for the result.
4.Real time system: Real time systems are usually dedicated, embedded
systems. They typically read from and react to sensor
data. The system must guarantee response to events within fixed periods
of time to ensure correct performance.

92

Dr.shaimaa H.Shaker

5. Distributed: Distributes computation among several physical
processors. The processors do not share memory or a clock. Instead, each
processor has its own local memory. They communicate with each other
through various communication lines.
System Components: Modern operating systems share the goal of
supporting the system components. The system components are:
1. Process management
2. Main memory management
3. File management
4. Secondary storage management
5. I/O system management
6. Networking
7. Protection system
8. Command interpreter system.
Process Management
• Process refers to a program in execution. The process abstraction is a
fundamental operating system mechanism for management of concurrent
program execution. The operating system responds by creating a process.
• A process needs certain resources, such as CPU time, memory, files and
I/O devices. These resources are either given to the process when it is
created or allocated to it while it is running.
• When the process terminates, the operating system will reclaim any
reusable resources.
• The term process refers to an executing set of machine instructions.
Program by itself is not a process. A program is a passive entity.
• The operating system is responsible for the following activities of the
process
management.
1. Creating and destroying the user and system processes.
2. Allocating hardware resources among the processes.
3. Controlling the progress of processes.
4. Providing mechanisms for process communications.
5. Also provides mechanisms for deadlock handling.
Main Memory Management
• The memory management modules of an operating system are
concerned with the management of the primary (main memory) memory.
Memory management is concerned with following functions:
1. Keeping track of the status of each location of main memory. i.e. each
memory location is either free or allocated.
2. Determining allocation policy for memory.
3. Allocation technique i.e. the specific. location must be selected and
allocation information updated.

93

Dr.shaimaa H.Shaker

4. Deallocation technique and policy. After deallocation, status
information must be updated.
• Memory management is primarily concerned with allocation of physical
memory of finite capacity to requesting processes. The overall resource
utilization and other performance criteria of a computer system are
affected by performance of the memory management module. Many
memory management schemes are available and the effectiveness of the
different algorithms depends on the particular situation.
File Management
• Logically related data items on the secondary storage are usually
organized into named collections called files. In short, file is a logical
collection of information. Computer uses physical media for storing the
different information.
• A file may contain a report, an executable program or a set of
commands to the operating system. A file consists of a sequence of bits,
bytes, lines or records whose meanings are defined by their creators. For
storing the files, physical media (secondary storage device) is used.
• Physical media are of different types. These are magnetic disk,
magnetic tape and optical disk. All the media has its own characteristics
and physical organization. Each medium is controlled by a device.
• The operating system is responsible for the following in connection
with file management.
1. Creating and deleting of files.
2. Mapping files onto secondary storage.
3. Creating and deleting directories.
4. Backing up files on stable storage media.
5. Supporting primitives for manipulating files and directories.
6. Transmission of file elements between main and secondary storage.
• The file management subsystem can be implemented as one or more
layers of the operating system.
Secondary Storage Management
• A storage device is a mechanism by which the computer may store
information in such a way that this information may be retrieved at a later
time. Secondary storage device is used for storing all the data and
programs. These programs and data access by computer system must be
kept in main memory. Size of main memory is small to accommodate all
data and programs. It also lost the data when power is lost. For this reason
secondary storage device is used. Therefore the proper management of
disk storage is of central importance to a computer system.
• The operating system is responsible for the following activities in
connection with the· disk management.
1. Free space management 2. Storage allocation 3. Disk scheduling

94

Dr.shaimaa H.Shaker

• The entire speed and performance of a computer may hinge on the
speed of the disk subsystem.
I/O System Management : II The module that keeps track of the status of
devices is called the I/O traffic controller. Each I/O device has a device handler that
resides in a separate process associated with that device.
• The I/O subsystem consists of
1. A memory management component that includes buffering, caching
and spooling.
2. A general device driver interface.
3. Drivers for specific hardware devices.
Networking: Networking enables computer users to share resources and
speed up computations. the processors communicate with one another
through various communication lines. For example, a distributed system.
A distributed system is a collection of processors. Each processor has its
own local memory and clock. The processors in the system are connected
through a communication network, which can be configured in a number
of different ways.
• Following parameter are considered while designing the networks.
1. Topology of network
2. Type of network
3. Physical media
4. Communication protocols
5. Routing algorithm.
Protection System:
• Modern computer systems support many users and allow the concurrent
execution of multiple processes. Organizations rely on computers to store
information. It is necessary that the information and devices must be
protected from unauthorised users or processors. The protoction is any
mechanism for controlling the access of programs, processes or users to
the resources defined by a computer system.
• Protection mechanisms are implemented in operating systems to support
various security policies. The goal of the security system is to
authenticate subjects and to authorise their access to any object.
• Protection can improve reliability by detecting latent errors at the
interfaces between compoent subsystems. Protection domains are
extensions of the hardware supervisor mode ability
Command Interpreter System:
• Command interpreter is the interface between user and the operating
system.
It is system programs for an operating system. Command interpreter is a
special program in Unix and MS-DOS operating system.
• When users login first time or when a job is initiated, the command
interpreter is initially some operating system is included in the Kernel. A

95

Dr.shaimaa H.Shaker

control statement is processed by the command interpreter. Command
interpreter reads the control statement, analyses it and carries out the
required action.
Operating System Services:
• An operating system provides services to programs and to the users of
those programs. It provides an environment for the execution of
programs. The services provided by one operating system is different
than other operating system. Operating system makes the programming
task easier.
• The common services provided by the operating system is listed below.
1. Program execution
2. I/O operation
3. File system manipulation
4. Communications
5. Error detection.
1. Program execution: Operating system loads a program into memory
and executes the program. The program must be able to end its execution,
either normally or abnormally.
2. I/O Operation: I/O means any file or any specific I/O device. Program
may require any I/O device while running. So operating system must
provide the required I/O.
3. File system manipulation: Program needs to read a file or write a file.
The operating system gives the permission to the program for operation
on file.
4. Communication: Data transfer between two processes is required for
some time. The both processes are on the one computer or on different
computer but connected through computer network. Communication may
be implemented by two methods : shared memory and message passing.
5. Error detection: Error may occur in CPU, in I/O devices or in the
memory hardware. The operating system constantly needs to be aware of
possible errors. It should take the appropriate action to ensure correct and
consistent computing.
• Operating system with multiple users provides following services.
1. Resource allocation
2. Accounting
3. Protection
A) Resource allocation:
If there are more than one user or jobs running at the same time, then
resources must be allocated to each of them. Operating system manages
different types of resources. Some resources require special allocation
code, i.e., main memory, CPU cycles and file storage.
• There are some resources which require only general request and
release code. For allocating CPU, CPU scheduling algorithms are used

96

Dr.shaimaa H.Shaker

for better utilization of CPU. CPU scheduling routines consider the speed
of the CPU, number of available registers and other required factors.
B) Accounting:
• Logs of each user must be kept. It is also necessary to keep record of
which user uses how much and what kinds of computer resources. This
log is used for accounting purposes.
• The accounting data may be used for statistics or for the billing. It also
used to improve system efficiency.
C) System Calls:
• Protection involves ensuring that all access to system resources is
controlled.
Security starts with each user having to authenticate to the system,
usually by means of a password. External I/O devices must be also
protected from invalid access attempts.
• In protection, all the access to the resources is controlled. In
multiprocess environment, it is possible that, one process to interface with
the other, or with the operating system, so protection is required.
System Calls:
• Modern processors provide instructions that can be used as system calls.
System calls provide the interface between a process and the operating
system. A system call instruction is an instruction that generates an
interrupt that cause the operating system to gain control of the processor.
• System call works in following ways :
1. First the program executes the system call instructions.
2. The hardware saves the current (instruction) and PSW register in the ii
and iPSW register.
3. 0 value is loaded into PSW register by hardware. It keeps the machine
in system mode with interrupt disabled.
4. The hardware loads the i register from the system call interrupt vector
location. This completes the execution of the system call instruction by
the hardware.
5. Instruction execution continues at the beginning of the system call
interrupt handler.
6.The system call handler completes and executes a return from interrupt
(rti) instructions. This restores the i and PSW from the ii and iPSW.
7. The process that executed the system call instruction continues at the
instruction after the system call.
Types of System Call: A system call is made using the system call
machine language instruction. System calls can be grouped into five
major categories.
1. File management
2. Interprocess communication
3. Process management

97

Dr.shaimaa H.Shaker

4. I/O device management
5. Information maintenance.
Hardware Protection:
• For single-user programmer operating systems, programmer has the
complete control over the system. They operate the system from the
console. When new operating systems developed with some additional
features, the system control transfers from programmer to the operating
system.
•Early operating systems were called resident monitors, and starting with
the resident monitor, the operating system began to perform many of the
functions, like input-output operation.
•Before the operating system, programmer is responsible for the controls
of input-output device operations. As the requirements of programmers
from computer systems go on increasing and development in the field of
communication helps to the operating system.
•Sharing of resource among different programmers is possible without
increasing cost. It improves the system utilization but problems increase.
If single system was used without share, an error occurs, that could cause
problems for only the one program which was running on that machine.
•In sharing, other programs also affected by single program. For example,
batch operating system faces the problem of infinite loop. This loop could
prevent the correct operation of many jobs. In multiprogramming system,
one erroreous program affects the other program or data of that program.
• For proper operation and error free result, protection of error is required.
Without protection, only single process will execute one at a time
otherwise the output of each program is separated. While designing the
operating system, this type of care must be taken into consideration.
• Many programming errors are detected by the computer hardware.
Operating system handled this type of errors. Execution of illegal
instruction or access of memory that is not in the user's address space,
this type of operation found by the hardware and will trap to the operating
system.

• The trap transfers control through the interrupt vector to the operating
system. Operating system must abnormally terminate the program when
program error occurs. To handle this type of situation, different types of

hardware protection is used.

FUNDAMENTALS OF LANGUAGE SPECIFICATION

98

Dr.shaimaa H.Shaker

A specification of the source language forms the basis of source program
analysis. In this section, we shall discuss important lexical, syntactic and
semantic features of a programming language.
Programming Language Grammars
The lexical and syntactic features of a programming language are
specified by its grammar. This section discusses key concepts and notions
from formal language grammars. A language L can be considered to be a
collection of valid sentences.
Each sentence can be looked upon as a sequence of words, and each word
as a sequence of letters or graphic symbols acceptable in L. A language
specified in this manner is known as a. formal language. A formal
language grammar is a set of rules which precisely specify the sentences
of L. It is clear that natural languages are not formal languages due to
their rich vocabulary. However, PLs are formal languages.
Terminal symbols, alphabet and strings
The alphabet of L, denoted by the Greek symbol Z, is the collection of
symbols in its character set. We will use lower case letters a, b, c, etc. to
denote symbols in Z.
A symbol in the alphabet is known as a terminal symbol (T) of L. The
alphabet can be represented using the mathematical notation of a set,
e.g.
Σ ≅ {a, b, ….z, 0,1....9}
Here the symbols {, ',' and} are part of the notation. We call them met
symbols to differentiate them from terminal symbols. Throughout this
discussion we assume that met symbols are distinct from the terminal
symbols. If this is not the case, i.e. if a terminal symbol and a met symbol
are identical, we enclose the terminal symbol in quotes to differentiate it
from the meta symbol. For example, the set of punctuation symbols of
English can be defined as
{:,;’,’-,...}
Where ',' denotes the terminal symbol 'comma'.
A string is a finite sequence of symbols. We will represent strings by
Greek
symbols-α β γ, etc. Thus α = axy is a string over Σ . The length of a string
is the

Number of symbols in it. Note that the absence of any symbol is also a
string, the null string . The concatenation operation combines two strings

into a single string.

To evaluate an HLL program it should be converted into the Machine
language. A compiler performs another very important function. This is in
terms of the diagnostics.
I.e. error – detection capability.
The important tasks of a compiler are:
Translating the HLL program input to it.
Providing diagnostic messages whenever specifications of the HLL
Assemblers & compilers
Assembler is a translator for the lower level assembly language of
computer, while compilers are translators for HLLs.
An assembly language is mostly peculated to a certain computer, while an
HLL is generally machined independent & thus portable.

99

Dr.shaimaa H.Shaker

Overview of the compilation process:
The process of compilation is:
Analysis of + Synthesis of = Translation of
Source Text Target Text Program
Source text analysis is based on the grimmer of the source of the source
language.
The component sub – tasks of analysis phase are:
Syntax analysis, which determine the syntactic structure of the source
statement.
Semantic analysis, which determines the meaning of a statement, once its
grammatical structures become known.
The analysis phase
The analysis phase of a compiler performs the following functions.
Lexical analysis
Syntax analysis
Semantic analysis
Syntax analysis determines the grammatical or syntactic structure or the
input statement & represents it in an intermediate form from which
semantic analysis can be performed.
A compiler must perform two major tasks:

The Analysis of a source program & the synthesis of its corresponding
object program.

The analysis task deals with the decomposition of the source program into its basic parts
using these basic parts the synthesis task builds their equivalent object program modules. A

source program is a string of symbols each of which is generally a letter, a digit or a certain
special constants, keywords & operators. It is therefore desirable for the compiler to identify

these various types as classes.

The analysis task deals with the decomposition of the source program into its basic parts
using these basic parts the synthesis task builds their equivalent object program modules. A

source program is a string of symbols each of which is generally a letter, a digit or a certain
special constants, keywords & operators. It is therefore desirable for the compiler to identify

these various types as classes.

The source program is input to a lexical analyzer or scanner whose
purpose is to separate the incoming text into pieces or tokens such as
constants, variable name, keywords & operators.
In essence, the lexical analyzer performs low- level syntax analysis
performs low-level syntax analysis.

For efficiency reasons, each of tokens is given a unique internal
representation number.

CP/M
Control Program/Microcomputer. An operating system created by Gary
Kildall, the founder of Digital Research. Created for the old 8-bit

100

Dr.shaimaa H.Shaker

microcomputers that used the 8080, 8085, and Z-80 microprocessors. Was
the dominant operating system in the late

1970s and early 1980s for small computers used in a business environment.

DOS

Disk Operating System. A collection of programs stored on the DOS disk that contain
routines enabling the system and user to manage information and the hardware
resources of the computer. DOS must be loaded into the computer before other

programs can be started.

operating system (OS)

 A collection of programs for operating the computer. Operating systems
perform housekeeping tasks such as input and output between the computer
and peripherals as well as accepting and interpreting information from the
keyboard. DOS and OS/2 are examples of popular 0S’s.

0S/2

A universal operating system developed through a joint effort by IBM and
Microsoft Corporation. The latest operating system from IBM for
microcomputers using the Intel 386 or better microprocessors. OS/2 uses the
protected mode operation of the processor to expand memory from 1M to 4G
and to support fast, efficient multitasking. The 0512 Workplace Shell, an
integral part of the system, is a graphical interface similar to Microsoft
Windows and the Apple Macintosh system. The latest version runs DOS,
Windows, and OS/2-specific software.

101

Dr.shaimaa H.Shaker

102

Dr.shaimaa H.Shaker

Resources

103

Dr.shaimaa H.Shaker

• Process: An executing program

• Resource: Anything that is needed for a process to run

· Memory
· Space on a disk
· The CPU

• An OS creates resource abstractions

• An OS manages resource sharing

The First OS

104

Dr.shaimaa H.Shaker

• Resident monitors were the first, rudimentary, operating
systems

– monitor is similar to OS kernel that must be resident in
memory

– control-card interpreters eventually become command
processors or shells

• There were still problems with computer utilization. Most of
these problems revolved around I/O operations

Operating System Classification

Single-tasking system: only one process can be run simultaneously

Multi-tasking system: can run arbitrary number of processes
simultaneously (yes, limited by the size of memory, etc.)

More precise classification:

• multiprogrammed systems - several tasks can be started and left un-
finished; the CPU is assigned to the individual tasks by rotation, task
waiting to the completion of the I/O operation (or other event) are
blocked to save CPU time

105

Dr.shaimaa H.Shaker

• time-sharing systems - the CPU switching is so frequent that several
users can interact with the computer simultaneously - interactive
processing

D. Bertrand 2 First Year University Studies in Science. ULB . Computer Principles. Chapter 8

Classification
From the hardware point of view :

 • software = set of instructions

o either always in memory (resident)
o either loaded on request (non-resident or transient)

From the user point of view : Classification from the functionality

• System software :

o Operating systems (including monitor, supervisor, …)
o Loaders
o Libraries and utility programs

• Support software (developpers) :

o Assemblers
o Compilers and interpreters
o Editors
o Debuggers

• Application software

The supervisor (monitor or kernel)

Memory Resident

• The utility programs are stored on the secondary storage device

106

Dr.shaimaa H.Shaker

• Loaded into memory at power-on (bootstrapping)

• On request (user or automatically) : tasks execution

• User interface : Job Control Language task(JCL)

107

Dr.shaimaa H.Shaker

(Loaders and Linkers)
Introduction:
In this chapter we will understand the concept of linking and loading. As
discussed earlier the source program is converted to object program by
assembler. The loader is a program which takes this object program,
prepares it for execution, and loads this executable code of the source into
memory for execution.
Definition of Loader:
Loader is utility program which takes object code as input prepares it for
execution and loads the executable code into the memory. Thus loader is
actually responsible for initiating the execution process.
Functions of Loader:
The loader is responsible for the activities such as allocation, linking,
relocation and loading
1) It allocates the space for program in the memory, by calculating the
size of the program. This activity is called allocation.
2) It resolves the symbolic references (code/data) between the object
modules by assigning all the user subroutine and library subroutine
addresses. This activity is called linking.
3) There are some address dependent locations in the program, such
address constants must be adjusted according to allocated space, such
activity done by loader is called relocation.
4) Finally it places all the machine instructions and data of corresponding
programs and subroutines into the memory. Thus program now becomes
ready for execution, this activity is called loading.
Loader Schemes:
Based on the various functionalities of loader, there are various types of
loaders:
1) “compile and go” loader: in this type of loader, the instruction is read
line by line, its machine code is obtained and it is directly put in the main
memory at some known address. That means the assembler runs in one
part of memory and the assembled machine instructions and data
isdirectly put into their assigned memory locations. After completion of
assembly process, assign starting address of the program to the location
counter. The typical example is WATFOR-77, it’s a FORTRAN compiler

108

Dr.shaimaa H.Shaker

which uses such “load and go” scheme. This loading scheme is also
called as “assemble and go”.
Advantages:
• This scheme is simple to implement. Because assembler is placed at one
part of the memory and loader simply loads assembled machine
instructions into the memory.
Disadvantages:
• In this scheme some portion of memory is occupied by assembler which
is simply a wastage of memory. As this scheme is combination of
assembler and loader activities, this combination program occupies large
block of memory.
• There is no production of .obj file, the source code is directly converted
to executable form. Hence even though there is no modification in the
source program it needs to be assembled and executed each time, which
then becomes a time consuming activity.
• It cannot handle multiple source programs or multiple programs written
in different languages. This is because assembler can translate one source
language to other target language.
• For a programmer it is very difficult to make an orderly modulator
program and also it becomes difficult to maintain such program, and the
“compile and go” loader cannot handle such programs.
• The execution time will be more in this scheme as every time program
is assembled and then executed.
2) General Loader Scheme: in this loader scheme, the source program is
converted to object program by some translator (assembler). The loader
accepts these object modules and puts machine instruction and data in an
executable form at their assigned memory. The loader occupies some
portion of main memory.
Advantages:
• The program need not be retranslated each time while running it. This is
because initially when source program gets executed an object program
gets generated. Of program is not modified, then loader can make use of
this object program to convert it to executable form.
• There is no wastage of memory, because assembler is not placed in the
memory, instead of it, loader occupies some portion of the memory. And
size of loader is smaller than assembler, so more memory is available to
the user.
• It is possible to write source program with multiple programs and
multiple languages, because the source programs are first converted to
object programs always, and loader accepts these object modules to
convert it to executable form.
3) Absolute Loader: Absolute loader is a kind of loader in which
relocated object files are created, loader accepts these files and places

109

Dr.shaimaa H.Shaker

them at specified locations in the memory. This type of loader is called
absolute because no relocation information is needed; rather it is
obtained from the programmer or assembler. The starting address of
every module is known to the programmer, this corresponding starting
address is stored in the object file, then task of loader becomes very
simple and that is to simply place the executable form of the machine
instructions at the locations mentioned in the object file. In this
scheme, the programmer orassembler should have knowledge of
memory management. The resolution of external references or linking
of different subroutines are the issues which need to be handled by the
programmer. The programmer should take care of two things: first
thing is : specification of starting address of each module to be used. If
some modification is done in some module then the length of that
module may vary. This causes a change in the starting address of
immediate next . modules, its then the programmer's duty to make
necessary changes in the starting addresses of respective modules.
Second thing is ,while branching from one segment to another the
absolute starting address of respective module is to be known by the
programmer so that such address can be specified at respective JMP
instruction. For example
Line number
1 MAIN START 1000
. .
. .
. .
15 JMP 5000
16 STORE ;instruction at location 2000
END
1 SUM START 5000
2
20 JMP 2000
21 END
In this example there are two segments, which are interdependent. At line
number 1 the assembler directive START specifies the physical starting
address that can be used during the execution of the first segment MAIN.
Then at line number 15 the JMP instruction is given which specifies the
physical starting address that can be used by the second segment. The
assembler creates the object codes for these two segments by considering
the stating addresses of these two segments. During the execution, the
first segment will be loaded at address 1000 and second segment will be
loaded at address 5000 as specified by the programmer. Thus the problem
of linking is manually solved by the programmer itself by taking care of

110

Dr.shaimaa H.Shaker

the mutually dependant dresses. As you can notice that the control is
correctly transferred to the address 5000 for invoking the other segment,
and after that at line number 20 the JMP instruction transfers the control
to the location 2000, necessarily at location 2000 the instruction STORE
of line number 16 is present. Thus resolution of mutual references and
linking is done by the programmer. The task of assembler is to create the
object codes
for the above segments and along with the information such as starting
address of the memory where actually the object code can be placed at
the time of execution. The absolute loader accepts these object modules
from assembler and by reading the information about their starting
addresses, it will actually place (load) them in the memory at specified
addresses.
The entire process is modeled in the following figure.
Thus the absolute loader is simple to implement in this scheme-
l) Allocation is done by either programmer or assembler
2)Linking is done by the programmer or assembler
3)Resolution is done by assembler
4)Simply loading is done by the loader
As the name suggests, no relocation information is needed, if at all it is
required then that task can be done by either a programmer or assembler
Advantages:
1. It is simple to implement
2. This scheme allows multiple programs or the source programs written
different languages. If there are multiple programs written in different
languages then the respective language assembler will convert it to the
language and a common object file can be prepared with all the ad
resolution.
3. The task of loader becomes simpler as it simply obeys the instruction
regarding where to place the object code in the main memory.
4. The process of execution is efficient

Disadvantages:
1. In this scheme it is the programmer's duty to adjust all the inter
segment addresses and manually do the linking activity. For that, it is
necessary for a programmer to know the memory management.
If at all any modification is done the some segments, the starting
addresses of immediate next segments may get changed, the programmer
has to take care of this issue and he needs to update the corresponding
starting addresses on any modification in the source.
Algorithm for absolute Loader
Input: Object codes and starting address of program segments.

111

Dr.shaimaa H.Shaker

Output: An executable code for corresponding source program. This
executable code is to be placed in the main memory
Method: Begin
For each program segment do Begin
Read the first line from object module to obtain
information about memory location. The starting address
say S in corresponding object module is the memory
location where executale code is to be placed.
Hence
Memory_location = S
Line counter = 1; as it is first line While (! end of
file)
For the curent object code do Begin
1. Read next line
2. Write line into location S
3. S = S + 1
4. Line counter Line counter + 1
Subroutine Linkage: To understand the concept of subroutine
linkages, first consider the following scenario:
"In Program A a call to subroutine B is made. The subroutine B is not
written in the program segment of A, rather B is defined in some another
program segment C"
Nothing is wrong in it. But from assembler's point of view while
generating the code for B, as B is not defined in the segment A, the
assembler can not find the value of this symbolic reference and hence it
will declare it as an error. To overcome problem, there should be some
mechanism by which the assembler should be explicitly informed that
segment B is really defined in some other segment C. Therefore
whenever segment B is used in segment A and if at all B is defined in C,
then B must -be declared as an external routine in A. To declare such
subroutine asexternal, we can use the assembler directive EXT. Thus the
statement such as EXT B should be added at the beginning of the
segment A. This actually helps to inform assembler that B is defined
somewhere else. Similarly, if one subroutine or a variable is defined in
the current segment and can be referred by other segments then those
should be declared by using pseudo-ops INT. Thereby the assembler
could inform loader that these are the subroutines or variables used by
other segments. This overall process of establishing the relations between
the subroutines can be conceptually called a_ subroutine linkage.
For example
MAIN START
EXT B
.
.

112

Dr.shaimaa H.Shaker

.
CALL B
.
.
END
B START
.
.
RET
END
At the beginning of the MAIN the subroutine B is declared as external.
When a call to subroutine B is made, before making the unconditional
jump, the current content of the program counter should be stored in the
system stack maintained internally. Similarly while returning from the
subroutine B (at RET) the pop is performed to restore the program
counter of caller routine with the address of next instruction to be
executed.
Concept of relocations:
Relocation is the process of updating the addresses used in the address
sensitive instructions of a program. It is necessary that such a
modification should help to execute the program from designated area of
the memory.
The assembler generates the object code. This object code gets executed
after loading at storage locations. The addresses of such object code will
get specified only after the assembly process is over. Therefore, after
loading, Address of object code = Mere address of object code +
relocation constant.
There are two types of addresses being generated: Absolute address and,
relative address. The absolute address can be directly used to map the
object code in the main memory. Whereas the relative address is only
after the addition of relocation constant to the object code address. This
kind of adjustment needs to be done in case of relative address before
actual execution of the code. The typical example of relative reference is :
addresses of the symbols defined in the Label field, addresses of the data
which is defined by the assembler directive, literals, redefinable symbols.
Similarly, the typical example of absolute address is the constants which
are generated by assembler are absolute.
The assembler calculates which addresses are absolute and which
addresses are relative during the assembly process. During the assembly
process the assembler calculates the address with the help of simple
expressions.
For example
LOADA(X)+5

113

Dr.shaimaa H.Shaker

The expression A(X) means the address of variable X. The meaning of
the above instruction is that loading of the contents of memory location
which is 5 more than the address of variable X. Suppose if the address of
X is 50 then by above command we try to get the memory location
50+5=55. Therefore as the address of variable X is relative A(X) + 5 is
also relative. To calculate the relative addresses the simple expressions
are allowed. It is expected that the expression should possess at the most
addition and multiplication operations. A simple exercise can be carried
out to determine whether the given address is absolute or relative. In the
expression if the address is absolute then put 0 over there and if address is
relative then put lover there. The expression then gets transformed to sum
of O's and l's. If the resultant value of the expression is 0 then expression
is absolute. And if the resultant value of the expression is 1 then the
expression is relative. If the resultant is other than 0 or 1then the
expression is illegal. For example:

In the above expression the A, Band C are the variable names. The
assembler is to c0l1sider the relocation attribute and adjust the object
code by relocation constant. Assembler is then responsible to convey the
information loading of object code to the loader. Let us now see how
assembler generates code using relocation information.
Direct Linking Loaders
The direct linking loader is the most common type of loader. This type of
loader is a relocatable loader. The loader can not have the direct access to
the source code. And to place the object code in the memory there are
two situations: either the address of the object code could be absolute
which then can be directly placed at the specified location or the address
can be relative. If at all the address is relative then it is the assembler who
informs the loader about the relative addresses.
The assembler should give the following information to the loader
1)The length of the object code segment
2) The list of all the symbols which are not defined 111 the current
segment but can be used in the current segment.
3) The list of all the symbols which are defined in the current segment but
can be referred by the other segments.
The list of symbols which are not defined in the current segment but can
be used in the current segment are stored in a data structure called USE
table. The USE table holds the information such as name of the symbol,
address, address relativity.

114

Dr.shaimaa H.Shaker

The list of symbols which are defined in the current segment and can be
referred by the other segments are stored in a data structure called
DEFINITION table. The definition table holds the information such as
symbol, address.
Overlay Structures and Dynamic Loading:
Sometimes a program may require more storage space than the available
one Execution of such program can be possible if all the segments are not
required simultaneously to be present in the main memory. In such
situations only those segments are resident in the memory that are
actually needed at the time of execution But the question arises what will
happen if the required segment is not present in the memory? Naturally
the execution process will be delayed until the required segment gets
loaded in the memory. The overall effect of this is efficiency of execution
process gets degraded. The efficiency can then be improved by carefully
selecting all the interdependent segments. Of course the assembler can
not do this task. Only the user can specify such dependencies. The inter
dependency of thesegments can be specified by a tree like structure called
static overlay structures. The overlay structure contain multiple
root/nodes and edges. Each node represents the segment. The
specification of required amount of memory is also essential in this
structure. The two segments can lie simultaneously in the main memory if
they are on the same path. Let us take an example to understand the
concept. Various segments along with their memory requirements is as
shown below.

Automatic Library Search:
Previously, the library routines were available in absolute code but now
the library routines are provided in relocated form that ultimately reduces
their size on the disk, which in turn increases the memory utilization. At
execution time certain library routines may be needed. Keeping track of
which library routines are required and how much storage is required by
these routines, if at all is done by an assembler itself then the activity of
automatic library search becomes simpler and effective. The library
routines can also make an external call to other routines. The idea is to
make a list of such calls made by the routines. And if such list is made
available to the linker then linker can efficiently find the set of required
routines and can link the references accordingly.
For an efficient search of library routines it desirable to store all the
calling routines first and then the called routines. This avoids wastage of
time due to winding and rewinding. For efficient automated search of

115

Dr.shaimaa H.Shaker

library routines even the dictionary of such routines can be maintained. A
table containing the names of library routines and the addresses where
they are actually located in relocatable form is prepared with the help of
translator and such table is submitted to the linker. Such a table is called
subroutine directory. Even if these routines have made any external calls
the -information about it is also given in subroutine directory. The linker
searches the subroutine directory, finds the address of desired library
routine (the address where the routine is stored in relocated form).Then
linker prepares aload module appending the user program and necessary
library routines by doing the necessary relocation. If the library routine
contains the external calls then the linker searches the subroutine
directory finds the address of such external calls, prepares the load
module by resolving the external references. Linkage Editor: The
execution of any program needs four basic functionalities and those are
allocation, relocation, linking and loading. As we have also seen in direct
linking loader for execution of any program each time these four
functionalities need to be performed. But performing all these
functionalities each time is time and space consuming task. Moreover if
the program contains many subroutines or functions and the program
needs to be executed repeatedly then this activity becomes annoyingly
complex .Each time for execution of a program, the allocation, relocation
linking and -loading needs to be done. Now doing these activities each
time increases the time and space complexity. Actually, there is no need
to redo all these four activities each time. Instead, if the results of some of
these activities are stored in a file then that file can be used by other
activities. And performing allocation, relocation, linking and loading can
be avoided each time. The idea is to separate out these activities in
separate groups. Thus dividing the essential four functions in groups
reduces the overall time complexity of loading process. The program
which performs allocation, relocation and linking is called binder. The
binder performs relocation, creates linked executable text and stores this
text in a file in some systematic manner. Such kind of module prepared
by the binder execution is called load module. This load module can then
be actually loaded in the main memory by the loader. This loader is also
called as module loader. If the binder can produce the exact replica of
executable code in the load module then the module loader simply loads
this file into the main memory which ultimately reduces the overall time

116

Dr.shaimaa H.Shaker

complexity. But in this process the binder should knew the current
positions of the main memory. Even though the binder knew the main
memory locations this is not the only thing which is sufficient. In
multiprogramming environment, the region of main memory available for
loading the program is decided by the host operating system. The binder
should also know which memory area is allocated to the loading program
and it should modify the relocation information accordingly. The binder
which performs the linking function and produces adequate information
about allocation and relocation and writes this information along with the
program code in the file is called linkage editor. The module loader then
accepts this rile as input, reads the information stored in and based on this
information about allocation and relocation it performs the task of loading
in the main memory. Even though the program is repeatedly executed the
linking is done only once. Moreover, the flexibility of allocation and
relocation helps efficient utilization of the main memory.

Direct linking: As we have seen in overlay structure certain selective
subroutines can be resident in the memory. That means it is not necessary
to resident all the subroutines in the memory for all the time. Only
necessary routines can be present in the main memory and during
execution the required subroutines can be loaded in the memory. This
process of postponing linking and loading of external reference until
execution is called dynamic linking. For example suppose the subroutine
main calls A,B,C,D then it is not desirable to load A,B,C and D along
with the main in the memory. Whether A, B, C or D is called by the main
or not will be known only at the time of execution. Hence keeping these
routines already before is really not needed. As the subroutines get
executed when the program runs. Also the linking of all the subroutines
has to be performed. And the code of all the subroutines remains resident
in the main memory. As a result of all this is that memory gets occupied
unnecessarily. Typically 'error routines' are such routines which can be
invoked rarely. Then one can postpone the loading of these routines
during the execution. If linking and loading of such rarely invoked
external references could be postponed until the execution time when it
was found to be absolutely necessary, then it increases the efficiency of
overhead of the loader. In dynamic linking, the binder first prepares a
load module in which along with program code the allocation and
relocation information is stored. The loader simply loads the main
module in the main memory. If any external ·reference to a subroutine
comes, then the execution is suspended for a while, the loader brings the
required subroutine in the main memory and then the execution process is

117

Dr.shaimaa H.Shaker

resumed. Thus dynamic linking both the loading and linking is done
dynamically. Advantages
1. The overhead on the loader is reduced. The required subroutine will be
load in the main memory only at the time of execution.
2. The system can be dynamically reconfigured.
Disadvantages The linking and loading need to be postponed until the
execution. During the execution if at all any subroutine is needed then the
process of execution needs to be suspended until the required subroutine
gets loaded in the main memory

Bootstrap Loader: As we turn on the computer there is nothing
meaningful in the main memory (RAM). A small program is written and
stored in the ROM. This program initially loads the operating system
from secondary storage to main memory. The operating system then takes
the overall control. This program which is responsible for booting up the
system is called bootstrap loader. This is the program which must be
executed first when the system is first powered on. If the program starts
from the location x then to execute this program the program counter of
this machine should be loaded with the value x. Thus the task of setting
the initial value of the program counter is to be done by machine
hardware. The bootstrap loader is a very small program which is to be
fitted in the ROM. The task of bootstrap loader is to load the necessary
portion of the operating system in the main memory .The initial address
at which the bootstrap loader is to be loaded is generally the lowest (may
be at 0th location) or the highest location. . Concept of Linking: As
we have discussed earlier, the execution of program can be done with the
help of following steps
1. Translation of the program(done by assembler or compiler)
2. Linking of the program with all other programs which are needed for
execution. This also involves preparation of a program called load
module.
3. Loading of the load module prepared by linker to some specified
memory location.
The output of translator is a program called object module. The linker
processes these object modules binds with necessary library routines and
prepares a ready to execute program. Such a program is called binary
program. The "binary program also contains some necessary information
about allocation and relocation. The loader then load s this program into
memory for execution purpose.

Various tasks of linker are -

118

Dr.shaimaa H.Shaker

1. Prepare a single load module and adjust all the addresses and
subroutine references with respect to the offset location.
2. To prepare a load module concatenate all the object modules and adjust
all the operand address references as well as external references to the
offset location.
3. At correct locations in the load module, copy the binary machine
instructions and constant data in order to prepare ready to execute
module.
The linking process is performed in two passes. Two passes are necessary
because the linker may encounter a forward reference before knowing its
address. So it is necessary to scan all the DEFINITION and USE table at
least once. Linker then builds the Global symbol table with the help of
USE and DEFINITION table. In Global symbol table name of each
externally referenced symbol is included along with its address relative to
beginning of the load module. And during pass 2, the addresses of
external references are replaced by obtaining the addresses from global
symbol table.

1

Dr.shaimaa H.shaker

FUNDAMENTALS OF LANGUAGE PROCESSING
Definition
Language Processing = Analysis of SP + Synthesis of TP.
Definition motivates a generic model of language processing
activities.
We refer to the collection of language processor components
engaged in analyzing a source program as the analysis phase of the
language processor. Components engaged in synthesizing a target
program constitute the synthesis phase.
A specification of the source language forms the basis of source
program analysis. The specification consists of three components:
1. Lexical rules, which govern the formation of valid lexical units in
the source language.
2. Syntax rules which govern the formation of valid statements in
the source language.
3. Semantic rules which associate meaning with valid statements of
the language.
The analysis phase uses each component of the source language
specification to determine relevant information concerning a
statement in the source program. Thus, analysis of a source
statement consists of lexical, syntax and semantic analysis.
The synthesis phase is concerned with the construction of target
language statement(s) which have the same meaning as a source
statement. Typically, this consist of two main activities:
• Creation of data structures in the target program
• Generation of target code.
We refer to these activities as memory allocation and code
generation, respectively

Lexical Analysis (Scanning)
Lexical analysis identifies the lexical units in a source statement. It
then classifies the units into different lexical classes e.g. id’s,
constants etc. and enters them into different tables. This
classification may be based on the nature of string or on the
specification of the source language. (For example, while an integer
constant is a string of digits with an optional sign, a reserved id is
an id whose name matches one of the reserved names mentioned in
the language specification.) Lexical analysis builds a descriptor,
called a token, for each lexical unit. A token contain two fields—
class code, and number in class, class code identifies the class to
which a lexical unit belongs, number in class is the entry number of
the lexical unit in the relevant table.
Syntax Analysis (Parsing)
Syntax analysis processes the string of tokens built by lexical
analysis to determine the statement class, e.g. assignment
statement, if statement, etc. It then builds an IC which represents

2

Dr.shaimaa H.shaker

the structure of the statement. The IC is passed to semantic
analysis to determine the meaning of the statement.
Semantic analysis
Semantic analysis of declaration statements differs from the
semantic analysis of imperative statements. The former results in
addition of information to the symbol table, e.g. type, length and
dimensionality of variables. The latter identifies the sequence of
actions necessary to implement the meaning of a source statement.
In both cases the structure of a source statement guides the
application of the semantic rules. When semantic analysis
determines the meaning of a sub tree in the IC. It adds information
a table or adds an action to the sequence. It then modifies the IC to
enable further semantic analysis. The analysis ends when the tree
has been completely processed.

“FUNDAMENTALS OF LANGUAGE SPECIFICATION

A specification of the source language forms the basis of source
program analysis. In this section, we shall discuss important lexical,
syntactic and semantic features of a programming language.
Programming Language Grammars
The lexical and syntactic features of a programming language are
specified by its grammar. This section discusses key concepts and
notions from formal language grammars. A language L can be
considered to be a collection of valid sentences.
Each sentence can be looked upon as a sequence of words, and
each word as a sequence of letters or graphic symbols acceptable in
L. A language specified in this manner is known as a. formal
language. A formal language grammar is a set of rules which
precisely specify the sentences of L. It is clear that natural
languages are not formal languages due to their rich vocabulary.
However, PLs are formal languages.
Terminal symbols, alphabet and strings
The alphabet of L, denoted by the Greek symbol Z, is the collection
of symbols in its character set. We will use lower case letters a, b,
c, etc. to denote symbols in Z.
A symbol in the alphabet is known as a terminal symbol (T) of L.
The alphabet can be represented using the mathematical notation of
a set, e.g. Σ ≅ {a, b, ….z, 0,1....9}
Here the symbols {, ',' and} are part of the notation. We call them
met symbols to differentiate them from terminal symbols.
Throughout this discussion we assume that met symbols are distinct
from the terminal symbols. If this is not the case, i.e. if a terminal
symbol and a met symbol are identical, we enclose the terminal
symbol in quotes to differentiate it from the metasymbol. For
example, the set of punctuation symbols of English can be defined
as {:,;’,’-,...} Where ',' denotes the terminal symbol 'comma'.

3

Dr.shaimaa H.shaker

A string is a finite sequence of symbols. We will represent strings by
Greek symbols-α β γ, etc. Thus α = axy is a string over Σ . The
length of a string is the Number of symbols in it. Note that the
absence of any symbol is also a string, the null string . The
concatenation operation combines two strings into a single string.
To evaluate an HLL program it should be converted into the Machine language. A compiler
performs another very important function. This is in terms of the diagnostics.

I.e. error – detection capability.
The important tasks of a compiler are:
Translating the HLL program input to it.
Providing diagnostic messages whenever specifications of the HLL

Compilers

• A compiler is a program that translates a sentence

a. from a source language (e.g. Java, Scheme, LATEX)
b. into a target language (e.g. JVM, Intel x86, PDF)
c. while preserving its meaning in the process

• Compiler design has a long history (FORTRAN 1958)

4

Dr.shaimaa H.shaker

a. lots of experience on how to structure compilers
b. lots of existing designs to study (many freely available)

5

Dr.shaimaa H.shaker

6

Dr.shaimaa H.shaker

7

Dr.shaimaa H.shaker

8

Dr.shaimaa H.shaker

9

Dr.shaimaa H.shaker

10

Dr.shaimaa H.shaker

11

Dr.shaimaa H.shaker

12

Dr.shaimaa H.shaker

Dr.Shaimaa H. Shaker 1صفحة

FUNDAMENTALS OF LANGUAGE SPECIFICATION

A specification of the source language forms the basis of source program analysis. In
this section, we shall discuss important lexical, syntactic and semantic features of a
programming language.
Programming Language Grammars
The lexical and syntactic features of a programming language are specified by its
grammar. This section discusses key concepts and notions from formal language
grammars. A language L can be considered to be a collection of valid sentences.
Each sentence can be looked upon as a sequence of words, and each word as a
sequence of letters or graphic symbols acceptable in L. A language specified in this
manner is known as a. formal language. A formal language grammar is a set of rules
which precisely specify the sentences of L. It is clear that natural languages are not
formal languages due to their rich vocabulary. However, PLs are formal languages.
Terminal symbols, alphabet and strings
The alphabet of L, denoted by the Greek symbol Z, is the collection of symbols in its
character set. We will use lower case letters a, b, c, etc. to denote symbols in Z.
A symbol in the alphabet is known as a terminal symbol (T) of L. The alphabet can be
represented using the mathematical notation of a set, e.g.
Σ ≅ {a, b, ….z, 0,1....9}
Here the symbols {, ',' and} are part of the notation. We call them met symbols to
differentiate them from terminal symbols. Throughout this discussion we assume that
met symbols are distinct from the terminal symbols. If this is not the case, i.e. if a
terminal symbol and a met symbol are identical, we enclose the terminal symbol in
quotes to differentiate it from the meta symbol. For example, the set of punctuation
symbols of English can be defined as
{:,;’,’-,...}
Where ',' denotes the terminal symbol 'comma'.
A string is a finite sequence of symbols. We will represent strings by Greek
symbols-α β γ, etc. Thus α = axy is a string over Σ . The length of a string is the
Number of symbols in it. Note that the absence of any symbol is also a string, the null
string . The concatenation operation combines two strings into a single string.

To evaluate an HLL program it should be converted into the Machine language. A
compiler performs another very important function. This is in terms of the
diagnostics.
I.e. error – detection capability.
The important tasks of a compiler are:
Translating the HLL program input to it.
Providing diagnostic messages whenever specifications of the HLL

Assemblers & compilers
Assembler is a translator for the lower level assembly language of
computer, while compilers are translators for HLLs.
An assembly language is mostly peculated to a certain computer, while an
HLL is generally machined independent & thus portable.

Overview of the compilation process:
The process of compilation is:
Analysis of + Synthesis of = Translation of

Dr.Shaimaa H. Shaker 2صفحة

Source Text Target Text Program
Source text analysis is based on the grimmer of the source of the source language.
The component sub – tasks of analysis phase are:
Syntax analysis, which determine the syntactic structure of the source statement.
Semantic analysis, which determines the meaning of a statement, once its
grammatical structures become known.

The analysis phase
The analysis phase of a compiler performs the following functions.

Lexical analysis

Syntax analysis

Semantic analysis

Syntax analysis determines the grammatical or syntactic structure or the input
statement & represents it in an intermediate form from which semantic analysis can
be performed.

A compiler must perform two major tasks:
The Analysis of a source program & the synthesis of its corresponding object
program.

The analysis task deals with the decomposition of the source program into its basic
parts using these basic parts the synthesis task builds their equivalent object program
modules. A source program is a string of symbols each of which is generally a letter, a
digit or a certain special constants, keywords & operators. It is therefore desirable for
the compiler to identify these various types as classes.

The analysis task deals with the decomposition of the source program into its basic
parts using these basic parts the synthesis task builds their equivalent object program
modules. A source program is a string of symbols each of which is generally a letter, a
digit or a certain special constants, keywords & operators. It is therefore desirable for
the compiler to identify these various types as classes.

The source program is input to a lexical analyzer or scanner whose purpose is to
separate the incoming text into pieces or tokens such as constants, variable name,
keywords & operators.
In essence, the lexical analyzer performs low- level syntax analysis performs low-
level syntax analysis.
For efficiency reasons, each of tokens is given a unique internal representation
number.

1

Dr.Shaimaa H.Shaker

Introduction to Assemblers and

Assembly Language

Encoding instructions as binary numbers is natural and efficient for
computers. Humans, however, have a great deal of difficulty
understanding and manipulating these numbers. People read and
write symbols (words) much better than long sequences of digits.
This lecture describes the process by which a human-readable
program is translated into a form that a computer can execute,
provides a few hints about writing assembly programs, and explains
how to run these programs on SPIM,

What is an assembler ?

A tool called an assembler translates assembly language into
binary instructions. Assemblers provide a friendlier representation than
a computer’s 0s and 1s that simplifies writing and reading programs.
Symbolic names for operations and locations are one facet of this
representation. Another facet is programming facilities that increase a
program’s clarity.

An assembler reads a single assembly language source file and
produces an object file containing machine instructions and
bookkeeping information that helps combine several object files into a
program. Figure (1) illustrates how a program is built. Most programs
consist of several files—also called modules— that are written,
compiled, and assembled independently. A program may also use
prewritten routines supplied in a program library . A module typically
contains References to subroutines and data defined in other modules
and in libraries. The code in a module cannot be executed when it
contains unresolved References to labels in other object files or libraries.
Another tool, called a linker, combines a collection of object and library
files into an executable file , which a computer can run.

2

Dr.Shaimaa H.Shaker

FIGURE 1: The process that produces an executable file. An assembler
translates a file of assembly language into an object file, which is linked
with other files and libraries into an executable file.

1) Assembler = a program to handle all the tedious mechanical
translations

2) Allows you to use:
• symbolic opcodes
• symbolic operand values
• symbolic addresses

3) The Assembler
• keeps track of the numerical values of all symbols
• translates symbolic values into numerical values

3

Dr.Shaimaa H.Shaker

 4)Time Periods of the Various Processes in Program Development

 5) The Assembler Provides:

a. Access to all the machine’s resources by the assembled program.
This includes access to the entire instruction set of the machine.

b. A means for specifying run-time locations of program and data in
memory.

c. Provide symbolic labels for the representation of constants and
addresses.

d. Perform assemble-time arithmetic.
e. Provide for the use of any synthetic instructions.
f. Emit machine code in a form that can be loaded and executed.
g. Report syntax errors and provide program listings
h. Provide an interface to the module linkers and program loader.
i. Expand programmer defined macro routines.

4

Dr.Shaimaa H.Shaker

Assembler Syntax and Directives

Syntax: Label OPCODE Op1, Op2, ... ;Comment field

Pseudo-operations (sometimes called “pseudos,” or directives) are
“opcodes” that are actually instructions to the assembler and that do
not result in code being generated.

Assembler maintains several data structures

• Table that maps text of opcodes to op number and instruction
format(s)

• “Symbol table” that maps defined symbols to their value

5

Dr.Shaimaa H.Shaker

Disadvantages of Assembly
• programmer must manage movement of data items between memory
locations and the ALU.

• programmer must take a “microscopic” view of a task, breaking it
down to manipulate individual memory locations.

• assembly language is machine-specific.

• statements are not English-like (Pseudo-code)

Directives Assembler
1. Directives are commands to the Assembler
2. They tell the assembler what you want it to do, e.g.

a. Where in memory to store the code
b. Where in memory to store data
c. Where to store a constant and what its value is
d. The values of user-defined symbols

Object File Format
Assemblers produce object files. An object file on Unix contains six
distinct sections (see Figure 3):

• The object file header describes the size and position of the other
pieces of the file.

• The text segment contains the machine language code for
routines in the source file. These routines may be unexecutable
because of unresolved references.

• The data segment contains a binary representation of the data in
the source file. The data also may be incomplete because of
unresolved references to labels in other files.

• The relocation information identifies instructions and data words
that depend on absolute addresses. These references must
change if portions of the program are moved in memory.

• The symbol table associates addresses with external labels in the
source file and lists unresolved references.

• The debugging information contains a concise description of the
way in which the program was compiled, so a debugger can find
which instruction addresses correspond to lines in a source file
and print the data structures in readable form.

6

Dr.Shaimaa H.Shaker

The assembler produces an object file that contains a binary
representation of the program and data and additional information to
help link pieces of a program. This relocation information is necessary
because the assembler does not know which memory locations a
procedure or piece of data will occupy after it is linked with the rest of
the program. Procedures and data from a file are stored in a contiguous
piece of memory, but the assembler does not know where this memory
will be located. The assembler also passes some symbol table entries to
the linker. In particular, the assembler must record which external
symbols are defined in a file and what unresolved references occur in a
file.

Macros
Macros are a pattern-matching and replacement facility that provide a
simple mechanism to name a frequently used sequence of instructions.
Instead of repeatedly typing the same instructions every time they are
used, a programmer invokes the macro and the assembler replaces the
macro call with the corresponding sequence of instructions. Macros, like
subroutines, permit a programmer to create and name a new
abstraction for a common operation. Unlike subroutines, however,
macros do not cause a subroutine call and return when the program
runs since a macro call is replaced by the macro’s body when the
program is assembled. After this replacement, the resulting assembly is
indistinguishable from the equivalent program written without macros.

The 2-Pass Assembly Process
• Pass 1:

1. Initialize location counter (assemble-time “PC”) to 0
2. Pass over program text: enter all symbols into symbol table

a. May not be able to map all symbols on first pass
b. Definition before use is usually allowed

 3. Determine size of each instruction, map to a location

a. Uses pattern matching to relate opcode to pattern
b. Increment location counter by size
c. Change location counter in response to ORG pseudo

7

Dr.Shaimaa H.Shaker

• Pass 2:

1. Insert binary code for each opcode and value
2. “Fix up” forward references and variable-sizes instructions

• Examples include variable-sized branch offsets and
constant fields

Dr.Shaimaa H.Shaker 1صفحة

Architecture and Organization

• Architecture is the design of the system
visible to the assembly level programmer.

– What instructions

– How many registers

– Memory addressing scheme

• Organization is how the architecture is
implemented.

– How much cache memory

– Microcode or direct hardware

– Implementation technology

Dr.Shaimaa H.Shaker 2صفحة

 (8086 Architecture)

1. Hardware Organization

Dr.Shaimaa H.Shaker 3صفحة

 On the structural scheme of the i8086 processor we can see two separate
asynchronous processing units.
The execution unit (EU) executes instructions;
 the bus interface unit (BIU) fetches instructions, reads operands, and
writes results.
 The two units can operate almost independently of one another and are
able, under most circumstances, to extensively overlap instruction fetch
with execution. The result is that, in most cases, the time normally
required to fetch instructions "disappears" because the EU executes
instructions that have already been fetched by BIU. Of course nothing
special, but remember the time when i8086 was designed.

Execution Unit
The execution unit consists of general registers, buffer registers, control
unit, arithmetic/logic unit, and flag register. The ALU maintains the CPU
status and control flags and manipulates the general registers and
instruction operands. The EU is not connected to the system bus. It
obtains instructions from a queue maintained by the BIU. Likewise, when
an instruction requires access to memory or to a peripheral device, the EU
requests the BIU to obtain or store the data. The EU manipulates only
with 16-bit addresses (effective addresses). An address relocation that
enables the EU access to the full megabyte is performed by BIU.

Bus Interface Unit
The bus interface unit performs all bus operations for the EU. Data is
transferred between the CPU and memory or I/O devices upon demand
from the EU. During periods when the EU is busy executing instructions,
the BIU fetches more instructions from memory. The instructions are
stored in an internal RAM array called the instruction stream queue. The
8086 queue can store up to six instruction bytes. This allows the BIU to
keep the EU supplied with prefetched instructions under most conditions.
The BIU of 8086 does not initiate a fetch until there are two empty bytes
in its queue. The BIU normally obtains two instruction bytes per fetch,
but if a program transfer forces fetching from an odd address, the 8086
BIU automatically reads one byte from the odd address and then resumes
fetching two-byte words from the subsequent even addresses. Under most
circumstances the queue contains at least one byte of the instruction
stream and the EU does not have to wait for instructions to be fetched.
The instructions in the queue are the next logical instructions so long as
execution proceeds serially. If the EU executes an instruction that
transfers control to another location, the BIU resets the queue, fetches the

Dr.Shaimaa H.Shaker 4صفحة

instruction from the new address, passes it immediately to the EU, and
then begins refilling the queue from the new
cation. In addition, the BIU suspends instruction fetching whenever the
EU requests a memory or I/O read or write (except that a fetch already in
progress is completed before executing the EU's bus request).

The Details of the Architecture

Registers
The general registers of the 8086 are divided into two sets of four 16-bit
registers each. The data registers and the pointer and index registers. The
data registers' upper and lower halves are separately addressable. In other
words, each data register can be used interchangeably as a 16-bit register
or as two 8-bit registers. The data registers can be used without constraint
in most arithmetic and logic operations. Some instructions use certain
registers implicitly thus allowing compact yet powerful encoding. The
pointer and index registers can be used only as 16-bit registers. They can
also participate in most arithmetic and logic operations. In fact all eight
general registers fit the definition of "accumulator" as used in first and
second generation microprocessors. The pointer and index registers
(except BP) are also used implicitly in some instructions. The segment
registers contain the base addresses of logical segments in the 8086
memory space. The CPU has direct access to four segments at a time. The
CS register points to the current code segment; instructions are fetched
from this segment. The SS points to the current stack segment; stack
operations are performed on locations in this segment. The DS register
points to the current data segment; it generally contains program
variables. The ES points to the current extra segment; which also is
typically used for data storage. The IP (instruction pointer) is updated by
the BIU so that it contains the offset of the next instruction from the
beginning of the current code segment. During normal execution IP
contains the offset of the next instruction to be fetched by the BIU;
whenever IP is saved on the stack, however, it is first automatically
adjusted to point to the next instruction to be executed. Programs do not
have direct access to the IP.

Dr.Shaimaa H.Shaker 5صفحة

There are eight 16-bit general registers.

The data registers:
AX (AH and AL)
BX (BH and BL)
CX (CH and CL)
DX (DH and DL)

The pointer and index registers: BP, SP, SI, DI
The upper and lower halves of the data registers are separately
addressable. Memory space is divided into logical segments up to 64k
bytes each. The CPU has direct access to four segments at a time; their
base addresses are contained in the segment registers
CS, DS, SS, ES.
CS = code segment;
DS = data segment;
SS = stack segment;
ES = extra segment;
Flags are maintained in the flag register depending on the result of
the arithmetic or logic operation. A group of instructions is
available that allows a program to alter its execution depending on
the state of the flags, that is, on the result of a prior operation.
There are:
• AF (the auxiliary carry flag) used by decimal arithmetic instructions.
Indicates carry out from the low nibble of the 8-bit quantity to the high
nibble, or borrow from the high nibble into the low nibble.
• CF (the carry flag) indicates that there has been carry out of , or a
borrow into, the high-order bit of the result.
• OF (the overflow flag) indicates that an arithmetic overflow has
occurred.
• SF (the sign flag) indicates the sign of the result (high-order bit is set,
the result is negative).
• PF (the parity flag) indicates that the result has an even parity, an even
number of 1-bits.
• ZF (the zero flag) indicates that the result of the operation is 0.
Three additional control flags can be set and cleared by programs to alter
processor operations:
• DF (the direction flag) causes string instructions to auto-decrement if it
is set and to auto-increment if it is cleared.
• IF (the interrupt enable flag) allows the CPU to recognize external
interrupts.
• TF (the trap flag) puts the processor into single-step mode for
debugging.

Dr.Shaimaa H.Shaker 6صفحة

Memory Organization
The 8086 can accommodate up to 1,048,576 bytes of memory. From the
storage point of view, the memory space is organized as array of 8-bit
bytes. Instructions, byte data and word data may be freely stored at any
byte address without regard for alignment. The Intel convention is that
the most-significant byte of word data is stored in the higher memory
location. A special class of data (pointers) is stored as double words. The
lower addressed word of a pointer contains an offset value, and the
higher-addressed word contains a segment base address. Each word is
stored following the above convention. The i8086 programs "view" the
megabyte of memory space as a group of segments that are defined by the
application. A segment is a logical unit of memory that may be up to 64k
bytes long. Each segment is made up of contiguous memory locations and
is an independent separately addressable unit. The software must assign
to every segment a base address, which is its starting location in the
memory space. All segments begin on 16-byte memory boundaries called
paragraphs. The segment registers point to the four currently addressable
segments. To obtain code and data from other segments, program must
change the content of segment registers to point to the desired segments.
Every memory location has its physical address and its logical address. A
physical address is the 20-bit value that uniquely identifies each byte
location in the memory space. Physical addresses may range from 0H to
FFFFFH. All exchanges between the CPU and memory components use
physical addresses. However, programs deal with logical rather than
physical addresses. A logical address consists of a segment base and
offset value. The logical to physical address translation is done by BIU
whenever it accesses memory. The BIU shifts segment base by 4 to the
left and adds the offset to this value. Thus we obtain 20-bit physical
address and get the explanation for 16-byte memory boundaries for the
segment base beginning. The offset of the memory variable is calculated
by the EU depending on the addressing modes and is called the operand's
effective address (EA). Stack is implemented in memory and is located
by the stack segment register and the
stack pointer register. An item is pushed onto the stack by decrementing
SP by 2 and writing the item at the new top of stack (TOS). An item is
popped off the stack by copying it from TOS and then incrementing SP
by 2.
The memory locations 0H through 7FH are dedicated for interrupt vector
table, and locations FFFF0H through FFFFFH are dedicated for system
reset.

Dr.Shaimaa H.Shaker 7صفحة

Input/Output
The 8086 I/O space can accommodate up to 64k 8-bit ports or up to 32k
16-bit ports. The IN and OUT instructions transfer data between the
accumulator and ports located in I/O space. The I/O space is not
segmented; to access a port, the BIU simply places the port address on the
lower 16 lines of the address bus. I/O devices may also be placed in the
8086 memory space. As long as the devices respond like the memory
components, the CPU does not know the difference. This adds
programming flexibility, and is paid by longer execution of memory
oriented instructions.

Processor Control and Monitoring
The interrupt system of the 8086 is based on the interrupt vector table
which is located from 0H through 7FH (dedicated) and from 80H through
3FFH (user available). Every interrupt is assigned a type code that
identifies it to the CPU. By multiplying (type * 4), the CPU calculates the
location of the correct entry for a given interrupt. Every table entry is 4
bytes long and contains the offset and the segment base (pointer) of the
corresponding interrupt procedure that should be executed. After system
reset all segments are initialized to 0H except CS which is initialized to
FFFFH. Since, the processor executes the first instruction from absolute
memory location FFFF0H. This location normally contains an
intersegment direct JMP instruction whose target is the actual beginning
of the system program.

Software Organization
Instruction Set
The 8086 instruction set from programmer's point of view contains about
100 instructions. However the number of machine instructions is more
then 3800. For example MOV instruction has 28 different machine forms.
On the functional level we can divide the instruction set on :
1. Data transfer instructions (MOV, XCHG, LEA, ...),
2. Arithmetic instructions (ADD, SUB, INC, DEC, ...),
3. Bit manipulation instructions (AND, SHR, ROR, ...),
4. String instructions (MOVS, LODS, REP, ...),
5. Program transfer instructions (CALL, JMP, JZ, RET, ...),
6. Interrupt instructions (INT, INTO, IRET),
7. Processor control instructions (CLC, STD, HLT, ...).

Dr.Shaimaa H.Shaker 8صفحة

Data Memory Addressing Modes:
The 8086 offers a wide variety of addressing; we will condense it into six
basic operation. These options are:
1- Immediate
2- Direct
3- Direct, Indexed
4- Implied
5- Base Relative
6- Stack

Immediate Memory Addressing:
In this form of addressing, one of the operands is present in the byte(s)
immediately following the instruction object code (op-code). If
addressing bytes follow the op-code, then the immediate data will follow
the addressing bytes. For example:
ADD AX, 3064H
Requests the assembler to generate an ADD instruction which will add
3064 to the AX register. This may be illustrated as follows:

Note that the 16-bit immediate operand, when stored in program memory,
has the low-order byte preceding the high-order byte. This is consistent

Dr.Shaimaa H.Shaker 9صفحة

with the way the 8086A stores immediate operands in program memory.
In addition, this is consistent with the way the 8086 stores 16-bit
operands in data memory. When a 16-bit store is performed, the low-
order 8 bits of data are stored into the low-order memory byte, and the
high-order 8 bits of data are stored into the succeeding memory byte.
In this example, the two bytes immediately following the op-code for the
ADD to AX instruction are added to the AX register.

Direct Memory Addressing:
The 8086 implements straight forward direct memory addressing by
adding a 16-bit displacement, provided by two object code bytes, to the
data segment register. The sum becomes the actual memory address. This
may be illustrated as follows:

Note that a 16-bit address displacement, when stored in program memory,
has the low-order byte preceding the high-order byte. This is consistent
with the way the 8080A stores addresses in program memory.
DS must provide the segment base address when addressing data memory
directly, as illustrated above.

Dr.Shaimaa H.Shaker 10صفحة

Direct, Indexed Memory Addressing:
Direct, indexed addressing is allowed by specifying the SI or DI register
as an index register. You have the option of adding an 8-bit or 16-bit
displacement to the contents of the specified index register in order to
generate the effective address. A16-bit displacement is stored in two
object code bytes; the low-order byte of the displacement precedes the
high-order byte of the displacement, as illustrated for direct memory
addressing. If an 8-bit displacement is specified, then the high-order bit of
the low-order byte is propagated into the high-order byte to create a 16-
bit displacement this may be illustrated a follows:

Implied Memory Addressing:
Implied memory addressing is implemented on the 8086 as a degenerate
version of a direct, indexed memory addressing. If you do not specify a
displacement when using the direct, index addressing mode, then you
have, in effect, implied memory addressing via the SI or DI register. The
may be illustrated as follows:

Dr.Shaimaa H.Shaker 11صفحة

Base Relative Addressing:
The 8086 implements base relative addressing in two ways:
- Data memory base relative addressing, which is within the DS segment
(data memory)
- Stack base relative addressing, which is in the SS segment (stack
memory)
Data memory base relative addressing uses the BX register contents to
provide the base for the effective address. All of the data memory
addressing options thus far described, with the exception of immediate
addressing ,are available with base relative data memory addressing. In
effect, base relative data memory addressing merely adds the contents of
the BX register to the effective memory address which would otherwise
have been generated. Here, for example, is an illustration of base relative
direct addressing:

Simple, direct addressing, which we described earlier, always generated a
16-bit displacement. Base relative, direct addressing allows the
displacement, illustrated above as HHLL, to be a 16-bit displacement, an
8-bit displacement with sign extended, or no displacement at all.

Dr.Shaimaa H.Shaker 12صفحة

Base relative implied memory addressing simply adds the contents of the
BX register to the selected index register in order to compute the effective
memory address. This may be illustrated as follows:

Base relative, direct, indexed data memory addressing may appear to be
complicated, but in fact it is not. We simply add the contents of the BX
register to the effective memory address, as computed for normal direct,
indexed addressing. Thus, base relative, direct, indexed data memory
addressing may be illustrated as follows:

Dr.Shaimaa H.Shaker 13صفحة

The index xxxx in the illustration above is optional. Base relative, direct
memory addressing is also available. In this instance neither SI or DI will
contribute to the address computation, and 0xxxx must be remove from
the illustration.
Stack Memory Addressing:
The 8086 also has stack memory addressing variations of the base
relative, data memory addressing options just described. In this case,
however, the BP register is used as the base register. Here, for example, is
base relative, direct stack addressing:

Dr.Shaimaa H.Shaker 14صفحة

In the illustration above, the displacement HHLL is present, either as a
16-bit displacement or as 8-bit displacement with sign extended. Base
relative stack memory addressing requires a displacement be specified,
even if zero.
The more commonly used instructions:
1. Arithmetic instructions:
These instructions are used for arithmetic operation on the
source and destination operands.
*ADD ac , data (add immediate data to AX register)
This instruction is used to add the immediate data present in the
succeeding program memory byte (s) to the AL (8-bit operation)
or AX (16-bit operation) register.
*ADD mem/reg , data (add immediate data to register or
memory location).

Dr.Shaimaa H.Shaker 15صفحة

*ADC mem/reg1,mem/reg2
Add data with carry from .register to register
.register to memory
.memory to register
Add the contents of the register or memory location specified by
mem/reg2 and the carry status to the contents of the register or
memory location specified by mem/reg1. An 8- or 16-bit
operation may be specified. Either mem/reg1 or mem/reg2 may
be a memory operand, but one of the operand must be a register
operand.
*DIV mem/reg
Divide AH:AL or DX:AX registers by register or memory
location
Divided the AH:AL (8-bit operation) or DX:AX (16-bit
operation) register by the contents of the specified 8- or 16-bit
register or memory location, considering both operands as
unsigned binary numbers.
* IDIV mem/reg
Divided AH:AL or DX:AX by register or memory location
* IMUL mem/reg
Multiply AL or AX register by register or memory location
Multiply the specified register or memory location contents by
contents by the AL (8-bit operation) or AX (16-bit operation).
* MUL mem/reg
Multiply AL or AX register by register or memory location
Multiply the specified register or memory location contents by
the AL (8-bit operation) or AX (16-bit operation) register,
considering both operands as unsigned number, i.e., a simple
binary multiplication. If an 8-bit operation is performed, the
low- order eight bits of the result are stored in the AL register,
the high-order eight bits of the result are stored in the AH
register. If a 16-bit operation is performed, the low-order 16 bits
of the result is stored in the AX register, the high-order 16 bits
of the result are stored in the DX register.

Dr.Shaimaa H.Shaker 16صفحة

* SBB ac,data
Subtract immediate from AX or AL register with borrow.
Subtract the immediate data in the succeeding program memory
byte (s) from the AL (8-bit operation) or AX (16-bit operation)
register with borrow.
*SUB ac,data
Subtract immediate data from the AL or AX register
This instruction is used to subtract immediate data from the AL
(8-bit operation) register.
2- Logical Instructions:
These instructions are used for logical operations on the operands.
*AND ac, data
AND immediate data with the AL or AX register
This instruction is used to AND immediate data present in the succeeding
program memory byte(s) with the (8-bit operation) or AX (16-bit
operation) register contents.
*AND mem/reg , data
AND immediate data with register or memory location.
*NEG mem/reg
Negate the contents of register or memory location
This instruction performs a twos complement subtraction of the specified
operand from zero. The result is stored in the specified operand. An 8- or
16-bit operand may be specified.
*NOT mem/reg
Ones complement of register or memory location
Complement the contents of the specified register or memory location.
*OR ac,data
OR immediate data with the AX or AL register
OR the immediate data in the succeeding program memory byte(s) with
AL (8-bit operation) or AX (16-bit operation) register.
*TEST ac,data
Test immediate data with AX or AL register
AND the immediate data in the succeeding program memory byte(s) with
the contents of the AL (8-bit operation) or AX (16-bit operation) register,
but do not return the result to the register.
*XOR
XOR immediate data with AX or AL register
This instruction exclusive-ORs 8- or 16-bit data elements with AL(8-bit)
or AX(16-bit) register via immediate addressing.

Dr.Shaimaa H.Shaker 17صفحة

3- Movement Instructions:
*MOV mem/reg1,mem/reg2
Move data from register to register or memory to register or register to
memory.
This instruction is used to move 8- or 16-bit data elements between a
register and a register or memory location.
*MOVS (MOVSB) (MOVSW)
Move byte or word from memory to memory
Move 8 or 16 bits from the memory location pointed to by the SI register
to the memory location pointed to by the DI register. The SI and DI
register are incremented / decremented depending on the value of the DF
flag.
4- Loading Instructions:
*LODS (LODSB)(LODSW)
Load from memory into AL or AX register
Move from the memory location addressed by the SI register to the AL
(8-bit operation) or the AX (16-bit operation) register. The SI register is
incremented / decremented depending on the value of the DF flag.
*LDS reg,mem
Load register and DS from memory
Load the contents of the specified memory word into the specified
register. Load the contents of the memory word following the specified
memory word into the DS register.
5- Jumping Instructions:
*JCXZ disp jump if CX=0
*JE dispjump if equal
*JZ disp jump if zero
*JG disp jump if greater
*JNLE disp jump if not less nor equal
*JGE disp jump if greater than or equal
*JNL disp jump if not less
*JL disp jump if less
*JNGE disp jump if not greater than or equal
*JLE disp jump if less than or equal
*JNG disp jump if not greater
*JMP addr jump to the instruction identified in the operand
*JNE disp jump if not equal
*JNZ disp jump if not zero
*JNO disp jump if not overflow
*JNP disp jump if not parity
*JPO disp jump if parity odd
*JNS disp jump if not sign
*JO disp jump if overflow

Dr.Shaimaa H.Shaker 18صفحة

*JP disp jump if parity even
*JPE disp jump if parity even
*JS disp jump if sign status is one
6- Looping Instructions:
*LOOP disp
Decrement CX register and jump if not zero
This instruction decrements the CX register (not affecting the flsgs) and
then functions in the same manner as the JMP disp instruction, except
that if the CX register has not been decremented to 0, then the jump is
executed; otherwise the next instruction is executed.
*LOOPZ disp
LOOPE disp
Decrement CX register and jump if CX=0 and ZF=1
This instruction decrements the CX register (not affecting the flags) and
then functions in the same manner as the JMP disp instruction, except
that if the CX register has not been decremented to 0 and the zero flag is
1 then the jump is executed; otherwise the next instruction is executed.
*LOOPNZ disp
LOOPNE disp
Decrement CX register and jump if CX!=0 and ZF=0
This instruction decrements the CX register (not affecting the flag) and
then functions in the same manner as the JMP disp instruction, except
that if the CX register has not been decremented to 0 and the zero flag is
0, then the jump is executed; otherwise the next instruction is executed.
7- Stack Instructions:
*POP reg
Read from the top of the stack
Pop the two top stack bytes into the designated 16-bit register.
*POPF
Read from the top of the stack into flags register.
*PUSH reg
Write to the top of the stack
This instruction pushes the contents of the specified 16-bit register into
the top of stack.
*PUSHF
Write the flags register to the top of stack.
8- Count Instructions:
*DEC mem/reg
Decrement register or memory location
Subtract 1 from the contents of the specified register or memory location.
An 8- or 16-bit operation may be specified.
*INC mem/reg
Increment register or memory location

Dr.Shaimaa H.Shaker 19صفحة

Add 1 to the contents of the specified register or memory location. An 8-
or 16-bit operation may be specified.
9-Compare Instructions:
*CMP ac,data
Compare immediate data with accumulator
This instruction is used to compare immediate data present in the
succeeding program memory byte(s) with the AL register (8-bit
operation) or the AX register (16-bit operation). The comparison is
performed by subtracting the data in the immediate byte(s) from the
specified register, thus no registers are affected, only the statuses.
*CMP mem/reg,data
Compare immediate data with register or memory
*CMP mem/reg1,mem/reg2
*CMPS (CMPSB)(CMPSW)
Compare memory with memory
Compare the contents of the memory location addressed by the SI register
with the contents of memory location addressed by the DI register. The
comparison is performed by subtracting the contents of memory location
addressed by the DI register from the contents the memory location
addressed by SI register and using the result to set the flags.
10-Flag Instructions:
*CLC Clear the carry status
*CLD Clear the direction flag
*CLI Clear the interrupt flag
*CMC Complement the carry status
*STC Set the carry flag
*STD Set the direction flag
*STI Set the interrupt flag

	lec-one-system software
	the execution at a specified starting address.
	4)Time Periods of the Various Processes in Program Development
	Assembler Syntax and Directives

	Disadvantages of Assembly
	Directives Assembler

	Object File Format
	Macros
	The 2-Pass Assembly Process

	CP/M
	The First OS
	Operating System Classification
	Classification

	CP/M
	The First OS
	Operating System Classification
	Classification

	lec-two-language analysis
	lec-two-scanning and parsing
	lect-three-assembler
	4)Time Periods of the Various Processes in Program Development
	Assembler Syntax and Directives

	Disadvantages of Assembly
	Directives Assembler

	Object File Format
	Macros
	The 2-Pass Assembly Process

	lect-four-8086 arch

