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W H AT  I S  P H YS I C S ?30-1 In Chapter 29 we discussed the fact that a current produces a 
magnetic field. That fact came as a surprise to the scientists who discovered the
effect. Perhaps even more surprising was the discovery of the reverse effect: A
magnetic field can produce an electric field that can drive a current. This link be-
tween a magnetic field and the electric field it produces (induces) is now called
Faraday’s law of induction.

The observations by Michael Faraday and other scientists that led to this law
were at first just basic science. Today, however, applications of that basic science
are almost everywhere. For example, induction is the basis of the electric guitars
that revolutionized early rock and still drive heavy metal and punk today. It is
also the basis of the electric generators that power cities and transportation lines
and of the huge induction furnaces that are commonplace in foundries where
large amounts of metal must be melted rapidly.

Before we get to applications like the electric guitar, we must examine two
simple experiments about Faraday’s law of induction.

30-2 Two Experiments
Let us examine two simple experiments to prepare for our discussion of
Faraday’s law of induction.

First Experiment. Figure 30-1 shows a conducting loop connected to a sensitive
ammeter. Because there is no battery or other source of emf included, there is no
current in the circuit. However, if we move a bar magnet toward the loop, a current
suddenly appears in the circuit.The current disappears when the magnet stops. If we
then move the magnet away, a current again suddenly appears, but now in the oppo-
site direction. If we experimented for a while, we would discover the following:

1. A current appears only if there is relative motion between the loop and the
magnet (one must move relative to the other); the current disappears when
the relative motion between them ceases.

2. Faster motion produces a greater current.

3. If moving the magnet’s north pole toward the loop causes, say, clockwise
current, then moving the north pole away causes counterclockwise current.
Moving the south pole toward or away from the loop also causes currents, but
in the reversed directions.

The current produced in the loop is called an induced current; the work done
per unit charge to produce that current (to move the conduction electrons that

Fig. 30-1 An ammeter registers a 
current in the wire loop when the magnet
is moving with respect to the loop.

N 

S 

The magnet's motion
creates a current in
the loop.
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792 CHAPTE R 30 I N DUCTION AN D I N DUCTANCE

constitute the current) is called an induced emf; and the process of producing the
current and emf is called induction.

Second Experiment. For this experiment we use the apparatus of Fig. 30-2,
with the two conducting loops close to each other but not touching. If we close
switch S, to turn on a current in the right-hand loop, the meter suddenly and
briefly registers a current—an induced current—in the left-hand loop. If we then
open the switch, another sudden and brief induced current appears in the left-
hand loop, but in the opposite direction. We get an induced current (and thus an
induced emf) only when the current in the right-hand loop is changing (either
turning on or turning off) and not when it is constant (even if it is large).

The induced emf and induced current in these experiments are apparently
caused when something changes—but what is that “something”? Faraday knew.

30-3 Faraday’s Law of Induction
Faraday realized that an emf and a current can be induced in a loop, as in our two
experiments, by changing the amount of magnetic field passing through the loop.
He further realized that the “amount of magnetic field” can be visualized in terms
of the magnetic field lines passing through the loop. Faraday’s law of induction,
stated in terms of our experiments, is this:

Fig. 30-2 An ammeter registers a cur-
rent in the left-hand wire loop just as switch
S is closed (to turn on the current in the
right-hand wire loop) or opened (to turn
off the current in the right-hand loop). No
motion of the coils is involved.

An emf is induced in the loop at the left in Figs. 30-1 and 30-2 when the number of
magnetic field lines that pass through the loop is changing.

The actual number of field lines passing through the loop does not matter; the
values of the induced emf and induced current are determined by the rate at
which that number changes.

In our first experiment (Fig. 30-1), the magnetic field lines spread out from
the north pole of the magnet. Thus, as we move the north pole closer to the loop,
the number of field lines passing through the loop increases. That increase appar-
ently causes conduction electrons in the loop to move (the induced current) and
provides energy (the induced emf) for their motion.When the magnet stops mov-
ing, the number of field lines through the loop no longer changes and the induced
current and induced emf disappear.

In our second experiment (Fig. 30-2), when the switch is open (no current), there
are no field lines. However, when we turn on the current in the right-hand loop, the
increasing current builds up a magnetic field around that loop and at the left-hand
loop.While the field builds, the number of magnetic field lines through the left-hand
loop increases.As in the first experiment, the increase in field lines through that loop
apparently induces a current and an emf there. When the current in the right-hand
loop reaches a final, steady value, the number of field lines through the left-hand
loop no longer changes,and the induced current and induced emf disappear.

A Quantitative Treatment
To put Faraday’s law to work,we need a way to calculate the amount of magnetic field
that passes through a loop. In Chapter 23, in a similar situation, we needed to calcu-
late the amount of electric field that passes through a surface. There we defined an
electric flux .Here we define a magnetic flux: Suppose a loop enclosing
an area A is placed in a magnetic field .Then the magnetic flux through the loop is

(magnetic flux through area A). (30-1)

As in Chapter 23, is a vector of magnitude dA that is perpendicular to a
differential area dA.

dA
:

�B � � 

B
:

� dA
:

B
:

�E � � E
:

� dA
:

S 

+ 
– 

Closing the switch
causes a current in
the left-hand loop.
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As a special case of Eq. 30-1, suppose that the loop lies in a plane and that the
magnetic field is perpendicular to the plane of the loop.Then we can write the dot
product in Eq. 30-1 as B dA cos 0° � B dA. If the magnetic field is also uniform,
then B can be brought out in front of the integral sign. The remaining then
gives just the area A of the loop.Thus, Eq. 30-1 reduces to

(30-2)

From Eqs. 30-1 and 30-2, we see that the SI unit for magnetic flux is the 
tesla–square meter, which is called the weber (abbreviated Wb):

1 weber � 1 Wb � 1 T � m2. (30-3)

With the notion of magnetic flux, we can state Faraday’s law in a more 
quantitative and useful way:

(B
:

 � area A, B
:

 uniform).�B � BA

� dA

The magnitude of the emf � induced in a conducting loop is equal to the rate at
which the magnetic flux �B through that loop changes with time.

As you will see in the next section, the induced emf � tends to oppose the flux
change, so Faraday’s law is formally written as

(Faraday’s law), (30-4)

with the minus sign indicating that opposition. We often neglect the minus sign in
Eq. 30-4, seeking only the magnitude of the induced emf.

If we change the magnetic flux through a coil of N turns, an induced emf appears
in every turn and the total emf induced in the coil is the sum of these individual in-
duced emfs. If the coil is tightly wound (closely packed), so that the same magnetic flux
�B passes through all the turns, the total emf induced in the coil is

(coil of N turns). (30-5)

Here are the general means by which we can change the magnetic flux
through a coil:

1. Change the magnitude B of the magnetic field within the coil.

2. Change either the total area of the coil or the portion of that area that lies
within the magnetic field (for example, by expanding the coil or sliding it into
or out of the field).

3. Change the angle between the direction of the magnetic field and the plane
of the coil (for example, by rotating the coil so that field is first perpendicu-
lar to the plane of the coil and then is along that plane).

B
:

B
:

� � �N 
d�B

dt

� � �
d�B

dt

CHECKPOINT 1

The graph gives the magnitude B(t) of a
uniform magnetic field that exists
throughout a conducting loop,with the di-
rection of the field perpendicular to the
plane of the loop. Rank the five regions of
the graph according to the magnitude of
the emf induced in the loop, greatest first.

a b c d e
t

B

Sample Problem

1. Because it is located in the interior of the solenoid, coil C lies
within the magnetic field produced by current i in the 
solenoid;thus,there is a magnetic flux �B through coil C.

2. Because current i decreases, flux �B also decreases.
3. As �B decreases, emf � is induced in coil C.

Induced emf in coil due to a solenoid

The long solenoid S shown (in cross section) in Fig. 30-3
has 220 turns/cm and carries a current i � 1.5 A; its diam-
eter D is 3.2 cm. At its center we place a 130-turn closely
packed coil C of diameter d � 2.1 cm. The current in the
solenoid is reduced to zero at a steady rate in 25 ms. What
is the magnitude of the emf that is induced in coil C while
the current in the solenoid is changing?

KEY I DEAS
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794 CHAPTE R 30 I N DUCTION AN D I N DUCTANCE

30-4 Lenz’s Law
Soon after Faraday proposed his law of induction, Heinrich Friedrich Lenz
devised a rule for determining the direction of an induced current in a loop:

Additional examples, video, and practice available at WileyPLUS

Fig. 30-3 A coil C is located inside a solenoid S, which 
carries current i.

Axis

i

i

C

S

An induced current has a direction such that the magnetic field due to the current
opposes the change in the magnetic flux that induces the current.

Fig. 30-4 Lenz’s law at work.As the
magnet is moved toward the loop, a current
is induced in the loop.The current produces
its own magnetic field, with magnetic di-
pole moment oriented so as to oppose
the motion of the magnet.Thus, the in-
duced current must be counterclockwise 
as shown.

�:

N 

S 

i 

N 

S 

µ µ 

The magnet's motion
creates a magnetic
dipole that opposes
the motion.

Furthermore, the direction of an induced emf is that of the induced current. To get
a feel for Lenz’s law, let us apply it in two different but equivalent ways to Fig. 30-4,
where the north pole of a magnet is being moved toward a conducting loop.

1. Opposition to Pole Movement. The approach of the magnet’s north pole in
Fig. 30-4 increases the magnetic flux through the loop and thereby induces a
current in the loop. From Fig. 29-21, we know that the loop then acts as a mag-
netic dipole with a south pole and a north pole, and that its magnetic dipole
moment is directed from south to north. To oppose the magnetic flux
increase being caused by the approaching magnet, the loop’s north pole (and
thus ) must face toward the approaching north pole so as to repel it (Fig.
30-4). Then the curled–straight right-hand rule for (Fig. 29-21) tells us that
the current induced in the loop must be counterclockwise in Fig. 30-4.

If we next pull the magnet away from the loop, a current will again be
induced in the loop. Now, however, the loop will have a south pole facing
the retreating north pole of the magnet, so as to oppose the retreat. Thus, the
induced current will be clockwise.

2. Opposition to Flux Change. In Fig. 30-4, with the magnet initially distant, no
magnetic flux passes through the loop. As the north pole of the magnet then

�:
�:

�:

because the final current in the solenoid is zero. To find the
initial flux �B,i, we note that area A is pd2 (� 3.464 � 10�41

4

4. The flux through each turn of coil C depends on the area
A and orientation of that turn in the solenoid’s magnetic
field . Because is uniform and directed perpendicular
to area A, the flux is given by Eq. 30-2 (�B � BA).

5. The magnitude B of the magnetic field in the interior of a so-
lenoid depends on the solenoid’s current i and its number n
of turns per unit length,according to Eq.29-23 (B � m0in).

Calculations: Because coil C consists of more than one
turn, we apply Faraday’s law in the form of Eq. 30-5
(� � �N d�B/dt), where the number of turns N is 130 and
d�B/dt is the rate at which the flux changes.

Because the current in the solenoid decreases at a
steady rate, flux �B also decreases at a steady rate, and so we
can write d�B/dt as ��B/�t. Then, to evaluate ��B, we need
the final and initial flux values. The final flux �B, f is zero 

B
:

B
:

m2) and the number n is 220 turns/cm, or 22 000 turns/m.
Substituting Eq. 29-23 into Eq. 30-2 then leads to

Now we can write

We are interested only in magnitudes; so we ignore the mi-
nus signs here and in Eq. 30-5, writing

(Answer)� 7.5 � 10 �2 V � 75 mV.

 � � N 
d�B

dt
� (130 turns)(5.76 � 10 �4 V)

 � �5.76 � 10 �4 Wb/s � �5.76 � 10 �4 V.

 �
(0 � 1.44 � 10 �5 Wb)

25 � 10 �3 s

 
d�B

dt
�

��B

�t
 �

�B, f � �B,i

�t

 �  1.44 � 10 �5 Wb.

  � (3.464 � 10 �4 m2)

 � (4� � 10 �7 T �m/A)(1.5 A)(22 000 turns/m)

�B, i � BA � (�0 in)A
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nears the loop with its magnetic field directed downward,
the flux through the loop increases. To oppose this increase in
flux, the induced current i must set up its own field di-
rected upward inside the loop, as shown in Fig. 30-5a; then the
upward flux of field opposes the increasing downward flux
of field . The curled–straight right-hand rule of Fig. 29-21
then tells us that i must be counterclockwise in Fig.30-5a.

Note carefully that the flux of always opposes the
change in the flux of , but that does not always mean that

points opposite . For example, if we next pull the mag-
net away from the loop in Fig. 30-4, the flux �B from the
magnet is still directed downward through the loop, but it is
now decreasing. The flux of must now be downward in-
side the loop, to oppose the decrease in �B, as shown in Fig.
30-5b.Thus, and are now in the same direction.

In Figs. 30-5c and d, the south pole of the magnet ap-
proaches and retreats from the loop, respectively.

B
:

B
:

ind

B
:

ind

B
:

B
:

ind

B
:

B
:

ind

B
:

B
:

ind

B
:

ind

B
:

79530-4 LE NZ’S LAW
PART 3

CHECKPOINT 2

The figure shows three situations in which identical circular con-
ducting loops are in uniform magnetic fields that are either in-
creasing (Inc) or decreasing (Dec) in magnitude at identical
rates. In each, the dashed line coincides with a diameter. Rank
the situations according to the magnitude of the current in-
duced in the loops, greatest first.

Inc

Inc

Inc

Dec

Dec

Inc

(a) (b) (c)

Fig. 30-5 The direction of the current i induced in a loop is such that the current’s magnetic field opposes the change in the 
magnetic field inducing i.The field is always directed opposite an increasing field and in the same direction as a decreasing
field .The curled–straight right-hand rule gives the direction of the induced current based on the direction of the induced field.B

: 
(b, d)

B
: 

(a, c)B
:

indB
:

B
:

ind

i

Bind

B

i

BindB

i

BBind

B

Bind

i

i

Bind

B

i

BindB

i

B
Bind

B

Bind

i

i

Bind

B

i

BindB

i

BBindB

Bind

i

Increasing the external
field B induces a current
with a field Bind that
opposes the change.

The induced 
current creates 
this field, trying
to offset the 
change. 

The fingers are 
in the current's 
direction; the
thumb is in the 
induced field's 
direction.

Decreasing the external
field B induces a current
with a field Bind that
opposes the change.

Increasing the external
field B induces a current
with a field Bind that
opposes the change.

Decreasing the external
field B induces a current
with a field Bind that
opposes the change.

(a) (b) (c) (d)

A
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Sample Problem

At t � 10 s, then,

(Answer)

Direction: To find the direction of �ind, we first note that in
Fig. 30-6 the flux through the loop is out of the page and in-
creasing. Because the induced field Bind (due to the induced
current) must oppose that increase, it must be into the page.
Using the curled–straight right-hand rule (Fig. 30-5c), we find
that the induced current is clockwise around the loop, and
thus so is the induced emf �ind.

(b) What is the current in the loop at t � 10 s?

The point here is that two emfs tend to move charges
around the loop.

Calculation: The induced emf �ind tends to drive a current
clockwise around the loop; the battery’s emf �bat tends to
drive a current counterclockwise. Because �ind is greater
than �bat, the net emf �net is clockwise, and thus so is the cur-
rent.To find the current at t � 10 s, we use Eq. 27-2 (i � �/R):

(Answer) �
5.152 V � 2.0 V

2.0 	
� 1.58 A � 1.6 A.

  i �
enet

R
�
e ind � ebat

R

 � 5.152 V � 5.2 V.

 �ind �
� (0.20 m)2

2
 [8.0(10) 
 2.0]

Induced emf and current due to a changing uniform B field

Figure 30-6 shows a conducting loop consisting of a half-circle
of radius r � 0.20 m and three straight sections. The half-
circle lies in a uniform magnetic field that is directed out
of the page; the field magnitude is given by B � 4.0t2 

2.0t 
 3.0, with B in teslas and t in seconds. An ideal battery
with emf �bat � 2.0 V is connected to the loop.The resistance
of the loop is 2.0 	.

(a) What are the magnitude and direction of the emf �ind

induced around the loop by field at t � 10 s?B
:

B
:

KEY I DEAS

1. According to Faraday’s law, the magnitude of �ind is
equal to the rate d�B/dt at which the magnetic flux
through the loop changes.

2. The flux through the loop depends on how much of the
loop’s area lies within the flux and how the area is ori-
ented in the magnetic field .

3. Because is uniform and is perpendicular to the plane of
the loop, the flux is given by Eq. 30-2 (�B � BA). (We
don’t need to integrate B over the area to get the flux.)

4. The induced field Bind (due to the induced current) must
always oppose the change in the magnetic flux.

Magnitude: Using Eq. 30-2 and realizing that only the field
magnitude B changes in time (not the area A), we rewrite
Faraday’s law, Eq. 30-4, as

Because the flux penetrates the loop only within the half-
circle, the area A in this equation is . Substituting this
and the given expression for B yields

 �
� r2

2
 (8.0t 
 2.0).

 e ind � A
dB
dt

�
� r2

2
 

d
dt

 (4.0t 2 
 2.0t 
 3.0)

1
2�r2

�ind �
d�B

dt
�

d(BA)
dt

� A 
dB
dt

.

B
:

B
:

KEY I DEA

Fig. 30-6 A battery is connected to a conducting loop that includes
a half-circle of radius r lying in a uniform magnetic field.The field is di-
rected out of the page; its magnitude is changing.

r

r/2

 bat

– +

Sample Problem

and x in meters. (Note that the function depends on both
time and position.) The loop has width W � 3.0 m and
height H � 2.0 m. What are the magnitude and direction
of the induced emf � around the loop at t � 0.10 s?

Induced emf due to a changing nonuniform B field

Figure 30-7 shows a rectangular loop of wire immersed in
a nonuniform and varying magnetic field that is perpen-
dicular to and directed into the page. The field’s magni-
tude is given by B � 4t2x2, with B in teslas, t in seconds,

B
:
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Additional examples, video, and practice available at WileyPLUS

KEY I DEAS

Fig. 30-7 A closed conducting loop, of width W and height H,
lies in a nonuniform, varying magnetic field that points directly into
the page. To apply Faraday’s law, we use the vertical strip of height
H, width dx, and area dA.

W 

H 

y 

x 
dx 

dA 

B 

If the field varies with position,
we must integrate to get the
flux through the loop.

We start with a strip
so thin that we can
approximate the field as
being uniform within it.

1. Because the magnitude of the magnetic field is chang-
ing with time, the magnetic flux �B through the loop is
also changing.

2. The changing flux induces an emf � in the loop according
to Faraday’s law, which we can write as � � d�B/dt.

3. To use that law, we need an expression for the flux �B

at any time t. However, because B is not uniform over
the area enclosed by the loop, we cannot use Eq. 30-2
(�B � BA) to find that expression; instead we must use
Eq. 30-1 .

Calculations: In Fig. 30-7, is perpendicular to the plane
of the loop (and hence parallel to the differential area 
vector ); so the dot product in Eq. 30-1 gives B dA.
Because the magnetic field varies with the coordinate x but
not with the coordinate y, we can take the differential area
dA to be the area of a vertical strip of height H and width dx
(as shown in Fig. 30-7). Then dA � H dx, and the flux
through the loop is

Treating t as a constant for this integration and inserting the
integration limits x � 0 and x � 3.0 m, we obtain

where we have substituted H � 2.0 m and �B is in webers.
Now we can use Faraday’s law to find the magnitude of � at

�B � 4t2H  �3.0

0
 x2 dx � 4t2H � x3

3
 �

0

3.0

� 72t2,

�B � � B
:

� dA
:

� � B dA � � BH dx � � 4t2x2H dx.

dA
:

B
:

(�B � � B
:

� dA
:

)

B
:

any time t :

in which � is in volts.At t � 0.10 s,

� � (144 V/s)(0.10 s) � 14 V. (Answer)

The flux of through the loop is into the page in Fig.
30-7 and is increasing in magnitude because B is increasing in
magnitude with time. By Lenz’s law, the field Bind of the in-
duced current opposes this increase and so is directed out of
the page. The curled–straight right-hand rule in Fig. 30-5a
then tells us that the induced current is counterclockwise
around the loop, and thus so is the induced emf �.

B
:

� �
d�B

dt
�

d(72t2)
dt

� 144t,

30-5 Induction and Energy Transfers
By Lenz’s law, whether you move the magnet toward or away from the loop in
Fig. 30-1, a magnetic force resists the motion, requiring your applied force to do
positive work. At the same time, thermal energy is produced in the material of
the loop because of the material’s electrical resistance to the current that is
induced by the motion. The energy you transfer to the closed loop 
 magnet sys-
tem via your applied force ends up in this thermal energy. (For now, we neglect
energy that is radiated away from the loop as electromagnetic waves during the
induction.) The faster you move the magnet, the more rapidly your applied force
does work and the greater the rate at which your energy is transferred to thermal
energy in the loop; that is, the power of the transfer is greater.

Regardless of how current is induced in a loop, energy is always transferred
to thermal energy during the process because of the electrical resistance of the
loop (unless the loop is superconducting). For example, in Fig. 30-2, when switch
S is closed and a current is briefly induced in the left-hand loop, energy is trans-
ferred from the battery to thermal energy in that loop.
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Figure 30-8 shows another situation involving induced current. A rectan-
gular loop of wire of width L has one end in a uniform external magnetic
field that is directed perpendicularly into the plane of the loop. This field
may be produced, for example, by a large electromagnet. The dashed lines in
Fig. 30-8 show the assumed limits of the magnetic field; the fringing of the
field at its edges is neglected. You are to pull this loop to the right at a con-
stant velocity .

The situation of Fig. 30-8 does not differ in any essential way from that of 
Fig. 30-1. In each case a magnetic field and a conducting loop are in relative
motion; in each case the flux of the field through the loop is changing with time.
It is true that in Fig. 30-1 the flux is changing because is changing and in
Fig. 30-8 the flux is changing because the area of the loop still in the magnetic
field is changing, but that difference is not important. The important difference
between the two arrangements is that the arrangement of Fig. 30-8 makes calcu-
lations easier. Let us now calculate the rate at which you do mechanical work as
you pull steadily on the loop in Fig. 30-8.

As you will see, to pull the loop at a constant velocity , you must apply
a constant force to the loop because a magnetic force of equal magnitude but
opposite direction acts on the loop to oppose you. From Eq. 7-48, the rate at
which you do work—that is, the power—is then

P � Fv, (30-6)

where F is the magnitude of your force. We wish to find an expression for P in
terms of the magnitude B of the magnetic field and the characteristics of the
loop—namely, its resistance R to current and its dimension L.

As you move the loop to the right in Fig. 30-8, the portion of its area within
the magnetic field decreases. Thus, the flux through the loop also decreases and,
according to Faraday’s law, a current is produced in the loop. It is the presence of
this current that causes the force that opposes your pull.

To find the current, we first apply Faraday’s law. When x is the length of the
loop still in the magnetic field, the area of the loop still in the field is Lx. Then
from Eq. 30-2, the magnitude of the flux through the loop is

�B � BA � BLx. (30-7)

As x decreases, the flux decreases. Faraday’s law tells us that with this flux
decrease, an emf is induced in the loop. Dropping the minus sign in Eq. 30-4 and

F
:

v:

B
:

v:

Fig. 30-8 You pull a closed conducting loop out of a magnetic field at constant
velocity . While the loop is moving, a clockwise current i is induced in the loop, and
the loop segments still within the magnetic field experience forces , , and .F

:

3F
:

2F
:

1

v:

i 

x 

b 

L 
F1 

F2 

F3 

B 

v 

Decreasing the area
decreases the flux,
inducing a current.
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using Eq. 30-7, we can write the magnitude of this emf as

(30-8)

in which we have replaced dx/dt with v, the speed at which the loop moves.
Figure 30-9 shows the loop as a circuit: induced emf � is represented on the

left, and the collective resistance R of the loop is represented on the right.
The direction of the induced current i is obtained with a right-hand rule as in
Fig. 30-5b for decreasing flux; applying the rule tells us that the current must be
clockwise, and � must have the same direction.

To find the magnitude of the induced current, we cannot apply the loop rule for
potential differences in a circuit because, as you will see in Section 30-6, we cannot
define a potential difference for an induced emf. However, we can apply the 
equation i � �/R.With Eq. 30-8, this becomes

(30-9)

Because three segments of the loop in Fig. 30-8 carry this current through the
magnetic field, sideways deflecting forces act on those segments. From Eq. 28-26
we know that such a deflecting force is, in general notation,

(30-10)

In Fig. 30-8, the deflecting forces acting on the three segments of the loop are
marked and . Note, however, that from the symmetry, forces and 
are equal in magnitude and cancel. This leaves only force , which is directed
opposite your force on the loop and thus is the force opposing you.
So, .

Using Eq. 30-10 to obtain the magnitude of and noting that the angle
between and the length vector for the left segment is 90°, we write

F � F1 � iLB sin 90° � iLB. (30-11)

Substituting Eq. 30-9 for i in Eq. 30-11 then gives us

(30-12)

Because B, L, and R are constants, the speed v at which you move the loop is con-
stant if the magnitude F of the force you apply to the loop is also constant.

By substituting Eq. 30-12 into Eq. 30-6, we find the rate at which you do work
on the loop as you pull it from the magnetic field:

(rate of doing work). (30-13)

To complete our analysis, let us find the rate at which thermal energy 
appears in the loop as you pull it along at constant speed. We calculate it from
Eq. 26-27,

P � i 2R. (30-14)

Substituting for i from Eq. 30-9, we find

(thermal energy rate), (30-15)

which is exactly equal to the rate at which you are doing work on the loop
(Eq. 30-13). Thus, the work that you do in pulling the loop through the magnetic
field appears as thermal energy in the loop.

P � � BLv
R �

2

R �
B2L2v2

R

P � Fv �
B2L2v2

R

F �
B2L2v

R
.

L
:

B
:

F
:

1

F
:

� �F
:

1

F
:

F
:

1

F
:

3F
:

2F
:

3F
:

2,F
:

1,

F
:

d � iL
:

� B
:

.

i �
BLv

R
.

� �
d�B

dt
�

d
dt

 BLx � BL 
dx
dt

� BLv,

Fig. 30-9 A circuit diagram for the loop
of Fig. 30-8 while the loop is moving.

i

i

R
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Eddy Currents
Suppose we replace the conducting loop of Fig. 30-8 with a solid conducting plate.
If we then move the plate out of the magnetic field as we did the loop (Fig. 30-10a),
the relative motion of the field and the conductor again induces a current in the
conductor. Thus, we again encounter an opposing force and must do work because
of the induced current. With the plate, however, the conduction electrons making
up the induced current do not follow one path as they do with the loop. Instead, the
electrons swirl about within the plate as if they were caught in an eddy (whirlpool)
of water. Such a current is called an eddy current and can be represented, as it is in
Fig. 30-10a, as if it followed a single path.

As with the conducting loop of Fig. 30-8, the current induced in the plate
results in mechanical energy being dissipated as thermal energy. The dissipation
is more apparent in the arrangement of Fig. 30-10b; a conducting plate, free to
rotate about a pivot, is allowed to swing down through a magnetic field like
a pendulum. Each time the plate enters and leaves the field, a portion of its
mechanical energy is transferred to its thermal energy. After several swings, no
mechanical energy remains and the warmed-up plate just hangs from its pivot.

CHECKPOINT 3

The figure shows four wire loops, with edge lengths of either L or 2L. All four loops
will move through a region of uniform magnetic field (directed out of the page) at
the same constant velocity. Rank the four loops according to the maximum magnitude
of the emf induced as they move through the field, greatest first.

B
:

a b

c d

B

30-6 Induced Electric Fields
Let us place a copper ring of radius r in a uniform external magnetic field, as in
Fig. 30-11a.The field—neglecting fringing—fills a cylindrical volume of radius R.
Suppose that we increase the strength of this field at a steady rate, perhaps by
increasing—in an appropriate way—the current in the windings of the electro-
magnet that produces the field. The magnetic flux through the ring will then
change at a steady rate and—by Faraday’s law—an induced emf and thus an
induced current will appear in the ring. From Lenz’s law we can deduce that the
direction of the induced current is counterclockwise in Fig. 30-11a.

If there is a current in the copper ring, an electric field must be present along the
ring because an electric field is needed to do the work of moving the conduction
electrons. Moreover, the electric field must have been produced by the changing

Fig. 30-10 (a) As you pull a solid con-
ducting plate out of a magnetic field, eddy
currents are induced in the plate.A typical
loop of eddy current is shown. (b) A con-
ducting plate is allowed to swing like a pen-
dulum about a pivot and into a region of
magnetic field.As it enters and leaves the
field, eddy currents are induced in the
plate.

Eddy 
current 
loop 

Pivot

(a) (b)

B 

B
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Fig. 30-11 (a) If the magnetic field increases at a steady rate, a constant induced cur-
rent appears, as shown, in the copper ring of radius r.(b) An induced electric field exists
even when the ring is removed; the electric field is shown at four points. (c) The complete
picture of the induced electric field, displayed as field lines. (d) Four similar closed paths that
enclose identical areas. Equal emfs are induced around paths 1 and 2, which lie entirely within
the region of changing magnetic field.A smaller emf is induced around path 3, which only
partially lies in that region. No net emf is induced around path 4, which lies entirely outside
the magnetic field.

R 

Copper 
ring 

r 

i 
(a)

Circular
path

(b)

(c) (d)

Electric field
lines

R r

1

3

4

R
R

2

B B

E

E

E

E

B B

magnetic flux.This induced electric field is just as real as an electric field produced
by static charges; either field will exert a force on a particle of charge q0.

By this line of reasoning, we are led to a useful and informative restatement
of Faraday’s law of induction:

q0E
:

E
:

A changing magnetic field produces an electric field.

The striking feature of this statement is that the electric field is induced even if
there is no copper ring. Thus, the electric field would appear even if the changing
magnetic field were in a vacuum.

To fix these ideas, consider Fig. 30-11b, which is just like Fig. 30-11a except
the copper ring has been replaced by a hypothetical circular path of radius r. We
assume, as previously, that the magnetic field is increasing in magnitude at
a constant rate dB/dt. The electric field induced at various points around the
circular path must—from the symmetry—be tangent to the circle, as Fig. 30-11b
shows.* Hence, the circular path is an electric field line. There is nothing special
about the circle of radius r, so the electric field lines produced by the changing
magnetic field must be a set of concentric circles, as in Fig. 30-11c.

As long as the magnetic field is increasing with time, the electric field repre-
sented by the circular field lines in Fig. 30-11c will be present. If the magnetic field
remains constant with time, there will be no induced electric field and thus no
electric field lines. If the magnetic field is decreasing with time (at a constant

B
:

*Arguments of symmetry would also permit the lines of around the circular path to be radial,
rather than tangential. However, such radial lines would imply that there are free charges, distributed
symmetrically about the axis of symmetry, on which the electric field lines could begin or end; there
are no such charges.

E
:
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rate), the electric field lines will still be concentric circles as in Fig. 30-11c, but
they will now have the opposite direction. All this is what we have in mind when
we say “A changing magnetic field produces an electric field.”

A Reformulation of Faraday’s Law
Consider a particle of charge q0 moving around the circular path of Fig. 30-11b.
The work W done on it in one revolution by the induced electric field is W � �q0,
where � is the induced emf—that is, the work done per unit charge in moving the
test charge around the path. From another point of view, the work is

(30-16)

where q0E is the magnitude of the force acting on the test charge and 2pr is the
distance over which that force acts. Setting these two expressions for W equal to
each other and canceling q0, we find that

� � 2prE. (30-17)

Next we rewrite Eq. 30-16 to give a more general expression for the work
done on a particle of charge q0 moving along any closed path:

(30-18)

(The loop on each integral sign indicates that the integral is to be taken around
the closed path.) Substituting �q0 for W, we find that

(30-19)

This integral reduces at once to Eq. 30-17 if we evaluate it for the special case of
Fig. 30-11b.

With Eq. 30-19, we can expand the meaning of induced emf. Up to this point,
induced emf has meant the work per unit charge done in maintaining current due
to a changing magnetic flux, or it has meant the work done per unit charge on
a charged particle that moves around a closed path in a changing magnetic flux.
However, with Fig. 30-11b and Eq. 30-19, an induced emf can exist without the
need of a current or particle: An induced emf is the sum—via integration—of
quantities around a closed path, where is the electric field induced by
a changing magnetic flux and is a differential length vector along the path.

If we combine Eq. 30-19 with Faraday’s law in Eq. 30-4 (� � �d�B/dt), we 
can rewrite Faraday’s law as

(Faraday’s law). (30-20)

This equation says simply that a changing magnetic field induces an electric field.
The changing magnetic field appears on the right side of this equation, the elec-
tric field on the left.

Faraday’s law in the form of Eq. 30-20 can be applied to any closed path that
can be drawn in a changing magnetic field. Figure 30-11d, for example, shows four
such paths, all having the same shape and area but located in different positions
in the changing field. The induced emfs for paths 1 and 2 are equal
because these paths lie entirely in the magnetic field and thus have the same
value of d�B/dt. This is true even though the electric field vectors at points along
these paths are different, as indicated by the patterns of electric field lines in the
figure. For path 3 the induced emf is smaller because the enclosed flux �B (hence
d�B/dt) is smaller, and for path 4 the induced emf is zero even though the electric
field is not zero at any point on the path.

� (� � E
:

� ds:)

� E
:

� ds: � �
d�B

dt

ds:
E
:

E
:

� ds:

� � � E
:

� ds:.

W � � F
:

� ds: � q0 � E
:

� ds:.

W � � F
:

� ds: � (q0E)(2�r),
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A New Look at Electric Potential
Induced electric fields are produced not by static charges but by a changing mag-
netic flux.Although electric fields produced in either way exert forces on charged
particles, there is an important difference between them. The simplest evidence
of this difference is that the field lines of induced electric fields form closed loops,
as in Fig. 30-11c. Field lines produced by static charges never do so but must start
on positive charges and end on negative charges.

In a more formal sense, we can state the difference between electric fields
produced by induction and those produced by static charges in these words:

Electric potential has meaning only for electric fields that are produced by static
charges; it has no meaning for electric fields that are produced by induction.

CHECKPOINT 4

The figure shows five lettered regions in which a uniform magnetic field extends either directly
out of the page or into the page, with the direction indicated only for region a.The field is in-
creasing in magnitude at the same steady rate in all five regions; the regions are identical in
area.Also shown are four numbered paths along which has the magnitudes given be-
low in terms of a quantity “mag.” Determine whether the magnetic field is directed into or out
of the page for regions b through e.

Path 1 2 3 4
mag 2(mag) 3(mag) 0� E

:
� ds:

� E
:

� ds:

1

3

2

4a

b d

c

e

You can understand this statement qualitatively by considering what happens
to a charged particle that makes a single journey around the circular path in
Fig. 30-11b. It starts at a certain point and, on its return to that same point, has
experienced an emf � of, let us say, 5 V; that is, work of 5 J/C has been done on the
particle, and thus the particle should then be at a point that is 5 V greater in
potential. However, that is impossible because the particle is back at the same
point, which cannot have two different values of potential. Thus, potential has no
meaning for electric fields that are set up by changing magnetic fields.

We can take a more formal look by recalling Eq. 24-18, which defines the
potential difference between two points i and f in an electric field :

(30-21)

In Chapter 24 we had not yet encountered Faraday’s law of induction; so the elec-
tric fields involved in the derivation of Eq. 24-18 were those due to static charges.
If i and f in Eq. 30-21 are the same point, the path connecting them is a closed
loop, Vi and Vf are identical, and Eq. 30-21 reduces to

(30-22)

However, when a changing magnetic flux is present, this integral is not zero but is
�d�B/dt, as Eq. 30-20 asserts. Thus, assigning electric potential to an induced
electric field leads us to a contradiction. We must conclude that electric potential
has no meaning for electric fields associated with induction.

� E
:

� ds: � 0.

Vf � Vi � ��f

i
 E

:
� ds:.

E
:
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Sample Problem

(b) Find an expression for the magnitude E of the induced
electric field at points that are outside the magnetic field, at
radius r from the center of the magnetic field. Evaluate the ex-
pression for r � 12.5 cm.

Here again an electric field is induced by the changing mag-
netic field, according to Faraday’s law, except that now we
use a circular path of integration with radius r � R because
we want to evaluate E for points outside the magnetic field.
Proceeding as in (a), we again obtain Eq. 30-23. However,
we do not then obtain Eq. 30-24 because the new path of in-
tegration is now outside the magnetic field, and so the mag-
netic flux encircled by the new path is only that in the area
pR2 of the magnetic field region.

Calculations: We can now write

�B � BA � B(pR2). (30-26)

Substituting this and Eq. 30-23 into Eq. 30-20 (without the
minus sign) and solving for E yield

(Answer) (30-27)

Because E is not zero here, we know that an electric field is
induced even at points that are outside the changing mag-
netic field, an important result that (as you will see in
Section 31-11) makes transformers possible.

With the given data, Eq. 30-27 yields the magnitude of
at r � 12.5 cm:

(Answer)

Equations 30-25 and 30-27 give the same result for 
r � R. Figure 30-12 shows a plot of E(r). Note that the inside
and outside plots meet at r = R.

 � 3.8 � 10 �3 V/m � 3.8 mV/m. 

  E �
(8.5 � 10 �2 m)2

(2)(12.5 � 10 �2 m)
 (0.13 T/s)

E
:

E �
R2

2r
 
dB
dt

.

Induced electric field due to changing B field, inside and outside

In Fig. 30-11b, take R � 8.5 cm and dB/dt � 0.13 T/s.

(a) Find an expression for the magnitude E of the induced
electric field at points within the magnetic field, at radius r
from the center of the magnetic field. Evaluate the expres-
sion for r � 5.2 cm.

An electric field is induced by the changing magnetic field,
according to Faraday’s law.

Calculations: To calculate the field magnitude E, we ap-
ply Faraday’s law in the form of Eq. 30-20. We use a circu-
lar path of integration with radius r � R because we want
E for points within the magnetic field. We assume from the
symmetry that in Fig. 30-11b is tangent to the circular
path at all points. The path vector is also always tangent
to the circular path; so the dot product in Eq. 30-20
must have the magnitude E ds at all points on the path. We
can also assume from the symmetry that E has the same
value at all points along the circular path.Then the left side
of Eq. 30-20 becomes

(30-23)

(The integral is the circumference 2pr of the circular
path.)

Next, we need to evaluate the right side of Eq. 30-20.
Because is uniform over the area A encircled by the path
of integration and is directed perpendicular to that area, the
magnetic flux is given by Eq. 30-2:

�B � BA � B(pr 2). (30-24)

Substituting this and Eq. 30-23 into Eq. 30-20 and dropping
the minus sign, we find that

or (Answer) (30-25)

Equation 30-25 gives the magnitude of the electric field at
any point for which r � R (that is, within the magnetic field).
Substituting given values yields, for the magnitude of at 
r � 5.2 cm,

(Answer) � 0.0034 V/m � 3.4 mV/m.

  E �
(5.2 � 10 �2 m)

2
 (0.13 T/s)

E
:

E �
r
2

 
dB
dt

.

E(2�r) � (�r2) 
dB
dt

B
:

� ds

� E
:

� ds: � � E ds � E � ds � E(2�r).

E
:

� ds:
ds:

E
:

KEY I DEA

KEY I DEAS

Additional examples, video, and practice available at WileyPLUS

Fig. 30-12 A plot of the induced electric field E(r).
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30-7 Inductors and Inductance
We found in Chapter 25 that a capacitor can be used to produce a desired electric
field. We considered the parallel-plate arrangement as a basic type of capacitor.
Similarly, an inductor (symbol ) can be used to produce a desired magnetic
field. We shall consider a long solenoid (more specifically, a short length near the
middle of a long solenoid) as our basic type of inductor.

If we establish a current i in the windings (turns) of the solenoid we are
taking as our inductor, the current produces a magnetic flux �B through the
central region of the inductor.The inductance of the inductor is then

(inductance defined), (30-28)

in which N is the number of turns. The windings of the inductor are said to be
linked by the shared flux, and the product N�B is called the magnetic flux linkage.
The inductance L is thus a measure of the flux linkage produced by the inductor
per unit of current.

Because the SI unit of magnetic flux is the tesla–square meter, the SI unit of
inductance is the tesla–square meter per ampere (T � m2/A). We call this the
henry (H), after American physicist Joseph Henry, the codiscoverer of the law of
induction and a contemporary of Faraday.Thus,

1 henry � 1 H � 1 T � m2/A. (30-29)

Through the rest of this chapter we assume that all inductors, no matter what
their geometric arrangement, have no magnetic materials such as iron in their
vicinity. Such materials would distort the magnetic field of an inductor.

Inductance of a Solenoid
Consider a long solenoid of cross-sectional area A.What is the inductance per unit
length near its middle? To use the defining equation for inductance (Eq. 30-28), we
must calculate the flux linkage set up by a given current in the solenoid windings.
Consider a length l near the middle of this solenoid.The flux linkage there is

N�B � (nl)(BA),

in which n is the number of turns per unit length of the solenoid and B is the 
magnitude of the magnetic field within the solenoid.

The magnitude B is given by Eq. 29-23,

B � m0 in,
and so from Eq. 30-28,

(30-30)

Thus, the inductance per unit length near the center of a long solenoid is

(solenoid). (30-31)

Inductance—like capacitance—depends only on the geometry of the device.
The dependence on the square of the number of turns per unit length is to be
expected. If you, say, triple n, you not only triple the number of turns (N) but you
also triple the flux (�B � BA � m0inA) through each turn, multiplying the flux
linkage N�B and thus the inductance L by a factor of 9.

L
l

� �0n2A

� �0n2 lA.

L �
N�B

i
�

(nl)(BA)
i

�
(nl)(� 0 in)(A)

i

L �
N�B

i

The crude inductors with which Michael
Faraday discovered the law of induction. In
those days amenities such as insulated wire
were not commercially available. It is said
that Faraday insulated his wires by wrap-
ping them with strips cut from one of his
wife’s petticoats. (The Royal
Institution/Bridgeman Art Library/NY)
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If the solenoid is very much longer than its radius, then Eq. 30-30 gives its
inductance to a good approximation. This approximation neglects the spreading
of the magnetic field lines near the ends of the solenoid, just as the parallel-plate
capacitor formula (C � 
0A/d) neglects the fringing of the electric field lines near
the edges of the capacitor plates.

From Eq. 30-30, and recalling that n is a number per unit length, we can see
that an inductance can be written as a product of the permeability constant m0

and a quantity with the dimensions of a length. This means that m0 can be ex-
pressed in the unit henry per meter:

(30-32)

30-8 Self-Induction
If two coils—which we can now call inductors—are near each other, a current i
in one coil produces a magnetic flux �B through the second coil.We have seen that if
we change this flux by changing the current, an induced emf appears in the second
coil according to Faraday’s law.An induced emf appears in the first coil as well.

 � 4� � 10 �7 H/m.

 �0 � 4� � 10 �7 T �m/A

An induced emf �L appears in any coil in which the current is changing.

This process (see Fig. 30-13) is called self-induction, and the emf that appears is
called a self-induced emf. It obeys Faraday’s law of induction just as other
induced emfs do.

For any inductor, Eq. 30-28 tells us that

N�B � Li. (30-33)

Faraday’s law tells us that

(30-34)

By combining Eqs. 30-33 and 30-34 we can write

(self-induced emf). (30-35)

Thus, in any inductor (such as a coil, a solenoid, or a toroid) a self-induced emf
appears whenever the current changes with time. The magnitude of the current
has no influence on the magnitude of the induced emf; only the rate of change of
the current counts.

You can find the direction of a self-induced emf from Lenz’s law. The minus
sign in Eq. 30-35 indicates that—as the law states—the self-induced emf �L has
the orientation such that it opposes the change in current i. We can drop the
minus sign when we want only the magnitude of �L.

Suppose that, as in Fig. 30-14a, you set up a current i in a coil and arrange to
have the current increase with time at a rate di/dt. In the language of Lenz’s law,
this increase in the current is the “change” that the self-induction must oppose. For
such opposition to occur, a self-induced emf must appear in the coil, pointing—as
the figure shows—so as to oppose the increase in the current. If you cause the cur-
rent to decrease with time, as in Fig. 30-14b, the self-induced emf must point in a
direction that tends to oppose the decrease in the current, as the figure shows. In
both cases, the emf attempts to maintain the initial condition.

In Section 30-6 we saw that we cannot define an electric potential for an
electric field (and thus for an emf) that is induced by a changing magnetic flux.

�L � �L 
di
dt

�L � � 
d(N�B)

dt
.

Fig. 30-13 If the current in a coil is
changed by varying the contact position on
a variable resistor, a self-induced emf �L

will appear in the coil while the current is
changing.

i

i

L–
+

R
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This means that when a self-induced emf is produced in the inductor of Fig. 30-13,
we cannot define an electric potential within the inductor itself, where the flux
is changing. However, potentials can still be defined at points of the circuit that
are not within the inductor—points where the electric fields are due to charge
distributions and their associated electric potentials.

Moreover, we can define a self-induced potential difference VL across an
inductor (between its terminals, which we assume to be outside the region of
changing flux). For an ideal inductor (its wire has negligible resistance), the mag-
nitude of VL is equal to the magnitude of the self-induced emf �L.

If, instead, the wire in the inductor has resistance r, we mentally separate the
inductor into a resistance r (which we take to be outside the region of changing
flux) and an ideal inductor of self-induced emf �L. As with a real battery of emf
� and internal resistance r, the potential difference across the terminals of a real
inductor then differs from the emf. Unless otherwise indicated, we assume here
that inductors are ideal.

Fig. 30-14 (a) The current i is increasing,
and the self-induced emf �L appears along
the coil in a direction such that it opposes
the increase.The arrow representing �L can
be drawn along a turn of the coil or along-
side the coil. Both are shown. (b) The cur-
rent i is decreasing, and the self-induced emf
appears in a direction such that it opposes
the decrease.

CHECKPOINT 5

The figure shows an emf �L induced in a coil. Which of 
the following can describe the current through the coil: (a)
constant and rightward, (b) constant and leftward, (c) in-
creasing and rightward, (d) decreasing and rightward,
(e) increasing and leftward, (f) decreasing and leftward?

 L

30-9 RL Circuits
In Section 27-9 we saw that if we suddenly introduce an emf � into a single-loop
circuit containing a resistor R and a capacitor C, the charge on the capacitor does
not build up immediately to its final equilibrium value C� but approaches it in an
exponential fashion:

(30-36)

The rate at which the charge builds up is determined by the capacitive time
constant tC, defined in Eq. 27-36 as

tC � RC. (30-37)

If we suddenly remove the emf from this same circuit, the charge does not
immediately fall to zero but approaches zero in an exponential fashion:

(30-38)

The time constant tC describes the fall of the charge as well as its rise.
An analogous slowing of the rise (or fall) of the current occurs if we introduce

an emf � into (or remove it from) a single-loop circuit containing a resistor R and
an inductor L. When the switch S in Fig. 30-15 is closed on a, for example, the cur-
rent in the resistor starts to rise. If the inductor were not present, the current
would rise rapidly to a steady value �/R. Because of the inductor, however, a self-
induced emf �L appears in the circuit; from Lenz’s law, this emf opposes the rise of
the current, which means that it opposes the battery emf � in polarity. Thus, the
current in the resistor responds to the difference between two emfs, a constant �
due to the battery and a variable �L (� �L di/dt) due to self-induction.As long as
�L is present, the current will be less than �/R.

As time goes on, the rate at which the current increases becomes less rapid
and the magnitude of the self-induced emf, which is proportional to di/dt,
becomes smaller. Thus, the current in the circuit approaches �/R asymptotically.

q � q0e�t/�C.

q � C�(1 � e�t/�C).

i (increasing) 

(a) 

i (decreasing) 

(b) 

 L 

 L 

 L 

 L 

The changing 
current changes 
the flux, which
creates an emf 
that opposes 
the change.

Fig. 30-15 An RL circuit.When switch
S is closed on a, the current rises and ap-
proaches a limiting value �/R.

Sa

b R

L–
+
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808 CHAPTE R 30 I N DUCTION AN D I N DUCTANCE

We can generalize these results as follows:

Initially, an inductor acts to oppose changes in the current through it.A long time
later, it acts like ordinary connecting wire.

Now let us analyze the situation quantitatively.With the switch S in Fig. 30-15
thrown to a, the circuit is equivalent to that of Fig. 30-16. Let us apply the loop
rule, starting at point x in this figure and moving clockwise around the loop along
with current i.

1. Resistor. Because we move through the resistor in the direction of current i,
the electric potential decreases by iR. Thus, as we move from point x to
point y, we encounter a potential change of �iR.

2. Inductor. Because current i is changing, there is a self-induced emf �L in the
inductor.The magnitude of �L is given by Eq. 30-35 as L di/dt.The direction of
�L is upward in Fig. 30-16 because current i is downward through the inductor
and increasing. Thus, as we move from point y to point z, opposite the direc-
tion of �L, we encounter a potential change of �L di/dt.

3. Battery. As we move from point z back to starting point x, we encounter a
potential change of 
� due to the battery’s emf.

Thus, the loop rule gives us

or (RL circuit). (30-39)

Equation 30-39 is a differential equation involving the variable i and its first
derivative di/dt. To solve it, we seek the function i(t) such that when i(t) and its
first derivative are substituted in Eq. 30-39, the equation is satisfied and the initial
condition i(0) � 0 is satisfied.

Equation 30-39 and its initial condition are of exactly the form of Eq. 27-32
for an RC circuit, with i replacing q, L replacing R, and R replacing 1/C.The solu-
tion of Eq. 30-39 must then be of exactly the form of Eq. 27-33 with the same
replacements.That solution is

(30-40)

which we can rewrite as

(rise of current). (30-41)

Here tL, the inductive time constant, is given by

(time constant). (30-42)

Let’s examine Eq. 30-41 for just after the switch is closed (at time t � 0)
and for a time long after the switch is closed . If we substitute t � 0 into
Eq. 30-41, the exponential becomes e�0 � 1. Thus, Eq. 30-41 tells us that the cur-
rent is initially i � 0, as we expected. Next, if we let t go to �, then the exponen-
tial goes to e�� � 0. Thus, Eq. 30-41 tells us that the current goes to its equilib-
rium value of �/R.

We can also examine the potential differences in the circuit. For example, Fig.
30-17 shows how the potential differences VR (� iR) across the resistor and 

(t : �)

�L �
L
R

i �
�

R
 (1 � e�t/�L)

i �
�

R
 (1 � e�Rt/L),

L 
di
dt


 Ri � �

�iR � L 
di
dt


 � � 0

Fig. 30-16 The circuit of Fig. 30-15
with the switch closed on a.We apply
the loop rule for the circuit clockwise,
starting at x.

R 

L – 
+ 

i 
y x 

z 

 L 
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VL (� L di/dt) across the inductor vary with time for particular values of �, L,
and R. Compare this figure carefully with the corresponding figure for an RC
circuit  (Fig. 27-16).

To show that the quantity tL (� L/R) has the dimension of time, we convert
from henries per ohm as follows:

The first quantity in parentheses is a conversion factor based on Eq. 30-35, and
the second one is a conversion factor based on the relation V � iR.

The physical significance of the time constant follows from Eq. 30-41. If we
put t � tL � L/R in this equation, it reduces to

(30-43)

Thus, the time constant tL is the time it takes the current in the circuit to reach
about 63% of its final equilibrium value �/R. Since the potential difference VR

across the resistor is proportional to the current i, a graph of the increasing
current versus time has the same shape as that of VR in Fig. 30-17a.

If the switch S in Fig. 30-15 is closed on a long enough for the equilibrium
current �/R to be established and then is thrown to b, the effect will be to remove
the battery from the circuit. (The connection to b must actually be made an
instant before the connection to a is broken. A switch that does this is called a
make-before-break switch.) With the battery gone, the current through the resis-
tor will decrease. However, it cannot drop immediately to zero but must decay to
zero over time. The differential equation that governs the decay can be found by
putting � � 0 in Eq. 30-39:

(30-44)

By analogy with Eqs. 27-38 and 27-39, the solution of this differential equation
that satisfies the initial condition i(0) � i0 � �/R is

(decay of current). (30-45)

We see that both current rise (Eq. 30-41) and current decay (Eq. 30-45) in an RL
circuit are governed by the same inductive time constant, tL.

We have used i0 in Eq. 30-45 to represent the current at time t � 0. In our
case that happened to be �/R, but it could be any other initial value.

i �
�

R
 e�t/�L � i0e�t/�L

L 
di
dt


 iR � 0.

i �
�

R
 (1 � e�1) � 0.63 

�

R
.

1 
H
	

� 1 
H
	

 � 1 V � s
1 H �A � � 1 	�A

1 V � � 1 s.

Fig. 30-17 The variation with time of
(a) VR, the potential difference across the
resistor in the circuit of Fig. 30-16, and (b)
VL, the potential difference across the in-
ductor in that circuit.The small triangles
represent successive intervals of one induc-
tive time constant tL � L/R.The figure is
plotted for R � 2000 	, L � 4.0 H, and 
� � 10 V.

10 
8 
6 
4 
2 
 
0 2 4 6 8 

V R
 (

V
) 

t (ms) 

0 2 4 6 8 

V L
 (

V
) 

t (ms) 

(a) 

(b) 

10 
8 
6 
4 
2 
 

The resistor's potential
difference turns on.
The inductor's potential
difference turns off.

CHECKPOINT 6

The figure shows three circuits with identical batteries, inductors, and resistors. Rank
the circuits according to the current through the battery (a) just after the switch is
closed and (b) a long time later, greatest first. (If you have trouble here, work through
the next sample problem and then try again.)

(1) (2) (3) 
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810 CHAPTE R 30 I N DUCTION AN D I N DUCTANCE

Sample Problem

Calculations: We now have a circuit with three identical 
resistors in parallel; from Eq. 27-23, their equivalent resistance
is Req � R/3 � (9.0 	)/3 � 3.0 	.The equivalent circuit shown
in Fig. 30-18d then yields the loop equation � � iReq � 0, or

(Answer)i �
�

Req
�

18 V
3.0 	

� 6.0 A.

RL circuit, immediately after switching and after a long time

Figure 30-18a shows a circuit that contains three identical
resistors with resistance R � 9.0 	, two identical inductors
with inductance L � 2.0 mH, and an ideal battery with emf
� � 18 V.

(a) What is the current i through the battery just after the
switch is closed?

Just after the switch is closed, the inductor acts to oppose a
change in the current through it.

Calculations: Because the current through each inductor is
zero before the switch is closed, it will also be zero just after-
ward. Thus, immediately after the switch is closed, the induc-
tors act as broken wires, as indicated in Fig. 30-18b. We then
have a single-loop circuit for which the loop rule gives us

� � iR � 0.

Substituting given data, we find that

(Answer)

(b) What is the current i through the battery long after the
switch has been closed?

Long after the switch has been closed, the currents in the cir-
cuit have reached their equilibrium values, and the inductors
act as simple connecting wires, as indicated in Fig. 30-18c.

i �
�

R
�

18 V
9.0 	

� 2.0 A.

KEY I DEA

KEY I DEA

Fig. 30-18 (a) A multiloop RL circuit with an open switch. (b)
The equivalent circuit just after the switch has been closed. (c) The
equivalent circuit a long time later. (d) The single-loop circuit that
is equivalent to circuit (c).

L 
– 
+ 

R 

R 

R 

L 

– 
+ 

R 

R 

R 

(a) (b)

– 
+ 

R 

R 

R 

(c)

– 
+ 

R/3 

(d)

Initially, an inductor
acts like broken wire.

Long later, it acts
like ordinary wire.

Sample Problem

Calculations: According to that solution, current i in-
creases exponentially from zero to its final equilibrium
value of �/R. Let t0 be the time that current i takes to reach
half its equilibrium value.Then Eq. 30-41 gives us

We solve for t0 by canceling �/R, isolating the exponential,
and taking the natural logarithm of each side.We find

(Answer)� 0.10 s. 

  t0 � �L ln 2 � 
L
R

 ln 2 �
53 � 10 �3 H

0.37 	
 ln 2

1
2

 
�

R
�

�

R
 (1 � e�t0 /�L).

Additional examples, video, and practice available at WileyPLUS

RL circuit, current during the transition

A solenoid has an inductance of 53 mH and a resistance of 0.37
	. If the solenoid is connected to a battery, how long will the 
current take to reach half its final equilibrium value? (This is a
real solenoid because we are considering its small, but nonzero,
internal resistance.)

We can mentally separate the solenoid into a resistance and
an inductance that are wired in series with a battery, as in 
Fig. 30-16. Then application of the loop rule leads to 
Eq. 30-39, which has the solution of Eq. 30-41 for the current
i in the circuit.

KEY I DEA
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30-10 Energy Stored in a Magnetic Field
When we pull two charged particles of opposite signs away from each other,
we say that the resulting electric potential energy is stored in the electric field
of the particles. We get it back from the field by letting the particles move
closer together again. In the same way we say energy is stored in a magnetic
field, but now we deal with current instead of electric charges.

To derive a quantitative expression for that stored energy, consider again
Fig. 30-16, which shows a source of emf � connected to a resistor R and an induc-
tor L. Equation 30-39, restated here for convenience,

(30-46)

is the differential equation that describes the growth of current in this circuit.
Recall that this equation follows immediately from the loop rule and that the
loop rule in turn is an expression of the principle of conservation of energy for
single-loop circuits. If we multiply each side of Eq. 30-46 by i, we obtain

(30-47)

which has the following physical interpretation in terms of the work done by the
battery and the resulting energy transfers:

1. If a differential amount of charge dq passes through the battery of emf � in
Fig. 30-16 in time dt, the battery does work on it in the amount � dq. The
rate at which the battery does work is (� dq)/dt, or �i. Thus, the left side of
Eq. 30-47 represents the rate at which the emf device delivers energy to the
rest of the circuit.

2. The rightmost term in Eq. 30-47 represents the rate at which energy appears as
thermal energy in the resistor.

3. Energy that is delivered to the circuit but does not appear as thermal en-
ergy must, by the conservation-of-energy hypothesis, be stored in the mag-
netic field of the inductor. Because Eq. 30-47 represents the principle of
conservation of energy for RL circuits, the middle term must represent the
rate dUB/dt at which magnetic potential energy UB is stored in the mag-
netic field.

Thus

(30-48)

We can write this as

dUB � Li di.

Integrating yields

or (magnetic energy), (30-49)

which represents the total energy stored by an inductor L carrying a current i.
Note the similarity in form between this expression and the expression for the
energy stored by a capacitor with capacitance C and charge q; namely,

(30-50)

(The variable i2 corresponds to q2, and the constant L corresponds to 1/C.)

UE � 
q2

2C
.

UB � 12 Li2

�UB

0
 dUB � �i

0
 Li di

dUB

dt
� Li 

di
dt

.

�i � Li 
di
dt


 i2R,

� �  L 
di
dt


 iR,
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Sample Problem

be satisfied? Using Eq. 30-49 twice allows us to rewrite this
energy condition as

or (30-52)

This equation tells us that, as the current increases from its ini-
tial value of 0 to its final value of  i

∞
, the magnetic field will

have half its final stored energy when the current has in-
creased to this value. In general, we know that i is given by Eq.
30-41, and here i� (see Eq. 30-51) is �/R; so Eq. 30-52 becomes

By canceling �/R and rearranging, we can write this as

which yields

or t � 1.2tL. (Answer)

Thus, the energy stored in the magnetic field of the coil by
the current will reach half its equilibrium value 1.2 time 
constants after the emf is applied.

t
�L

� �ln 0.293 � 1.23

e�t/�L � 1 �
1
12

� 0.293,

�

R
 (1 � e�t/�L) � 

�

12R
.

i � � 1
12 � i�.

1
2 Li2 � (1

2)
1
2 Li�

2

Additional examples, video, and practice available at WileyPLUS

Energy stored in a magnetic field

A coil has an inductance of 53 mH and a resistance of
0.35 	.

(a) If a 12 V emf is applied across the coil, how much en-
ergy is stored in the magnetic field after the current has built
up to its equilibrium value?

The energy stored in the magnetic field of a coil at any time
depends on the current through the coil at that time, accord-
ing to Eq. 30-49 .

Calculations: Thus, to find the energy UB� stored at 
equilibrium, we must first find the equilibrium current. From
Eq. 30-41, the equilibrium current is

(30-51)

Then substitution yields

(Answer)

(b) After how many time constants will half this equilib-
rium energy be stored in the magnetic field?

Calculations: Now we are being asked: At what time t will
the relation

UB � 12 UB�

� 31 J. 

 UB� � 1
2 Li�

2 � (1
2)(53 � 10 �3 H)(34.3 A)2

i� � 
�

R
 � 

12 V
0.35 	

� 34.3 A.

(UB � 1
2 Li2)

KEY I DEA

30-11 Energy Density of a Magnetic Field
Consider a length l near the middle of a long solenoid of cross-sectional area
A carrying current i; the volume associated with this length is Al. The energy UB

stored by the length l of the solenoid must lie entirely within this volume because
the magnetic field outside such a solenoid is approximately zero. Moreover,
the stored energy must be uniformly distributed within the solenoid because the
magnetic field is (approximately) uniform everywhere inside.

Thus, the energy stored per unit volume of the field is

or, since

we have

(30-53)uB �
Li2

2Al
�

L
l

 
i2

2A
.

UB � 1
2Li2,

uB �
UB

Al
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Here L is the inductance of length l of the solenoid.
Substituting for L/l from Eq. 30-31, we find

(30-54)

where n is the number of turns per unit length. From Eq. 29-23 (B � m0in) we can
write this energy density as

(magnetic energy density). (30-55)

This equation gives the density of stored energy at any point where the magni-
tude of the magnetic field is B. Even though we derived it by considering the
special case of a solenoid, Eq. 30-55 holds for all magnetic fields, no matter how
they are generated.The equation is comparable to Eq. 25-25,

(30-56)

which gives the energy density (in a vacuum) at any point in an electric field.
Note that both uB and uE are proportional to the square of the appropriate field
magnitude, B or E.

uE � 1
2 
0E2,

uB �
B2

2�0

uB � 1
2�0n2i2,

CHECKPOINT 7

The table lists the number of turns per unit length, current, and cross-sectional area
for three solenoids. Rank the solenoids according to the magnetic energy density
within them, greatest first.

Turns per 
Solenoid Unit Length Current Area

a 2n1 i1 2A1

b n1 2i1 A1

c n1 i1 6A1

30-12 Mutual Induction
In this section we return to the case of two interacting coils, which we first dis-
cussed in Section 30-2, and we treat it in a somewhat more formal manner. We
saw earlier that if two coils are close together as in Fig. 30-2, a steady current i in
one coil will set up a magnetic flux � through the other coil (linking the other
coil). If we change i with time, an emf � given by Faraday’s law appears in the sec-
ond coil; we called this process induction. We could better have called it mutual
induction, to suggest the mutual interaction of the two coils and to distinguish it
from self-induction, in which only one coil is involved.

Let us look a little more quantitatively at mutual induction. Figure 30-19a
shows two circular close-packed coils near each other and sharing a common
central axis. With the variable resistor set at a particular resistance R, the battery
produces a steady current i1 in coil 1. This current creates a magnetic field repre-
sented by the lines of in the figure. Coil 2 is connected to a sensitive meter but
contains no battery; a magnetic flux �21 (the flux through coil 2 associated with
the current in coil 1) links the N2 turns of coil 2.

We define the mutual inductance M21 of coil 2 with respect to coil 1 as

(30-57)M21 �
N2�21

i1
,

B
:

1
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which has the same form as Eq. 30-28,

L � N�/i, (30-58)

the definition of inductance.We can recast Eq. 30-57 as

M21i1 � N2�21. (30-59)

If we cause i1 to vary with time by varying R, we have

(30-60)

The right side of this equation is, according to Faraday’s law, just the magnitude
of the emf �2 appearing in coil 2 due to the changing current in coil 1.Thus, with a
minus sign to indicate direction,

(30-61)

which you should compare with Eq. 30-35 for self-induction (� � �L di/dt).
Let us now interchange the roles of coils 1 and 2,as in Fig.30-19b; that is,we set up a

current i2 in coil 2 by means of a battery,and this produces a magnetic flux �12 that links
coil 1.If we change i2 with time by varying R,we then have,by the argument given above,

(30-62)

Thus, we see that the emf induced in either coil is proportional to the rate of
change of current in the other coil.The proportionality constants M21 and M12 seem to
be different. We assert, without proof, that they are in fact the same so that no sub-
scripts are needed.(This conclusion is true but is in no way obvious.) Thus,we have

M21 � M12 � M, (30-63)

and we can rewrite Eqs. 30-61 and 30-62 as

(30-64)

and (30-65)�1 � �M 
di2

dt
.

�2 � �M 
di1

dt

�1 � �M12 
di2

dt
.

�2 � �M21 
di1

dt
,

M21 
di1

dt
� N2 

d�21

dt
.

814 CHAPTE R 30 I N DUCTION AN D I N DUCTANCE

Fig. 30-19 Mutual induction. (a) The
magnetic field produced by current i1 in
coil 1 extends through coil 2. If i1 is varied
(by varying resistance R), an emf is induced
in coil 2 and current registers on the meter
connected to coil 2. (b) The roles of the
coils interchanged.

B
:

1

+ – 

i 1  

N 1  

Coil 1 Coil 2 

B1  

N 2    21  Φ 

(a) 

+ –

i 2

N 2

Coil 1 Coil 2

(b)

N 1    12Φ

B2

B2

B1  

R R

0 0

halliday_c30_791-825hr.qxd  11-12-2009  12:19  Page 814



81530-12 M UTUAL I N DUCTION
PART 3

Sample Problem

Substituting Eq. 30-68 for B1 and for A2 in Eq.
30-67 yields

.

Substituting this result into Eq. 30-66, we find

(Answer) (30-69)

(b) What is the value of M for N1 � N2 � 1200 turns,
R2 � 1.1 cm, and R1 � 15 cm?

Calculations: Equation 30-69 yields

(Answer)

Consider the situation if we reverse the roles of the two
coils—that is, if we produce a current i2 in the smaller coil
and try to calculate M from Eq. 30-57 in the form

The calculation of �12 (the nonuniform flux of the smaller
coil’s magnetic field encompassed by the larger coil) is not
simple. If we were to do the calculation numerically using
a computer, we would find M to be 2.3 mH, as above! This
emphasizes that Eq. 30-63 (M21 � M12 � M) is not obvious.

M �
N1�12

i2
.

 � 2.29 � 10 �3 H � 2.3 mH. 

  M �
(�)(4� � 10 �7 H/m)(1200)(1200)(0.011 m)2

(2)(0.15 m)

M �
N2 �21

i1
�

��0 N1N2R2
2

2R1
.

N2 �21 �
��0 N1N2 R2

2 i1

2R1

�R2
2

Mutual inductance of two parallel coils

Figure 30-20 shows two circular close-packed coils, the
smaller (radius R2, with N2 turns) being coaxial with the
larger (radius R1, with N1 turns) and in the same plane.

(a) Derive an expression for the mutual inductance M for
this arrangement of these two coils, assuming that R1 � R2.

The mutual inductance M for these coils is the ratio of the
flux linkage (N�) through one coil to the current i in the
other coil, which produces that flux linkage. Thus, we need
to assume that currents exist in the coils; then we need to
calculate the flux linkage in one of the coils.

Calculations: The magnetic field through the larger coil
due to the smaller coil is nonuniform in both magnitude and
direction; so the flux through the larger coil due to the
smaller coil is nonuniform and difficult to calculate.
However, the smaller coil is small enough for us to assume
that the magnetic field through it due to the larger coil is ap-
proximately uniform. Thus, the flux through it due to the
larger coil is also approximately uniform. Hence, to find M
we shall assume a current i1 in the larger coil and calculate
the flux linkage N2�21 in the smaller coil:

(30-66)

The flux �21 through each turn of the smaller coil is,
from Eq. 30-2,

�21 � B1A2,

where B1 is the magnitude of the magnetic field at points
within the small coil due to the larger coil and is
the area enclosed by the turn. Thus, the flux linkage in the
smaller coil (with its N2 turns) is

N2�21 � N2B1A2. (30-67)

To find B1 at points within the smaller coil, we can use
Eq. 29-26,

with z set to 0 because the smaller coil is in the plane of the
larger coil. That equation tells us that each turn of the larger
coil produces a magnetic field of magnitude m0i1/2R1 at
points within the smaller coil. Thus, the larger coil (with its
N1 turns) produces a total magnetic field of magnitude

(30-68)

at points within the smaller coil.

B1 � N1 
�0 i1

2R1

B(z) �
�0 iR2

2(R2 
 z2 )3/2 ,

A2 (� �R2
2)

M �
N2 �21

i1
.

Fig. 30-20 A small coil is located at the center of a large
coil.The mutual inductance of the coils can be determined by
sending current i1 through the large coil.

R1
R2

i1
+ –

Additional examples, video, and practice available at WileyPLUS

KEY I DEA
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Magnetic Flux The magnetic flux �B through an area A in a
magnetic field is defined as

(30-1)

where the integral is taken over the area. The SI unit of magnetic
flux is the weber, where 1 Wb � 1 T � m2. If is perpendicular to
the area and uniform over it, Eq. 30-1 becomes

(30-2)

Faraday’s Law of Induction If the magnetic flux �B through
an area bounded by a closed conducting loop changes with time, a
current and an emf are produced in the loop; this process is called
induction. The induced emf is

(Faraday’s law). (30-4)

If the loop is replaced by a closely packed coil of N turns, the in-
duced emf is

(30-5)

Lenz’s Law An induced current has a direction such that
the magnetic field due to the current opposes the change in the
magnetic flux that induces the current. The induced emf has the
same direction as the induced current.

Emf and the Induced Electric Field An emf is induced by a
changing magnetic flux even if the loop through which the flux is
changing is not a physical conductor but an imaginary line. The
changing magnetic field induces an electric field at every point of
such a loop; the induced emf is related to by

(30-19)

where the integration is taken around the loop. From Eq. 30-19 we
can write Faraday’s law in its most general form,

(Faraday’s law). (30-20)

A changing magnetic field induces an electric field .

Inductors An inductor is a device that can be used to produce a
known magnetic field in a specified region. If a current i is established
through each of the N windings of an inductor,a magnetic flux �B links
those windings.The inductance L of the inductor is

(inductance defined). (30-28)L �
N�B

i

E
:

� E
:

� ds: � � 
d�B

dt

� � � E
:

� ds:,

E
:

E
:

� � �N 
d�B

dt
.

� � � 
d�B

dt

(B
:

 � A, B
: uniform). �B � BA

B
:

�B � � B
:

� dA
:

,

B
:

The SI unit of inductance is the henry (H), where 1 henry � 1 H � 1
T �m2/A.The inductance per unit length near the middle of a long sole-
noid of cross-sectional area A and n turns per unit length is

(solenoid). (30-31)

Self-Induction If a current i in a coil changes with time, an emf
is induced in the coil.This self-induced emf is

(30-35)

The direction of �L is found from Lenz’s law: The self-induced emf
acts to oppose the change that produces it.

Series RL Circuits If a constant emf � is introduced into a sin-
gle-loop circuit containing a resistance R and an inductance L, the
current rises to an equilibrium value of �/R according to

(rise of current). (30-41)

Here tL (� L/R) governs the rate of rise of the current and is called
the inductive time constant of the circuit. When the source of con-
stant emf is removed, the current decays from a value i0 according to

(decay of current). (30-45)

Magnetic Energy If an inductor L carries a current i, the
inductor’s magnetic field stores an energy given by

(magnetic energy). (30-49)

If B is the magnitude of a magnetic field at any point (in an
inductor or anywhere else), the density of stored magnetic energy
at that point is

(magnetic energy density). (30-55)

Mutual Induction If coils 1 and 2 are near each other, a chang-
ing current in either coil can induce an emf in the other. This mu-
tual induction is described by

(30-64)

and (30-65)

where M (measured in henries) is the mutual inductance.

�1 � �M 
di2

dt
,

�2 � �M 
di1

dt

uB �
B2

2�0

UB � 1
2Li2

i � i0 e�t/�L

i �
�

R
 (1 � e�t/�L)

�L � �L 
di
dt

.

L
l

� �0 n2A
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1 If the circular conductor in Fig. 30-21 undergoes thermal ex-
pansion while it is in a uniform magnetic field, a current is induced

clockwise around it. Is the magnetic field directed into or out of the
page?

2 The wire loop in Fig. 30-22a is subjected, in turn, to six
uniform magnetic fields, each directed parallel to the z axis,
which is directed out of the plane of the figure. Figure 30-22b
gives the z components Bz of the fields versus time t. (Plots 1 and
3 are parallel; so are plots 4 and 6. Plots 2 and 5 are parallel to
the time axis.) Rank the six plots according to the emf induced inFig. 30-21 Question 1.
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8 The switch in the circuit of 
Fig. 30-15 has been closed on a for a
very long time when it is then
thrown to b. The resulting current
through the inductor is indicated in
Fig. 30-28 for four sets of values for
the resistance R and inductance L:
(1) R0 and L0, (2) 2R0 and L0, (3) R0

and 2L0, (4) 2R0 and 2L0. Which set
goes with which curve?

9 Figure 30-29 shows three circuits
with identical batteries, inductors,
and resistors. Rank the circuits,
greatest first, according to the current through the resistor labeled R
(a) long after the switch is closed, (b) just after the switch is
reopened a long time later, and (c) long after it is reopened.

5 Figure 30-25 shows a circular re-
gion in which a decreasing uniform
magnetic field is directed out of the
page, as well as four concentric circu-
lar paths. Rank the paths according
to the magnitude of evalu-
ated along them, greatest first.

6 In Fig. 30-26, a wire loop has been
bent so that it has three segments: segment bc (a quarter-circle), ac
(a square corner), and ab (straight). Here are three choices for a
magnetic field through the loop:

(1) ,

(2) ,

(3) ,B
:

3 � 2î � 5t ĵ � 12k̂

B
:

2 � 5t î � 4ĵ � 15k̂

B
:

1 � 3î 
 7ĵ � 5tk̂

� E
:

� ds:
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where is in milliteslas and t is in sec-
onds. Without written calculation, rank
the choices according to (a) the work
done per unit charge in setting up the in-
duced current and (b) that induced cur-
rent, greatest first. (c) For each choice,
what is the direction of the induced cur-
rent in the figure?

7 Figure 30-27 shows a circuit with two
identical resistors and an ideal inductor. Is the current through the
central resistor more than, less than, or the same as that through
the other resistor (a) just after the closing of switch S, (b) a long
time after that, (c) just after S is reopened a long time later, and
(d) a long time after that?

B
:

Fig. 30-22 Question 2.

x 

y  

2
1

3

4
5

6

t

Bz

(a) (b)

the loop, greatest clockwise emf first, greatest counterclockwise
emf last.

Fig. 30-23 Question 3.

i

32

1

4 Figure 30-24 shows two circuits in which a conducting bar is slid
at the same speed v through the same uniform magnetic field and
along a U-shaped wire.The parallel lengths of the wire are separated
by 2L in circuit 1 and by L in circuit 2.The current induced in circuit
1 is counterclockwise. (a) Is the magnetic field into or out of the
page? (b) Is the current induced in circuit 2 clockwise or counter-
clockwise? (c) Is the emf induced in circuit 1 larger than, smaller
than, or the same as that in circuit 2?

Fig. 30-24 Question 4.

v

v 

(1) (2)

c

d
b

a

Fig. 30-25 Question 5.

Fig. 30-27 Question 7.

+  
–  

S

Fig. 30-28 Question 8.

t

i

a

b

c

d

Fig. 30-29 Question 9.

+
–

(1) (2)

+
–R

R

+
–

R

(3)

3 In Fig. 30-23, a long straight wire with current i passes (without
touching) three rectangular wire loops with edge lengths L, 1.5L,
and 2L. The loops are widely spaced (so as not to affect one an-
other). Loops 1 and 3 are symmetric about the long wire. Rank the
loops according to the size of the current induced in them if cur-
rent i is (a) constant and (b) increasing, greatest first.

z

x

y

c

b

a

Fig. 30-26
Question 6.

10 Figure 30-30 gives the varia-
tion with time of the potential dif-
ference VR across a resistor in
three circuits wired as shown in
Fig. 30-16. The circuits contain the
same resistance R and emf � but
differ in the inductance L. Rank
the circuits according to the value
of L, greatest first. Fig. 30-30 Question 10.

V R

t

a
b

c
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with emf � � 6.00 mV, a resistance R, and a small wire loop of
area 5.0 cm2. For the time interval t � 10 s to t � 20 s, an external
magnetic field is set up throughout the loop. The field is uniform,
its direction is into the page in Fig. 30-35a, and the field magni-
tude is given by B � at, where B is in teslas, a is a constant, and t
is in seconds. Figure 30-35b gives the current i in the circuit be-
fore, during, and after the external field is set up. The vertical
axis scale is set by is � 2.0 mA. Find the constant a in the equa-
tion for the field magnitude.

•7 In Fig. 30-36, the magnetic flux
through the loop increases according
to the relation �B � 6.0t2 
 7.0t, where
�B is in milliwebers and t is in seconds.
(a) What is the magnitude of the emf
induced in the loop when t � 2.0 s? (b)
Is the direction of the current through
R to the right or left?

•8 A uniform magnetic field is per-
pendicular to the plane of a circular
loop of diameter 10 cm formed from
wire of diameter 2.5 mm and resistivity 1.69 � 10�8 	 � m. At what
rate must the magnitude of change to induce a 10 A current in
the loop?

•9 A small loop of area 6.8 mm2 is placed inside a long solenoid
that has 854 turns/cm and carries a sinusoidally varying current i of
amplitude 1.28 A and angular frequency 212 rad/s.The central axes
of the loop and solenoid coincide.What is the amplitude of the emf
induced in the loop?

••10 Figure 30-37 shows a closed loop of wire that consists of a
pair of equal semicircles, of radius 3.7 cm, lying in mutually per-
pendicular planes. The loop was formed by folding a flat circular
loop along a diameter until the two halves became perpendicular
to each other. A uniform magnetic field of magnitude 76 mT is
directed perpendicular to the fold diameter and makes equal an-
gles (of 45°) with the planes of the semicircles. The magnetic field
is reduced to zero at a uniform rate during a time interval of 4.5
ms. During this interval, what are the (a) magnitude and (b) di-
rection (clockwise or counterclockwise when viewed along the
direction of ) of the emf induced in the loop?B

:

B
:

B
:

B
:

sec. 30-4 Lenz’s Law
•1 In Fig. 30-31, a circular loop of wire 10 cm
in diameter (seen edge-on) is placed with its
normal at an angle u � 30° with the direction
of a uniform magnetic field of magnitude 0.50
T.The loop is then rotated such that rotates in
a cone about the field direction at the rate 100
rev/min; angle u remains unchanged during the
process.What is the emf induced in the loop?

•2 A certain elastic conducting material is
stretched into a circular loop of 12.0 cm radius.
It is placed with its plane perpendicular to a uniform 0.800 T mag-
netic field. When released, the radius of the loop starts to shrink at
an instantaneous rate of 75.0 cm/s. What emf is induced in the loop
at that instant?

•3 In Fig. 30-32, a
120-turn coil of radius 1.8 cm and re-
sistance 5.3 	 is coaxial with a 
solenoid of 220 turns/cm and
diameter 3.2 cm. The solenoid cur-
rent drops from 1.5 A to zero in time
interval �t � 25 ms. What current is
induced in the coil during �t?

•4 A wire loop of radius 12 cm and
resistance 8.5 	 is located in a uni-
form magnetic field that changes
in magnitude as given in Fig. 30-33.
The vertical axis scale is set by Bs �
0.50 T, and the horizontal axis scale
is set by ts � 6.00 s. The loop’s plane
is perpendicular to .What emf is induced in the loop during time in-
tervals (a) 0 to 2.0 s, (b) 2.0 s to 4.0 s,and (c) 4.0 s to 6.0 s?

•5 In Fig. 30-34, a wire forms a
closed circular loop, of radius R �
2.0 m and resistance 4.0 	. The
circle is centered on a long straight
wire; at time t � 0, the current in
the long straight wire is 5.0 A
rightward. Thereafter, the current
changes according to i � 5.0 A �
(2.0 A/s2)t2. (The straight wire is insulated; so there is no electrical
contact between it and the wire of the loop.) What is the magni-
tude of the current induced in the loop at times t � 0?

•6 Figure 30-35a shows a circuit consisting of an ideal battery

B
:

B
:

WWWSSM

N
:

B
:

N
:

B

N
θ

Loop

Fig. 30-31
Problem 1.

Fig. 30-32 Problem 3.

Coil

Solenoid

Fig. 30-33 Problem 4.

Bs

0 ts

B
 (

T
)

t (s)

R

Fig. 30-34 Problem 5.

Fig. 30-35 Problem 6.

is

0
t (s)

30

i (
m

A
)

R

(a) (b)

Fig. 30-36 Problem 7.

R

B

Fig. 30-37 Problem 10.

Magnetic
field

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday
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••11 A rectangular coil of N turns and of length a and width b is
rotated at frequency f in a uniform magnetic field , as indicated in
Fig. 30-38. The coil is connected to co-rotating cylinders, against
which metal brushes slide to make contact. (a) Show that the emf
induced in the coil is given (as a function of time t) by

� � 2p fNabB sin(2p f t) � �0 sin(2p f t).

This is the principle of the commercial alternating-current gen-
erator. (b) What value of Nab gives an emf with �0 � 150 V
when the loop is rotated at 60.0 rev/s in a uniform magnetic
field of 0.500 T?

B
:

••15 A square wire loop with
2.00 m sides is perpendicular to a
uniform magnetic field, with half
the area of the loop in the field as
shown in Fig. 30-41. The loop con-
tains an ideal battery with emf � �
20.0 V. If the magnitude of the
field varies with time according to
B � 0.0420 � 0.870t, with B in tes-
las and t in seconds, what are (a)
the net emf in the circuit and (b)
the direction of the (net) current
around the loop?

••16 Figure 30-42a shows a wire that forms a rectangle 
(W � 20 cm, H � 30 cm) and has a resistance of 5.0 m	. Its inte-
rior is split into three equal areas, with magnetic fields , and

. The fields are uniform within each region and directly out of or
into the page as indicated. Figure 30-42b gives the change in the z
components Bz of the three fields with time t; the vertical axis scale
is set by Bs � 4.0 mT and Bb � �2.5Bs, and the horizontal axis scale
is set by ts � 2.0 s. What are the (a) magnitude and (b) direction of
the current induced in the wire?

B
:

3

B
:

1, B
:

2b

a

R

Sliding contacts
B

Fig. 30-38 Problem 11.

••12 In Fig. 30-39, a wire loop of lengths L �
40.0 cm and W � 25.0 cm lies in a magnetic 
field . What are the (a) magnitude and (b)
direction (clockwise or counterclockwise—or
“none”if 0) of the emf induced in the loop if

What are (c) � and
(d) the direction if 
What are (e) and (f) the direction if

What are (g) and (h) the direction if
What are (i) and (j) the direction if

••13 One hundred turns of (insulated) copper wire are
wrapped around a wooden cylindrical core of cross-sectional area
1.20 � 10 �3 m2. The two ends of the wire are connected to a resis-
tor.The total resistance in the circuit is 13.0 	. If an externally ap-
plied uniform longitudinal magnetic field in the core changes
from 1.60 T in one direction to 1.60 T in the opposite direction,
how much charge flows through a point in the circuit during the
change?

••14 In Fig. 30-40a, a uniform magnetic field increases in
magnitude with time t as given by Fig. 30-40b, where the verti-
cal axis scale is set by Bs � 9.0 mT and the horizontal scale is
set by ts � 3.0 s. A circular conducting loop of area 8.0 � 10�4

m2 lies in the field, in the plane of the page. The amount of
charge q passing point A on the loop is given in Fig. 30-40c as a
function of t, with the vertical axis scale set by qs � 6.0 mC and
the horizontal axis scale again set by ts � 3.0 s. What is the
loop’s resistance?

B
:

ILW

B
:

� (5.00 � 10 �2 T/m �s)yt î?
�B

:
� (3.00 � 10�2 T/m �s)xt ĵ?

�B
:

� (8.00 � 10 �2 T/m �s)ytk̂?
�

B
:

� (6.00 � 10 �2 T/s)tk̂?
B
:

� (4.00 � 10 �2 T/m)yk̂?
� �

�B
:

Fig. 30-39
Problem 12.
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Fig. 30-40 Problem 14.
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µ 

(a) (b) 

Fig. 30-42 Problem 16.

••17 A small circular loop of area 2.00 cm2 is placed in the plane
of, and concentric with, a large circular loop of radius 1.00 m. The
current in the large loop is changed at a constant rate from 200 A
to �200 A (a change in direction) in a time of 1.00 s, starting at 
t � 0. What is the magnitude of the magnetic field at the center
of the small loop due to the current in the large loop at (a) t � 0,
(b) t � 0.500 s, and (c) t � 1.00 s? (d) From t � 0 to t � 1.00 s, is 
reversed? Because the inner loop is small, assume is uniform
over its area. (e) What emf is induced in the small loop at t � 0.500 s?

••18 In Fig. 30-43, two straight
conducting rails form a right an-
gle. A conducting bar in contact
with the rails starts at the vertex
at time t � 0 and moves with a
constant velocity of 5.20 m/s
along them. A magnetic field with
B � 0.350 T is directed out of the
page. Calculate (a) the flux through the triangle formed by the
rails and bar at t � 3.00 s and (b) the emf around the triangle at
that time. (c) If the emf is � � at n, where a and n are constants,
what is the value of n?

••19 An electric generator contains a coil of 100 turns of
wire, each forming a rectangular loop 50.0 cm by 30.0 cm. The coil

ILW

B
:

B
:

B
:

Fig. 30-41 Problem 15.

B

bat

Fig. 30-43 Problem 18.

B

v
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•••28 In Fig. 30-49, a rectangular
loop of wire with length a � 2.2 cm,
width b � 0.80 cm, and resistance
R � 0.40 m	 is placed near an infi-
nitely long wire carrying current 
i � 4.7 A. The loop is then moved
away from the wire at constant
speed v � 3.2 mm/s. When the cen-
ter of the loop is at distance
r � 1.5b, what are (a) the magnitude of the magnetic flux through
the loop and (b) the current induced in the loop?

sec. 30-5 Induction and Energy Transfers
•29 In Fig. 30-50, a metal rod is forced to move with constant ve-
locity along two parallel metal rails, connected with a strip of
metal at one end. A magnetic field of magnitude B � 0.350 T
points out of the page. (a) If the rails are separated by L = 25.0 cm
and the speed of the rod is 55.0 cm/s, what emf is generated? (b) If
the rod has a resistance of 18.0 	 and the rails and connector have

v:

•••27 As seen in Fig. 30-48, a square loop of wire has sides of
length 2.0 cm. A magnetic field is directed out of the page; its mag-
nitude is given by B � 4.0t2y, where B is in teslas, t is in seconds,
and y is in meters. At t � 2.5 s, what are the (a) magnitude and (b)
direction of the emf induced in the loop?

ILW
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is placed entirely in a uniform magnetic field with magnitude B �
3.50 T and with initially perpendicular to the coil’s plane. What
is the maximum value of the emf produced when the coil is spun at
1000 rev/min about an axis perpendicular to ?

••20 At a certain place, Earth’s magnetic field has magnitude 
B � 0.590 gauss and is inclined downward at an angle of 70.0° to
the horizontal. A flat horizontal circular coil of wire with a radius
of 10.0 cm has 1000 turns and a total resistance of 85.0 	. It is
connected in series to a meter with 140 	 resistance. The coil is
flipped through a half-revolution about a diameter, so that it is
again horizontal. How much charge flows through the meter dur-
ing the flip?

••21 In Fig. 30-44, a stiff wire bent
into a semicircle of radius a � 2.0 cm
is rotated at constant angular speed 40
rev/s in a uniform 20 mT magnetic
field. What are the (a) frequency and
(b) amplitude of the emf induced in
the loop?

••22 A rectangular loop (area �
0.15 m2) turns in a uniform mag-
netic field, B � 0.20 T.When the an-
gle between the field and the normal to the plane of the loop is p/2
rad and increasing at 0.60 rad/s,what emf is induced in the loop?

••23 Figure 30-45 shows
two parallel loops of wire having
a common axis. The smaller loop
(radius r) is above the larger loop
(radius R) by a distance x � R.
Consequently, the magnetic field
due to the counterclockwise current
i in the larger loop is nearly uniform
throughout the smaller loop.
Suppose that x is increasing at the
constant rate dx/dt � v. (a) Find an
expression for the magnetic flux through the area of the smaller
loop as a function of x. (Hint: See Eq. 29-27.) In the smaller loop,
find (b) an expression for the induced emf and (c) the direction of
the induced current.

••24 A wire is bent into three cir-
cular segments, each of radius r �
10 cm, as shown in Fig. 30-46. Each
segment is a quadrant of a circle, ab
lying in the xy plane, bc lying in the
yz plane, and ca lying in the zx
plane. (a) If a uniform magnetic
field points in the positive x di-
rection, what is the magnitude of
the emf developed in the wire when
B increases at the rate of 3.0 mT/s?
(b) What is the direction of the cur-
rent in segment bc?

•••25 Two long, parallel copper wires of diameter 2.5 mm
carry currents of 10 A in opposite directions. (a) Assuming that
their central axes are 20 mm apart, calculate the magnetic flux per
meter of wire that exists in the space between those axes. (b) What
percentage of this flux lies inside the wires? (c) Repeat part (a) for
parallel currents.

B
:

SSM

B
:

B
:

•••26 For the wire arrangement in Fig. 30-47, a � 12.0 cm and b �
16.0 cm. The current in the long straight wire is i � 4.50t2 � 10.0t,
where i is in amperes and t is in seconds. (a) Find the emf in the
square loop at t � 3.00 s. (b) What is the direction of the induced
current in the loop?

Fig. 30-44 Problem 21.

B

R

a

Fig. 30-45 Problem 23.
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Fig. 30-46 Problem 24.
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Fig. 30-47 Problem 26.
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Fig. 30-48 Problem 27.
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Fig. 30-49 Problem 28.

Fig. 30-50 Problems 29 and 35.
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•37 A long solenoid has a diameter of 12.0 cm.When a
current i exists in its windings, a uniform magnetic field of magnitude
B � 30.0 mT is produced in its interior. By decreasing i, the field is
caused to decrease at the rate of 6.50 mT/s. Calculate the magnitude
of the induced electric field (a) 2.20 cm and (b) 8.20 cm from the axis
of the solenoid.

••38 A circular region in an
xy plane is penetrated by a
uniform magnetic field in the posi-
tive direction of the z axis. The
field’s magnitude B (in teslas) in-
creases with time t (in seconds) ac-
cording to B � at, where a is a
constant. The magnitude E of the
electric field set up by that in-
crease in the magnetic field is
given by Fig. 30-55 versus radial distance r ; the vertical axis scale
is set by Es � 300 mN/C, and the horizontal axis scale is set by 
rs � 4.00 cm. Find a.

••39 The magnetic field of a cylindrical magnet that has a
pole-face diameter of 3.3 cm can be varied sinusoidally between
29.6 T and 30.0 T at a frequency of 15 Hz. (The current in a wire
wrapped around a permanent magnet is varied to give this varia-
tion in the net field.) At a radial distance of 1.6 cm, what is the am-
plitude of the electric field induced by the variation?

ILWSSM
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•31 If 50.0 cm of copper wire (diameter � 1.00 mm)
is formed into a circular loop and placed perpendicular to a uni-
form magnetic field that is increasing at the constant rate of 10.0
mT/s, at what rate is thermal energy generated in the loop?

•32 A loop antenna of area 2.00 cm2 and resistance 5.21 m	 is
perpendicular to a uniform magnetic field of magnitude 17.0 mT.
The field magnitude drops to zero in 2.96 ms. How much thermal
energy is produced in the loop by the change in field?

••33 Figure 30-52 shows a rod of
length L � 10.0 cm that is forced to
move at constant speed v � 5.00
m/s along horizontal rails. The rod,
rails, and connecting strip at the
right form a conducting loop. The
rod has resistance 0.400 	; the rest
of the loop has negligible resis-
tance. A current i � 100 A through
the long straight wire at distance 
a � 10.0 mm from the loop sets up
a (nonuniform) magnetic field
through the loop. Find the (a) emf
and (b) current induced in the loop. (c) At what rate is thermal en-
ergy generated in the rod? (d) What is the magnitude of the force
that must be applied to the rod to make it move at constant speed?
(e) At what rate does this force do
work on the rod?

••34 In Fig. 30-53, a long rectan-
gular conducting loop, of width L,
resistance R, and mass m, is hung
in a horizontal, uniform magnetic
field that is directed into the
page and that exists only above
line aa. The loop is then dropped;
during its fall, it accelerates until it
reaches a certain terminal speed
vt. Ignoring air drag, find an ex-
pression for vt.

B
:
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••35 The conducting rod shown in Fig. 30-50 has length L and is
being pulled along horizontal, frictionless conducting rails at a
constant velocity . The rails are connected at one end with a
metal strip. A uniform magnetic field , directed out of the page,
fills the region in which the rod moves. Assume that L � 10 cm,
v � 5.0 m/s, and B � 1.2 T. What are the (a) magnitude and (b)
direction (up or down the page) of the emf induced in the rod?
What are the (c) size and (d) direction of the current in the con-
ducting loop? Assume that the resistance of the rod is 0.40 	 and
that the resistance of the rails and metal strip is negligibly small.
(e) At what rate is thermal energy being generated in the rod? (f)
What external force on the rod is needed to maintain ? (g) At
what rate does this force do work on the rod?

sec. 30-6 Induced Electric Fields
•36 Figure 30-54 shows two circular regions R1 and R2 with radii
r1 � 20.0 cm and r2 � 30.0 cm. In R1 there is a uniform magnetic
field of magnitude B1 � 50.0 mT directed into the page, and in R2

there is a uniform magnetic field of magnitude B2 � 75.0 mT di-
rected out of the page (ignore fringing). Both fields are decreas-
ing at the rate of 8.50 mT/s. Calculate for (a) path 1, (b)
path 2, and (c) path 3.
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negligible resistance, what is the current in the rod? (c) At what
rate is energy being transferred to thermal energy?

•30 In Fig. 30-51a, a circular loop of wire is concentric with a sole-
noid and lies in a plane perpendicular to the solenoid’s central axis.
The loop has radius 6.00 cm. The solenoid has radius 2.00 cm, con-
sists of 8000 turns/m, and has a current isol varying with time t as
given in Fig. 30-51b, where the vertical axis scale is set by is � 1.00
A and the horizontal axis scale is set by ts � 2.0 s. Figure 30-51c
shows, as a function of time, the energy Eth that is transferred to
thermal energy of the loop; the vertical axis scale is set by Es �
100.0 nJ.What is the loop’s resistance?
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sec. 30-7 Inductors and Inductance
•40 The inductance of a closely packed coil of 400 turns is 8.0
mH. Calculate the magnetic flux through the coil when the current
is 5.0 mA.

•41 A circular coil has a 10.0 cm radius and consists of 30.0
closely wound turns of wire. An externally produced magnetic
field of magnitude 2.60 mT is perpendicular to the coil. (a) If no
current is in the coil, what magnetic flux links its turns?
(b) When the current in the coil is 3.80 A in a certain direction,
the net flux through the coil is found to vanish. What is the
inductance of the coil?

••42 Figure 30-56 shows a copper strip of
width W � 16.0 cm that has been bent to
form a shape that consists of a tube of radius 
R � 1.8 cm plus two parallel flat extensions.
Current i � 35 mA is distributed uniformly
across the width so that the tube is effec-
tively a one-turn solenoid. Assume that the
magnetic field outside the tube is negligible
and the field inside the tube is uniform.
What are (a) the magnetic field magnitude
inside the tube and (b) the inductance of the
tube (excluding the flat extensions)?

••43 Two identical long wires of radius 
a � 1.53 mm are parallel and carry identical
currents in opposite directions. Their center-to-center separation is
d � 14.2 cm. Neglect the flux within the wires but consider the flux
in the region between the wires. What is the inductance per unit
length of the wires?

sec. 30-8 Self-Induction
•44 A 12 H inductor carries a current of 2.0 A.At what rate must
the current be changed to produce a 60 V emf in the inductor?

•45 At a given instant the current
and self-induced emf in an inductor
are directed as indicated in Fig. 30-57.
(a) Is the current increasing or de-
creasing? (b) The induced emf is 17 V,
and the rate of change of the current
is 25 kA/s; find the inductance.

••46 The current i through a 4.6 H inductor varies with time t as
shown by the graph of Fig. 30-58, where the vertical axis scale is set by 
is � 8.0 A and the horizontal axis scale is set by ts � 6.0 ms.The inductor
has a resistance of 12 	. Find the magnitude of the induced emf � dur-
ing time intervals (a) 0 to 2 ms, (b) 2 ms to 5 ms, and (c) 5 ms to 6 ms.
(Ignore the behavior at the ends of the intervals.)

field of one cannot affect the other. (a) Show that the equivalent
inductance is given by

Leq � L1 
 L2.

(Hint: Review the derivations for resistors in series and capacitors
in series. Which is similar here?) (b) What is the generalization of
(a) for N inductors in series?

••48 Inductors in parallel. Two inductors L1 and L2 are connected
in parallel and separated by a large distance so that the magnetic
field of one cannot affect the other. (a) Show that the equivalent
inductance is given by

(Hint: Review the derivations for resistors in parallel and capacitors
in parallel. Which is similar here?) (b) What is the generalization of
(a) for N inductors in parallel?

••49 The inductor arrangement of
Fig. 30-59, with L1 � 30.0 mH, L2 �
50.0 mH, L3 � 20.0 mH, and L4 �
15.0 mH, is to be connected to a
varying current source. What is the
equivalent inductance of the
arrangement? (First see Problems
47 and 48.)

sec. 30-9 RL Circuits
•50 The current in an RL circuit builds up to one-third of its
steady-state value in 5.00 s. Find the inductive time constant.

•51 The current in an RL circuit drops from 1.0 A to 10 mA
in the first second following removal of the battery from the cir-
cuit. If L is 10 H, find the resistance R in the circuit.

•52 The switch in Fig. 30-15 is closed on a at time t � 0. What is
the ratio �L/� of the inductor’s self-induced emf to the battery’s
emf (a) just after t � 0 and (b) at t � 2.00tL? (c) At what multiple
of tL will �L/� � 0.500?

•53 A solenoid having an inductance of 6.30 mH is con-
nected in series with a 1.20 k	 resistor. (a) If a 14.0 V battery is
connected across the pair, how long will it take for the current
through the resistor to reach 80.0% of its final value? (b) What is the
current through the resistor at time t � 1.0tL?

•54 In Fig. 30-60, � � 100 V, R1 � 10.0 	, R2 � 20.0 	, R3 � 30.0
	, and L � 2.00 H. Immediately after switch S is closed, what are
(a) i1 and (b) i2? (Let currents in the indicated directions have posi-
tive values and currents in the opposite directions have negative
values.) A long time later, what are (c) i1 and (d) i2? The switch is
then reopened. Just then, what are (e) i1 and (f) i2? A long time
later, what are (g) i1 and (h) i2?
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••47 Inductors in series. Two inductors L1 and L2 are connected in
series and are separated by a large distance so that the magnetic
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••57 In Fig. 30-63, R � 15 	,
L � 5.0 H, the ideal battery has � �
10 V, and the fuse in the upper
branch is an ideal 3.0 A fuse. It has
zero resistance as long as the cur-
rent through it remains less than 3.0
A. If the current reaches 3.0 A, the
fuse “blows” and thereafter has in-
finite resistance. Switch S is closed
at time t � 0. (a) When does the
fuse blow? (Hint: Equation 30-41 does not apply. Rethink Eq.
30-39.) (b) Sketch a graph of the current i through the inductor as a
function of time. Mark the time at which the fuse blows.

••58 Suppose the emf of the battery in the circuit shown
in Fig. 30-16 varies with time t so that the current is given by i(t) �
3.0 
 5.0t, where i is in amperes and t is in seconds. Take R � 4.0 	
and L � 6.0 H, and find an expression for the battery emf as a
function of t. (Hint: Apply the loop rule.)

•••59 In Fig. 30-64,
after switch S is closed at time 
t � 0, the emf of the source is auto-
matically adjusted to maintain a
constant current i through S. (a) Find
the current through the inductor as a
function of time. (b) At what time is
the current through the resistor equal
to the current through the inductor?

•••60 A wooden toroidal core with a square cross section has an in-
ner radius of 10 cm and an outer radius of 12 cm. It is wound with one
layer of wire (of diameter 1.0 mm and resistance per meter 0.020 	/m).
What are (a) the inductance and (b) the inductive time constant of the
resulting toroid? Ignore the thickness of the insulation on the wire.

sec. 30-10 Energy Stored in a Magnetic Field
•61 A coil is connected in series with a 10.0 k	 resistor. An
ideal 50.0 V battery is applied across the two devices, and the cur-
rent reaches a value of 2.00 mA after 5.00 ms. (a) Find the induc-
tance of the coil. (b) How much energy is stored in the coil at this
same moment?

SSM
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•55 A battery is connected to a series RL circuit at time 
t � 0. At what multiple of tL will the current be 0.100% less than
its equilibrium value?

•56 In Fig. 30-61, the inductor has 25 turns and the ideal battery has
an emf of 16 V. Figure 30-62 gives the magnetic flux � through each
turn versus the current i through the inductor.The vertical axis scale is
set by �s � 4.0 � 10�4 T�m2, and the horizontal axis scale is set by is �
2.00 A. If switch S is closed at time t � 0, at what rate di/dt will the
current be changing at t � 1.5tL?

SSM •62 A coil with an inductance of 2.0 H and a resistance of 10 	 is
suddenly connected to an ideal battery with � � 100 V. At 0.10 s
after the connection is made, what is the rate at which (a) energy is
being stored in the magnetic field, (b) thermal energy is appearing
in the resistance, and (c) energy is being delivered by the battery?

•63 At t � 0, a battery is connected to a series arrangement
of a resistor and an inductor. If the inductive time constant is 37.0
ms, at what time is the rate at which energy is dissipated in the re-
sistor equal to the rate at which energy is stored in the inductor’s
magnetic field?

•64 At t � 0, a battery is connected to a series arrangement of a
resistor and an inductor. At what multiple of the inductive time
constant will the energy stored in the inductor’s magnetic field be
0.500 its steady-state value?

••65 For the circuit of Fig. 30-16, assume that � � 10.0 V,
R � 6.70 	, and L � 5.50 H. The ideal battery is connected at
time t � 0. (a) How much energy is delivered by the battery dur-
ing the first 2.00 s? (b) How much of this energy is stored in the
magnetic field of the inductor? (c) How much of this energy is
dissipated in the resistor?

sec. 30-11 Energy Density of a Magnetic Field
•66 A circular loop of wire 50 mm in radius carries a current of
100 A. Find the (a) magnetic field strength and (b) energy density
at the center of the loop.

•67 A solenoid that is 85.0 cm long has a cross-sectional
area of 17.0 cm2. There are 950 turns of wire carrying a current of
6.60 A. (a) Calculate the energy density of the magnetic field inside
the solenoid. (b) Find the total energy stored in the magnetic field
there (neglect end effects).

•68 A toroidal inductor with an inductance of 90.0 mH encloses
a volume of 0.0200 m3. If the average energy density in the toroid is
70.0 J/m3, what is the current through the inductor?

•69 What must be the magnitude of a uniform electric field
if it is to have the same energy density as that possessed by a 0.50 T
magnetic field?

••70 Figure 30-65a shows, in
cross section, two wires that are
straight, parallel, and very long. The
ratio i1/i2 of the current carried by
wire 1 to that carried by wire 2 is
1/3. Wire 1 is fixed in place. Wire 2
can be moved along the positive
side of the x axis so as to change the
magnetic energy density uB set up
by the two currents at the origin.
Figure 30-65b gives uB as a function
of the position x of wire 2. The
curve has an asymptote of uB �
1.96 nJ/m3 as , and the hori-
zontal axis scale is set by xs � 60.0
cm.What is the value of (a) i1 and (b) i2?

••71 A length of copper wire carries a current of 10 A uniformly
distributed through its cross section. Calculate the energy density
of (a) the magnetic field and (b) the electric field at the surface of
the wire. The wire diameter is 2.5 mm, and its resistance per unit
length is 3.3 	/km.
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sec. 30-12 Mutual Induction
•72 Coil 1 has L1 � 25 mH and N1 � 100 turns. Coil 2 has L2 � 40
mH and N2 � 200 turns. The coils are fixed in place; their mutual in-
ductance M is 3.0 mH. A 6.0 mA current in coil 1 is changing at the
rate of 4.0 A/s. (a) What magnetic flux �12 links coil 1, and (b) what
self-induced emf appears in that coil? (c) What magnetic flux �21 links
coil 2,and (d) what mutually induced emf appears in that coil?

•73 Two coils are at fixed locations. When coil 1 has no
current and the current in coil 2 increases at the rate 15.0 A/s, the
emf in coil 1 is 25.0 mV. (a) What is their mutual inductance? (b)
When coil 2 has no current and coil 1 has a current of 3.60 A, what
is the flux linkage in coil 2?

•74 Two solenoids are part of the spark coil of an automobile.
When the current in one solenoid falls from 6.0 A to zero in 2.5 ms,
an emf of 30 kV is induced in the other solenoid. What is the mu-
tual inductance M of the solenoids?

••75 A rectangular loop of N
closely packed turns is positioned
near a long straight wire as shown in
Fig. 30-66. What is the mutual induc-
tance M for the loop–wire combina-
tion if N � 100, a � 1.0 cm, b � 8.0
cm, and l � 30 cm?

••76 A coil C of N turns is placed
around a long solenoid S of radius R
and n turns per unit length, as in Fig.
30-67. (a) Show that the mutual in-
ductance for the coil–solenoid com-
bination is given by M � m0pR2nN.
(b) Explain why M does not depend
on the shape, size, or possible lack of
close packing of the coil.

••77 Two coils connected as
shown in Fig. 30-68 separately have inductances L1 and L2. Their
mutual inductance is M. (a) Show that this combination can be re-
placed by a single coil of equivalent inductance given by

Leq � L1 
 L2 
 2M.

(b) How could the coils in Fig. 30-68 be reconnected to yield an
equivalent inductance of

Leq � L1 
 L2 � 2M?

(This problem is an extension of Problem 47, but the requirement
that the coils be far apart has been removed.)

SSM
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sistance R. At time t � 0.150 ms, the current through the inductor
is changing at the rate of 280 A/s. Evaluate R.

79 In Fig. 30-69, the battery
is ideal and � � 10 V, R1 � 5.0 	,
R2 � 10 	, and L � 5.0 H. Switch S
is closed at time t � 0. Just
afterwards, what are (a) i1, (b) i2, (c)
the current iS through the switch, (d)
the potential difference V2 across
resistor 2, (e) the potential differ-
ence VL across the inductor, and (f)
the rate of change di2/dt? A long
time later, what are (g) i1, (h) i2, (i) iS,
( j) V2, (k) VL, and (1) di2/dt?

80 In Fig. 30-61, R � 4.0 k	, L � 8.0 mH, and the ideal battery has
� � 20 V. How long after switch S is closed is the current 2.0 mA?

81 Figure 30-70a shows a
rectangular conducting loop of resis-
tance R � 0.020 	, height H � 1.5
cm, and length D � 2.5 cm being
pulled at constant speed v � 40 cm/s
through two regions of uniform mag-
netic field. Figure 30-70b gives the
current i induced in the loop as a
function of the position x of the right
side of the loop. The vertical axis
scale is set by is � 3.0 mA. For exam-
ple, a current equal to is is induced
clockwise as the loop enters region 1.
What are the (a) magnitude and (b)
direction (into or out of the page) of
the magnetic field in region 1? What are the (c) magnitude and (d)
direction of the magnetic field in region 2?

82 A uniform magnetic field is perpendicular to the plane of a
circular wire loop of radius r.The magnitude of the field varies with
time according to B � B0e�t/t, where B0 and t are constants. Find
an expression for the emf in the loop as a function of time.

83 Switch S in Fig. 30-61 is
closed at time t � 0, initiating the
buildup of current in the 15.0 mH
inductor and the 20.0 	 resistor.
At what time is the emf across the
inductor equal to the potential
difference across the resistor?

84 Figure 30-71a shows two
concentric circular regions in
which uniform magnetic fields
can change. Region 1, with radius
r1 � 1.0 cm, has an outward mag-
netic field that is increasing in
magnitude. Region 2, with radius
r2 � 2.0 cm, has an outward mag-
netic field that may also be
changing. Imagine that a conduct-
ing ring of radius R is centered on
the two regions and then the emf
� around the ring is determined.
Figure 30-71b gives emf � as a

B
:

2

B
:

1

B
:

SSM

SSM

Fig. 30-68 Problem 77.

i
i

M
L1

L2

N1 N2

Fig. 30-69 Problem 79.

+
–

S

i2

R2

i

R1
i1

L

Fig. 30-71 Problem 84.

r1

r2

s

0 2
R2 (cm2)

4

 (
n

V
)

(a)

(b)

Fig. 30-67 Problem 76.

C

S

R

Fig. 30-70 Problem 81.

H
D

1 2

is

0i (
  

A
)

µ x

(a)

(b)

Fig. 30-66 Problem 75.

N turns
i

l

b

a

Additional Problems
78 At time t � 0, a 12.0 V potential difference is suddenly ap-
plied to the leads of a coil of inductance 23.0 mH and a certain re-
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87 A square wire loop 20 cm on a side, with resistance
20 m	, has its plane normal to a uniform magnetic field of magni-
tude B � 2.0 T. If you pull two opposite sides of the loop away
from each other, the other two sides automatically draw toward
each other, reducing the area enclosed by the loop. If the area is re-
duced to zero in time �t � 0.20 s, what are (a) the average emf and
(b) the average current induced in the loop during �t?

88 A coil with 150 turns has a magnetic flux of 50.0 nT � m2

through each turn when the current is 2.00 mA. (a) What is the
inductance of the coil? What are the (b) inductance and (c) flux
through each turn when the current is increased to 4.00 mA?
(d) What is the maximum emf � across the coil when the current
through it is given by i � (3.00 mA) cos(377t), with t in seconds?

SSM
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function of the square R2 of the ring’s radius, to the outer edge of
region 2. The vertical axis scale is set by �s � 20.0 nV. What are the
rates (a) dB1/dt and (b) dB2/dt? (c) Is the magnitude of increas-
ing, decreasing, or remaining constant?

85 Figure 30-72 shows a uniform magnetic field confined
to a cylindrical volume of radius R.The magnitude of is decreasing
at a constant rate of 10 mT/s. In unit-vector notation, what is the ini-
tial acceleration of an electron released at (a) point a (radial distance
r � 5.0 cm), (b) point b (r � 0), and (c) point c (r � 5.0 cm)?

B
:

B
:
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89 A coil with an inductance of 2.0 H and a resistance of 10 	 is
suddenly connected to an ideal battery with � � 100 V. (a) What is
the equilibrium current? (b) How much energy is stored in the mag-
netic field when this current exists in the coil?

90 How long would it take, following the removal of the battery,
for the potential difference across the resistor in an RL circuit (with
L � 2.00 H, R � 3.00 	) to decay to 10.0% of its initial value?

91 In the circuit of Fig. 30-74,
R1 � 20 k	, R2 � 20 	, L � 50 mH,
and the ideal battery has � � 40 V.
Switch S has been open for a long
time when it is closed at time t � 0.
Just after the switch is closed, what
are (a) the current ibat through the
battery and (b) the rate dibat/dt? At 
t � 3.0 ms, what are (c) ibat and (d) 
dibat/dt? A long time later, what are (e) ibat and (f) dibat/dt?

92 The flux linkage through a certain coil of 0.75 	 resistance
would be 26 mWb if there were a current of 5.5 A in it. (a)
Calculate the inductance of the coil. (b) If a 6.0 V ideal battery
were suddenly connected across the coil, how long would it take
for the current to rise from 0 to 2.5 A?

93 In Fig. 30-61, a 12.0 V ideal battery, a 20.0 	 resistor, and an induc-
tor are connected by a switch at time t � 0. At what rate is the battery
transferring energy to the inductor’s field at t � 1.61tL?

94 A long cylindrical solenoid with 100 turns/cm has a radius of
1.6 cm. Assume that the magnetic field it produces is parallel to its
axis and is uniform in its interior. (a) What is its inductance per
meter of length? (b) If the current changes at the rate of 13 A/s,
what emf is induced per meter?

95 In Fig. 30-75, R1 � 8.0 	, R2 �
10 	, L1 � 0.30 H, L2 � 0.20 H, and
the ideal battery has � � 6.0 V. (a)
Just after switch S is closed, at what
rate is the current in inductor
1 changing? (b) When the circuit is in
the steady state, what is the current
in inductor 1?

96 A square loop of wire is held in a uniform 0.24 T magnetic
field directed perpendicular to the plane of the loop. The length of
each side of the square is decreasing at a constant rate of 5.0 cm/s.
What emf is induced in the loop when the length is 12 cm?

97 At time t � 0, a 45 V potential difference is suddenly applied
to the leads of a coil with inductance L � 50 mH and resistance 
R � 180 	. At what rate is the current through the coil increasing
at t � 1.2 ms?

98 The inductance of a closely wound coil is such that an emf of
3.00 mV is induced when the current changes at the rate of 5.00
A/s. A steady current of 8.00 A produces a magnetic flux of 40.0
mWb through each turn. (a) Calculate the inductance of the coil.
(b) How many turns does the coil have?
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86 In Fig. 30-73a, switch S has been closed on A long enough
to establish a steady current in the inductor of inductance 
L1 � 5.00 mH and the resistor of resistance R1 � 25.0 	. Similarly,
in Fig. 30-73b, switch S has been closed on A long enough to estab-
lish a steady current in the inductor of inductance L2 � 3.00 mH
and the resistor of resistance R2 � 30.0 	. The ratio �02/�01 of the
magnetic flux through a turn in inductor 2 to that in inductor 1 is
1.50.At time t � 0, the two switches are closed on B.At what time t
is the flux through a turn in the two inductors equal?
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