31-6 Alternating Current

The oscillations in an $R L C$ circuit will not damp out if an external emf device supplies enough energy to make up for the energy dissipated as thermal energy in the resistance R. Circuits in homes, offices, and factories, including countless $R L C$ circuits, receive such energy from local power companies. In most countries the energy is supplied via oscillating emfs and currents - the current is said to be an alternating current, or ac for short. (The nonoscillating current from a battery is said to be a direct current, or dc.) These oscillating emfs and currents vary sinusoidally with time, reversing direction (in North America) 120 times per second and thus having frequency $f=60 \mathrm{~Hz}$.

At first sight this may seem to be a strange arrangement. We have seen that the drift speed of the conduction electrons in household wiring may typically be $4 \times 10^{-5} \mathrm{~m} / \mathrm{s}$. If we now reverse their direction every $\frac{1}{120} \mathrm{~s}$, such electrons can move only about $3 \times 10^{-7} \mathrm{~m}$ in a half-cycle. At this rate, a typical electron can drift past no more than about 10 atoms in the wiring before it is required to reverse its direction. How, you may wonder, can the electron ever get anywhere?

Although this question may be worrisome, it is a needless concern. The conduction electrons do not have to "get anywhere." When we say that the current in a wire is one ampere, we mean that charge passes through any plane cutting across that wire at the rate of one coulomb per second. The speed at which the charge carriers cross that plane does not matter directly; one ampere may correspond to many charge carriers moving very slowly or to a few moving very rapidly. Furthermore, the signal to the electrons to reverse directions - which originates in the alternating emf provided by the power company's generatoris propagated along the conductor at a speed close to that of light. All electrons, no matter where they are located, get their reversal instructions at about the same instant. Finally, we note that for many devices, such as lightbulbs and toasters, the direction of motion is unimportant as long as the electrons do move so as to transfer energy to the device via collisions with atoms in the device.

The basic advantage of alternating current is this: As the current alternates, so does the magnetic field that surrounds the conductor. This makes possible the use of Faraday's law of induction, which, among other things, means that we can step up (increase) or step down (decrease) the magnitude of an alternating potential difference at will, using a device called a transformer, as we shall discuss later. Moreover, alternating current is more readily adaptable to rotating machinery such as generators and motors than is (nonalternating) direct current.

Figure 31-6 shows a simple model of an ac generator. As the conducting loop is forced to rotate through the external magnetic field \vec{B}, a sinusoidally oscillating emf \mathscr{E} is induced in the loop:

$$
\begin{equation*}
\mathscr{E}=\mathscr{E}_{m} \sin \omega_{d} t . \tag{31-28}
\end{equation*}
$$

The angular frequency ω_{d} of the emf is equal to the angular speed with which the loop rotates in the magnetic field, the phase of the emf is $\omega_{d} t$, and the amplitude of the emf is \mathscr{E}_{m} (where the subscript stands for maximum). When the rotating loop is part of a closed conducting path, this emf produces (drives) a sinusoidal (alternating) current along the path with the same angular frequency ω_{d}, which then is called the driving angular frequency. We can write the current as

$$
\begin{equation*}
i=I \sin \left(\omega_{d} t-\phi\right), \tag{31-29}
\end{equation*}
$$

in which I is the amplitude of the driven current. (The phase $\omega_{d} t-\phi$ of the current is traditionally written with a minus sign instead of as $\omega_{d} t+\phi$.) We include a phase constant ϕ in Eq. 31-29 because the current i may not be in phase with the emf \mathscr{E}. (As you will see, the phase constant depends on the circuit to which the generator is connected.) We can also write the current i in terms of the driving frequency f_{d} of the emf, by substituting $2 \pi f_{d}$ for ω_{d} in Eq. 31-29.

Fig. 31-6 The basic mechanism of an alternating-current generator is a conducting loop rotated in an external magnetic field. In practice, the alternating emf induced in a coil of many turns of wire is made accessible by means of slip rings attached to the rotating loop. Each ring is connected to one end of the loop wire and is electrically connected to the rest of the generator circuit by a conducting brush against which the ring slips as the loop (and it) rotates.

Fig. 31-7 A single-loop circuit containing a resistor, a capacitor, and an inductor. A generator, represented by a sine wave in a circle, produces an alternating emf that establishes an alternating current; the directions of the emf and current are indicated here at only one instant.

Fig. 31-8 A resistor is connected across an alternating-current generator.

31-7 Forced Oscillations

We have seen that once started, the charge, potential difference, and current in both undamped $L C$ circuits and damped $R L C$ circuits (with small enough R) oscillate at angular frequency $\omega=1 / \sqrt{L C}$. Such oscillations are said to be free oscillations (free of any external emf), and the angular frequency ω is said to be the circuit's natural angular frequency.

When the external alternating emf of Eq. 31-28 is connected to an $R L C$ circuit, the oscillations of charge, potential difference, and current are said to be driven oscillations or forced oscillations. These oscillations always occur at the driving angular frequency ω_{d} :

Whatever the natural angular frequency ω of a circuit may be, forced oscillations of charge, current, and potential difference in the circuit always occur at the driving angular frequency ω_{d}.

However, as you will see in Section 31-9, the amplitudes of the oscillations very much depend on how close ω_{d} is to ω. When the two angular frequencies matcha condition known as resonance - the amplitude I of the current in the circuit is maximum.

31-8 Three Simple Circuits

Later in this chapter, we shall connect an external alternating emf device to a series $R L C$ circuit as in Fig. 31-7. We shall then find expressions for the amplitude I and phase constant ϕ of the sinusoidally oscillating current in terms of the amplitude \mathscr{E}_{m} and angular frequency ω_{d} of the external emf. First, let's consider three simpler circuits, each having an external emf and only one other circuit element: R, C, or L. We start with a resistive element (a purely resistive load).

A Resistive Load

Figure 31-8 shows a circuit containing a resistance element of value R and an ac generator with the alternating emf of Eq.31-28. By the loop rule, we have

$$
\mathscr{E}-v_{R}=0
$$

With Eq. 31-28, this gives us

$$
v_{R}=\mathscr{E}_{m} \sin \omega_{d} t .
$$

Because the amplitude V_{R} of the alternating potential difference (or voltage) across the resistance is equal to the amplitude \mathscr{E}_{m} of the alternating emf, we can write this as

$$
\begin{equation*}
v_{R}=V_{R} \sin \omega_{d} t \tag{31-30}
\end{equation*}
$$

From the definition of resistance ($R=V / i$), we can now write the current i_{R} in the resistance as

$$
\begin{equation*}
i_{R}=\frac{v_{R}}{R}=\frac{V_{R}}{R} \sin \omega_{d} t \tag{31-31}
\end{equation*}
$$

From Eq. 31-29, we can also write this current as

$$
\begin{equation*}
i_{R}=I_{R} \sin \left(\omega_{d} t-\phi\right), \tag{31-32}
\end{equation*}
$$

where I_{R} is the amplitude of the current i_{R} in the resistance. Comparing Eqs. 31-31 and 31-32, we see that for a purely resistive load the phase constant $\phi=0^{\circ}$.
For a resistive load, the current and potential difference are in phase.

(a) represented in (b)

(b)

Fig. 31-9 (a) The current i_{R} and the potential difference v_{R} across the resistor are plotted on the same graph, both versus time t. They are in phase and complete one cycle in one period T.(b) A phasor diagram shows the same thing as (a).

We also see that the voltage amplitude and current amplitude are related by

$$
\begin{equation*}
V_{R}=I_{R} R \quad \text { (resistor) } \tag{31-33}
\end{equation*}
$$

Although we found this relation for the circuit of Fig. 31-8, it applies to any resistance in any ac circuit.

By comparing Eqs. 31-30 and 31-31, we see that the time-varying quantities v_{R} and i_{R} are both functions of $\sin \omega_{d} t$ with $\phi=0^{\circ}$. Thus, these two quantities are in phase, which means that their corresponding maxima (and minima) occur at the same times. Figure 31-9a, which is a plot of $v_{R}(t)$ and $i_{R}(t)$, illustrates this fact. Note that v_{R} and i_{R} do not decay here because the generator supplies energy to the circuit to make up for the energy dissipated in R.

The time-varying quantities v_{R} and i_{R} can also be represented geometrically by phasors. Recall from Section 16-11 that phasors are vectors that rotate around an origin. Those that represent the voltage across and current in the resistor of Fig. 31-8 are shown in Fig. 31-9b at an arbitrary time t. Such phasors have the following properties:

Angular speed: Both phasors rotate counterclockwise about the origin with an angular speed equal to the angular frequency ω_{d} of v_{R} and i_{R}.
Length: The length of each phasor represents the amplitude of the alternating quantity: V_{R} for the voltage and I_{R} for the current.
Projection: The projection of each phasor on the vertical axis represents the value of the alternating quantity at time $t: v_{R}$ for the voltage and i_{R} for the current.
Rotation angle: The rotation angle of each phasor is equal to the phase of the alternating quantity at time t. In Fig. 31-9b, the voltage and current are in phase; so their phasors always have the same phase $\omega_{d} t$ and the same rotation angle, and thus they rotate together.
Mentally follow the rotation. Can you see that when the phasors have rotated so that $\omega_{d} t=90^{\circ}$ (they point vertically upward), they indicate that just then $v_{R}=V_{R}$ and $i_{R}=I_{R}$? Equations 31-30 and 31-32 give the same results.

$\sqrt{\text { CHECKPOINT } 3}$

If we increase the driving frequency in a circuit with a purely resistive load, do (a) amplitude V_{R} and (b) amplitude I_{R} increase, decrease, or remain the same?

Sample Problem

Purely resistive load: potential difference and current

In Fig. 31-8, resistance R is 200Ω and the sinusoidal alternating emf device operates at amplitude $\mathscr{E}_{m}=36.0 \mathrm{~V}$ and frequency $f_{d}=60.0 \mathrm{~Hz}$.
(a) What is the potential difference $v_{R}(t)$ across the resistance as a function of time t, and what is the amplitude V_{R} of $v_{R}(t)$?

KEY IDEA

In a circuit with a purely resistive load, the potential difference $v_{R}(t)$ across the resistance is always equal to the potential difference $\mathscr{E}(t)$ across the emf device.

Calculations: Here we have $v_{R}(t)=\mathscr{E}(t)$ and $V_{R}=\mathscr{E}_{m}$. Since \mathscr{E}_{m} is given, we can write

$$
V_{R}=\mathscr{E}_{m}=36.0 \mathrm{~V}
$$

(Answer)
To find $v_{R}(t)$, we use Eq. 31-28 to write

$$
\begin{equation*}
v_{R}(t)=\mathscr{E}(t)=\mathscr{E}_{m} \sin \omega_{d} t \tag{31-34}
\end{equation*}
$$

and then substitute $\mathscr{E}_{m}=36.0 \mathrm{~V}$ and
to obtain

$$
\begin{aligned}
& \omega_{d}=2 \pi f_{d}=2 \pi(60 \mathrm{~Hz})=120 \pi \\
& v_{R}=(36.0 \mathrm{~V}) \sin (120 \pi t) .
\end{aligned}
$$

(Answer)

We can leave the argument of the sine in this form for convenience, or we can write it as $(377 \mathrm{rad} / \mathrm{s}) t$ or as $\left(377 \mathrm{~s}^{-1}\right) t$.
(b) What are the current $i_{R}(t)$ in the resistance and the amplitude I_{R} of $i_{R}(t)$?

KEY IDEA

In an ac circuit with a purely resistive load, the alternating current $i_{R}(t)$ in the resistance is in phase with the alternating potential difference $v_{R}(t)$ across the resistance; that is, the phase constant ϕ for the current is zero.

Calculations: Here we can write Eq. 31-29 as

$$
\begin{equation*}
i_{R}=I_{R} \sin \left(\omega_{d} t-\phi\right)=I_{R} \sin \omega_{d} t \tag{31-35}
\end{equation*}
$$

From Eq.31-33, the amplitude I_{R} is

$$
I_{R}=\frac{V_{R}}{R}=\frac{36.0 \mathrm{~V}}{200 \Omega}=0.180 \mathrm{~A}
$$

(Answer)
Substituting this and $\omega_{d}=2 \pi f_{d}=120 \pi$ into Eq. 31-35, we have

$$
i_{R}=(0.180 \mathrm{~A}) \sin (120 \pi t)
$$

(Answer)

Fig. 31-10 A capacitor is connected across an alternating-current generator.

A Capacitive Load

Figure 31-10 shows a circuit containing a capacitance and a generator with the alternating emf of Eq. 31-28. Using the loop rule and proceeding as we did when we obtained Eq. 31-30, we find that the potential difference across the capacitor is

$$
\begin{equation*}
v_{C}=V_{C} \sin \omega_{d} t \tag{31-36}
\end{equation*}
$$

where V_{C} is the amplitude of the alternating voltage across the capacitor. From the definition of capacitance we can also write

$$
\begin{equation*}
q_{C}=C v_{C}=C V_{C} \sin \omega_{d} t \tag{31-37}
\end{equation*}
$$

Our concern, however, is with the current rather than the charge. Thus, we differentiate Eq. 31-37 to find

$$
\begin{equation*}
i_{C}=\frac{d q_{C}}{d t}=\omega_{d} C V_{C} \cos \omega_{d} t \tag{31-38}
\end{equation*}
$$

We now modify Eq. 31-38 in two ways. First, for reasons of symmetry of notation, we introduce the quantity X_{C}, called the capacitive reactance of a capacitor, defined as

$$
\begin{equation*}
X_{C}=\frac{1}{\omega_{d} C} \quad \text { (capacitive reactance). } \tag{31-39}
\end{equation*}
$$

Fig. 31-11 (a) The current in the capacitor leads the voltage by 90° ($=\pi / 2 \mathrm{rad}$). (b) A phasor diagram shows the same thing.

Its value depends not only on the capacitance but also on the driving angular frequency ω_{d}. We know from the definition of the capacitive time constant $(\tau=R C)$ that the SI unit for C can be expressed as seconds per ohm. Applying this to Eq. 31-39 shows that the SI unit of X_{C} is the ohm, just as for resistance R.

Second, we replace $\cos \omega_{d} t$ in Eq. 31-38 with a phase-shifted sine:

$$
\cos \omega_{d} t=\sin \left(\omega_{d} t+90^{\circ}\right)
$$

You can verify this identity by shifting a sine curve 90° in the negative direction. With these two modifications, Eq. 31-38 becomes

$$
\begin{equation*}
i_{C}=\left(\frac{V_{C}}{X_{C}}\right) \sin \left(\omega_{d} t+90^{\circ}\right) \tag{31-40}
\end{equation*}
$$

From Eq. 31-29, we can also write the current i_{C} in the capacitor of Fig. 31-10 as

$$
\begin{equation*}
i_{C}=I_{C} \sin \left(\omega_{d} t-\phi\right), \tag{31-41}
\end{equation*}
$$

where I_{C} is the amplitude of i_{C}. Comparing Eqs. 31-40 and 31-41, we see that for a purely capacitive load the phase constant ϕ for the current is -90°. We also see that the voltage amplitude and current amplitude are related by

$$
\begin{equation*}
V_{C}=I_{C} X_{C} \quad \text { (capacitor) } \tag{31-42}
\end{equation*}
$$

Although we found this relation for the circuit of Fig. 31-10, it applies to any capacitance in any ac circuit.

Comparison of Eqs. 31-36 and 31-40, or inspection of Fig. 31-11a, shows that the quantities v_{C} and i_{C} are $90^{\circ}, \pi / 2 \mathrm{rad}$, or one-quarter cycle, out of phase. Furthermore, we see that i_{C} leads v_{C}, which means that, if you monitored the current i_{C} and the potential difference v_{C} in the circuit of Fig. 31-10, you would find that i_{C} reaches its maximum before v_{C} does, by one-quarter cycle.

This relation between i_{C} and v_{C} is illustrated by the phasor diagram of Fig. $31-11 b$. As the phasors representing these two quantities rotate counterclockwise together, the phasor labeled I_{C} does indeed lead that labeled V_{C}, and by an angle of 90°; that is, the phasor I_{C} coincides with the vertical axis one-quarter cycle before the phasor V_{C} does. Be sure to convince yourself that the phasor diagram of Fig. 31-11b is consistent with Eqs. 31-36 and 31-40.

CHECKPOINT 4

The figure shows, in (a), a sine curve $S(t)=\sin \left(\omega_{d} t\right)$ and three other sinusoidal curves $A(t), B(t)$, and $C(t)$, each of the form $\sin \left(\omega_{d} t-\phi\right)$. (a) Rank the three other curves according to the value of ϕ, most positive first and most negative last. (b) Which curve corresponds to which phasor in (b) of the figure? (c) Which curve leads the others?

(a)

(b)

Sample Problem

Purely capacitive load: potential difference and current

In Fig. 31-10, capacitance C is $15.0 \mu \mathrm{~F}$ and the sinusoidal alternating emf device operates at amplitude $\mathscr{E}_{m}=36.0 \mathrm{~V}$ and frequency $f_{d}=60.0 \mathrm{~Hz}$.
(a) What are the potential difference $v_{C}(t)$ across the capacitance and the amplitude V_{C} of $v_{C}(t)$?

KEY IDEA

In a circuit with a purely capacitive load, the potential difference $v_{C}(t)$ across the capacitance is always equal to the potential difference $\mathscr{E}(t)$ across the emf device.

Calculations: Here we have $v_{C}(t)=\mathscr{E}(t)$ and $V_{C}=\mathscr{E}_{m}$. Since \mathscr{E}_{m} is given, we have

$$
V_{C}=\mathscr{E}_{m}=36.0 \mathrm{~V}
$$

(Answer)
To find $v_{C}(t)$, we use Eq. 31-28 to write

$$
\begin{equation*}
v_{C}(t)=\mathscr{E}(t)=\mathscr{E}_{m} \sin \omega_{d} t \tag{31-43}
\end{equation*}
$$

Then, substituting $\mathscr{E}_{m}=36.0 \mathrm{~V}$ and $\omega_{d}=2 \pi f_{d}=120 \pi$ into Eq. 31-43, we have

$$
v_{C}=(36.0 \mathrm{~V}) \sin (120 \pi t)
$$

(Answer)
(b) What are the current $i_{C}(t)$ in the circuit as a function of time and the amplitude I_{C} of $i_{C}(t)$?

KEY IDEA

In an ac circuit with a purely capacitive load, the alternating current $i_{C}(t)$ in the capacitance leads the alternating potential difference $v_{C}(t)$ by 90°; that is, the phase constant ϕ for the current is -90°, or $-\pi / 2 \mathrm{rad}$.
Calculations: Thus, we can write Eq. 31-29 as

$$
\begin{equation*}
i_{C}=I_{C} \sin \left(\omega_{d} t-\phi\right)=I_{C} \sin \left(\omega_{d} t+\pi / 2\right) \tag{31-44}
\end{equation*}
$$

We can find the amplitude I_{C} from Eq. 31-42 $\left(V_{C}=I_{C} X_{C}\right)$ if we first find the capacitive reactance X_{C}. From Eq. 31-39 ($X_{C}=1 / \omega_{d} C$), with $\omega_{d}=2 \pi f_{d}$, we can write

$$
\begin{aligned}
X_{C} & =\frac{1}{2 \pi f_{d} C}=\frac{1}{(2 \pi)(60.0 \mathrm{~Hz})\left(15.0 \times 10^{-6} \mathrm{~F}\right)} \\
& =177 \Omega
\end{aligned}
$$

Then Eq. 31-42 tells us that the current amplitude is

$$
I_{C}=\frac{V_{C}}{X_{C}}=\frac{36.0 \mathrm{~V}}{177 \Omega}=0.203 \mathrm{~A}
$$

(Answer)
Substituting this and $\omega_{d}=2 \pi f_{d}=120 \pi$ into Eq. 31-44, we have

$$
i_{C}=(0.203 \mathrm{~A}) \sin (120 \pi t+\pi / 2)
$$

(Answer)

Additional examples, video, and practice available at WileyPLUS

Fig. 31-12 An inductor is connected across an alternating-current generator.

An Inductive Load

Figure 31-12 shows a circuit containing an inductance and a generator with the alternating emf of Eq. 31-28. Using the loop rule and proceeding as we did to obtain Eq. 31-30, we find that the potential difference across the inductance is

$$
\begin{equation*}
v_{L}=V_{L} \sin \omega_{d} t \tag{31-45}
\end{equation*}
$$

where V_{L} is the amplitude of v_{L}. From Eq. $30-35\left(\mathscr{E}_{L}=-L d i / d t\right)$, we can write the potential difference across an inductance L in which the current is changing at the rate $d i_{L} / d t$ as

$$
\begin{equation*}
v_{L}=L \frac{d i_{L}}{d t} \tag{31-46}
\end{equation*}
$$

If we combine Eqs. 31-45 and 31-46, we have

$$
\begin{equation*}
\frac{d i_{L}}{d t}=\frac{V_{L}}{L} \sin \omega_{d} t \tag{31-47}
\end{equation*}
$$

Our concern, however, is with the current rather than with its time derivative. We find the former by integrating Eq. 31-47, obtaining

$$
\begin{equation*}
i_{L}=\int d i_{L}=\frac{V_{L}}{L} \int \sin \omega_{d} t d t=-\left(\frac{V_{L}}{\omega_{d} L}\right) \cos \omega_{d} t \tag{31-48}
\end{equation*}
$$

We now modify this equation in two ways. First, for reasons of symmetry of notation, we introduce the quantity X_{L}, called the inductive reactance of an
inductor, which is defined as

$$
\begin{equation*}
X_{L}=\omega_{d} L \quad \text { (inductive reactance). } \tag{31-49}
\end{equation*}
$$

The value of X_{L} depends on the driving angular frequency ω_{d}. The unit of the inductive time constant τ_{L} indicates that the SI unit of X_{L} is the ohm, just as it is for X_{C} and for R.

Second, we replace $-\cos \omega_{d} t$ in Eq. 31-48 with a phase-shifted sine:

$$
-\cos \omega_{d} t=\sin \left(\omega_{d} t-90^{\circ}\right)
$$

You can verify this identity by shifting a sine curve 90° in the positive direction.
With these two changes, Eq. 31-48 becomes

$$
\begin{equation*}
i_{L}=\left(\frac{V_{L}}{X_{L}}\right) \sin \left(\omega_{d} t-90^{\circ}\right) \tag{31-50}
\end{equation*}
$$

From Eq. 31-29, we can also write this current in the inductance as

$$
\begin{equation*}
i_{L}=I_{L} \sin \left(\omega_{d} t-\phi\right), \tag{31-51}
\end{equation*}
$$

where I_{L} is the amplitude of the current i_{L}. Comparing Eqs. 31-50 and 31-51, we see that for a purely inductive load the phase constant ϕ for the current is $+90^{\circ}$. We also see that the voltage amplitude and current amplitude are related by

$$
\begin{equation*}
V_{L}=I_{L} X_{L} \quad \text { (inductor) } \tag{31-52}
\end{equation*}
$$

Although we found this relation for the circuit of Fig. 31-12, it applies to any inductance in any ac circuit.

Comparison of Eqs. 31-45 and 31-50, or inspection of Fig. 31-13a, shows that the quantities i_{L} and v_{L} are 90° out of phase. In this case, however, i_{L} lags v_{L}; that is, monitoring the current i_{L} and the potential difference v_{L} in the circuit of Fig. 31-12 shows that i_{L} reaches its maximum value after v_{L} does, by one-quarter cycle.

The phasor diagram of Fig. 31-13b also contains this information. As the phasors rotate counterclockwise in the figure, the phasor labeled I_{L} does indeed lag that labeled V_{L}, and by an angle of 90°. Be sure to convince yourself that Fig. 31-13b represents Eqs. 31-45 and 31-50.

CHECKPOINT 5

If we increase the driving frequency in a circuit with a purely capacitive load, do (a) amplitude V_{C} and (b) amplitude I_{C} increase, decrease, or remain the same? If, instead, the circuit has a purely inductive load, do (c) amplitude V_{L} and (d) amplitude I_{L} increase, decrease, or remain the same?

Fig. 31-13 (a) The current in the inductor lags the voltage by 90° ($\left.=\pi / 2 \mathrm{rad}\right)$. (b) A phasor diagram shows the same thing.

Problem-Solving Tactics

Leading and Lagging in AC Circuits Table 31-2 summarizes the relations between the current i and the voltage v for each of the three kinds of circuit elements we have considered. When an applied alternating voltage produces an alternating current in these elements, the current is always in phase with the voltage across a resistor, always leads the voltage across a capacitor, and always lags the voltage across an inductor.

Many students remember these results with the mnemonic "ELI the ICE man." ELI contains the letter L (for inductor), and
in it the letter I (for current) comes after the letter E (for emf or voltage). Thus, for an inductor, the current lags (comes after) the voltage. Similarly ICE (which contains a C for capacitor) means that the current leads (comes before) the voltage. You might also use the modified mnemonic "ELI positively is the ICE man" to remember that the phase constant ϕ is positive for an inductor.

If you have difficulty in remembering whether X_{C} is equal to $\omega_{d} C$ (wrong) or $1 / \omega_{d} C$ (right), try remembering that C is in the "cellar"-that is, in the denominator.

Table 31-2
Phase and Amplitude Relations for Alternating Currents and Voltages

Circuit Element	Symbol	Resistance or Reactance	Phase of the Current	Phase Constant (or Angle) ϕ	Amplitude Relation
Resistor	R	R	In phase with v_{R}	$0^{\circ}(=0 \mathrm{rad})$	$V_{R}=I_{R} R$
Capacitor	C	$X_{C}=1 / \omega_{d} C$	Leads v_{C} by $90^{\circ}(=\pi / 2 \mathrm{rad})$	$-90^{\circ}(=-\pi / 2 \mathrm{rad})$	$V_{C}=I_{C} X_{C}$
Inductor	L	$X_{L}=\omega_{d} L$	Lags v_{L} by $90^{\circ}(=\pi / 2 \mathrm{rad})$	$+90^{\circ}(=+\pi / 2 \mathrm{rad})$	$V_{L}=I_{L} X_{L}$

Sample Problem

Purely inductive load: potential difference and current

In Fig. 31-12, inductance L is 230 mH and the sinusoidal alternating emf device operates at amplitude $\mathscr{E}_{m}=36.0 \mathrm{~V}$ and frequency $f_{d}=60.0 \mathrm{~Hz}$.
(a) What are the potential difference $v_{L}(t)$ across the inductance and the amplitude V_{L} of $v_{L}(t)$?

KEY IDEA

In a circuit with a purely inductive load, the potential difference $v_{L}(t)$ across the inductance is always equal to the potential difference $\mathscr{E}(t)$ across the emf device.

Calculations: Here we have $v_{L}(t)=\mathscr{E}(t)$ and $V_{L}=\mathscr{E}_{m}$. Since \mathscr{E}_{m} is given, we know that

$$
V_{L}=\mathscr{E}_{m}=36.0 \mathrm{~V}
$$

(Answer)
To find $v_{L}(t)$, we use Eq. 31-28 to write

$$
\begin{equation*}
v_{L}(t)=\mathscr{E}(t)=\mathscr{E}_{m} \sin \omega_{d} t \tag{31-53}
\end{equation*}
$$

Then, substituting $\mathscr{C}_{m}=36.0 \mathrm{~V}$ and $\omega_{d}=2 \pi f_{d}=120 \pi$ into Eq. 31-53, we have

$$
v_{L}=(36.0 \mathrm{~V}) \sin (120 \pi t)
$$

(Answer)
(b) What are the current $i_{L}(t)$ in the circuit as a function of time and the amplitude I_{L} of $i_{L}(t)$?

KEY IDEA

In an ac circuit with a purely inductive load, the alternating current $i_{L}(t)$ in the inductance lags the alternating potential difference $v_{L}(t)$ by 90°. (In the mnemonic of the problem-solving tactic, this circuit is "positively an $E L I$ circuit," which tells us that the emf E leads the current I and that ϕ is positive.)

Calculations: Because the phase constant ϕ for the current is $+90^{\circ}$, or $+\pi / 2$ rad, we can write Eq. 31-29 as

$$
\begin{equation*}
i_{L}=I_{L} \sin \left(\omega_{d} t-\phi\right)=I_{L} \sin \left(\omega_{d} t-\pi / 2\right) \tag{31-54}
\end{equation*}
$$

We can find the amplitude I_{L} from Eq. 31-52 $\left(V_{L}=I_{L} X_{L}\right)$ if we first find the inductive reactance X_{L}. From Eq. 31-49 $\left(X_{L}=\omega_{d} L\right)$, with $\omega_{d}=2 \pi f_{d}$, we can write

$$
\begin{aligned}
X_{L} & =2 \pi f_{d} L=(2 \pi)(60.0 \mathrm{~Hz})\left(230 \times 10^{-3} \mathrm{H}\right) \\
& =86.7 \Omega
\end{aligned}
$$

Then Eq. 31-52 tells us that the current amplitude is

$$
I_{L}=\frac{V_{L}}{X_{L}}=\frac{36.0 \mathrm{~V}}{86.7 \Omega}=0.415 \mathrm{~A}
$$

(Answer)
Substituting this and $\omega_{d}=2 \pi f_{d}=120 \pi$ into Eq. 31-54, we have

$$
i_{L}=(0.415 \mathrm{~A}) \sin (120 \pi t-\pi / 2)
$$

(Answer)

Additional examples, video, and practice available at WileyPLUS

31-9 The Series RLC Circuit

We are now ready to apply the alternating emf of Eq.31-28,

$$
\begin{equation*}
\mathscr{E}=\mathscr{E}_{m} \sin \omega_{d} t \quad(\text { applied emf }) \tag{31-55}
\end{equation*}
$$

to the full $R L C$ circuit of Fig. 31-7. Because R, L, and C are in series, the same current

$$
\begin{equation*}
i=I \sin \left(\omega_{d} t-\phi\right) \tag{31-56}
\end{equation*}
$$

is driven in all three of them. We wish to find the current amplitude I and the phase constant ϕ. The solution is simplified by the use of phasor diagrams.

The Current Amplitude

We start with Fig. 31-14a, which shows the phasor representing the current of Eq. 31-56 at an arbitrary time t. The length of the phasor is the current amplitude I, the projection of the phasor on the vertical axis is the current i at time t, and the angle of rotation of the phasor is the phase $\omega_{d} t-\phi$ of the current at time t.

Figure 31-14b shows the phasors representing the voltages across R, L, and C at the same time t. Each phasor is oriented relative to the angle of rotation of current phasor I in Fig. 31-14a, based on the information in Table 31-2:

Resistor: Here current and voltage are in phase; so the angle of rotation of voltage phasor V_{R} is the same as that of phasor I.
Capacitor: Here current leads voltage by 90°; so the angle of rotation of voltage phasor V_{C} is 90° less than that of phasor I.

Inductor: Here current lags voltage by 90°; so the angle of rotation of voltage phasor v_{L} is 90° greater than that of phasor I.

Figure 31-14b also shows the instantaneous voltages v_{R}, v_{C}, and $v_{L} \operatorname{across} R, C$, and L at time t; those voltages are the projections of the corresponding phasors on the vertical axis of the figure.

Figure $31-14 c$ shows the phasor representing the applied emf of Eq. 31-55. The length of the phasor is the emf amplitude \mathscr{E}_{m}, the projection of the phasor on the vertical axis is the emf \mathscr{E} at time t, and the angle of rotation of the phasor is the phase $\omega_{d} t$ of the emf at time t.

From the loop rule we know that at any instant the sum of the voltages v_{R}, v_{C}, and v_{L} is equal to the applied emf \mathscr{E} :

$$
\begin{equation*}
\mathscr{E}=v_{R}+v_{C}+v_{L} . \tag{31-57}
\end{equation*}
$$

Thus, at time t the projection \mathscr{E} in Fig. 31-14c is equal to the algebraic sum of the projections v_{R}, v_{C}, and v_{L} in Fig. 31-14b. In fact, as the phasors rotate together, this equality always holds. This means that phasor \mathscr{E}_{m} in Fig. 31-14c must be equal to the vector sum of the three voltage phasors V_{R}, V_{C}, and V_{L} in Fig. 31-14b.

That requirement is indicated in Fig. 31-14d, where phasor \mathscr{E}_{m} is drawn as the sum of phasors V_{R}, V_{L}, and V_{C}. Because phasors V_{L} and V_{C} have opposite directions in the figure, we simplify the vector sum by first combining V_{L} and V_{C} to form the single phasor $V_{L}-V_{C}$. Then we combine that single phasor with V_{R} to find the net phasor. Again, the net phasor must coincide with phasor \mathscr{E}_{m}, as shown.

Both triangles in Fig. 31-14d are right triangles. Applying the Pythagorean theorem to either one yields

$$
\begin{equation*}
\mathscr{E}_{m}^{2}=V_{R}^{2}+\left(V_{L}-V_{C}\right)^{2} \tag{31-58}
\end{equation*}
$$

From the voltage amplitude information displayed in the rightmost column of Table 31-2, we can rewrite this as

$$
\begin{equation*}
\mathscr{E}_{m}^{2}=(I R)^{2}+\left(I X_{L}-I X_{C}\right)^{2}, \tag{31-59}
\end{equation*}
$$

and then rearrange it to the form

$$
\begin{equation*}
I=\frac{\mathscr{C}_{m}}{\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}} \tag{31-60}
\end{equation*}
$$

The denominator in Eq. 31-60 is called the impedance Z of the circuit for the driving angular frequency ω_{d} :

$$
\begin{equation*}
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \quad \text { (impedance defined). } \tag{31-61}
\end{equation*}
$$

Fig. 31-14 (a) A phasor representing the alternating current in the driven $R L C$ circuit of Fig.31-7 at time t. The amplitude I, the instantaneous value i, and the phase $\left(\omega_{d} t-\phi\right)$ are shown. (b) Phasors representing the voltages across the inductor, resistor, and capacitor, oriented with respect to the current phasor in (a). (c) A phasor representing the alternating emf that drives the current of (a). (d) The emf phasor is equal to the vector sum of the three voltage phasors of (b).Here, voltage phasors V_{L} and V_{C} have been added vectorially to yield their net phasor $\left(V_{L}-V_{C}\right)$.

We can then write Eq. 31-60 as

$$
\begin{equation*}
I=\frac{\mathscr{C}_{m}}{Z} \tag{31-62}
\end{equation*}
$$

If we substitute for X_{C} and X_{L} from Eqs. 31-39 and 31-49, we can write Eq. 31-60 more explicitly as

$$
\begin{equation*}
I=\frac{\mathscr{C}_{m}}{\sqrt{R^{2}+\left(\omega_{d} L-1 / \omega_{d} C\right)^{2}}} \quad \text { (current amplitude). } \tag{31-63}
\end{equation*}
$$

We have now accomplished half our goal: We have obtained an expression for the current amplitude I in terms of the sinusoidal driving emf and the circuit elements in a series $R L C$ circuit.

The value of I depends on the difference between $\omega_{d} L$ and $1 / \omega_{d} C$ in Eq. 31-63 or, equivalently, the difference between X_{L} and X_{C} in Eq. 31-60. In either equation, it does not matter which of the two quantities is greater because the difference is always squared.

The current that we have been describing in this section is the steady-state current that occurs after the alternating emf has been applied for some time. When the emf is first applied to a circuit, a brief transient current occurs. Its duration (before settling down into the steady-state current) is determined by the time constants $\tau_{L}=L / R$ and $\tau_{C}=R C$ as the inductive and capacitive elements "turn on." This transient current can, for example, destroy a motor on start-up if it is not properly taken into account in the motor's circuit design.

The Phase Constant

From the right-hand phasor triangle in Fig. 31-14d and from Table 31-2 we can write

$$
\begin{equation*}
\tan \phi=\frac{V_{L}-V_{C}}{V_{R}}=\frac{I X_{L}-I X_{C}}{I R} \tag{31-64}
\end{equation*}
$$

which gives us

$$
\begin{equation*}
\tan \phi=\frac{X_{L}-X_{C}}{R} \quad \text { (phase constant). } \tag{31-65}
\end{equation*}
$$

This is the other half of our goal: an equation for the phase constant ϕ in the sinusoidally driven series $R L C$ circuit of Fig. 31-7. In essence, it gives us three different results for the phase constant, depending on the relative values of the reactances X_{L} and X_{C} :
$\boldsymbol{X}_{\boldsymbol{L}}>\boldsymbol{X}_{\boldsymbol{C}}$: The circuit is said to be more inductive than capacitive. Equation 31-65 tells us that ϕ is positive for such a circuit, which means that phasor I rotates behind phasor \mathscr{E}_{m} (Fig. 31-15a). A plot of \mathscr{E} and i versus time is like that in Fig. 31-15b. (Figures 31-14c and d were drawn assuming $X_{L}>X_{C}$.)
$\boldsymbol{X}_{\boldsymbol{C}}>\boldsymbol{X}_{\boldsymbol{L}}:$ The circuit is said to be more capacitive than inductive. Equation 31-65 tells us that ϕ is negative for such a circuit, which means that phasor I rotates ahead of phasor \mathscr{E}_{m} (Fig. 31-15c). A plot of \mathscr{E} and i versus time is like that in Fig. 31-15d.
$\boldsymbol{X}_{\boldsymbol{C}}=\boldsymbol{X}_{\boldsymbol{L}}:$ The circuit is said to be in resonance, a state that is discussed next. Equation 31-65 tells us that $\phi=0^{\circ}$ for such a circuit, which means that phasors \mathscr{E}_{m} and I rotate together (Fig.31-15e). A plot of \mathscr{E} and i versus time is like that in Fig. 31-15f.
As illustration, let us reconsider two extreme circuits: In the purely inductive circuit of Fig. 31-12, where X_{L} is nonzero and $X_{C}=R=0$, Eq. 31-65 tells us that the circuit's phase constant is $\phi=+90^{\circ}$ (the greatest value of ϕ), consistent with Fig. 31-13b. In the purely capacitive circuit of Fig. 31-10, where X_{C} is nonzero and $X_{L}=R=0$, Eq. 31-65 tells us that the circuit's phase constant is $\phi=-90^{\circ}$ (the least value of ϕ), consistent with Fig. 31-11b.

Fig. 31-15 Phasor diagrams and graphs of the alternating emf \mathscr{E} and current i for the driven $R L C$ circuit of Fig. 31-7. In the phasor diagram of (a) and the graph of (b), the current i lags the driving emf \mathscr{E} and the current's phase constant ϕ is positive. In (c) and (d), the current i leads the driving $\operatorname{emf}_{\mathscr{E}}$ and its phase constant ϕ is negative. In (e) and (f), the current i is in phase with the driving emf \mathscr{E} and its phase constant ϕ is zero.

Resonance

Equation 31-63 gives the current amplitude I in an $R L C$ circuit as a function of the driving angular frequency ω_{d} of the external alternating emf. For a given resistance R, that amplitude is a maximum when the quantity $\omega_{d} L-1 / \omega_{d} C$ in the denominator is zero-that is, when
or

$$
\begin{gather*}
\omega_{d} L=\frac{1}{\omega_{d} C} \\
\omega_{d}=\frac{1}{\sqrt{L C}} \quad(\text { maximum } I) . \tag{31-66}
\end{gather*}
$$

Because the natural angular frequency ω of the $R L C$ circuit is also equal to $1 / \sqrt{L C}$, the maximum value of I occurs when the driving angular frequency matches the natural angular frequency - that is, at resonance. Thus, in an $R L C$ circuit, resonance and maximum current amplitude I occur when

$$
\begin{equation*}
\omega_{d}=\omega=\frac{1}{\sqrt{L C}} \quad \text { (resonance). } \tag{31-67}
\end{equation*}
$$

Figure 31-16 shows three resonance curves for sinusoidally driven oscillations in three series $R L C$ circuits differing only in R. Each curve peaks at its maximum current amplitude I when the ratio ω_{d} / ω is 1.00 , but the maximum value of I decreases with increasing R. (The maximum I is always \mathscr{E}_{m} / R; to see why, combine Eqs. 31-61 and 31-62.) In addition, the curves increase in width (measured in Fig. 31-16 at half the maximum value of I) with increasing R.

To make physical sense of Fig. 31-16, consider how the reactances X_{L} and X_{C} change as we increase the driving angular frequency ω_{d}, starting with a value

(d)

Fig. 31-16 Resonance curves for the driven $R L C$ circuit of Fig. 31-7 with $L=$ $100 \mu \mathrm{H}, C=100 \mathrm{pF}$, and three values of R. The current amplitude I of the alternating current depends on how close the driving angular frequency ω_{d} is to the natural angular frequency ω. The horizontal arrow on each curve measures the curve's half-width, which is the width at the half-maximum level and is a measure of the sharpness of the resonance. To the left of $\omega_{d} / \omega=1.00$, the circuit is mainly capacitive, with $X_{C}>X_{L}$; to the right, it is mainly inductive, with $X_{L}>X_{C}$.

Driving ω_{d} equal to natural ω

- high current amplitude
- circuit is in resonance
- equally capacitive and inductive
- X_{C} equals X_{L}
- current and emf in phase
- zero ϕ

Low driving ω_{d}

- low current amplitude
- ICE side of the curve
- more capacitive
- X_{C} is greater
- current leads emf
- negative ϕ

High driving ω_{d}

- low current amplitude
- ELI side of the curve
- more inductive
- X_{L} is greater
- current lags emf
- positive ϕ

much less than the natural frequency ω. For small ω_{d}, reactance $X_{L}\left(=\omega_{d} L\right)$ is small and reactance $X_{C}\left(=1 / \omega_{d} C\right)$ is large. Thus, the circuit is mainly capacitive and the impedance is dominated by the large X_{C}, which keeps the current low.

As we increase ω_{d}, reactance X_{C} remains dominant but decreases while reactance X_{L} increases. The decrease in X_{C} decreases the impedance, allowing the current to increase, as we see on the left side of any resonance curve in Fig. 31-16. When the increasing X_{L} and the decreasing X_{C} reach equal values, the current is greatest and the circuit is in resonance, with $\omega_{d}=\omega$.

As we continue to increase ω_{d}, the increasing reactance X_{L} becomes progressively more dominant over the decreasing reactance X_{C}. The impedance increases because of X_{L} and the current decreases, as on the right side of any resonance curve in Fig. 31-16. In summary, then: The low-angular-frequency side of a resonance curve is dominated by the capacitor's reactance, the high-angularfrequency side is dominated by the inductor's reactance, and resonance occurs in the middle.

CHECKPOINT 6

Here are the capacitive reactance and inductive reactance, respectively, for three sinusoidally driven series $R L C$ circuits: (1) $50 \Omega, 100 \Omega$; (2) $100 \Omega, 50 \Omega$; (3) $50 \Omega, 50 \Omega$. (a) For each, does the current lead or lag the applied emf, or are the two in phase? (b) Which circuit is in resonance?

Sample Problem

Current amplitude, impedance, and phase constant

In Fig. 31-7, let $R=200 \Omega, C=15.0 \mu \mathrm{~F}, L=230 \mathrm{mH}$, $f_{d}=60.0 \mathrm{~Hz}$, and $\mathscr{E}_{m}=36.0 \mathrm{~V}$. (These parameters are those used in the earlier sample problems above.)
(a) What is the current amplitude I ?

KEY IDEA

The current amplitude I depends on the amplitude \mathscr{E}_{m} of the driving emf and on the impedance Z of the circuit, according to Eq. 31-62 $\left(I=\mathscr{E}_{m} / Z\right)$.

Calculations: So, we need to find Z, which depends on resistance R, capacitive reactance X_{C}, and inductive reactance X_{L}. The circuit's resistance is the given resistance R. Its capacitive reactance is due to the given capacitance and, from an earlier sample problem, $X_{C}=177 \Omega$. Its inductive reactance is due to the given inductance and, from another sample problem, $X_{L}=86.7 \Omega$. Thus, the circuit's impedance is

$$
\begin{aligned}
Z & =\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \\
& =\sqrt{(200 \Omega)^{2}+(86.7 \Omega-177 \Omega)^{2}} \\
& =219 \Omega
\end{aligned}
$$

We then find

$$
I=\frac{\mathscr{C}_{m}}{Z}=\frac{36.0 \mathrm{~V}}{219 \Omega}=0.164 \mathrm{~A} .
$$

(Answer)
(b) What is the phase constant ϕ of the current in the circuit relative to the driving emf?

KEY IDEA

The phase constant depends on the inductive reactance, the capacitive reactance, and the resistance of the circuit, according to Eq. 31-65.

Calculation: Solving Eq. 31-65 for ϕ leads to

$$
\begin{aligned}
\phi & =\tan ^{-1} \frac{X_{L}-X_{C}}{R}=\tan ^{-1} \frac{86.7 \Omega-177 \Omega}{200 \Omega} \\
& =-24.3^{\circ}=-0.424 \mathrm{rad} .
\end{aligned}
$$

(Answer)
The negative phase constant is consistent with the fact that the load is mainly capacitive; that is, $X_{C}>X_{L}$. In the common mnemonic for driven series $R L C$ circuits, this circuit is an ICE circuit - the current leads the driving emf.

Additional examples, video, and practice available at WileyPLUS

31-10 Power in Alternating-Current Circuits

In the RLC circuit of Fig. 31-7, the source of energy is the alternating-current generator. Some of the energy that it provides is stored in the electric field in the capacitor, some is stored in the magnetic field in the inductor, and some is dissipated as thermal energy in the resistor. In steady-state operation, the average stored energy remains constant. The net transfer of energy is thus from the generator to the resistor, where energy is dissipated.

The instantaneous rate at which energy is dissipated in the resistor can be written, with the help of Eqs. 26-27 and 31-29, as

$$
\begin{equation*}
P=i^{2} R=\left[I \sin \left(\omega_{d} t-\phi\right)\right]^{2} R=I^{2} R \sin ^{2}\left(\omega_{d} t-\phi\right) . \tag{31-68}
\end{equation*}
$$

The average rate at which energy is dissipated in the resistor, however, is the average of Eq. 31-68 over time. Over one complete cycle, the average value of $\sin \theta$, where θ is any variable, is zero (Fig. 31-17a) but the average value of $\sin ^{2} \theta$ is $\frac{1}{2}$ (Fig. 31-17b). (Note in Fig. 31-17b how the shaded areas under the curve but above the horizontal line marked $+\frac{1}{2}$ exactly fill in the unshaded spaces below that line.) Thus, we can write, from Eq. 31-68,

$$
\begin{equation*}
P_{\mathrm{avg}}=\frac{I^{2} R}{2}=\left(\frac{I}{\sqrt{2}}\right)^{2} R . \tag{31-69}
\end{equation*}
$$

The quantity $I / \sqrt{2}$ is called the root-mean-square, or rms, value of the current i :

$$
\begin{equation*}
I_{\mathrm{rms}}=\frac{I}{\sqrt{2}} \quad(\text { rms current }) \tag{31-70}
\end{equation*}
$$

Fig. 31-17 (a) A plot of $\sin \theta$ versus θ. The average value over one cycle is zero. (b) A plot of $\sin ^{2} \theta$ versus θ. The average value over one cycle is $\frac{1}{2}$.

We can now rewrite Eq. 31-69 as

$$
\begin{equation*}
P_{\mathrm{avg}}=I_{\mathrm{rms}}^{2} R \quad \text { (average power). } \tag{31-71}
\end{equation*}
$$

Equation 31-71 looks much like Eq. 26-27 $\left(P=i^{2} R\right)$; the message is that if we switch to the rms current, we can compute the average rate of energy dissipation for alternating-current circuits just as for direct-current circuits.

We can also define rms values of voltages and emfs for alternating-current circuits:

$$
\begin{equation*}
\left.V_{\mathrm{rms}}=\frac{V}{\sqrt{2}} \quad \text { and } \quad \mathscr{E}_{\mathrm{rms}}=\frac{\mathscr{E}_{m}}{\sqrt{2}} \quad \text { (rms voltage; } \mathrm{rms} \text { emf }\right) \tag{31-72}
\end{equation*}
$$

Alternating-current instruments, such as ammeters and voltmeters, are usually calibrated to read $I_{\text {rms }}, V_{\text {rms }}$, and $\mathscr{E}_{\text {rms }}$. Thus, if you plug an alternating-current voltmeter into a household electrical outlet and it reads 120 V , that is an rms voltage. The maximum value of the potential difference at the outlet is $\sqrt{2} \times(120 \mathrm{~V})$, or 170 V .

Because the proportionality factor $1 / \sqrt{2}$ in Eqs. 31-70 and 31-72 is the same for all three variables, we can write Eqs. 31-62 and 31-60 as

$$
\begin{equation*}
I_{\mathrm{rms}}=\frac{\mathscr{E}_{\mathrm{rms}}}{Z}=\frac{\mathscr{E}_{\mathrm{rms}}}{\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}} \tag{31-73}
\end{equation*}
$$

and, indeed, this is the form that we almost always use.
We can use the relationship $I_{\text {rms }}=\mathscr{E}_{\text {rms }} / Z$ to recast Eq. 31-71 in a useful equivalent way. We write

$$
\begin{equation*}
P_{\mathrm{avg}}=\frac{\mathscr{E}_{\mathrm{rms}}}{Z} I_{\mathrm{rms}} R=\mathscr{E}_{\mathrm{rms}} I_{\mathrm{rms}} \frac{R}{Z} \tag{31-74}
\end{equation*}
$$

From Fig. 31-14d, Table 31-2, and Eq. 31-62, however, we see that R / Z is just the cosine of the phase constant ϕ :

$$
\begin{equation*}
\cos \phi=\frac{V_{R}}{\mathscr{C}_{m}}=\frac{I R}{I Z}=\frac{R}{Z} \tag{31-75}
\end{equation*}
$$

Equation 31-74 then becomes

$$
\begin{equation*}
P_{\mathrm{avg}}=\mathscr{E}_{\mathrm{rms}} I_{\mathrm{rms}} \cos \phi \quad \text { (average power) } \tag{31-76}
\end{equation*}
$$

in which the term $\cos \phi$ is called the power factor. Because $\cos \phi=\cos (-\phi)$, Eq. 31-76 is independent of the sign of the phase constant ϕ.

To maximize the rate at which energy is supplied to a resistive load in an $R L C$ circuit, we should keep the power factor $\cos \phi$ as close to unity as possible. This is equivalent to keeping the phase constant ϕ in Eq. 31-29 as close to zero as possible. If, for example, the circuit is highly inductive, it can be made less so by putting more capacitance in the circuit, connected in series. (Recall that putting an additional capacitance into a series of capacitances decreases the equivalent capacitance $C_{\text {eq }}$ of the series.) Thus, the resulting decrease in $C_{\text {eq }}$ in the circuit reduces the phase constant and increases the power factor in Eq. 31-76. Power companies place series-connected capacitors throughout their transmission systems to get these results.

CHECKPOINT 7

(a) If the current in a sinusoidally driven series $R L C$ circuit leads the emf, would we increase or decrease the capacitance to increase the rate at which energy is supplied to the resistance? (b) Would this change bring the resonant angular frequency of the circuit closer to the angular frequency of the emf or put it farther away?

Sample Problem

Driven RLC circuit: power factor and average power

A series $R L C$ circuit, driven with $\mathscr{E}_{\mathrm{rms}}=120 \mathrm{~V}$ at frequency $f_{d}=60.0 \mathrm{~Hz}$, contains a resistance $R=200 \Omega$, an inductance with inductive reactance $X_{L}=80.0 \Omega$, and a capacitance with capacitive reactance $X_{C}=150 \Omega$.
(a) What are the power factor $\cos \phi$ and phase constant ϕ of the circuit?

KEY IDEA

The power factor $\cos \phi$ can be found from the resistance R and impedance Z via Eq. 31-75 ($\cos \phi=R / Z$).

Calculations: To calculate Z, we use Eq. 31-61:

$$
\begin{aligned}
Z & =\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \\
& =\sqrt{(200 \Omega)^{2}+(80.0 \Omega-150 \Omega)^{2}}=211.90 \Omega
\end{aligned}
$$

Equation 31-75 then gives us

$$
\cos \phi=\frac{R}{Z}=\frac{200 \Omega}{211.90 \Omega}=0.9438 \approx 0.944 . \quad \text { (Answer) }
$$

Taking the inverse cosine then yields

$$
\phi=\cos ^{-1} 0.944= \pm 19.3^{\circ} .
$$

Both $+19.3^{\circ}$ and -19.3° have a cosine of 0.944 . To determine which sign is correct, we must consider whether the current leads or lags the driving emf. Because $X_{C}>X_{L}$, this circuit is mainly capacitive, with the current leading the emf. Thus, ϕ must be negative:

$$
\phi=-19.3^{\circ} .
$$

(Answer)
We could, instead, have found ϕ with Eq. 31-65. A calculator would then have given us the answer with the minus sign.
(b) What is the average rate $P_{\text {avg }}$ at which energy is dissipated in the resistance?

KEY IDEAS

There are two ways and two ideas to use: (1) Because the circuit is assumed to be in steady-state operation, the rate at which energy is dissipated in the resistance is equal to the rate at which energy is supplied to the circuit, as given by Eq. $31-76\left(P_{\text {avg }}=\mathscr{E}_{\mathrm{rms}} I_{\mathrm{rms}} \cos \phi\right)$. (2) The rate at which energy is dissipated in a resistance R depends on the square of the rms current I_{rms} through it, according to Eq. 31-71 ($P_{\mathrm{avg}}=I_{\mathrm{rms}}^{2} R$).

First way: We are given the rms driving emf $\mathscr{E}_{\text {rms }}$ and we already know $\cos \phi$ from part (a). The rms current $I_{\text {rms }}$ is determined by the rms value of the driving emf and the
circuit's impedance Z (which we know), according to Eq. 31-73:

$$
I_{\mathrm{rms}}=\frac{\mathscr{C}_{\mathrm{rms}}}{Z}
$$

Substituting this into Eq. 31-76 then leads to

$$
\begin{aligned}
P_{\text {avg }} & =\mathscr{E}_{\mathrm{rms}} I_{\mathrm{rms}} \cos \phi=\frac{\mathscr{E}_{\mathrm{rms}}^{2}}{Z} \cos \phi \\
& =\frac{(120 \mathrm{~V})^{2}}{211.90 \Omega}(0.9438)=64.1 \mathrm{~W} .
\end{aligned}
$$

(Answer)

Second way: Instead, we can write

$$
\begin{aligned}
P_{\mathrm{avg}} & =I_{\mathrm{rms}}^{2} R=\frac{\mathscr{C}_{\mathrm{rms}}^{2}}{Z^{2}} R \\
& =\frac{(120 \mathrm{~V})^{2}}{(211.90 \Omega)^{2}}(200 \Omega)=64.1 \mathrm{~W}
\end{aligned}
$$

(Answer)
(c) What new capacitance $C_{\text {new }}$ is needed to maximize $P_{\text {avg }}$ if the other parameters of the circuit are not changed?

KEY IDEAS

(1) The average rate $P_{\text {avg }}$ at which energy is supplied and dissipated is maximized if the circuit is brought into resonance with the driving emf. (2) Resonance occurs when $X_{C}=X_{L}$.

Calculations: From the given data, we have $X_{C}>X_{L}$. Thus, we must decrease X_{C} to reach resonance. From Eq. 31-39 $\left(X_{C}=1 / \omega_{d} C\right)$, we see that this means we must increase C to the new value $C_{\text {new }}$.

Using Eq. 31-39, we can write the resonance condition $X_{C}=X_{L}$ as

$$
\frac{1}{\omega_{d} C_{\text {new }}}=X_{L} .
$$

Substituting $2 \pi f_{d}$ for ω_{d} (because we are given f_{d} and not ω_{d}) and then solving for $C_{\text {new }}$, we find

$$
\begin{aligned}
C_{\text {new }} & =\frac{1}{2 \pi f_{d} X_{L}}=\frac{1}{(2 \pi)(60 \mathrm{~Hz})(80.0 \Omega)} \\
& =3.32 \times 10^{-5} \mathrm{~F}=33.2 \mu \mathrm{~F} .
\end{aligned}
$$

(Answer)
Following the procedure of part (b), you can show that with $C_{\text {new }}$, the average power of energy dissipation $P_{\text {avg }}$ would then be at its maximum value of

$$
P_{\mathrm{avg}, \max }=72.0 \mathrm{~W} .
$$

Fig. 31-18 An ideal transformer (two coils wound on an iron core) in a basic transformer circuit. An ac generator produces current in the coil at the left (the primary). The coil at the right (the secondary) is connected to the resistive load R when switch S is closed.

31-11 Transformers

Energy Transmission Requirements

When an ac circuit has only a resistive load, the power factor in Eq. 31-76 is $\cos 0^{\circ}=1$ and the applied rms emf $\mathscr{E}_{\mathrm{rms}}$ is equal to the rms voltage V_{rms} across the load. Thus, with an rms current I_{rms} in the load, energy is supplied and dissipated at the average rate of

$$
\begin{equation*}
P_{\text {avg }}=\mathscr{E} I=I V \text {. } \tag{31-77}
\end{equation*}
$$

(In Eq. 31-77 and the rest of this section, we follow conventional practice and drop the subscripts identifying rms quantities. Engineers and scientists assume that all time-varying currents and voltages are reported as rms values; that is what the meters read.) Equation 31-77 tells us that, to satisfy a given power requirement, we have a range of choices for I and V, provided only that the product $I V$ is as required.

In electrical power distribution systems it is desirable for reasons of safety and for efficient equipment design to deal with relatively low voltages at both the generating end (the electrical power plant) and the receiving end (the home or factory). Nobody wants an electric toaster or a child's electric train to operate at, say, 10 kV . On the other hand, in the transmission of electrical energy from the generating plant to the consumer, we want the lowest practical current (hence the largest practical voltage) to minimize $I^{2} R$ losses (often called ohmic losses) in the transmission line.

As an example, consider the 735 kV line used to transmit electrical energy from the La Grande 2 hydroelectric plant in Quebec to Montreal, 1000 km away. Suppose that the current is 500 A and the power factor is close to unity. Then from Eq. 31-77, energy is supplied at the average rate

$$
P_{\text {avg }}=\mathscr{E} I=\left(7.35 \times 10^{5} \mathrm{~V}\right)(500 \mathrm{~A})=368 \mathrm{MW}
$$

The resistance of the transmission line is about $0.220 \Omega / \mathrm{km}$; thus, there is a total resistance of about 220Ω for the 1000 km stretch. Energy is dissipated due to that resistance at a rate of about

$$
P_{\mathrm{avg}}=I^{2} R=(500 \mathrm{~A})^{2}(220 \Omega)=55.0 \mathrm{MW}
$$

which is nearly 15% of the supply rate.
Imagine what would happen if we doubled the current and halved the voltage. Energy would be supplied by the plant at the same average rate of 368 MW as previously, but now energy would be dissipated at the rate of about

$$
P_{\mathrm{avg}}=I^{2} R=(1000 \mathrm{~A})^{2}(220 \Omega)=220 \mathrm{MW}
$$

which is almost 60% of the supply rate. Hence the general energy transmission rule: Transmit at the highest possible voltage and the lowest possible current.

The Ideal Transformer

The transmission rule leads to a fundamental mismatch between the requirement for efficient high-voltage transmission and the need for safe low-voltage generation and consumption. We need a device with which we can raise (for transmission) and lower (for use) the ac voltage in a circuit, keeping the product current \times voltage essentially constant. The transformer is such a device. It has no moving parts, operates by Faraday's law of induction, and has no simple direct-current counterpart.

The ideal transformer in Fig. 31-18 consists of two coils, with different numbers of turns, wound around an iron core. (The coils are insulated from the core.) In use, the primary winding, of N_{p} turns, is connected to an alternating-current generator whose $\mathrm{emf}_{\mathscr{E}}$ at any time t is given by

$$
\begin{equation*}
\mathscr{E}=\mathscr{E}_{m} \sin \omega t . \tag{31-78}
\end{equation*}
$$

The secondary winding, of N_{s} turns, is connected to load resistance R, but its
circuit is an open circuit as long as switch S is open (which we assume for the present). Thus, there can be no current through the secondary coil. We assume further for this ideal transformer that the resistances of the primary and secondary windings are negligible. Well-designed, high-capacity transformers can have energy losses as low as 1%; so our assumptions are reasonable.

For the assumed conditions, the primary winding (or primary) is a pure inductance and the primary circuit is like that in Fig. 31-12. Thus, the (very small) primary current, also called the magnetizing current $I_{\text {mag }}$, lags the primary voltage V_{p} by 90°; the primary's power factor ($=\cos \phi$ in Eq. 31-76) is zero; so no power is delivered from the generator to the transformer.

However, the small sinusoidally changing primary current $I_{\text {mag }}$ produces a sinusoidally changing magnetic flux Φ_{B} in the iron core. The core acts to strengthen the flux and to bring it through the secondary winding (or secondary). Because Φ_{B} varies, it induces an emf $\mathscr{E}_{\text {turn }}\left(=d \Phi_{B} / d t\right)$ in each turn of the secondary. In fact, this emf per turn $\mathscr{E}_{\text {turn }}$ is the same in the primary and the secondary. Across the primary, the voltage V_{p} is the product of $\mathscr{E}_{\text {turn }}$ and the number of turns N_{p}; that is, $V_{p}=\mathscr{E}_{\text {turn }} N_{p}$. Similarly, across the secondary the voltage is $V_{s}=\mathscr{C}_{\text {turn }} N_{s}$. Thus, we can write

$$
\mathscr{E}_{\mathrm{turn}}=\frac{V_{p}}{N_{p}}=\frac{V_{s}}{N_{s}},
$$

or

$$
\begin{equation*}
V_{s}=V_{p} \frac{N_{s}}{N_{p}} \quad \text { (transformation of voltage). } \tag{31-79}
\end{equation*}
$$

If $N_{s}>N_{p}$, the device is a step-up transformer because it steps the primary's voltage $V_{p} u p$ to a higher voltage V_{s}. Similarly, if $N_{s}<N_{p}$, it is a step-down transformer.

With switch S open, no energy is transferred from the generator to the rest of the circuit, but when we close S to connect the secondary to the resistive load R, energy is transferred. (In general, the load would also contain inductive and capacitive elements, but here we consider just resistance R.) Here is the process:

1. An alternating current I_{s} appears in the secondary circuit, with corresponding energy dissipation rate $I_{s}^{2} R\left(=V_{s}^{2} / R\right)$ in the resistive load.
2. This current produces its own alternating magnetic flux in the iron core, and this flux induces an opposing emf in the primary windings.
3. The voltage V_{p} of the primary, however, cannot change in response to this opposing emf because it must always be equal to the emf \mathscr{E} that is provided by the generator; closing switch S cannot change this fact.
4. To maintain V_{p}, the generator now produces (in addition to $I_{\text {mag }}$) an alternating current I_{p} in the primary circuit; the magnitude and phase constant of I_{p} are just those required for the emf induced by I_{p} in the primary to exactly cancel the emf induced there by I_{s}. Because the phase constant of I_{p} is not 90° like that of $I_{\text {mag }}$, this current I_{p} can transfer energy to the primary.
We want to relate I_{s} to I_{p}. However, rather than analyze the foregoing complex process in detail, let us just apply the principle of conservation of energy. The rate at which the generator transfers energy to the primary is equal to $I_{p} V_{p}$. The rate at which the primary then transfers energy to the secondary (via the alternating magnetic field linking the two coils) is $I_{s} V_{s}$. Because we assume that no energy is lost along the way, conservation of energy requires that

$$
I_{p} V_{p}=I_{s} V_{s} .
$$

Substituting for V_{s} from Eq. 31-79, we find that

$$
\begin{equation*}
I_{s}=I_{p} \frac{N_{p}}{N_{s}} \quad \text { (transformation of currents). } \tag{31-80}
\end{equation*}
$$

CHECKPOINT 8

An alternating-current emf device in a certain circuit has a smaller resistance than that of the resistive load in the circuit; to increase the transfer of energy from the device to the load, a transformer will be connected between the two. (a) Should N_{s} be greater than or less than N_{p} ? (b) Will that make it a step-up or step-down transformer?

This equation tells us that the current I_{s} in the secondary can differ from the current I_{p} in the primary, depending on the turns ratio N_{p} / N_{s}.

Current I_{p} appears in the primary circuit because of the resistive load R in the secondary circuit. To find I_{p}, we substitute $I_{s}=V_{s} / R$ into Eq. 31-80 and then we substitute for V_{s} from Eq. 31-79. We find

$$
\begin{equation*}
I_{p}=\frac{1}{R}\left(\frac{N_{s}}{N_{p}}\right)^{2} V_{p} \tag{31-81}
\end{equation*}
$$

This equation has the form $I_{p}=V_{p} / R_{\text {eq }}$, where equivalent resistance $R_{\text {eq }}$ is

$$
\begin{equation*}
R_{\mathrm{eq}}=\left(\frac{N_{p}}{N_{s}}\right)^{2} R \tag{31-82}
\end{equation*}
$$

This R_{eq} is the value of the load resistance as "seen" by the generator; the generator produces the current I_{p} and voltage V_{p} as if the generator were connected to a resistance $R_{\text {eq }}$.

Impedance Matching

Equation 31-82 suggests still another function for the transformer. For maximum transfer of energy from an emf device to a resistive load, the resistance of the emf device must equal the resistance of the load. The same relation holds for ac circuits except that the impedance (rather than just the resistance) of the generator must equal that of the load. Often this condition is not met. For example, in a music-playing system, the amplifier has high impedance and the speaker set has low impedance. We can match the impedances of the two devices by coupling them through a transformer that has a suitable turns ratio N_{p} / N_{s}.

Sample Problem

Transformer: turns ratio, average power, rms currents

A transformer on a utility pole operates at $V_{p}=8.5 \mathrm{kV}$ on the primary side and supplies electrical energy to a number of nearby houses at $V_{s}=120 \mathrm{~V}$, both quantities being rms values. Assume an ideal step-down transformer, a purely resistive load, and a power factor of unity.
(a) What is the turns ratio N_{p} / N_{s} of the transformer?

KEY IDEA

The turns ratio N_{p} / N_{s} is related to the (given) rms primary and secondary voltages via Eq. 31-79 $\left(V_{s}=V_{p} N_{s} / N_{p}\right)$.

Calculation: We can write Eq. 31-79 as

$$
\begin{equation*}
\frac{V_{s}}{V_{p}}=\frac{N_{s}}{N_{p}} . \tag{31-83}
\end{equation*}
$$

(Note that the right side of this equation is the inverse of the turns ratio.) Inverting both sides of Eq. 31-83 gives us

$$
\frac{N_{p}}{N_{s}}=\frac{V_{p}}{V_{s}}=\frac{8.5 \times 10^{3} \mathrm{~V}}{120 \mathrm{~V}}=70.83 \approx 71
$$

(Answer)
(b) The average rate of energy consumption (or dissipation) in the houses served by the transformer is 78 kW . What
are the rms currents in the primary and secondary of the transformer?

KEY IDEA

For a purely resistive load, the power factor $\cos \phi$ is unity; thus, the average rate at which energy is supplied and dissipated is given by Eq. 31-77 $\left(P_{\text {avg }}=\mathscr{E} I=I V\right)$.

Calculations: In the primary circuit, with $V_{p}=8.5 \mathrm{kV}$, Eq. 31-77 yields

$$
I_{p}=\frac{P_{\mathrm{avg}}}{V_{p}}=\frac{78 \times 10^{3} \mathrm{~W}}{8.5 \times 10^{3} \mathrm{~V}}=9.176 \mathrm{~A} \approx 9.2 \mathrm{~A}
$$

(Answer)
Similarly, in the secondary circuit,

$$
I_{s}=\frac{P_{\text {avg }}}{V_{s}}=\frac{78 \times 10^{3} \mathrm{~W}}{120 \mathrm{~V}}=650 \mathrm{~A}
$$

(Answer)

You can check that $I_{s}=I_{p}\left(N_{p} / N_{s}\right)$ as required by Eq. 31-80.
(c) What is the resistive load R_{s} in the secondary circuit? What is the corresponding resistive load R_{p} in the primary circuit?

One way: We can use $V=I R$ to relate the resistive load to the rms voltage and current. For the secondary circuit, we find

$$
R_{s}=\frac{V_{s}}{I_{s}}=\frac{120 \mathrm{~V}}{650 \mathrm{~A}}=0.1846 \Omega \approx 0.18 \Omega
$$

(Answer)
Similarly, for the primary circuit we find

$$
R_{p}=\frac{V_{p}}{I_{p}}=\frac{8.5 \times 10^{3} \mathrm{~V}}{9.176 \mathrm{~A}}=926 \Omega \approx 930 \Omega . \quad \text { (Answer) }
$$

Second way: We use the fact that R_{p} equals the equivalent resistive load "seen" from the primary side of the transformer, which is a resistance modified by the turns ratio and given by Eq. 31-82 $\left(R_{\text {eq }}=\left(N_{p} / N_{s}\right)^{2} R\right)$. If we substitute R_{p} for $R_{\text {eq }}$ and R_{s} for R, that equation yields

$$
\begin{aligned}
R_{p} & =\left(\frac{N_{p}}{N_{s}}\right)^{2} R_{s}=(70.83)^{2}(0.1846 \Omega) \\
& =926 \Omega \approx 930 \Omega
\end{aligned}
$$

(Answer)

PLUS Additional examples, video, and practice available at WileyPLUS

REVIEW \& SUMMARY

LC Energy Transfers In an oscillating $L C$ circuit, energy is shuttled periodically between the electric field of the capacitor and the magnetic field of the inductor; instantaneous values of the two forms of energy are

$$
\begin{equation*}
U_{E}=\frac{q^{2}}{2 C} \quad \text { and } \quad U_{B}=\frac{L i^{2}}{2} \tag{31-1,31-2}
\end{equation*}
$$

where q is the instantaneous charge on the capacitor and i is the instantaneous current through the inductor. The total energy $U\left(=U_{E}+U_{B}\right)$ remains constant.

LC Charge and Current Oscillations The principle of conservation of energy leads to

$$
\begin{equation*}
L \frac{d^{2} q}{d t^{2}}+\frac{1}{C} q=0 \quad(L C \text { oscillations }) \tag{31-11}
\end{equation*}
$$

as the differential equation of $L C$ oscillations (with no resistance). The solution of Eq. 31-11 is

$$
\begin{equation*}
q=Q \cos (\omega t+\phi) \quad \text { (charge) } \tag{31-12}
\end{equation*}
$$

in which Q is the charge amplitude (maximum charge on the capacitor) and the angular frequency ω of the oscillations is

$$
\begin{equation*}
\omega=\frac{1}{\sqrt{L C}} \tag{31-4}
\end{equation*}
$$

The phase constant ϕ in Eq. 31-12 is determined by the initial conditions (at $t=0$) of the system.

The current i in the system at any time t is

$$
\begin{equation*}
i=-\omega Q \sin (\omega t+\phi) \quad(\text { current }) \tag{31-13}
\end{equation*}
$$

in which ωQ is the current amplitude I.
Damped Oscillations Oscillations in an $L C$ circuit are damped when a dissipative element R is also present in the circuit.Then

$$
\begin{equation*}
L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{1}{C} q=0 \quad(R L C \text { circuit }) \tag{31-24}
\end{equation*}
$$

The solution of this differential equation is

$$
\begin{equation*}
q=Q e^{-R t / 2 L} \cos \left(\omega^{\prime} t+\phi\right) \tag{31-25}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega^{\prime}=\sqrt{\omega^{2}-(R / 2 L)^{2}} \tag{31-26}
\end{equation*}
$$

We consider only situations with small R and thus small damping; then $\omega^{\prime} \approx \omega$.

Alternating Currents; Forced Oscillations A series RLC circuit may be set into forced oscillation at a driving angular frequency ω_{d} by an external alternating emf

$$
\begin{equation*}
\mathscr{E}=\mathscr{E}_{m} \sin \omega_{d} t \tag{31-28}
\end{equation*}
$$

The current driven in the circuit is

$$
\begin{equation*}
i=I \sin \left(\omega_{d} t-\phi\right) \tag{31-29}
\end{equation*}
$$

where ϕ is the phase constant of the current.
Resonance The current amplitude I in a series RLC circuit driven by a sinusoidal external emf is a maximum $\left(I=\mathscr{E}_{m} / R\right)$ when the driving angular frequency ω_{d} equals the natural angular frequency ω of the circuit (that is, at resonance). Then $X_{C}=X_{L}$, $\phi=0$, and the current is in phase with the emf.

Single Circuit Elements The alternating potential difference across a resistor has amplitude $V_{R}=I R$; the current is in phase with the potential difference.

For a capacitor, $V_{C}=I X_{C}$, in which $X_{C}=1 / \omega_{d} C$ is the capacitive reactance; the current here leads the potential difference by 90° $\left(\phi=-90^{\circ}=-\pi / 2 \mathrm{rad}\right)$.

For an inductor, $V_{L}=I X_{L}$, in which $X_{L}=\omega_{d} L$ is the inductive reactance; the current here lags the potential difference by 90° ($\phi=+90^{\circ}=+\pi / 2 \mathrm{rad}$).

Series RLC Circuits For a series $R L C$ circuit with an alternating external emf given by Eq. 31-28 and a resulting alternating current given by Eq. 31-29,

$$
\begin{aligned}
I & =\frac{\mathscr{E}_{m}}{\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}} \\
& =\frac{\mathscr{E}_{m}}{\sqrt{R^{2}+\left(\omega_{d} L-1 / \omega_{d} C\right)^{2}}}
\end{aligned}
$$

(current amplitude) (31-60,31-63)
and

$$
\begin{equation*}
\tan \phi=\frac{X_{L}-X_{C}}{R} \quad \text { (phase constant). } \tag{31-65}
\end{equation*}
$$

Defining the impedance Z of the circuit as

$$
\begin{equation*}
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \quad \text { (impedance) } \tag{31-61}
\end{equation*}
$$

allows us to write Eq. 31-60 as $I=\mathscr{E}_{m} / Z$.

Power In a series $R L C$ circuit, the average power $P_{\text {avg }}$ of the generator is equal to the production rate of thermal energy in the resistor:

$$
\begin{equation*}
P_{\mathrm{avg}}=I_{\mathrm{rms}}^{2} R=\mathscr{C}_{\mathrm{rms}} I_{\mathrm{rms}} \cos \phi . \tag{31-71,31-76}
\end{equation*}
$$

Here rms stands for root-mean-square; the rms quantities are related to the maximum quantities by $I_{\mathrm{rms}}=I / \sqrt{2}, V_{\mathrm{rms}}=V / \sqrt{2}$, and $\mathscr{E}_{\text {rms }}=\mathscr{E}_{m} / \sqrt{2}$. The term $\cos \phi$ is called the power factor of the circuit.

Transformers A transformer (assumed to be ideal) is an iron core on which are wound a primary coil of N_{p} turns and a secondary coil of N_{s} turns. If the primary coil is connected across an alternating-current generator, the primary and secondary voltages are related by

$$
\begin{equation*}
V_{s}=V_{p} \frac{N_{s}}{N_{p}} \quad \text { (transformation of voltage). } \tag{31-79}
\end{equation*}
$$

The currents through the coils are related by

$$
\begin{equation*}
I_{s}=I_{p} \frac{N_{p}}{N_{s}} \quad \text { (transformation of currents) } \tag{31-80}
\end{equation*}
$$

and the equivalent resistance of the secondary circuit, as seen by the generator, is

$$
\begin{equation*}
R_{\mathrm{eq}}=\left(\frac{N_{p}}{N_{s}}\right)^{2} R \tag{31-82}
\end{equation*}
$$

where R is the resistive load in the secondary circuit. The ratio N_{p} / N_{s} is called the transformer's turns ratio.

Q U ESTIONS

1 Figure 31-19 shows three oscillating $L C$ circuits with identical inductors and capacitors. Rank the circuits according to the time taken to fully discharge the capacitors during the oscillations, greatest first.

Fig. 31-19 Question 1.
2 Figure 31-20 shows graphs of capacitor voltage v_{C} for $L C$ circuits 1 and 2 , which contain identical capacitances and have the same maximum charge Q. Are (a) the inductance L and (b) the maximum current I in circuit 1 greater than, less than, or the same as those in circuit 2 ?

Fig. 31-20 Question 2.
3 A charged capacitor and an inductor are connected at time $t=0$. In terms of the period T of the resulting oscillations, what is the first later time at which the following reach a maximum: (a) U_{B}, (b) the magnetic flux through the inductor, (c) $d i / d t$, and (d) the
emf of the inductor?
4 What values of phase constant ϕ in Eq. 31-12 allow situations (a), (c), (e), and (g) of Fig. 31-1 to occur at $t=0$?

5 Curve a in Fig. 31-21 gives the impedance Z of a driven $R C$ circuit versus the driving angular frequency ω_{d}. The other two curves are similar but for different values of resistance R and capacitance C. Rank the three

Fig. 31-21 Question 5. curves according to the corresponding value of R, greatest first.

6 Charges on the capacitors in three oscillating $L C$ circuits vary
as: (1) $q=2 \cos 4 t$, (2) $q=4 \cos t$, (3) $q=3 \cos 4 t$ (with q in coulombs and t in seconds). Rank the circuits according to (a) the current amplitude and (b) the period, greatest first.

7 An alternating emf source with a certain emf amplitude is connected, in turn, to a resistor, a capacitor, and then an inductor. Once connected to one of the devices, the driving frequency f_{d} is varied and the amplitude I of the resulting current through the device is measured and plotted. Which of the three plots in Fig. 31-22 corresponds to which of the three devices?

Fig. 31-22 Question 7.

8 The values of the phase constant ϕ for four sinusoidally driven series $R L C$ circuits are (1) -15°, (2) $+35^{\circ}$, (3) $\pi / 3 \mathrm{rad}$, and (4) $-\pi / 6$ rad. (a) In which is the load primarily capacitive? (b) In which does the current lag the alternating emf?

9 Figure 31-23 shows the current i and driving emf \mathscr{E} for a series $R L C$ circuit. (a) Is the phase constant positive or negative? (b) To increase the rate at which energy is transferred to the resistive load, should L be increased or decreased? (c) Should, instead, C be increased or decreased?

Fig. 31-23 Question 9 .

10 Figure 31-24 shows three situa-
tions like those of Fig. 31-15. Is the driving angular frequency greater than, less than, or equal to the resonant angular frequency of the circuit in (a) situation 1, (b) situation 2, and (c) situation 3?

Fig. 31-24 Question 10.
11 Figure $31-25$ shows the current i and driving emf \mathscr{E} for a series $R L C$ circuit. Relative to the emf curve, does the current curve
shift leftward or rightward and does the amplitude of that curve increase or decrease if we slightly increase (a) L, (b) C, and (c) ω_{d} ?

12 Figure 31-25 shows the current i and driving emf \mathscr{E} for a series $R L C$ circuit. (a) Does the current lead or lag the emf? (b) Is the circuit's load mainly capacitive or mainly inductive? (c) Is the angular frequency ω_{d} of the emf greater than or less than the natural angular frequency ω ?

Fig. 31-25 Questions 11 and 12 .

PROBLEMS

```
co Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign
SSM Worked-out solution available in Student Solutions Manual WWW Worked-out solution is at
-- Number of dots indicates level of problem difficulty ILW Interactive solution is at
    ILW Interactive
```


sec. 31-2 LC Oscillations, Qualitatively

-1 An oscillating $L C$ circuit consists of a 75.0 mH inductor and a $3.60 \mu \mathrm{~F}$ capacitor. If the maximum charge on the capacitor is 2.90 $\mu \mathrm{C}$, what are (a) the total energy in the circuit and (b) the maximum current?
-2 The frequency of oscillation of a certain $L C$ circuit is 200 kHz . At time $t=0$, plate A of the capacitor has maximum positive charge. At what earliest time $t>0$ will (a) plate A again have maximum positive charge, (b) the other plate of the capacitor have maximum positive charge, and (c) the inductor have maximum magnetic field?
-3 In a certain oscillating $L C$ circuit, the total energy is converted from electrical energy in the capacitor to magnetic energy in the inductor in $1.50 \mu \mathrm{~s}$. What are (a) the period of oscillation and (b) the frequency of oscillation? (c) How long after the magnetic energy is a maximum will it be a maximum again?
$\bullet 4$ What is the capacitance of an oscillating $L C$ circuit if the maximum charge on the capacitor is $1.60 \mu \mathrm{C}$ and the total energy is $140 \mu \mathrm{~J}$?
-5 In an oscillating $L C$ circuit, $L=1.10 \mathrm{mH}$ and $C=4.00 \mu \mathrm{~F}$. The maximum charge on the capacitor is $3.00 \mu \mathrm{C}$. Find the maximum current.

sec. 31-3 The Electrical-Mechanical Analogy

-6 A 0.50 kg body oscillates in SHM on a spring that, when extended 2.0 mm from its equilibrium position, has an 8.0 N restoring force. What are (a) the angular frequency of oscillation, (b) the period of oscillation, and (c) the capacitance of an $L C$ circuit with the same period if L is 5.0 H ?
$\bullet 07$ SSM The energy in an oscillating $L C$ circuit containing a 1.25 H inductor is $5.70 \mu \mathrm{~J}$. The maximum charge on the capacitor is $175 \mu \mathrm{C}$. For a mechanical system with the same period, find the (a) mass, (b) spring constant, (c) maximum displacement, and (d) maximum speed.

sec. 31-4 LC Oscillations, Quantitatively

-8 A single loop consists of inductors (L_{1}, L_{2}, \ldots), capacitors $\left(C_{1}, C_{2}, \ldots\right)$, and resistors (R_{1}, R_{2}, \ldots) connected in series as shown, for example, in Fig. 31-26a. Show that regardless of the sequence of these circuit elements in the loop, the behavior of this circuit is identical to that of the simple $L C$ circuit shown in Fig.

31-26b. (Hint: Consider the loop rule and see Problem 47 in Chapter 30.)

(a)

(b)

Fig. 31-26 Problem 8.
-9 ILW In an oscillating $L C$ circuit with $L=50 \mathrm{mH}$ and $C=$ $4.0 \mu \mathrm{~F}$, the current is initially a maximum. How long will it take before the capacitor is fully charged for the first time?
-10 $L C$ oscillators have been used in circuits connected to loudspeakers to create some of the sounds of electronic music. What inductance must be used with a $6.7 \mu \mathrm{~F}$ capacitor to produce a frequency of 10 kHz , which is near the middle of the audible range of frequencies?
-•11 SSm www A variable capacitor with a range from 10 to 365 pF is used with a coil to form a variable-frequency $L C$ circuit to tune the input to a radio. (a) What is the ratio of maximum frequency to minimum frequency that can be obtained with such a capacitor? If this circuit is to obtain frequencies from 0.54 MHz to 1.60 MHz , the ratio computed in (a) is too large. By adding a capacitor in parallel to the variable capacitor, this range can be adjusted. To obtain the desired frequency range, (b) what capacitance should be added and (c) what inductance should the coil have?
-•12 In an oscillating $L C$ circuit, when 75.0% of the total energy is stored in the inductor's magnetic field, (a) what multiple of the maximum charge is on the capacitor and (b) what multiple of the maximum current is in the inductor?
-•13 In an oscillating $L C$ circuit, $L=3.00 \mathrm{mH}$ and $C=2.70$ $\mu \mathrm{F}$. At $t=0$ the charge on the capacitor is zero and the current is 2.00 A . (a) What is the maximum charge that will appear on the capacitor? (b) At what earliest time $t>0$ is the rate at which energy is stored in the capacitor greatest, and (c) what is that greatest rate?
-•14 To construct an oscillating $L C$ system, you can choose from a 10 mH inductor, a $5.0 \mu \mathrm{~F}$ capacitor, and a $2.0 \mu \mathrm{~F}$ capacitor. What
are the (a) smallest, (b) second smallest, (c) second largest, and (d) largest oscillation frequency that can be set up by these elements in various combinations?
-15 ILW An oscillating $L C$ circuit consisting of a 1.0 nF capacitor and a 3.0 mH coil has a maximum voltage of 3.0 V . What are (a) the maximum charge on the capacitor, (b) the maximum current through the circuit, and (c) the maximum energy stored in the magnetic field of the coil?
-16 An inductor is connected across a capacitor whose capacitance can be varied by turning a knob. We wish to make the frequency of oscillation of this $L C$ circuit vary linearly with the angle of rotation of the knob, going from 2×10^{5} to $4 \times 10^{5} \mathrm{~Hz}$ as the knob turns through 180°. If $L=1.0 \mathrm{mH}$, plot the required capacitance C as a function of the angle of rotation of the knob.
-•17 ILW बo In Fig. 31-27, $R=$ $14.0 \Omega, C=6.20 \mu \mathrm{~F}$, and $L=54.0$ mH , and the ideal battery has emf $\mathscr{E}=34.0 \mathrm{~V}$. The switch is kept at a for a long time and then thrown to position b. What are the (a) frequency and (b) current amplitude of the resulting oscillations?

- 18 An oscillating $L C$ circuit has a

Fig. 31-27 Problem 17. current amplitude of 7.50 mA , a potential amplitude of 250 mV , and a capacitance of 220 nF . What are (a) the period of oscillation, (b) the maximum energy stored in the capacitor, (c) the maximum energy stored in the inductor, (d) the maximum rate at which the current changes, and (e) the maximum rate at which the inductor gains energy?

- 19 Using the loop rule, derive the differential equation for an $L C$ circuit (Eq. 31-11).
-20 ©0 In an oscillating $L C$ circuit in which $C=4.00 \mu \mathrm{~F}$, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 mA . What are (a) the inductance L and (b) the frequency of the oscillations? (c) How much time is required for the charge on the capacitor to rise from zero to its maximum value?
-2 21 ILW In an oscillating $L C$ circuit with $C=64.0 \mu \mathrm{~F}$, the current is given by $i=(1.60) \sin (2500 t+0.680)$, where t is in seconds, i in amperes, and the phase constant in radians. (a) How soon after $t=$ 0 will the current reach its maximum value? What are (b) the inductance L and (c) the total energy?
-22 A series circuit containing inductance L_{1} and capacitance C_{1} oscillates at angular frequency ω. A second series circuit, containing inductance L_{2} and capacitance C_{2}, oscillates at the same angular frequency. In terms of ω, what is the angular frequency of oscillation of a series circuit containing all four of these elements? Neglect resistance. (Hint: Use the formulas for equivalent capacitance and equivalent inductance; see Section 25-4 and Problem 47 in Chapter 30.)
-223 In an oscillating $L C$ circuit, $L=25.0 \mathrm{mH}$ and $C=7.80 \mu \mathrm{~F}$. At time $t=0$ the current is 9.20 mA , the charge on the capacitor is $3.80 \mu \mathrm{C}$, and the capacitor is charging. What are (a) the total energy in the circuit, (b) the maximum charge on the capacitor, and (c) the maximum current? (d) If the charge on the capacitor is given by $q=Q \cos (\omega t+\phi)$, what is the phase angle ϕ ? (e)

Suppose the data are the same, except that the capacitor is discharging at $t=0$. What then is ϕ ?

sec. 31-5 Damped Oscillations in an RLC Circuit

$\bullet 24$ ©o A single-loop circuit consists of a 7.20Ω resistor, a 12.0 H inductor, and a $3.20 \mu \mathrm{~F}$ capacitor. Initially the capacitor has a charge of $6.20 \mu \mathrm{C}$ and the current is zero. Calculate the charge on the capacitor N complete cycles later for (a) $N=5$, (b) $N=10$, and (c) $N=100$.
-25 ILW What resistance R should be connected in series with an inductance $L=220 \mathrm{mH}$ and capacitance $C=12.0 \mu \mathrm{~F}$ for the maximum charge on the capacitor to decay to 99.0% of its initial value in 50.0 cycles? (Assume $\omega^{\prime} \approx \omega$.)
-•26 In an oscillating series $R L C$ circuit, find the time required for the maximum energy present in the capacitor during an oscillation to fall to half its initial value. Assume $q=Q$ at $t=0$.
$\bullet 027$ SSM In an oscillating series $R L C$ circuit, show that $\Delta U / U$, the fraction of the energy lost per cycle of oscillation, is given to a close approximation by $2 \pi R / \omega L$. The quantity $\omega L / R$ is often called the Q of the circuit (for quality). A high- Q circuit has low resistance and a low fractional energy loss $(=2 \pi / Q)$ per cycle.

sec. 31-8 Three Simple Circuits

-28 A $1.50 \mu \mathrm{~F}$ capacitor is connected as in Fig. 31-10 to an ac generator with $\mathscr{E}_{m}=30.0 \mathrm{~V}$. What is the amplitude of the resulting alternating current if the frequency of the emf is (a) 1.00 kHz and (b) 8.00 kHz ?
-29 ILW A 50.0 mH inductor is connected as in Fig. 31-12 to an ac generator with $\mathscr{E}_{m}=30.0 \mathrm{~V}$. What is the amplitude of the resulting alternating current if the frequency of the emf is (a) 1.00 kHz and (b) 8.00 kHz ?
-30 A 50.0Ω resistor is connected as in Fig. 31-8 to an ac generator with $\mathscr{E}_{m}=30.0 \mathrm{~V}$. What is the amplitude of the resulting alternating current if the frequency of the emf is (a) 1.00 kHz and (b) 8.00 kHz ?
-31 (a) At what frequency would a 6.0 mH inductor and a $10 \mu \mathrm{~F}$ capacitor have the same reactance? (b) What would the reactance be? (c) Show that this frequency would be the natural frequency of an oscillating circuit with the same L and C.
-•32 ©0 An ac generator has $\operatorname{emf} \mathscr{E}=\mathscr{E}_{m} \sin \omega_{d} t$, with $\mathscr{E}_{m}=25.0 \mathrm{~V}$ and $\omega_{d}=377 \mathrm{rad} / \mathrm{s}$. It is connected to a 12.7 H inductor. (a) What is the maximum value of the current? (b) When the current is a maximum, what is the emf of the generator? (c) When the emf of the generator is -12.5 V and increasing in magnitude, what is the current?
$\bullet 33$ SSIM An ac generator has emf $\mathscr{E}=\mathscr{E}_{m} \sin \left(\omega_{d} t-\pi / 4\right)$, where $\mathscr{E}_{m}=30.0 \mathrm{~V}$ and $\omega_{d}=350 \mathrm{rad} / \mathrm{s}$. The current produced in a connected circuit is $i(t)=I \sin \left(\omega_{d} t-3 \pi / 4\right)$, where $I=620 \mathrm{~mA}$. At what time after $t=0$ does (a) the generator emf first reach a maximum and (b) the current first reach a maximum? (c) The circuit contains a single element other than the generator. Is it a capacitor, an inductor, or a resistor? Justify your answer. (d) What is the value of the capacitance, inductance, or resistance, as the case may be?
-•34 ©0 An ac generator with emf $\mathscr{E}=\mathscr{E}_{m} \sin \omega_{d} t$, where $\mathscr{E}_{m}=$ 25.0 V and $\omega_{d}=377 \mathrm{rad} / \mathrm{s}$, is connected to a $4.15 \mu \mathrm{~F}$ capacitor. (a) What is the maximum value of the current? (b) When the current is a maximum, what is the emf of the generator? (c) When the emf of the generator is -12.5 V and increasing in magnitude, what is the current?
sec. 31-9 The Series RLC Circuit
-35 ILW A coil of inductance 88 mH and unknown resistance and a $0.94 \mu \mathrm{~F}$ capacitor are connected in series with an alternating emf of frequency 930 Hz . If the phase constant between the applied voltage and the current is 75°, what is the resistance of the coil?
-36 An alternating source with a variable frequency, a capacitor with capacitance C, and a resistor with resistance R are connected in series. Figure 31-28 gives the impedance Z of the circuit versus the driving angular frequency ω_{d}; the curve reaches an asymptote of 500Ω, and the horizontal scale is set by $\omega_{d s}=300 \mathrm{rad} / \mathrm{s}$. The figure also gives the reactance X_{C} for the capacitor versus ω_{d}. What are (a) R and (b) C ?

Fig. 31-28 Problem 36 .
-37 An electric motor has an effective resistance of 32.0Ω and an inductive reactance of 45.0Ω when working under load. The rms voltage across the alternating source is 420 V . Calculate the rms current.
-38 The current amplitude I versus driving angular frequency ω_{d} for a driven $R L C$ circuit is given in Fig. 31-29, where the vertical axis scale is set by $I_{s}=4.00 \mathrm{~A}$. The inductance is $200 \mu \mathrm{H}$, and the emf amplitude is 8.0 V . What are (a) C and (b) R ?

Fig. 31-29 Problem 38.
-39 Remove the inductor from the circuit in Fig. 31-7 and set $R=$ $200 \Omega, C=15.0 \mu \mathrm{~F}, f_{d}=60.0 \mathrm{~Hz}$, and $\mathscr{E}_{m}=36.0 \mathrm{~V}$. What are (a) Z, (b) ϕ, and (c) I ? (d) Draw a phasor diagram.
-40 An alternating source drives a series $R L C$ circuit with an emf amplitude of 6.00 V , at a phase angle of $+30.0^{\circ}$. When the potential difference across the capacitor reaches its maximum positive value of +5.00 V , what is the potential difference across the inductor (sign included)?
.41 ssm In Fig. 31-7, set $R=200 \Omega, C=70.0 \mu \mathrm{~F}, L=230 \mathrm{mH}$, $f_{d}=60.0 \mathrm{~Hz}$, and $\mathscr{E}_{m}=36.0 \mathrm{~V}$. What are (a) Z, (b) ϕ, and (c) I ? (d) Draw a phasor diagram.
-42 An alternating source with a variable frequency, an inductor with inductance L, and a resistor with resistance R are connected in series. Figure 31-30 gives the impedance Z of the circuit versus the driving angular frequency ω_{d}, with the horizontal axis scale set
by $\omega_{d s}=1600 \mathrm{rad} / \mathrm{s}$. The figure also gives the reactance X_{L} for the inductor versus ω_{d}. What are (a) R and (b) L ?

Fig. 31-30 Problem 42.
-43 Remove the capacitor from the circuit in Fig. 31-7 and set $R=200 \Omega, L=230 \mathrm{mH}, f_{d}=60.0 \mathrm{~Hz}$, and $\mathscr{C}_{m}=36.0 \mathrm{~V}$. What are (a) Z, (b) ϕ, and (c) I ? (d) Draw a phasor diagram.
-044 (6) An ac generator with $\mathscr{E}_{m}=220 \mathrm{~V}$ and operating at 400 Hz causes oscillations in a series $R L C$ circuit having $R=220$ $\Omega, L=150 \mathrm{mH}$, and $C=24.0 \mu \mathrm{~F}$. Find (a) the capacitive reactance X_{C}, (b) the impedance Z, and (c) the current amplitude I. A second capacitor of the same capacitance is then connected in series with the other components. Determine whether the values of (d) X_{C}, (e) Z, and (f) I increase, decrease, or remain the same.
©045 ILW ©o (a) In an RLC circuit, can the amplitude of the voltage across an inductor be greater than the amplitude of the generator emf? (b) Consider an $R L C$ circuit with $\mathscr{E}_{m}=10 \mathrm{~V}, R=$ $10 \Omega, L=1.0 \mathrm{H}$, and $C=1.0 \mu \mathrm{~F}$. Find the amplitude of the voltage across the inductor at resonance.
©046 An alternating emf source with a variable frequency f_{d} is connected in series with a 50.0Ω resistor and a $20.0 \mu \mathrm{~F}$ capacitor. The emf amplitude is 12.0 V . (a) Draw a phasor diagram for phasor V_{R} (the potential across the resistor) and phasor V_{C} (the potential across the capacitor). (b) At what driving frequency f_{d} do the two phasors have the same length? At that driving frequency, what are (c) the phase angle in degrees, (d) the angular speed at which the phasors rotate, and (e) the current amplitude?
-047 ssm www An RLC circuit such as that of Fig. 31-7 has $R=5.00 \Omega, C=20.0 \mu \mathrm{~F}, L=1.00 \mathrm{H}$, and $\mathscr{E}_{m}=30.0 \mathrm{~V}$. (a) At what angular frequency ω_{d} will the current amplitude have its maximum value, as in the resonance curves of Fig. 31-16? (b) What is this maximum value? At what (c) lower angular frequency $\omega_{d 1}$ and (d) higher angular frequency $\omega_{d 2}$ will the current amplitude be half this maximum value? (e) For the resonance curve for this circuit, what is the fractional half-width $\left(\omega_{d 1}-\omega_{d 2}\right) / \omega$?
0048 (6) Figure 31-31 shows a driven $R L C$ circuit that contains two identical capacitors and two switches. The emf amplitude is set at 12.0 V , and the driving frequency is set at 60.0 Hz . With both switches open, the current leads the emf by 30.9°. With switch S_{1} closed and switch S_{2} still open, the emf leads the current by 15.0°. With both switches closed, the current amplitude is 447 mA . What are (a) R, (b) C, and (c) L ?

Fig. 31-31 Problem 48.
-•49 In Fig. 31-32, a generator with an adjustable frequency of oscillation is connected to resistance $R=100 \Omega$, inductances $L_{1}=1.70 \mathrm{mH} \quad$ and $\quad L_{2}=2.30$ mH , and capacitances $C_{1}=4.00$ $\mu \mathrm{F}, C_{2}=2.50 \mu \mathrm{~F}$, and $C_{3}=3.50$ $\mu \mathrm{F}$. (a) What is the resonant frequency of the circuit? (Hint: See Problem 47 in Chapter 30.) What happens to the resonant frequency if (b) R is increased, (c) L_{1} is increased, and (d) C_{3} is removed from the circuit?
००50 An alternating emf source with a variable frequency f_{d} is connected in series with an 80.0Ω resistor and a 40.0 mH inductor. The emf amplitude is 6.00 V . (a) Draw a phasor diagram for phasor V_{R} (the potential across the resistor) and phasor V_{L} (the potential across the inductor). (b) At what driving frequency f_{d} do the two phasors have the same length? At that driving frequency, what are (c) the phase angle in degrees, (d) the angular speed at which the phasors rotate, and (e) the current amplitude?
$\because 51$ SSM The fractional half-width $\Delta \omega_{d}$ of a resonance curve, such as the ones in Fig. 31-16, is the width of the curve at half the maximum value of I. Show that $\Delta \omega_{d} / \omega=R(3 C / L)^{1 / 2}$, where ω is the angular frequency at resonance. Note that the ratio $\Delta \omega_{d} / \omega$ increases with R, as Fig. 31-16 shows.

sec. 31-10 Power in Alternating-Current Circuits

052 An ac voltmeter with large impedance is connected in turn across the inductor, the capacitor, and the resistor in a series circuit having an alternating emf of $100 \mathrm{~V}(\mathrm{rms})$; the meter gives the same reading in volts in each case. What is this reading?
-53 SSM An air conditioner connected to a 120 V rms ac line is equivalent to a 12.0Ω resistance and a 1.30Ω inductive reactance in series. Calculate (a) the impedance of the air conditioner and (b) the average rate at which energy is supplied to the appliance.
-54 What is the maximum value of an ac voltage whose rms value is 100 V ?
-55 What direct current will produce the same amount of thermal energy, in a particular resistor, as an alternating current that has a maximum value of 2.60 A ?
-•56 A typical light dimmer used to dim the stage lights in a theater consists of a variable inductor L (whose inductance is adjustable between zero and $L_{\text {max }}$) connected in series with a lightbulb B, as shown in
Fig. 31-33. The electrical supply is $120 \mathrm{~V}(\mathrm{rms})$ at 60.0 Hz ; the lightbulb is rated at $120 \mathrm{~V}, 1000 \mathrm{~W}$. (a) What $L_{\text {max }}$ is required if the rate of energy dissipation in the lightbulb is to be varied by a factor of 5 from its upper limit of 1000 W ? Assume that the resistance of the lightbulb is independent of its temperature. (b) Could one use a variable resistor (adjustable between zero and $R_{\max }$) instead of an inductor? (c) If so, what $R_{\max }$ is required? (d) Why isn't this done?
${ }^{\circ} 57$ In an RLC circuit such as that of Fig. 31-7 assume that $R=$ $5.00 \Omega, L=60.0 \mathrm{mH}, f_{d}=60.0 \mathrm{~Hz}$, and $\mathscr{E}_{m}=30.0 \mathrm{~V}$. For what values of the capacitance would the average rate at which energy is dissipated in the resistance be (a) a maximum and (b) a minimum? What are (c) the maximum dissipation rate and the corresponding (d) phase angle and (e) power factor? What are (f) the minimum
dissipation rate and the corresponding (g) phase angle and (h) power factor?
$\because 58$ For Fig. 31-34, show that the average rate at which energy is dissipated in resistance R is a maximum when R is equal to the internal resistance r of the ac generator. (In the text discussion we tacitly assumed that $r=0$.)

Fig. 31-34 Problems 58 and 66.
-059 In Fig. 31-7, $R=15.0 \Omega, C=4.70 \mu \mathrm{~F}$, and $L=25.0 \mathrm{mH}$. The generator provides an emf with rms voltage 75.0 V and frequency 550 Hz . (a) What is the rms current? What is the rms voltage across (b) R, (c) C, (d) L, (e) C and L together, and (f) R, C, and L together? At what average rate is energy dissipated by (g) R, (h) C, and (i) L ?
-•60 © In a series oscillating RLC circuit, $R=16.0 \Omega, C=31.2$ $\mu \mathrm{F}, L=9.20 \mathrm{mH}$, and $\mathscr{E}_{m}=\mathscr{E}_{m} \sin \omega_{d} t$ with $\mathscr{C}_{m}=45.0 \mathrm{~V}$ and $\omega_{d}=3000 \mathrm{rad} / \mathrm{s}$. For time $t=0.442 \mathrm{~ms}$ find (a) the rate P_{g} at which energy is being supplied by the generator, (b) the rate P_{C} at which the energy in the capacitor is changing, (c) the rate P_{L} at which the energy in the inductor is changing, and (d) the rate P_{R} at which energy is being dissipated in the resistor. (e) Is the sum of P_{C}, P_{L}, and P_{R} greater than, less than, or equal to P_{g} ?
-061 SSM www Figure $31-35$ shows an ac generator connected to a "black box" through a pair of terminals. The box contains an $R L C$ circuit, possibly even a multiloop circuit, whose elements and connections we do not know. Measurements outside the box reveal that

$$
\mathscr{E}(t)=(75.0 \mathrm{~V}) \sin \omega_{d} t
$$

and

$$
i(t)=(1.20 \mathrm{~A}) \sin \left(\omega_{d} t+42.0^{\circ}\right) .
$$

(a) What is the power factor? (b) Does the current lead or lag the emf? (c) Is the circuit in the box largely inductive or largely capacitive? (d) Is the circuit in the box in resonance? (e) Must there be a capacitor in the box? (f) An inductor? (g) A resistor? (h) At what average rate is energy delivered to the box by the generator? (i) Why don't you need to know ω_{d} to answer all these questions?

Fig. 31-35 Problem 61.

sec. 31-11 Transformers

-62 A generator supplies 100 V to a transformer's primary coil, which has 50 turns. If the secondary coil has 500 turns, what is the secondary voltage?
-63 SSM ILW A transformer has 500 primary turns and 10 sec-
ondary turns. (a) If V_{p} is $120 \mathrm{~V}(\mathrm{rms})$, what is V_{s} with an open circuit? If the secondary now has a resistive load of 15Ω, what is the current in the (b) primary and (c) secondary?
-64 Figure 31-36 shows an "autotransformer." It consists of a single coil (with an iron core). Three taps T_{i} are provided. Between taps T_{1} and T_{2} there are 200 turns, and between taps T_{2} and T_{3} there are 800 turns. Any two taps can be chosen as the primary terminals, and any two taps can be chosen as the secondary terminals. For choices producing a step-up transformer, what are the (a) smallest, (b) second smallest, and (c) largest values of the ratio V_{s} / V_{p} ? For a step-down transformer, what are the (d) smallest, (e) second smallest, and (f) largest values of V_{s} / V_{p} ?

Fig. 31-36
Problem 64.
-•65 An ac generator provides emf to a resistive load in a remote factory over a two-cable transmission line. At the factory a step-down transformer reduces the voltage from its (rms) transmission value V_{t} to a much lower value that is safe and convenient for use in the factory. The transmission line resistance is $0.30 \Omega /$ cable, and the power of the generator is 250 kW . If $V_{t}=80 \mathrm{kV}$, what are (a) the voltage decrease ΔV along the transmission line and (b) the rate P_{d} at which energy is dissipated in the line as thermal energy? If $V_{t}=8.0 \mathrm{kV}$, what are (c) ΔV and (d) P_{d} ? If $V_{t}=0.80 \mathrm{kV}$, what are (e) ΔV and (f) P_{d} ?

Additional Problems

66 In Fig. 31-34, let the rectangular box on the left represent the (high-impedance) output of an audio amplifier, with $r=1000 \Omega$. Let $R=10 \Omega$ represent the (low-impedance) coil of a loudspeaker. For maximum transfer of energy to the load R we must have $R=r$, and that is not true in this case. However, a transformer can be used to "transform" resistances, making them behave electrically as if they were larger or smaller than they actually are. (a) Sketch the primary and secondary coils of a transformer that can be introduced between the amplifier and the speaker in Fig. 31-34 to match the impedances. (b) What must be the turns ratio?
67 An ac generator produces emf $\mathscr{E}=\mathscr{E}_{m} \sin \left(\omega_{d} t-\pi / 4\right)$, where $\mathscr{C}_{m}=30.0 \mathrm{~V}$ and $\omega_{d}=350 \mathrm{rad} / \mathrm{s}$. The current in the circuit attached to the generator is $i(t)=I \sin \left(\omega_{d} t+\pi / 4\right)$, where $I=620 \mathrm{~mA}$. (a) At what time after $t=0$ does the generator emf first reach a maximum? (b) At what time after $t=0$ does the current first reach a maximum? (c) The circuit contains a single element other than the generator. Is it a capacitor, an inductor, or a resistor? Justify your answer. (d) What is the value of the capacitance, inductance, or resistance, as the case may be?
68 A series $R L C$ circuit is driven by a generator at a frequency of 2000 Hz and an emf amplitude of 170 V . The inductance is 60.0 mH , the capacitance is $0.400 \mu \mathrm{~F}$, and the resistance is 200Ω. (a) What is the phase constant in radians? (b) What is the current amplitude?
69 A generator of frequency 3000 Hz drives a series $R L C$ circuit with an emf amplitude of 120 V . The resistance is 40.0Ω, the capacitance is $1.60 \mu \mathrm{~F}$, and the inductance is $850 \mu \mathrm{H}$. What are (a) the phase constant in radians and (b) the current amplitude? (c) Is the circuit capacitive, inductive, or in resonance?

70 A 45.0 mH inductor has a reactance of $1.30 \mathrm{k} \Omega$. (a) What is its operating frequency? (b) What is the capacitance of a capacitor with
the same reactance at that frequency? If the frequency is doubled, what is the new reactance of (c) the inductor and (d) the capacitor?

71 An RLC circuit is driven by a generator with an emf amplitude of 80.0 V and a current amplitude of 1.25 A . The current leads the emf by 0.650 rad . What are the (a) impedance and (b) resistance of the circuit? (c) Is the circuit inductive, capacitive, or in resonance?
72 A series $R L C$ circuit is driven in such a way that the maximum voltage across the inductor is 1.50 times the maximum voltage across the capacitor and 2.00 times the maximum voltage across the resistor. (a) What is ϕ for the circuit? (b) Is the circuit inductive, capacitive, or in resonance? The resistance is 49.9Ω, and the current amplitude is 200 mA . (c) What is the amplitude of the driving emf?

73 A capacitor of capacitance $158 \mu \mathrm{~F}$ and an inductor form an $L C$ circuit that oscillates at 8.15 kHz , with a current amplitude of 4.21 mA . What are (a) the inductance, (b) the total energy in the circuit, and (c) the maximum charge on the capacitor?

74 An oscillating $L C$ circuit has an inductance of 3.00 mH and a capacitance of $10.0 \mu \mathrm{~F}$. Calculate the (a) angular frequency and (b) period of the oscillation. (c) At time $t=0$, the capacitor is charged to $200 \mu \mathrm{C}$ and the current is zero. Roughly sketch the charge on the capacitor as a function of time.

75 For a certain driven series $R L C$ circuit, the maximum generator emf is 125 V and the maximum current is 3.20 A . If the current leads the generator emf by 0.982 rad , what are the (a) impedance and (b) resistance of the circuit? (c) Is the circuit predominantly capacitive or inductive?
76 A $1.50 \mu \mathrm{~F}$ capacitor has a capacitive reactance of 12.0Ω. (a) What must be its operating frequency? (b) What will be the capacitive reactance if the frequency is doubled?

77 SSM In Fig. 31-37, a three-phase generator G produces electrical power that is transmitted by means of three wires. The electric potentials (each relative to a common reference level) are $V_{1}=$ $A \sin \omega_{d} t$ for wire $1, V_{2}=A \sin \left(\omega_{d} t-120^{\circ}\right)$ for wire 2 , and $V_{3}=$ $A \sin \left(\omega_{d} t-240^{\circ}\right)$ for wire 3 . Some types of industrial equipment (for example, motors) have three terminals and are designed to be connected directly to these three wires. To use a more conventional two-terminal device (for example, a lightbulb), one connects it to any two of the three wires. Show that the potential difference between any two of the wires (a) oscillates sinusoidally with angular frequency ω_{d} and (b) has an ampli-

Three-wire transmission line
Fig. 31-37 Problem 77. tude of $A \sqrt{3}$.

78 An electric motor connected to a $120 \mathrm{~V}, 60.0 \mathrm{~Hz}$ ac outlet does mechanical work at the rate of $0.100 \mathrm{hp}(1 \mathrm{hp}=746 \mathrm{~W})$. (a) If the motor draws an rms current of 0.650 A , what is its effective resistance, relative to power transfer? (b) Is this the same as the resistance of the motor's coils, as measured with an ohmmeter with the motor disconnected from the outlet?
79 SSM (a) In an oscillating $L C$ circuit, in terms of the maximum charge Q on the capacitor, what is the charge there when the energy in the electric field is 50.0% of that in the magnetic field? (b) What fraction of a period must elapse following the time the capacitor is fully charged for this condition to occur?

80 A series $R L C$ circuit is driven by an alternating source at a frequency of 400 Hz and an emf amplitude of 90.0 V . The resistance is 20.0Ω, the capacitance is $12.1 \mu \mathrm{~F}$, and the inductance is 24.2 mH . What is the rms potential difference across (a) the resistor, (b) the capacitor, and (c) the inductor? (d) What is the average rate at which energy is dissipated?
81 SSM In a certain series $R L C$ circuit being driven at a frequency of 60.0 Hz , the maximum voltage across the inductor is 2.00 times the maximum voltage across the resistor and 2.00 times the maximum voltage across the capacitor. (a) By what angle does the current lag the generator emf? (b) If the maximum generator emf is 30.0 V , what should be the resistance of the circuit to obtain a maximum current of 300 mA ?
82 A 1.50 mH inductor in an oscillating $L C$ circuit stores a maximum energy of $10.0 \mu \mathrm{~J}$. What is the maximum current?
83 A generator with an adjustable frequency of oscillation is wired in series to an inductor of $L=2.50 \mathrm{mH}$ and a capacitor of $C=3.00 \mu \mathrm{~F}$. At what frequency does the generator produce the largest possible current amplitude in the circuit?
84 A series $R L C$ circuit has a resonant frequency of 6.00 kHz . When it is driven at 8.00 kHz , it has an impedance of $1.00 \mathrm{k} \Omega$ and a phase constant of 45°. What are (a) R, (b) L, and (c) C for this circuit?
85 SSM An $L C$ circuit oscillates at a frequency of 10.4 kHz . (a) If the capacitance is $340 \mu \mathrm{~F}$, what is the inductance? (b) If the maximum current is 7.20 mA , what is the total energy in the circuit? (c) What is the maximum charge on the capacitor?

86 When under load and operating at an rms voltage of 220 V , a certain electric motor draws an rms current of 3.00 A . It has a resistance of 24.0Ω and no capacitive reactance. What is its inductive reactance?

87 The ac generator in Fig. 31-38 supplies 120 V at 60.0 Hz . With the switch open as in the diagram, the current leads the generator emf by 20.0°. With the switch in position 1 , the current lags the gen-
erator emf by 10.0°. When the switch is in position 2 , the current amplitude is 2.00 A . What are (a) R, (b) L, and (c) C ?
88 In an oscillating $L C$ circuit, $L=8.00 \mathrm{mH}$ and $C=1.40 \mu \mathrm{~F}$. At time $t=0$, the current is maximum at 12.0 mA . (a) What is the maxi-

Fig. 31-38 Problem 87. mum charge on the capacitor during the oscillations? (b) At what earliest time $t>0$ is the rate of change of energy in the capacitor maximum? (c) What is that maximum rate of change?
89 SSM For a sinusoidally driven series $R L C$ circuit, show that over one complete cycle with period T (a) the energy stored in the capacitor does not change; (b) the energy stored in the inductor does not change; (c) the driving emf device supplies energy $\left(\frac{1}{2} T\right) \mathscr{C}_{m} I \cos \phi$; and (d) the resistor dissipates energy $\left(\frac{1}{2} T\right) R I^{2}$. (e) Show that the quantities found in (c) and (d) are equal.
90 What capacitance would you connect across a 1.30 mH inductor to make the resulting oscillator resonate at 3.50 kHz ?

91 A series circuit with resistor-inductor-capacitor combination R_{1}, L_{1}, C_{1} has the same resonant frequency as a second circuit with a different combination R_{2}, L_{2}, C_{2}. You now connect the two combinations in series. Show that this new circuit has the same resonant frequency as the separate circuits.
92 Consider the circuit shown in Fig. 31-39. With switch S_{1} closed and the other two switches open, the circuit has a time constant τ_{C}. With switch S_{2} closed and the other two switches open, the circuit has a time constant τ_{L}. With switch S_{3}

Fig. 31-39 Problem 92 closed and the other two switches open, the circuit oscillates with a period T. Show that $T=2 \pi \sqrt{\tau_{C} \tau_{L}}$.

